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Can We Hide Gravitational Sources behind Rindler Horizons?
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When an object accelerates in one direction, a Rindler horizon forms in the opposite
direction and information from behind it cannot reach the object. Here it is shown
that it is possible to test for this effect since it predicts that if an object, say a disc,
is rotationally accelerated by over ∼ 1010 m/s2 then the Rindler horizon it sees should
come close enough to hide part of the Earth and therefore it should not feel all the
Earth’s gravity. This effect could be detected by measuring the disc’s weight.

1 Introduction

Hawking [1] showed that the strong gravity at the edge of a
black hole produces an event horizon that can separate paired
virtual particles leading to Hawking radiation and black hole
evaporation. Fulling [2], Davies [3] and Unruh [4] showed
that a similar effect occurs for accelerating objects in that a
Rindler horizon [5] forms at a distance of c2/a from the side
they are accelerating away from (where c is the speed of light
and a is the acceleration of the object). This horizon similarly
produces radiation so that an accelerated object will perceive
a warm background full of blackbody radiation whereas an
unaccelerated body will see a cold background with no radia-
tion. This is called Unruh radiation [4] and for typical accel-
erations it has too long a wavelength to be detectable, but it
may have been observed coming from plasmons propagating
at high acceleration around the surface of a gold nanotip [6].

McCulloch [7, 8] proposed a new model for inertia (called
quantised inertia, or QI) that assumes that the inertia of an
object is due to the Unruh radiation it sees when it accelerates.
The Rindler horizon that appears in the opposite direction to
its acceleration damps the Unruh radiation on that side of the
object producing a radiation pressure differential that looks
like inertial mass [8]. Also, when accelerations are extremely
low the Unruh waves become very long and are also damped,
this time in all directions, by the Hubble horizon (Hubble-
scale Casimir effect). This leads to a new loss of inertia as
accelerations become tiny. QI modifies the standard inertial
mass (m) to a modified one (mi) as follows:

mi = m
(
1 −

2c2

|a|Θ

)
, (1)

where c is the speed of light, Θ is twice the Hubble distance,
|a| is the magnitude of the relative acceleration of the object
relative to surrounding matter. Eq. 1 predicts that for ter-
restrial accelerations (eg: 9.8 m/s2) the second term in the
bracket is tiny and standard inertia is recovered, but in low
acceleration environments, for example at the edges of galax-
ies (when a is tiny), the second term in the bracket becomes
larger and the inertial mass decreases in a new way so that
QI can predict galaxy rotation without the need for dark mat-
ter [9].

Putting Eq. 1 into Newton’s second and gravity laws gives

F = ma = m
(
1 −

2c2

|a|Θ

)
=

GMm
r2 (2)

and finally

a =
GM
r2 +

2c2

Θ
. (3)

This predicts cosmic acceleration (the new second term)
without the need for dark energy [7]. In this paper this same
result is derived a different way, simply using Ernst Mach’s
attitude that “what cannot be observed does not exist”. It is
argued that, since Rindler horizons are boundaries for infor-
mation, then sources of gravity behind them disappear from
the point of view of the accelerated object. It is shown here
that this effect predicts cosmic acceleration, given the known
baryonic mass of the cosmos, and may allow us to hide grav-
itational sources behind horizons producing new kinds of
thrust.

2 Method

If we consider a photon travelling at the speed of light in the
centre of its own Hubble sphere (see Fig. 1). Due to the im-
possibility of any light from the left hand side of the cosmos
catching up to the photon, we can say that, as far as the pho-
ton knows, there is no mass there at all. All the mass is hidden
by the Rindler horizon. Therefore, there is a gravitational im-
balance as the photon can be aware of a lot of matter in front
of it in the direction of its acceleration, but nothing behind.
We can calculate this gravitational acceleration as follows

a =
GM
r2 . (4)

We can assume from standard geometry that the centre of
mass of the semi-sphere in front of the photon is 3/8ths of the
radius away, and the radius and baryonic mass of the cosmos
are estimated to be 4.4 × 10−10 m and 1052±1 kg, so

a =
6.67 × 10−11 × 1052±1

(3/8 × 4.4 × 1026)2 = 2.45 × 10−11±1m/s2. (5)

The predicted acceleration (given the error bars) agrees
with the observed cosmic acceleration and with the critical
acceleration below which galactic dynamics deviate from
Newton: 2 × 10−10m/s2.
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Fig. 1: A schematic showing the Hubble horizon (as a black circle).
A photon (the central grey circle) moves rightwards at the speed of
light, so it has a Rindler horizon passing through it, and no informa-
tion from the black-shaded volume can get to it. This means that,
following Mach, the gravitational mass from that black region is ir-
relevent and the gravitational pull from the right hand half of the
cosmos now dominates, causing an acceleration which predicts the
cosmic acceleration.

3 A test

If we consider a spinning disc, then every particle within it
is accelerating towards the spin axis, and each particle per-
ceives a Rindler horizon that is outside the disc. As the ro-
tational acceleration is increased the horizon moves closer to
the spin axis. What would happen if the horizon was closer
than the Sun or the Earth? Would this hide their gravitational
effect from the point of view of the accelerated object? (see
an earlier brief discussion of this in [10]).

To calculate the spin rate required to pull the Rindler hori-
zon in closer than a distance dR we assume a disc of any mate-
rial of radius r, spinning at R rpm (rotations per minute). The
centripetal acceleration (a) at different radii (r) of the disc is
given by

a =
v2

r
=

(2πrR/60)2

r
=

4π2rR2

3600
, (6)

where the 60 comes from the number of seconds in a minute.
The Rindler horizon forms in the direction opposite to the
acceleration at a distance given by

dR =
c2

a
. (7)

We can now substitute Eq. 6 in Eq. 7

dR =
3600 c2

4π2rR2 =
900 c2

π2rR2 . (8)

Eq. 8 shows the distance of the Rindler horizon (dR) for
a particle within a disc spinning at R rpm and at a radius r
from the spin centre. It shows that the faster the disc spins (R

increases) the distance to the Rindler horizon decreases very
rapidly and the Rindler horizon is closer for particles at the
disc’s edge (when r is large).

4 Results & discussion

Eq. 8 can be rearranged to calculate the rotation rate R (in
rpm) needed to bring the Rindler horizon closer than a body
a distance dR away

R =

√
900 c2

π2rdR
. (9)

The following table shows the object to be hidden by
the Rindler horizon in the first column. The second column
shows its distance (d) away from a lab on the Earth’s surface.
The third column shows the acceleration needed, in a linear
sense, to hide the object. The fourth column shows the rpm
required for a spinning disc to achieve that acceleration, at
a radius of 0.1 m. The fifth column shows the gravitational
acceleration (ag = GM/d2) produced by that object that will
disappear and affect the dynamics of the disc (but only those
parts of it above the critical acceleration).

Object Distance a rpm ag

Eq. 7 Eq. 9

(m/s2) (m/s2)

Sun 1 AU 600,000 23 k 0.006

Earth 6371 km 1.43 × 1010 3589 k 9.8

Table 1: The Table shows for two objects (column 1), the distances
from a lab on the Earth’s surface to the object (column 2), the ac-
celerations needed to hide the object behind Rindler horizons (col-
umn 3), the rpm needed for that acceleration for a disc at a radius of
0.1 m (column 4) and the acceleration exerted by the object on the
disc (column 5).

The rotation required to hide the Sun should be achievable
since gyroscopes often have rotation rates of 30,000 rpm and
medical centrifuges can spin at 100,000 rpm. The rotation
rate required would be lower for a larger disc. Of course, only
the part of the disc that has an acceleration vector pointing
away from the Sun (the Sunward side) would feel the disap-
pearence of the Sun’s effect, including its gravitational force.
The gravitational acceleration due to the Sun is GM�/r2 =

0.006 m/s2 (this is 0.06% of g). The Sun’s width in the sky is
about half a degree so only an area of about 1/(360*2) of the
disc would be affected and then also only the area of the disc
outside the radius of 0.1m. So if the disc was 0.2m in radius
the affected area would be the total area times (1/720)×(3/4).
Therefore, the average acceleration for the whole disc would
be 0.006 × (1/720) × (3/4) = 6.25 × 10−6m/s2.
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From a practical point of view it would be far more useful
to hide the Earth’s gravity since then launching objects would
become easier. The acceleration required to do so: 1.43×1010

(see Table 1), has just been achieved for the first time by [11]
who spun a microscopic sphere of radius r = 4×10−6 m using
circularily polarised light to suspend and rotate it in vacuo at
R = 6 × 108 rpm. This is an acceleration, using Eq. 6 of
1.58 × 1010m/s2 which agrees with the acceleration needed
to pull the Rindler horizon close enough to hide the Earth’s
gravity (Table 1, column 3).

5 Conclusion

It is proposed here that Rindler horizons have physical con-
sequences beyond their effects on light: they are able to hide
gravitational sources.

It is shown that assuming that gravitational sources can be
hidden in this way, predicts the cosmic acceleration.

The effect could be tested using discs with extreme spins,
which should break free from distant gravitational sources.
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