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Detailed study of the energy and momentum carried by the electromagnetic field can
be a source of clues to possible new physics underlying the Maxwell equations. But
such study has been impeded by expressions for the parameters of the electromagnetic
energy flow that are inconsistent with the transformation rules of special relativity. This
paper begins by correcting a basic parameter, the local velocity of electromagnetic en-
ergy flow. This correction is derived by the direct application of the transformation
rules of special relativity. After this correction, the electromagnetic energy-momentum
tensor can then be expressed in a reference system comoving with the energy flow. This
tensor can be made diagonal in the comoving system, and brought into a canonical form
depending only on the energy density and one other parameter. The corrected energy
flow and its energy-momentum tensor are illustrated by a simple example using static
electric and magnetic fields. The proposal that electromagnetic momentum results from
the motion of a relativistic mass contained in the fields is examined in the context of the
corrected flow velocity. It is found that electromagnetic field momentum, though real,
cannot be explained as due only to the motion of relativistic mass. The paper concludes
that introducing the requirement of consistency with special relativity opens the study
of electromagnetic energy and momentum to new possibilities.

1 Introduction

The Feynman example of a rotating disk with a magnet at its
center and charged spheres on its perimeter provides a con-
vincing argument that, to preserve the principle of angular
momentum conservation, the field momentum of even a static
electromagnetic field must be considered physically real.∗

Since the energy density and momentum density of the
electromagnetic field are real, it is important to investigate
the details of the energy flow that they represent. Since spe-
cial relativity is the symmetry theory of electrodynamics, it is
essential that such investigations respect the transformation
laws of special relativity.

In Section 2 a previously proposed candidate expression
for a basic parameter, the velocity of energy flow at a given
point in the electromagnetic field, is shown to be inconsistent
with the transformation rules of special relativity and there-
fore incorrect. A corrected velocity expression is derived by
explicit use of these rules.

Section 3 derives the electromagnetic energy-momentum
tensor in a reference system comoving with this corrected ve-
locity, and shows that it can be made diagonal and reduced
to a canonical form that depends on two parameters derived
from the values of the electric and magnetic fields.

Section 4 illustrates the results of the previous sections
with an example using static electric and magnetic fields.

Section 5 considers the question of a relativistic mass den-
sity derived from the energy density of the electromagnetic

∗Feynman et al [4], Section 17-4, Section 27-6, and Figure 17-5. Quan-
titative matches of field to mechanical angular momentum are found, for
example, in Romer [12] and Boos [2].

field. It is found that this mass density does not correctly
relate the momentum density to the flow velocity. Electro-
magnetic field momentum, although real, is not due only to
the motion of relativistic mass.

Section 6 concludes that introducing the requirement of
special relativistic covariance into the study of the flow of
energy in electromagnetic fields opens up new possibilities
for investigation of such flows.

Electromagnetic formulas in this paper are taken from
Griffiths [6] and Jackson [7] with translation to Heaviside-
Lorentz units. I denote four-vectors as A = A0e0 + A where
e0 is the time unit vector and the three-vector part is un-
derstood to be A = A1e1 + A2e2 + A3e3. In the Einstein
summation convention, Greek indices range from 0 to 3, Ro-
man indices from 1 to 3. The Minkowski metric tensor is
ηαβ = ηαβ = diag(−1,+1,+1,+1). Three-vectors are written
with bold type A, and their magnitudes as A. Thus |A| = A.

2 Velocity of energy flow

We begin with a basic parameter of the electromagnetic field.
The flow velocity of the energy contained in the field at a
given event can be defined as the velocity of a comoving ob-
server who measures a zero energy flux there. Expressed in
the precise language of Lorentz boosts:†

The laboratory system coordinate velocity of the
flow of electromagnetic field energy at a given
event is the velocity V of a Lorentz boost that
transforms the laboratory reference system into
a reference system in which the Poynting energy

†The Lorentz boost formalism used here is defined in Appendix A.
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flux vector is null at that event. An observer at
that event and at rest in this system, which we
call the comoving system and denote by primes,
therefore measures a zero energy flux. The zero
flux measurement indicates that this observer is
comoving with the flow of energy. Such an ob-
server has coordinate velocity V relative to the
laboratory∗, and therefore V is the laboratorysys-
tem coordinate velocity of the energy flow at the
given event.

A previously proposed† candidate for the laboratory sys-
tem coordinate velocity of the electromagnetic energy flow is
the momentum density divided by the relativistic mass (de-
fined as energy density divided by the square of the speed of
light). Denoting this velocity as ue gives

ue

c
=

G
(E/c)

=
2 (E × B)(
E2 + B2) (1)

where G = S/c2 = (E × B) /c is the linear momentum density
of an electromagnetic field with electric and magnetic field
vectors E and B and Poynting energy flux vector S. The E =(
E2 + B2

)
/2 is the electromagnetic energy density, and c is

the vacuum velocity of light.
If E/c and G were the time and space parts of a four-

vector, then a Lorentz boost from the laboratory system using
boost velocity V = ue would produce a comoving reference
system (denoted by primes) in which the space part of that
four-vector, that is G′ and hence the Poynting vector S′ =

c2G′, would vanish, indicating a system comoving with the
energy flow.‡ Thus ue would be the comoving velocity of the
energy flow.

However, E/c and G are not components of a four-vector.
There is no four-vector momentum density of the form G =

(E/c) e0 + G.
Rather, E and c G are the T 00 and T 0i components of the

second-rank electromagnetic energy-momentum tensor

Tαβ =


E c G1 c G2 c G3

c G1 M11 M12 M13
c G2 M21 M22 M23
c G3 M31 M32 M33

 (2)

where Mi j = −
(
EiE j + BiB j

)
+

1
2
δi j

(
E2 + B2

)
.

∗See Appendix A for a demonstration that any point at rest in the primed
system moves with laboratory system coordinate velocity V.

†In a discussion of the Poynting theorem in material media, but with
no special attention to Lorentz covariance, Born and Wolf [3] Section 14.2,
Eq. (8) identify ue as the velocity of energy transport or ray velocity. Section
B.2 of Smith [15] echoes Born and Wolf but provides no new derivation. (The
first edition of Born and Wolf’s text appeared in 1959.) Geppert [5] writes a
non-covariant equation with the same identification. More recently, Sebens
[13,14] relies on these and other sources to identify ue as the electromagnetic
mass flow velocity. (Following Sebens, expand (E − B)2 ≥ 0 and use the
definitions of E and G to prove that |ue | ≤ c.)

‡See Appendix A for a demonstration that G′ would be zero.

A related point is made by Rohrlich [11], using the so-
called von Laue theorem to argue that integrals of E/c and
G over hyperplanes may in some cases transform as four-
vectors. But we are treating these quantities locally, at a par-
ticular event. Von Laue’s theorem does not imply that the
local field functions E/c and G themselves transform as com-
ponents of a four-vector. They do not. Rather than attempting
to derive a four-vector from E/c and G, we show how to use
them in a relativistically correct manner as they are. See also
Section 6.3 of [10].

Since E and c G are components of Tαβ, contributions
to the boost transformation from the other components of
Tαβ would produce a comoving system in which G′ and the
Poynting vector would not vanish. The electromagnetic en-
ergy flow velocity is not ue.

The failure of ue to be the correct flow velocity can be
contrasted with the well-understood theory of theflow of elec-
tric charge. The charge density ρ and the current density vec-
tor J are shown by the divergence of the Maxwell field tensor
to form a four-vector of the form J = cρ e0 + J. In general,
J can be timelike, spacelike, or null. If spacelike, there is no
velocity vq less than the speed of light with J = ρ vq. But if
we consider, for example, a system in which all the moving
charges have the same sign, it can be shown that J is time-
like and hence the definition uq = J/ρ does produce a vector
of magnitude less than the speed of light. Then a Lorentz
boost with boost velocity V = uq indeed leads to a comoving
primed reference system in which the current flux density J′
vanishes§, and uq is therefore the correct flow velocity of the
moving charge.

But the fact that J transforms as a four-vector is crucial to
this argument. If it were not a four-vector transforming as in
Appendix A, the system reached by boost V = uq would have
a residual current flow J′ , 0, and uq would therefore not be
the correct flow velocity. The equation J = ρuq would still
follow from the definition of uq, but that formula would not
imply that uq is the correct velocity of the flowing charge.

The failure of ue as a candidate for the flow velocity of
electromagnetic energy is precisely because, unlike J, the ex-
pression written here in four-vector form G = (E/c) e0 + G
actually does not transform as a four-vector. The equation
G =

(
E/c2

)
ue (or equivalently S = Eue) still follows from

the definition of ue, but that formula does not imply that ue is
the correct velocity of the flowing energy.

However, the correct boost velocity V can be found by
starting from ue and applying a scalar correction factor. The
corrected velocity V will have the same direction as ue but
not the same magnitude. To find this corrected velocity V it
is best to turn to a direct method, using the transformation
rules for the fields E and B.

§Substitute cρ = J0 and J for G0 and G in Appendix A to see that J′
vanishes.
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The rules for transformation of electric and magnetic
fields by a boost with velocity V can be written in a special
relativistically correct but not manifestly covariant form as∗

E′ $ γ
(
E +

V
c
× B

)
+ (1 − γ)

V (V · E)
V2

B′ $ γ
(
B −

V
c
× E

)
+ (1 − γ)

V (V · B)
V2

(3)

where the Lorentz factor is γ =
(
1 − V2/c2

)−1/2
. The $ sym-

bol means that the components of the three-vector on the left
side of this symbol expressed in the primed coordinate system
are numerically equal to the components of the three-vector
on the right side of this symbol expressed in the original un-
primed system. If a′ $ c and b′ $ d, it is easily proved that:
(a) a′ × b′ $ c × d and (b) (a′ · b′) = (c · d).

Define the boost velocity V to be an unknown but rota-
tionally scalar quantity λ times ue

V = λue . (4)

Since ue and V are perpendicular to both the electric and
magnetic fields, it follows that (V · E) = (V · B) = 0. Thus,
(3) reduces to †

E′ $ γ
(
E +

V
c
× B

)
B′ $ γ

(
B −

V
c
× E

)
.

(5)

Insert (5) into the definition S′ = cE′×B′. Using (4) and then
(1) leads to‡

S′ = cE′ × B′ $ γ2c (E × B)
(
(u2

e/c
2) λ2 − 2λ + 1

)
. (6)

Notice that (6) verifies the statement above that ue is not
the comoving velocity of the energy flow. Setting λ = 1 in (4)
makes V = ue. But setting λ = 1 in (6) makes

S′ $ γ2c (E × B)
(
u2

e/c
2 − 1

)
when λ = 1 (7)

which is not zero, except in the unphysical limit ue = V = c.
For a second and more important use of (6), choose λ to

solve the quadratic equation
(
(u2

e/c
2)λ2 − 2λ + 1

)
= 0. Then

(6) makes S′ = 0. The solution is

λ =
1

(ue/c)2

{
1 −

√
1 − (ue/c)2

}
. (8)

From (4), the correct velocity of the energy flow is therefore

V = λue =
1

(ue/c)2

{
1 −

√
1 − (ue/c)2

}
ue (9)

∗See Section 11.10 of Jackson [7], eqn (11.149).
†Note that V′$V as defined in Appendix A, together with (5) and

property (b) of the symbol $ noted above, imply that (V′ · E′) = V ·
γ [E + (V/c) × B] = γ(V · E) = 0. Similarly, (V′ · B′) = 0.

‡See a detailed derivation of (6) in Appendix B.

where ue is defined in (1).
This V is the relativistically correct boost velocity from

the laboratory frame to the comoving reference frame in
which S′ = 0, and is therefore the laboratory system coor-
dinate velocity of the electromagnetic energy flow§.

Since both V and ue are parallel to the energy flux vector
S, the energy flow velocity can also be written as V = V (S/S )
where the magnitude V is given by¶

(V/c) =
1

(ue/c)

{
1 −

√
1 − (ue/c)2

}
. (10)

This equation can be inverted to give

(ue/c) =
2 (V/c)

1 + (V/c)2 (11)

which can be used to write the correction factor λ in (8) as a
function of the corrected velocity

λ =
1 + (V/c)2

2
. (12)

3 Comoving energy-momentum tensor

The derivation of a reference system comoving with the flow
of energy allows the electromagnetic energy-momentum ten-
sor to be examined in more detail. The energy-momentum
tensor in (2) can be transformed into the comoving (primed)
coordinate system that was produced by the Lorentz boost V.
In this system, the electromagnetic energy-momentum tensor
is represented by the tensor components T ′αβ in which the
cG′i elements are zero.

T ′αβ =


E′ 0 0 0
0 M′11 M′12 M′13
0 M′21 M′22 M′23
0 M′31 M′32 M′33

 (13)

where

E′ =
1
2

(
E′2 + B′2

)
= E

1 − (V/c)2

1 + (V/c)2

and M′i j = −
(
E′i E

′
j + B′i B

′
j

)
+ δi jE

′ .

(14)

We can now make another Lorentz transformation, an or-
thogonal spatial rotation at fixed time, to diagonalize the real,
symmetric sub-matrix Mi j in (13).

The required spatial rotation can be defined as the prod-
uct of two proper rotations. First rotate the coordinate sys-
tem to bring the e′3 axis into the V′ $ V direction. Denote

§Appendix C gives details of the comoving system for possible values
of (E · B) at a given event.

¶Footnote † on page 4 proves that 0 ≤ ue ≤ c. As ue/c increases from 0
to 1, (10) shows that V/c increases monotonically from 0 to 1, with V ≤ ue
at every point. It follows that 0 ≤ V ≤ c also.
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this rotated system by tildes. Rotations do not change three-
vectors, which are invariant objects under rotations. However,
rotations do change the components of three-vectors. Thus
Ṽ = V′, Ẽ = E′, and B̃ = B′, but in the tilde system Ṽ now
has components Ṽ1 = Ṽ2 = 0 and Ṽ3 = V . Then using Foot-
note † on page 5, we have 0 = (E′ · V′) = (Ẽ · Ṽ) = VẼ3.
Since the magnitude V , 0, it follows that Ẽ3 = 0. A similar
argument proves that B̃3 = 0. Thus the {33} component of the
energy-momentum tensor when expressed in the tilde system
is T̃ 33 = −

(
Ẽ2

3 + B̃2
3

)
+ Ẽ = Ẽ. The tensor from (13), when

expressed in the tilde system, becomes

T̃αβ =


Ẽ 0 0 0
0 M̃11 M̃12 0
0 M̃21 M̃22 0
0 0 0 Ẽ

 (15)

where Ẽ = E′.
Since the invariant trace of the electrodynamic energy-

momentum tensor vanishes∗, it follows from (15) that

0 = ηαβT̃αβ = −Ẽ + M̃11 + M̃22 + Ẽ (16)

and hence M̃11 = −M̃22. Also, the symmetry of the energy-
momentum tensor makes M̃21 = M̃12. Thus

T̃αβ =


Ẽ 0 0 0
0 −ψ̃ ξ̃ 0
0 ξ̃ ψ̃ 0
0 0 0 Ẽ

 (17)

where ψ̃ = M̃22 and ξ̃ = M̃12.
A second proper rotation, this time about the ẽ3 axis,

produces the final coordinate system, denoted with double
primes. After this rotation, E′′3 = Ẽ3 = 0, B′′3 = B̃3 = 0,
and V′′ = Ṽ has components V ′′1 = V ′′2 = 0 and V ′′3 = V . The
only effect of this second rotation is to diagonalize the matrix(
−ψ̃ ξ̃
ξ̃ ψ̃

)
. The energy momentum tensor then has its final,

diagonal form in the double-prime system

T ′′αβ =


E′′ 0 0 0
0 −a′′ 0 0
0 0 a′′ 0
0 0 0 E′′

 (18)

where E′′ = Ẽ = E′. The parameter a′′ has absolute value

|a′′| =
{
ψ̃2 + ξ̃2

}1/2
where ±

{
ψ̃2 + ξ̃2

}1/2
are the two eigenval-

ues of the matrix
(
−ψ̃ ξ̃
ξ̃ ψ̃

)
that were calculated during the

diagonalization process. The sign of a′′ depends on the di-
rections and relative magnitudes of the electric and magnetic
fields.

∗See Section 7.8 of Rindler [9].

The rotation that takes the system from the primed to the
double-primed system is then the product of the first and sec-
ond rotations. The various representations of the boost veloc-
ity are related by V′′ = Ve′′3 = Ṽ = Vẽ3 = V′$V where all of
these vectors have the same original magnitude V .

The energy-momentum tensor in the double-prime sys-
tem is diagonal and in a canonical form that depends only on
the energy density E′′ in the comoving system and one other
parameter a′′.

Section 4 shows that there are realistic electromagnetic
cases in which a′′ , 0 and hence the diagonal elements M′′ii
for i = 1, 2, 3 are not all equal, unlike the analogous ele-
ments in the energy-momentum tensor of a perfect fluid†, all
of which are equal by definition, a fact of relevance for future
studies that might attempt a fluid-dynamic model of electro-
dynamic energy flow.

4 Example: crossed static fields

Consider an example with static, perpendicular electric and
magnetic fields.‡ Choose the Cartesian axes of the laboratory
system so that E = E x̂ and B = B ŷ. Then (1) becomes

ue

c
=

(
2E B

E2 + B2

)
ẑ . (19)

The energy flow velocity is thus V = V ẑ where V = λ ue with
λ from (8). Inserting this V into (5) with the above values of
the electric and magnetic fields gives

E′′ $ γ
(
E −

VB
c

)
x̂

B′′ $ γ
(
B −

VE
c

)
ŷ .

(20)

Thus the definitions in (2) when applied in the double-prime
system give M′′i j = 0 for i , j and

M′′11 = −E′′1
2 + E′′ = −

1
2

(
E′′1

2
− B′′2

2
)

M′′22 = −B′′2
2 + E′′ =

1
2

(
E′′1

2
− B′′2

2
)

M′′33 = E′′ =
1
2

(
E′′1

2 + B′′2
2
)
.

(21)

where E′′1 and B′′2 are the components of E′′ and B′′, respec-
tively, in (20).

The step of rotating from primed to double-primed refer-
ence systems that was necessary to move from (13) to (18)
above was not necessary here due to a propitious choice of
original laboratory reference system. The Lorentz boost with
velocity V = V ẑ produces an already diagonal energy mo-
mentum tensor with M′′i j = 0 for i , j.

†See Part I, Chapter 2, Section 10 of Weinberg [16].
‡The center of a parallel plate capacitor at the center of a long solenoid,

for example.
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Consider the case E , B. From (19), this inequality im-
plies that ue < c and hence, from (10), that V < c, a physically
possible value. Also E , B implies, either from the invari-
ance of

(
E2 − B2

)
noted in Appendix C or directly from (20),

that 2M′′22 =
(
E′′1

2
− B′′2

2
)

=
(
E2 − B2

)
, 0. Thus E , B

implies that M′′11 = −M′′22 , 0 and hence that M′′11 , M′′22.
Comparing (21) to (14) and (18) shows that for the cross-

ed-field example with E,B, the energy-momentum tensor in
the double-prime system is (18) with

a′′ =
(
E2 − B2

)
/2 , 0

and E′′ = E
(
1 − (V/c)2

)
/
(
1 + (V/c)2

) (22)

where E =
(
E2 + B2

)
/2.

As asserted at the end of Section 3, the inequality E , B
in the crossed-field example shows a physically reasonable
case for which a′′ , 0 and the M′′ii for i = 1, 2, 3 are not all
equal.∗

There are questions about the interpretation of this exam-
ple globally†. In our use of this example, however, we need
not consider the question of so-called hidden momentum re-
quired to balance the total field momentum‡. Here, the only
relevant use of this example is to illustrate the correct local
definition of the energy flow velocity and comoving energy-
momentum tensor in a vacuum region where the fields are
well known — at the center of the parallel plate capacitor far
from the edges.

5 Relativistic mass density

The energy density E of either static or time-varying vacuum
electromagnetic fields can be used to define a relativistic mass
density§

Mrel = E/c2 . (23)

The adjective relativistic indicates that this mass density is
analogous to a single-particle relativistic mass mrel = γm =

e/c2 where e is the particle relativistic energy, m is the invari-
ant or rest mass of the particle, and γ =

(
1 − v2/c2

)−1/2
is the

Lorentz factor of its velocity v.
It follows from (23) that the flow velocity of the energy

E, the velocity V derived in Section 2 and summarized in (9),
must also be the flow velocity of the relativistic massMrel.

In the single-particle case, the same mrel can be used to
relate the momentum of the particle to its velocity, p = γmv =

∗Our use of this example is based on E , B. The case E = B , 0
would have to be approached as a limit, as discussed in Appendix C (c).
With E , 0 and B = E(1 + δ), retaining leading order in the small quantity
δ gives (ue/c) ≈ (1 − δ2/2), λ ≈ (1 − |δ|), (V/c) ≈ (1 − |δ|), (E′′/E2) ≈
|δ|, (T ′′αβ/E2) ≈ diag(|δ| , δ,−δ, |δ|), and

(
a′′/E2

)
≈ − δ.

†See McDonald [8] for calculation of the total field momentum of a
similar example.

‡See, for example, Babson et al [1].
§For example, see Section 3 of Sebens [13].

mrelv. However in the case of electromagnetic fields, the same
mass densityMrel cannot be used for both purposes.

Due to the correction of the flow velocity in Section 2,
which was necessitated by adherence to the transformation
rules of special relativity, the relation between momentum
density G and corrected flow velocity V is

G =

(
Mrel V
λ

)
,MrelV (24)

where λ is the correction factor in (12).
The inequality in (24) shows that the electromagnetic mo-

mentum density at an event is not equal to the electromag-
netic mass density at that event times the relativistically cor-
rect mass flow velocity there.

The explicit expression for the correction factor λ from
(12) quantifies the extent of the inequality. The effective mass
for momentum calculation is the larger value Mrel/λ rather
thanMrel

¶.
The failure ofMrelV to equal the momentum density G in

(24) suggests that vacuum electromagnetic field momentum
cannot be explained only by the motion of relativistic mass.
There must be another source of real electromagnetic field
momentum.

6 Conclusion

The electromagnetic field contains energy and momentum.
Calculation of the energy flow velocity and energy-momen-
tum tensor in a relativistically correct manner opens the sub-
ject to new insights into that energy and momentum. For
example, the energy-momentum tensor measured by an ob-
server comoving with the flow velocity is obtained in diag-
onal, canonical form suggestive of possible fluid dynamical
models. And the momentum density of the electromagnetic
field is shown to require some source other than the flow of
relativistic mass.

Appendix A: Lorentz boosts

Consider a Lorentz transformation from an unprimed coor-
dinate system (which we also refer to as the laboratory sys-
tem) with coordinates x = (x0, x1, x2, x3) to a primed coor-
dinate system with coordinates x′ = (x′0, x′1, x′2, x′3) where
x0 = ct and x′0 = ct′. The most general proper, homogeneous
Lorentz transformation from the unprimed to the primed sys-
tems can be written as a Lorentz boost times a rotation.‖

Definition of Lorentz boost

A Lorentz boost transformation is parameterized by a boost
velocity vector V with components (V1,V2,V3) and magni-
tude V =

(
V2

1 + V2
2 + V2

3

)1/2
. Using the Einstein summation

¶Note that (24) can be written as G = MeffV where, using (12), (14),
and (23),Meff =Mrel/λ = 2γ2(E′/c2) where γ = (1 − V2/c2)−1/2.

‖See Part I, Chapter 2, Section 1 of Weinberg [16].
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convention, it is written as x′α = Λα
β xβ where Λ0

0 = γ, Λ0
i =

Λi
0 = −γVi/c, and Λi

j = δi j + (γ − 1)ViV j/V2. The δi j is the

Kronecker delta function. Also γ =
(
1 − V2/c2

)−1/2
.

The inverse boost Λα
β is the same except for the substitu-

tion Vi → −Vi. Thus the inverse boost vector is (−V′) where
V′ $ V.

Meaning of the boost velocity V

The velocity V that parameterizes the Lorentz boost is also
the coordinate velocity, as measured from the unprimed labo-
ratory system, of any point that is at rest in the primed system.
In this sense, the entire primed system is moving with veloc-
ity V as observed from the laboratory system.

To see this, apply the inverse Lorentz boost to the differ-
entials of a point at rest in the primed system, dx′i = 0 for
i = 1, 2, 3, but dx′0 > 0. The result is dx0 = γdx′0 and
dxi = γ (Vi/c) dx′0. Thus dxi/dt = Vi, as was asserted.

Consequence of existence of a four-vector G

The discussion surrounding (2) shows that G = (E/c) e0 + G
is not a four-vector, despite being written in four-vector form
here. Its components instead transform as components of the
energy-momentum tensor. But suppose for a moment that it is
a four-vector. If so, then a Lorentz boost with a boost velocity
(ue/c) = G/ (E/c) would make the transformed space part of
G equal to zero.

As applied to a four-vector, the Lorentz boost transforma-
tion rule is G′α = Λα

β Gβ. Hence

G′i = Λi
0G0 + Λi

jG
j

= −γ
Vi

c
G0 + Gi + (γ − 1)

Vi

(
V jG j

)
V2 .

(25)

Replacing Vi/c by (ue)i /c = Gi/G0 in (25) makes G′i = 0, as
asserted.

Appendix B: Detailed derivation of Eq. (6) for S′

We have (1), (4) and (5) and (V · E) = (V · B) = 0. Inserting
(5) into S′ = c (E′ × B′) gives

S′ = cE′ × B′ $ cγ2 {(E × B) + f + g} (26)

where, omitting zero terms,

f = −E ×
(

V
c
× E

)
+

(
V
c
× B

)
× B

= −
(
E2 + B2

) V
c

= −λ
(
E2 + B2

) ue

c

= −λ
(
E2 + B2

) 2 (E × B)(
E2 + B2) = −2λ (E × B)

(27)

and, again omitting zero terms,

g = −

(
V
c
× B

)
×

(
V
c
× E

)
= −

V
c

{(
V
c
× B

)
· E

}
=

V
c

{
V
c
· (E × B)

}
= λ2

{
2 (E × B)(
E2 + B2)} {

ue

c
·

(
E2 + B2

2

)
ue

c

}
= λ2

(ue

c
·

ue

c

)
(E × B) = λ2

(ue

c

)2
(E × B) .

(28)

Collect terms and factor out E × B to get

S′ = cE′ × B′ $ γ2c (E × B)
{(ue

c

)2
λ2 − 2λ + 1

}
(29)

which is (6).

Appendix C: Detail of the comoving system

The comoving system is defined by S′ = c (E′×B′) = 0. Thus
|E′ × B′| = E′B′ sin θ′ = 0 where θ′ is the angle between E′
and B′ in the comoving system.

From Eqs (7.62) and (7.63) of Rindler [9], we have
(
E′2−

B′2
)

=
(
E2 − B2

)
and (E′ · B′) = (E · B). It follows that:

(a) An event with E · B , 0 has E′B′ , 0 and therefore
E′ and B′ must be either parallel or anti-parallel, θ′ = 0 or
θ′ = π, at this event;

(b) An event with 0 = (E · B) = (E′ · B′) = E′B′ cos θ′

cannot have E′B′ , 0 in the comoving system because that
would require both cos θ′ = 0 and sin θ′ = 0. Thus E′B′ = 0
and one of E′ and B′ must be zero. If E > B then E′ > B′ and
hence B′ = 0. If E < B then E′ < B′ and hence E′ = 0;

(c) If both 0 = E · B and E = B , 0 at an event, then both
E′B′ = 0 and E′ = B′, and therefore E′ = B′ = 0. But (1)
and (10) show that such an event also has ue/c = 1 and hence
V/c = 1. The case E = B , 0 and 0 = E ·B therefore must be
approached as a limit.

Received on Sept. 23, 2020
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