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The radial flow within the frame of analogue hydrodynamic approach to gravitational
field with spherical symmetry is reviewed. Such alternative models of gravity, for exam-
ple the river model of black holes and the analogue gravity, do not satisfy the continuity
equation for the radial fluid flow. The presented model considers a case of incompress-
ible fluid with non-zero source-sink field that can reconcile the continuity equation with
the analogue gravity. Based on modelling of a fluid parcel’s evolution with time, three
cases are reviewed resulting in the Schwarzschild, the Schwarzschild-de Sitter (SdS)
and the Schwarzschild-Anti de Sitter(AdS) metrics. The parameters of the model are
exactly determined. The model can support a view on the de Sitter cosmology and can
serve as its alternative interpretation via such hydrodynamic approach.

1 Introduction

General Relativity (GR) is a widely accepted theory of gravi-
tation. However, in spite of its mathematical beauty and con-
cordance with experiments, as it is well known, it also has
a few difficulties: first of all, it is still problematic to merge
GR with quantum mechanics; secondly, GR is not fully suf-
ficient in explaining few observable effects in the cosmology
(such as rotation curves of the galaxies); and lastly it is not a
singularity-free theory. In this article an alternative approach
to gravitation based on the fluid/aether model is reviewed.

Such interpretations (not dismissing GR) always existed
in parallel, starting from Lenz and Sommerfeld who reported
his ideas in Lectures on Theoretical Physics [12] in 1944. In
the 1960s, a number of authors discussed this topic following
Lenz’s idea, see [10, 11]. The approach uses Special Relativ-
ity (SR) only to derive the same results as GR [3–5,7,9]. Even
if this model still captures the interest of the researchers, it is
not widely accepted, and usually is considered through the
prism of a “heuristic” approach as it was reviewed in [13].

Such four-vector model of gravity describes a spherically
symmetric gravitational field via the Lorenz invariant four-
potential which are the same as the components of four-vector
“aether” velocity

vα =

(
φ

c
, vr, vϕ, vθ

)
(1)

where φ is the scalar gravitational potential ∗, and

v =

√
2Gm

r
(2)

is the radial velocity as measured by co-moving observer giv-
en for the case of a static, non-rotating mass m without charge
and vϕ = vθ = 0. The velocity in case of the Kerr-Newman
metric is obtained in [6], and in case of the de Sitter metric is

∗For example, the reader may check that such effective potential given
by (v0c) (its second term of the Taylor series) leads to the correction of New-
tonian potential and to the same result for the anomalous perihelion preces-
sion of Mercury as GR.

reviewed in [3]. According to such approach the curvature of
spacetime is the consequence of movement of some medium
(or even space itself [2]). The concept implies that something
moves and therefore space curves, [4–6]. Due to this mo-
tion the special relativistic length contraction leads to spatial
curvature in gravity and the special relativistic time dilation
causes time dilation in gravitational field respectively.

The Schwarzschild metric written in the (– + + +) sign
convention generated by radial flow is given by

ds2 = −c2
(
1 −

v2

c2

)
dt2 +

(
1 −

v2

c2

)−1

dr2 + r2 dΩ2 (3)

where dΩ2 = sin2 θ dφ2 + dθ2 and the coordinate velocity is
given by (2). Even if such model fully suffices to describe
all effects of GR, it has two drawbacks: first, it is based on
the abstract concept of moving space and does not hypothe-
size about the nature of what moves. It should be something
that moves instead of nothing. Secondly, it is applicable to
spherically symmetrical fields only. The second point is not
as solid as the first one, because most of the objects in the
universe demonstrate spherical symmetry, especially in the
physics of elementary particles where the phenomena of grav-
itation originates.

2 The analogue gravity and its problem with the hydro-
dynamic continuity equation

Though, even if the ideas for a fluid theory of the gravitation
were reported before [16], recently, as a continuation and gen-
eralization of such approach, the analogue gravity model was
proposed [1, 14, 15]. It is based explicitly on fluid hydrody-
namics, and it uses the acoustic metric for a moving fluid in
general form (not only for spherically symmetric case) as

gµν =
ρ

c


−

(
c2 − v2

) ... −v j

...... . .......

−vi
... δi j

 . (4)
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In spherically symmetric case it suggests that density of
the fluid should change as r−3/2 and therefore the conformal
factor appears as in the acoustic metric as

ds2 ∝ r−3/2
[
−c2

(
1 −

v2

c2

)
dt2+

+

(
1 −

v2

c2

)−1

dr2 + r2dΩ2

 . (5)

Then it creates an issue for the metric itself. The suggested
workaround [1] is to represent the fluid density as perturba-
tion ρ = ρ0 +ρ′ i.e. as linearized fluctuations around the back-
ground value. This is good to model the metric in approxima-
tion but again the first term does not satisfy the continuity
equation.

It should be noted that such value for the velocity (2) in
the frame of the fluid analogue model of gravity is not de-
rived from any hydrodynamic equation. Moreover the inflow
through the sphere of radius r as 4πr2b = r3/2 is clearly in-
compatible with the continuity equation. The presented ap-
proach suggests to resolve the conformal factor problem in
the analogue gravity by conjecturing the fluid’s constant den-
sity and sink-source term in the continuity equation which
represents an evolution of fluid parcel’s volume with time in
the Lagrangian frame .

3 The continuity equation for the model

Let’s consider an ideal inviscid isentropic fluid. In Lagran-
gian co-moving frame of reference the use of relativistic equ-
ation of the continuity is not required and also because, as
discussed in [4], the metric in the co-moving frame is flat. In
case of presence of sink-source term the equation of continu-
ity in Lagrangian frame is

∂ρ

∂t
+ ρ∇ · (~v) = σ (6)

where σ is the sink-source term. In case of constant density
ρ0 it reduces to

∇ · (~v) =
σ

ρ0
=
∂V̇
∂V

(7)

where the rate of volume production per time within a control
volume was denoted as V̇ . Let’s now consider the spherically
symmetric case and take some volume with radius r. Using
the Gauss-Ostrogradsky theorem then

4πr2v(r) = V̇ (r) =
1
ρ0

∫ r

0
σ(r)4πr2dr (8)

where V̇ represents the total volume integral of sink-sources
σ within a sphere of radius r. So the radial velocity can be
obtained from (8) as

v(r) =
V̇

4πr2 . (9)

In (9) the rate of volume production is a function of time in
Lagrangian frame V̇(t), or in Eulerian frame is a function of
only radial distance V̇(r) respectively, and the flow is station-
ary.

It is important to make note on a sign of the velocity (2).
The approach is valid for both – for positive and negative val-
ues of the velocity (2) because it comes to the metric (3) as
squared value. Many authors treat the river model of grav-
ity with radial flow going in inward direction to the center of
gravity. However, in the present model it is considered oppo-
site – the outward flow of the fluid and the positive sign for
velocity (placing coordinate center at the point mass) which
means that the flow is decelerated going from the point mass
center and has also negative acceleration.

4 The linear model, the Schwarzschild metric

Let’s now consider the point mass m and the spherical co-
ordinate center is placed in m. The point mass m emits the
volume parcels Vn of the fluid at some constant rate ωm with
initial position r = 0 and time t = 0. The parameter ωm is de-
noted in such way because of an assumption that it depends
on the property of point mass itself or even may be linearly
proportional to the value of point mass m. So every time in-
terval

∆t = 1/ωm , (10)

one nth parcel of the fluid Vn appears near the point m and
no initial velocity is considered. Following the above, let’s
assume that every parcel Vn further grows linearly with time
in its respective Lagrangian frame as ∗

Vn = ωV0t (11)

where V0 = m0 ρ0 and ω are some external constants which
do not depend on the property of point mass, and ω is in the
same way linearly proportional to a parameter m0. Then the
total number of produced parcels during time t is

n = ωmt . (12)

So, the volume of nth parcel in row is given by

Vn =
ω

ωm
V0n . (13)

Importantly, time in Lagrangian frame (local co-moving fra-
me of every fluid’s parcel) is synchronized with time of the
observer resting at infinity (see [5] for more details on this).
So, the time interval given by (10) is the same in the co-
moving frame of parcel as well as in the reference frame of
point mass.

In order to find V̇ within a sphere of some fixed radius r,
first a total volume produced by sum of all such parcels has

∗For simplicity one can imagine the emitted volume parcels Vn as grow-
ing spherical bubbles, though fluid parcels have no actual form.
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to be defined. Summation of (13) yields

V(t) =

n∑
1

Vn =
ω

ωm
V0

n2

2
=

1
2
ωmωV0t2 (14)

where an approximation that n ≈ n + 1 for a relatively big
number of parcels was used. Taking time derivative and sub-
stituting into (9) leads to

v =
dr
dt

=
ωmωV0t

4πr2 . (15)

Solving this differential equation for r(t) one can find the
equation of motion for the fluid as

r(t) =

(
3ωmωV0t2

8π
+ c1

)1/3

(16)

where c1 is an arbitrary constant and represents initial posi-
tion of parcel at time t = 0 which has to be zero, so c1 is
zeroed. Expressing t(r) from (16) and substituting this into
the original equation (15) results in the fluid velocity v(r) in
Lagrangian frame as

v =
dr
dt

=

(
1

6π
ωmωV0

r

)1/2

. (17)

So as a result, the radial velocity is inversely proportional to
the square root of the radial distance as (2), which reproduces
the Schwarzschild metric. But still, the unknown parameters
in the expression are to be determined.

The fluid acceleration is

dv
dt

=
∂v

∂t
+ (v∇) v . (18)

For a stationary radial flow the acceleration is given only by
the convective term, therefore

a = ∇

(
v2

2

)
= −

1
12π

ωmωV0

r2 . (19)

This acceleration is negative for the positive value of the ve-
locity (17), and as the coordinate center was placed in the cen-
ter of mass m, it means that the flow is decelerated in outward
direction. However, as it was noted above, the corresponding
metric (3) remains the same regardless of the velocity sign.

5 The volume conversion relation and the uncertainty
principle

Let’s introduce the volume Vm such as

Vm =
m
ρ0

(20)

where m is the mass of the point source. And let’s assume that
ωm represents de Broglie wave frequency of the mass m, and
m0 is given by the uncertainty principle with rigorous factor

of two (where it originates because of the non-commutativity
of the quantum operators [8]) as

m0c2 = ρ0V0 =
1
2
~ω . (21)

This means that the fluid parcel’s mass m0 is not observable
during the time ω−1. Then

Vmω = 2ωmV0 . (22)

Further this expression will be referred as the volume con-
version relation with the exact factor of two. Therefore (17)
becomes

v =

(
ω2

12πρ0

m
r

)1/2

. (23)

Regarding the mass-energy conservation, the point mass
m does not act as actual source studied in classical fluid dy-
namics, because at time t = 0 an outgoing parcel has zero
volume Vn = 0 and zero mass accordingly, therefore there is
no actual mass flow from the point mass m. The linear mass
growth of a parcel is also governed by the uncertainty princi-
ple and it is not observable during the time ω−1.

6 The hyperbolic model, the SdS metric

Presumably the linear dependency of Vn(t) in the model above
can be just an approximation of some unknown odd function
and the linear function of t in (11) represents just a first term
of its Taylor series. Choosing to test the hyperbolic sine one
may assume that Vn changes with time in its respective La-
grangian frame as

Vn = V0 sinh(ωt) . (24)

Considering that time in co-moving frame of parcel now is
not synchronized with time running at the clock of the ob-
server at rest at infinity, but the time coordinate transform is
given by

t′ =
1
ω

sinh(ωt) (25)

where t′ is proper time in co-moving parcel’s frame.
Following the same procedure, as in the previous model,

the total number of produced fluid parcels during time t is
given by (12). And the volume of nth parcel in row is given
by

Vn = V0 sinh
(
ω

ωm
n
)
. (26)

The sum of all such parcels provides the total volume pro-
duced by time t as

V(t) =

n∑
1

Vn = V0

sinh2
(

n
2
ω
ωm

)
sinh

(
1
2
ω
ωm

) (27)
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where n ≈ n + 1 for a relatively big number of parcels. The
value of sinh

(
1
2
ω
ωm

)
is very small and can be easily approx-

imated without a loss of precision as 1
2
ω
ωm

∗. Then, using
trigonometric identity and t instead of n let’s rewrite (27) in
simpler form as

V(t) =
ωmV0

ω
(cosh(ωt) + 1) (28)

where factor 1/2 disappears because of the trigonometric con-
version. Taking time derivative and using the volume conver-
sion relation (22) it becomes

V̇ =
1
2
ωVm sinh(ωt) . (29)

With the use of (9) the differential equation is

v =
dr(t)

dt
=
ωVm sinh(ωt)

8πr(t)2 . (30)

Solution for r(t) provides the equation of motion as

r(t) =

(
r0

3 +
3Vm cosh(ωt)

8π

)1/3

. (31)

Applying boundary condition as r = 0 when t = 0 the equa-
tion of motion becomes simply

r(t) =

(
3Vm

8π

)1/3

(cosh(ωt) − 1)1/3 . (32)

Expressing the hyperbolic sine from this and then substi-
tuting it into (30) leads to

v(r) =

(
Vmω

2

12πr
+
ω2r2

9

)1/2

(33)

or with use of the definition of Vm (20) the resulting radial
velocity is

v(r) =

(
ω2

12πρ0

m
r

+
ω2r2

9

)1/2

. (34)

So the hyperbolic model leads to the same radial velocity as in
the previous model (23), but with the additional term. Using
(18) the fluid acceleration is

a = −
ω2

24πρ0

m
r2 +

ω2r
9

. (35)

7 Determination of the model parameters

The association of the first term in (35) with Newtonian gravi-
tational acceleration allows expressing the value for fluid den-
sity via ω as

ρ0 =
ω2

24πG
. (36)

∗For example for the proton mass such approximation would give an
error of order less than 10−40.

Then substituting ω from this into the second term of (35)
gives the repulsive acceleration as

arep =
8π
3
ρ0Gr . (37)

This term can be also treated as the Newtonian gravitational
force from uniformly distributed mass that has the equation
of state p = −ρc2 and satisfies stress-energy equivalent

ρ0 +
∑

i

pi

c2 = −2ρ0 (38)

as given in [13, see the expressions (45–46)]. Assuming the
constant density ρ0 (36) is equal to the critical density, the
value for ω can be defined via the Hubble constant as

ω = 3H . (39)

And the repulsive acceleration as given by (35) is

arep = H2r =
c2Λ

3
r . (40)

The radial velocity of the fluid (34) based on (3) and using
(39) leads to

ds2 = −

(
1 −

2Gm
c2r

−
H2r2

c2

)
c2dt2+

+

(
1 −

2Gm
c2r

−
H2r2

c2

)−1

dr2 + r2dΩ2

(41)

that corresponds to the Schwarzschild-de Sitter metric for the
hyperbolic model.

8 The harmonic model, the Schwarzschild-AdS metric

Using the sine function in (25) which could be treated as a
simple harmonic oscillation of a fluid parcel volume Vn(t).
Following the same procedure (substituting sinh() with sin()
instead) it is easy to see that the result would be the same as
it was in previous model (34) but with a difference in sign of
the second term

v(r) =

(
ω2

12πρ0

m
r
−
ω2r2

9

)1/2

(42)

which with the use of (39) and (3) obviously leads to the
Schwarzschild-Anti de Sitter metric.

9 Conclusions

The model results in full accordance with known metrics with
exact accuracy by the coefficients based on assumptions of
the volume conversion equation (22) and of the equality of
the fluid density to the critical density value. The forces, the
Newtonian gravitational and the repulsive cosmological, both
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appear natively in the hyperbolic model. Therefore the model
may support a view on applicability of the static de Sitter met-
ric for cosmology. In presented approach the de Sitter Uni-
verse is also empty in the sense that the mass of the matter is
attributed to the medium with constant density ρ0. While the
matter objects may reside statically at the fixed coordinates of
the metrics (41), the space-time curvature (resulting in both
attractive gravitation and repulsion) originates in a motion of
the medium. The equation of state and the stress-energy of
such fluid were suggested (38). However, one should be cau-
tious to apply GR for further analysis of the solutions, be-
cause only Special Relativity is considered in the frame of
the present approach.

The fluid parcels can be treated as virtual particles emitted
by an elementary particle with the constant rate given by the
de Broglie frequency, and on the other hand they can be con-
sidered as ”growing bubbles of space”. An individual parcel
is not observable during the cosmological time, and its mass
and volume are constrained by the uncertainty principle as
shown.

The evolution of parcel’s volume with time was modelled
by odd functions. The odd functions have property of being
asymmetric under time-reversal transformation. The require-
ment for such time asymmetry to generate velocities applica-
ble to describe different metrics for gravitational field could
be a topic for future study. Further analysis is required on
finite boundary conditions (when a fluid parcel originates at
time t = 0 at finite radius) and on corresponding event hori-
zons. The temporal coordinate transform (25) as a base of the
hyperbolic model, a possible correspondence of the cosmo-
logical scale factor to the proposed volume increase require
further analysis.

Received on May 17, 2019
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