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In this paper, we reconsider the little-known but critically important physical process
of laser action occurring in the stellar atmospheres of Wolf-Rayet stars and, by exten-
sion, of QSOs, also known as quasars in the cosmological context. We review the use
of the Collisional-Radiative (non-LTE) model for hydrogenic and lithium-like ions to
calculate the energy level populations and the existing results for He I, He II, C III and
C IV, and for N V and O VI. We review the details of laser action in Wolf-Rayet stars,
as well as in QSOs. We note that taking QSOs to be local stellar objects eliminates the
problems associated with their cosmological interpretation. We propose that the termi-
nology quasar be used to refer to the cosmological interpretation and QSO to refer to
the stellar interpretation of Quasi-Stellar Objects. We introduce a new star type Q for
QSOs, similar to the star type W for Wolf-Rayet stars. We expand the Hertzsprung-
Russell diagram to include more massive and hotter stars of type Q and W beyond the
stars of type O B. The main sequence thus starts with stars of type Q W O B, followed
by the rest of the main sequence. Finally, we note the effort that will be required to
understand the classification and evolution of stars of type Q, as has been achieved for
Wolf-Rayet stars.

1 Introduction

In this paper, we reconsider a little-known but critically im-
portant physical process occurring in the stellar atmospheres
of Wolf-Rayet stars and, by extension, of Quasi-Stellar Ob-
jects (QSOs), also known as quasars in the cosmological con-
text. Wolf-Rayet stars are known to have an expanding enve-
lope of hot ionized gases, as the stellar atmosphere of the star
expands, resulting in mass loss.

If the speed of expansion is low, the expansion will be
closer to being isothermal, but as the speed of expansion in-
creases, the expansion will become adiabatic. Under those
conditions, as the plasma cools, population inversions will oc-
cur in the ionic energy levels due to free electron-ion recombi-
nation in higher ionic excited states. Some ionic energy level
transitions will undergo laser action [1] resulting in spectra
dominated by a small number of strong broad emission lines,
which becomes even more evident in QSOs.

2 Wolf-Rayet stars

Wolf-Rayet stars [2] are a type of stars that, like the super-
giants, have extended atmospheres whose thickness is an ap-
preciable fraction of their stellar radius [3, p. 243]. Charac-
teristic features in the visible spectra of many O and early B
stars, particularly supergiants, and WR stars provide evidence
that these objects have extensive envelopes, and that the ma-
terial generating the lines is flowing outward from the stellar
photosphere.

The number of WR stars in our galaxy is small: the 2001
VIIth catalog of galactic WR stars gave the number at 227
stars, comprised of 127 WN stars, 87 WC stars, 10 WN/WC
stars and 3 WO stars [4]. The subtypes are covered in the

spectra discussion later in this section. A 2006 update added
another 72 WR stars, including 45 WN stars, 26 WC stars and
one WO star [5]. The latest number from the August 2020
Galactic Wolf Rayet Catalogue v1.25 is 667 WR stars [6].

The existence of large-scale, rapid, and sometimes vio-
lent expansions of stellar atmospheres is well-established ob-
servationally [3, p. 471]. Beals [7, 8] first recognized that the
great breadths of lines in WR spectra, indicating velocities
of the order of 3 000 km/s, could be interpreted in terms of
rapid outflow of material. His suggestion that the flow was
driven by radiation pressure is supported by current dynam-
ical models. Further evidence for mass loss is provided by
infrared and radio continuum observations of several OB and
WR stars, which are most readily interpreted in terms of free-
free emission from an extended, optically-thick envelope hav-
ing a density profile consistent with steady outflow of the stel-
lar atmosphere [3, p. 550–551].

We know today, from a variety of observational evidence
from spacecraft and ground-based observatories, that in the
WR and Of stars and in many early-type supergiants, there
are massive trans-sonic stellar winds, that have very small
outward velocities in the deeper layers of the stars, but a large
outward acceleration producing very large velocities (v/c ≈
0.01) at great distances from the stars [3, pp. 471–472,550].
These flows are driven by radiation pressure acting on the
stellar atmosphere [3, p. 523].

Mass loss in stellar winds, particularly in the early-type
OB supergiants and WR stars, is well established [3, pp. 266,
523]. The analysis of line profiles and infrared emissions
imply estimated mass loss rates M of order 10−6 to 10−5

M� /year for O stars and perhaps up to 10−4 M� /year for
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WR stars [9, p. 628]. For comparison, mass loss rates for the
solar wind is about 10−14 M� /year. The flow velocities rise
from close to zero in the stellar photosphere to highly super-
sonic values within one stellar radius from the surface. The
3 000 km/s flow is thought to be driven by momentum input
to the ionized gas from the intense radiation force exerted by
the strong spectrum lines of these extremely luminous stars.

Series of extremely strong emission lines can be observed
in the spectra of WR stars. The spectra fall into two broad
classes: WN, which have prominent lines of nitrogen N and
helium He ions, with a very strong He II Pickering series
(n = 4 → n′), and essentially no lines of carbon C; and
WC, where the lines of carbon C and oxygen O are promi-
nent along with the helium He ions, while those of nitrogen
N seem to be practically absent [3, p. 485]. An additional
subtype WO with strong O VI lines has also recently been
added as a separate subtype. The spectra are characterized by
the dominance of emission lines, notable for the almost total
absence of hydrogen H lines [10].

3 Laser action in stellar atmospheres

In initial modelling calculations, Castor [11] used the escape
probability method of basic Sobolev theory to treat the trans-
fer of line radiation in a stellar envelope to provide a coarse
analysis of the spectral line formation in Wolf-Rayet stars
for a line formed in a two-level atom [3, p. 471–472]. He
then used this analysis to calculate the populations of the
first thirty levels of hydrogen-like He II ions under statistical
equilibrium with all radiative and collisional transitions in-
cluded [12]. He also applied this analysis to 14 terms and all
allowed transitions of helium-like C III ions; no case of laser
action was found in the calculations as the existing atomic
processes used did not provide sufficient pumping of the ex-
cited levels to maintain population inversion [13].

Mihalas [3, p. 485–490] carries out a complete multilevel
analysis of the spectrum of an ion using statistical equilibrium
equations that consider the radiative and collisional processes
contributing to the population of each ionic level under con-
sideration. Typically, the only free parameters in this analysis
are Te, the temperature of the free electrons corresponding to
the envelope temperature, ne, the free electron number density
and natom, the total number density of the species (element)
under consideration. The analysis is done under Local Ther-
modynamic Equilibrium (LTE) conditions, that is under con-
ditions in which each volume element of the plasma fulfills all
thermodynamic equilibrium laws derived for plasmas in com-
plete thermodynamic equilibrium (CTE) except for Planck’s
radiation law [40, p. 12–13].

3.1 Plasma lasers

The possibility of using a recombining plasma as an amplify-
ing medium of electromagnetic radiation was first suggested
by Gudzenko and Shelepin [14]. Calculations performed on

a hydrogen plasma [15, 17] subsequently confirmed this sug-
gestion. Such plasmas are called plasma lasers [18].

We consider the basic principles of operation of a plasma
laser. The mean time between electron collisions determines
the rate of establishment of the electron temperature within
a plasma. The smallness of the time between elastic col-
lisions in a dense plasma thus makes it possible, in prin-
ciple, to rapidly reduce the electron temperature of such a
plasma. For example, in plasma densities of order ni ∼ ne ∼

1015 − 1016 cm−3, a single distribution of the electrons is es-
tablished in a time of order τ ∼ 10−11 − 10−10 s [14], where ni

is the ion number density.
Rapid cooling of a strongly ionized plasma results in rapid

recombination of the electrons and the ions into highly ex-
cited ionic states. The subsequent relaxation of the electrons
to the ground state by spontaneous and non-radiative transi-
tions occurs in a time which, for the estimated values of the
plasma parameters used in this work, is larger than 10−7 s. At
those densities, electron-ion recombination occurs by three-
body recombination in a time shorter than 10−7 s such that a
rapid filling-up of the upper excited levels of the ions occurs.
Furthermore, since recombination into highly excited states
occurs much more rapidly than into lower states, the estab-
lishment of large population inversions is favored.

When large population inversions have been established
in the excited levels, the plasma is said to be in a stationary
drainage state. It is still substantially ionized. As an exam-
ple of the time involved, Gudzenko et al. [15] find that for
a dense low temperature plasma (Te ∼ 1000 − 6000 K and
ne-bound and free states ∼ 1013 − 1016 cm−3), cooled by a
factor of twenty, stationary drainage of the excited discrete
levels is established in a time ∼ 10−8 − 10−7 s. Stationary
drainage is maintained for a time ∼ 10−5 s, and is followed by
a stage in which the plasma is weakly ionized and the pop-
ulation densities of its levels return to normal. Gudzenko et
al. [17] find that the above conditions can be significantly re-
laxed; for example, the cooling can be done more slowly or
by stages [40, p. 42–43].

3.2 Adiabatic cooling of a plasma

Various mechanisms of free electron cooling can be used. The
method of interest to us, rapid cooling of a plasma by adia-
batic expansion, was first investigated by Gudzenko et al. [16]
both for magnetized and unmagnetized plasmas.

An example of this cooling mechanism is the adiabatic
expansion of a plasma jet in a vacuum. The advantage of
this method is that continuous amplification, and thus con-
tinuous operation of a laser is possible due to the fact that
the different stages of the recombining plasma decay at dif-
ferent times. Thus, as the plasma expands, the stages of the
recombination process outlined in the previous Section §3.1
are spread over space and the de-excited medium is thus re-
moved from the active lasing zone. Experimental evidence

72 Pierre A. Millette. Laser Action in the Stellar Atmospheres of Wolf-Rayet Stars and Quasi-Stellar Objects (QSOs)



Issue 1 (April) PROGRESS IN PHYSICS Volume 17 (2021)

of laser action due to the adiabatic expansion of highly ion-
ized hydrogen or hydrogenic plasmas has been given by, for
example, [19] and [20].

Under adiabatic expansion conditions, the density n and
the temperature T of a gas are related by [17]

T n1−γ = constant (1)

where
γ = cP/cV (2)

is the ratio of the specific heat at constant pressure cP and the
specific heat at constant volume cV . For a monatomic gas and
for a fully ionized plasma of hydrogen, we use [17]

γ = 5/3 . (3)

However, it should be noted that the actual value of γ for a
plasma is slightly smaller than 5/3. Denoting the initial den-
sity and temperature of the plasma by n0 and T0 respectively,
and the final density and temperature by n and T respectively,
we characterize the expansion by the factor

fE =
n0

n
> 1 (4)

and the ensuing cooling of the plasma by the factor

fC =
T0

T
> 1 . (5)

Then from (1), we have the relation

fC = f γ−1
E (6)

under adiabatic expansion conditions. In this work, we use
fc = 5; then from (6) and (3), fE = 11.2 [40, p. 43–44].

4 The Collisional-Radiative (non-LTE) model

To calculate the non-equilibrium population of the ionic en-
ergy levels, we need to use a model that applies to non-LTE
plasmas. The Collisional-Radiative (CR) non-LTE model was
first proposed and applied to hydrogenic ions by Bates et
al. [21,22] and subsequently used by Bates and Kingston [23]
and McWhirter and Hearn [24]. It was first applied to helium
by Drawin and Emard [25], to lithium by Gordiets et al. [26],
and to cesium by Norcross and Stone [27].

The population densities of the energy levels of ions in
non-LTE plasmas must be obtained from the rate coefficients
of the individual collisional and radiative processes occurring
within the plasma, as summarized in Fig. 1. The physical pro-
cesses included in the CR model include:

• Collisional ionization by electron impact
Rate coefficient: S p(T ) cm3s−1

Number of processes: np ne S p(T ) cm−3s−1

• Three-body recombination
Rate coefficient: αp(T ) cm6s−1

Number of processes: n2
e ni αp(T ) cm−3s−1

Fig. 1: This figure provides a summary of the collisional and radia-
tive processes occurring within the plasma, where p and q are ionic
energy state labels; p ≷ q [40, p. 21].

• Radiative recombination
Rate coefficient: βp(T ) cm3s−1

Number of processes: ne ni βp(T ) cm−3s−1

• Collisional excitation by electron impact (p < q)
Rate coefficient: Cp→q(T ) cm3s−1

Number of processes: np ne Cp→q(T ) cm−3s−1

• Collisional de-excitation by electron impact (p < q)
Rate coefficient: Fq→p(T ) cm3s−1

Number of processes: nq ne Fq→p(T ) cm−3s−1

• Spontaneous transition (p < q)
Rate coefficient: Aq→p s−1

Number of processes: nq Aq→p cm−3s−1

The plasma is assumed to be optically thin such that all ra-
diation emitted within the plasma escapes without being ab-
sorbed. The following physical processes are thus neglected:

• Photoexcitation (p < q),

• Photoionization.

The differential equation describing the time variation of
the population density of a given ionic level p is then given
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by
dnp

dt
=

(
electrons entering level p

)
−

−
(
electrons leaving level p

)
.

(7)

The terms of (7) in parentheses include contributions from all
levels q < p, q > p, and continuum states. Substituting for
the collisional and radiative processes considered above, we
obtain the differential equation

ṅp =

p−1∑
q=1

Cq→p ne nq−

−


 p−1∑

q=1

Fp→q + S p +

∞∑
q=p+1

Cp→q

 ne +

p−1∑
q=1

Ap→q

 np+

+

∞∑
q=p+1

(
Fq→p ne + Aq→p

)
nq+

+
(
αp ne + βp

)
ne ni

(8)

where the dot over np represents differentiation with respect
to time. There is such an equation for each and every level
p = 1, 2, ...,∞ of the ion. We thus obtain an infinite number
of coupled first order differential equations in the population
densities of the discrete levels of the ion.

The population density of level p, np, is normalized with
the Saha equilibrium population density of level p, nE

p , [28,
p. 154] [29, p. 135]

ρp =
np

nE
p
, (9)

with nE
p given by

nE
p = Zp(T ) ni ne , (10)

where

Zp(T ) =
ωp

ui

h3

2(2πmkT )3/2 eIp/kT , (11)

ωp is the statistical weight of level p, ui is the ionic partition
function, and Ip is the ionization potential of state p. For hy-
drogenic ions, ui is the partition function of the bare nucleus
and is given by ui ' 1. The same holds for lithium-like ions
since ui is then the partition function of a closed shell ion.

The relative population densities of various stages of ion-
ization ni of a monatomic non-LTE plasma under statistical
equilibrium are calculated approximately with the model of
House [30]. Even though the calculations are highly simpli-
fied, the model provides a first approximation to the ioniza-
tion equilibrium of monatomic plasmas of hydrogen to iron
and a general method of obtaining a consistent set of rela-
tive population densities for the ionization stages of these el-
ements.

Given that there exists a high-lying quantum state r above
which the discrete levels are in LTE, the normalization (9)

allows us to set the population density of these levels to be
given by ρp>r = 1. The infinite set of equations (8) thus be-
comes a finite set of r coupled equations which can be solved
for ρp, p = 1, 2, ..., r. The infinite sums appearing in (8) can
be cut off at a sufficiently high-lying level s > r above which
the rate coefficients involving these states contribute little to
the infinite sums of (8). For levels in LTE, detailed balancing
between the collisional excitation and de-excitation processes
holds and then we can use

nE
q Fq→p = nE

p Cp→q . (12)

The set of equations (8) then becomes

ρ̇p =

p−1∑
q=1

Fp→q ne ρq −

−


 p−1∑

q=1

Fp→q + S p +

s∑
q=p+1

Cp→q

 ne +

p−1∑
q=1

Ap→q

 ρp+

+

r∑
q=p+1

(
Cp→q ne +

Zq

Zp
Aq→p

)
ρq +

1
Zp

(
αp ne + βp

)
+

+

s∑
q=r+1

(
Cp→q ne +

Zq

Zp
Aq→p

)
; p = 1, 2, ..., r .

(13)

4.1 Solution of the system of coupled differential equa-
tions

The exact solution of the system of couple differential equa-
tions (13) gives the time evolution of the population densities
of the ionic levels ρp(t), p = 1, 2, ..., r. This solution if of
limited use. A simpler solution, known as the quasi-steady
state (QSS) approximation, holds for a large class of plasmas
and is used extensively in the literature (see [21, 22] and sub-
sequent papers mentioned previously in §4). The steady state
(SS) solution is obtained by putting

ρ̇S S
p (t) = 0 ; p = 1, 2, ..., r . (14)

This time-independent solution holds when the rate at which
the electrons enter level p equals the rate at which they leave
level p. Once the steady state solution is established, a per-
turbation of the population density of level p will be followed
by a return to its steady state value in a time of order

τp ∼


 p−1∑

q=1

Fp→q + S p +

s∑
q=p+1

Cp→q

 ne +

p−1∑
q=1

Ap→q


−1

(15)

where τp is the relaxation time of level p.
McWhirter and Hearn [24] have calculated τp for a wide

range of plasma parameters. They conclude that the relax-
ation time of the ground state is always much greater than
that of any of the excited states, even if the plasma is not
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near its steady state. This is due to two main reasons: a)
the electron collision rate coefficients between excited states
are much greater than those involving the ground state; b)
the ground state cannot decay by spontaneous radiative tran-
sition. Consequently, the population densities of the excited
ionic levels come into equilibrium with particular values of
the population densities of the ground state, of the free elec-
trons, and of the ions in a time which is very short as com-
pared to the ground state relaxation time. This is the basis of
the QSS solution.

4.2 The population coefficients

We thus express the population densities of the excited states
as a function of the ground state population density:

ρp = r(0)
p + r(1)

p ρ1 ; p = 2, 3, ..., r . (16)

r(0)
p and r(1)

p are called the population coefficients of level p.
Furthermore, since the population densities of the excited sta-
tes are in equilibrium with that of the ground state, we solve
the system of coupled equations (13) by putting ρ̇p≥2 = 0 and
ρ̇1 , 0 since, in general, the ground state is not in equilibrium.
In our calculations, we also assume that the free electron and
ionic densities, ne and ni respectively, do not change substan-
tially during the time of establishment of the QSS.

Substituting the trial solution (16) in the system of equa-
tions (13), we obtain a set of equations of the form

ap + bp ρ1 = 0 ; p = 2, 3, ..., r . (17)

The general solution of (17), for an arbitrary value of ρ1, is
ap = 0 and bp = 0. Before proceeding with the solution,
certain limiting conditions must be imposed on the popula-
tion coefficients r(0)

p and r(1)
p corresponding to the cases when

p = 1 and p > r. Substituting p = 1 in (16), we obtain the
condition r(0)

1 = 0 and r(1)
1 = 1. The other condition, which is

obtained by putting p > r in (16), has already been imposed
on the set of equations, namely r(0)

p>r = 1 and r(1)
p>r = 0.

Using these conditions, we obtain the following two sets
of r − 1 equations in the population coefficients r(0)

p and r(1)
p

respectively:

p−1∑
q=2

Fp→q ne r(0)
q −

−


 p−1∑

q=2

Fp→q + S p +

s∑
q=p+1

Cp→q

 ne +

p−1∑
q=1

Ap→q

 r(0)
p +

+

r∑
q=p+1

(
Cp→q ne +

Zq

Zp
Aq→p

)
r(0)

q = −
1

Zp

(
αp ne + βp

)
−

−

s∑
q=r+1

(
Cp→q ne +

Zq

Zp
Aq→p

)
;

(18)

p−1∑
q=2

Fp→q ne r(1)
q −

−


 p−1∑

q=1

Fp→q + S p +

s∑
q=p+1

Cp→q

 ne +

p−1∑
q=1

Ap→q

 r(1)
p +

+

r∑
q=p+1

(
Cp→q ne +

Zq

Zp
Aq→p

)
r(1)

q =

= −Fp→1 ne ; p = 2, 3, ..., r .

(19)

4.3 The population densities

Once the population coefficients r(0)
p and r(1)

p have been ob-
tained from the sets of equations (18) and (19) respectively,
they are substituted in (16). For any value of ρ1, the popula-
tion densities ρp can then be calculated. From (9) and (10),

ρp =
np

Zp ni ne
; (20)

substituting (20) in (16), we obtain

np = Zp ni ne r(0)
p +

Zp

Z1
n1 r(1)

p ; p = 2, 3, ..., r . (21)

As required by the QSS approximation, the population den-
sity of the excited state p depends on the value of the ground
state population density n1, the free electron density ne, and
the ionic density ni. The population density per unit statisti-
cal weight is given by yp = np/ωp, where ωp is the statistical
weight of level p. The population density per unit statistical
weight must be used when the population densities of differ-
ent states are compared.

4.4 The collisional-radiative rate coefficients

The time evolution of the population density of the ground
state can be studied with (13) when p = 1. Substituting for
ρp from (16), and using the previously calculated population
coefficients and (9), we obtain the differential equation

ṅ1 = −S CR ne n1 + αCR ne ni . (22)

S CR and αCR are called the collisional-radiative ionization and
recombination rate coefficients respectively. They are the ef-
fective ionization and recombination rate coefficients of the
plasma. They are related to the individual atomic rate coeffi-
cients by the following expressions:

S CR = S 1 +

s∑
q=2

C1→q−

−
1

Z1 ne

s∑
q=2

Zq

(
Fq→1 ne + Aq→1

)
r(1)

q ;

(23)

αCR = α1 ne + β1 +

s∑
q=2

Zq

(
Fq→1 ne + Aq→1

)
r(0)

q . (24)
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The solution of (22) can easily be shown to be given by

n1(t) =
αCR

S CR
ni +

(
n1(t = 0) −

αCR

S CR
ni

)
e−S CR ne t . (25)

The steady state population density of the ground state is ob-
tained in the limit t → ∞:

nS S
1 =

αCR

S CR
ni . (26)

4.5 Modifications for lithium-like ions

The CR model must be modified to account for the difference
in structure of lithium-like and hydrogenic ions considered
previously. The same system of state labelling is used: the
ground state (2s) is labelled 1, the first excited state (2p) is
labelled 2, the second excited state (3s) is labelled 3, and so
on in order of increasing level energy. The derivation of the
equations of the CR plasma model for lithium-like ions then
parallels that given previously for hydrogenic ions.

The time evolution of the population density of level p in
an optically thin plasma is given by (13) as before. The steady
state (SS) solution to the set of coupled first order differen-
tial equations (13) is obtained as before from (14). However,
the quasi-steady state (QSS) solution must be modified to ac-
count for the small energy separation of the ground and the
first excited states as compared to that of the first and the sec-
ond excited states, as this is particularly significant for ions
with large values of Z such as C IV, N V, and O VI. As a re-
sult of this, the population density of the first excited state
(level 2) is very much larger than that of the other excited
states, and it may even be comparable to that of the ground
state.

Consequently, the QSS solution is modified by using a
method similar to the one developed by Bates et al. [22] to
describe hydrogenic plasmas optically thick toward the lines
of the Lyman series. The normalized population density of
level p is expressed as a function of the ground and the first
excited state population densities:

ρp = r(0)
p + r(1)

p ρ1 + r(2)
p ρ2 (27)

where 3 ≤ p ≤ r and r(0)
p , r(1)

p and r(2)
p are the population co-

efficients of level p. The QSS solution is obtained when the
population densities of the second and higher excited states
are in equilibrium with the population densities of the ground
and the first excited states which, in general, are not in equi-
librium. We then have ρ̇1(t) , 0, ρ̇2(t) , 0, and ρ̇p≥3(t) = 0.

Substituting the solution (27) in the system of equations
(13), and using the last condition above, we obtain a set of
equations of the form

ap + bp ρ1 + cp ρ2 = 0 ; p = 3, 4, ..., r . (28)

For arbitrary values of ρ1 and ρ2, the general solution of (28)
is given by ap = 0, bp = 0, and cp = 0. We must also

impose the limiting conditions corresponding to the values of
p = 1, 2 and p > r on the population coefficients r(0)

p , r(1)
p and

r(2)
p : r(0)

1 = 0, r(1)
1 = 1, r(2)

1 = 0; r(0)
2 = 0, r(1)

2 = 0, r(2)
2 = 1;

r(0)
p>r = 1, r(1)

p>r = 0, r(2)
p>r = 0. This last condition has already

been applied to derive the system of equations (13).
Using these conditions, we obtain three sets of r−2 equa-

tions which are solved for the population coefficients r(0)
p , r(1)

p

and r(2)
p respectively:

p−1∑
q=3

Apq r(0)
q − Bp r(0)

p +

r∑
q=p+1

Cpq r(0)
q

= −
1

Zp

(
αp ne + βp

)
−

s∑
q=r+1

(
Cp→q ne +

Zq

Zp
Aq→p

)
;

(29)

p−1∑
q=3

Apq r(1)
q − Bp r(1)

p +

r∑
q=p+1

Cpq r(1)
q = −Fp→1 ne ; (30)

p−1∑
q=3

Apq r(2)
q − Bp r(2)

p +

r∑
q=p+1

Cpq r(2)
q = −Fp→2 ne (31)

where
Apq = Fp→q ne ; (32)

Bp =

 p−1∑
q=1

Fp→q + S p +

s∑
q=p+1

Cp→q

 ne +

p−1∑
q=1

Ap→q ; (33)

Cpq = Cp→q ne +
Zq

Zp
Aq→p ; p = 3, 4, ..., r . (34)

From the population coefficients r(0)
p , r(1)

p and r(2)
p , the pop-

ulation densities np can be calculated for any value of n1 and
n2 from

np = Zp ni ne r(0)
p +

Zp

Z1
n1 r(1)

p +
Zp

Z2
n2 r(2)

p ;

p = 3, 4, ..., r
(35)

where ni is the ionic density. The time evolution of the popu-
lation densities of the ground state and the first excited state,
n1 and n2 respectively, can be obtained by substituting (27)
and the population coefficients r(0)

p , r(1)
p and r(2)

p into (13) with
p = 1 and p = 2. We then get the two coupled first order
differential equations

ṅ1 = −S CR
1 ne n1 + MCR

21 ne n2 + αCR
1 ne ni

ṅ2 = −S CR
2 ne n2 + MCR

12 ne n1 + αCR
2 ne ni

(36)

where

S CR
1 = S 1 +

s∑
q=2

C1→q−

−
1

ne Z1

s∑
q=3

(
Fq→1 ne + Aq→1

)
Zq r(1)

q ;

(37)
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S CR
2 = S 2 + F2→1 +

1
ne

A2→1 +

s∑
q=3

C2→q−

−
1

ne Z2

s∑
q=3

(
Fq→2 ne + Aq→2

)
Zq r(2)

q ;

(38)

αCR
1 = α1 ne + β1 +

s∑
q=3

(
Fq→1 ne + Aq→1

)
Zq r(0)

q ; (39)

αCR
2 = α2 ne + β2 +

s∑
q=3

(
Fq→2 ne + Aq→2

)
Zq r(0)

q ; (40)

MCR
21 = F2→1 +

1
ne

A2→1

+
1

ne Z2

s∑
q=3

(
Fq→1 ne + Aq→1

)
Zq r(2)

q ;
(41)

MCR
12 = C1→2 +

1
ne Z1

s∑
q=3

(
Fq→2 ne + Aq→2

)
Zq r(1)

q . (42)

The coefficients S CR
1 , S CR

2 and αCR
1 , αCR

2 are similar to the hy-
drogenic collisional-radiative ionization rate coefficient S CR

(23) and recombination rate coefficient αCR (24) respectively.
The coefficients MCR

21 and MCR
12 have no hydrogenic coun-

terparts. The collisional-radiative rate coefficient MCR
21 ex-

presses the recombination which occurs in the ground state
due to the neighbouring first excited state and vice versa for
the collisional-radiative rate coefficient MCR

12 .
The general solution of the coupled system of equations

(36) can be written as

n j(t) = nS S
j + n(+)

j e−λ
(+) t − n(−)

j e−λ
(−) t (43)

where j = 1 or 2,

λ(±) =
ne

2

(
S CR

1 + S CR
2 ±

±

√(
S CR

1 − S CR
2

)2
+ 4 MCR

12 MCR
21

)
,

(44)

nS S
j =

KS S
j

λ(+) λ(−) , (45)

n(±)
j =

n j(t = 0) λ(±)2
− K jλ

(±) + KS S
j

λ(±) (
λ(+) − λ(−)) , (46)

KS S
1 = n2

e ni

(
αCR

1 S CR
2 + αCR

2 MCR
21

)
, (47)

KS S
2 = n2

e ni

(
αCR

2 S CR
1 + αCR

1 MCR
12

)
, (48)

K1 = ne

(
αCR

1 ni + S CR
2 n1(t = 0) + MCR

21 n2(t = 0)
)
, (49)

K2 = ne

(
αCR

2 ni + S CR
1 n2(t = 0) + MCR

12 n1(t = 0)
)
. (50)

The steady state population densities, which are obtained in
the limit as t → ∞, are explicitly given by

nS S
1 =

αCR
1 S CR

2 + αCR
2 MCR

21

S CR
1 S CR

2 − MCR
12 MCR

21

ni ; (51)

nS S
2 =

S CR
1 αCR

2 + αCR
1 MCR

12

S CR
1 S CR

2 − MCR
12 MCR

21

ni . (52)

4.6 Calculation of collisional and radiative rate coeffi-
cients

The results of the modelling calculations depend to a large
extent on the accuracy of the collisional and radiative rate
coefficients used in the CR model. The collisional rate coeffi-
cients Rn are obtained by integrating the cross-sections σn of
the collisional processes over the free electron velocity distri-
bution, f (v):

Rn(T ) =

∫
v

σn(v) v f (v) dv . (53)

For a Maxwellian velocity distribution of the free electrons,
we have

f (v) dv =
4
√
π

( m
2kT

)3/2
v2 exp(−mv2/2kT ) dv . (54)

The cross-section values are obtained from experimental
data, where available, and from various model and theoretical
calculations that are usually fitted to semi-empirical expres-
sions. We briefly review the expressions that have been found
to be useful in CR model calculations [40].

The spontaneous transition probabilities from an upper
state n to a lower state n′ are given, within the electric dipole
approximation, by the Einstein probability coefficient [31]

An→n′ =
8π2e2

mc3 ν2
nn′

ωn′

ωn
fn′→n (55)

where ωn and ωn′ are the statistical weights of levels n and n′

respectively, νnn′ is the frequency of the photon emitted as a
result of the transition and fn′→n is the absorption oscillator
strength for the n′ → n transition. The oscillator strengths
can be evaluated exactly for hydrogenic ions using hyperge-
ometric functions. Average lifetime of hydrogenic levels can
be calculated from the asymptotic expression given by Mil-
lette [32]. For other elements, oscillator strengths for allowed
and forbidden transitions can be evaluated using various ap-
proximate theoretical methods.

The cross-section for collisional excitation of the opti-
cally allowed transition n′ → n by electron impact is given
by [40]

σn′→n(u) = 4π a2
0

fn′→n

E2
n′n

αn′n
u − φn′n

u2 ln(1.25 βn′n u) (56)
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where En′n is the threshold energy for the excitation of the
n′ → n transition in Rydbergs, u = E/En′n is the energy
of the impacting electron E in threshold units, fn′→n is the
absorption oscillator strength for the n′ → n transition, a0 is
the Bohr radius and αn′n, βn′n and φn′n ≤ 1 (equal to 1 for
atoms) are fit parameters depending on the transition.

The cross-section for collisional excitation of the opti-
cally forbidden transition n′ → n by electron impact is given
by [40]

σn′→n(u) = 4π a2
0

(
n′

n

)3
αn′n

E2
n′n

u − φn′n

u2 (57)

where En′n is the threshold energy for the excitation of the
n′ → n transition in Rydbergs, u = E/En′n is the energy of
the impacting electron E in threshold units, a0 is the Bohr
radius and αn′n and φn′n are fit parameters depending on the
transition.

The collisional de-excitation rate coefficients are obtained
from the collisional excitation rate coefficients by the princi-
ple of detailed balancing as given by (12).

The collisional ionization cross-section from state n by
electron impact is given by [33, 40]

σn(u) = 2.66 πa2
0

 IH
1

In

2

ξn
u − 1

u2 ln(1.25 βn u) (58)

where IH
1 = EH

1 is the ionization energy of the hydrogen atom
in its ground state, In = En is the ionization energy of the atom
or ion in state n, u = E/In is the kinetic energy of the incident
electron in units of the threshold energy for ionization from
state n, ξn is the number of equivalent electrons in state n and
βn is a correction (fit) factor of order unity. To obtain the
correct threshold law, βn must be larger than 0.8.

The three-body recombination rate coefficients are ob-
tained from the collisional ionization rate coefficients by the
principle of detailed balancing.

The radiative recombination rate coefficients can be ob-
tained from the photo-ionization rate coefficients by the prin-
ciple of detailed balancing. The available experimental and
calculated photo-ionization data are fitted to a semi-empirical
function of the form [40]

a(u) =
C
up

[
1 +

b1

u
+

b2

u2 + · · · +
bm

um

]
(59)

where u is the energy of the incident photon in threshold en-
ergy units, and C and bk, k = 1, ...,m are fit parameters.
The parameters p and m are restricted to the range of val-
ues 0 ≤ p ≤ 5 and 1 ≤ m ≤ 9, and p is assigned half-integral
values to simplify and facilitate the evaluation of the rate co-
efficient integrals.

5 Laser action in Wolf-Rayet stars

The strength of an inversely populated transition q → p (p <
q) can be characterized by the fractional gain per unit dis-

Fig. 2: Typical α′ versus Te plot for the 6 f → 5d transition of C IV
[40, p. 249].

tance, α. At the centre of a Doppler-broadened line, it is given
by the following expression [34, p, 23]:

α =

√
ln 2
π

(
ωq Aq→p

4π

)
P λ2

0

∆ν
(60)

where λ0 is the centre wavelength of the transition, ∆ν is
the linewidth, ωq is the statistical weight of level q, Aq→p is
the Einstein probability coefficient for spontaneous transition
from level q to p, and [35]

P =
nq

ωq
−

np

ωp
. (61)

P is a measure of the population inversion and, for laser action
to be operative, P > 0. α is related to the intensity of a plane
wave at λ0 by the equation

I = I0 eα L (62)

where L is the length over which gain occurs. To be able
to compare various transitions without needing to specify the
linewidth ∆ν, we define a quantity α′ given by

α′ = α∆ν (63)
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Fig. 3: Typical ne − Te diagram showing laser gain equi-α′ contours
in cm−1 s−1 for the 6 f → 5d transition of C IV [40, p. 257].

where α is given by (60).
Model calculations starting from an initial element num-

ber density of 1014 cm−3 are performed for a grid of ne and Te

values. The inversion is displayed on ne, Te plots (ne−Te dia-
grams) showing contours of equal P or α′ (equi-α′ contours).
Fig. 2 shows a typical variation of α′ versus Te for inversely
populated transition 6 f → 5d of C IV. Fig. 3 shows a typical
ne−Te diagram with equi-α′ contours for inversely populated
transition 6 f → 5d of C IV.

On a three-dimensional plot with α′ as the third axis per-
pendicular to both the ne and Te axes, the diagram would ap-
pear as a triangular pyramidal-shaped mountain with a very
steep slope on the high-ne side, a steep slope on the low-Te

side, and a gradual slope on the low-ne, high-Te side. Strong
population inversion thus occurs only within a narrow range
of values of ne and Te, and each transition has its own re-
gion of strong population inversion. This provides a means to
classify Wolf-Rayet star parameters from their spectra.

Calculations of population inversions in astronomical
plasmas cooled by adiabatic expansion have been performed
on ions observed in WR stars by the following investigators.
Varshni and Lam [37–39] investigated population inversions
in the hydrogen-like He II ion for line λ4686 resulting from
the transition 4→ 3 in He II.

Fig. 4: Spectrum of the WC8 star HD 164270 from [36].

Fig. 5: Spectrum of the WC7 star HD 119078 from [36].

Fig. 6: Spectrum of the WC6 star HD 115473 from [36].

Millette [40] analyzed population inversions in the lithi-
um-like ions C IV, N V and O VI. Population inversions were
found to occur in many of the transitions. C IV transitions
giving rise to emission lines in the visible region of the spec-
trum, specifically line λ4650 resulting from transitions be-
tween levels 6 → 5 in C IV, were investigated. The C IV
λλ4646, 4658 lines arising from the 6 f → 5d and 6g → 5 f
transitions respectively, were found to be strongly inverted al-
lowing laser action in plasmas cooled by adiabatic expansion.

The model calculations provide an understanding of the
unusual strength of the C IV λ4650 emission line in the WC
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category of Wolf-Rayet stars, as seen in Fig. 4, Fig. 5 and
Fig. 6, which shows the λ4650 line becoming more and more
prominent in going from a category WC8 to a WC6 Wolf-
Rayet star. The lines in WC8 WR stars are relatively sharp,
becoming wider and brighter in WC7 WR stars, and even
wider and brighter in WC6 WR stars, indicating increasing
speed of ejection and increasing laser action.

Varshni and Nasser [41,42] investigated population inver-
sions in He I and in helium-like C III. Four transitions were
investigated in the visible region of He I, λ7281 31S → 21P,
λ6678 31D → 21P, λ5047 41S → 21P and λ4922 41D →
21P, of which observationl evidence is available for λ7281
and λ6678 in WR stars. Two transitions showed apprecia-
ble population inversion in the visible region of C III: λ4650
2s3p 3S → 2p3p 3S and λ5263 2p3p 3S → 2p3s 3P0.

Millette [40] provides a detailed roadmap to calculate po-
pulation inversions in hydrogenic and in the lithium-like ions
N V and O VI, in addition to C IV.

6 Laser action in Quasi-Stellar Objects

The physical process of population inversions in expanding
stellar atmospheres led Varshni to formulate his Plasma Las-
er Star (PLS) model as an explanation of the spectra of Wolf-
Rayet stars and Quasi-Stellar Objects [43–48]. Radio astron-
omy first detected QSOs in the 1950s as anomalous objects
with unexplained properties. QSO 3C 273 was the first radio
source quasar for which an optical counterpart was identified
in 1963. Its spectrum consisted of one strong emission line
and one medium to weak strength line (λ5637, λ7588).

QSOs were named quasi-stellar because they look like
stars, if not typical stars. In particular QSO spectra are dom-
inated by a small number of very intense and wide lines that
could not be readily identified with common elements. In
particular, there was a lack of the expected hydrogen Lyman
lines, a typical marker in most spectra. This likely provided
the impetus for Schmidt [49] to assume that the observed lines
in 3C 273 were the Hα and Hβ lines, red-shifted to their ob-
served wavelength in the spectrum. This quickly became the
standard approach, and ever since, astronomy and cosmol-
ogy have been transformed, with everything looking like red-
shifted objects, even if those red-shifts are superluminal.

Luckily, this possibility did not exist when Wolf-Rayet
stars were first discovered in 1867 by astronomers Charles
Wolf and George Rayet at the Paris Observatory, otherwise
we would be facing an even more confusing puzzle, as hydro-
gen emission lines are not present in WR spectra either. As
chance would have it, WR stars were investigated as stellar
objects, which allowed us to eventually determine the pres-
ence of laser action in WR stellar atmospheres, which is the
same process that is operating in QSO stellar atmospheres.

Banerji and Bhar [50–52] have compared the (unshifted)
spectral lines of 633 QSOs discovered till August 1976, as-
suming they are generated by a population inversion process

similar to that operating in WR stars instead of red shifts,
with the laser transitions observed in laboratories till April
1976 [53]. They found that 88% of the QSO lines agreed
to within 10 Å with the laser lines and 94% agreed to within
20 Å. Their assumption that QSOs are early-type stars with
temperatures in the range 104–105 K implied spectral lines
with asymmetric shapes and large broadening leading to er-
rors in measurement of up to 20 Å. They pointed out the simi-
larities between the spectra of QSOs and those of Wolf-Rayet
stars, with both deficient in hydrogen. They proposed that the
absorption lines of QSOs are produced in the expanding stel-
lar atmosphere, so that they are violet-shifted as in WR stars.
Under this model, they showed that 54 of 55 narrow absorp-
tion lines in QSO Q 1246-057 can be explained by assuming
an average velocity of absorbing ions of 500 km/s.

Taking Quasi-Stellar Objects to be local stellar objects in-
stead of distant galactic objects eliminates the problems as-
sociated with their currently accepted cosmological interpre-
tation: energy source, superluminal velocities, optical vari-
ability, quasar proper motions [54, 55], quasar binary sys-
tems [56,57], naked (no nebulosity) quasars, etc. The proper-
ties of QSOs are similar to those of WR stars and, as stars,
those are easily explainable in terms of commonly known
physical processes.

7 A new star type Q and the Hertzsprung-Russell dia-
gram

We consider the implications of Quasi-Stellar Objects as stel-
lar objects. We need to first be more specific about the ter-
minology used: we use the term quasar to refer specifically
to the cosmological interpretation of Quasi-Stellar Objects,
while we use the term QSO to refer to the stellar interpreta-
tion of Quasi-Stellar Objects. We introduce a new star type to
denote QSOs: stars of type Q, similar to the Wolf-Rayet stars
which are denoted as stars of type W.

The Hertzsprung-Russell diagram is extended beyond the
stars of type O B towards more massive and hotter stars of
type Q and W. The main sequence starts with Q W O B, fol-
lowed by the standard A F G K M types of the rest of the
sequence. As one moves towards star type Q, the stars be-
come increasingly more massive, of higher temperature, with
higher speeds of stellar atmosphere ejection and population
inversions, with their emission spectra increasingly domina-
ted by the lasing emission lines.

Significant work has been performed on the analysis of
WR stars to understand their classification and evolution. WR
stars are known to be hot, luminous objects, representative of
the late stage of evolution of massive O stars. The details have
been worked out over the last forty years [2, 10, 58–65] with
the analysis of Wolf-Rayet stars in the Magellanic Clouds
dwarf satellite galaxies of the Milky Way providing valuable
information. A similar effort is required to understand the
classification and evolution of stars of type Q, with the iden-
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tification of unrecognized representatives in our galaxy and
in the Magellanic Clouds an important step [55, 66].

8 Discussion and conclusion

In this paper, we have reconsidered the little-known but crit-
ically important physical process of laser action occurring in
the stellar atmospheres of Wolf-Rayet stars and, by extension,
of QSOs. We have reviewed the model used for hydrogenic
and lithium-like ions in the Collisional-Radiative (non-LTE)
model used to calculate the ionic energy level populations,
and the existing results for He I, He II, C III and C IV. We
have noted the availability of a detailed roadmap in [40] to
carry out similar calculations for the lithium-like ions of in-
terest N V and O VI.

We have reviewed the details of laser action in Wolf-Rayet
stars. We have considered the historical bifurcation that re-
sulted in the red-shift model of quasar spectra and its cosmo-
logical roots. We have also considered the evidence for the
presence of laser action in QSOs as in Wolf-Rayet stars, and
how taking QSOs to be local stellar objects instead of distant
galactic objects eliminates the problems associated with the
currently accepted cosmological interpretation.

We have introduced theterminology quasar to refer speci-
fically to the cosmological interpretation of Quasi-Stellar Ob-
jects and QSO to refer to the stellar interpretation of Quasi-
Stellar Objects. We have introduced a new star type Q for
QSOs, similar to the star type W for Wolf-Rayet stars. We
have expanded the Hertzsprung-Russell diagram to include
more massive and hotter stars of type Q and W beyond the
stars of type O B. The main sequence thus starts with stars of
type Q W O B, followed by the standard types A F G K M of
the rest of the sequence. Finally, we have noted the effort that
will be required to understand the classification and evolution
of stars of type Q, as has been achieved for Wolf-Rayet stars.
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