
Volume 15 (2019) PROGRESS IN PHYSICS Issue 2 (July)

Twin Universes: a New Approach

Patrick Marquet
E-mail: patrick.marquet6@wanadoo.fr

In this article, we derive a differential form of Einstein’s field equations using Cartan’s
free coordinates calculus. Under this form, we see that it is possible to infer another
set of field equations dual to the original one and which displays a negative sign. We
may then relate this system to the equations sustaining the twin Universe of the Janus
Cosmological Model developed by the astrophysicist J.-P. Petit.

Introduction

As early as 2014, the astrophysicist J.-P. Petit put forward a
model of Universe which harbors two fields equations with
two sources: it is referred to as The Janus Cosmological Mo-
del (JCM) [1] which is inspired by the twin Universes theory
first proposed by A. Sakharov [2].

Such a bi-metric is shown to account for the Dark Energy
description and other unsolved observational data [3], pro-
vided one distinguishes our Universe as filled with positives
masses and energies, from another wherein negative masses
and negative energies are assigned to.

From the quantum physics perspective, negative energies
have always played an unsavory role.

However, following a recent publication, it appears that
both negative energies and masses are physically compatible
if the time reversal operator is kept unitary within the Dirac
formalism [4].

This considerable mathematical progress lends support to
the Janus Model which relies on this symmetry.

So far, the few theories exhibiting two opposite metrics
have been arbitrarily assumed as a “natural” hypothesis with
the confidence that subsequent results would eventually cor-
roborate this postulate. In this paper, we tackle the problem
at the very early stage: With the aid of the Cartan calculus
and using the Hodge star operation, we rewrite the Einstein’s
field equations under a differential form.

With this preparation, we naturally infer another set of
field equations which displays a negative sign. This differ-
ential procedure thus provides a straightforward basis where-
from the Janus Model can be substantiated.

Notations

Space-time: Greek indices α, β run from 0, 1, 2, 3. Space-time
signature: −2. In the present text, κ is the Einstein’s constant:
8πG/c4 where G is Newton’s gravitational constant, although
we adopt here c = 1.

1 Differential form of Einstein’s field equations

1.1 The Cartan procedure

Let us consider a 4-pseudo-Riemannian manifold referred to
a general basis eα. The dual basis θ β of one-forms are related

to the local (Roman) coordinates {a} by:

θ β = a β
a dxa. (1.1)

The (a β
a ) are called vierbein or tetrad fields [5].

We next define the Cartan procedure, a powerful coordi-
nates free calculus which is extensively used in the foregoing.

Let us define the connection forms by:

Γαβ =
{
α
γ β

}
θγ. (1.2)

The first Cartan structure equation is related to the torsion
by [6, p.40]:

Ωα =
1
2

Tα
γ δ θ

γ ∧ θδ = dθα + Γαγ ∧ θ
γ, (1.3)

where Tα
γ δ = 1

2
[
Γα[γ δ] − Γα[δ γ]

]
is the torsion tensor.

In the Riemannian framework alone, it reduces obviously
to:

dθα = −Γαγ ∧ θ
γ. (1.4)

The second Cartan structure equation is defined as [6, p.42]:

Ωα
β =

1
2

Rα
βγδ θ

γ ∧ θδ = dΓαβ + Γαγ ∧Γ
γ
β , (1.5)

Rα
βγδ are here the curvature tensor components.

Defining the absolute exterior differential D of a tensor
valued p-form of type (r, s)

(Dφ) i1...ir
j1... js

= dφ i1...ir
j1... js

+ Γ
i1

k ∧ φ
k i2...ir

j1... js
+

. . . − Γ k
j1 ∧ φ

i1...ir
k j2... js

− . . .

we can write for example the Bianchi identities in a very sim-
ple way as:

DΩα = Ωα
β ∧ θ

β, (1.6)

DΩα
β = 0. (1.7)

1.2 The Einstein equations

1.2.1 The Einstein action

We first recall the Hodge star operator definition for an ori-
ented n-dimensional pseudo-Riemannian manifold (M, g)
whose volume element determined by g is:

η =
√
−g θ0∧ θ1∧ θ2∧ θ3.
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Let Λk(E) be the subspace of completely antisymmetric mul-
tilinear forms on the real vector space E.

The Hodge star operator * is a linear isomorphism *:
Λk(E) → Λn−k(M) (k 6 n). If θ0, θ1, θ2, θ3 is an oriented
basis of 1-forms, this operator is defined by:

∗(θi1∧ θi2∧ . . .∧ θik ) =

=

√
−g

(n − k)!

[
ε j1... jn g

j1i1 . . . g jk ik θ jk+1∧ . . .∧ θ jn
]
. (1.8)

With this preparation, the Einstein action simply reads:

∗R = R η . (1.9)

We shall need this action expressed in terms of tetrads.
Proof: With σµν = ∗(θµ∧ θν) and taking into account (1.8)

we have
σβγ∧Ωβγ =

1
2
σβγ Rβγ

µν θ
µ∧ θν

and
∗(θµ∧ θν) =

1
2
ηβασρ g

βµ gαν θσ∧ θ ρ

i.e.
σβγ =

1
2
ηβγσρ θ

σ∧ θ ρ. (1.10)

Thus,

σβγ∧ θ
µ∧ θν =

1
2
ηβγσρ θ

σ∧ θ ρ∧ θµ∧ θν = (δµβ δ
ν
γ − δ

µ
γ δ

ν
β )η

and:

σβγ∧Ωβγ =
1
2

(δµβ δ
ν
γ − δ

µ
γ δ

ν
β ) Rβγ

µνη = R η = ∗R.

Taking into account (1.10) let us now compute the absolute
exterior differential:

Dσβγ =
1
2

D (ηβγσρ θ
σ∧ θ ρ).

In an orthonormal system ηβγσρ is constant and: D ηβγσρ = 0.
This reflects the fact that in the Riemannian framework

(metric connection), orthonormality is preserved under par-
allel transport as well as the transported vector magnitude.
Therefore:

Dσβγ = ηβγσρDθσ∧ θ ρ.

Now, bearing in mind that the basis θσ is a tensor valued 1-
form of type (1,0), the first structure equation reads [7]:

Dθσ = Ωσ

and
Dσβγ = ηβγσρ Ωσ∧ θ ρ = Ωσ∧σβγσ .

The latter is zero for the torsion free Riemann connection:
Dσβγ = 0.

In the same way, we can show that

Dσβγα = dσβγα + Γ
β
δ∧σ

δγ
α + Γ

γ
δ∧σ

βδ
α − Γδα∧σ

βγ
δ (1.11)

with
σ
βγ

α = ∗(θ β∧ θγ∧ θδ),

(where all indices are raised or lowered with gαβ from g =

gαβ θ
α ⊗ θ β).

1.2.2 The Einstein field equations

From (1.10), we infer:

σβγδ = ηβγδλ θ
λ. (1.12)

Under the variation of δθ β of the orthonormal tetrad fields,
we have

δ(σβγ ∧Ωβγ) = δσβγ ∧Ωβγ + σβγ ∧ δΩ
βγ .

Now, using (1.10) and (1.12) yields:

δσβγ =
1
2
δ(ηβγδλ θ

δ∧ θλ) = δθδ∧σβγδ .

Then, applying the varied second structure equation

δΩβγ = dδΓβγ + δΓ
β
η ∧Γηγ + Γ

β
η ∧ δΓ

ηγ

we obtain

δ(σβγ ∧Ωβγ) = δθγ ∧ (σβγδ ∧Ωβγ) + d(σβγ ∧ δΓβγ) −

− dσβγ ∧ δΓβγ + σβγ ∧ (δΓ β
η ∧Γηγ + Γ

β
η ∧ δΓ

ηγ) (1.13)

from the second line, we extract:

dσβγ + σβγ ∧ (Γηγ + Γβη)

which is just: Dσβγ. However, we know that: Dσβγ = 0, and
finally, the Einstein action variation is:

δ(σβγ∧Ωβγ) = δθ β∧ (σβγδ∧Ωγδ) + d(σβγ∧ δΓβγ) (1.14)

(exact differential). The global Lagrangian density with mat-
ter is written:

L = −

(
1
2
κ

)
∗R + Lmat .

Setting ∗Tβ as the energy-momentum 3-form for bare matter
we have the varied matter lagrangian density:

Lmat = −δθ β∧ ∗Tβ .

and taking into account (1.14) the global variation is:

δ(L) = −δθ β∧

[
1
2
κσβγδ∧Ωγδ + ∗Tβ

]
+ (exact differential).
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We eventually arrive at the field equations under the differen-
tial form:

−
1
2
σβγδ ∧Ωγδ = κ ∗Tβ , (1.15)

where Tα is related to the energy-momentum tensor Tαβ by
Tα = Tαβ θ β.

In the same manner, one has: Gα = Gαβ θ
β so that these

identifications lead to the field equations with a source in the
classical form:

Gαβ = Rαβ −
1
2
gαβ R = κTαβ , (1.16)

Gαβ is conserved but not Tαβ, therefore we should look for the
appropriate r.h.s. tensor.

To this effect we start by reformulating (1.15) as

−
1
2

Ωβγ ∧σ
βγ
α = κ ∗Tα (1.17)

and we use the second structure equation under the following
form

Ωβγ = dΓβγ − Γµβ∧Γ
µ
γ (1.18)

so as to obtain:

dΓβγ ∧σ
βγ
α = d

(
Γβγ ∧σ

βγ
α

)
+ Γβγ ∧ dσβγα . (18bis)

Then using (1.11) in (1.18bis), we infer:

dΓβγ ∧σ
βγ
α = d

(
Γβγ ∧σ

βγ
α

)
+

+ Γβγ ∧
(
Γ
β
δ ∧σ

δγ
α − Γ

γ
δ ∧σ

βδ
α − Γδα ∧σ

βγ
δ

)
. (1.19)

Adding the second contribution (Γα γ∧Γγ β) of (1.18) to
(1.19), we obtain the Einstein field equations in a new form:

−
1
2

d(Γβγ ∧σ
βγ
α) = κ (∗Tα + ∗tα), (1.20)

where

∗tα =

(
−

1
2
κ

)
Γβγ ∧ (Γδα ∧σβγδ − Γ

γ
δ ∧σ

βδ
α), (1.21)

where ∗tα should be here interpreted as energy and momentum
3-form of the gravitational field generated by this matter.

Equation (1.20) readily implies the conservation law:

d(∗Tα + ∗tα) = 0 . (1.22)

Within the Riemannian framework, we know that the gravita-
tional field cannot be localized, which is reflected by the fact
that ∗tα does not transform as a tensor with respect to gauge
transformations.

Indeed, as Γβγ can be made zero at any given point of the
Riemannian manifold, this 3-form vanishes.

To the 3-form ∗tα is thus associated the antisymmetric
Einstein-Dirac pseudo-tensor (Θa

b)ED [8].

In order to explicitly write down (1.20) with a true 3-
form on the r.h.s., one should add the 3-form of the energy-
momentum for the vacuum denoted by (∗tα)vac.

Equation (1.22) eventually satisfies the conservation law:

d[∗Tα + (∗tα)gravity] = 0 (1.23)

with:
(∗tα)gravity = ∗tα + (∗tα)vac . (1.24)

To the 3-form (∗tα)vac corresponds the tensor

(tαβ)vac =

(
−

1
2
κ

)
Ξ gαβ , (1.25)

where Ξ is the variable cosmological term which replaces the
cosmological constant Λ as [9]:

Gαβ = Rαβ −
1
2
gαβ R = κ

[
Tαβ + (tαβ)ED

]
+ Ξ gαβ . (1.26)

2 Two opposite field equations

Since we deal with a Lorentzian manifold n = 4, repeated
application of the duality operation *, gives:

∗(∗Gβ) = − ∗Gβ , (2.1)

∗(κ ∗Tβ) = − (κ ∗Tβ) . (2.2)

The Cartan formalism thus allows for two “opposite” field
equations to appear.

Can we find its physical meaning? A straightforward jus-
tification can be provided by the Janus model of J.P. Petit
whose universes exhibit opposite energy/masses.

This model is characterized by two types of distinct met-
ric tensors (+)gµν and (−)gµν, which imply two distinct field
equations:

(+)Gβµ = (+)Rβµ −
1
2

(+)gβµ
(+)R = κ

[
(+)Tβµ +$(−)Tβµ

]
, (2.3)

(−)Gβµ = (−)Rβµ −
1
2

(−)gβµ
(−)R = κ

[
(−)Tβµ + ω(+)Tβµ

]
, (2.4)

where (+)gµν refers to positive mass/energy particles while
(−)gµν refers to negative mass/energy particles with the corres-
ponding Ricci tensors (+)Rµν and (−)Rµν.

Here ±Tµν is the massive tensor which implicitly contains
the gravitational field tensor defined from (1.24).

With our definition, we then have the obvious correspon-
dences:

∗Gβ →
(+)Gβµ ,

∗Tβ → (+)Tβµ +$(−)Tβµ ,

∗(∗Gβ) → (−)Gβµ ,
∗(∗Tβ) → −

(
(−)Tβµ + ω(+)Tβµ

)
.
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Each solution of (2.3) and (2.4) is a Friedmann-Lemaitre-
Roberston-Walker metric

(±)ds2 = dt2 − (±)a(t)2
du2 + u2

(
dθ2 + sin2 θ dϕ2

)
(
1 +

k u2

4

)2 , (2.5)

where k is referred to as the curvature index: {−1, 0, 1}.
Ultimately, inspection shows that:

$ =
(−)a3

(+)a3 and ω =
(+)a3

(−)a3 , ω = $−1. (2.6)

3 Conclusions and outlook

According to the Cosmological Janus Model, mass and
charge inversions simultaneously result from time reversal
which grant the theory a particularly simple and exhaustive
symmetry.

As a final point, let us emphasize that the JCM bi-metric
scheme is far from being an arbitrary postulate as it proves
consistent with the newest developments in astrophysics.

It is also formally sustained by a specific splitting of the
Riemann tensor in two 2nd rank tensor field equations as
shown in [10]. This 4th rank tensor theory eventually leads
to the space-time of constant curvature (i.e. in vacuum). It
thereby copes with the recent view suggesting that the laws of
physics are invariant under the symmetry group of De Sitter
space (maximally symmetric space), rather than the Poincaré
group of Special Relativity [11–14].

Submitted on March 24, 2019
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