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Within the proposed assumptions, including the existence of the discrete (minimally
uncertain) volume of space, the possibility of mapping of Euclidean 3D to 1D space in
the spherically symmetric case is considered. In introduced unified pseudo-Minkowski
2D spacetime (t,η) the river velocity for the Schwarzschild metric represents the uni-
form acceleration. The Rindler coordinate transforms in 2D spacetime lead to the
Schwarzschild-de Sitter metric in static 4D coordinates and result in the scale factor
that coincides with the one for cosmological expansion for the Universe with dark en-
ergy. The FLRW metric with such scale factor has the conformal form in unified 2D
spacetime, and the varying Hubble parameter can be expressed with conformal time via
the simple expression. The dynamic and continuity of the uniformly accelerated Rindler
flow in unified 2D spacetime are reviewed.

The river model of gravity and the analog gravity is an
alternative to the General Relativity (GR) approach to gravi-
tation. The purpose of this article is to exhibit the analogy be-
tween the radial river velocity in three spatial dimensions with
the motion along one spatial dimension. In the beginning, the
three new physical parameters are to be introduced: the mass-
radius, the discrete volume of space, and the new spatial co-
ordinate η that is mapped to three spatial dimensions which
allows introducing unified two-dimensional space-time (t, η).
Note: Only the case of spherical symmetry is reviewed.

1 The river model of gravity and the equivalence princi-
ple

The river model of gravity [5] and the analog gravity [2] is
the approach to gravity where the equivalence principle (EP)
holds. But it is interpreted in such a way that instead of equiv-
alence of gravity to the acceleration, it aligns gravity with
non-uniform velocity v(r) denoted as the river velocity. In
the analog gravity models, the velocity v(r) is considered to
be a movement of some physical medium in flat background
spacetime. The flow of the medium is considered to be sta-
tionary and irrotational. The use of non-uniform v(r) instead
of the acceleration provides the intuitively obvious connec-
tion to the metric in static coordinates

ds2 = −c2
(
1 −

v2

c2

)
dt′2 +

(
1 −

v2

c2

)−1

dr2 + r2dΩ2 (1)

where dΩ2 = sin2 θdφ2 + dθ2 and coordinate time is denoted
as t′. Contrary to that, attempts to embed the acceleration
from the EP to a similar form of the metric are still highly
disputable.

It was demonstrated in [8] using the coordinate transforms
that the static metric (1) in the comoving reference frame has
the following equivalent form

ds2 = −c2dτ2 + a(τ)2
(
dR2 + R2dΩ2

)
(2)

which is the Robertson-Walker (FLRW) metric for the spa-
tially flat case (k = 0) and a(τ) is the scale factor related to
the river velocity as v = Rȧ, and v is the proper velocity of the
comoving frame. Such equivalency of the static metric (1) to
(2) is known for the de Sitter metric only (for example [16]),
and the river velocity is associated with the Hubble flow. But
the conformity between an arbitrary static metric and the co-
moving metric (2) in general case is missing or avoided in the
literature. Recently, however, Mitra [10] proposed the clar-
ifying view on this problem, which supports the presented
approach.

2 The prerequisites of the model

Three postulates of the model are
1. The fundamental significance of the Hubble constant

H0
∗. The term “varying Hubble constant” can be mislead-

ing and is not applied to the approach. The constant is the
fundamental value that does not vary with time. Instead it
is proposed to use the varying parameter H(τ) = ȧ/a. The
significance of it is distinguished from the Hubble constant.
Further, the Hubble constant H0 is denoted as H for shortness.

2. The incompressibility of the fluid and its constant den-
sity. It was given in [7], based on the conformal factor issue
in the analog gravity and on the continuity equation. The sig-
nificance of the moving fluid and moving space is the same in
the presented approach which allows having aether overtones
in the interpretation of such models.

3. The outward direction of the fluid from the center of
mass. Czerniawski [4] pointed out that the Gullstrand-Painle-
vé metric can be written with negative and positive v equiva-
lently. The same is given in [7,8] for the analog gravity based
on the fact that the river velocity comes to the static metric as
squared value. If the river velocity depends on central mass
then it hardly can be modeled by ingoing flow as the flow at a

∗As an example, Dirac’s large number coincidence can indirectly sup-
port this point or as it was conjectured in [9] H0 = mec2/(2128~).
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distance r somehow should “know” the value of mass located
at the point r = 0, which intuitively would contradict to the
sense of the short-range action of the hydrodynamics.

3 Mass-radius rm and mass-volume Vm

Let m be a point mass of an elementary particle in the center
of a sphere with radius r. Let’s designate the certain radius rm

of the spherical volume Vm such as

m = ρ0

(
4
3
πr3

m

)
ρ0 = kρc (3)

denoting them respectively as mass-radius and the mass-volu-
me. The value of the fluid density ρ0 is expressed via the
critical density ρc and k is some coefficient of order of unity
and its estimates are given later. Then it can be also noted that

rm =

(
3

4π
m
ρ0

)1/3

=

(
2Gm
kH2

)1/3

. (4)

As an example, for the river velocity in case of the Schwarz-
schild gravity [3, 5]

v(r) =

√
2Gm

r
(5)

the equation motion of a fluid (directed outwards as postu-
lated) can be simplified as

r(t) =

(
3
2

√
2Gm t

)2/3

= k1/3rm

(
3
2

Ht
)2/3

. (6)

In such case the space is expanding in outwards direction and
its spherical volume within the radius r denoted further as V
increases with time as

V(t) = Vmk
(

3
2

Ht
)2

(7)

near the mass m. The definition of comoving distance R is
r = Ra. Then one can note that particularly the scale factor
can be represented as

r(t) = rmk1/3a(t) a(t) =

[
V(t)
kVm

]1/3

. (8)

Importantly, the scale factor defined in such does not depend
on the value of point mass. The reviewed case yields

a(t) =

(
3
2

Ht
)2/3

. (9)

The expression describes the scale factor near the point mass
m, for example, near the elementary particle that implies the
spatial flow with river velocity (5) corresponding to the Schw-
arzschild space-time geometry. Further, it will be referred as
the scale factor if one may still assume that it just coinci-
dences with the cosmological scale factor.

4 The discrete volume of space V0

The second parameter that has to be introduces is the minimal
measurable volume of space V0, the constant such as

V0 =
m0

ρ0
(10)

where m0 is minimal mass quanta that is defined as

m0 =
~

c2 βH (11)

based on the uncertainty relation and where β is some co-
efficient of order of unity, which is determined later∗. The
existence of such volume implies the uncertainty to measure
simultaneously three spatial coordinates as

∆x ∆y∆y ≥ V0 . (12)

The existence of a discrete value for the volume of space can
be conjectured as its fundamental property. As the Heisen-
berg uncertainty principle governs the linear 1D coordinate
measurement, the minimal 2D area that corresponds to one
bit of the information is the Planck area, then V0 represents
3D the volume of space with minimal entropy or unit of in-
formation that can be measured. The substitution of the value
for ρ0 into (10) leads to

V0 =

(
2β
3k

c
H

)
S Pl (13)

where S Pl is the Planck area. In order to evaluate the volume
V0 as sphere the large number relations from [9, the expres-
sions (1) and (2.3)] can be applied to obtain exactly

V0 =
4π
3

(
β

k

)
reλeλp (14)

where λp and λe are the de Broglie wavelength of proton and
electron and re is the classical electron radius†. Notably, the
expression shows that V0 can be expressed via the properties
of fundamental particles and λp with the dimensionless coef-
ficients, which are determined later.

The minimal volume V0 can also signify one bit of infor-
mation as in terms of the total entropy of the Universe within
the Hubble volume as substitution leads to

I =
VH

V0
=

(
k

2β

)
S H

S Pl
(15)

where S H is the area of the Hubble horizon, and the second
equality represents the Holographic principle, which should
have some the numerical factor here as the identity on the left-
hand side represents the entropy of pure space only (without
matter and energy). The expression to be used further for Vm

via V0 obviously can be obtained as

Vm = V0
m
m0

=
V0

λm

c
βH

(16)

where λm is the de Broglie wavelength of the mass m.
∗So V0 can be simply treated as the mass-volume of m0.
†with factor of 3/10, as per cited work.
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Fig. 1: The mapping of the spherical volume V(r) to unified coor-
dinate where η = φλm/4π is represented by the angle φ. The spiral
is given by the polar equation r = aφ1/3. Every turnover cycle cor-
responds to dV = V0 and to the line segment with length λm in η

coordinate.∗

5 The unified coordinate η

The existence of discrete volumes leads to the proposition that
3D manifold may represent a countable set. Therefore all
such V0’s within some spherical volume V(r) can be mapped
to fixed-line segments of one-dimensional coordinate. How-
ever, as V0 is the quantity but is not an actual shape; therefore,
such mapping is not uniquely defined. The new spatial-like
coordinate η can be introduced† as following

~η = λm
V(r)
V0

~eη . (17)

Such representation provides the mapping of the linear un-
certainty relation for λm to the uncertainty for 3D volume V0.
The appearance of λm in the definition of η is motivated by
its presence in (14), implying its fundamental significance as
one of V0’s dimension. The coordinate can be understood as
constituted of numbers of discrete deltas with the length of
λm. Each of these deltas corresponds to next in raw V0 within
the spherical volume of V(r).

The coordinate transformation likely represents the non-
conformal mapping as it all angular information (φ,θ) of co-
ordinates in 3D is lost as uses radial distance only. On an-
other hand, the spherical shell with the volume V0 = 4πr2dr
already does not have angular information due to the uncer-
tainty of V0. In such a way, the transformation is conformal.
The definition can be also written in terms of differentials as

dη = dV
λm

V0
. (18)

∗The spiral shows resemblance to the Theodorus spiral but constructed
with the cubic roots instead of the square roots as rn = r0[n1/3 − (n − 1)1/3].

†It can also be associated with the mass of space in spherical volume
with postulated uniform density.

The ratio dV/V0 corresponds to the natural number n (which
is the number of spiral cycles as depicted in Fig. 1). In case if
V(r) as is not constant or there is a non-zero flux of the fluid,
then it corresponds to the velocity

u =
∂η

∂t
=
λm

V0

(
∂V
∂t

)
. (19)

The equation provides the direct correspondence between flu-
id flow in three-dimensional space and the velocity along the
unified coordinate η. Then for the spherically symmetric case,
the radial river velocity can be obtained as

v =
V0

λm

u
4πr2 . (20)

The meaning of the expression is evident with the help of
Fig. 1, where the velocity u is angular velocity along the spiral
line, and v is its projection to the radial direction. Substitution
of (16) leads to

v = Vm
βH
c

u
4πr2 . (21)

Also, the substitution of (16) into (17) provides the spherical
volume expressed via η as

V = η Vm
βH
c
. (22)

Noting the special point on η coordinate

ηm =
c
βH

(23)

that corresponds to mass-radius rm in 4D spacetime.

6 The motion along η in non-relativistic approximation

With the use of introduced coordinate, the space flow (7) can
be represented as an equation of motion along η. The equa-
tion (19) for the Schwarzschild case above (7) (differentiating
it with respect to time) gives

u =
λm

V0

(
Vmk

9
2

H2t
)
. (24)

Applying (16)

u =

(
9k
2β

Hc
)

t (25)

which is the accelerated motion along coordinate η with con-
stant acceleration‡

α =
9k
2β

Hc . (26)

Those, the Schwarzschild gravity with the river velocity (5)
and for the scale factor a(t) as in (9) represent non-relativistic
approximation of motion with the constant acceleration (26)
along coordinate η when u � c or at near field of the point
mass.

‡In the author’s previous work [7] it was assumed that k = 1 and β = 3
2

leading to α = 3Hc and (16) corresponds to the volume conversion relation.
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7 The relativistic motion along η

It has to be considered now that unified coordinate η belongs
to two dimensional Minkowski spacetime with the invariant
line element

ds2 = −c2dt2 + dη2 . (27)

The relativistic motion with the constant proper acceleration
corresponds to the Rindler or also known as Kottler-Møller
coordinates transforms [12, 13]

t =
c
α

sinh
(
α

c
τ
)

(28)

where τ is proper time and t is coordinate time and α is given
by (26). The two-velocity is

ui = c
(
cosh

(
α

c
τ
)
, sinh

(
α

c
τ
))

(29)

where i = 0, 1. And the equation of motion along the coordi-
nate is

η = η0 cosh
(
α

c
τ
)
− η0 (30)

where the initial conditions are set in such way that η = 0 at
t = 0 (because of V(0) = 0 as (22)) and the Rindler horizon
distance is

η0 =
c2

α
=

(
2β
9k

)
c
H
. (31)

The significance of such distance is the fact that the mov-
ing object can not receive any information from the point of
its origin anymore. Therefore, the dependency of gravita-
tion from central mass should vanish∗. The substitution of
the equation of motion via η (30) to expression for spherical
volume (22) leads to

V(τ) = Vm
βHc
α

[
cosh

(
α

c
τ
)
− 1

]
. (32)

Expressing the hyperbolic cosine via half of argument of hy-
perbolic sine and using (8) the scale factor is

a(τ) =

(
2βHc

kα

)1/3 [
sinh

(
α

2c
τ
)]2/3

(33)

where expression for α can be easily substituted from (26).
The substitution of the proper velocity u1 from (29) into (21),
expressing the hyperbolic sine by the hyperbolic cosine from
(32) with the use of kr3

mH2 = 2Gm (4) lead to the solution
for the radial river velocity for spherically symmetric gravita-
tional field of point mass

v(r) =

([
2β
3k

α

3Hc

]
2Gm

r
+

[
α

3Hc

]2
H2r2

)1/2

(34)

which is the river velocity for the Schwarzschild-de Sitter
(SdS) metric with the additional repulsive Λ-term.

∗Starting from this distance the de Sitter model has to be valid, see Sec-
tion 9.

The scale factor (33) coincidences with the one used in the
standard cosmology for the current “dark energy dominated”
epoch where it has the following form (see for example [15])

a(τ) =

(
Ωm

ΩΛ

)1/3 [
sinh

(√
ΩΛ

3
2

Hτ
)]2/3

. (35)

Matching the Ω’s parameters with obtained result (33) leads
to

Ωm =

[
2β
3k

α

3Hc

]
ΩΛ =

[
α

3Hc

]2
. (36)

Comparing this with two factors multiplying respectively the
first and the second term in the expression (34) one can see
that they are surprisingly identical.

The presented approach, however, attaches the different
significance to these coefficients. The first one implies how
the Newtonian gravity deviates from its usual law by simply
multiplying the Newtonian potential. It should be set to unity,
therefore, which is the condition explicitly equivalent to set-
ting up the value of the acceleration α to (26). Then setting
the first parameter to unity and the substitution of the value
for α from (26)

v(r) =

2Gm
r

+

[
3k
2β

]2

H2r2

1/2

. (37)

The second factor signifies how repulsive Λ-term differs from
(H2r2), and it also consequently adds the pre-factor for H in
the de Sitter metric and multiplies the cosmological horizon
c/H with the same value (see also (13)).

Further, in the frame of this model, the second parameter
is set to unity which equivalently implies the following

3k
2β

= 1 α = 3Hc (38)

and the pre-factor in the expression for the scale factor (33)
becomes unity. In such case, the Rindler horizon (23) as the
radial distance from the center of mass

rR = rm

(
β

3

)1/3

(39)

and the distance where the SdS river velocity (37) as function
of r approaches its minimum†

r(vmin) = rm

(
k
2

)1/3

(40)

are both coincidences. The possible case can be considered
if one also equates the Rindler horizon distance η0 (23) with
ηm (31) then it would lead to β = 3 and k = 2 then the both
expressions above would have no prefactors.

†Equating the derivative to zero and using kr3
mH2 = 2Gm as per (4).

Another two extreme points of v(r) where it approaches c are given in [6].
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The substantial fact that the Rindler transforms in unified
2D spacetime of the form (28) results in the switch from the
Schwarzschild river velocity to the SdS gravity with the re-
pulsive Λ-term in 4D spacetime, by taking into account the
relativistic consideration for the uniform acceleration along
η. Importantly the obtained river velocity for the SdS metric
corresponds to the proper velocity of u1 in unified spacetime
and rationale for it is given in Section 10.

8 The FLRW metric in 2D and the conformal form

As it was done for 4D in Section 2 the scale factor a′ for 2D
spacetime can be introduced in the same way as

η = k ηm a′(τ) . (41)

Using (30), (31) and (23) with determined coefficients (38)
results in

a′(τ) = sinh2
(

3
2

Hτ
)

(42)

that corresponds to the following 2D metric

ds2 = −c2dτ2 +

[
sinh

(
3
2

Hτ
)]4

dz2 (43)

where z is the comoving distance, u1 = z ȧ′ and τ is the proper
time in the comoving frame∗. Such form is the mapping of the
Robertson Walker (FLRW) metric with the scale factor (33)
to 2D spacetime. The metric is written for the fluid while
it moves in pseudo-Minkowski spacetime (27). Contrary to
the FLRW metric with the scale factor (33), (35) this metric
has the conformal form. The conformal time τ′ such as dτ =

dτ′a′(τ) is given by the transform

τ′ =

∫
dτ

a′(τ)
= −

2

3H tanh
(

3
2 Hτ

) (44)

where the integration constant can be set to zero. Notably,
conformal time has reversed direction opposite to τ

τ′ ∈

(
−∞,−

2
3H

)
. (45)

The metric (43) takes the following form

ds2 = sinh4
(

3
2

Hτ
) (
−c2dτ′2 + dz2

)
. (46)

Or using (44)

ds2 =

1 − (
3
2

Hτ′
)2−2 (

−c2dτ′2 + dz2
)

(47)

∗The metric clearly differs from the known form in comoving Rindler
frame ds2 = −c2

(
1 + α2 x2

)
dτ2 + dx2 as the later uses different coordinate x

that is defined locally in the observer’s frame.

providing the conformal form of the FLRW metric in unified
two dimensional spacetime.

On another hand, in four-dimensional spacetime, there is
the parameterH†

H(τ) =
ȧ
a

=
v

r
=

V̇
4πr3 . (48)

Using (32) for V(τ) with the hyperbolic sine of half argument
leads to

H(τ) =
H

tanh
(

3
2 Hτ

) (49)

where the parameter belongs to the following interval

H(τ) ∈ (+∞,H) . (50)

Then the parameter can be written in terms of conformal time
τ′ as given by (44)

H(τ) = −
3
2

H2τ′ . (51)

This expression connects the “varying Hubble constant” with
conformal time in unified 2D spacetime. The range of H(τ)
is from +∞ to H andH(τ) is the infinitely approaching value
of H, as shown.

Interestingly that the metric (43) represents the embed-
ding class two geometry, implying that the minimal number
of dimensions of flat spacetime where it can be embedded is
four. The reason why at least two additional dimensions are
required is that the derivative ȧ(τ) has zero at τ = 0, see [1, the
Theorem 2.2].

9 The note on 3Hc and the number of spatial dimen-
sions, the de Sitter metric

The appearance of the factor 3 in the value of the uniform
acceleration (38) is closely related to the number of spatial
dimensions. It can be demonstrated by the example of the de
Sitter metric. Expressing the hyperbolic sine from the equa-
tion of motion (30) and substituting into the expression for
proper velocity u1 leads to

u(η) = c
η

η0

(
1 +

2η0

η

)1/2

. (52)

For far away distances when η � η0 the second term in the
equation can be neglected and using the value for η0 from
(31) it reduces to u(τ) = 3Hη(τ) with the solution

η(τ) = a1 exp (3Hτ) (53)

where a1 can be set to the Rindler horizon distance η0 as per
(39). Then it becomes

V =

(
β

3

)
Vm exp (3Hτ) . (54)

†Though the definition is the same as “varying Hubble constant” in the
standard cosmology, their meanings have to be distinguished.
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Using (8) and taking the cubic root result in

a(τ) =

(
β

3k

)1/3

exp (Hτ) (55)

which is the de Sitter metric where the factor 3 in the argu-
ment of the exponent disappears because of the cubic root. In-
terestingly pre-factor can not be unity in such way (the same
can be shown by approximating (33)).

10 Coordinate time in 2D and in 4D spacetimes

Time is an arbitrary coordinate in gravitational theories in-
cluding the GR [11] as it is not considered as absolute time.
The model uses the proper time of the moving space τ that
comes to the metric (2). The radial river velocity of the fluid
/ space v is the fluid’s proper velocity in pseudo flat 4D Min-
kowski spacetime [3, 8] and v is the projection of proper ve-
locity u1 in 2D (t, η) as shown. However, the projection of
coordinate velocity uc in 2D (t, η) does not correspond to co-
ordinate velocity of the fluid vc in 4D because the Lorenz in-
variance in 2D cannot be applied to the Lorenz invariance is
4D. Therefore coordinate time in (t, η) is not synchronized
with coordinate time in 4D (t′, r, θ, φ). Such disagreement in
coordinate times can be seen from the fact that time t in (t, η)
implies how an observer residing at rest in η = 0 (so r = 0)
measures its time. However, the coordinate time in 4D t′ (that
comes to the metric (1)) is time measured by static observer
residing far away from the gravity r = ∞ (so η = ∞).

Whereas proper time τ of the comoving fluid in 2D is the
same as proper time in 4D and such proper time invariance
may imply invariance of the energy for coordinate transform
from 2D to 4D but the topic requires further analysis. Coor-
dinate time t′ in four dimensional space time can be obtained
from τ using the transform for the Gullstrand-Painlevé met-
ric [3, 8]

dτ = dt′ −
v

c2

(
1 −

v2

c2

)−1

dr (56)

where τ is also proper time in 2D. As v represents proper
velocity (dr/dτ) then dividing both sides by dτ it takes fol-
lowing form

dt′ =
dτ

1 − v2

c2

(57)

Then the transform from proper time to coordinate time in 4D
is given by respective integral using v(τ).

11 The dynamic of the Rindler flow along η

One dimensional flow with constant acceleration and velocity
u provides certain simplification of the case study on the one
hand. The analogue of one dimensional density for example
becomes ρη = m0/λm. However, some of the parameters like
pressure can not be defined. The constant two-force acting on
a fluid element is

F i = m0 α
(
sinh

(
α

c
τ
)
, cosh

(
α

c
τ
))

(58)

where i = 0, 1 and α = 3Hc as per (38). Using definition for
m0 (25) the norm of the constant force is

|F| =
9k
2c
~H2 . (59)

It is easy to see that work done by such force at distance from
0 to the Rindler horizon given by (31) is exactly

|F| η0 = m0 c2 (60)

and does not depend on values of β and k. This expresses
the significance of the Rindler horizon distance in the frame
of the model. The relativistic energy density for such fluid is
e = ρηc2γ = ρηu0c. The integration yields the total energy
within the line segment (0, η) as

E =

∫ η

0
e dη = ρηc

∫ τ(η)

τ=0
u0u1dτ =

m0c4

2αλm
cosh2

(
α

c
τ
) ∣∣∣∣∣τ(η)

0

=
m0c4

2αλm

(
cosh2

(
α

c
τ
)
− 1

)
(61)

where in the last identity the value is taken at τ = 0. Notable
that the expression in brackets coincidences with (u1)2. Set-
ting the hyperbolic cosine to 2 at distance η0 as per (31) the
total energy of the fluid from 0 to the Rindler horizon distance
becomes

E(η0) =

(
β

2

)
mc2 (62)

where α = 3Hc (38), (16) to express m and (31) were used.
The energy invariance between 2D and 4D can be proposed
based of the invariance for proper time τ between two space-
times but it requires further analysis.

12 The continuity of the Rindler flow

The fluid flow with the relativistic uniform acceleration along
η has many notable properties. As an example with the source
placed at point η = 0 in case of incompressible fluid its stren-
gth is

σ =
∂m
∂t

= m0
∂u
∂t

= 0 . (63)

However further along the coordinate such sink-source term
is non-zero. It is easy to see using the equation of motion
(30) for two points with initial distance λm (where we fix the
initial line segment at dt = λm/c) then the distance between
them increases with time as∗

dη = λm sinh
(
α

c
τ
)
. (64)

In comoving frame of reference one can use proper velocity
u1 for the continuity equation. The divergence of proper ve-
locity can be obtained as

div(u1) =
∂u1

∂η
=
∂u1

∂t
∂t
∂η

=
α

uc
=

α

c tanh
(
α
c τ

) . (65)

∗Then the substitution of α from (38), using (17) leads to the element
of the fluid growth in 3D as V(τ) = V0 sinh (3Hτ) which is exactly the same
relation as suggested in [7] for the fluid parcel growth.
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Lemma. The divergence of the proper velocity in 2D
equals to divergence of the radial river velocity in 4D

div(u1) = div(v) . (66)

Proof. The radial velocity is irrotational as stated then

div(v) =
1
r2

∂

∂r

(
r2v

)
=

2v
r

+
∂v

∂r
. (67)

Expressing v with u as given in (21)

div(v) =
VmβH

c
∂u
∂r

1
4πr2 (68)

where two identical terms dropped. As

∂u
∂r

=
∂u
∂η

∂η

∂r
=
∂u
∂η

c
VmβH

4πr2 (69)

where (22) was used the substitution into (68) proves the
lemma.

Combining (65), (66) and (49), using the value for α (26)
and the trigonometric identities the divergence of the river
velocity becomes

div(v) =
3ȧ
2a

[
1 +

(a
ȧ

H
)2

]
. (70)

The equation provides the correspondence of the parameter
H(τ) = ȧ/a to the sink-source strength of fluid with constant
density.

13 The limitations of the model

The first limitation of the model is that it does not provide any
feasible solution for the Kerr-Newman neither for the Reiss-
ner–Nordström metrics. In the presented model, the rotation
of the in 3D can not be distinguished in η coordinate because
of the uncertainty of the volume V0 represented as the spher-
ical shell, as depicted in Fig. 1. Though it does not create any
issue for the model because the Kerr-Newman river velocity
does not have any dependency on angular coordinates (φ, θ)
but only on radial coordinate as shown in [5]

v(r) =

[
2Gmr − Q2

r2 + A2

]1/2

(71)

where A is the angular momentum per unit mass of a rotat-
ing mass, and Q is its charge. The model has difficulties in
obtaining the analytic expressions in the same way for such
velocity. There are two arguments to support the model, par-
ticularly is that the Kerr-Newman metric is a pure theoretical
consequence of the GR and is not anyhow verified experimen-
tally. The second argument is that the model is not unique in
the sense that the coordinate η can be introduced differently
but in the same manner for example

γdη = dV
λm

V0
(72)

where γ is u0 in the unified 2D spacetime. In such case spatial
3D coordinates (dV at right hand side) have “mixed” projec-
tion to both η and t (contrary to reviewed case where η→ dV
directly). Introduced in such way the river velocity for the
SdS metric would be simply

vp = vcγ =

(
r3

mH2

r

)1/2 (
1 +

r3

r3
m

)1/2

(73)

where kr3
mH2 = 2Gm. So the coordinate velocity is the Schw-

arzschild river velocity. Such alternative definition of η aligns
coordinate time t in 2D and t′ in 4D. The case for the mixed
projection can be elaborated in future work.

14 Free fall velocity and symmetries

In the frame of the presented approach, the acceleration α
along η has a positive value. Its projection to 4D results in
positive radial velocity v in an outward direction (that in the
Schwarzschild case corresponds to the negative deceleration
in outward direction). The free-fall velocity v f f is connected
to the river velocity as v f f = −v. The changing of sign in the
acceleration α corresponds to the transform of the river veloc-
ity to free-fall velocity as α → −α v → v f f Alternatively,
the transform of the river velocity to free-fall velocity can be
given via the change of sign of proper time τ because time
reversal changes a sign of u and therefore it changes a sign
of the radial river velocity v as per (20) τ → −τ v → v f f .
However, such time reversal does not change a sign of the
acceleration α. If one would extend the direction of η coordi-
nate to the negative values (understanding that it would corre-
spond to negative volume or negative ρ0) then mirroring the
coordinate η (to opposite direction) means the equivalently
the change of sign of the acceleration as per the equation of
motion (30) η→ −η α→ −α.

15 Conclusions

The proposed analogy of unified two-dimensional spacetime
brought a few convenient advantages to study the cosmolog-
ical metrics and gravitation via the simplification. From the
perspective of unified 2D spacetime the Schwarzschild grav-
ity can be viewed as a non-relativistic approximation of flow
with the constant acceleration. Then the relativistic consider-
ations of such movement in unified 2D spacetime lead to the
appearance of the repulsive Λ-term corresponding to the SdS
metric. And this is far from being analogy as the case is only
possible if the unified 2D spacetime is considered as physical
spacetime. It can be interpreted as the “internal” spacetime of
the moving fluid of the analog gravity and the River model.

As shown, the FLRW metric in unified 2D spacetime has
the conformal form. The conformal time is connected to the
parameter H(τ) that is usually associated with the “varying
Hubble constant”. The parameter H varies from the infinity
in the past to the Hubble constant, which will be approaching
infinite time (49). Therefore the model has no place for the
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cosmological Big Crunch. The cosmological Big Bang is also
absent. The model suggests that the Big Bang is going on
continuously, equivalently signifying the emission of the fluid
from the center of the point mass of every elementary particle
where it is represented by the Rindler coordinate singularity
at η = 0, τ = 0. The Universe can be static as the equivalence
of the metrics (1) and (2) is stressed.

The parallel of the model with the Conformal Quantum
Mechanic that utilizes a 1D coordinate is yet to be analyzed.
Possible outlook to the quantum properties of the Rindler
fluid with constant force (59) (the linear potential) in unified
2D coordinates can be interesting. Embedding the electric
charge to the metric in the frame of the model (where some
of the parameters are to become imaginary) can be challeng-
ing.

Mathematical topics such as the topological coordinate
transformation of 4D to 2D manifold and conformal mapping
with the discrete maps in application to the presented model
require further attention.

The exploration of additional coordinates is a strong trend
since the foundation of Special Relativity. However, the op-
posite direction in the unification of known dimensions may
also be surprisingly advantageous. The introduced unified
2D spacetime (t,η) via certain simplification offers a new per-
spective to look at gravitation and cosmology.

The presented intuitive approach reveals the significant
parallel between gravity and motion in two-dimensional spa-
cetime. As always, the analogy may be evidence of a hidden
pattern in Nature; therefore, more thorough research and for-
mal analysis are required.

Received on October 7, 2019
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