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A solution of electromagnetic four-potential for polarized photon is obtained by solving
its wave equations in elliptic cylindrical coordinates. An explicit energy wave function
for the photon is presented in the form of a linear combination of the electric field and
magnetic field from the solution. This wave function is used to calculate the angular
momentum value of the photon. The elliptic coordinate parameter, a, for the photon is
considered to be equal to a quarter of its wavelength.

1 Introduction

Photon as a quantum of light has attracted many researchers
to develop explanations on its behaviors and to experiment to
determine its properties. The photon as a fundamental wave-
particle which moves at the speed of light serves like a mes-
senger traveling from one place to another, which is neces-
sary for the physical world to work properly. The classical
view on light is provided by Maxwell’s theory of electromag-
netism [1], hence light is considered as a bundle of electro-
magnetic transverse waves. The particle view of light in mod-
ern physics may be provided by Einstein [2], so a photon has
not only energy but also momentum. Work has been done to
unify these two views. An expression for photon wave func-
tion is introduced by using the Riemann-Silberstein vector
which is a linear combination of the electric field and mag-
netic field of the photon. An overview of the work on photon
wave function is available in [3].

A photon has wave-particle duality which may be explain-
ed by a single entity as a joint wave-particle [4]. A more
specific view on the electromagnetic structure for the photon
is presented in [5], which is for circularly polarized photons.
Hence the photon in circular polarization may be viewed as
a charged moving electric capacitor with electric charge dis-
tributed circularly on its cylindrical surface of radius λ/2π,
where λ is the wavelength of the photon.

In this article, we present our theoretical study on polar-
ized photons. It is well known that polarized light has the
property of certain orientation which may be generated by an
optical polarizer. Recent experiment [6] shows that the trans-
mission intensity of polarized light strongly correlates to the
orientation of elliptically-shaped holes on the transmission
plate. This as an example indicates that the transverse field
strength of photons in the polarized light is not circularly dis-
tributed evenly as different from that of circularly polarized
photons. The novelty of this article is on: the wave equation
for the photon is solved within the elliptic cylindrical coordi-
nates; an explicit photon energy wave function is presented
based on the expression of Riemann-Silberstein vector wave
function (in the next section); quantum expressions of the en-
ergy density, energy current density and the angular momen-
tum or spin density for the photon are derived from the wave

function. We are not aware of such work in the literature.
This article is divided into the following sections: Intro-

duction, Method, Results and Discussions, and Conclusion.
The Introduction section provides a brief overview on our cur-
rent understanding of the photon.

In the Method section, we will use similar method as
in [5]. First we obtain a solution for the electromagnetic four-
potential by solving the wave equations in elliptic cylindrical
coordinates. The electromagnetic four-potential generally in-
cludes a scalar potential, which is an electric potential divided
by the speed of light, and a vector potential. Then show to get
the electric field and magnetic field from the solution of the
four-potential; an explicit energy wave function for the pho-
ton is presented as a linear combination of the electric field
and magnetic field; other expressions such as photon energy
density, energy current density and angular momentum den-
sity are derived based on quantum mechanics.

In the Results and Discussions section we show the results
for the photon expressions developed in the previous section,
such as the four-potential, electromagnetic fields, the wave
function, energy and energy current densities, and angular
momentum for the photon; fairly detailed work is presented
in evaluating the angular momentum value for the photon;
some particularities are discussed. The Conclusion section
provides a brief summary of the work presented in this arti-
cle. We use MKS units in this work.

2 Method

In the space region where there are no other free electric
charge and electric current, the electric potential ψ and the
vector potential A satisfy the following wave equations, re-
spectively,

1
c2

∂2ψ

∂t2 − ∇
2ψ = 0 , (1)

1
c2

∂2A
∂t2 − ∇

2A = 0 , (2)

where c is the speed of light, t is time, ∇2 is the Laplacian
operator, and 1

c2
∂2

∂t2−∇
2 is D’Alembert’s operator which is also

written as �. In obtaining these equations the set of Maxwell
equations with Lorenz gauge is employed. The Lorenz gauge
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Fig. 1: A drawing of the elliptic cylindrical coordinate system to-
gether with the cartesian coordinates, where µ̂, ν̂, and ẑ are unit vec-
tors for the coordinate system and a is a length parameter that marks
the focal points on x of the ellipse. The major axis of the ellipse is
x. The wave symbol represents a photon moving in the direction of
the positive z axis at the speed of light c.

is given by

∇ · A +
1
c2

∂ψ

∂t
= 0 . (3)

Eqs. (1) and (2) are satisfied with solutions for traveling wa-
ves.

For the polarized photon, we solve (1) and (2) in elliptic
cylindrical coordinates as shown in Fig. 1. Where the rela-
tionships between the cartesian and elliptic cylindrical coor-
dinates are

x = a cosh µ cos ν ,

y = a sinh µ sin ν ,

z = z ,

(4)

where x, y, z are cartesian coordinate values and µ ν, z are el-
liptic cylindrical coordinate values, a is a length parameter
which specifies the focal points of the ellipse, µ ∈ (0,∞) and
ν ∈ (0, 2π). The value of a will be considered later to be pro-
portional to the wavelength of the photon. The scale factors
are

hµ = hν = aγ ,

hz = 1 ,
(5)

where γ =

√
sinh2 µ + sin2 ν.

We find for this particular case that the vector potential A
has a z component only so A = ẑAz and ∇2A = ẑ∇2Az, where
ẑ is the unit vector for the z axis. The Laplacian operator ∇2

for the elliptic cylindrical coordinates is expressed as

∇2 =
1

a2γ2

(
∂2

∂µ2 +
∂2

∂ν2

)
+
∂2

∂z2 . (6)

Hence (1) and (2) in the elliptic cylindrical coordinates
are satisfied with the following general solution:

f = f0 e−µ sin(φ) , (7)

where f is a general quantity that may represent either ψ or
Az here, f0 is the corresponding constant, φ = kz + ν−ωt, and
k = ω/c, and ω is the angular frequency of the photon. We
choose the “−” sign in the exponential function to make the
solution to be limited in space. Here we let the photon travel
in the z direction. And we arbitrarily choose the sine function
here, one may choose cosine function as well but the results
should be similar. By using the Lorenz gauge we have the
following relationship for the electric potential constant, ψ0,
and the vector potential constant, A0, as

A0 = ψ0/c . (8)

Once we have the solution of the four-potential we can
calculate [7] the electric field E and magnetic field B using
the following equations,

E = −∇ψ −
∂A
∂t

= −
1

aγ

(
µ̂
∂

∂µ
+ ν̂

∂

∂ν

)
ψ , (9)

B = ∇ × A =
1

aγ

(
µ̂
∂

∂ν
− ν̂

∂

∂µ

)
Az , (10)

where µ̂, ν̂ are unit vectors for µ and ν, respectively, and “×”
represents the vector cross operator. In deriving (9) for the
electric field, we used this case relationship:

∂ψ

∂z
+
∂Az

∂t
= 0.

Both the electric field E and magnetic field B are vectors
with µ and ν components, which are perpendicular to the di-
rection of the wave propagation. They represent transverse
waves.

As we know, a photon is a packet of energy in electromag-
netic field form and moves at the speed of light. This means
that the electric field E or the magnetic field B of the photon
can not exist alone and they are both like two faces of one
body. We have the following expression of the electromag-
netic field F suit for the photon

F =
1
√

2

(
√
εE + i

B
√

u

)
, (11)

where ε is the permittivity and u is the permeability in the
space region where photon absorption is negligible, and i is
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the imaginary unit. This expression is known as the Riemann-
Silbertein vector and was introduced as a photon wave func-
tion in [8]. Here the choice of “+” sign for the imaginary part
is arbitrary, one may choose “−” for similar results. Like E
or B, F is also a vector which satisfies the wave equation and
also represents a transverse traveling wave. The field F is a
complex vector in general and is characterized as a quantum
vector wave function. Hence methods developed in quantum
mechanics may be employed here [9]. By the dimensional
analysis we know that F represents an energy density wave
function. In the following we use F to derive expressions for
energy and current densities and then the angular momentum
for the photon. For clarity, the cartesian coordinates are used
in the following work. We start from the wave equations:

1
c2

∂2F
∂t2 − ∇

2F = 0 , (12)

and
1
c2

∂2F∗

∂t2 − ∇
2F∗ = 0 , (13)

where F∗ is the conjugate of F. And

F = x̂Fx + ŷFy , (14)

where x̂ and ŷ are unit vectors and Fx, Fy are the field com-
ponents for x and y axes, respectively. As a transverse wave,
F has x and y components only and the z component, Fz is
zero. Since our original solution for F is in elliptic coordi-
nates with components of µ and ν, we may convert those to x
and y components using the following matrix multiplication,µ̂

ν̂

 =
1
γ

 sinh µ cos ν cosh µ sin ν

− cosh µ sin ν sinh µ cos ν

 x̂ŷ
 . (15)

Since Fx and Fy are explicit functions of µ and ν, in order
to do their derivatives with respect to x and y we need partial
derivatives of µ and ν to x and y by using the following matrix
form:δµ

δν

 =
1

aγ2

 sinh µ cos ν cosh µ sin ν

− cosh µ sin ν sinh µ cos ν

 δx

δy

 , (16)

where δ is a tiny increment. In obtaining (16), we first do the
tiny variations of (4) for x and y to µ and ν to get a conversion
matrix between the two coordinate systems. And then find
the inverse matrix as in (16). Eq. (15) is equivalent to (16) if
we replace each variation together with its scale factor such
as aγ in the latter equation by the corresponding unit vector.

As is common in quantum mechanics to find the energy
density and the energy current density for the photon, we do
this operation:

F∗ · (12) − F · (13) , (17)

where “·” represents the dot product operator and “*” is the
complex conjugate symbol, and

F∗ · ∇2F =

x,y,z∑
i

Fi
∗ ∇2Fi , (18)

where the summation is over the three cartesian components.
By a few mathematical operations, we have the following
form of energy current and density continuity equation:

∇ · j +
∂ρ

∂t
= 0 (19)

with

j =
c2

2iω

x,y,z∑
i

(Fi ∇Fi
∗ − Fi

∗ ∇Fi) (20)

and

ρ =
1

2iω

(
F∗ ·

∂F
∂t
− F ·

∂F∗

∂t

)
= F · F∗ , (21)

where j is the energy current density and ρ is the energy den-
sity for the photon, ∇ = x̂ ∂

∂x + ŷ ∂
∂y

+ ẑ ∂
∂z . The photon propa-

gation phase factor is e−iφ in this case (see next section) and
∂F
∂t = iωF. The energy density ρ is positive.

Now the angular momentum increment for the photon is

dS = ẑ
(
x jy − y jx

) dV
c2 , (22)

where S is the angular momentum vector or spin for the pho-
ton, jx/c2 and jy/c2 are the momentum densities in the x and
y directions, respectively, and dV is the tiny volume in space.
Notice that j needs to be divided by c2 to be converted to the
momentum density. The angular momentum for the photon
in the present case has only the z component and zero x and
y components. Eq. (22) may be rewritten in the form of spin
momentum density as

dS
dV

=
1
c2

(
x jy − y jx

)
. (23)

In the next section we present results using relationships
developed here and also provide discussions on the results.

3 Results and Discussions

To start this section we first present the mathematical solu-
tion of the four-potential for the polarized photon, which are
two traveling wave functions, one for the electric potential
ψ, which is a scalar, and the other for the vector potential A.
These functions are desirable since they are limited in space
and show wave-particle duality with a limited length. These
basic representations are important since, from which we may
derive other physical quantities for the photon, such as elec-
tromagnetic fields and the spin angular momentum.

Now the solution for the four-potential in elliptic cylindri-
cal coordinates is

ψ = ψ0 e−µ sin(φ) (24)
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and
A = ẑA0 e−µ sin(φ) , (25)

where we assume that the photon travels in the z direction.
The vector potential in this case has only a z component.

The choice of the sine function here is arbitrary, one may use
the cosine function but the result should be similar since they
only have a phase difference of π/2. Notice that (24) and
(25) are in the same form with corresponding magnitude, and
with the same phase change in both space and time. Since
the physical meaning of the electric potential ψ is clear, c2A
may be interpreted as an electric potential current or the total-
electric-potential current density flowing in the same direc-
tion as the photon, which satisfy the continuity equation given
by the Lorenz gauge condition (3). Hence the Lorenz gauge
may be considered as the conservation of the total-electric-
potential, a physical quantity of the integration of electric po-
tential in the whole space. With the Lorenz gauge, we can get
the relationship between the two constants as in (8)

Comparing with that of circularly polarized photons [5],
the strength of the four-potential for the elliptically polarized
photon decreases exponentially with µ in the single space re-
gion, while the other is divided into two regions by a param-
eter r0 and decreases with 1/r for r > r0, where r is the radial
value in polar cylindrical coordinates. As a result, the po-
tential strength for the polarized photon with certain energy
decreases quicker with distance from its center than that for
circularly polarized photon, and hence the polarized photon
may occupy less space.

Now we present expressions for the electric and magnetic
fields using (9) and (10):

E=
ψ0 e−µ

aγ
[µ̂ sin(φ) − ν̂ cos(φ)] , (26)

and

B=
A0 e−µ

aγ
[µ̂ cos(φ) + ν̂ sin(φ)] . (27)

These results of E and B show that they are transverse
waves and are perpendicular to each other. The energy den-
sity in classical theory for the photon is

ρ =
1
2

(
εE2 +

B2

u

)
=
εψ0

2

a2γ2 e−2µ (28)

and the Poynting vector is

P =
E × B

u
= ẑ

cεψ0
2

a2γ2 e−2µ , (29)

where, in converting A0, we used (8). These quantities are fi-
nite in space and are physically meaningful. The magnitudes
of these quantities decrease exponentially with 2µ. Since the
factor a2γ2 is equal to the combination of scale factors for
both µ and ν, it can be canceled in each space integration by
the same volume factor as shown later. With the Poynting

vector, the photon may be viewed as a packet of energy mov-
ing at the speed of light along its propagation direction.

Since a photon is actually a quantum entity in modern
physics view, we need an integral expression as (11). This is
a linear combination of both the electric field and magnetic
field for the elliptically polarized photon. Therefore we have
a photon wave function. There are at least two advantages
to have the wave function. First it can be used to calculate
the value of the angular momentum for the photon; secondly
it may be used to calculate the penetration probability for the
photon in a sub-wavelength hole since in the view of quantum
mechanics it represents the photon probability distribution.
But in this article, we aim at the angular momentum value for
the photon with the wave function.

In the following, we first obtain an explicit wave function
using the developed expression in last section, (11), secondly
derive the component expressions for energy current densi-
ties, and finally calculate the angular momentum value for
the photon. This procedure has been first applied success-
fully to the circularly polarized photon. In this article, we
report results on elliptically polarized photon.

By inserting results from (26) and (27) into (11), we have
a photon wave function:

F =

√
εψ0 e−iφ

√
2aγ

e−µ(iµ̂ − ν̂) . (30)

Using the unit vector conversion (15), we have the cartesian
components of F as

Fx =

√
εψ0 e−iφ

√
2aγ2

e−µ(i sinh µ cos ν + cosh µ sin ν) , (31)

Fx
∗ =

√
εψ0 eiφ

√
2aγ2

e−µ(−i sinh µ cos ν + cosh µ sin ν) , (32)

Fy = iFx , (33)

and Fz is zero.
Due to the simple relationship between Fy and Fx, we

have
Fy
∗ ∇Fy = Fx

∗ ∇Fx (34)

and
Fy ∇Fy

∗ = Fx ∇Fx
∗ . (35)

Hence in this case, (20) becomes

j =
c2

iω
(Fx ∇Fx

∗ − Fx
∗ ∇Fx) (36)

and the work is reduced to one component. Furthermore since

Fx ∇Fx
∗ = (Fx

∗ ∇Fx)∗ , (37)

we have

j = −
2c2

ω
Im(Fx

∗ ∇Fx) , (38)
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where “Im” means taking the real value of the imaginary part.
And similarly, (21) becomes

ρ = F · F∗ = 2Fx · Fx
∗ . (39)

Now insertimg (31) and (32) into (39), we have

ρ =
εψ0

2

a2γ2 e−2µ , (40)

which is the same as that of (28) for photon energy density.
Now we do integration of (40) in space with the tiny volume,
dV = a2γ2dµdνdz. Assuming the photon length is nλ, where
λ is the wavelength of the photon and n may be a positive
integer, but is not exactly determined in the present work. The
result should be equal to the photon energy ~ω, where ~ is the
reduced Planck constant. By doing that, we determine the
electric potential constant to be

ψ0 =

√
2~c
εn

1
λ
. (41)

Now we evaluate the energy current densities for the pho-
ton. Fx contains z explicitly in φ of the exponential func-
tion, therefore the derivative with z is simple. We have ∂Fx

∂z =

−ikFx and

jz =
cεψ0

2

a2γ2 e−2µ , (42)

which is consistent with the Poynting vector (29).
And from (38), we have

jx = −
2c2

ω
Im

(
Fx
∗ ∂Fx

∂x

)
(43)

and

jy = −
2c2

ω
Im

(
Fx
∗ ∂Fx

∂y

)
. (44)

The work is now turned to calculate ∂Fx
∂x and ∂Fx

∂y
. Because Fx

contains explicit variables of µ and ν, we need the following
equations to calculate the cartesian derivatives,

∂Fx

∂x
=
∂Fx

∂µ

∂µ

∂x
+
∂Fx

∂ν

∂ν

∂x
(45)

and
∂Fx

∂y
=
∂Fx

∂µ

∂µ

∂y
+
∂Fx

∂ν

∂ν

∂y
, (46)

where ∂µ
∂x ,

∂ν
∂x ,

∂µ
∂y
, ∂ν
∂y

may be obtained from (16). We find that

∂Fx

∂µ
= β

[
i
(
cosh µ − sinh µ − 2

sinh2 µ cosh µ
γ2

)
cos ν+

+

(
sinh µ − cosh µ − 2

sinh µ cosh2 µ

γ2

)
sin ν

]
,

(47)

∂Fx

∂ν
= β

[
− i

(
cosh µ + sinh µ + 2

sinh µ cos2 ν

γ2

)
sin ν+

+

(
cosh µ + sinh µ − 2

cosh µ sin2 ν

γ2

)
cos ν

]
,

(48)

where β =
√
εψ0e−µe−iφ/

√
2aγ2.

Now the cartesian derivatives are

∂Fx

∂x
= β′

[
i
(

cosh2 µ sin2 ν−

− sinh2 µ cos2 ν + sinh µ cosh µ−

− 2 sinh µ cosh µ cos2 ν
sinh2 µ − sin2 ν

γ2

)
−

− sin ν cos ν
(
1 + 2 sinh µ cosh µ+

+2 cosh2 µ
sinh2 µ − sin2 ν

γ2

) ]
,

(49)

∂Fx

∂y
= β′

[
i sin ν cos ν

(
1 − 2 sinh µ cosh µ−

−2 sinh2 µ
cosh2 µ + cos2 ν

γ2

)
+

+ sinh2 µ cos2 ν − cosh2 µ sin2 ν + sinh µ cosh µ−

− 2 sinh µ cosh µ sin2 ν
cosh2 µ + cos2 ν

γ2

]
,

(50)

where β′ =
√
εψ0e−µe−iφ/

√
2a2γ4. These expressions are a

little bit long but manageable. The purpose here is to serve as
check points to guide the reader to the final correct results.

Using (43) and (44), we have

jx = −β′′ sin ν
(
cosh µ + sinh µ

cosh2 µ + cos2 ν

γ2

)
, (51)

jy = β′′ cos ν
(
sinh µ + cosh µ

sinh2 µ − sin2 ν

γ2

)
, (52)

where β′′ = c2εψ0
2e−2µ/ωa3γ4.

Now using (23), we have

dS
dV

= αe−2µ
(

sinh µ cosh µ
γ2 +

+
sinh2 µ cosh2 µ − sin2 ν cos2 ν

γ4

)
,

(53)

where α = εψ0
2/ωa2γ2.

To calculate the spin value, we integrate (53) in the whole
space. There are two parts to be integrated on the right hand
side of the equation. This integration is a bit challenging since
each integration part is divergent at µ = 0 and ν = 0, π. To
avoid this problem we work around by first doing the integra-
tion of the second part which fortunately produces an exact
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term to cancel the first part and the remaining is finite and
manageable. We now show the integration of the second part:

I =

∫ nλ

0

∫ ∞

0

∫ 2π

0
dz dµ dν

e−2µ sinh2 µ cosh2 µ − sin2 ν cos2 ν

γ4

= nλ
∫ ∞

0

∫ 2π

0
dµ dν

e−2µ sinh2 µ cosh2 µ − sin2 ν cos2 ν

γ4 ,

(54)

where the scale factors in the integration volume are canceled
within the α factor and we omit the rest of the constants here
for simplicity. This integration may be further separated into
sub-integration as

I1 =

∫ ∞

0

∫ 2π

0
e−2µ sinh2 µ cosh2 µ

(sinh2 µ + sin2 ν)2
dµ dν (55)

and

I2 =

∫ ∞

0

∫ 2π

0
e−2µ sin2 ν cos2 ν

(sinh2 µ + sin2 ν)2
dµ dν . (56)

These may be done by the partial integration method: for (55)
first integrate with µ and for (56) first integrate with ν. Hence
we have

I1 = −

∫ ∞

0

∫ 2π

0
e−2µ sinh µ cosh µ

sinh2 µ + sin2 ν
dµ dν+

+
1
2

∫ ∞

0

∫ 2π

0
e−2µ sinh2 µ + cosh2 µ

sinh2 µ + sin2 ν
dµ dν−

−
1
2

[
e−2µ sinh µ cosh µ

∫ 2π

0

dν

sinh2 µ + sin2 ν

] ∣∣∣∣∣∣∞
0

(57)

and

I2 =
1
2

∫ ∞

0

∫ 2π

0
e−2µ cos2 ν − sin2 ν

sinh2 µ + sin2 ν
dµ dν . (58)

Now the last integration term in (57) is zero at both µ = 0 and
µ→ ∞. Hence (54) becomes

I = −nλ
∫ ∞

0

∫ 2π

0
e−2µ sinh µ cosh µ

sinh2 µ + sin2 ν
dµ dν+

+ nλ
∫ ∞

0

∫ 2π

0
e−2µ dµ dν ,

(59)

where the second integration term is the second integration
term of (57) minus that of (58). And finally by finishing the
second integration we have

I = −

∫ nλ

0

∫ ∞

0

∫ 2π

0
e−2µ sinh µ cosh µ

γ2 dz dµ dν + nλπ. (60)

The first integration term in (60) cancels exactly the integra-
tion of the first part in (53) so the angular momentum for the
photon is

S =
εψ0

2

ω
nλπ = ~ , (61)

where we used (41). The value of spin or the angular mo-
mentum calculated here for the elliptically polarized photon
is indeed ~.

Before concluding this section we consider the elliptic co-
ordinate parameter a for the photon. The divergence of the
electric field (26) is zero everywhere except at the two focal
points (x = ±a). This leads us to believe that electricity may
only exist in these two focal points formed traveling lines.
To further consider the value of a we take a look at that for
circularly polarized photon [5]. In that case the electromag-
netic field occupies two space regions divided by r0 with the
center core region carrying zero angular momentum for spin
one. The elliptically polarized photon may be understood as
transformed from the circularly polarized photon with its core
region collapsed by its energy popped out without change in
its length of circumference. If that is the case then a = λ/4.

4 Conclusion

To conclude this article we summarize what has been pre-
sented here. First, we have solved the wave equations for the
electromagnetic four-potential in the elliptic cylindrical coor-
dinates for the polarized photon. The solution for each po-
tential is an electromagnetic traveling wave and its transverse
strength decreases exponentially with µ. These expressions
for the four-potential are simple but essential representations
since they may be used to obtain other physical quantities for
the polarized photon.

We first obtained the electric field and magnetic field for
the photon from the four-potential solution. Then we have
presented the energy wave function explicitly, which is a lin-
ear combination of the electric field and magnetic field. Using
concepts from quantum mechanics, we first derived expres-
sions then evaluated for photon energy, energy current, and
angular momentum densities. Work is shown particularly in
calculating the value of the angular momentum or spin for the
photon. Considerations are given about the value of the ellip-
tic coordinate parameter a which may be equal to a quarter of
the photon wavelength.

Received on October 28, 2020
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