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Emissivity is a fundamental property of matter that measures the ratio of the thermal
radiation emanating from a thermodynamic surface to the radiation from an ideal black-
body surface at the same temperature and it takes values from 0 to 1. This property is
not a theoretically derived thermodynamic property of matter, but a posteriori justified
property that is derived from experiments after its need was found necessary in order to
balance up the theoretically expected radiation of a black-body at the same temperature
to that actually measured in the laboratory for a material body at the same temperature.
From a fundamental theoretical stand-point, we argue herein that emissivity may arise
due perhaps to the existence of non-zero finite lower and upper cut-off frequencies in the
thermal radiation of matter, thus leading to material bodies emitting not all the radiation
expected from them when compared to equivalent black-body surfaces. We demonstrate
that a non-zero lower limiting frequency is implied by the refractive index of materials,
while an upper limit frequency is adopted from Debye’s (1912) ingenious idea of an
upper limiting cut-off frequency which arises from the fact that the number of modes of
vibrations of a finite number of oscillators must be finite.

1 Introduction

Emissivity is a fundamental, intrinsic and inherent property
of all known materials. Commonly, one talks of the emis-
sivity of solid materials and as such, emissivity is a property
typically associated with solids. In reality, all forms (solid,
liquid, gas) of matter exhibit this property. In general, the
emissivity of a given material is defined as the ratio of the
thermal radiation from a surface to the radiation of an ideal
black surface at the same temperature. As presently obtain-
ing, this important property of matter – emissivity – has no
fundamental theoretical justification – it is an experimentally
derived property of matter. This article seeks to lay down a
theoretical framework and basis that not only justifies the ex-
istence of this property of matter, but to investigate this from
a purely theoretical standpoint.

To that end, in the present article, we conduct an initial
forensic analysis of the modern derivation of the Planck Ra-
diation Law (PRL) [1–3]. In this analysis, we identify two
loopholes in the derivation of the PRL, and these are:

1. Dispersion Relation Problem: The dispersion relation as-
sumed in the PRL is that of a photon in a vacuo, i.e.:

E = pc0, (1)

where: (E, p) are the (kinetic) energy and momentum of the
photon in question, and: c0 = 2.99792458 × 108 m s−1 is the
speed of light in vacuo (2018 CODATA∗). This Eq. (1), is
what is used in the derivation of the PRL in relation to the
energy and momentum of the photon in the interior of mate-
rial bodies. Without an iota of doubt, the interior of material

∗https://physics.nist.gov/cgi-bin/cuu/Value?c

bodies is certainly not a vacuo. This means that the disper-
sion relation (1) is not the appropriate dispersion relation to
describe these photons generated therein material bodies. We
need to use the correct equation – i.e. by replacing (1) with:

E = pc, (2)

where: c = c0/n; and here: c, is the speed of light in the
material (medium) whose refractive index is n and n: 0 < n <
1. This is the first correction to the PRL that we shall conduct.

2. Limits Problem: The second correction has to do with the
lower and upper limits in the integral leading to the PRL. As
one will notice (and most probably ignore) is that the deriva-
tion leading to the PRL does not have a finite upper limit
(i.e. νH = ∞) and at the same time, this same integral has
a lower bound limit of zero (i.e. νL = 0). What this means
is that the photons emitted by material bodies have wave-
lengths in the range – zero (νL = 0) to infinity (νH = ∞).
A zero frequency photon implies zero kinetic energy and an
infinite frequency photon implies an infinite kinetic energy of
the photon. The lower bound frequency (νL = 0) has serious
problems with Heisenberg’s uncertainty principle [4], while
the upper infinite frequency (νH = ∞) has obvious topologi-
cal defects with physical and natural reality as we know it.

Using the above two points of critique in the derivation of the
PRL, we shall advance a thesis which seeks to demonstrate
that, it is possible in principle to justify from a physical and
fundamental theoretical level the existence and the need of
the emissivity function of a material. There is no such effort
in the present literature where such an endeavour has been
attempted – this, at least is our view point derived from the
wider literature that we have managed to lay our hands on.
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Now, in closing this introductory section, we shall give a
synopsis of the remainder of this article. In §2 and §3, for
self-containment, instructive and completeness purposes, we
present an exposition of the Planck radiation theory and the
derivation of the Stefan-Boltzmann Law respectively, where
emphasis is made on the two points of critique to the Planck
theory that we made above. In §4, we present our deriva-
tion. In §5, a general discussion is presented. Lastly, in §6,
in a rather succinct manner, the conclusion drawn from the
present work is laid down.

2 Planck radiation theory

As was presented in the first article of this series [5], we shall
make the derivation of the PRL our point of departure. We
know that the number of quantum states dN in the momentum
volume space d3 p and physical volume space V , is given by:

dN =
2Vd3 p

h3 , (3)

where: h = 6.62607015× 10−34 J s is Planck’s constant (2018
CODATA∗). The factor 2 in (3) comes in because of the num-
ber of degrees of freedom of the photon: one for traverse and
the other for longitudinal polarisation – i.e. the photon has
two polarization states. Now, given that: d3 p = 4p2dp, it
follows that:

dN =
8πV p2dp

h3 , (4)

and further, given that for a photon of momentum pγ, energy
Eγ and frequency ν, its energy-momentum is such that: pγ =

Eγ/c0 = hν/c0, it follows from this, that the number of modes
in the frequency interval: ν to ν + dν is:

dN =

8πV
c3

0

 ν2dν. (5)

The actual number of occupied states dn is such that dn =

fBE(ν,T ) dN where:

fBE(ν,T ) =
1

ehν/kBT − 1
, (6)

is the Bose-Einstein probability function which for a temper-
ature T , gives the probability of occupation of a quantum
state whose energy is Eγ = hν and: kB = 1.38064852(79) ×
10−23 J K−1 is the Boltzmann constant (2018 CODATA†).
From the foregoing:

dn∗ =
8πV
c3

0

ν2dν
ehν/c0hBT − 1

, (7)

leading to the energy density: Bν(ν,T )dν = Eγdn∗/V , now
being given by:

Bν(ν,T )dν =
8πh
c3

0

ν3dν
ehν/kBT − 1

, (8)

∗https://physics.nist.gov/cgi-bin/cuu/Value?h
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where: Bν(ν,T ) is the spectral irradiance given in terms of ν:
(8) is our sought-for PRL.

3 Stephan-Boltzmann law

Now, to derive the Stefan-Boltzmann Law (SBL) from (8),
we start by setting: x = hν/kBT . This setting implies that:
dν = kBTdx/h, thus substituting this into (8), we then have:

Bν(ν,T )dν =
8πk4

BT
4

h3c3
0

x3dx
ex − 1

. (9)

From the foregoing theory, the total energy density Etheo radi-
ated per unit time by a radiating body is such that:

Etheo =
c0

4

∫ νH=∞

νL=0
Bν(ν,T )dν,

=
2πk4

BT
4

h3c2
0

∫ ∞
0

x3dx
ex − 1

,

(10)

and given that:
∫ ∞

0 x2dx/(ex − 1) = π4/15, it follows that the
SBL will thus be given by:

Etheo = σ0T
4, (11)

where one can most easily deduce that the fundamental and
universal constant – the Stefan-Boltzmann constant: σ0 =

2π2k4
B/15h3c2

0. In terms of its actually experimentally mea-
sured value: σ0 = 5.670374419×10−8 W m−2 K−4 (2018 CO-
DATA‡).

Written as it appears in (11), the SBL is not compatible
with physical and natural reality as it needs to be supple-
mented with a new term – namely the emissivity ε, i.e.:

Eexp = εσ0T
4. (12)

The above result is what one gets from experiments. We shall
derive the emissivity function: ε = ε(ν,T ) from the funda-
mental soils of theory.

4 Derivation

In this section, we shall in two parts, i.e. §4.1 and §4.2, de-
rive a relation that connects the emissivity function with the
refractive index of the given material and both the upper and
lower limits in the energy of the photon.

4.1 Dispersion relation problem

In the derivation of the PRL, i.e. (8), and as well as the SBL,
i.e. (11), we have used the vacuo dispersion relation (1) for
the photon. As stated in the introductory section, this is not
correct as one is supposed to use the correct non-vacuo pho-
ton dispersion relation (2). If we do the correct thing and
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instead use (2) in the derivation of the PRL, instead of the
PRL given in (8), we will obtain the new revised PRL:

Bν(ν,T )dν =
8πh
c3

ν3dν
ehν/kBT − 1

,

=
8πh
c3

0

n3ν3dν
ehν/kBT − 1

.

(13)

The difference between (13) and (8), is the introduction of the
refractive index, n.

Now, from this new PRL (13) together with the correct
non-vacuo photon dispersion relation (2), one obtains the fol-
lowing refractive index modified SBL:

Eexp =
c0

4

∫ νH

νL

cBν(ν,T )dν
c0

=
c0

4

∫ νH

νL

Bν(ν,T )dν
n

, (14)

where in (14), we have not set the limits (νH = ∞; νL = 0),
but have left this as a task to be dealt with in §4.2.

Now – proceeding to institute in (14) the substitution:
x = hν/kBT , and remembering that the refractive index n is a
function of ν and possibly T as well (i.e. n = n(ν,T ) = n(x)),
it follows that (14) will reduce to:

Eexp = σ0T
4
∫ xH

xL

15
π4

x3n2(x)dx
ex − 1

. (15)

With Eexp now written as it has been written in (15), one can
reasonably identify the emissivity function as:

ε =
15
π4

∫ xH

xL

x3n2(x)dx
ex − 1

= ε(x) = ε(ν,T ). (16)

In this way, the emissivity has not been introduced as a result
of an experimental requirement, but foisted by subtle theo-
retical requirements to do with the (obvious but neglected)
shortcomings stated in the introduction section.

Our intention in the present article is not to investigate this
newly-derived emissivity function (16), but merely to make a
statement to the effect that the emissivity function can be de-
rived from the fundamental soils of theoretical physics. We
shall slate for the next installation, the task to test the emis-
sivity function (16) against real data. In the subsequent sub-
section, we will now deal with the issue of the limits in the
integral (16).

4.2 Limits problem

As stated previously, a photon frequency of zero (i.e. photon
with zero energy) does not make sense especially in the face
of Heisenberg’s [4] uncertainty limit. To obtain a reasonable
estimate of this, one can appeal to logical reasoning by simply
asking the question: What is the largest wavelength of a pho-
ton that can travel in a medium with a mean inter-molecular
spacing: ` = `(T )? We know that the speed of our photon is c
and that this speed is such that it is equal to: λν, where λ is the

wavelength of our photon. In order for the smooth passage of
the photon in such a medium, it is reasonable to assume that
the wavelength of the photon be at most equal to one half of
the mean spacing of the given medium, i.e. λmax = `/2. Given
that: c = λν, it follows that we must have: νL = 2c0/n`.

Now, in establishing the upper limiting frequency that
must enter the integral leading to the PRL, we will use the
reasoning already laid down by Debye [9]. As is well known,
in November of 1907, Einstein [10] proposed the first rea-
sonably good model of the Heat Capacity of a Solid that em-
ployed the then nascent concept of quantization of energy.
Einstein’s [10] motivation was really not to propose a rigor-
ous working model of a solid but to promote the then strange
Quanta Hypothesis that had been promulgated earlier by
Planck [1–3] and had been given breath to by him in his land-
mark and 1921 Nobel Prize winning 1905 explanation of the
Photoelectric Effect [11].

In his model of a solid, Einstein [10] made three funda-
mental assumptions: (1) Each atom in the lattice is an inde-
pendent 3D quantum harmonic oscillator and the energy of
this oscillator is quantized, (2) All atoms oscillate with the
same fundamental frequency of vibration and (3) The prob-
ability of occupation of any given microstate is given by the
Boltzmann thermodynamic probability. In summing up (in-
tegrating) all the energies of these oscillators, Einstein’s os-
cillators have a minimum of zero frequency and an infinity
frequency for a maximum frequency. While Einstein’s [10]
model gave a reasonably good fit to data, Debye [9] realized
that Einstein’s limits of integration where non-physical, espe-
cially the upper limiting frequency: νH = ∞. So, in construct-
ing a revised (modified) version of Einstein’s [10] model, De-
bye [9] had to correct this by limiting the upper frequency νH.

Debye [9] required that for the N oscillators – each with
three degrees of freedom – the sum total of the modes of vi-
bration must equal 3N. That is to say, if g(ν) is the density of
states, then: ∫ νH

νL

g(ν)dν = 3N. (17)

Debye [9] set: νL = 0 because in reality: νL ' 0 and keeping
νL as non-zero in his model did not bring in any significant
improvement to the model, so he simply set this equal zero.
Thus from (17), Debye [9] could calculate νH, and this maxi-
mum frequency one obtains from this calculation is known as
the Debye frequency and symbolized νD.

For the photons under probe (in the present article), the
density of states: g(ν) = dN/dν can be calculated from (5)∗,
and so doing one obtains: g(ν) = 8πVν2/c3. Since a photon
has two degrees of freedom, accordingly, N photons will have

∗The reader must remember to substitute c in place of c0 because in the
foregoing calculation, we have disposed of the vacuo dispersion relation (1),
and adopted the non-vacuo dispersion relation (2).
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2N degrees of freedom, hence:∫ νH

νL

8πVν2dν
c3 =

8πV
c3

0

∫ νH

νL

n3(ν,T )ν2dν = 2N. (18)

Since νL is known, νH can be known if n(ν,T ) is known. In
the present article, we have no intention of evaluating the
model, i.e. (16) and (18), that we have just set because we
are yet to make further modifications where we shall include
possible non-zero photon mass effects. For now, all we want
to do is to show that one can demonstrate from a most funda-
mental level, that the emissivity function ε can be furnished
with solid theoretical foundations rather than have this func-
tion as an experimental construct with no solid fundamental
theoretical basis.

5 Discussion

The main aim of this paper has been to seek a fundamental
and foundational basis and justification for the existence of
the emissivity property of matter from the soils of fundamen-
tal theoretical physics. We are of the view that the grounds
for such an endeavour have herein been set. Our final the-
oretically derived expression for the emissivity is given in
(16). This expression we arrived at by revising the traditional
derivation of the PRL as articulated in the introduction sec-
tion. This emissivity function, i.e. (16), here derived has three
free parameters associated with it and these parameters are:

1. The lower cut-off frequency: νL. The meaning of which is
that there exists in this material medium in question, a Lower
Cutoff Frequency (νL) below which frequency the body does
not emit.

2. The upper frequency: νH. The meaning of which is that there
exists in this material medium in question, an Upper Cut-
off Frequency (νH) above which frequency the body does not
emit.

3. The refractive index: n of the given material.

Of these three free adjustable parameters, the refractive in-
dex is less free as an adjustable parameter as there are already
experimentally verified models of this quantity (see e.g. [12–
14]). However, the lower (νL) and upper (νH) frequencies can
be fixed to suit the given material, thus one can in principle fit
the emissivity function (16) to the experimentally measured
emissivity of a given material medium. When we say one can
in principle fit the emissivity function (16) to the experimen-
tally measured emissivity of a given material medium, we do
not mean in an arbitrary manner, but that one will have to
work out a realistic model that leads to a theory that fits to the
data. In closing, allow us to say that in our next instalment, an
attempt to fit the herein derived emissivity function, i.e. (16),
to real data will be made.

6 Conclusion

Without the dictation of experience, it is possible in principle
to justify by way of solid physical arguments and from a bona

fide fundamental theoretic level, the existence and the need of
the emissivity function for natural material.
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6. Crisóstomo C. and Pitarma R. The Importance of Emissivity on Mon-
itoring and Conservation of Wooden Structures Using Infrared Ther-
mography. In: Advances in Structural Health Monitoring, IntechOpen,
2019, 16 pp. doi:10.5772/intechopen.82847.

7. Minissale M., Pardanaud C., Bisson R., and Gallais L. The Tempera-
ture Dependence of Optical Properties of Tungsten in the Visible and
Near-Infrared Domains: An Experimental and Theoretical Study. Jour-
nal of Physics D: Applied Physics, 2017, v. 50 (45), 455601.

8. Sadiq H., Wong M. B., Tashan J., Al-MahaidiR. , and Zhao X.-L. De-
termination of Steel Emissivity for the Temperature Prediction of Struc-
tural Steel Members in Fire. Journal of Materials in Civil Engineering,
2013, v. 25 (2), 167–173.

9. Debye P. Zur Theorie der Spezifischen Wärmen. Annalen der Physik,
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