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Without using the common methodologies of quantum mechanics – albeit, methodolo-
gies that always involve some demanding mathematical concepts, we herein demon-
strate that one can derive in a very natural, logical and trivial manner, Heisenberg’s
quantum mechanical uncertainty principle on the new phase-space whose name we have
herein coined Stochastic Phase-Space. This stochastic phase-space – is a mathemati-
cal space upon which we previously demonstrated [2] the naturally implied existence
of the First Law of Thermodynamics from Liouville’s theorem. In addition to Heisen-
berg’s uncertainty principle, we derive an upper limiting uncertainty principle and it is
seen that this upper limiting uncertainty principle describes non-ponderable tachyonic
particles.

It must have been one evening after midnight when I suddenly

remembered my conversation with Einstein and particularly

his statement, ‘It is the theory which decides what we can

observe.’ I was immediately convinced that the key to the

gate that had been closed for so long must be sought right

here. I decided to go on a nocturnal walk through Faelled

Park and to think further about the matter . . . Werner Karl

Heisenberg (1901-1976). Adapted from [3, p. 6].

1 Introduction

The present paper is the third in a five part series where we
make the endeavour to understand the meaning and origins
of what drives the unidirectional forward arrow of thermo-
dynamic entropy. In our first instalment [4, hereafter Paper
I], we demonstrated that the Second Law of Thermodynamics
(SLT) can possibly be understood if there exists a new kind
of probability measure, pr, which drives thermodynamic pro-
cesses and this thermodynamic probability evolves in such a
manner that, whenever this thermodynamic probability chan-
ges its value when a system moves from one state to the next,
it always takes higher values than the value it previously held
– i.e. dpr ≥ 0, at all physical and material times. In a nutshell,
thermodynamic events will at the very least, progressively
evolve from a probabilistically less likely state – to a prob-
abilistically more likely state. Such an evolution sequence is
what is naturally expected from probability calculus anchored
on common binary logic where natural systems are expected
to steadily progress into their most likely state.

In the construction of our new ideas, naturally, we ex-
pected that this thermodynamic probability pr, would turn out
to be the usual Boltzmann probability, i.e.

pr = Z−1 exp (−Er/kBT ) ,

where pr is the probability that for a system at temperature
T , the microstate with energy Er, will be occupied and Z is
the partition function. As will be demonstrated in the sequel
paper [5, hereafter Paper IV], this probability pr, cannot be
the usual Boltzmann probability, but a new kind of probability
associated not with the occupation of the given microstate,
but its evolution; where by evolution, it is understood to mean
– moving or progression from its present state to a new state
altogether.

Further on, in the paper [2, hereafter Paper II], we demon-
strated that Liouville’s theorem [6] can actually be viewed
as a subtle statement of the First Law of Thermodynamics
(FLT). This we did by defining the Liouville density function,
δ%, in-terms of some new physical quantity, δSTD, that we
called the thermodynamic phase (or the thermodynamic ac-
tion), i.e. δ% = exp(δSTD/~), where ~ is Planck’s normalized
constant. Furthermore, in Paper IV, we shall identify δ% as
the appropriate thermodynamic probability of evolution, that
is, the thermodynamic probability responsible for the SLT.

In the present paper, we shall demonstrate that when cast
as a probability measure, δ% naturally yields the universally
celebrated quantum mechanical uncertainty principle of Hei-
senberg [1]. In addition to Heisenberg’s lower limiting (i.e.
δE δt ≥ ~/2 and δp δx ≥ ~/2) uncertainty principle, we de-
rive an upper limiting uncertainty principle – i.e. δE δt ≤ ~/2
and δp δx ≤ ~/2. As initially pointed out in [7], this up-
per limiting uncertainty principle strongly appears to describe
non-ponderable tachyonic particles.

Without a doubt, Heisenberg’s quantum mechanical un-
certainty principle is certainly one of the most famous aspects
of quantum mechanics and this very aspect of the theory is
universally regarded as the most distinctive feature of the the-
ory. It is a unique characteristic feature which makes quan-
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tum mechanics differ radically from all classical theories of
the physical world. For example, the uncertainty principle for
position and momentum δp δx ≤ ~/2 states that one cannot
simultaneously assign exact values to the position and mo-
mentum of a physical system. Rather, these quantities can
only be determined with some intrinsic, inherent and charac-
teristic uncertainties that cannot – simultaneously – become
arbitrarily small.

In its popular understanding, the Heisenberg uncertainty
principle is assumed to be a principle to do with the accuracy
in the results of measurements of physical variables such as
momentum, position, energy, etc. Strictly speaking, this is not
true. For example Millette [8] argues that the Heisenberg un-
certainty principle arises from the dependency of momentum
on wave number (p = ~k) that exists at the quantum level, and
that ultimately the uncertainty principle is purely a relation-
ship between the effective widths of Fourier transform pairs
of conjugate variables. Our ideas propagated herein do sup-
port these views and as an addition, these quantum mechani-
cal uncertainties associated with physical variables are seen to
arise from pure stochastic processes occurring on some new
phase-space that we have coined the stochastic phase space.

Now, in closing this introductory section, we shall give a
synopsis of the present paper – i.e. this paper is organised as
follows: in §2, we derive the uncertainty relations that govern
ordinary ponderable matter and thereafter in §3, we derive
the uncertainty relations that govern exotic non-ponderable
matter. Lastly, in §4, we give a general discussion.

2 Derivation of the uncertainly principle

As stated in the introductory section, we are going to demon-
strate in this section (i.e. in §2.2) that one can derive in a ve-
ry natural and logical manner, the position-momentum and
energy-time quantum mechanical Heisenberg uncertainty pri-
nciple on the newly proposed Stochastic Phase-Space (here-
after δΓ-space) upon which we demonstrated [2] the naturally
implied existence of the FLT from Liouville’s theorem. In
addition to Heisenberg’s uncertainty principle, we will also
derive in §3, upper limiting position-momentum and energy-
time uncertainty principles and these upper limiting uncer-
tainty principles describe non-ponderable tachyonic particles.

Before we proceed, we need to explain what it is we mean
by upper limiting uncertainty principle. If there is an upper
limiting uncertainty principle, from the viewpoint of common
logic, there also must be a lower limiting uncertainty princi-
ple. Indeed, the uncertainty principle of Heisenberg is a lower
limiting uncertainty principle because it gives the lowest pos-
sible value that the product of the energy (δE) & time (δt),
and momentum (δp) & position (δr) uncertainties would ever
take. That is to say, the products δE δt and δp δr, can take
whatever value they can or may take for so long as this value
does not exceed the minimum threshold value of ~/2, hence,
in this way, it becomes pristine clear that the Heisenberg un-

certainty principle (δE δt ≥ ~/2 and δp δr ≥ ~/2) is indeed a
lower limiting uncertainty principle.

Now, if – by the sleight of hand, we are to flip the sign
in the Heisenberg lower limiting uncertainty principle so that
we now have δE δt ≤ ~/2 and δp δr ≤ ~/2, the resulting
uncertainty principle is an upper limiting uncertainty prin-
ciple since it now gives an upper limit in the value that the
products (δE δt and δp δr) of the uncertainties can ever take.
Whence, we must hasten at this point and say we already
have discussed the implications of a upper limiting uncer-
tainty principle in our earlier works (i.e. in [7]) where we ar-
gued that if such particle exist to being with, not only will
they travel at superluminal speeds – they also will have to be
non-ponderable as-well; that is to say, they must be invisible
and absolutely permeable. In simpler colloquial terms, such
particles must be capable of passing through solid walls with
no hindrance at all whatsoever.

2.1 Preliminaries

Now, before we can go on to present our derivation of Heisen-
berg’s uncertainty principle in §2.2, we will need to set-up
the stage for that event. First, in order for that, we shall give
in §2.1.1, a description of the particle system that we shall
consider, and, in §2.1.2, we shall describe the normalization
across all spacetime for the thermodynamic probability func-
tion δ% and in §2.1.3, we shall describe the normalization
across a given space-and-momentum axis for the thermody-
namic probability function, δ%. Lastly, in §2.1.4, we present
some useful mathematical equations that we will need in our
endeavours to derive the Heisenberg uncertainty principle.

2.1.1 Description of particle system

As initially suggested in Paper II, we envisage the existence
of two mutually exclusive spacetimes and these we have term-
ed – the Classical Canonical Spacetime (hereafter, CC-Spa-
cetime), and, the non-Canonical Spacetime (hereafter, NC-
Spacetime). The NC-Spacetime can also be called the Sto-
chastic Spacetime. On the deterministic CC-Spacetime, a
particle has its usual deterministic classical four position (x, y,
z, c0t) that we are used to know, while on the non-determinis-
tic NC-Spacetime, the non-deterministic jittery quantum ran-
domness and fuzziness associated with the usual determinis-
tic classical canonical position (δx, δy, δz, c0δt) are defined on
this non-deterministic NC-Spacetime.

For example, considering only the x-axis, a particle will
have x as its canonical position and δx as its associated non-
canonical position as defined on the NC-Spacetime. It is δx
that should give this particle the quantum fuzziness leading to
the weird quantum probabilistic nature of physical systems.
For the human observer – assuming zero human-induced er-
ror in measuring the position of the particle – the effective po-
sition x̂ of the particle at any given time is x̂ = x ± δx. So, in
general, xµ is the canonical four position of the particle and
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δxµ is the associated quantum randomness that leads to the
mysterious, strange and bizarre fuzzy quantum probabilistic
nature of natural systems.

In our description above, when we say particle, we mean a
point-particle – i.e. particles of zero spatial dimension, hence
zero volume. Obviously, there will be some trouble in accept-
ing this – as point-particles, are – in physics – no more than
idealization of real finite-sized particles that are smeared-out
in a finite region of space. That is, a point-particle is in gen-
eral an appropriate or convenient representation of any object
whatever its size, shape, and structure – all these details of
size, shape, and structure, etc, are irrelevant under the general
particle model.

To further complicate this issue of the particle description
of matter, we all know pretty well that the existence of point-
particles is strictly forbade by Heisenberg’s uncertainty prin-
ciple. With this in mind, of these particles, what we envisage
is them having all their charge such as their gravitational mass
and electrical charge being concentrated on that very single
point with this point being trapped in the finite sized spher-
ical region of radius: δr =

√
(δx)2 + (δy)2 + (δz)2, with the

the centre of this finite spherical region fixed in space about
the canonical position (x, y, z). Because of the fields that the
trapped charged point-particle carries – i.e. fields with which
this particle interacts with other particles; the fuzzy, random
wandering and dotting back-and-forth, up-and-about of this
particle inside this finite region should create the impression
of a solid billiard-like ball of radius δr with oft cause the
bulk of its charge (gravitational, electrical, etc) expected to
be trapped in this spherical region. Surely, such a particle-
system will be localized and it will have the property of pon-
derability that we experience with electrons, protons, etc. Let
us call such a particle-system, a Ponderable Material Parti-
cle.

Now, for a minute, let us assume that the above described
point-particle is not trapped. If that were the case, then, what
is it that we are going to have for such a particle-system?
Clearly, it must be an unbounded point-particle that is free to
roam all of the Universe’s length, breath and depth – from
one end of the Universe, to the other in an instant! Such
a particle-system should have its charge (gravitational, elec-
trical, etc) spread-out evenly throughout the entire Universe.
Not only this, while such a particle-system will have a defi-
nite fixed canonical position, the entire particle-system must
be invisible as it will not have the property of ponderability
(localization). Likewise, let us call such a particle-system, a
non-Ponderable Material Particle.

Now, as shall soon become clear in our derivation of Hei-
senberg’s uncertainty principle, two classes of particles will
emerge and the first is that class whose random quantum fuz-
ziness as described on the NC-Spacetime obeys the usual qua-
ntum mechanical uncertainty principle of Heisenberg, i.e. δE
δt ≥ ~/2 and δp δr ≥ ~/2; and these particles travel at speeds

less than, or equal to the speed of light in vacuo. The sec-
ond class is that of particles whose quantum fuzziness as de-
scribed on the NC-Spacetime obeys not the usual quantum
mechanical uncertainty principle Heisenberg, but obey the
converse of Heisenberg’s uncertainty principle, namely δE δt
≤ ~ and δp δr ≤ ~ and these particles travel at speeds that are
at the very least, greater than the speed of light in vacuo.

At this juncture, we feel very strongly that we have pre-
pared our reader to meet the strange new proposal of invisible
particles that travel at superluminal speeds, thus – assuming
the reader somewhat accepts or at the very least, finds some
modicum of sense in what we have had to say above – we
shall quietly proceed to the main business of this paper – that
of demonstrating the natural existence of Heisenberg’s un-
certainty principle on the proposed NC-Spacetime where the
jittery, fuzzy quantum randomness has here been defined.

2.1.2 Normalization across all space

If δ% is assumed to be some probability function, then it must
be normalizable. Normalization is oft cause one of the most
fundamental and most basic properties that a probability func-
tion must satisfy. As is the norm: normalization of this func-
tion, δ%, across all of the six dimensions of δΓ-space requires
that:

1
~3

δpmax︷    ︸︸    ︷∫ ∫ ∫
︸    ︷︷    ︸

δpmin

δrmax︷    ︸︸    ︷∫ ∫ ∫
︸    ︷︷    ︸

δrmin

(δ%+) d3xd3 p = 1, (1)

where: δ%+ = δ%+
x δ%

+
y δ%

+
z δ%

+
0 . In writing δ% in (1), we have

appended a subscript + and this is not a mistake, it is deliber-
ate. This + appendage has been instituted – for latter purposes
– so that a distinction can be made between a thermodynamic
system with a positive δSTD thermodynamic phase (action)
and that with a negative −δSTD thermodynamic phase (ac-
tion), i.e.: δ%+ = δ%+(δSTD), while: δ%− = δ%−(−δSTD). The
two functions describe two different kinds of phenomenon,
namely δ%+ describes ponderable matter as we know it, while
δ%− describes some (exotic) non-ponderable (invisible) tachy-
onic matter. This shall be made clear as we go, hence the need
to make a distinction of δ%+ and δ%−.

Now, the normalization in (1) is the probability of finding
the particle in the spatial (r̂) and momentum ( p̂) region:

δrmin ≤ r̂ ≤ δrmax

δpmin ≤ p̂ ≤ δpmax ,
(2)

where r̂ and p̂ are the actual measured radial coordinate and
magnitude of the momentum of the particle as measured from
the spatial canonical point of origin of the particle (system) in
question.
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2.1.3 Normalization across a given axis

Now, given that δ%+ = exp(δSTD/~), where:

δSTD = δp · δr − δEδt = δpµδxµ , (3)

it follows that the quantities δ%+
x , δ%+

y , δ%+
z , δ%+

0 are such that:

δ%+
x = exp

(
δSx

~

)
= exp

(
δpxδx
~

)
. . . (a)

δ%+
y = exp

(
δSy
~

)
= exp

(
δpyδy
~

)
. . . (b)

δ%+
z = exp

(
δSz

~

)
= exp

(
δpzδz
~

)
. . . (c)

δ%+
0 = exp

(
−
δS0

~

)
= exp

(
−
δEδt
~

)
. . . (d)

(4)

where oft cause δSx = δpxδx, δSy = δpyδy, δSz = δpzδz,
and, δS0 = δp0δx0 = δEδt. Clearly, written in this manner,
these functions δ%+

x , δ%+
y , δ%+

z , δ%+
0 are the thermodynamic

probability evolution functions describing the particle across
the δx-δpx axis, δy-δpy axis, δz-δpz axis, and the δt-δE axis
respectively.

The probability of finding the particle along the x-px, y-
py, z-pz and t-E axis respectively, in the region of its bounds
is unity and this is expressed:

1
~

∫ δpmax

δpmin

∫ δrmax

δrmin

(
δ%+

x
)

dxdpx = 1 , (5)

1
~

∫ δpmax

δpmin

∫ δrmax

δrmin

(
δ%+

y

)
dydpy = 1 , (6)

1
~

∫ δpmax

δpmin

∫ δrmax

δrmin

(
δ%+

z

)
dzdpz = 1 , (7)

1
~

∫ δEmax

δEmin

∫ δtmax

δtmin

(
δ%+

0

)
dtdE = 1 . (8)

Before we can deduce the Heisenberg uncertainty principle
from the above equations (5)-(8), we shall lay down some
necessary mathematical formulae.

2.1.4 Necessary mathematical equations

In our derivation of Heisenberg’s uncertainty principle in §2.2
and §2.3, we are going to encounter the function eax/x, where
x is the variable and a is some constant. Of this function, we
will need to know its integral and limit as x 7→ 0. It is not
difficult to show that:∫ (

eax

x

)
dx =

eax

ax
+ k , (9)

where k is some integration constant and:

lim
x 7→0

(
eax

x

)
= a . (10)

Now, we are ready to derive Heisenberg’s uncertainty princi-
ple (and more).

2.2 Position-momentum uncertainty

In this section, we are now going to derive a lower and up-
per bound uncertainty principle for momentum and position.
Taking (5) and substituting δ%+

x = exp (δpxδx/~), we will
have:

1
~

∫ δpmax

δpmin

∫ δrmax

δrmin

exp
(
δpxδx
~

)
dxdpx = 1 . (11)

Now, using the result of (9) to integrate (11) with respect to
x, and evaluating the resulting integral, we will have:∫ δpmax

δpmin

(
eδpxδrmax/~ − eδpxδrmin/~

δpx

)
dpx = 1 . (12)

Further, we need to integrate (12) with respect to px. In doing
so, we will encounter again an integral of the form given in
(9). The result of this integration is therefore:

~

[
eδpxδrmax/~

δpxδrmax
−

eδpxδrmin/~

δpxδrmin

]δpmax

δpmin

= 1 . (13)

Evaluating this, we will have:

Term I︷         ︸︸         ︷
~eδpmaxδrmax/~

δpmaxδrmax
−

Term II︷         ︸︸         ︷
~eδpminδrmax/~

δpminδrmax

−
~eδpmaxδrmin/~

δpmaxδrmin︸         ︷︷         ︸
Term III

+
~eδpminδrmin/~

δpminδrmin︸         ︷︷         ︸
Term IV

= 1 . (14)

Furthermore, for ponderable material particles, as discussed
in §2.1.1, we wantour particle system to be bounded (trapped)
between the regions 0 ≤ r̂ ≤ δrmax and 0 ≤ p̂x ≤ δpmax. This
means that we must evaluate (14) in the limits δrmin 7→ 0 and
δpmin 7→ 0.

Now, making use of the limit given (10), it follows that
as:

δrmin 7→ 0 ,

δpmin 7→ 0 ,
(15)

for the Terms I, II, III and IV in (14), we will have:

Term I =
~e
δpmaxδrmax

~

δpmaxδrmax
,

Term II 7→ 1 ,

Term III 7→ 1 ,

Term IV 7→ 1 ,

(16)

hence from (16), it follows from this that (14) will reduce to:

~eδpmaxδrmax/~/δpmaxδrmax − 1 = 1 ,
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where, after some re-arrangement, we will have:

1
2
~

δpmaxδrmax
= e−δpmaxδrmax/~ . (17)

From a meticulous inspection of (17), it is clear and goes
without saying that in order for this equation to hold true
δpmaxδrmax > 0, hence:

1
2
~

δpmaxδrmax
= e−δpmaxδrmax/~ < 1 , (18)

thus, we will have:

δpmaxδrmax >
1
2
~ . (19)

With the subscript “max” removed from pmax and rmax, this
(19) is without any doubt whatsoever the famous 1927 positi-
on-momentum quantum mechanical uncertainty principle of
Heisenberg. One can work this out for the other three cases –
i.e. for the (δy, δpy) dimension as given in (6) and the (δz, δpz)
dimension as given in (7) and they would arrive at the same
result.

It is important to note that the exact Heisenberg upper
uncertainty principle involves a greater than or equal to sign,
that is “≥”, yet in (19), the equal sign “=” is missing. This
issue shall be addressed in Paper IV where it shall be seen
that this case represents only those particles that travel at the
speed of light. Next, we consider the energy-time uncertainty
relation.

2.3 Time-energy

Now, in §2.3.1 and §2.3.2, we are going to derive a lower and
an upper bound uncertainty principle for energy and time and
as we do this, we must have at the back of our mind that sta-
ble ponderable particles ought to have no upper bound in their
temporal fluctuations. Yes, they can only have a lower bound
in their temporal fluctuations and this lower bound must co-
incide with the moment of their creation. On the contrary, un-
stable ponderable particles ought to have a finite upper bound
in their temporal fluctuation.

2.3.1 Lower bound energy-time uncertainty

We are now going to derive the energy-time uncertainty prin-
ciple. The derivation is similar to the one given in §2.2 above.
To that end, from (4d) and (8), we know that:

1
~

∫ δEmax

δEmin

∫ δtmax

δtmin

exp
(
−
δEδt
~

)
dtdE = 1 . (20)

Now, using (9) to evaluate (20), we obtain the following:

Term I︷           ︸︸           ︷
~e−δEmaxδtmax/~

δEmaxδtmax
−

Term II︷          ︸︸          ︷
~e−δEminδtmax/~

δEminδtmax

−
~e−δEmaxδtmin/~

δEmaxδtmin︸          ︷︷          ︸
Term III

+
~e−δEminδtmin/~

δEminδtmin︸          ︷︷          ︸
Term IV

= 1 . (21)

In the limit as:
δtmin 7→ 0 ,

δEmin 7→ 0 ,
(22)

for Terms I, II, III and IV in (21), according to (10), we will
have:

Term I =
~e
δEmaxδtmax

~

δEmaxδtmax
,

Term II 7→ 1 ,

Term III 7→ 1 ,

Term IV 7→ 1 ,

(23)

hence, it follows from this – that (21) will reduce to:

~eδEmaxδtmax/~/δEmaxδtmax − 1 = 1 ,

where, after some algebraic re-arrangement, we can rewrite
this equation as:

1
2
~

δEmaxδtmax
= e−δEmaxδtmax/~ . (24)

Similarly, from an inspection of (24), one will clearly obtain
that for this equation holds true δEmaxδtmax > 0, hence:

1
2
~

δEmaxδtmax
= e−δEmaxδtmax/~ < 1 , (25)

thus:

δEmaxδtmax >
1
2
~ . (26)

Once again, this is the famous 1927 energy-time quantum me-
chanical uncertainty principle of Heisenberg. Just as in (19),
the reason for having the greater than sign and not the greater
than or equal to sign are the same as those given in the case
of (19). This uncertainty relation (i.e. (26)) describes a pon-
derable (spatially bound) material particle that is unstable and
has a lifetime τ that is such that τ < δtmax.
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2.3.2 Upper bound energy-time uncertainty

Now, for the same reason given in §2.3.1, we are going to
proceed further and consider the case of a ponderable mate-
rial particle system that has no upper bound in its temporal
fluctuations – i.e. a stable ponderable material particle system
that can live forever (e.g. like an electron or a proton). Such a
particle will have δtmax and δEmax being such that:

δtmax 7→ ∞ ,

δEmax 7→ ∞ .
(27)

According to (10) under the given conditions (i.e. (27)), for
the Terms I, II, III and IV in (21), we will have:

Term I 7→ 0 ,

Term II 7→ 0 ,

Term III 7→ 0 ,

Term IV =
~e
−
δEminδtmin

~

δEminδtmin
,

(28)

hence, it follows from this that (21) will reduce to:

~e−δEminδtmin/~/δEminδtmin = 1 ,

where, after some basic algebraic re-arrangement, we can
rewrite this equation as:

~

δEminδtmin
= eδEminδtmin/~ . (29)

As before, it is not difficult to see that for (29) to hold true, this
requires that δEminδtmin > 0, hence, and from this, it clearly
follows that:

~

δEminδtmin
= eδEminδtmin/~ < 1 , (30)

thus:
δEminδtmin < ~ . (31)

Insofar as its interpretation is concerned, by no stitch of the
imagination is this (31) related to the famous 1927 energy-
time quantum mechanical uncertainty principle of Heisenberg
and this is so because of the less-than-sign “<” appearing in
it. What this equation is “telling” us is that the energy and
time fluctuations are not bound above, but below. When it
comes to the lifetime of the particle in question, this translates
to the reality that the particle can live forever – i.e. τ = ∞.
Therefore, this uncertainty relation describes stable ponder-
able particle systems – i.e. ordinary electrons and protons,
which by-and-large strongly appear to be stable particle sys-
tems.

3 Non-ponderable matter

From a symmetry and bona fide mathematical standpoint, if
we have the physics of particles described by the thermody-
namic phase +δSTD, there surely is nothing wrong, but ev-
erything natural and logical for one to consider the physics
of particle systems described by the opposite thermodynamic
phase – i.e.−δSTD. Such necessary and beautiful symme-
try considerations is what lead the great English theoretical
physicist – Paul Adrian Maurice Dirac (1902-1984) to fore-
tell the existence of antimatter [9–11]. We here consider the
said particle systems whose thermodynamic phase is −δSTD.

Before even going into investigating the said particle sys-
tems, natural questions will begin to flood the mind, questions
such as: Will such particles violate the FLT? The answer is:
No, they will not. To see this, one simply substitutes −δSTD
into the equations of Paper II, where-from they certainly will
come to the inescapable conclusion that these particles will
indeed obey the FLT. Further – a question such as: Will these
particle systems violate the SLT? may also visit the curious
and searching mind. An answer to this will be provided in
Paper IV.

Furthermore – in the extreme and zenith of one’s state of
wonderment, they might excogitate: Will such particles be
visible and ponderable? By visible it is understood to mean:
will these particle systems emit or reflect electromagnetic ra-
diation that we are able to sense? And by ponderable, we
mean will such particle systems be able to clump-up and form
touchable materials like rocks, etc? This is the question we
are going to answer. To preempt our findings, such particle
systems will be invisible and non-ponderable.

To commence our expedition, we shall start by writing
down the functions δ%−x , δ%−y , δ%−z , δ%−0 and these are such that:

δ%−x = exp
(
−
δSx

~

)
= exp

(
−
δpxδx
~

)
. . . (a)

δ%−y = exp
(
−
δSy
~

)
= exp

(
−
δpyδy
~

)
. . . (b)

δ%−z = exp
(
−
δSz

~

)
= exp

(
−
δpzδz
~

)
. . . (c)

δ%−0 = exp
(
δS0

~

)
= exp

(
δEδt
~

)
. . . (d)

(32)

Now, just as in the case of ponderable matter in the previous
section, in order for us to derive the implied uncertainty rela-
tions from (32), we are going to consider (in §3.1, §3.2 and
§3.3, respectively) the normalization of δ%−x and δ%−0 .

3.1 Lower bound position-momentum uncertainty

As before, normalization of δ%−x requires that:

1
~

∫ δpmax

δpmin

∫ δrmax

δrmin

exp
(
−
δpxδx
~

)
dxdpx = 1 . (33)
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Just as we have already done with (11) and (20); integrating
and evaluating (33), we obtain:

Term I︷           ︸︸           ︷
~e−δpmaxδrmax/~

δpmaxδrmax
−

Term II︷          ︸︸          ︷
~e−δpminδrmax/~

δpminδrmax

−
~e−δpmaxδrmin/~

δpmaxδrmin︸          ︷︷          ︸
Term III

+
~e−δpminδrmin/~

δpminδrmin︸          ︷︷          ︸
Term IV

= 1. (34)

Likewise, with (34) in place, one may try to bound the particle
in space and momentum, in much the same way as it has been
done in §2.2 by instituting the asymptotic conditions δrmin 7→

0 and δpmin 7→ 0. So doing, they surely would obtain the
unpleasant result:

~e−δpmaxδrmax/~/δpmaxδrmax = 0 .

This result is surely unpleasant because it means that we must
have δpmaxδrmax = ∞. Overall, this means that this particle
system has no upper bounds in quantum of action δpmaxδrmax;
this surely is uncomfortable as the quantum of action must be
bound either above or below. Given this uncomfortable result
δpmaxδrmax = ∞, a much better way to approach this particle
system is to start off by setting no upper bounds in space and
momentum and in the end obtain finite lower bounds in the
quantum of action δE δt, that is to say, start off by setting:

δrmax 7→ ∞ ,

δpmax 7→ ∞ .
(35)

Instituting the above (35) limits into (34), for the Terms: (I),
(II), (III) and (IV), one obtains:

Term I 7→ 0 ,

Term II 7→ 0 ,

Term III 7→ 0 ,

Term IV =
~e
−
δpminδrmin

~

δpminδrmin
,

(36)

hence:

~e
−
δpminδrmin

~

δpminδrmin
= 1 . (37)

In much the same fashion as in the preceding sections, re-
arranging this (37), we will have:

~

δpminδrmin
= e

δpminδrmin

~ > 1 , (38)

hence:
δpminδrmin < ~ . (39)

This means the fuzziness in the momentum and spatial lo-
cation of the particle about its canonical centre is bounded
above and not below.

3.2 Lower bound energy-time uncertainty

Further, for the energy-time uncertainty relation, normaliza-
tion of δ%−0 requires that:

1
~

∫ δEmax

δEmin

∫ δtmax

δtmin

exp
(
δEδt
~

)
dtdE = 1 . (40)

As before, integrating and evaluating this (40), we obtain:

Term I︷           ︸︸           ︷
~e−δEmaxδtmax/~

δEmaxδtmax
−

Term II︷          ︸︸          ︷
~e−δEminδtmax/~

δEminδtmax

−
~e−δEmaxδtmin/~

δEmaxδtmin︸          ︷︷          ︸
Term III

+
~e−δEminδtmin/~

δEminδtmin︸          ︷︷          ︸
Term IV

= 1 . (41)

In the limit as:
δtmax 7→ ∞ ,

δEmax 7→ ∞ ,
(42)

for the Terms I, II, III and IV in (41), we will have:

Term I 7→ 0 ,

Term II 7→ 0 ,

Term III 7→ 0 ,

Term IV =
~e
−
δEminδtmin

~

δEminδtmin
,

(43)

hence, it follows from this that (41) will reduce to:

~e−δEminδtmin/~/δEminδtmin = 1 ,

where, after some re-arrangement, we can rewrite:

~

δEminδtmin
= eδEminδtmin/~ . (44)

As before, from a meticulous inspection of (44), it is abun-
dantly clear that δEminδtmin > 0, hence:

~

δEminδtmin
= eδEminδtmin/~ < 1 , (45)

thus:
δEminδtmin < ~ . (46)

Just as with (39), (46) means that the fuzziness in the energy
and temporal fluctuations of the particle are bounded above
and not below.
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3.3 Upper bound energy-time uncertainty

Lastly, we now consider the case of a non-ponderable ma-
terial particle system that has no upper bound in its tempo-
ral fluctuation – i.e. a stable non-ponderable material particle
system that can live forever. Such a particle will have δtmax
and δEmax such that:

δtmax 7→ ∞ ,

δEmax 7→ ∞ .
(47)

Under the given conditions (i.e. (47)), for the Terms I, II, III
and IV in (41), we will have:

Term I 7→ 0 ,

Term II 7→ 0 ,

Term III 7→ 0 ,

Term IV =
~e
−
δEminδtmin

~

δEminδtmin
,

(48)

hence, it follows from this that (21), will reduce to:

~e−δEminδtmin/~/δEminδtmin = 1 ,

where, after some re-arrangement, we can rewrite:

~

δEminδtmin
= eδEminδtmin/~. (49)

Likewise, for it to hold true always, (49) requires that δEmin
δtmin < 0, hence:

~

δEminδtmin
= eδEminδtmin/~ < 1 , (50)

thus:
δEminδtmin < ~ . (51)

Again, we here have an upper bounded uncertainty relation.

4 General discussion

Since the inception of Heisenberg’s uncertainty principle in
1927, severalattempts see e.g. [8,12–15, and references there-
in] have been made to derive this mysterious mathematical re-
lationship from much more fundamental soils of physics than
those on which Heisenberg [1] derived this relation. In his
original paper, Heisenberg began by deriving the uncertainty
relation for position and momentum on the basis of a sup-
posed experiment in which an electron is observed using a
γ-ray microscope and second, by consideration of the theory
of the Compton effect, he proceeded to argue that the pre-
cision of the determination of position and momentum are
connected by the uncertainty relation.

In 1929, using the usual definition of expectation values
(inner product) of Hermitian Hilbert-space operators (observ-
ables) and the mathematical property of the Cauchy–Bunya-
kovsky–Schwarz inequality, Robertson [12] proceeded in a
rigorous manner, to demonstrate a more general and funda-
mental origin of the quantum mechanical uncertainty princi-
ple. The present attempt is just but one such derivation – al-
beit – on the soils of a new kind of phase space – the Stochas-
tic Phase Space.

However, unlike all previous attempts on the derivation
of the uncertainty principle, what makes the present attempt
different is that we have not only derived the lower limit un-
certainty principle, but an upper bound uncertainty principle
that seems to describe invisible non-ponderable particles that
travel at superlumical speeds. This unique prediction seem
to suggest not only the existence of darkmatter, but darken-
ergy as well. Dark matter is already required by physicists
in order to explain the flat rotation curves of spiral galaxies,
while dark energy is required to explain the supposed accel-
erated expansion of the Universe. This subject of invisible
non-ponderable particles, dark matter and dark energy would
require a separate and lengthy paper in order to cover it in a
just manner.

Another important point to note about the present deriva-
tion is that the enigmatic jittery quantum randomness leading
to the uncertainty principle is here an intrinsic and inherent
property of all quantum mechanical systems, it (i.e. the jittery
quantum randomness) is not induced by the act of measure-
ment as is the case of Heisenberg’s uncertainty principle and
its latter versions or attempts at a derivation of this relation.
Yes, human measure will introduce statistical errors that are
statistically predictable. The stochastic quantum randomness
is not predictable at all – not even by the most rigours known
(or unknown, or yet to be unknown) statistical methods.

In closing, allow us to say that we have always held cen-
tral to our philosophy of Physics the strong and seemingly
unshakeable belief system similar to that of Albert Einstein
– namely, that the fundamental laws of Nature are exact, and
as such, one day it will be shown that this is the case. That
is to say, in the character of Einstein’s philosophy, we have
held fast to his influential and deep philosophy that indeed
God does not play dice with the World, and that The moon
exists whether or not one is looking at it or not. Contrary
to this, we must admit and say that as we continue to peer
deeper into the fabric and labyrinth of physical and natural
reality as it lies bare for us to marvel at, this dream or be-
lief system now stands shattered into minuscule pieces – for
it now seems clearer to us that the enigmatic jittery quantum
randomness must be real.

Received on February 23, 2020
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