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Extensive experimental tests of the Bell inequality have been conducted over time and
the test results are viewed as a testimony to quantum mechanics. In considering the
close tie between quantum mechanics and statistical theory, this paper identifies the
mistake in previous statistical explanation and uses an elegant statistical approach to
derive general formulas for two-particle Bell tests, without invoking any wavefunctions.
The results show that, for the special case where the spins/polarizations are in the same,
opposite, or perpendicular directions, the general formulas derived in this paper convert
to quantum predictions, which are confirmed by numerous experiments. The paper also
investigates the linkages between the statistical and quantum predictions and finds that
vector decomposition and probability law are at the heart of both approaches. Based on
this finding, the paper explains statistically why the local hidden variable theory fails
the Bell tests. The paper has important implications for quantum computing, quantum
theory in general, and the role of randomness and realism in physics.

1 Introduction

The extensive study on Bell tests originated from the 1935 pa-
per by Einstein et al [1], which claimed that physical reality
can be predicted with certainty and that the uncertain nature
of quantum prediction is due to incomplete information or the
act of local hidden variables. Bohm [2] proposed a thought
experiment to test the local hidden variable (LHV) theory and
quantum mechanism, but this thought experiment was im-
practical to implement. In 1964, John Bell [3] developed the
Bell inequality from the LHV theory as a testing tool: if the
inequality is violated, the LHV theory is disproved. In 1969
Clauser et al [4] extended the Bell inequality to an experi-
mentally testable version. Freedman and Clauser [38], As-
pect [5, 6] and many others used this version to test the in-
equality and convincingly rejected it. Numerous experiments
on Bell tests [7–21] have been conducted to close the “loop-
holes” in testing. Since almost all testing results are consis-
tent with the quantum mechanical prediction, they are viewed
as a testimony to quantum mechanism.

It is well known that quantum mechanics has a close tie
with probability theory. The author suspects that both quan-
tum mechanics and statistics mechanics may essentially be
the same in the case of the Bell tests, and therefore identified
the mistakes in previous statistical explanation and derived a
statistical prediction for two-particle Bell tests. It is revealed
that the quantum prediction of the Bell test results is a spe-
cial case of the statistical prediction. By comparing the sta-
tistical and quantum derivations, the author further demon-
strates that the essence of quantum prediction is probability
law, and that quantum entanglement in two-particle Bell tests
is nothing mysterious but an alternative expression for statis-
tical correlation (i.e. there is no difference between statistical
and quantum correlations). When the correlated particles are
separated and facing different conditions (e.g. polarizers of
different orientations), probability law can still maintain their

correlation.
The paper is organized as follows: Section 2 demonstrates

the deterministic or uncorrelated nature of the Bell inequality
and reveals the mistakes in the previous statistical approach.
Based on a general case of spin or polarization, Section 3
derives a statistical prediction for Bell tests for all possible
uncorrelated and correlated particle pairs. Section 4 explores
the linkage between the quantum and statistical predictions,
while Section 5 uses the statistical approach to explain the re-
sults of representative two-particle Bell tests. Section 6 con-
cludes the paper.

2 Deterministic or uncorrelated nature of the Bell in-
equality

Realism and localism play a key role in deriving the Bell in-
equality. The usual assumption for derivation is that at loca-
tion A, a setting a (e.g. the direction of the spin/polarization
analyser) leads to an experimental outcome A(a), while set-
ting b at location B leads to outcome B(b), with the joint out-
come being E(a, b) = A(a) B(b). Since a setting leads to an
outcome with certainty, the outcome is predetermined by the
settings. This fits with the idea of determinism or realism.
Moreover, the outcome at a location is determined only by
the setting at that location, e.g. A(a) is determined by local
setting a at location A, not by setting b at location B. This is
localism.

If settings a and b can be changed to a′ and b′, respec-
tively, we can have joint outcomes:

E(a, b′) = A(a) B(b′)

E(a′, b) = A(a′) B(b)

E(a′, b′) = A(a′) B(b′) .

We further assume that the detected outcome at any set-
ting is between -1 and +1, namely |A| ≤ 1, |B| ≤ 1. With these
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assumptions, we can have:

E(a, b) − E(a, b′) = A(a) B(b) − A(a) B(b′)
= A(a) B(b) − A(a) B(b′) + [A(a) B(b)][A(a′) B(b′)]
− [A(a) B(b)][A(a′) B(b′)]

or

E(a, b) − E(a, b′) = A(a) B(b) [1 + A(a′) B(b′)] −

− A(a) B(b′) [1 + A(a′) B(b)] .
(1)

In absolute value, we can write:∣∣∣E(a, b) − E(a, b′)
∣∣∣ ≤ |A(a) B(b)| ∗ |1 + A(a′) B(b′)| +

+ |A(a) B(b′)| ∗ |1 + A(a′) B(b)| .
(2)

We have changed the negative sign on the right-hand side
of (1) to a positive sign in (2) because A(a) B(b′) can be neg-
ative. Since the values of A(a), B(b), A(a′), and B(b′) are all
between -1 and 1, we have:

|A(a) B(b)| ≤ 1 and
∣∣∣A(a) B(b′)

∣∣∣ ≤ 1 .

As such, the inequality can be written as:∣∣∣E(a, b) − E(a, b′)
∣∣∣ ≤ ∣∣∣1 + A(a′) B(b′)

∣∣∣ +
∣∣∣1 + A(a′) B(b)

∣∣∣
= 2 ±

∣∣∣A(a′) B(b′) + A(a′) B(b)
∣∣∣

or ∣∣∣E(a, b) − E(a, b′)
∣∣∣ ≤ 2 ±

∣∣∣E(a′, b′) + E(a′, b)
∣∣∣ . (3)

On the right-hand side of (3), we used the “±” sign be-
cause both A(a′) B(b′) and A(a′) B(b) can be negative (lead-
ing to negative sign) or positive (leading to positive sign).
There are two boundaries in the above inequality. If the lower
boundary is satisfied, the inequality holds, so we have arrived
at the Bell inequality:∣∣∣E(a, b) + E(a′, b′) + E(a′b) − E(a, b′)

∣∣∣ ≤ 2 . (4)

To incorporate a hidden variable into the inequality, most
researchers introduced a random variable. For example, Bell
[3,22] and Clauser et al [4] added to the experiments a hidden
variable λ, which has a normalized probability distribution:∫ ∞

−∞

p(λ) dλ = 1 .

With the added hidden variable, Bell [3,22] expressed the
expected values of coincidence at the different settings a, a′,
b and b′ as follows:

E(a, b) =

∫ ∞

−∞

A(a, λ) B(b, λ) p(λ) dλ (5)

E(a, b′) =

∫ ∞

−∞

A(a, λ) B(b′, λ) p(λ) dλ (6)

E(a′, b) =

∫ ∞

−∞

A(a′, λ) B(b, λ) p(λ) dλ (7)

E(a′, b′) =

∫ ∞

−∞

A(a′, λ) B(b′, λ) p(λ) dλ . (8)

Using the same procedure that was used to derive the Bell
inequality for (3) – the deterministic case, Bell ( [22, pp. 178–
179]) derived (the notations are slightly changed for contem-
porary readers):

E(a, b) − E(a, b′) =

=
∫ ∞
−∞

A(a, λ) B(b, λ) p(λ) dλ −

−
∫ ∞
−∞

A(a, λ) B(b′, λ) p(λ) dλ

=
∫ ∞
−∞

[A(a, λ) B(b, λ) − A(a, λ) B(b′, λ) +

+ A(a, λ) B(b, λ) A(a′, λ) B(b′, λ) −

− A(a, λ) B(b, λ) A(a′, λ) B(b′, λ)] p(λ) dλ

=
∫ ∞
−∞

A(a, λ) B(b, λ) [1 + A(a′, λ) B(b′, λ)] p(λ) dλ −

−
∫ ∞
−∞

A(a, λ) B(b′, λ) [1 + A(a′, λ) B(b, λ)] p(λ) dλ .

(9)

In terms of absolute value, we have:

|E(a, b) − E(a, b′)|

≤ |

∫ ∞

−∞

A(a, λ) B(b, λ) [1 + A(a′, λ) B(b′, λ)] p(λ) dλ |

+ |

∫ ∞

−∞

A(a, λ) B(b′, λ) [1 + A(a′, λ) B(b, λ)] p(λ) dλ |

≤ |

∫ ∞

−∞

[1 + A(a′, λ) B(b′, λ)] p(λ) dλ |

+ |

∫ ∞

−∞

[1 + A(a′, λ) B(b, λ)] p(λ) dλ |

= 2 ± |E(a′, b′) + E(a′, b)| .

Rearranging the above inequality as before, we can obtain the
same inequality as (4).

From the above derivation, one may notice that the same
term

∫ ∞
−∞

p(λ) dλ is added to outcomes of the different settings
and then this term is filtered out in the end by the definition
of expected values in (7) and (8). As such, the added hidden
variable and probability are only additional statistical noise,
which does not change the deterministic nature of the result-
ing inequality.

Later, Bell and others [28–30] moved on to a version of
the Bell inequality based on joint and conditional probabili-
ties. However, they used the same assumption that the distri-
bution of hidden variable λ is UNRELATED to local settings.
This assumption apparently contradicts the concept of a local
variable. Ironically, the assumption is often regarded as a fea-
ture of a local variable. Myrvold et al [23] used a different
approach. Instead of concerning the probability distributions
of λ conditioned on settings, they conditioned the experimen-
tal outcomes on hidden variable λ. Since they assigned no
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statistical property to λ, its behaviour is unknown, so its role
in their derivation is negligible, or not essential at least.

To present a genuine statistical event, one should allow
the probability density λ to vary with the local settings. In
other words, the probability of value λmust be conditioned on
the settings, i.e. for settings a and b, we have the probability
p(λ | a) and p(λ | b), respectively. The probability of the joint
outcome of settings a and b should be p(λ | a, b). Similarly,
we have p(λ | a, b′), p(λ | a′, b), p(λ | a′, b′) for other joint set-
tings. As such, the expected joint detection should be:

E(a, b) =

∫ ∞

−∞

A(a, λ) B(b, λ) p(λ | a, b) dλ

E(a, b′) =

∫ ∞

−∞

A(a, λ) B(b′, λ) p(λ | a, b′) dλ

E(a′, b) =

∫ ∞

−∞

A(a′, λ) B(b, λ) p(λ | a′, b) dλ

E(a′, b′) =

∫ ∞

−∞

A(a′, λ) B(b′, λ) p(λ | a′, b′) dλ .

Using this new definition of expected values, the terms
for the probability of λ are different for each joint setting and
thus cannot be filtered out. As a result, the Bell inequality
cannot be derived.

However, one may further assume that the joint probabil-
ity of outcome at joint setting a and b is the multiplication of
probabilities of outcomes at each setting, namely:

p(λ | a, b) = p(λ | a) p(λ | b) (10)

where 0 ≤ p(λ | a) < 1; 0 ≤ p(λ | b) < 1;
∫ ∞
−∞

p(λ | a) dλ = 1;
and

∫ ∞
−∞

p(λ | b) dλ = 1.
Applying the same method for joint settings a and b′, a′

and b, and a′ and b′, we have:

p(λ | a, b′) = p(λ | a) p(λ | b′)

p(λ | a′, b) = p(λ | a′) p(λ | b)

p(λ | a′, b′) = p(λ | a′) p(λ | b′) .

Based on the above joint probabilities, we can calculate
E(a, b), E(a, b′), E(a′, b) and E(a′, b′). Following the same
procedure as in deriving (9), we can derive the Bell inequality
(4).

As we see, (10) is crucial for deriving the Bell inequality
from a statistical point of view. However, the expression of
joint probability as a product of the probability of outcome of
two experiments is not without a condition. The well-known
but often neglected condition is that the two experiments in-
volved in the joint probability calculation in (10) must be to-
tally unrelated, i.e. independent random experiments. Apply-
ing this condition to the Bell tests, the requirement is that the
probabilities of outcomes at different locations/settings are
independent of each other, so “local” means “uncorrelated”.

This interpretation gives the alternative condition for the Bell
inequality. That is, if the outcomes are not deterministic, the
outcomes at two different settings should not be correlated.

The common wisdom is that, during a Bell test, the exper-
iments at different locations A and B are apparently indepen-
dent because the orientations of the polarizers at A and B are
changed independently and randomly. However, the indepen-
dence of settings are not the full condition for independent
experiments because local settings are only one element of
the polarization experiments. The other element is the light
source. In fact, correlated source particles are used in all Bell
tests conducted so far, so the experiments conducted at dif-
ferent locations are not independent. Since the experiments
based on different settings are correlated by source particles,
the joint probability in a Bell test should be calculated based
on conditional probability:

pa,b = pa ∗ pb|a

or
pa,b = pb ∗ pa|b .

Similar mistakes are also commonly made in treating the
expected value of joint events as being the multiplication of
the expected values of separate events. Due to the statistical
nature of the polarization experiments, we need to allow one
setting to generate different results, e.g. experiments based
on setting a can have results A1(a), A2(a), . . .An(a), so the ex-
pected value for results of setting a can be expressed as:

E(a) =
1
n

∑
i

Ai(a) . (11)

We can also write the expected value for results of setting
b as:

E(b) =
1
n

∑
i

Bi(b) . (12)

Indeed, Bell [22, p. 178] realized the importance of in-
troducing (11) and (12) for E(a) and E(b). However, with no
precondition being specified, he assumed the following equal-
ity as the base for deriving the Bell inequality:

E(a, b) = E(a) ∗ E(b) . (13)

The above equation is used by numerous researchers on Bell
tests, but the equation is not unconditional. Statistically, we
can expand the expected values as:

E(a, b) =
1
n

∑
i

Ai(a) Bi(b) (14)

E(a) ∗ E(b) =
1
n2

∑
i

Ai(a)
∑

i

Bi(b) . (15)

Apparently, E(a, b) , E(a) ∗ E(b) in general cases. A
special statistical case where E(a, b) = E(a) ∗ E(b) holds is
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when the outcomes of Ai(a) are independent of (or not corre-
lated to) the outcomes of Bi(b). In this special case, the Bell
inequality will hold. If E(a) and E(b) are correlated, we must
use the conditional expected values that reflect the correla-
tions between two experiments.

From the above discussion, we can conclude that the Bell
inequality does not allow for a probabilistic nature (or cor-
relation, to be exact) because it is based on determinism or
realism. To allow for the Bell inequality in a statistical exper-
iment, one must satisfy the condition for (13), which in turn
requires that there is no correlation between Ai(a) and Bi(b).
In terms of quantum mechanics terminology, if particles 1 and
2 are in separable (uncorrelated) states, the Bell inequality is
valid, otherwise (if particles 1 and 2 are in entangled states),
the Bell inequality will be violated.

3 A statistical interpretation of spin/polarization corre-
lation

A statistical presentation of Bell tests seems to be compli-
cated because it involves many random settings, such as ran-
dom directions of polarizers and random polarization of light
or spins of particles. Moreover, spins and polarizations have
different features. After trying a number of methods, the au-
thor has arrived at a remarkably simple and elegant approach
for deriving the statistical prediction.

The difference between polarization and spin is that spins
in opposite directions have different values while polariza-
tions in the opposite directions are viewed as being the same.
In other words, the spin direction in a plane can have a 360◦

variation while the polarization direction varies only within
180◦, so the case of polarization is a reduced case of spin. For
generality, this section focuses on deriving the results for the
case of spin, and then shows how the results can be applied to
the case of polarization.

There are various types of spin analyzer/detector [24–27],
but all spin detectors rely on a differing scattering cross sec-
tion for spin polarized particles. During spin detection, the
travel direction of the particle and the detector orientation
form a plane, in which the particles are reflected and de-
tected [25]. The spin polarized particles will cause asymmet-
ric reflection, and the asymmetric results indicate the detected
spin direction. Essentially, a spin analyser works similarly to
a polarizer for light, but the analyser can identify the spin di-
rection along the given detection orientation. Consequently,
we use a polarizer with an arrow (a vector) to represent a spin
analyzer.

Fig. 1 shows a general case where the particles of the dif-
ferent spin directions are measured by the two spin analyzers
in a Bell test experiment. Two spins, s1 and s2, and two spin
analyzers, A and B, are positioned in different directions. The
spin directions of particles 1 and 2 form an angle of θ1 and θ2,
respectively, with the x-axis. For simplicity, we assume that
s1 and s2 are unit vectors, and that spin analyzer A is placed

Fig. 1: Measuring spin directions

in the direction of the x-axis while spin analyzer B forms an
angle of β with the x-axis. Given this setting, the component
of s1 detected by A is E(A) = cos θ1. Similarly, the angle be-
tween s2 and the spin analyzer B is θ2 − β, so the component
of s2 detected by B is E(B) = cos(θ2 − β).

There are two types of correlation measurement in the
Bell tests. One is the joint detection counts normalized on
the separate detection counts at each setting. The other is the
joint detection rate normalized on the emission rate at the par-
ticle source. We address them in turn.

3.1 Correlation normalized on outcomes at each setting

This measurement fits with the standard definition of corre-
lation, so we can calculate the expected value, variance and
covariance and then obtain correlation. Since the source emits
particles of random spin directions, the expected values and
variances can be obtained by integrating E(A) and E(B) over
the spin angles θ1 and θ2 in the range of 0 – 2π for particles 1
and 2.

〈E(A)〉 =

∫ 2π
0 E(A) dθ1∫ 2π

0 dθ1

=

∫ 2π
0 cos θ1 dθ1∫ 2π

0 dθ1

=
sin θ1

θ1

∣∣∣∣∣2π
0

= 0

var(A) =

∫ 2π
0 [cos θ1 − 〈E(A)〉]2 dθ1∫ 2π

0 dθ1

=
1

2π

∫ 2π

0
cos2 θ1 dθ1

=
1

2π

∫ 2π

0
0.5 (cos 2θ1 + 1) dθ1 = 0.5

〈E(B)〉 =

∫ 2π
0 E(B) dθ2∫ 2π

0 dθ2

=

∫ 2π
0 cos(θ2 − β) dθ2∫ 2π

0 dθ2

= 0
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var(B) =

∫ 2π
0 [cos(θ2 − β) − 〈E(B)〉]2 dθ2∫ 2π

0 dθ2

=
1

2π

∫ 2π

0
cos2(θ2 − β) dθ2

=
1

2π

∫ 2π

0
0.5 [cos 2(θ2 − β) + 1] dθ2 = 0.5 .

If the two particles are uncorrelated, θ1 and θ2 can vary
independently, so the covariance can be calculated through a
double integral:

cov(A, B) =

=

! 2π
0 [cos θ1 − 〈E(A)〉][cos(θ2 − β) − 〈E(B)〉] dθ1 dθ2! 2π

0 dθ1 dθ2

=
1

(2π)2

∫ 2π

0
cos θ1 dθ1

∫ 2π

0
cos(θ2 − β) dθ2 = 0 .

The zero covariance is expected because of the uncorre-
lated nature of s1 and s2 — the positive and negative joint de-
tection counts will be largely cancelled out. If the two spins
are correlated, θ1 and θ2 can still change randomly, but these
two angles must keep the same difference, i.e. θ2 = θ1 + θ0,
where θ0 is the fixed relative angle between two spin direc-
tions. In this case, the covariance can be calculated by an
integration over θ1 (or θ2):

cov(A, B) =

=

∫ 2π
0 [cos θ1 − 〈E(A)〉][cos(θ1 + θ0 − β) − 〈E(B)〉] dθ1∫ 2π

0 dθ1

=
1

2π

∫ 2π

0
0.5 [cos(2θ1 + θ0 − β) + cos(β − θ0)] dθ1

= 0.5 cos(β − θ0) .

As such, we have the following spin correlation:

E(A, B) =
cov(A, B)

[var(A)]1/2[var(B)]1/2

=
0.5 cos(β − θ0)
0.50.5 ∗ 0.50.5 = cos(β − θ0) . (16)

Eq. (16) is a general result for joint detection for any given
orientations of spin detectors. The application of this equa-
tion for special occasions can produce quantum predictions.
For example, if two particles have the same spin, i.e. entan-
gled particles of the same phase, we have θ0 = 0, E(A, B) =

cos β. If two particles have the opposite spin, i.e., negatively
correlated particles, we have θ0 = π, E(A, B) = − cos β. If
the two spin vectors are perpendicular, θ0 = π/2, E(A, B) =

cos(π/2 − β) = sin β.
It is worth mentioning that some researchers used light

intensity correlation instead of the expected-value correlation

for polarization Bell test. For example, Ou and Mandel [31]
and Rarity and Tapster [35] regarded the joint detection prob-
ability of photons as being proportional to the intensity corre-
lation of light. This approach is misplaced. For polarization
experiments, one or more photons (assuming perfect detec-
tion for the simplicity of an argument) pass through the po-
larizer, a positive detection will be recorded, so the intensity
is not an appropriate measurement. One may argue that inten-
sity is the square of amplitude so intensity can be used as the
proxy of probability of photons passing through the polarizer,
based on which the joint probability can be calculated. How-
ever, as explained in Section 2, the joint probability cannot be
calculated through the multiplication of probabilities of sep-
arate detections because of the correlated particles in a Bell
test. Since probability measures the average of the squared
detection values, the intensity (or probability) correlation ap-
proach will produce totally different result from that in this
paper. This can be shown in the following expression:

pAB = pA pB = 〈E(A)2〉 〈E(B)2〉,〈E(A) E(B)〉2 = E(A, B)2 .

3.2 Correlation normalized on emissions at the source

For a Bell test, one needs to measure many pairs of particles
of different spin directions with varied detector orientations.
In this case, the joint detection rate is generally normalized
on the emission rate at the source and the correlation is cal-
culated based on the fixed axes.

Referring to Fig. 1, if the correlation is calculated based
on x and y axes, the component detected by analyzer A and B
needs to be further decomposed on the x-axis and y-axis:

EAx = E(A) = cos θ1 and EAy = 0

EBx = E(B) cos β = cos(θ2 − β) cos β

EBy = E(B) sin β = cos(θ2 − β) sin β .

Since no component on the y-axis is detected by analyzer
A, the correlation (joint detection) on the y-axis is zero. On
the other hand, both analyzers detect values on the x-axis, so
the joint detection value is:

EAB = EAx EBx = cos θ1 cos(θ2 − β) cos β .

Since the correlation is based on the emissions at source,
which are 100% detected (assuming all particles come to and
are detected by either detector A or B), the variances are one
and thus the correlation is equivalent to co-variance. If parti-
cles 1 and 2 are uncorrelated, the joint detection rate will be
the value of EAB integrated over both θ1 and θ2:

pAB =

! 2π
0 EAB dθ1 dθ2! 2π

0 dθ1 dθ2
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=

! 2π
0 cos θ1 cos(θ2 − β) cos β dθ1 dθ2! 2π

0 dθ1 dθ2

=
cos β
(2π)2

∫ 2π

0
cos θ1 dθ1

∫ 2π

0
cos(θ2 − β) dθ2 = 0 .

The above result indicates that for uncorrelated particles,
the joint detection rate is zero. This makes sense. Due to
the uncorrelated random nature, the different detection counts
will be washed out by the independent random changes in θ1
and θ2.

If two particles are correlated, i.e. θ2 = θ1 + θ0, we can
obtain correlation by integrating EAB over θ1 (or θ2) in range
0 – 2π:

pAB =

∫ 2π
0 EAB dθ1∫ 2π

0 dθ1

=

∫ 2π
0 cos θ1 cos(θ1 + θ0 − β) cos β dθ1∫ 2π

0 dθ1

=
cos β
2π

∫ 2π

0
0.5 [cos(2θ1 + θ0 − β) + cos(β − θ0)] dθ1

= 0.5 cos(β − θ0) cos β .

(17)

The above result shows that when the two spin vectors are
correlated, i.e., the value of θ0 is fixed, the joint detection rate
is determined only by correlation phase θ0 and the angle β
formed by the orientations of two spin detectors.

Eqs. (16) and (17) can also be applied to light polariza-
tion experiments. In the case of polarized light, it is tricky
to derive the joint detection because the detected values have
to be non-negative and thus are not consistent with the cosine
functions for E(A) and E(B). The common approach (e.g. As-
pect et al [4, 5]) is to define the result of no-detection as -1,
instead of 0. In other words, when the light polarization is
perpendicular to the orientation of detector, most likely no
photon will be detected and thus a result of -1 with a 90◦ will
be recorded. With this definition, all angles in (16) and (17)
should be halved, and then the equation is equally applicable
to the Bell tests with polarized light.

Where the two spin vectors are in the same directions
(i.e. θ0 = 0 ), (17) becomes:

pAB = 0.5 cos2 β = 0.25 (cos 2β + 1) . (18)

In this special case, the joint detection rate can also be derived
without integration, as shown in Fig. 2.

To present three random directions (i.e. the same direc-
tion of spin of the two particles, and the directions of the two
spin analyzers A and B), we can fix one of them because only
the relative angles between them matter. For convenience of
presentation, we assume the spin vector

−−→
OV to be a unit vec-

tor pointing to V(ax/
√

2, ay/
√

2), where ax and ay are unit
vectors at x and y directions, respectively.

Fig. 2: Measuring the correlation of a particle pair of the same spin

The projection of the spin vector
−−→
OV onto the B axis in

Fig. 2 is:

−−−→
OB2 =

−−−−→
B1B2 +

−−−→
OB1 =

[
−→ax cos(θ − θb) + −→ay sin(θ − θb)

]
/
√

2 .

This projection can be further projected onto the x-axis
and y-axis and thus decomposed to two components

−−−→
OBx and

−−−→
OBy, respectively (

−−−→
OBy is not shown in Fig. 2 so as not to

complicate the graph):

−−−→
OBx = cos(θ−θb)

[
−→ax cos(θ − θb) + −→ay sin(θ − θb)

]
/
√

2 (19)

−−−→
OBy = sin(θ−θb)

[
−→ax cos(θ − θb) + −→ay sin(θ − θb)

]
/
√

2 . (20)

Similarly, the projection of
−−→
OV onto the A-axis can be

decomposed into the x and y components of
−−−→
OAx and

−−−→
OAy

respectively (not shown in Fig. 2):

−−−→
OAx = cos(θ − θa)

[
−→ax cos(θ − θa) + −→ay sin(θ − θa)

]
/
√

2

−−−→
OAy = sin(θ − θa)

[
−→ax cos(θ − θa) + −→ay sin(θ − θa)

]
/
√

2 .

As such, the joint detection rate can be calculated as:

pAB =
−−−→
OAx
−−−→
OBx +

−−−→
OAy
−−−→
OBy

= cos(θ − θb)
[
−→ax cos(θ − θb) + −→ay sin(θ − θb)

]
/
√

2

× cos(θ − θa)
[
−→ax cos(θ − θa) + −→ay sin(θ − θa)

]
/
√

2

+ sin(θ − θb)
[
−→ax cos(θ − θb) + −→ay sin(θ − θb)

]
/
√

2

× sin(θ − θa)
[
−→ax cos(θ − θa) + −→ay sin(θ − θa)

]
/
√

2

= 0.5
[
−→ax cos(θ − θb) + −→ay sin(θ − θb)

]
×

[
−→ax cos(θ − θa) + −→ay sin(θ − θa)

]
cos(θa − θb)

= 0.5 cos2(θa − θb)
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or

pAB = 0.25 [cos 2(θa − θb) + 1] . (21)

Noting that (θa − θb) is the angle formed by the orientations
of two detectors A and B, we find that the above result is the
same as (18). This joint probability of detection is exactly the
same as the coincidence rate derived from quantum mechan-
ics. The experiment by Aspect [5] confirmed this result.

The correlation function (16) and the joint detection rate
(17) derived in this section are general results that are appli-
cable to both uncorrelated or correlated polarization/spin of
any phase differences. The results can be tested experimen-
tally using the current Bell test techniques. The only change
needed is to add a randomly controlled source polarizer for
each of the two beams after the collimation lenses, but before
the traditional Bell test polarizers. If the pair of source polar-
izers are randomly and separately controlled, i.e. their relative
angle of polarization θ0 varies randomly, the source particles
are uncorrelated, so the joint detection rate will be zero for
a large sample size. If the pair of source polarizers are con-
trolled randomly but jointly, i.e. the relative polarization angle
of the pair is fixed at any given value, the joint detection rate
should be determined by the relative angle (θ0) of the first pair
of (source) polarizers and that (β) of the second pair, with the
quantitative relations determined by (16) and (17).

4 Linkage between the statistical approach and quan-
tum mechanics

From the previous section, we see that the simple statistical
approach gives equivalent but more general results when they
are compared with the predictions from quantum mechanics
(QM). This is not a coincidence. This section shows that the
statistical approach is at the heart of quantum mechanical pre-
diction on Bell tests.

QM uses wavefunctions to represent the different states.
For example, a wavefunction of a spin-up (or +1) state can be
written in Dirac notation as | 0〉, while spin-down (or -1) can
be written as |1〉. The spin states can be projected to (or mea-
sured on) different axes and may result in different results. If
Alice measures a spin state of | 0〉 on the A-axis while Bob
measures |1〉 on the B-axis, we can express this spin state as
| 0〉 ⊗ |1〉, or simply | 01〉. A wavefunction | 01〉+ |10〉 indicates
that the measurement on the A-axis is always opposite to the
measured results on the B-axis, i.e. the measured results are
negatively correlated. Similarly, the states in wavefunction
| 00〉+ |11〉 are positively correlated. The states in this type of
wavefunctions are called entangled states. On the other hand,
a wavefunction of | 01〉 + | 00〉 shows that while Alice’s mea-
surement is always | 0〉, Bob’s measurement can be either | 0〉
or |1〉, so there is no correlation between the two measurement
results. The states in this wavefunction are called separable
states. In short, the entangled states are the QM expression
for correlation.

Now we consider a normalized wavefunction of the pos-
itively entangled states: ψ = (| 00〉 + |11〉)/

√
2. If the states

are measured by Alice on the A or x axis (both axes coincide,
shown in Fig. 3), the possible outcome will be 〈0 |σA| 0〉 = +1
or 〈1|σA|1〉 = −1. Similarly, if the state is measured by Bob
on the B-axis, the possible outcome will be 〈0 |σB| 0〉 = +1
or 〈1|σB|1〉 = −1. Since this is a wavefunction of positively
entangled states, Alice and Bob will always obtain the same
(positive or negative) measurement outcome. Bob’s measure-
ment can be decomposed to two components on the x-axis
and y-axis: σB = σB

x cos β + σB
y sin β. Alternatively, we can

write: 〈0 |σB
x | 0〉 = cos β, 〈1|σB

x |1〉 = − cos β, 〈0 |σB
y | 0〉 =

sin β, 〈1|σB
y |1〉 = − sin β. Since Alice’s measurement is on

the x-axis, we have σA = σA
x .

Fig. 3: Spin measurement for positively entangled particles

The correlation between the measurements of Alice and
Bob can be calculated by the expected value of joint mea-
surements: 〈σAσB〉. The QM calculation result is as follows:

〈σAσB〉 = 〈ψ |σA ⊗ σB |ψ〉

= 0.5 (〈00 | + 〈11 | )σA ⊗ σB( | 00〉 + | 11〉)

= 0.5 (〈00 |σA ⊗ σB | 00〉 + 〈11 |σA ⊗ σB | 00〉)

+ 〈00 |σA ⊗ σB | 11〉 + 〈11 |σA ⊗ σB | 11〉)

= 0.5 (〈0 |σA | 0〉〈0 |σB | 0〉 + 〈1 |σA | 0〉〈1 |σB | 0〉)

+ 〈0 |σA | 1〉〈0 |σB | 1〉 + 〈1 |σA | 1〉〈1 |σB | 1〉)

= 0.5 (〈0 |σA | 0〉〈0 |σB | 0〉 + 〈1 |σA | 1〉〈1 |σB | 1〉)

= 0.5 (〈0 |σA
x | 0〉〈0 |σ

B
x | 0〉 + 〈1 |σ

A
x | 1〉〈1 |σ

B
x | 1〉) = cos β .

The above result is exactly the same as (16) with θ0 =

0, which was obtained from the much simpler statistical ap-
proach. A number of statistical features in the QM approach
contribute to this same result. First, the calculation of the
expected value in QM (i.e. 〈σAσB〉 = 〈ψ |σA ⊗ σB |ψ〉) is
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based on a probability-weighted average. Second, the rule
of tensor product (〈11 |σA ⊗ σB | 00〉 = 〈1 |σA | 0〉〈1 |σB | 0〉)
makes an operator (e.g. σA or σB) work on the wavefunc-
tion on its space only. This is exactly the case of measure-
ment (or vector component decomposition) on different axes.
Third, the orthogonal condition of basis wavefunctions mim-
ics the measurement of the projection onto the orthogonal
axes, e.g. 〈0 |σA | 0〉 = +1, 〈1 |σB | 1〉 = −1, and 〈1 |σA | 0〉 =

0. Fourth, the space (or axis) separation is consistent with the
concept of correlation. For example, since Alice measures on
the x-axis, only the x-component of the measurement by Bob
is relevant to the correlation calculations. This is manifested
by 〈0 |σA | 0〉〈0 |σB | 0〉 = 〈0 |σA

x | 0〉〈0 |σ
B
x | 0〉. Finally, the

normalized wavefunction automatically normalizes the cal-
culated expected value so that it fits the requirement of corre-
lation.

If we use other entangled wavefunctions to perform sim-
ilar calculations, we would arrive at essentially the same re-
sults but with a negative sign for some wavefunctions. For
example, with φ = ( | 01〉 + |10〉)/

√
2, we find:

〈σAσB〉 = 〈φ |σA ⊗ σB | φ〉 = − cos β .

The above result is equivalent to (16) with θ0 = π. This is
not surprising as this wavefunction indicates a negative corre-
lation. If we use a wavefunction of separable states to calcu-
late the expected joint measurement, we would find a value of
zero. This is expected because there is no correlation between
separable states.

If the measurement axes change randomly, we cannot put
a vector on either the A or B axis. In this case, the QM deriva-
tion of the joint detection rate involves a projection process
similar to that used in Fig. 2. Using a matrix presentation, we
can express the projection of a vector pointing to (x1, y1) onto
a specified axis of angle θ as follows:(

cos θ
sin θ

) (
cos θ sin θ

) (x1
y1

)
=

=

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

) (
x1
y1

)
.

(22)

In the above equation, if we let θ be the angle of the B
axis with respect to the x-axis, i.e. θ − θb in Fig. 2, and let
x1 = −→ax/

√
2 and y1 = −→ay/

√
2, we can obtain the same result

as in (19) and (20).
The matrix in (22) is called a projection matrix [28], as it

projects a vector onto the axis of angle θ and gives the com-
ponents of the projection:

Q(θ) =

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
.

Using the above projection matrix and an entangled wave-
function (e.g. φ = ( | 01〉 + |10〉)/

√
2), we can calculate the

probability of joint measurement as:

pAB = 〈ψ |QA⊗QB |ψ〉 = 0.5 cos2(θA − θB)
= 0.25 [cos 2(θA − θB) + 1] .

Since (θA − θB) is the angle of the orientations of detec-
tors, the above result is exactly the same as (18) or (21) that
we derived in the statistical approach. The identical result is
apparently because the same projection process works in both
approaches.

5 Statistical explanation of two-particle Bell tests

Many Bell test experiments are based on the coincidence rate
of particle pairs, but a handful of researchers (e.g. [9, 16, 20,
32, 39, 40] have conducted experiments on correlations of 3
or more particles. Multi-particle correlation can be achieved
by special designs of experimental setup to obtain specific
quantum states (e.g. [9, 32]) or by exploiting the coherent
states of Bose-Einstein condensate (e.g. [16, 20]). The sta-
tistical foundation of multi-particle correlation is the same as
that for particle pairs, so this paper focus on two-particle cor-
relation. Even though we confine our scope to two-particle
Bell tests, there still are copious experiments. This section
selects only some representative experiments and puts them
into two groups: the polarization experiments of entangled
photon pairs and non-polarization experiments based on light
phase correlation.

5.1 Polarization experiments

Among numerous Bell test using polarization of photon pairs,
we consider only two influential papers by Aspect et al [5,6].
Like most experiments on the Bell tests, Aspect et al [5,6] uti-
lized the derivation of Clauser et al [4] for an experimentally
applicable quantum mechanical prediction for the counting
rates of coincidence. The starting point of their derivation is
a probability formula:

P(a, b) = w[A(a)+, B(b)+] − w[A(a)+, B(b)−]
− w[A(a)−, B(b)+] + w[A(a)−, B(b)−]

where w means the probability weighting of each outcome in
total emission counts R0, with:

R0 = [A(a)+, B(b)+] + [A(a)+, B(b)−]
+ [A(a)−, B(b)+] + [A(a)−, B(b)−]

w[A(a)+, B(b)+] = [A(a)+, B(b)+]/R0, etc.

The above equation is a manifest that the net correlation (pos-
itive correlation [A(a)+, B(b)+] + [A(a)−, B(b)−] minus nega-
tive correlation [A(a)+, B(b)−] + [A(a)−, B(b)+] ) in terms of
total counts R0. This equation is consistent with our deriva-
tion of joint detection rate presented in Section 3: the net cor-
relation in (17) is calculated by integrating EAB over the angle
0−2πwhile the total counts is obtained by integrating the unit
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spin vector over the same range. Due to the same foundation
for derivation, the resulting (18) is unsurprisingly the same
as that obtained by Clauser et al [4] and used by Aspect et
al [5, 6]. Since the joint detection rate derived from both sta-
tistical and quantum approaches is identical, the explanation
on the results of Aspect et al [5, 6] will be very similar, so
we omit this explanation but examine the maximum violation
angle derived from quantum mechanics and confirmed by ex-
periments.

Using the coplanar vectors (shown in Fig. 4) introduced
by Clauser and Shimony [28] and Aspect et al [5] to present
the settings of the Bell test experiments, we can derive the
same results as the quantum prediction of the Bell test, but
without invoking any wavefunctions.

Fig. 4: Coplanar vectors presentation of Bell test settings

In Fig. 4, vectors a, a′, b, and b′ represent the direction of
the spin detectors, and the angles between them are displayed
on the graph. For simplicity of presentation, we assume all
vectors are of unit modulus and angles γ1, γ2, and γ3 are pos-
itive and less than π (for any angle θ greater than π, we can
rewrite it as 2π − θ). Applying the spin correlation results in
(16) derived in Section 3 to a case of positively entangled par-
ticles (i.e. θ0 = 0), we can obtain the experimental results as
follows:

E(a, b) = cos γ1

E(a, b′) = cos (γ1 + γ2 + γ3)
E(a′, b) = cos γ2

E(a′, b′) = cos γ3 .

The theoretical results for the Bell tests should be:

EBT = E(a, b) − E(a, b′) + E(a′, b) + E(a′, b′)
= cos γ1 − cos(γ1 + γ2 + γ3) + cos γ2 + cos γ3 .

Applying the first and second order conditions of max-
imization (minimization) for the above equation, we know
that EBT reaches the maximum or minimum when:

sin γ1 = sin γ2 = sin γ3 = sin(γ1 + γ2 + γ3) .

If γ1, γ2 and γ3 are less than π/2, the condition of maxi-
mum/minimum value necessitates that γ1 = γ2 = γ3 = γ and
sin γ=sin 3γ. With some trigonometric manipulations, from
sin γ=sin 3γ we can have sin γ (4 cos 2γ-1)=sin γ, or γ=π/4.

Similarly, if γ1, γ2 and γ3 are greater than π/2 (they are
less than π as we assumed before for simplicity), we can ob-
tain γ=3π/4.

If some angles are less than π/2, but some are greater
than π/2, we obtain no satisfying solution. For example, if
γ1 and γ2 are less than π/2, but γ3 is greater than π/2, from
sin γ1=sin γ2=sin γ3, we can infer that γ1 = γ2 and γ3 =

π− γ2, so sin γ1 = sin (γ1 + γ2 + γ3) = sin (γ1 + π) = − sin γ1,
or γ1 = γ2 = γ3 = 0. This contradicts our assumption of
positive angles and presents a trivial case where all 4 settings
coincide.

To sum up, from the first and second order condition we
reveal that the maximum and minimum value of EBT occurs
at γ=π/4 and γ=3π/4, respectively. If γ=π/4, we have:

Emax = cos π/4 − cos 3π/4 + cos π/4 + cos π/4 = 2
√

2 .

If γ = 3π/4, we have:

Emin = cos 3π/4 − cos 9π/4 + cos 3π/4 + cos 3π/4 = −2
√

2 .

As a result, we obtain the same results as the quantum predic-
tion: ∣∣∣E(a, b) − E(a, b′) + E(a′, b) + E(a′, b′)

∣∣∣ ≤ 2
√

2 .

It is worth mentioning that the above derivation shows
that the maximum violation of the Bell inequality occurs at
the setting γ = π/4 or γ=3π/4, E = ±2

√
2. This seems in

conflict with the results of Aspect et al [5,6], where the max-
imum violation of the Bell inequality occurred at θ=π/8, or θ
=3π/8.

In fact, this difference highlights the different cases of
spin and polarization. Our derivation is based on spin detec-
tion. As we discussed in Section 3, the angle must be adjusted
when applying (16) and (17) to polarization experiments. In
most Bell test experiments using light, including Aspect et
al [5, 6], a count of photon detection is recorded as +1 and
no detection is recorded as -1. As such, if the angle between
the polarizer and the polarization of light is θ = π/2, the most
likely outcome is no detection or -1. We can express the re-
sult as cos 2θ = cos π = −1. It is apparent that one needs
to double the angle in the experiment to obtain a result that
is consistent with experimental record. On the other hand,
our derivation based on spin assumes that a count of photon
detection is recorded as +1 and no detection is recorded as
0. If the angle between the polarizer and the polarization of
light is γ = π/2, the most likely outcome is no detection or
0. We can express the result as cos γ = cos π/2 = 0. This
recorded value is equivalent to the case of θ = π/4 in Aspect
et al [5, 6]. From this we can infer that the angle γ used for
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spin examples in the present paper is equivalent to twice the
angle θ used in Aspect et al [5, 6], i.e. γ = 2θ. As a result,
the angles for maximum violation of the Bell inequality in
Aspect et al [5, 6] will be half the value as in our derivation.

5.2 Interferometry Bell tests

There are Bell tests that examine the correlations between
variables other than polarization. One type of research fo-
cuses on the phase correlation (e.g. [19,34–36]). This type of
experiment creates a pair of photons of the same phase and
lets them pass through phase shifters and a distance of differ-
ent lengths, then detects the phase difference at a Michelson
interferometer. The experiments are based on the theoretical
prediction of Franson [37] which, based on the phase differ-
ence of wavefunctions caused by time difference, developed
a similar prediction as (18) in the present paper. Using a clas-
sical wave theory of light and joint intensity, one can also
obtain an equivalent result.

For simplicity, we combine the electrical and magnetic
components of a light field, so the normalized light field of a
photon pair of the same initial phase at position x and time t
can be expressed as:

E = cos(θ + kx − ωt)

where θ is the initial phase of the photon pair at the source, k
is wave vector, ω is angular frequency.

Assume that photon A will be added a phase θa by a phase
shifter (we use only one phase shifter for simplicity) and,
meanwhile, photon B will be added a phase θb = ω∆t due
to the different time or distance travelled. The light fields of
the pair become:

EA = cos(θ + kx − ωt + θa)

EB = cos(θ + kx − ωt + θb) .

Although this type of experiments use the joint intensity
as measurement, as we discussed in Section 3, we cannot cal-
culate the correlation of light intensity by directly multiplying
the intensities of light field because the changes in intensity
are not independent. Since the light phases and thus the light
fields are correlated, the joint intensity needs to be calculated
from light field correlation:

EAB = EAEB

= cos (θ + kx − ωt + θa) cos (θ + kx − ωt + θb)
= 0.5 [cos (2θ + 2kx − 2ωt + θa + θb) + cos (θa − θb)] .

The initial phase of photon pair θ can change randomly,
so the item related to θ in the above equation will net out to
zero (by integrating EAB over θ in the range of 0 − 2π). As a
result, the above equation becomes:

EAB = 0.5 cos(θa − θb) .

As such, the joint intensity can be calculated as:

IAB = E2
AB = 0.25 cos2(θa − θb) = 0.125 [cos 2(θa − θb) + 1] .

This result is equivalent to the quantum prediction inFran-
son [37, Eq. (16)] or Brendel et al [34, Eq. (4)]. From the
above derivation we can conclude that the light intensity dif-
ference stems from the phase difference caused byphase shift-
er and by different travel time. Probability law also works in
this case because it ensures that the initial random phase of
photon pairs have no impact on the interferometry results.

By examining representative experiments, we can con-
clude that the violation of the Bell inequality is caused by the
correlation in source particles as well as the physical relation-
ship between the spin/polarization angle and its component
on detection axes, or between the phase of electromagnetic
wave and the light field correlation. With varying detection
conditions (i.e. random changes in detection angles or adding
arbitrary phases), probability law can still maintain the cor-
relation of source particles. This leads to the violation of the
Bell inequality and the correct statistical predictions, which
are consistent with experimental outcomes.

6 Conclusions

The paper presents statistical predictions of two-particle Bell
tests, which are equivalent to, but more general than, the QM
predictions. By comparing the statistical and QM approaches,
the paper shows that probability law is at the heart of both
approaches. The statistical presentation of two-particle Bell
tests in this paper has far-reaching implications.

First, it can improve our understanding of quantum me-
chanics and help to demystify it. Although the concepts of
superposition and entanglement are widely accepted among
physicists, the explanation of these concepts is difficult and
thus causes significant misunderstanding. The statistical in-
terpretation of the Bell tests shows that the superposition of
entangled states in the two-particle Bell test is nothing more
than statistical correlation between states. For the correlated
particles at the polarizer or spin detector, probability law can
maintain the correlation through the expected value, so there
is no need for communication (let alone faster-than-light or
instantaneous communication) between different locations in
the Bell experiments. As quantum entanglement is explained
by probability law, the Bell test results and quantum mechan-
ics are no longer mysterious.

Second, it has significant implications for quantum com-
puting, which relies on quantum entanglement. Since the
quantum entanglement phenomenon results from probability
law, statistical noise is a natural and unavoidable part of quan-
tum computing. Understanding the nature of this noise may
shed light on how to improve the signal-to-noise ratio and
thus is crucial to the success of quantum computing.

Third, the paper pinpoints the cause for the violation of
the Bell inequality and thus explains why the local hidden
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variable theory is wrong. Although numerous Bell tests re-
ject the local hidden variable theory and support quantum
mechanics, they have not shed any light on why the former
is wrong and the latter is right. This paper shows that the key
lies in probability law, which underpins the Bell test results.
Because probability law is universal, if we regard the statisti-
cal mechanism (which causes statistical variation around the
mean) as a “hidden variable”, it is not a local one but a global
one. The local hidden variable theory misrepresents this na-
ture and thus fails. It is also this global law that leads to the
correct prediction from quantum mechanics.

Last but not least, the paper may stimulate a reassessment
of the role of determinism and realism. Broadly, the experi-
mental results on the Bell inequality are interpreted as being
a rejection of determinism or local realism, and an embracing
of randomness. While this paper highlights the importance
of randomness and probability law, it does not totally reject
determinism and realism. In the Bell tests, probability law
works only when the particles arrive at and interact with the
detector (polarizer or spin analyzer) – it plays no role before
and after. When probability law is not in action, it is deter-
minism, realism and logic that describe the behaviour of the
particles. In other words, both randomness and realism play
important roles in our understanding of physics.

Acknowledgements

The author thanks Sean Hodgman and David Shin for useful
discussions and comments.

Received on May 20, 2021

References
1. Einstein E., Podolsky B., Rosen N. Can quantum-mechanical descrip-

tion of physical reality be considered complete? Physical Review,
1935, v. 47, 777–780.

2. Bohm D. A Suggested Interpretation of the quantum theory in terms of
“hidden” variables. Physical Review, 1952, v. 85, 169–193.

3. Bell J. On the Einstein Podolsky Rosen paradox. Physics, 1964,
v. 1 (3), 195–200.

4. Clauser J. F., Horne M. A., Shimony A., Holt R. A. Proposed exper-
iment to test local hidden-variable theories. Physical Review Letters,
1969, v. 23, 880.

5. Aspect A., Grangier P., Roger G. Experimental tests of realistic local
theories via Bell’s theorem. Physical Review Letters, 1981, v. 47 (7),
460–463.

6. Aspect A., Grangier P., Roger G. Experimental realization of Einstein-
Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of
Bell’s Inequalities. Physical Review Letters, 1982, v. 49 (2), 91–94.

7. Tittel W., Brendel J., Gisin B., Herzog T., Zbinden H., Gisin N. Ex-
perimental demonstration of quantum-correlations over more than 10
kilometers. Physical Review A, 1998, v. 57 (5), 3229–3232.

8. Weihs G., Jennewein T., Simon C., Weinfurter H., Zeilinger A. Viola-
tion of Bell’s inequality under strict Einstein locality conditions. Phys-
ical Review Letters, 1998, v. 81 (23), 5039–5043.

9. Pan J. W., Bouwmeester D., Daniell M., Weinfurter H., Zeilinger A.
Experimental test of quantum nonlocality in three-photon GHZ entan-
glement. Nature, 2000, v. 403 (6769), 515–519.

10. Rowe M. A., Kielpinski D., Meyer V., Sackett C. A., Itano W. M., Mon-
roe C., Wineland D. J. Experimental violation of a Bell’s inequality
with efficient detection. Nature, 2001, v. 409 (6822), 791–794.
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