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This short paper is an extraction from our previous work [1], the purpose of which is to
make clear that it is very much possible to use Weyl’s idea [2] of a conformal metric to
achieve tensorial affinities. We are of the strong view that this is very important as it is
predominantly assumed that this is not possible. We want to dispel this myth once and
for all.

Nature is pleased with simplicity.

Sir Isaac Newton (1642-1727)

1 Introduction

The purpose of this article is to present in a much simpler and
succinct form, the ideas presented in our first installation [1]
on an attempt to bring the gravitational force and the other
forces of Nature (the Electromagnetic, Weak and the Strong
Nuclear force) into unity with all the other forces and, as well,
unity of all the forces with Quantum Mechanics. For clarity’s
sake, we have herein removed most of the intricate mathe-
matical and philosophical details found in [1]. We hope this
abridged version will make clear to our readers what it is we
have done in paper [1].

Further, the purpose and motivation of the present paper
has been propelled by one of our favourite Weylian blogger
and American physicist – Dr. William O. Straub. He posted
on his blog-site∗ on 28 February 2022 an interesting article
entitled: I’m Still Rooting for the Underdog. In his article,
Dr. Straub expresses his justified frustration on the lack of
progress in the search for darkmatter and wonders if it is
not time for physicists to abandon this idea/concept and se-
riously consider much more seriously already existing alter-
native theories to darkmatter – e.g. Milgrom’s Modified New-
tonian Gravity (MoND) [3–5]. Dr. Straub’s frustration is not
his alone, it is shared by a plethora of physicists.

To prepare his reader(s) for the conclusion that he seeks,
in the introduction of his article, Dr. Straub talks of perpetual
motion machines and the luminiferous aether – i.e. concepts
that were once thought to have a direct relation with reality
but were eventually found to be worthless/non-physical and
were thus abandoned by mainstream science and these ideas
are not expected to re-appear anytime soon in mainstream sci-
ence.

Amongst the many alternative ideas to darkmatter, Dr.
Straub considers the subtle flaws in Einstein [6]’s General
Theory of Relativity (GTR) and wonders if Weyl’s [2] sup-
posed failed unified theory of gravitation and electromagnet-

∗http://www.weylmann.com/aftermath.shtml, visited on 5 Mar.
2022 @ 16h18 GMT+2

ism holds any hope as an alternative theory to darkmatter. In
the penultimate of his article: of Weyl’s [2] theory, Dr. Straub
had this to say:

To me, there is one glaring flaw in Einstein’s theory,
which is its noninvariance with respect to conformal
transformations. Weyl also saw this as a flaw, and he
showed us a possible way to fix it.

After reading Dr. Straub’s article on the morning of 1
March 2022, I was particularly struck by the first sentence
in his statement. I immediately wrote to him saying

I must say, I hold the same view and like Einstein
[7, 8], Schrödinger [9–11], etc, I believe this requires
that the affinities be tensors. I have worked out a new
theory that is just that – I am sure I have sent this to
you before.

Rather swiftly, Dr. Straub responded to my email by say-
ing: . . . Turning the connections into true tensors will be a
tough job, and I’m inclined to believe it can’t be done. His
response challenged me to write a much simpler version of
the idea that I used in [1], i.e. the idea of obtaining tensorial
affinities. This is what we present below and I hope it is much
clearer than it is presented in [1].

2 Riemann geometry

From a viewpoint of geometry, Einstein [6]’s greatest and
most beautiful masterpiece, the GTR, has its rock solid foun-
dations anchored in Riemann Geometry† (RG). Fundamental
in RG are the affine connections (Christoffel three symbols),
namely:

Γλµν =
1
2

gδλ
(
gδµ,ν + gνδ,µ − gµν,δ

)
. (1)

Their topological defect, insofar as the GTR is concerned, is
that these affine connections are not tensors, as they transform
in the following manner:

Γλ
′

µ′ν′ =
∂xλ

′

∂xλ
∂xµ

∂xµ′
∂xν

∂xν′
Γλµν +

∂xλ
′

∂xλ
∂2xλ

∂xµ′∂xν′
. (2)

†I shall assume that the reader(s) knows very well Riemann geometry
together with its symbols as commonly presented in the textbooks. Hence,
we will not explain these but assume the reader(s) is/are in sync with us.
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The first term on the right hand side of (2) has the character-
istic transformational properties of a tensor while the second
term destroy the to-be tensorial character of the affine. If this
second term on the right hand side of (2) was not present,
the affine would surely be a tensor. These affine connections
present a problem when it comes to the geodesic equation of
motion, namely:

d2xλ

ds2 − Γλµν
dxµ

ds
dxν

ds
= 0 . (3)

Because of the nature of the non-tensorial affine connec-
tion Γλµν, this geodesic (3) of motion does not holdfast – in
the truest sense – to the depth of the letter and essence of
the philosophy deeply espoused and embodied in Einstein’s
Principle of Relativity (PoE) [12], namely that physical laws
must require no special set of coordinates where there are to
be formulated.

The non-tensorial nature of the affine connections require
that the equation of motion must first be formulated in special
kind of coordinate systems known as a geodesic coordinate
systems∗, yet the PoE forbids this. This problem has never
been adequately addressed in the GTR. In order to appreci-
ate that this indeed is a real problem, one can for example
consider the fact that affinities in the GTR represent forces.
A force has no relative sense of existence either by way of a
coordinate transformation or a transformation between refer-
ence systems – yet, the affine connection speaks to the con-
struction of this seemingly non-physical scenario.

That is to say: if a force exists (i.e. Γλµν , 0) in one coordi-
nate system, it must exist in any arbitrary coordinate system
(i.e. Γλ

′

µ′ν′ , 0). This surely is not the case if these affinities are
to transform as spelt out in (2), because you can have Γλµν = 0
and Γλ

′

µ′ν′ , 0. Against all that is expected from physical and
natural reality as we have come to experience it, this literally
means a force has a relative sense of existence where it can
be made to come into or out of existence by a mere change
of the system of coordinates. If anything, coordinates are no
more than a convenient way which we use to uniquely label
points in space and this should not, in any way imaginable,
have any physical effect whatsoever on the resultant physics
thereof.

3 Weyl (1918)’s theory

In the first such attempt to bring gravitation and electromag-
netism under one mathematical scheme, in which effort one
obviously hopes for a unification of these two forces in the
resulting theory, Weyl [2] realised that he could forge such a
scheme if he were to supplement the metric gµν of Riemann

∗A geodesic coordinate system is one in which the Christoffel three sym-
bols (Γλµν) vanish at all points on the given set of coordinates – i.e. Γλµν = 0.
An example is the flat rectangular (x, y, z) system of coordinates. However,
when one moves from this (x, y, z) rectangular system of coordinates to, say,
the spherical (r, θ, ϕ), the resulting affine (Γλ

′

µ′ν′
) is not zero – i.e. Γλ

′

µ′ν′
, 0.

geometry with a scalar function φ as follows:

ḡµν = e2φgµν . (4)

The resulting affine connections from this modified Riemann
metric (4) are:

Γ
λ

µν = Γλµν + Wλ
µν , (5)

where:
Wλ
µν = gλµ∂νφ + gλν∂µφ − gµν∂λφ , (6)

is the tensorial Weyl connection which results from Weyl’s
supplemented scalar function φ. Insofar as its transforma-
tion between coordinates is concerned, this new tensorial affi-
ne connection of the modified Riemann geometry (hereafter,
Weyl Geometry (WG)) is no different from the affine connec-
tion of Riemann geometry as it transforms as follows:

Γ
λ′

µ′ν′ =
∂xλ

′

∂xλ
∂xµ

∂xµ′
∂xν

∂xν′
Γ
λ

µν +
∂xλ

′

∂xλ
∂2xλ

∂xµ′∂xν′
. (7)

So, from a viewpoint of topology, WG is the same as RG.
Now, if this Weyl scalar is chosen such that:

φ = κ0

∫
Aαdxα, (8)

then the tensorial Weyl connection becomes:

Wλ
µν = δλµAν + δλνAµ − δµνAλ , (9)

where Aµ, is (here) a (dimensionless) four-vector and the δ’s
are the usual Kronecker delta functions, and κ0 is a constant
with the dimensions of inverse length and this constant has
been introduced for the purposes of dimensional consistency,
since we here assume that the four-vector Aµ and the Weyl
scalar φ are dimensionless physical quantities.

The versatile and agile Weyl [2] was quick to note that
this new Christoffel-Weyl affine (5) is invariant under the fol-
lowing rescaling of the metric gµν and the four vector Aµ:

gµν 7−→ e2Φgµν
Aµ 7−→ Aµ + κ−1

0 ∂µΦ

}
⇒ Γ

λ

µν 7−→ Γ
λ

µν , (10)

where Φ = Φ(r, t) is a well-behaved, arbitrary, smooth, differ-
entiable, integrable and uniform continuous scalar function.

Now, because Maxwell [13]’s electromagnetic theory is
invariant under the same gauge transformation which thefour-
vector Aµ has been subjected to in (10), the great mind of
Weyl seized this beautiful golden moment and identified this
four-vector Aµ with the electromagnetic four-vector poten-
tial. Weyl went on to assume that the resulting theory was a
unified field theory of gravitation and Maxwellian electrody-
namics. Weyl’s hopes were monumentally dashed, first start-
ing with Einstein’s lethal critique of the theory. Later, others
joined Einstein in their critique and dismissal of Weyl’s the-
ory, where they argued that despite its irresistible grandeur
and exquisite beauty, Weyl’s theory can not possibly describe
the measured reality of the order of the present world.
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4 Modified Weyl theory

Now, following for example Einstein [7, 8], Eddington [14]
and Schrödinger [9–11], we strongly felt that the idea of ten-
sorial affinities is the only way to solve the aforementioned
topological issues with RG and at the same time, we felt that
the beautiful introduction of the four-vector into the frame-
work of RG in WG needed to be preserved at all cost. To
us, this meant modifying WG in such a manner that tenso-
rial affinities are attained. For this, we imagined the metric of
WG being modified such that it is now given by:

ḡµν = e2χgµν, (11)

where, unlike in WG, the function: χ is no longer a scalar, but
a pseudo-scalar so designed that the resulting affinities of this
new geometry are true tensors.

The new metric given in (11) leads to the following affine
connection:

Γ
λ

µν = Γλµν + Qλ
µν , (12)

where:
Qλ
µν = gλµ∂νχ + gλν∂µχ − gµν∂λχ (13)

is a new affine connection that transforms as follows:

Qλ′

µ′ν′ =
∂xλ

′

∂xλ
∂xµ

∂xµ′
∂xν

∂xν′
Qλ
µν −

∂xλ
′

∂xλ
∂2xλ

∂xµ′∂xν′
. (14)

Because of the transformational properties of the new Q-affi-
ne as spelt out in (14) above, the resultant affine Γ

λ

µν in (12) is
a tensor. In order for the Q-affine to transform as desired in
(14), the χ-function must transform as follows:

χ′ = χ −
∂xλ

∂xλ′
. (15)

Further, in order for the χ-function to transform as desired in
(15), this function ought to be defined as follows:

χ = ln Ω , (16)

where the Ω-function transforms as follows:

Ω′ = Ω exp
(
−
∂xλ

∂xλ′

)
. (17)

In this way, tensorial affinities are indeed possible.

5 Unified Field Theory

With the nagging topological defect of RG and WG now out
of the way, i.e. the problem of non-tensorial affinities, we re-
alised in [1] that Weyl [2]’s idea can be brought back to life.
Instead of just supplementing the Riemann metric with the
Weyl-scalar, we have to supplement it with both the Weyl-
scalar φ and the new χ-function as follows:

ḡµν = e2(φ+χ)gµν . (18)

This leads to the affine of the emergent geometry now being
defined as follows:

Γ
λ

µν = Γλµν + Wλ
µν + Qλ

µν . (19)

Just like the affine in the previous section defined in (12), this
new affine (19) is also a tensor. From this, one can construct
a unified field theory of their choice by identifying the Weyl
tensor with a field of their choice. Since all our theories are
designed in order to model physical and natural reality, the
choice one will have to seek is obviously that which can ex-
plain physical and natural reality as we experience it and have
come to know it. Our work presented in [1] makes a temari-
ous endeavour to that end.

6 General discussion

Without an iota of doubt, we certainly have demonstrated or
shown that it is very much possible to attain tensorial affinities
by simple redefining Weyl [2]’s scalar so that it is a pseudo-
scalar that is, for better or for worse, forced to yield for us the
desired tensorial affinities. In closing, we certainly must has-
ten to say that our foisting of this pseudo-scalar to yield the
desired tensorial affinities has been done well within the per-
missible and legal confines, domains and provinces of phys-
ics, mathematics and philosophy.

Received on March 8, 2022
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