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By allowing the fundamental particles of the Standard Model to communicate via “feed-
back signals” within a vacuum lattice of mathematical nodes at the Planck scale, one
learns that this approach toward understanding fundamental physics reveals the surpris-
ing common origin of quantum mechanics and of general relativity. This “feedback
signal” approach is shown to be equivalent to the path integral approach but also the
underlying reason for its success.

1 Introduction

The GR = QM in the title refers to a recent suggestion [1]
that perhaps the long-standing theoretical conflict between
general relativity and quantum mechanics is not insurmount-
able. In fact, the conjecture has been that they may actually
be closely related, or at least they could have the same funda-
mental origin.

Herein I establish the common fundamental origin for
gravitation and quantum mechanics. A non-traditional ap-
proach to fundamental particle behavior is required, one that
agrees with the successful effective Standard Model (SM) of
leptons and quarks [2] but treats these particles as harmonic
oscillators emitting and receiving scalar waves at their Comp-
ton frequencies [3]. A fundamental particle, such as an elec-
tron, communicates with the surrounding discrete vacuum
lattice of mathematical nodes via these scalar “feedback sig-
nals”. Therefore, a particle itself actively determines its sub-
sequent behavior even in the absence of the SM local gauge
fields.

The surprising result is that the common origin of quan-
tum mechanics and of general relativity arises directly by
simply analyzing particle behavior in sufficient geometrical
detail.

2 A brief particle physics review

In this section I offer a brief review of some of the physics
consequences if one considers both the internal symmetry
space for defining the particle states of the SM and our (3+1)-
D spacetime to be discrete spaces. Such possibilities may be
necessary in order to justify (1) treating the internal symme-
try space and spacetime as C2 unitary space lattices of math-
ematical nodes and (2) proposing the leptons, hadrons, and
electroweak (EW) bosons to be 3-D particles behaving as har-
monic oscillators. If one chooses to accept these concepts
outright, one can skip forward to Section 3 for the details of
the feedback signal approach.

Recall that the SM describes the known local gauge in-
teractions, color and electroweak, via its SU(3)C x SU(2)L x
U(1)Y lagrangian, so I will ignore these gauge interactions in
the discussion ahead. The leptons, the hadrons formed from

quarks and gluons, and the EW interaction bosons W±, Z0,
and γ, are the fundamental particles defined [2] in the inter-
nal symmetry space whose behavior in spacetime will be ex-
plained in terms of the feedback signal approach. That is,
I am treating these three categories of fundamental particles
as 3-D objects and not as point particles. The justification is
provided below.

The proposed feedback signal approach can only be self-
consistent if each fundamental fermion, i.e., lepton or quark,
“gathers in” the immediate surrounding lattice nodes in its
own unique way. That is, I assume that (3+1)-D spacetime is
a discrete lattice of mathematical nodes, and a particle’s col-
lection of lattice nodes, perhaps at the Planck scale, must have
a different discrete rotational symmetry for each different fun-
damental fermion family. These assumptions are in contrast
to the same SU(2) point particle continuous symmetries for
each family in the traditional interpretation of the SM.

Specifically, one finds that only discrete symmetry binary
subgroups of the unit quaternion group Q, which is equivalent
to SU(2), suffice, with each binary subgroup of Q having two
EW isospin ± 1

2 states in each fermion family. Therefore, be-
ing binary subgroups of Q, and of SU(2) x U(1), all the math-
ematical machinery of the SM remains valid. Moreover, the
important left-handed fermion state preference for the weak
interaction is dictated by the mathematical properties of the
quaternion multiplications for the weak interaction.

I have identified 3 discrete symmetry binary subgroups
of Q that define the 3 physical lepton families [4–6]. They
are these specific 3 binary subgroups acting in the R3 sub-
space of C2: the [332] binary subgroup for the electron fam-
ily; the [432] binary subgroup for the muon family; and the
[532] binary subgroup for the tau family. They are known
also as the binary tetrahedral group 2T, the binary octahedral
group 2O, and the binary icosahedral group 2I, respectively,
and correspond to special discrete binary rotations of 3-D ob-
jects called regular polyhedrons in the 3-D real space R3. No
more lepton families are predicted because there are no more
binary subgroups of Q that require a 3-D space.

The fact that Nature agrees with the 3 lepton families rep-
resenting these 3 binary subgroups of Q is verified by the
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first principles derivation [6,7] of the neutrino PMNS mixing
angles from their three quaternion generators by collectively
mimicking the SU(2) generators, i.e., the three Pauli genera-
tors. The empirical values of the lepton mixing angles now
agree within 1σ to each of these theoretical absolute values:
θ12 = 34.281◦, θ23 = 42.859◦, θ13 = 8.578◦. Conceptually, this
EW flavor state mixing to produce the mass states occurs be-
cause a valid renormalizable conformal field theory requires
a continuous symmetry such as in the lagrangian of the SM.
This lepton family mixing therefore guarantees that the 3 dis-
crete symmetry binary subgroups defining the lepton families
collectively behave as the SU(2) of the SM.

I have identified also 4 related discrete symmetry binary
subgroups [4, 5, 8] that define four 4-D quark families in R4:
[333], [433], [343], and [533], corresponding to the only reg-
ular polytopes in R4. The mathematical and physical conse-
quences of these discrete symmetry groups for 4 quark fam-
ilies are discussed in Appendix A. The 4-D quarks and 4-D
gluons combine according to QCD to form the 3-D hadrons,
the baryons and mesons, or one can use intersection theory to
establish the same results.

Note that the 3-D lepton states in R3 and the 4-D quark
states in R4 both fit into the proposed 2-D unitary space C2.
Our (3+1)-D spacetime for discussing the particle bahavior
also fits into C2. I am assuming that the two spaces, the inter-
nal symmetry space for particle definition and spacetime for
the physics behavior join together seamlessly. Therefore, this
C2 = R4 space is proposed to be the one I need to consider to
be discrete and composed of mathematical nodes. The nodes
are equally spaced on average at the Planck scale when no
fundamental particles are in existence.

Each fermion family with its own unique discrete symme-
try binary subgroup has two Q or SU(2) orthogonal ± 1

2 states,
but they will be mass-energy degenerate unless they form the
two new physical orthogonal states of different energies as
dictated by QM. Therefore, each lepton and each quark fam-
ily has two weak isospin flavor states that have different mass
values with a characteristic oscillation occurring between the
two original mathematical states at the Compton frequency
and Compton wavelength

ωC =
mc2

~
, λC =

h
mc

. (1)

For the electron, its Compton values are ωC ≈ 7.8 x 1020

Hz and λC ≈ 2.4 x 10−12 meters. Therefore, the Compton
wavelength of each fundamental particle will be many orders
of magnitude larger than the Planck distance of about 10−35

meters. Consequently, the proposed vacuum lattice structure
of nodes appears to be a continuous space for the fundamental
particles.

Although the effective SM lagrangian has the continuous
symmetry local gauge group SU(3)C x SU(2)L x U(1)Y , add-
ons called horizontal discrete symmetry groups are now be-

coming acceptable alternatives for defining the lepton fam-
ily states, particularly with the advent of neutrino mixing and
non-zero neutrino mass states [2]. However, the discrete sym-
metry binary subgroups of the unit quaternion group Q that I
have proposed for the leptons and quarks retain the success-
ful predictions of the SM without the need to introduce any
additional horizontal discrete symmetries to its lagrangian.

That is, all the successes of the SM have been retained
by my specific discrete symmetry approach for the fermions
while the geometrical sources of some of its physical prop-
erties have been elucidated. I cannot overemphasize this re-
tention of the SM mathematical and physical properties, with
perhaps the SM being a useful approximation even down to
the Planck scale.

The above brief review of my discrete symmetry approach
to the SM has been included in order to introduce some of
the mathematical connections that propose some unconfirmed
physics possibilities and also to justify using a discrete space-
time of mathematical nodes as both the origin of the funda-
mental fermions of the SM and as an active participant in
their physical behavior. I will show how this approach leads
directly to the special theory of relativity (STR), path inte-
grals, quantum mechanics (QM), and the general theory of
relativity (GTR), as explained in the discussion ahead.

3 The feedback signal approach

Spacetime itself at the Planck scale of about 10−35 meters
could be a discrete space described by a uniform lattice of
mathematical nodes. Therefore, I assume that our physical
(3+1)-D spacetime agrees with a uniform lattice in the unitary
space C2 (or equivalently R4) at or near the Planck scale and
that each fundamental lepton family forms its particle states
by “gathering in” lattice nodes to form its own unique discrete
symmetry 3-D objects. This “gathering in” process distorts
the lattice locally with the amount of lattice distortion extend-
ing outward in a decreasing manner with increasing distance,
i.e., as inverse distance.

If I assume that the undistorted, uniformly spaced lattice
has no net energy density, then the positive mass-energy of a
fundamental particle is related to the amount of lattice distor-
tion in some yet-to-be-determined way. I expect this mass-
energy to be balanced by an equal negative energy value that
retains the overall net zero energy total even for the distorted
lattice. Perhaps the increased “stretch distance” between the
nodes outside the particle definition volume provides nega-
tive energy that is the balancing factor for an assumed zero
total energy for the Universe.

Recall that Clifford algebra and Bott periodicity [9] dic-
tate a conjugate R4 = C2 space. In this conjugate space for
anti-particles, the same mathematical properties of the uni-
formly spaced lattice would apply, again producing a positive
mass-energy for the anti-particle states.

Each fundamental particle oscillating at its characteris-
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tic frequency, its Compton frequency ωC , is proposed to be
emitting scalar waves, call them “feedback signals”, into the
surrounding vacuum lattice to eventually reach everywhere.
The particle source could be undergoing “breathing mode”
oscillations and emitting spherical waves isotropically into its
environment. One must not identify these oscillations with
electromagnetic waves because they are just propagating lat-
tice distortions that allow lattice nodes to communicate with
their nearest neighbors.

According to the special theory of relativity (STR), there
exists a limiting speed for mass-energy transfer. I will take
this maximum speed to be c, the speed of light in a vacuum,
although there could be a higher speed limit if some day a
photon is determined to possess a very tiny mass value.

Let a particle oscillate at its Compton frequency

ωC =
mc2

~
, (2)

with m the particle’s mass value, c the speed of light in a
vacuum, and ~ being Planck’s constant divided by 2π.

The feedback signals obey the standard scalar wave equa-
tion, a hyperbolic partial differential equation in three spatial
variables x, y, z, and one time variable t. Its scalar function
u(x,y,z,t) obeys

52u −
∂2u

c2∂t2 = 0. (3)

Solutions of this equation for spherical symmetry have no an-
gular dependence, so the feedback signal amplitude u(r,t) de-
pends only upon the radial distance according to(

∂2

∂r2 +
2
r
∂

∂r
−

∂2

c2∂t2

)
u(r, t) = 0. (4)

The solutions for a single frequency ω have the form

u(r, t) =
A
r

ei(ωt±kr) (5)

where the wavenumber k = ω/c and the peak intensity I(r) =

|A|2/r2, i.e., the inverse square dependence.
This feedback signal approach requires the fundamental

particle to behave as a microscopic ’antenna’ moving within
and communicating with the lattice and with other particles
via its feedback signals. For example, the electron oscillating
at ωC = 7.77 x 1020 Hz disturbs the surrounding lattice at the
same frequency ωC , and this oscillatory disturbance propa-
gates radially outward in all directions at speed c. By treat-
ing the particle as an antenna, the particle not only emits its
feedback signals but also can absorb its own feedback signals
returning from scatterings in the lattice environment.

I can describe the electron’s oscillation in more detail. Al-
though I have its oscillations only at the Compton frequency
ωC , such ideal behavior cannot be maintained once signals re-
turn from the environment, even when the electron is at rest.
There will exist a small spread in frequency values about its

Compton frequency according to Fourier analysis. Therefore,
a Q value can be assigned to represent the small spread in fre-
quency values, just as for any other harmonic oscillator. The
signal emissions have a small spread in frequencies also, but
for simplicity I will ignore this property unless needed for
clarification purposes. Therefore, I will continue to use a sin-
gle characteristic Compton frequency ωC even though we un-
derstand that the oscillator does not have an infinite Q value.

The lattice nodes act as a transponder to the feedback
signals, absorbing and immediately emitting them equally in
all directions for all frequencies, all amplitudes, and with no
phase shift. That is, each small volume element in the lat-
tice must absorb some of the incident feedback signals and
then emit immediately the feedback signals at the original
frequency into all directions isotropically. One can think of a
single lattice node or of a specific collection of lattice nodes
acting together as a transponder, but considering the same
type of transponder everywhere for simplicity.

If one wishes to introduce a non-zero phase shift at each
transponder, then a simple modification could be to have the
phase shift value be the same for all the transponders and be
independent of the feedback signal frequency. Either con-
straint can be eliminated for a more complicated vacuum lat-
tice. I have chosen the simplest assumption of no phase shift
and equal response for all frequencies and amplitudes.

I had initially allowed the feedback signals to have an ar-
bitrary velocity v0. However, I learned that if one lets the
speed of the feedback signals v0 = c, the speed of light in
a vacuum, then this simple feedback signal approach per-
mits the direct derivation of the phenomena and equations
of special relativity, general relativity, and quantum mechan-
ics, with all of them agreeing with the present theories. The
biggest surprise occurred when I learned that general relativ-
ity and quantum mechanics would then have the same funda-
mental origin.

In the sections ahead I will use many parts of my origi-
nal 1982 attempt toward establishing this feedback signal ap-
proach as a viable approach but with some added updates here
and there to provide a 21st century perspective. The identifi-
cation of the gravitational interaction is one recent addition.

4 Single particle behavior at uniform velocity

Let a lone fundamental particle, such as a single electron in
the Universe, be a 3-D physical harmonic oscillator oscillat-
ing at its Compton frequency ωC with its antenna-like behav-
ior emitting its feedback signal oscillations into the surround-
ing discrete lattice of uniformly spaced mathematical nodes,
perhaps separated by the Planck distance of about 10−35 me-
ters. As far as the electron is concerned, with its Compton
wavelength of about 2.4 x 10−12 meters, the lattice appears to
be continuous. Likewise for all other particles composed of
leptons and of quarks, i.e., the hadrons, as well as the interac-
tion bosons of the SM.
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Fig. 1: Feedback signals are emitted by an electron at its previous
successive equal-phase positions Ai. P1 and P2 are two of numerous
transponders in the surrounding 3-D space on equal-phase ellipsoids
for the signals from electron position A1 only. This uniform veloc-
ity electron has moved forward at 0.866c to B where the returning
feedback signals define its present location.

Either way, having a discrete space or a continuous space,
the oscillations of the particle will appear as feedback signals
traveling in the surrounding space R3 (the subspace of R4 and
C2) and progress through the space at the constant velocity
c with decreasing amplitude as the radial distance from the
particle increases. Why require a decreasing amplitude? Be-
cause we must consider the concept of energy conservation
associated with these outgoing and incoming feedback sig-
nals.

For simplicity only, I ignore at first the “permanent” space
distortion of the lattice caused by the formation and pres-
ence of each fundamental particle. Therefore, the feedback
signals propagate through a lattice in which the average lat-
tice node spacings remain the same separation distance ev-
erywhere. Later on I will remove this restriction in order to
discuss gravitational effects between two fundamental parti-
cles.

Both a coordinate space and a momentum space descrip-
tion of this feedback signal approach is considered. Single
particle behavior in coordinate space is shown in Fig. 1. If
the electron had been at rest, then all the positions Ai and
position B would coincide and the ellipses would be circles
centered at B to exhibit the spherical symmetry. However,
this electron has been moving at a uniform velocity in the
+x direction and is now at location B receiving feedback sig-
nals from the transponders Pi everywhere in space. The sur-
rounding ellipsoids are equal-phase locations for the outgoing
feedback signals emitted by the electron at previous equally-
spaced successive electron positions Ai for i = 1,2,3,4,5.

In this lab frame as the electron moves by, the diagram
shows three feedback signal rays, from A1 to P1 to B, from
A1 to P2 to B, and from A1 to P3 to B, of equal total length
that have feedback signals arriving at B exactly in-phase with
the particle oscillation when the particle arrives at B. These

rays are a few examples of the feedback signals that have been
emitted isotropically into 4π solid angle by the particle when
at A1.

Only a specific subset of all the equal-phase ellipsoids are
shown in Fig. 1. Note also that each larger ellipsoid repre-
sents a lesser signal amplitude at the transponders along the
ellipsoid, being a further distance away from the source, and
that all feedback signals returning from the same 3-D ellip-
soid have identical amplitudes and phases because their total
path distances are equal. Because the transponders in space
are everywhere, all emitted signals will eventually reach one
of them. I will later explain how all the multiple scattering
paths from the Ai to B are related to the path integral con-
cept considered by R.P. Feynman in his approach to quantum
mechanics and classical mechanics [10].

If the particle has just come into existence, then the sig-
nals will have not reached very far into the surrounding space.
In almost all practical cases the particle has existed for a
time long enough so that the signals will have permeated to
tremendous distances and an approximate steady-state con-
dition will have been established, with the outgoing and in-
coming signal amplitude totals approximately matching at the
particle’s new location B.

Recall that I have chosen no phase delay for the transpon-
ders. Incoming feedback signals to the transponder from any
direction are immediately emitted into all directions. Their
spherically symmetrical emission pattern, shown at each Pi,
assumes that all space locations, and therefore all transpon-
ders, are identical, behave identically, and will “scatter” feed-
back signals. This ideal transponder behavior is the simplest
possible for determining the subsequent behavior of the par-
ticle.

5 Frequency shifted feedback signals

The feedback signals sent forward and backward along the
electron’s velocity (momentum) vector in the x-direction ex-
perience frequency shifts. Signals sent in the forward di-
rection with frequency ωC return from those transponders at
a higher frequency ωC + ∆ω because the moving particle
encounters the equally-spaced equal-phase maximum signal
amplitudes at shorter time intervals than when the particle is
at rest. That is, these returning signals at frequency ωC + ∆ω
are blue-shifted according to the relativistic Doppler expres-
sion

ω′ = ωC + ∆ω =

√
1 + v/c
1 − v/c

ωC . (6)

And those feedback signals returning from transponders in
the backward direction are red-shifted to the lower frequency
by taking the opposite sign of the electron’s velocity v.

One important consequence of this feedback signal ap-
proach is that a steady-state equilibrium can be maintained
for the electron moving at a constant velocity. There is sym-
metric behavior in the two coordinate directions perpendicu-
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lar to the velocity direction but a constant asymmetric reach
in the x-direction of motion. For example, in Fig. 1 consider
the outermost ellipsoid scattering the feedback signals emit-
ted from position A1. The backward sampling distance for a
particular ellipsoid is shorter than the forward sampling dis-
tance in the environment.

In the steady-state condition for a single electron in the
universe, the returning signals from all directions should not
change the electron’s constant velocity because there is no
amplitude change in any of the returning signals, and their
phases from all directions agree at the new electron position
B. If there were no frequency shifts in the x-component of
the feedback signal frequencies, then one might calculate the
contributions by either of two methods: (1) adding up the
returning signals from the rear and from the front by consid-
ering cones of equal solid angles on opposite sides of B and
using elliptic functions of the second kind, or (2) adding up
the returning signals along a line through B at any angle θ
with respect to the velocity vector direction. Using the sec-
ond method, one would add contributions along a line at angle
θ to achieve

−

√
1 + v cos θ f /c
1 − v cos θ f /c

ν +

√
1 − v cos θb/c
1 + v cos θb/c

ν = 0, (7)

where the first term represents signals returning from the for-
ward direction at angle θ f and the second term returning sig-
nals from the back at angle θb. Because one can constrain
0≤ |θ| ≤ π/2 for the forward direction, then along the same
line θb = -(π/2 +θ f ) and the sum is always zero because the
cosines have opposite signs in diagonally opposite quadrants.

However, that method does not apply for this situation.
Why not? Because we must account for the frequency shifts
by integrating over the surface area of each ellipsoid sepa-
rately for the feedback signals returning from the forward di-
rection and those returning from the backward direction in or-
der to determine the net effect. In Fig. 1, one recognizes that
the plane passing through points P3 and B perpendicular to
the x-axis separates the two surface parts for each ellipsoidal
surface integral, thereby separating the backward returning
feedback signals from the forward returning ones.

In terms of the semi-major axis b and the semi-minor axis
a, the ellipsoid’s eccentricity

ε =
√

(b2 − a2)/b2. (8)

The solid angle of the ellipsoidal cap on the right of B sub-
tended from A1 is

Ωcap = 2π (1 − cos θ) (9)

where θ is the angle between the ray from A1 to P3 and the
x-axis. The solid angle subtended by the left side is

Ωle f t = 4π −Ωcap = 2π (1 + cos θ). (10)

Substituting the pertinent geometrical values, one obtains

Ωcap = 2π
(
1 −

2ε3

√
1 + 4ε6

)
. (11)

These geometrical factors are multiplied by the frequencies
returning from each point on the ellipsoidal surfaces. Along
the x-axis one obtains:

Ωcap ω
′ = 2π

(
1 −

2ε3

√
1 + 4ε6

) √
1 + v/c
1 − v/c

ωC , (12)

and

Ωle f t ω
′ = 2π

(
1 +

2ε3

√
1 + 4ε6

) √
1 − v/c
1 + v/c

ωC . (13)

Substituting ε = β = v/c, assuming v << c, and expanding
the expressions in a Taylor series, their difference becomes

Diff ≈ −4πωC β (β2 − 1) ≈ 4πωC β, (14)

i.e., proportional to the velocity v as expected, verifying that
the uniform velocity will be maintained along the x-axis.

If one desires to check the result for relativistic veloci-
ties, the complete integration over the cap and the surface area
remainder would be necessary. The frequency shifts can be
large enough to put the returning feedback signals outside the
high Q absorption curves. However, the integration verifies
that the uniform velocity is maintained.

6 Inertia and Mach’s principles

The idea of inertia considered in the early 1600s by Galileo
and others proposed that a body maintains its state of uniform
motion unless acted upon by an outside net force.

In the previous section, my feedback signal approach re-
veals the origin for this Law of Inertia. That is, the vacuum
lattice itself plays an active and important role in maintaining
the state of a particle’s uniform motion. The feedback sig-
nals scatter from the transponders to arrive back in-phase to
determine the particle’s new location.

Information about the environment is brought back to de-
termine the continuous behavior of the particle. Long-lived
particles can establish a steady-state communication with the
environment, but short-lived particles learn only transient in-
formation about their immediate environment. Fast particles
near the speed of the feedback signals sample only an ex-
tremely small distance perpendicular to the trajectory direc-
tion.

The distant parts of the Universe play their role in deter-
mining the particle motion locally because feedback signals
from way out there are added to the closer contributions to
determine its new location. Mach’s principle connecting lo-
cal behavior to the influences from far reaches of the Universe
therefore fits well in this feedback signal approach. The ori-
gin of the inertia concept is established.
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Fig. 2: The momentum-space x-component amplitude contribution
at B of the returning feedback signals for the electron at rest [solid
rectangle] versus the contributions of the feedback signals [dashed
rectangle] in the x-direction for the electron at a uniform velocity.

7 The momentum-space description

What does the particle do with its own returning signals? And
with other particle’s signals, which may be at the same fre-
quency or at other frequencies? The response to any feedback
signals by the particle depends upon whether the feedback
signals lie within the response range of frequencies for its
inherent harmonic oscillator, meaning that feedback signals
are absorbed if they lie within the absorption response curve
defined by its Q value. That is, a particle is not a transpon-
der and will be frequency selective. And, in contrast to the
transponders, which maintain their initial properties forever,
the future behavior of the particle can be affected.

The x-component momentum-space behavior of the elec-
tron’s feedback signals is shown in Fig. 2. The gray rectan-
gle represents the equal x-momentum contributions from all
4π solid angle for the electron at rest in the lab frame, be-
ing symmetrical about kx = 0. Left to right, from -kx to 0
to +kx, one has the momentum-space total amplitude con-
tributions from the x-components of the returning feedback
signals. The dashed rectangle represents the same electron
moving at a constant velocity v, so this dashed rectangle is
the original rectangle displaced by the x-momentum of the
particle. Out-of-phase returning feedback signals will change
the distribution.

8 Time asymmetry

In addition to continuous Lie symmetries, discrete symme-
tries are important in particle physics. Experiments in the
1950s and 1960s established both parity P and charge-parity
CP violation for the weak interaction. Theoretically, one ex-
pects CPT invariance, which includes the time reversal op-
eration T, and to this date all evidence points toward CPT
conservation [2]. CP violation occurs for the weak interac-
tion, so then T violation must occur for the weak interaction
also in order to maintain CPT invariance. The mathematical
source [6] of the weak interaction CP violation is simply the
mathematics of products of unit quaternions in the group Q,
the leptons, quarks, and weak bosons all being represented by
quaternions.

This feedback signal approach to particle behavior pos-
sesses a fundamental time asymmetry, the expected T vio-

lation. Consider a free particle with its Compton frequency
ωC in uniform motion in the lab frame. To the moving parti-
cle, as we demonstrated earlier, its returning feedback signals
from the forward direction are blue-shifted to a higher fre-
quency and those returning from the backward direction are
red-shifted to a lower frequency.

Now introduce time reversal via the operator T, i.e., have
the electron move backwards at the same uniform velocity as
if running a video backwards. The particle will be emitting
bluish feedback signals in the new backward direction and
their returning signals from the transponders would be red-
shifted back to the original Compton frequency ωC . The new
forward emitted reddish signals will return as blue-shifted
back to the original ωC also. Therefore, the environment ap-
pears symmetrical in the forward and backward directions, so
the particle should not be moving. There is a conflict with
the hypothesis of time reversal symmetry. Therefore, time re-
versal symmetry is violated. Time reversal cannot occur in
Nature.

Hence, a definite time direction is an inherent feature of
the feedback signal approach. The moving particle “knows”
its forward direction in the time coordinate. All particles
would possess this time asymmetry property. For the anti-
particles, which exist in the mathematically conjugate space
to our normal space, they would also have one time direction
only, forward for them but perhaps in the backward direction
mathematically for us.

Consequently, time travel backwards in time would be
impossible in our Universe of particles unless, perhaps, one
changes all the material particles to their anti-particles that are
conjectured to have the opposite time direction in the conju-
gate space. And time travel forward in time faster than normal
would be impossible also because there would exist a conflict
with the particle behavior we have established via the feed-
back signal approach.

9 Origin of Special Relativity

Does this feedback model of particle behavior, as developed
so far, lead to the special theory of relativity (STR)? If one
examines the successive series of ellipsoids shown in Fig. 1,
these ellipsoids belong to a set of curves with eccentricity ε
= β = v/c, the ratio of the electron’s velocity divided by the
speed of light. Therefore, as β = v/c→ 1, then also ε → 1.

In order to derive the expected STR equations, two as-
sumptions about the feedback signals must be accepted:

1. the speed of the feedback signals in all reference frames
is the same constant c, and

2. the perpendicular distances are invariant.

In the laboratory frame the feedback signals from each
Ai to an ellipsoidal shell and back to the electron now at B
will arrive in-phase at B, the definition of the new location of
the free electron. A specific path within an ellipsoidal shell
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Fig. 3: Constant phase ellipsoid parameters for deriving special rel-
ativity relations in a vacuum with an eccentricity ε = β = v/c.

is shown in Fig. 3. The feedback signal goes from Ai at one
focus of the ellipsoid to B at the other focus in the same time
that the electron goes from Ai to B via a straight trajectory
through the origin O.

I can now do the standard derivation, with the feedback
signals instead of with light rays. Let the lab frame be the
primed frame. The perpendicular distance from O to a, the
semi-minor axis distance, and back is

2∆y = 2ct, (15)

and, using the geometrical properties of the ellipsoid,

2∆y′ = 2s
[
c2

v2 − 1
]1/2

, (16)

with s = vt′. Because the perpendicular distances in the two
reference frames are equal, ∆y′ = ∆y, the time intervals are
related by

t′ =
t√

1 − v2/c2
(17)

and the distance intervals along the velocity vector in the x-
diection are related by

`′ = `
√

1 − v2/c2. (18)

These relations are the fundamental equations of STR for the
coordinate and time measurements. In Subsection 9.2 the rel-
ativistic energy and momentum expressions are derived. But
first some geometrical properties of ellipsoids must be intro-
duced.

9.1 Ellipsoidal geometry

In terms of the semi-major axis length b and the semi-minor
axis length a, the ellipsoid’s eccentricity is given by Eq. 8.
If the perpendicular semi-minor axis length a is held fixed in
both perpendicular directions to the x-direction as β = ε → 1,
the semi-major axis value

b =
a

√
1 − ε2

→ ∞. (19)

At the same time the surface area of the ellipsoid as a prolate
spheroid becomes

S .A. = 2πa2 + 2π
ab sin−1 ε

ε
∼ 2πa2 + 2πab→ ∞, (20)

while the ellipsoid volume increases as

Volume =
4
3
πba2 → ∞. (21)

With the ellipsoids stretching out along the x-axis, the ve-
locity direction, as a consequence of β = ε → 1, the number
of in-phase ellipsoids that can “scatter” feedback signals from
the Ai to B is rapidly decreasing. Or so it seems that way! As
a check, consider the feedback signal that goes rearward from
Ai to -b and then is scattered forward to B. If the electron’s
velocity v ∼ c, then immediately after the feedback signal’s
emission directed toward -b comes the return feedback signal
to arrive at B simultaneously and in-phase with the electron.
Consequently, only a very small distance into the environ-
ment behind and sideward will be sampled to determine the
electron’s behavior.

The minimum sampling distance in the direction perpen-
dicular to the x-axis might seem to be the semi-minor axis
distance

a =
ct′

2

√
1 − β2 → 0. (22)

However, the particle’s Compton wavelength, or actually half
the Compton wavelength, is the minimum sampling distance
when v ∼ c.

9.2 Energy and momentum

Using Fig. 3 again, one can determine several other important
consequences in STR via the feedback signal approach. Rel-
ativistic energy and momentum can be related to the volume
of the ellipsoid. If this statement is true, then the electron at
rest has its mass-energy E = mc2 determined by its “spheri-
cal volume” density when ε = 0. Note that this fundamental
particle volume will maintain a discrete rotational symmetry
corresponding to the binary subgroup properties of each fun-
damental particle. So the “spherical volume” is an idealized
spherical approximation in which the particle exists.

The ellipsoid volume when β� 1 is expressed as

V =
4
3
πba2 =

4
3
π

a3

√
1 − ε2

'
4
3
πa3 (1 +

1
2
β2 + . . .) (23)

or, when multiplied by c2, is

Vc2 =

(
4
3
πa3

)
c2 +

1
2

(
4
3
πa3

)
v2 + . . . , (24)

which can be compared favorably to the familiar STR expan-
sion of m = m0/

√
1 − v2/c2 as

mc2 = m0c2 +
1
2

m0v
2 + . . . (25)
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in which the second term on the right in Eqs. 24 & 25 ex-
presses the increase of the mass-energy due to the particle’s
velocity, also known as the kinetic energy, and defines p =

mv.
The simplest conclusion is that mass-energy is directly

associated with the distorted volume of the space lattice oc-
cupied by the electron and depends upon the mass density

ρ(m0) =
6
π

m4
0c3

h3 , (26)

which reminds us that each type of fundamental particle dis-
torts the lattice space in its own way to pack in its unique
amount of mass-energy.

But there is more to behold! The vacuum, i.e., the lattice
of mathematical nodes, must contribute the energy per unit
volume which can be assimilated into the moving particle to
increase its total energy according to STR. Until now I have
assumed that the uniformly-spaced lattice does not have en-
ergy per unit volume, which is probably correct, but now we
learn that the distorted lattice created by the particle at rest
(and when in motion) is the energy source. At this point in
my earlier research in the 1970s and 1980s I realized that each
fundamental particle in Nature should have a different sym-
metry in order to agree with my discovery of the mass-energy
relation to the volume enclosed.

In 1984, by accident, I found the significant clue to the
lepton family symmetries that indicated that they could be
representing specific discrete symmetry binary subgroups of
SU(2), i.e., the unit quaternion group Q. That is, the 3 lep-
ton families could be representing the specific 3-D discrete
symmetry binary subgroups of Q named [3,3,2], [4,3,2], and
[5,3,2], and also exhibit properties and behavior that suggests
that the SM is a good theory all the way down to the Planck
scale with its possible discrete lattice of mathematical nodes.

10 Origin of Feynman path integrals

Physicist R.P. Feynman is credited with providing a relativis-
tic path integral approach to quantum mechanics (QM) in the
1940s and applying this method to better understand the foun-
dations of physics. Today, practically all areas of physics
continue to use path integrals to investigate the behavior of
Nature at all levels [11].

The fundamental idea behind the path integral calculation
is that a particle, such as an electron, “sniffs out” all possible
paths between its initial location A and its final location B.
Each possible path contributes its QM amplitude and phase
angle to the path integral. Most paths contribute very little to
this limit of the sum because their path lengths from A to B
are so long that not only are their QM amplitude values re-
duced significantly but also their phase values differ enough
to cancel each other. Two path examples are shown in Fig. 4
that will have significantly different contributions to the am-
plitudes at B.

Fig. 4: Two vastly different paths from A to B: (1) Path A,1,2,3,4,B,
and (2) Path A, a, B. Feedback signals travel both paths. Or, in the
path integral approach, the electron “sniffs out” both paths.

The actual classical path taken will be among the paths
that collectively make the biggest contribution to the path in-
tegral, because this classical path will be the one for which the
nearby paths have almost the exact same contribution to the
path integral. Note that this path integral approach is based
upon the mathematical principle of least time, which dictates
that the actual classical path will be the one for which many
nearby paths have the least time difference for going from A
to B. Fundamentally, the method agrees with the least action
principle.

The path integral approach is a proven method that works
for all of physics, quantum and classical, meaning that the
path integral results agree with all the known fundamental
laws of Nature. Therefore, if the feedback signal approach is
the source of the path integral method, then one can explain
why path integrals successfully describe all of physics! Or
vice-versa!

Feedback signals are emitted by a fundamental particle
into all directions and undergo multiple transponder scatter-
ings between the initial position A of the electron and its next
position B, such as the simple 5-component path in Fig. 4. All
the possible paths taken by these feedback signals going from
A to B can be considered collectively identical to the “sniff-
ing” out all possible paths from A to B in the path integral
approach. Each feedback signal path is then a contributor to
the path integral with its specific amplitude and phase angle.

Therefore, the underlying mathematical reason why the
path integral approach works so impeccably well is that fun-
damental particles are using feedback signals to sample their
environment in order to determine their subsequent behavior.
Thus, one could use path integrals as the preferred mathemat-
ical method to describe all the results of the particle feedback
signal behavior.

There exist many mathematical ways to represent the path
integral method. One interesting visual way [12] to represent
this limit of the sum over all paths is to use equal length ar-
rows for each path and point them in the correct phase direc-
tion in an Argand diagram shown in Fig. 5. That is, each path
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Fig. 5: Argand diagram of the phases for the different paths. Only 13
different paths are shown here, but the general idea of finding their
total contribution to the amplitude is represented by the length of the
arrow from A to B.

to the current position will have a different phase, therefore a
different angle with respect to the horizontal real axis and the
vertical imaginary axis in this complex 2-D space.

Nearby paths will have almost the same phase angle, will
point in nearly the same direction, and will add a significant
distance to the total vector sum in the diagram. Those arrows
with opposite directions may cancel out completely. Each
phase arrow is produced by a different path from the start
to the current position B. The path integral amplitude is the
length of the long straight arrow from beginning to end, A
to B in the diagram, and the probability to be at the current
position is the absolute value of its square.

In summary, each arrow also represents a feedback signal
path and its phase contribution at location B, the current posi-
tion of the electron. Again, one must add up all the feedback
signal amplitudes arriving at B to find their total amplitude,
which will depend upon the distance traveled and the phase
at arrival at B. The electron position will be at the new max-
imum amplitude value. Therefore, we have conceptual and
mathematical agreement with the path integral.

11 Origin of quantum mechanics

The rules of quantum mechanics (QM) can be derived from
the path integral approach. But the path integral approach has
its origin in the feedback signal approach as described above.
At this point I could simply consider using path integrals to
derive the 3 rules of QM. But deriving QM by the feedback
signal approach provides a better “feeling” for how any par-
ticle behaves in the single slit and double slit experiments.
There is no surprise because the feedback signal approach has
been shown to be equivalent to the path integral approach.

Fig. 6: While passing through the single slit the particle will ex-
perience diffraction spreading in the y direction because the feed-
back signals returning from the wall will produce phase shifts in the
shaded regions (approximate idealized representation).

Here are those 3 rules of QM from which all its conse-
quences can be derived [13]. But first I must recall the defini-
tion of an event in relativistic QM. A QM event is defined as
a set of initial and final conditions, e.g., an electron leaves the
source, arrives at the detector, and nothing else happens. The
first principles of QM [i.e., the 3 rules] are:

1. Each event in an ideal expereiment is described by a
complex number ψ that is called the probability am-
plitude, the event probability P being the square of the
absolute value | ψ |2.

2. When an event can occur in several alternative ways,
the total probability amplitude Ψ for the event is the
sum of the probability amplitudes for each way consid-
ered separately. There is an interference term 2ψ1ψ2:

Ψ = ψ1 + ψ2

P =| ψ1 + ψ2 |
2 .

3. If an experiment is performed that is capable of deter-
mining whether one or the other alternative is actually
taken, the probability of the event is the sum of the
probabilities for each alternative. The interference is
lost:

P = P1 + P2.

Note that one does not need to actually do the measure-
ment for this sum of probabilities to apply. Simply having the
capability to do the measurement is enough to eliminate the
interference terms.

11.1 Diffraction

Consider a fundamental particle moving along the x-axis ap-
proaching a narrow vertical slit extending upward along the
z-axis in a solid material wall that extends to infinite dis-
tances perpendicular to the x-axis. The slit is symmetrical
about the x-axis in both perpendicular directions. The parti-
cle approaches the slit from the left, goes through the slit, and
recedes away from the slit to the right. One can put a “screen”
of particle detectors behind the slit to measure the particle’s
arrival pattern.

As the particle approaches the slit the returning feedback
signals define its new positions as before. Those signals re-
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Fig. 7: After passing through the double slits the electron will ex-
perience diffraction and interference spreading in the y direction
because the feedback signals returning from the wall will produce
phase shifts in the shaded regions (approximate idealized represen-
tation).

turning directly from the open slit portion of the wall intro-
duce no phase shift, and the returning signals from the volume
of “empty” space on either side of the wall, front and back,
also do not introduce a phase shift.

We now need to determine the phase shift effects of the
wall on the behavior of the particle. Its matter content intro-
duces phase shifts δa on the approach and δr on the recession,
with the same phase shift values for each of the infinite series
of feedback signal ellipsoids. The resulting amplitude values
at the particle’s position will depend also upon the total round
trip distance.

Our concern is what happens in k-space on the back side
of the slit both along the x-direction of the electron’s travel
and what happens in both perpendicular y and z directions.
The angular distribution of the feedback signals from each
ellipsoid will produce changes in the y-amplitude A(ky) ac-
cording to the actual distribution of matter around the slit.
The new ky amplitudes are shown in Fig. 6 for inside and im-
mediately behind the slit. Within the free particle rectangular
box are shaded regions for possible examples of the phase-
shifted signals returning from the particles in the wall around
the slit.

With left-right symmetry in the slit region itself in the
y direction, there exist symmetrical amplitude decreases as
shown in Fig. 6 but no net acceleration. Instead, the change
in the distribution of the amplitude in ky space leads to a sym-
metrical spreading of the particle according to Fourier analy-
sis. If the wall effectively stretches to infinity, then the major
contribution comes from the slit region around ky = 0. One
has a broadened diffraction pattern produced which has the
amplitude

U′(y) = U(y) + 2∆k A′(k0) exp
[
i(ω(k0y)t − k0yy)

]
×

sin ∆ky(y − v0yt)
∆ky(y − v0yt)

.
(27)

The term U(y) is the standard distribution in coordinate space
for a free particle. The important result is the increased spread
in the y-direction to produce the expected diffraction pattern,
as represented by the 2nd term.

11.2 Interference

This feedback signal approach also reproduces the double slit
interference pattern for the feedback signals because of the ky
momentum distribution shown in Fig. 7. In coordinate space
the behavior of the feedback signals at each slit is wave-like
but now one cannot determine in principle whether the parti-
cle goes through either slit because the feedback signals pass
through both slits simultaneously. The amplitudes are added
to produce interference before calculating the total probabil-
ity.

Only when the experimental setup is such that one could
determine the slit used by the particle do we get the addition
of the probabilities. The mathematics tells us that whether
one “looks” or not is irrelevant, but as long as one “could
look”, then the interference terms are absent in the probability
expression.

I have explained how the particle’s feedback signal behav-
ior at a slit exactly dictates the behavior of a particle as de-
scribed by QM, both for diffraction and interference. Hence,
the 3 rules outlined at the beginning of this section for the
first principles of QM follow directly from the diffraction and
interference of the feedback signals, thereby revealing the ori-
gin of QM.

12 Origin of gravitation

Now consider the behavior of two different particles with dif-
ferent mass-energy values. The case of two identical parti-
cles exchanging feedback signals is discussed in Appendix
B, where the connection between particle spin and quantum
statistics agrees with Fermi-Dirac and Bose-Einstein behav-
ior.

The analysis developed here first outlines the feedback
signal source of the gravitational interaction. Then I dis-
cuss its agreement with the standard geometrical curvature
approach to the general theory of relativity (GTR).

As an example, let’s bring a muon into the environment of
our electron with both particles at rest initially. I ignore their
electromagnetic charge interaction, which is understood to be
a local interaction described by the Standard Model, requiring
the exchange of virtual photons.

Therefore, the muon has its Compton frequency about
207 times higher and a wavelength about 207 times shorter
than for the electron. Thus, in Fig. 8, I cannot do justice to
both particles at the same time by drawing their feedback sig-
nal ellipsoids to relative scale. Consequently, I only show
different wavelength signals emitted by each, but they are not
to scale.

Both particles emit their characteristic frequency feed-
back signals into the vacuum lattice. Each high Q particle
has a nearly zero ability to absorb the signals from the other
particle. Therefore, the biggest contribution to the amplitude
and phase changes of the returning feedback signals comes
from the lattice distortion surrounding each particle.
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Fig. 8: As two “assumed neutral” particles approach each other, the
transponders in the vacuum lattice handle both sets of feedback sig-
nals simultaneously. The signals returning from these transponders
are a different phase than for the free particle. The instantaneous
effects in k-space are shown in momentum space with the new k
values at the dashed lines (approximate idealized representation ex-
agerated).

Meanwhile, the transponders in space continue to behave
as before, except that their separations have changed because
they no longer have identical average spacings between the
nodes. Whereas the node spacings are expected to be closer
where the particle is defined by its discrete symmetry, their
spacings are further apart outside this immediate region. As
conjectured earlier, perhaps this node spacing difference in
the two regions keeps the lattice total energy value at zero.
One now has a lattice with non-uniform node spacings ev-
erywhere compared to the original uniform lattice that has no
fundamental particles.

Transponders around the electron will continue to scatter
the muon’s higher frequency feedback signals isotropically
into all directions. The lattice distortion will cause these feed-
back signals to return to the muon out-of-phase with returning
feedback signals from other directions, thereby reducing the
total amplitude from the forward direction toward the elec-
tron, as shown in the Fig. 8 momentum space diagram.

Therefore, the original spherical symmetry of the return-
ing feedback signals around the muon is gone and the muon
must either move toward or away from the electron. One can
appreciate that the out-of-phase returning signals reduce the
total feedback signal amplitude from the electron’s direction,
which means that the muon will begin to move toward the
electron. Why? As shown in Fig. 8, the center-of-momentum
for the muon’s feedback signal distribution has moved toward
the electron. So there is an attraction toward the other parti-
cle.

What does the less massive electron do? The same, but
in the opposite direction toward the muon of greater mass M.
The feedback signals going to the muon region are returned to
the electron out-of-phase. Again, the out-of-phase returning
feedback signals reduce the total amplitude arriving from the
muon’s direction, resulting in electron movement toward the

Fig. 9: Whenever a “chunk” of k-space is absent (the gray area) near
k-∆ kx, there will be an acceleration in the +x direction. Usually
the feedback signals returning from the forward direction are out-
of-phase, the source being the transponders around other particles in
the environment ahead.

Fig. 10: As a neutral particle of mass m approaches from the left
toward another neutral particle of mass M, the transponders in the
vacuum lattice handle both sets of feedback signals simultaneously.
Shown are paths from positions r1 and r5 subtending the same angle
θ to the distorted space around M as “seen” from the approaching
particle. The feedback signals returning from these two rings of
transponders around M return with a different phase than for the
free particle without the presence of M. (approximate representation
exagerated).

muon. That is, the electron’s center-of-momentum distribu-
tion has moved toward the muon. There is a mutual attraction
between the two particles.

The acceleration of each particle occurs when there is a
change in phase of the feedback signals arriving from any
direction. For example, suppose the particle “senses” that a
“chunk” of k-space is absent near k0-∆k, as shown in Fig. 9.
This situation occurs when returning feedback signals from
the forward direction are out-of-phase with the oscillation
phase of the particle itself. The center of the momentum rect-
angle will move from k to k’ corresponding to a faster mov-
ing electron with k’ > k, meaning that the particle has moved
ahead of the expected uniform velocity location in the corre-
sponding coordinate diagram.

The acceleration is caused by feedback signal amplitude
changes as a result of phase changes in the feedback signals as
the particle approaches a mass M, an effect directly related to
the distortions in the lattice geometry around M. This distor-
tion produces the spacetime curvature associated with GTR
gravitation, as explained in the next Section.

In Fig. 10 are shown our two “neutral” particles of masses
m and M, with m approaching the distortion volume around
M. One sees immediately for the same angle θ subtended by
the feedback signal ray toward M as m approaches M, there
will be a shorter distance of roundtrip travel for the feedback
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signals as they approach one another. And the feedback sig-
nals from m will sample regions of greater and greater lattice
distortions upon moving closer to the center of M.

In Fig. 11 is an approximation to the result of both effects
on the momentum-space amplitude distribution for the two
positions shown in Fig. 10, i.e., r1 and r5. As more and more
amplitude is missing, the change in momentum will increase,
i.e., the acceleration toward M will increase upon nearing M
as the momentum value increases toward +kx. This type of
behavior is expected for the gravitational interaction, because
the lattice distortion amount depends upon the mass-energy
of M.

The feedback signals are scalar waves given by Eq. 4 in
the form (A/r) exp[i(ω(k)t − kx)] that are emitted, scattered,
and returned, so we can go from the momentum space to co-
ordinate space behavior using the Fourier Transform to ob-
tain the total amplitude at the new, accelerated position for
the wave packet

U(x) =

∫ k0+∆kx

k0−∆kx

A(k0) exp [i (ω(k)t − kxx)] dkx. (28)

And if we assume

ω(k) = ω(k0) + (k − k0)
(

dω
dk

)
, (29)

then the composite feedback signal at the electron, i.e., the
total amplitude at its new accelerated position is

U(x) = 2∆kx A(k0) exp [i (ω(k0)t − k0x)]

sin ∆kx(x − v0t)
∆kx(x − v0t)

.
(30)

This modulated monochromatic wave does not spread in time,
an important property of this feedback signal approach for the
behavior of particles.

As v→ c, the ellipsoids become more prolate, the ∆kx in-
creases with each equal time interval, and the wave packet of
the electron adjusts smoothly. In the limit, the sideward sam-
pling of the environment does not extend beyond the Comp-
ton wavelength λc and the feedback signals are sampling less
of the surrounding space, thus reducing any further accelera-
tion. This behavior agrees with the special theory of relativity
(STR).

By considering the acceleration in more detail, one would
discover that the smaller range in wave numbers in momen-
tum space spreads the particle wave packet in the x-direction.
When a new constant velocity is achieved, the particle wave
packet reverts to its normal size. In the perpendicular y- and
z-directions in which vy = vz = 0 as before, a symmetrical
hole appears in ky-space and kz-space during the acceleration
but returns to normal when the acceleration is done. Hence,
some temporary lateral spreading of the wave packet occurs

Fig. 11: As the particle approaches M, the feedback signals returning
from the two transponder rings have a different phase than for the
free particle. The possible reduction of the amplitudes in k-space
are shown for positions r1 and r5 in Fig. 10, with contributions to the
k-space distribution removed above the dashed lines for a range of
angles. (approximate representation exagerated).

also in these directions perpendicular to the accelerated mo-
tion along the x-direction.

One could consider further properties of the electron in
terms of its de Broglie wavelength = h/p for non-relativistic
momentum values in order to discuss the wave packet behav-
ior for the electron. However, the feedback signal approach
is all that’s needed to understand the electron’s behavior in
response to another particle that also distorts the lattice.

I have described particle motion in terms of its depen-
dence upon the integral of all the feedback signals returning
from the environment back to the source-receiver location.
Equal weighting for all k values has been used. In the ide-
alized acceleration example, a rectangularized “chunk” of k-
space was missing. Actually, one should consider that some
of the feedback signals are returning from all directions with
a different phase with respect to the k-space signals returning
in a uniformly spaced euclidean lattice. The phase differences
would produce a “hole” in kx-space that can have positive and
negative values. All the possibilities could be examined via
computer simulations.

13 Gravitation from the Radius Excess

A lattice distortion occurs not only at the particle’s origin but
also throughout the surrounding space and spacetime. No
longer does the lattice have uniformly spaced nodes. As we
move further and further away from the origin of each parti-
cle, this lattice distortion becomes less and less.

The physics consequences can be understood by first sep-
arating the analysis into two parts: the 3-D space part, and
then the time part for the (3+1)-D spacetime of our physical
world. The two parts are put together to assemble the space-
time of Einstein’s GTR.

13.1 The 3-D space part

In the uniformly spaced 3-D sublattice part of C2 with nodes
but with no particles yet, consider an imaginary thin spherical
shell with a radius R >> d, the lattice node spacing. Then
euclidean geometry dictates a radius value from its surface
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area A

R =

√
A
4π
. (31)

Now in this 3-D sublattice consider the electron to have
been in existence at the origin so that its characteristic distor-
tion exists everywhere with the amount of distortion decreas-
ing inversely with distance. At the one Compton wavelength
distance from the center of the particle, that is, greater than
about 10−12 meters from the electron’s distortion center, one
is far enough away to consider an imaginary spherical sur-
face surrounding the electron as a good approximation at all
further radial distances.

We measure the distance in a discrete space by counting
the nodes along a radial path. Therefore, the measured ra-
dius rmeas from the electron’s center to any outside distance
will be greater than for the undistorted lattice because nodes
will have been pulled inward. In fact, the radial difference be-
tween the distorted lattice and their euclidean lattice is called
the radius excess expressed by [14]

Radius excess = rmeas −

√
A
4π
. (32)

Note that in the limit when the enclosed mass-energy inside
R is reduced to zero, then the radius excess will reduce to
the previous zero value. Therefore, let the radius excess be
directly proportional to the enclosed mass-energy amount m,
in this case the mass of the electron. Then do a dimensional
analysis to predict

Radius excess = rmeas −

√
A
4π

=
G

3c2 m. (33)

The factor 1/3 comes from the geometry of a 3-D sphere and
is the numerical factor for the second term in the Taylor ex-
pansion of the sine function.

This radius excess is the important quantity which, ac-
cording to Einstein’s GTR, is indeed proportional to the mass
of the particle enclosed by the imaginary sphere at radius R.
That is, for a fixed R value, the distance measured by count-
ing the nodes will be greater for the more massive particle
enclosed. Note that the radius excess defined here is a mea-
sure of the 3-D geometrical curvature produced by the mass-
energy m, and that this radius excess expression actually de-
fines the average curvature just above the chosen surface area.

The quantity G/3c2 ∼ 2.5 x 10−28 meters/kilogram, a very
small number. Therefore, in order to get a “feeling” for the
radius excess magnitude, insert the pertinent values to learn
that the radius excess for the electron is extremely small:

Electron : radius excess = 2.3 x 10−60 meters! (34)

Also, for Earth: 1.5 millimeters; for the Sun: 0.5 kilometers.

13.2 The time part of (3+1)-D spacetime

Now for the time coordinate contribution. The principle of
equivalence states that one cannot distinguish between a grav-
itational field and an accelerated reference frame for a locally
uniform gravitational field. Applying this equivalence princi-
ple, Einstein found that time varies from place to place.

The time coordinate will be modified near the mass m.
Let v be the relative velocity between a source and a receiver,
with the received frequency ω′ being related to the emitted
frequency ω by Eq. 6 for STR. For v2/c2 << 1, the approxi-
mation is

ω′ = ω (1 + v/c). (35)

If the receiver is accelerating, then the receiver will have
an additional velocity gt, where g is the acceleration value
and t is the time interval it takes light to travel the distance H
from source to receiver.

Using the equivalence principle, the g is now the gravita-
tional acceleration and H becomes the radial height difference
in the gravitational field. For the clock at the radial height h2
above the clock at height h1, with H = h2 - h1,

ω2 − ω1 =
gH
c2 , (36)

so that the excess rate is

ω1
gH
c2 . (37)

From STR, there is the correction factor of the opposite sign
for the speed in case of the moving clocks

ω2 = ω1

√
1 − v2/c2, (38)

which for low speeds v << c, becomes

ω2 = ω1(1 − v2/2c2), (39)

predicting the defect in the rate of the moving clock to be

−ω1v
2/2c2. (40)

Combining the two effects produces

∆ω = ω1

(
gH
c2 −

v2

2c2

)
. (41)

This frequency shift of the moving clock means that if one
measures a time interval dt on a fixed clock, the moving clock
registers the time interval

dt
[
1 +

(
gH
c2 −

v2

2c2

)]
. (42)

Therefore, the total time excess over the whole trajectory is
the integral

1
c2

∫ (
gH
c2 −

v2

2c2

)
dt, (43)
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which is to be a maximum, thereby obeying the principle of
least action. I.e., the particles always take the longest proper
time. Note that this law does not rely upon any of the coordi-
nates.

One can see this result better in the alternative formulation
by multiplying Eq. 43 by -mc2, where m is the mass of the
particle, so that the integral is over the kinetic energy minus
the gravitational potential energy which, by the principle of
least action, must be a minimum.

13.3 The two main laws of GTR

Therefore, the two main laws of GTR have been established
by starting from the idea that each fundamental particle dis-
torts the lattice into its own discrete symmetry. The distortion
continues to all distances, and phase changes in the returning
feedback signals are produced by the distorted lattice.

Equivalently, the distorted lattice around each particle is
the source of the radius excess proportional to the enclosed
mass producing the distortion, and this radius excess leads to
the two main laws of gravitation.

These laws are:

1. The curvature expressed in terms of the excess radius
is proportional to the mass inside a sphere, by Eq. 33.

2. Objects move so that their proper time between two end
conditions is a maximum.

The first law, Einstein’s field equation, reveals exactly how
the geometry of spacetime changes in the presence of matter.
The second law, Einstein’s equation of motion, reveals how
objects move when there are only gravitational forces. So the
entire spacetime is distorted in the presence of matter.

Can we understand the factor of about 1040 for the rel-
ative strength of the electric force to the gravitational force
between the two electrically charged particles, two electrons,
for example. There is a significant physical and conceptual
difference between the two forces. The electric force relies
upon the local gauge interaction of the SM by the exchange of
virtual photons, whereas the gravitational force as determined
by the feedback signal approach does not have the exchange
of a virtual particle for a local gauge interaction. The grav-
itational acceleration results from particle responses to their
returning feedback signals from the environment. Whether
the factor of about 1040 can be derived by exploiting this dif-
ference is expected but has not been achieved at present.

14 Review of steps taken

Here are the sequence of steps taken to establish that QM
and GTR have a common origin determined by the feedback
signal approach, based upon the fact that QM, the SM, STR,
and GTR are all successful theories that agree with Nature:

1. The lepton and quark particle states respect the elec-
troweak symmetry SU(2) x U(1) of the SM, but the
actual two orthogonal fundamental particle states per

fermion family are dictated by the discrete symmetry
binary subgroups of the unit quaternion group Q, or
equivalently, SU(2).

2. The two physical orthogonal EW flavor states in each
lepton and quark family are formed by the linear super-
position of the two mathematical states, and they oscil-
late at the Compton frequency ωC as 3-D entities in R3.
Hadrons combine their 4-D quarks and gluons to make
3-D particles also, obeying QCD.

3. One assumes that (3+1)-D spacetime corresponds to
a 2-D complex lattice C2 = R4 filled with uniformly
spaced mathematical nodes acting as ideal transpon-
ders.

4. The fundamental fermion “gathers in” the mathemati-
cal nodes to form its correct discrete symmetry binary
subgroup with its lattice distortion extending outward
into the lattice.

5. The “breathing mode” flavor state oscillations of the
particle emit scalar waves into the lattice. I have called
these “feedback signals”.

6. The transponders in the lattice “scatter” these feedback
signals into all directions isotropically with no phase
shift and with the same response for all frequencies and
amplitudes.

7. STR, the principle of inertia, Mach’s principle, the path
integral approach, QM, and the one direction of time,
are all derived by analyzing the details of the feedback
signal behavior.

8. The lattice distortion around each fundamental particle
is the source of phase changes in the returning feedback
signals at the original particle, resulting in an accelera-
tion toward the other particle.

9. Gravitational curvature is shown to agree with the lat-
tice distortion associated with each particle, so the ac-
celeration produced by the feedback signal approach is
the gravitational acceleration of GTR.

10. Therefore, QM and GTR have the common origin as
established by the behavior of particles in response to
the feedback signals.

15 Summary

This feedback signal approach toward understanding particle
behavior successfully explains the origin of QM, the path in-
tegral method that allows one to calculate quantum mechan-
ical and classical physics behavior, and gravitational acceler-
ation. The approach involves fundamental particles behaving
as “antennas” emitting and absorbing scalar waves at their
Compton frequencies, scalar waves that I have called feed-
back signals. These feedback signals are scattered isotropi-
cally by a discrete lattice of nodes representing spacetime.
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Gravitation has been shown to be the consequence of the
lattice distortion around particles by changing the amplitude
and phase of the feedback signals that are returning from re-
gions surrounding mass-energy concentrations, in agreement
with the radius excess derivation of GTR.

Therefore, I have revealed the common origin for gravita-
tion and quantum mechanics.

The remaining question is whether fundamental particles,
such as the electron, do indeed emit and receive these feed-
back signals as described in this approach. If so, then not
only must fundamental particles be using these feedback sig-
nals but also all composite entities such as a proton and very
massive objects must rely upon them for determining their
physical behavior.
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Appendix A: Quark states

I have proposed [4, 5, 8] that the 4 discrete symmetry bi-
nary subgroups that define four 4-D quark families in R4 are:
[333], [433], [343], and [533], corresponding to the only reg-
ular polytopes in R4. The predicted quark mixing angles pro-
duce values that generally agree with their empirical values
in the standard 3x3 CKM submatrix of its 4x4 quark mixing
matrix CKM4. This quark family mixing therefore guaran-
tees that the 4 discrete symmetry binary subgroups defining
the quark families collectively behave as the SU(2) of the SM.

Having 4 quark families creates two different conflicts:
(1) no 4th quark family has been discovered yet, and (2) there
needs to be triangle anomaly cancellation, usually assumed
to mean 3 lepton families paired against 3 quark families but
with no verification of which lepton family pairs with which
quark family. With regard to the first conflict, the mass values
of the 4th family quarks could be quite large, so that either
they cannot be produced at the LHC [15] or they decay too
quickly. The triangle anomaly gets resolved directly because
the collective lepton family mimicking SU(2) exactly cancels
the collective quark family mimicking SU(2), one-to-one.

The influence of the 4th quark family may yet appear in
rare decays of the other quarks and might resolve several ex-
tant problems, including being the source of the baryon asym-
metry of the Universe (BAU) by providing a needed factor of
at least a 1013 increase [16] in the Jarlskog constant and by
also explaining the muon g-2 discrepancy.

Therefore, the 4-D quark states are clearly distinguished
from the 3-D lepton states, the leptons not being capable of
having a color charge, which is now a 4-D property. The
origin of the three color charge states comes directly from
4-D rotations, which require two simultaneous rotations in
orthogonal planes, and there are only three different pairs of
orthogonal planes in R4. The three different color charges,
r,g,b, defined by simultaneous rotations in the three pairs of
orthogonal planes, can be shown equivalent to the three color
charges of SU(3)-color. Even more important, having quark
states and gluon states defined in R4 means they cannot ex-
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ist in R3, so quark confinement becomes geometrically ex-
plained also.

Finally, the 4-D quark and gluon states must combine
according to quantum chromodynamics (QCD) to make the
mesons and baryons, i.e., the 3-D hadrons. Intersection the-
ory in mathematics can handle this geometrical concept of
intersecting 4-D objects to make 3-D objects.

However, QCD theory predicts [17, 18] a self-contained
world for the quarks and gluons, with only color changes al-
lowed and no possibility of quark decay. So why does Nature
need the leptons? The mathematical answer follows from Ku-
ratowski’s theorem [19] in graph theory: all graphs will re-
duce to the K5 or K3,3 graphs, the only graphs that retain their
integrity. Fortunately, at least for quarks, the [333] discrete
symmetry binary subgroup of the up/down quark family rep-
resents the K5 graph, so all other quarks will decay eventually
to this first family. The stability of the electron may also be a
consequence because [332] is related to [333].

Also recall that only 4N-dimensional normal spaces have
a conjugate space of the same dimension according to Clif-
ford algebra and Bott periodicity [9]. So, there will be the
simultaneous existence of the 4-D anti-particle real internal
symmetry space as required by the SM. The next larger space
with a conjugate space, R8, is equivalent to a 10-D spacetime.
For discrete spaces, icosians related to the binary icosaheral
group [532] provide a direct connection [20] from our dis-
crete R4 to the discrete space R8, which obeys the discrete
symmetry operations of Weyl E8.

The particles exist in our discrete SO(3,1) spacetime, so
the icosians produce a second discrete symmetry Weyl E8 for
spacetime. Combining discrete spacetime with the discretee
internal symmetry group therefore makes the discrete product
group Weyl E8 x Weyl E8, equivalent to the discrete symmetry
group I call “discrete” SO(9,1). Hence, there exists a unique
connection from the SM gauge group to “discrete” SO(9,1) in
a 10-D spacetime.

Appendix B: Identical particles and quantum statistics

Consider two identical particles. What behavior will the feed-
back signal approach predict?

Two neutral identical particles are to be considered, so
that we can ignore any local gauge interactions of the SM,
both particles beginning at rest with respect to each other. In
the general case, feedback signals emitted at the same Comp-
ton frequency ω1 by each particle are absorbed, phase shifted,
and emitted by the other identical particle back into the sur-
rounding space.

Their existence in each other’s environment means that
the identical particles can become phase-locked, either with
in-phase or with out-of-phase normal modes, as is the case for
two identical-frequency quantum harmonic oscillators com-
municating to each other, with their final locked-in phase re-
lationship becoming 0 or π.

The two possible normal mode frequencies for any two
harmonic oscillators communicating via an exchange of en-
ergy represented by Γ are

Ω =
1
2

(ω1 + ω2) ± Γ, (44)

but the two identical high Q fundamental particles will have
ω2 = ω1, so

Ω = ω1 ± Γ. (45)

Which physical property of a particle actually determines
the difference between the two phase-locked states? Because
the single free particle does not have phase-shifted return-
ing feedback signals, the phase shifts introduced by the other
identical particle can be a function of differences only:

phase shift = f (ωi − ω j, Ai − A j, Pi − P j), (46)

where ω is the Compton frequency, A is the signal amplitude,
and the P could be some other factor such as the intrinsic spin.

As we know, the physical factor P called particle intrinsic
spin S is the key. Different particle angular momentum spin
states need to be considered, such as a scalar S = 0, a spinor
S = 1/2, and a vector S = 1, in order to determine the general
result.

Consider the scalar particles first, the ones with intrinsic
spin S = 0. At first the feedback signals returning from the
direction of the other identical scalar particle might not be
in-phase, so the two particles are accelerated toward each an-
other because the returning feedback signals from the vacuum
transponders in the direction opposite the other particle are in-
phase. Eventually, the scalar particles can become locked in-
phase with each other’s oscillations and can occupy the same
point in space. So these two S = 0 identical particles behave
as bosons obeying Bose-Einstein statistics.

Now consider a system of two spin S = 1/2 electrons. QM
requires [21] that their overall asymmetric wavefunction be
the product of position eigenvalues and the total spin quan-
tum numbers. There are three triplet spinor states having S
= 1 symmetric with respect to the exchange of the electrons,
with the spatial part being asymmetric so that the probability
of the two electrons being at the same point in space is zero.
But for the singlet S = 0 spinor state, the spin part is asym-
metric and the spatial part is symmetric, thereby enhancing
the probability to be at the same point in space, i.e., there is
an attraction to one another.

Applying geometry by rotating the two S = 1/2 identical
particles together in the triplet S = 1 state by 360◦, one deter-
mines that the feedback signals will return with a phase that
produces an increased amplitude pushing each particle away
from the direction of the other identical particle. Therefore, a
repulsion occurs to produce an increased separation. Called
Pauli repulsion, this response is the source of Fermi-Dirac
statistics.
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In the total S = 0 case for two spin S = 1/2 particles, i.e.,
with spins opposite, the feedback signal amplitudes at each
particle decrease by adding in the returning signals from the
direction of the other identical particle. There is attraction,
so this total S = 0 spin state is allowed for two electrons at
the same point in space. That is, the spatial wavefunction
is even but the spin wavefunction for this total S = 0 state is

anti-symmetric.
Finally, when both particles each have S = 1, the total

spin states are S = 2 and S = 0. The geometrical factors will
produce a result identical to the total S = 0 Bose-Einstein be-
havior for two scalar particles, i.e., there is a feedback signal
amplitude decrease that results in an attraction.
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