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We demonstrate that Gödel’s metric does not represent a model of universe as it is usually
accepted in the standard literature. In fact, a close inspection shows that this metric
as it stands is a very special case of a broader metric. Introducing a simple conformal
transformation readily induces a pressure term on the right hand side of the Einstein’s
field equations which actually describe a peculiar perfect fluid. This term was wrongly
interpreted by Gödel as the ad hoc cosmological constant required to sustain his model.
Gödel’s space-time can be thus regarded as a real physical system with no cosmological
implication and it is relegated to the class of ordinary metrics. The emergence of the
related closed time-like curves is not bound to a rotating universe as stated in all classical
treatments and this fact naturally sheds new light on time travel feasibility considerations.

Notations

Space-time greek indices run from: α,β: 0, 1, 2, 3.
Space-time signature: -2.
κ is the Einstein constant.
We adopt here: c = 1.

1 The Gödel universe

1.1 General

In his original paper [1], Kurt Gödel has derived an exact
solution to Einstein’s field equations in which the matter takes
the form of a shear/pressure free fluid (dust solution).

This universe is homogeneous but non-isotropic and it
exhibits a specific rotational symmetry which allows for the
existence of close timelike curves (CTCs). The Gödel space-
time has a five dimensional group of isometries (G5) which is
transitive. (An action of a group is transitive on a manifold
(M,g), if it can map any point of the manifold into any other
points of M).

It admits a five dimensional Lie algebra of Killing vector
fields generated by a time translation ∂x0 , two spatial transla-
tions ∂x1 , ∂x2 , plus two further Killing vector fields:

∂x3 − x2∂x2 and 2ex1∂x0 + x2∂x3 +

(
e2x1 −

1
2

x2
2∂x2

)
.

The Weyl tensor of the standard Gödel solution has Petrov
type D:

Cαβ
µν = Rαβ

µν +
R
3
δα δ

β
[µ ν] + 2δ R[α β]

[µ ν] .

The presence of the non-vanishing Weyl tensor prevents the
Gödel metric from being Euclidean whatever the coordinates
transformations.

This is in contrast to the Friedmann-Lemaı̂tre-Robertson-
Walker metric which can be shown to reduce to a conformal
Euclidean metric, implying that its Weyl tensor is zero [2].

The Gödel universe is often dismissed because it implies a
non zero cosmological term and also since its rotation would
conflict with observational data.

In what follows, we are able to relax our demand that the
Gödel metric be a description of an actual universe. This is
achieved through a specific transformation which makes Gödel
space-time an “ordinary” metric just as any other metrics
currently derived in physics.

1.2 The basic theory

The classical Gödel line element is generically given by the
interval

ds2 = a2
[
dx0

2 − dx1
2 + dx2

2 1
2

e2x1 − dx3
2 + 2ex1 (dx0 dx2)

]
, (1.1)

or equivalently:

ds2 = a2
[
−dx1

2 − dx3
2 − dx2

2 1
2

e2x1 + (ex1 dx2 + dx0)2
]
. (1.2)

a > 0 is a constant.
The components of the metric tensor are:

(gµν)G =


a2 0 a2ex1 0
0 −a2 0 0

a2ex1 0 a2 1
2 e2x1 0

0 0 0 −a2

,

(gµν)G =


−a2 0 −a−22e−x1 0

0 −a2 0 0
−a−22e−x1 0 −a−22e−2x1 0

0 0 0 −a2

.
In this particular case, since only ∂1(g22)G,0 and ∂1(g02)G

, 0, the non-zero connection components are:

Γ0
01 = 1 Γ0

12 = Γ1
02 =

1
2

ex1

Γ1
22 =

1
2

e2x1 Γ2
01 = −e−x1

Those greatly simplify the Ricci tensor: Rβγ = ∂1Γ
1
βγ +

Γ1
βγ − Γ

δ
αβΓ

α
δγ whose components reduce to:

R00 = 1, R22 = e2x1

R02 = R20 = ex1
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The Gödel unit vector u of matter in the direction of the x0
lines has the following components:

(uµ)G = (a−1, 0, 0, 0), (1.3)(
uµ

)
G

= (a, 0, aex1 , 0), (1.4)

hence:
Rµν =

(
uµuν

)
G

a−2, (1.5)

R =
(
uµuµ

)
G

= a−2. (1.6)

In order to make his metric a compatible solution to Ein-
stein’s field equations, Gödel is led to introduce a cosmological
constant Λ as:

Rµν −
1
2
gµνR = κρuµuν + gµνΛ. (1.7)

To achieve this compatibility, he then further sets:

a−2 = κρ, (1.8)

Λ = −
1
2

R = −
1

2a2 = −
1
2
κρ. (1.9)

As primarily claimed by Gödel, its stationary space-time is
homogeneous.

For every point A of the manifold (M,gG), there exists a
one-parameter group of transformations of M carrying A into
itself.

This means that (M,gG) has a rotational symmetry and
matter rotates everywhere with a constant rotation velocity
magnitude ωG orthogonal to uG.

Using the contravariant components:

(ωα)G =

0, 0, 0,

√
2

a2

, (1.10)

one finds:
ωG = (gαµωαωµ)G

1/2
=

a
√

2
. (1.11)

With (1.8) this magnitude is:

ωG =

(
1
2
κρ

)1/2

. (1.12)

A first glance at these constraints, readily reveals a fairly
high degree of arbitrariness in the theory.

Finetuning the hypothetical constant Λ with the density
of the universe (and the Ricci scalar) appears indeed as a
somewhat dubious physical argument.

We shall see that those ill-defined assumptions are not
required in order for the basic model to satisfy the field equa-
tions.

2 Gödel’s model defined as a homogenous perfect fluid

2.1 Reformulation of Gödel’s metric

We now make the assumption that a is slightly space-time
variable and we set:

a2 = e2U . (2.1)

The positive scalar U(xµ) > 0 will be explicited below.
The Gödel metric tensor components (1.2) are related to

the fundamental metric tensor g by:

(gµν)G = e2Ugµν, (2.2)

(gµν)G = e−2Ugµν, (2.2 bis)

This means that the Gödel metric is now conformal:

ds2 = e2U

[
dx0

2 − dx1
2 + dx2

2 1
2

e2x1 − dx3
2 + 2ex1 (dx0 dx2)

]
. (2.3)

We are now going to see how the substitution (2.1) drasti-
cally changes the meaning of Gödel’s limited theory.

2.2 Relativistic analysis of a neutral homogeneous perfect
fluid

2.2.1 The geodesic differential system

Let us consider the manifold (M,g), on which is defined a
vector tangent to the curve C in local coordinates:

ẋα =
dxα

dζ
, where ζ is an affine parameter.

In these coordinates we consider the scalar valued function
f (xα, ẋα) which is homogeneous and of first degree with respect
to ẋα.

To the curve C joining the point x1 to x2, one can always
associate the integralA such that

A =

∫ ζ2

ζ1

f (xα, ẋα)dζ =

∫ x2

x1

f (xα, ẋα)dxα. (2.4)

We now want to evaluate the variation ofA with respect to
the points ζ1 and ζ2:

δA = f δζ2 − f δζ1 −

∫ ζ2

ζ1

δ f dζ.

Classically we know that:∫ ζ2

ζ1

δ f dζ =

[
∂ f
∂ẋα

δxα
]
−

∫ ζ2

ζ1

Eαδxαdζ,

where Eα is the first member of the Euler equations associated
with the function f .

With Eα as the components of E, we infer the expression

δA = [w(δ)]x2
− [w(δ)]x1

−

∫ ζ2

ζ1

Eδxdζ, (2.5)
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where [w(δ)] has the form:

[w(δ)] =

(
∂ f
∂ẋα

)
δxα −

(
xα

∂ f
∂ẋα
− f

)
δζ.

Due to the homogeneity of f , it reduces to:

w(δ) =

(
∂ f
∂ẋα

)
δxα.

Let us apply the above results to the function

f = eU ds
dζ

= eU
(
gαβ ẋα ẋβ

)1/2
,

where eU is defined everywhere on (M,g).
Between two points x1 and x2, of (M,g) connected by a

time-like curve we have the correspondence:

s′ =

∫ x2

x1

eU ds =

∫ x2

x1

eU
(
gαβ ẋα ẋβ

)1/2
. (2.6)

We first differentiate f 2 = e2U
(
gαβ ẋα ẋβ

)
with respect to ẋα

and xα:
f
∂ f
∂ẋα

= e2Ugαβ ẋβ, (2.7)

f
∂ f
∂xα

= eU
(
gβµ ẋβ ẋµ

)1/2

×

[
∂αeU

(
gβµ ẋβ ẋµ

)1/2
+

1
2

eU∂α
(
gβµ ẋβ ẋµ

)]
. (2.8)

We now choose s as the affine parameter ζ of the curve C,
so the vector ẋβ is here regarded as the unit vector uβ tangent
to C.

Equations (2.7) and (2.8) then reduce to the following:

d f
dẋβ

= eUuβ, (2.9)

d f
dxβ

= ∂βeU +
1
2

eU∂β(gαµ)uαuµ,

d f
dxβ

= ∂βeU + eUΓαβ,µuαuµ. (2.10)

The Γαβ,µ are here the Christoffel symbols of the first kind.
Expliciting the Euler equations f (xα,duα):

Eβ =
d
ds

∂ f
∂uβ
−
∂ f
∂xβ

, (2.11)

we get:

Eβ =
d
ds

(
eUuβ

)
− eU

(
Γαβ,µuαuµ

)
− ∂βeU ,

Eβ = eU
(
uµ∂µuβ − Γαβ,µuαuµ

)
− ∂αeU

(
δ α
β − uαuβ

)
,

Eβ = eU
[(

uµ∇µuβ
)
− ∂βU − ∂αU

(
δ α
β − uαuβ

)]
. (2.12)

Equation (2.5) becomes:

δA = [w(δ)]x2
− [w(δ)]x1

−

∫ x2

x1

〈Eδx〉ds, (2.13)

where locally: w(δ) = eUuαdxα.
When the curve C varies between two fixed points x1 and

x2 the local variations [w(δ)]x2 and [w(δ)]x1 vanish. Therefore
applying the variational principle to (2.13) simply leads to:

δA = −

∫ x2

x1

〈Eδx〉ds = 0, (2.14)

from which we infer E = 0, i.e., from (2.12):

uµ∇µuβ − ∂αU
(
δ α
β − uαuβ

)
= 0 (since eU , 0). (2.15)

The equation (2.15) is formally identical to the differential
system obeyed by the flow lines of a perfect fluid of density ρ
with an equation of state ρ = f (P) (see Appendix):

Tµβ = (ρ + P)uµuβ − Pgµβ. (2.16)

These flow lines are thus timelike geodesics of the confor-
mal metric to (M,g) according to (2.6):

s′ =

∫ s2

s1

eU ds, (2.17)

with

U =

∫ P2

P1

dP
ρ + P

. (2.18)

All along the curve segment (s′), the pressure is varying
between two endpoints s1 and s2 which correspond to the
values P1 and P2.

One can find similar conclusions in [3, 4].
The positive scalar eU accounts for the relativistic fluid

index [5].

2.2.2 The Gödel interpretation

The tensor (2.16) can be equivalently written:

Tµβ = ρuµuβ − Phµβ, (2.19)

with the projection tensor:

hµβ = gµβ − uµuβ. (2.20)

The cosmological term can then be re-introduced by setting

P = −
Λ

κ
, (2.21)

yielding the model which Gödel simply focused on.
Finally, by letting a be a conformal factor, we see that

Gödel’s metric (2.3) is simply the solution of the field equations
with a variable pressure term as per:

Rµν −
1
2
gµνR = κ

(
ρuµuβ − Phµβ

)
. (2.21bis)

The cosmological “constant” Λ is thus no longer this
arbitrary ingredient required to sustain the Gödel model and so
are the constraints (1.8) and (1.9).

Patrick Marquet. The Exact Gödel Metric 135
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2.3 The Gödel rotation

2.3.1 Vorticity of the fluid

We just showed that Gödel space-time should be likened to a
perfect fluid.

The time-like 4-vector uα is everywhere tangent to the flow
lines of this fluid.

The covariant derivative uα;µ may be expressed in a in-
variant manner in terms of tensor fields which describe the
kinematics of the congruence of curves generated by uα.

In Gödel’s case, the shear tensor σαµ vanishes:

σαµ = u(α;µ) −
1
3
θhαµ + ů u(α µ) = 0, (2.22)

where θ is the expansion scalar:

θ = uα;α. (2.22bis)

ůα is the acceleration vector of the flow lines:

ůα = uα;µuµ. (2.22ter)

For a perfect fluid, this acceleration is shown to be (see
Appendix):

ůα = ∂αU. (2.23)

Besides ůα and θ, the shearless fluid is characterized by the
vorticity tensor:

ωαµ = h σ
α h ν

µ u[σ;ν] = u[α;µ] + ů u[α µ], (2.24)

from which is derived the vorticity 4-vector ω of the flow lines
of the fluid.

The ω-components are known to be: [6]

ωβ =
1
2
ηβγσρuγωσρ , (2.25)

with the Levi-Civita tensor: ηβγσρ = −g−1/2 · εβγσρ.
The kinematic quantities ωαµ and ωα are completely or-

thogonal to uµ , i.e.,

ωαµuµ = 0, ůαuµ = ωαuµ = 0.

(Shear free flows of a perfect fluid associated with the Weyl ten-
sor have been extensively investigated by A. Barnes, Classical
General Relativity. proc. Cambridge, 1984).

2.3.2 Conformal transformations

All above results can be easily extended to the conformal
manifold (M,g′) by applying the covariant derivative (∇µ)′

formed with the conformal connection coefficients:(
Γ
γ
αβ

)′
= Γ

γ
αβ + 2δγ U(α ,β) − gαβU

,γ. (2.26)

One also defines the unit 4-vector w of the fluid on the
conformal metric (ds2)′ as:

wµ = eUuµ , (2.27)

wβ = e−Uuβ . (2.28)

In this case, the differential system of the flow lines wµ

admits the relative integral invariant in the sense of Poincaré
[7]: ∫

Ω =

∫
wβδxβ. (2.29)

Denoting by dΩ the exterior differential of the form Ω, we
have in local coordinates:

dΩ = dwβ ∧ dxβ =
1
2

[
∂βwα − ∂αwβ

]
dxβ ∧ dxα. (2.30)

To the form dΩ is associated the antisymmetric tensor of
components:

ωβα = ∂βwα − ∂αwβ . (2.31)

It is easy to verify that these components coincide with
the vorticity tensor components defined by (2.24). Unlike the
vorticity tensor ωβα, the vorticity vector ωβ does not remains
the same upon the conformal transformations (2.27)–(2.28).

2.3.3 Application to the Gödel model

On the modified Gödel manifold (M,gG), the components of
the unit 4-vector wG tangent to world lines of matter (1.3) (1.4)
are here:

(wµ)G = eU(uµ)G = eU(1,0,0,0), (2.32)(
wβ

)
G

= eU
(
uβ

)
G

= e−U(1,0,ex1 ,0). (2.33)

Notice that the contravariant components (uµ)G are all
constant.

In this particular case, according to (2.23), one has

(ůα)G = ∂αU = 0, i.e., U is constant.

By concatenation, the conformal factor expU reduces to a
constant and coincides with Gödel’s choice a = const .

So the vorticity magnitude of the fluid’s matter remains as
in the initial theory:

ωG =
(
gαµω

αωµ
)

G

1/2
=

a
√

2
. (2.34)

On the other hand, we note that the covariant components
of the velocity (uβ)G are not all constant.

This means that the conformal geodesics principle holds
within our theory.

In other words, we clearly see that Gödel’s proposed solu-
tion is only a (very limited) special case (contravariant velocity
components) which therefore reveals a patent lack of general-
ity.
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Therefore, Gödel’s theory ought to be embedded in a
broader scheme implying a conformal metric

(
ds2

)′
as we

inferred above.
Note: one of the Kretschmann scalar is an invariant only

for ωG : RαβγδTαβγδ = 12ωG
4.

2.4 Chronal horizon

With Gödel one defines new (cylindrical) coordinates (t,r,φ,y)
by setting:

ex1 = cosh2r + cosφsinh2r, (2.35)

x2ex1 =
√

2sinφsinh2r, (2.36)

tan
1
2

[
φ +

x − 2t
√

2

]
= e−2r tan

φ

2
, (2.37)

2z = x3. (2.38)

Within the framework of our theory, these coordinates lead
to the line element:

ds2 = 4e2U(x)
[
dt2 − dr2 − dz2+

+
(
sinh4r − sinh2r

)
dφ2 + 2

√
2sinh2r dφdt

]
. (2.39)

This metric still exhibits the rotational symmetry of the
solution about the axis r = 0, since we clearly see that the
components of the metric tensor do not depend on φ.

For r > 0, we have: 0 6 φ 6 2π. If a curve rG is defined
by: sinh4r = 1, that is

rG = ln
(
1 +
√

2
)
, (2.40)

then any curve r > ln(1 +
√

2), i.e. (sinh4r − sinh2r) > 0
materialized in the “plane” t = const. (or zero t), is a closed
timelike curve.

The radius rG referred to as the Gödel radius induces a
light-like curve or closed null curve, where the light cones are
tangential to the plane of constant (or zero) t.

The photons trajectories reaching this radius are closing
up, therefore rG constitutes a chronal horizon beyond which
an observer located at the origin (r = 0) cannot detect them.

With increasing r > rG the light cones continue to keel
over and their opening angles widen until their future parts
reach the negative values of t.

In this achronal domain, any trajectory is a closed time-like
curve and s′ is extended over a full cycle.

As a result, the integral U performed over the closed path
has no endpoints and is thus expressed in the form:

U =

∫ [
dP
ρ + P

]
+ const. (2.41)

However, the pressure P which is fluctuating along the
closed path remains at the same averaged value for the whole
cycle and may be then regarded as globally constant.

In this case, the first term in the r.h.s. of (2.35) vanishes
implies U = const., and the conformal factor (expU) may
coincide again with Gödel’s choice a = const.

Therefore, for r > rG, the acceleration of flow lines of
matter is always zero whatever the components of wG. Because
of this, all closed timelike curves can no longer be derived
from the geodesic principle calculation developed above.

By introducing the pressure in the Gödel model, we clearly
put in evidence the difference between the geodesics and the
closed time-like curves.

This was mathematically outlined in [8] but no explanation
was provided as why this difference arises.

Conclusion

When Gödel wrote down his metric he was led to introduce a
distinctive constant factor a in order to re-transcript the field
equations with a cosmological constant along with additional
constraints.

Our theory is free of all these constraints and moreover
it provides a physical meaning to the a term. Inspection
shows that by substituting a conformal factor to the constant a
induces the field equations with a pressure like term which was
wrongly interpreted by Gödel as the cosmological constant of
the universe.

In fact, he empirically assembled the pieces of the constant
matter density and curvature scalar in order to conveniently
cope with the field equations precisely written with the cosmo-
logical constant.

In contrast, the reconstructed Gödel metric is here a straight-
forward solution to these equations and as such it can be
reproduced like any other metric without referring to any
cosmological model whatsoever.

The metric still exhibits a rotation which allows for the
existence of close timelike curves (CTCs) since the light cone
opens up and tips over, as the Gödel’s circular coordinate radius
increases within the cylindrical coordinates representation.

It seems that the first model exhibiting this property was
pioneered by the German mathematician C. Lanczos in 1924
[9], and later rediscovered in a new form by the dutch physicist
W. J. Van Stockum in 1937 [10].

However, the existence of CTCs satisfying the Einstein’s
equations remained so far a stumbling block for most of physi-
cists because it should imply the possibility to travel back and
forth in time.

The time travel possibility, was quoted as a pure mathe-
matical “exercise” unrealistic in nature because it was deemed
to describe a hypothetical universe contradicting the standard
model in expansion as we observe it. Moreover, defining an
absolute time is not readily applicable in Gödel space-time.

In here, the cards are now somewhat reshuffled: the Gödel
model does not describe any sort of universe and the relevant
metric can be applied as any other metrics like for example the
Schwarzschild, the Kerr or the Alcubierre’s ones.
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Under these circumstances, why not considering the Gödel
model as a potential time machine?

A typical example of such possible time machine is given
by the cylinder system elaborated by the American physicist
F. J. Tipler in 1974 [11].

It describes an infinitely long massive cylinder spinning
along its longitudinal axis which gives rise to the “frame
dragging” effect. If the rotation rate is fast enough the light
cones of objects in cylinder’s vicinity become tilted. Tipler
suggested that a finite cylinder might also produce CTCs
which was objected by Hawking who argued that any finite
region containing CTCs would require negative energy density
produced by a so-called “exotic matter” which violates all
energy conditions [12].

The same kind of negative energy is needed to sustain a
coupled system of Lorentzian wormholes designed to create a
time machine as suggested in [13].

In all cases, feasibility and related causality paradoxes
seemed to have been killed once for good by Hawking through
a specific vacuum fluctuations mechanism that impedes any
attempt to travel in the past [14].

Several authors have however recently challenged if not
rejected this statement [15, 16].

These constraints do not apply in the present theory.
For a thorough study covering CTCs questions one can

refer to [17, 18].

Submitted on May 24, 2021
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Appendix

In a holonomic frame defined on (M,g), the unit vectors are
normalized so that:

gµνuµuν = gµνuµuν = 1. (A.1)

By differentiating we get:

uµ∇νuµ = 0. (A.2)

Let us consider the following tensor which describes a
homogeneous perfect fluid with density ρ and with pressure P:

Tµν = (ρ + P)uµuν − Pgµν . (A.3)

The conservation equations are written:

∇µ
[
(ρ + P)uµuν

]
= ∇µ

(
Pδ µ

ν

)
. (A.4)

Setting the vector Kν such that

(ρ − P)Kν = ∇µ
(
Pδ µ

ν

)
, (A.5)

∇µ
[
(ρ − P)uµuν

]
= (ρ + P)Kν , (A.6)

∇µ
[
(ρ + P)uµ

]
uν + (ρ + P)uµ∇µuν = (ρ + P)Kν . (A.7)

Multiplying through with uν, and taking into account (A.2),
we obtain after dividing by (ρ + P):

uµ∇µuν =
(
gµν − uµuν

)
Kµ = hµνKµ . (A.8)

The flowlines everywhere tangent to the vector uµ are
determined by the differential equations (A.8).

Kµ only depends on xµ and since: hµνKµ = Kν = ∂ν
P

ρ − P
,

we set
Kν = ∂νU , (A.9)

with
U =

∫
dP
ρ + P

. (A.10)

When the fluid pressure is function of the density, the
4-vector ∂νU is regarded as the 4-acceleration vector ůν of the
flow lines given by the pressure gradient orthogonal to those
lines [19, p.70].
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