
Volume 17 (2021) PROGRESS IN PHYSICS Issue 1 (April)
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1 Remark to Section 5

1. The SL(2,C)∗ group definition. Let thegroup SL(2,C)∗

be a subgroup of SL(2,C) with an element Z′ ∈ SL(2,C)∗

such as

Z′ =
{[

a1 a2
a3 a4

]
: a1, a4 ∈ Re, a2, a3 ∈ Im, det(Z′) = 1

}
.

The definition reflects the general Jacobian matrix form as
given by (12) in [1].

2. The proof of the isomorphism of SL(2,C)∗ to SL(2,R).
The mapping (13) in [1] can be equivalently defined by the
function that sends element of Z′ ∈ SL(2,C)∗ to Z ∈ SL(2,R)

Z = T · Z′ · T−1

where

T =
[ √
−i 0
0

√
i

]
T−1 =

[ √
i 0

0
√
−i

]
det(T) = 1.

The function is clearly a group homomorphism since

T · Z′1 · Z
′
2 · T

−1 = T · Z′1 · T
−1 · T · Z′2 · T

−1 = Z1 · Z2

for all Z1,Z2 ∈ SL(2,R). It is obviously surjective. At last, as
the inverse mapping

Z′ = T−1 · Z · T

that sends any element of SL(2,R) to SL(2,C)∗ is well defined
it proves the injectivity. Hence, as a bijective homomorphism
is shown, it finalizes the proof of SL(2,C)∗ � SL(2,R) men-
tioned in Section 5.

2 Corrections

The typo in the expression (10). The expression should
evidently read with cosh2(β) as follows

gµν =

 −
(
1 − v2

)
0

0
(
1 − v2

)−1


=

[
−cosh−2(β) 0

0 cosh2(β)

]
.

(10)

Section 5. A more appropriate notation for the Lorentz/
Minkowski basis for SL(2,R) is R1(2) as the group consists of
the real numbers.
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