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By expressing the Boltzmann statistical weight function (W) in terms of the Boltzmann
thermodynamic probabilities pr, i.e. W = W (p1, p2, . . . , pr−1, pr, pr+1, . . . , pm), and
thereafter evoking the here set-forth Thermodynamic Probability Evolution Hypothesis
– namely that, at the very least, a microstate can only evolve from a state of low ther-
modynamic probability to one of a higher thermodynamic probability, we demonstrate
a simple and veritable proof of the Second Law of Thermodynamics (SLT), namely
that the entropy of an isolated thermodynamic system always increases. Effectively and
resultantly, this proof requires or points to the idea that the SLT holds not only statisti-
cally for an isolated system as currently understood, but must hold exactly for each of
the microstates making up the system, hence, the restriction that the SLT holds only for
an isolated thermodynamic system, may have to fall by the wayside.

The Law that entropy always increases – holds – I
think, the supreme position among the Laws of Nature.
If someone points out to you that your pet theory of the
Universe is in disagreement with Maxwell’s equations,
then – so much the worse for Maxwell’s equations. If
it is found to be contradicted by observation[s], well
– these experimentalists do bungle [up] things some-
times. But if your [pet] theory is found to be against
the Second Law of Thermodynamics, I can give you
no hope; there is nothing for it but to collapse in [the]
deepest humiliation . . . Sir Arthur Stanley Eddington
(1882–1944), adapted from [1, pp. 37-38].

1 Introduction

The paramount Second Law of Thermodynamics (SLT) is one
of the deepest, most profound and single-most important laws
of physics. This seemingly sacrosanct law is born out of the
solid and veritable soils of experimental philosophy. Be that
as it may, this law has no corresponding fundamental theo-
retical justification except from the great Austrian theoreti-
cal physicist and philosopher – Ludwig Eduard Boltzmann
(1844-1906)’s first (significant – albeit, failed) attempt at a
proof via his all-famous and important H-theorem [2]. Boltz-
mann’s attempt [2] was swiftly rejected (by Zermelo [3] and
Leoschmidt [4]) as a complete proof and this is due to the
assumptions made therein – i.e. critical assumptions which
were rendered contrary to physical and natural reality as we
know it, hence, to this day – despite the many spirited at-
tempts at a proof, there is no accepted fundamental theoretical
proof of the SLT; thus, it remains an open challenge to find
a proof of the SLT. Herein, by way of writing down Boltz-
mann’s statistical weight function W, as a function of the re-
spective thermodynamic probabilities (pr) of all the different
microstates making up the given isolated thermodynamic sys-

tem – i.e.:

W = W (p1, p2, . . . pr−1, pr, pr+1, . . . pm−1, pm) , (1)

we humbly make an attempt at a proof that may shade some
light on the very foundations and meaning of the SLT.

2 The four manifestations of entropy

Entropy manifests itself in four different forms. The first form
is via Clausius’ entropy, second is via Boltzmann’s entropy,
third is via Gibb’s entropy and lastly is via the information
theoretic entropy through Shannon’s entropy. The main thrust
of the present section is to try and link these four manifesta-
tions of entropy so that a proof of just one of them is sufficient
proof for the rest of the entropies. Herein, we prove for the
case of Boltzmann’s entropy.

2.1 Clausius entropy

The great German physicist and mathematician – Rudolf Ju-
lius Emanuel Clausius (1822-1888), is – by and large – gener-
ally regarded as one of the central figures and founders of the
science of thermodynamics. In his most important paper [5]
entitled “On the Moving Force of Heat”, Clausius first stated
the basic ideas of the SLT and later, he introduced the concept
of entropy (Clausius [6]). Further, in 1870, Clausius intro-
duced the Virial Theorem which applies to heat [7]. Clausius’
most famous statement of the SLT was published in both the
German [8] and the English language [9]:

Heat can never pass from a colder to a warmer body
without some other change, connected therewith, oc-
curring at the same time.

Further, in this famous paper [5], Clausius showed that there
was a contradiction between Carnot’s principle and the con-
cept of conservation of energy and realising this, he restated
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the two laws of thermodynamics to overcome this contradic-
tion. For a system initially at temperature Ti and final tem-
perature T f and in-between these two temperature changes a
net heat d̄Q takes place, for such a system, Clausius defined
the entropy change, as:

dSC =

∫ T f

Ti

d̄Q
T
. (2)

For an isolated thermodynamics system, the entropy always
increases [6], and this is stated in the famous Clausius Law
as:

dSC =

∮
d̄Q
T
≥ 0 . (3)

The landmark 1865 paper [6] in which he introduced the con-
cept of entropy ends with the following summary of the First
and Second Laws of Thermodynamics:

The energy of the Universe is constant.
The entropy of the Universe tends to a maximum.

2.2 Boltzmann entropy

Boltzmann’s goal in his work [10] was to explain the be-
haviour of macroscopic systems in terms of the most fun-
damental dynamical laws governing their microscopic con-
stituents. For example, consider clear and clean water in a
container. In this container pour a drop of say potassium
permanganate. If left to itself, the potassium permanganate
will gradually spread in the water until the water is color blue
i.e. the potassium permanganate is evenly spread throughout
the water. Why does the water and potassium permanganate
mixture prefer to be in the equilibrium macrostate where the
potassium permanganate is evenly spread? Why?

To the mundane, the answer is that this is the way things
are and to expect anything different is nothing short of asking
for a miracle. The pedestrian mind will insatiably absorb this
as an effect and consequence of the natural order of the world
– not to Boltzmann. According to Boltzmann, this requires
an answer that penetrates deep into the microscopic nature
of reality at its most elementary and most fundamental level.
That is, this has something to do with the evolution of the
entropy of the system.

Boltzmann (1877) published his statistical interpretation
of the SLT in response to objections from Loschmidt who had
said that the H-theorem singled out the direction in time in
which his H-function decreases, whereas the underlying me-
chanics was the same whether time flowed forward or back-
ward. It is this paper that Boltzmann published his famous
equation – where accordingly, at any give time – the Boltz-
mann entropy SB of this system is given by:

SB = kB ln W , (4)

where kB is the Boltzmann constant. Later, the reluctant Ger-
man physicist [11], Max Karl Ernst Ludwig Planck (1858-

1947), based the derivation of his black body radiation for-
mula [12–14] on (4). Boltzmann’s Eq. (4) has been success-
ful in describing systems with minimal-most interactions in
Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statis-
tics. For later instructive purposes, in the subsequent sec-
tions, we shall write down the corresponding thermodynamic
weights (W ).

2.2.1 Maxwell-Boltzmann statistics

Maxwell–Boltzmann statistics (hereafter MB-statistics) de-
scribethe average distribution of non-interacting material par-
ticles over various energy states (microstates) in thermal equi-
librium, and this kind of statistics is applicable in conditions
where the temperature is high enough or where the particle
density is low enough to render quantum effects negligible.

Suppose we have a gas of N identical point particles in
a box of volume V . By “gas”, we here-and-after mean that
the particles are non-interacting with one another, or more re-
alistically, the effects of the interactions are negligibly small.
Suppose we know the single particle states in this gas. In
MB-statistics, what we would like to know is what are the
possible macrostates of the system as a whole. That is, how
many ways are there of arranging the microstates? If nr is
the number of particles occupying the energy state εr, then,
an appeal to statistics will tell us that the multiplicity W of
different ways of arranging such a system is:

WMB =

m∏
r=1

N !
nr!

. (5)

It was pointed out by Gibbs, that the above expression for W
does not yield an extensive entropy, and as such – it must be
faulty somehow. This problem is known as the Gibbs para-
dox. The problem is that the particles considered by the above
equation are not indistinguishable. In other words, for two
particles (A and B) in two energy sublevels the population
represented by [A,B] is considered distinct from the popula-
tion [B,A] while for indistinguishable particles, they are not.

2.2.2 Bose-Einstein statistics

If we carry out the same argument presented above in the MB-
statistics – albeit, this time for indistinguishable particles, we
are led to the Bose-Einstein (BE) multiplicity expression WBE
i.e.:

WBE =

m∏
r=1

(nr + gr − 1)!
nr!(gr − 1)!

. (6)

The MB-distribution follows from this BE-distribution for
temperatures well above absolute zero, implying that gr ≫
1. The MB-distribution also requires low density, implying
that gr ≫ nr. The BE-theory of was developed in 1924-
5 by the Indian theoretical physicist Satyendra Nath Bose
(1894-1974) and in full collaboration with Bose [15], the idea

172 G. G. Nyambuya. A Simple Proof of the Second Law of Thermodynamics



Issue 3 (October) PROGRESS IN PHYSICS Volume 15 (2019)

was later adopted and extended by the great Albert Einstein
(1879-1955). Due to Dirac [16, 17], particles that follow the
BE-theory are called bosons.

2.2.3 Fermi-Dirac statistics

First derived in 1926 by the great Italian physicist – Enrico
Fermi (1901-1954) [18, 19] and later in the same year by the
finest and greatest English theoretical physicist of the mod-
ern age, Paul Adrian Maurice Dirac (1902-1984) [20], Fermi-
Dirac statistics (here-and-after FD-statistics) describe a dis-
tribution of particles over energy states in systems consist-
ing of many identical particles that obey the Pauli Exclusion
Principle, where according no two particle can occupy the
same quantum state and this has a considerable effect on the
properties of the system. Further, FD-statistics apply to iden-
tical particles with half-integer spin (fermions) in a system
in thermodynamic equilibrium. Additionally, the particles in
this system are assumed to have negligible mutual interaction
(gas) and this allows the many-particle system to be described
in terms of single-particle energy states.

As is the case in the derivation of WBE: suppose we have
a number of energy levels, labelled by index i with each level
having energy εr and containing a total of nr particles. Fur-
ther, suppose each level contains gr (degeneracy) distinct sub-
levels, all of which have the same energy, and which are dis-
tinguishable. The Pauli exclusion principle allows that only
one fermion can occupy any such sub-level. The number wr

of ways of distributing nr indistinguishable particles among
the gr sub-levels of an energy level, with a maximum of one
particle per sub-level, is given by the binomial coefficient, us-
ing its combinatorial interpretation:

wr =
gr!

nr!(gr − nr)!
. (7)

The number of ways that a set of occupation numbers nr can
be realized is the product of the ways that each individual
energy level can be populated, i.e.:

WFD =

m∏
r=1

gr!
nr!(gr − nr)!

. (8)

2.3 Gibbs entropy

The great theoretician – Josiah Willard Gibbs (1839-1903),
after whom the Gibbs entropy is named, was an American
mathematician, chemist and physicist who made important
and fundamental theoretical contributions to mathematics,ch-
emistry and physics. Gibbs argued that for a thermodynamic
system with W macrostates, if Pr is the thermodynamic prob-
ability of occurrence of the ith macrostate, then the entropy SG
of this system measured over all the macrostate r = 1, 2, . . . ,

m − 1,W is defined [21, 22]:

SG = −kB

W∑
r=1

Pr ln Pr , (9)

where Pr is the probability of occurrence of the rth macrosta-
te. This definition, like Boltzmann’s entropy, is a fundamental
postulate whose ultimate justification is its ability to explain
experimental facts, especially for systems of interacting par-
ticles.

The work of Gibbs on the applications of thermodynam-
ics was instrumental in transforming physical chemistry into
a rigorous inductive science. In Statistical Mechanics (a term
coined by Gibbs himself), he combined the work of James
Clerk Maxwell and Ludwig Boltzmann on the kinetic theory
of gases, thus explaining the macroscopic laws of thermo-
dynamics as a consequence of the underlying fundamental
statistical properties of ensembles of the possible states of a
physical system composed of many particles.

Gibbs’ approach is very useful in the study of “equilib-
rium” statistical mechanics and solid state physics [22], whe-
reas Boltzmann’s approach is very useful in the study of gas-
like systems such as electrons, photons, etc. However, Gibbs’
approach in the treatment of nonequilibrium systems presents
contentious problems [22, 23].

The American – Wayman Crow Distinguished Professor
of Physics at Washington University in St. Louis – Edwin
Thompson Jaynes (1922-1998), demonstrated [24] in 1965
that the Gibbs entropy is equal to the classical “heat engine”
entropy of Clausius (dS =

∫ T f

Ti
d̄Q/T ). Therefore, the Gibbs

entropy is the same as the Clausius entropy, i.e.:

SG = SC , (10)

hence, a proof that dSG ≥ 0 is as well a proof that dSC ≥ 0.
Later in the paper, we will prove that dSG ≥ 0, thus, accord-
ingly, this proof is a proof of the Clausius entropy as well.

2.4 Shannon entropy

The concept of entropy in Information Theory describes how
much information there is in a signal or event. The Entropy
Information Theory was advanced by the American mathe-
matician, electrical engineer, and cryptographer – Claude El-
wood Shannon (1916 − 2001) in his now famous 1948 pa-
per [25,26] entitled “A Mathematical Theory of Communica-
tion”. The Shannon entropy is a carefully constructed func-
tion of a set of probabilities that satisfies a number of con-
straints. These constraints are chosen such that entropy mea-
sures the uncertainty associated with a probability distribu-
tion.

An intuitive understanding of information entropy relates
to the amount of uncertainty about an event associated with a
given probability distribution. As an example, consider a box
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containing many coloured balls. If the balls are all of differ-
ent colours and no colour predominates, then our uncertainty
about the colour of a randomly drawn ball is maximal. On
the other hand, if the box contains more red balls than any
other colour, then there is slightly less uncertainty about the
result: the ball drawn from the box has more chances of be-
ing red (if we were forced to place a bet, we would bet on a
red ball). Telling someone the colour of every new drawn ball
provides them with more information in the first case than it
does in the second case, because there is more uncertainty
about what might happen in the first case than there is in the
second. Intuitively, if we know the number of balls remain-
ing, and they are all of one color, then there is no uncertainty
about what the next ball drawn will be, and therefore there
is no information content from drawing the ball. As a result,
the entropy of the “signal” (the sequence of balls drawn, as
calculated from the probability distribution) is higher in the
first case than in the second.

Shannon, in fact, defined entropy as a measure of the av-
erage information content associated with a random outcome.
Shannon’s definition of information entropy makes this intu-
itive distinction mathematically precise. His definition satis-
fies these desiderata:

1. The measure should be continuous – i.e. changing the value
of one of the probabilities by a very small amount should only
change the entropy by a small amount.

2. If all the outcomes (ball colours in the example above) are
equally likely, then entropy should be maximal. In this case,
the entropy increases with the number of outcomes.

3. If the outcome is a certainty, then the entropy should be zero.

4. The amount of entropy should be the same independently of
how the process is regarded as being divided into parts.

In his paper [25, 26], Shannon makes the claim that the only
function satisfying the above requirement will be of the form:

Ss = −ks

m∑
r=1

pr log2 pr (11)

where ks is the Shannon constant. If the Shannon constant
were to be set such that: ks = kB ln 2, then, the Shannon en-
tropy will equal the Gibbs entropy, i.e.:

Ss ≡ SG. (12)

Now, having discussed the four different manifestations of en-
tropy, we shall proceed to describe our thermodynamic sys-
tem.

3 Description of thermodynamic system

Key to our proof here is the clarity in the definition of what
we here term the:

1. Occupational Frequency of a Thermodynamic Microstate
(OFTM).

2. Thermodynamic Probability (TP).

As depicted in Table 1, we envisage a thermodynamic system
to constitute discrete, finite and countable cells (microstates).
These cells can each be numbered 1, 2, 3, . . . , r − 1, r, r + 1,
. . . , m − 2, m − 1, m and in these cells we are to fit a total of
N particles. The number of particles in each of these cells at
a given material time is n1, n2, n3, . . . , nr−1, nr, nr+1, . . . , . . . ,
nm−2, nm−1, nm, respectively.

Now, the OFTM, fr, of each of these microstates is such
that:

fr =
nr

N
, (13)

where fr is the total fraction of particles in the rth cell at a
given material time. We must note that:

m∑
r=1

fr = 1 . (14)

Now, todefine the thermodynamic probability pr, we need
to introduce some new idea. This is the idea of the potential
holding capacity of a given microstate. That is, take say the
rth microstate. This microstate has nr particles occupying it,
whereas the maximum possible number of particles that can
occupy this microstate is qr. What this means is that the mi-
crostate is not completely filled, but partially so. The ten-
dency is to fill this microstate rather that empty it. The most
probable state is that when this microstate is completely filled
and the most unlikely is – likewise, when this microstate is
empty.

Under such a setting, it follows that the ratio:

pr =
nr

qr
, (15)

must give the probability that the rth microstate is occupied
and fr is simply the fraction of the number of particles oc-
cupying this microstate at a given material time relative to
the total number of particles making up the entire system.
Clearly:

0 ≤ nr ≤ qr , (16)

hence:
0 ≤ pr ≤ 1 , (17)

thus: m∑
r=1

0 ≤
m∑

r=1

pr ≤

m∑
r=1

1

 −→ 0 ≤ m∑
r=1

pr ≤ m

 . (18)

Writing (18) in a more succinct manner, we will have:

0 ≤
1
m

 m∑
r=1

pr

 ≤ 1 . (19)

Now, having defined the occupational frequency of a ther-
modynamic microstate ( fr) and the thermodynamic probabil-
ity (pr), we shall proceed to lay bare the assumption or work-
ing hypothesis that will lead us to our desired proof of the
SLT.
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Table 1: Arrangement of Particles in the Different Cells

Parameter Cells

Cell Number 1 2 3 . . . . . . r − 1 r r + 1 . . . . . . m − 2 m − 1 m

nr n1 n2 n3 . . . . . . nr−1 nr nr+1 . . . . . . nm−2 nm−1 nm

fr
n1

N
n2

N
n3

N
. . . . . .

nr−1

N
nr

N
nr+1

N
. . . . . .

nm−2

N
nm−1

N
nm

N

qr q1 q2 q3 . . . . . . qr−1 qr qr+1 . . . . . . qm−2 qm−1 qm

pr
n1

q1

n2

q2

n3

q3
. . . . . .

n j−1

q j−1

n j

q j

n j+1

q j+1
. . . . . .

nm−2

qm−2

nm−1

qm−1

nm

qm

4 Hypothesis (assumption)

We shall put forward our working hypothesis which we shall
coin the name – Thermodynamic Probability Evolution Hy-
pothesis (TPE-hypothesis), and this hypothesis states that:

Thermodynamic probability changes are always posi-
tive, i.e. dpr ≥ 0. That is to say, at time ti, if the rth

state has energy εr(ti), and if this energy state were to
change to its next state εr(t j), at a later time t j (i >
j), then the accompanying thermodynamic probability
changes dpr, from the state εr(ti), to the state εr(t j), are
always such that: dpr ≥ 0.

Given the above hypothesis (assumption), we shall now pro-
ceed to our most simple proof of the SLT from a Boltzmann
entropy standpoint. But before that, we shall argue in the
next section that a proof that the Boltzmann entropy always
increases is sufficient proof that all the other three forms of
entropy are bound by the same law, hence, a proof that the
Boltzmann entropy always increases is a general proof of the
SLT.

5 Boltzmann and Gibbs entropies

Our proof of the SLT to be presented in the next section makes
use of the Boltzmann entropy. If we wanted a general proof
that entropy always increases, this would mean we must prove
the SLT for the four different manifestations of entropy. But,
we do not need to do this because the Clausius and Shannon
entropies are – one way or the other – equivalent to the Gibbs
entropy, the meaning of which is that we would only need
to prove for the two cases of the Gibbs and Boltzmann en-
tropy. Again, because the Gibbs and Boltzmann entropy can
be linked, it is sufficient to prove only for one of the two cases
and in this paper, we prove for the case of the Boltzmann en-
tropy.

To that end – i.e. in order to demonstrate this link between
the Gibbs and Boltzmann entropy, we know that in the event
that the probability of occurrence of all the W macrostate, the
Gibbs entropy reduces to the Boltzmann entropy. To see this,

we know that in this event where all the W macrostates are
equally likely, we will have Pr = 1/W , so that:

SG = −kB

W∑
r=1

(
1

W

)
ln

(
1

W

)
= kB ln W = SB . (20)

In all other cases:
SB < SG , (21)

hence, in general, we have that:

[SB ≤ SG] ⇒ [if (dSB ≥ 0) , then, (dSG ≥ 0)] , (22)

hence, a proof that: dSB ≥ 0, is also a proof that: dSG ≥ 0.
Consequently and according to the foregoing, a proof that:
dSB ≥ 0, is indeed a general proof of the SLT for all the four
different manifestations of entropy.

6 Proof

As a starting point, we shall as has been done in (1), assume
that the Boltzmann statistical weight function W , of an ar-
bitrary thermodynamic system is a function of the thermody-
namic probabilities (pr). With this assumption safely in place,
we note that if we are to have:

W = W0 exp

 m∑
r=1

pr −

m∑
r=1

pr ln pr

 , (23)

where W0 is a constant for the given isolated thermodynamic
system in question, then, we can very easily proffer a proof
of the SLT on the basis of the TPE-hypothesis, because, from
the Boltzmann Eq. (4), it follows from (1) that:

SB = kB ln W0 + kB

m∑
r=1

pr − kB

m∑
r=1

pr ln pr , (24)

hence, taking a differential of (24), one obtains that:

dSB = −kB

m∑
r=1

dpr ln pr . (25)
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Now, since 0 < pr ≤ 1, it follows from this – that ln pr ≤ 0,
and from the TPE-hypothesis where one is given that dpr > 0,
it further follows that dpr ln pr ≤ 0, hence:

m∑
r=1

dpr ln pr ≤ 0 ,

thus, inserting all these conditions into (25), we will have that:

dSB ≥ 0 , (26)

hence result. Clearly, the SLT follows directly from a simple
definition of W in terms of the thermodynamic probabilities
of all the different microstates and as well as from the TPE-
hypothesis.

7 General discussion

On the basis of the seemingly self-evident and reasonable
Thermodynamic Probability Evolution Hypothesis here put
forward, we have just “proved” (demonstrated) the SLT. If
anything, the “proof” appears to us (and perhaps to the reader
as well), to not only be very simple, but quite straight for-
ward. Be that as it may – given the amount of effort that has
gone into seeking a proof of the SLT, one can not help but
wonder if this proof is really correct – are we not missing
something here? How does it come about that such a very
simple pedestrian proof has escaped the reach of those that
have vigorously sought it? We do not know! All we can say
is that, what we have before our eyes appears very strongly to
be not only a veritable proof but a perdurable proof as well.
We leave it up to the esteemed reader to be the judge on the
validity or lack thereof the proof.

In addition, we do not know whether to call this a proof
or a demonstration. The reason for this self-doubt is that,
for a proof, the basis on which it stands must be firm – yet,
in what we have presented, the basis is a mere hypothesis
which we only evoked after we noted after a meticulous ex-
amination that if one were to express SB, as function of pr,
i.e. SB = SB(p1, p2, . . . , pr, . . . pm); the experimental result,
dSB ≥ 0 can be deduced from a number-theoretic viewpoint
provided that dpr > 0. Realising this, we evoked this as our
working hypothesis wherefrom the proof flowed smoothly. In
this way, it would not appear – but strongly so that, what
we have is a reverse engineered proof. In this way, it, ulti-
mately, would mean that the SLT directly implies the TPE-
hypothesis. Even if this were the case, it is still a great leap
forward in our understanding of the SLT as this would mean
the source of this law is the manner in which the thermody-
namic probabilities evolve from one value-state to the next.

That is to say, the SLT holds because the dynamic thermo-
dynamic probabilities pr(t), of the different microstates only
change to attain at least higher values than their previous, that
is, the given energy state only evolves (i.e. changes its state)
to allow at least a greater thermodynamic probability. Thus,

whether one decides that this is not a genuine proof because
it has worked backwards from a experimental result (dS ≥ 0)
in which process the TPE-hypothesis is implied, one thing is
pristine clear:

It must be acknowledged that at the very least,
the present demonstration (proof) has surely pee-
red deeper into the nature of the SLT to unearth
the TPE-hypothesis as a driver of this fundamen-
tal, paramount and sacrosanct law of Nature.

Hence, this paper may very well be a great – if not a giant leap
forward, in humankind’s endeavour to understand the myste-
rious and arcane foundations of the Second Law of Thermo-
dynamics.

Entropy is (and has always been) one of those physics
concepts that are difficult to define, let alone understand. Thr-
ough his entropy function [Eq. (4)], Boltzmann defined it as
a measure of the multiplicity of a thermodynamic system. Of
the three definitions i.e. Boltzmann, Gibbs and Clausius en-
tropy), the Clausius energy has been and is – the most dif-
ficult to define and understand. According to what we have
presented herein, one can safely define entropy as:

a measure of the probability of evolution of a thermo-
dynamic system.

With entropy having been given this definition, it becomes
much easier to understand the SLT as a simple statement ab-
out the dynamical evolution of the thermodynamic probabil-
ity of the system.
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Ann. der Phys., 1850, v. 155 (4), 500–524.

6. Clausius R. J. E. Ueber verschiedene für die Anwendung bequeme For-
men der Hauptgleichungen der mechanischen Wärmetheorie. Ann. der
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