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In 1991 we derived the physical conditions opening the gate to a fully degenerate space-time, where from
the point of view of a regular observer the observable spatial and time intervals are equal to zero. The
one of the conditions, under which the observable interval of time is zero, enables instant displacement
(non-quantum teleportation) of physical bodies at any distance. In this article, we derive the teleportation
condition for Schwarzschild’s mass-point metric, Schwarzschild’s metric inside a sphere filled with an
incompressible liquid and de Sitter’s metric of a space filled with the physical vacuum. We also introduce
the modifications of the above three metrics, which contain rotation due to the space-time non-holonomity
(non-orthogonality of the time lines to the three-dimensional spatial section) and derive the teleportation
condition in each of these spaces. The obtained teleportation condition requires either a near-light-speed
rotation or a super-strong gravitational field (depending on the particular space metric), which is very
problematic if not impossible in a regular laboratory. On the other hand, the non-orthogonality of the
time lines to the three-dimensional section can be implemented not only by a mechanical rotation of the
laboratory space, but also using other physical factors. Thus, we are looking for how to do it using a strong
electromagnetic field (the latter is not a problem for modern technologies). We introduce a space-time
metric, which rotates due to its non-holonomity, and the gravitational field is neglected. Then, substituting
the components of the obtained metric into Einstein’s field equations with the electromagnetic energy-
momentum tensor on the right hand side, we obtain the conditions under which the equations vanish
and, therefore, the metric space is Riemannian and contains an electromagnetic field. As a result, we
obtain how the electromagnetic field parameters can replace the rotation of space in the teleportation
condition. The obtained result shows how to teleport physical bodies from an earth-bound laboratory to
any remote point in the Universe using a super-strong electromagnetic field. Creating such devices is a
very interesting task for engineers in the near future.

1 The background

In 1991, in the course of our extensive research on the appli-
cation of the General Theory of Relativity to biophysics, we
set ourselves the following primary task. We aimed to deduce
such physical conditions, under which the four-dimensional
preudo-Riemannian space, which is the basic space-time of
the General Theory of Relativity, is fully degenerate from the
point of view of a regular observer. In such a fully degener-
ate region, the four-dimensional space-time interval is equal
to zero, as well as the three-dimensional spatial interval and
the interval of time, which are observed by a regular observer
outside this region (in a regular non-degenerate region of the
space-time), are also equal to zero.

In particular, the condition that the interval of physically
observable time between two events is equal to zero enables
instant displacement (non-quantum teleportation) of a physi-
cal body from the observer’s laboratory to any remote point
in the Universe.

The source and logical basis of this idea was the fact that a
partial degeneration of the space-time was already known. In
this case the four-dimensional (space-time) interval is equal
to zero, and the observable three-dimensional interval and the
interval of observable time are not equal to zero, but are equal
to each other. Such a partially degenerate region of the space-

time is home to light-like trajectories and light-like (massless)
particles moving along them, for example, photons (photons
belong to the family of massless light-like particles).

In our mathematical search for physical conditions, under
which the space-time fully degenerates, we used, as always in
our theoretical work, the mathematical apparatus of chrono-
metric invariants, which are physically observable quantities
in the General Theory of Relativity. This mathematical appa-
ratus was created in 1944 by our esteemed teacher A. L. Zel-
manov (1913–1987), who published it first in 1944 in his PhD
thesis [1] and then in two brief journal articles [2, 3]. It just
so happened that after Zelmanov’s death, we remain the only
ones who professionally master this mathematical apparatus
and apply it in scientific research. For this reason, before ex-
plaining our current study of the non-quantum teleportation
condition, we give below a brief introduction to the theory of
chronometric invariants.

2 A brief introduction to chronometric invariants

Briefly, chronometric invariants are the quantities that are in-
variant everywhere along a three-dimensional spatial section
of the space-time and a line of time, which are linked to a real
observer and his laboratory. Mathematically, chronometri-
cally invariant quantities are projections of four-dimensional
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(general covariant) quantities onto the three-dimensional spa-
tial section and the line of time of the observer. In the gen-
eral case, such a real three-dimensional spatial section (lo-
cal three-dimensional space) can be curved, inhomogeneous,
anisotropic, deformed, rotating, be filled with a gravitational
field and also have some other properties such as viscosity
etc. The lines of real time can have different density of time
coordinates depending on the gravitational potential, as well
as be non-orthogonal to the three-dimensional spatial section
(the latter property is called the space-time non-holonomity,
which is manifested as a three-dimensional rotation of the
spatial section). As a result, the reference frame of a real ob-
server, consisting of a coordinate grid paved on his real three-
dimensional spatial section, as well as a system of real clocks
located at each point of the section, has all the geometric and
physical properties of his local space. Therefore, chronomet-
rically invariant quantities as projections of four-dimensional
(general covariant) quantities onto the real spatial section and
real time line in his reference frame take into account the in-
fluence of all the geometric and physical factors present in his
local space. So, the chronometrically invariant projections of
any four-dimensional (general covariant) quantity calculated
in the real reference frame of an observer are truly physically
observable quantities registered by the observer.

The operator of projection onto the time line of an ob-
server is the unit-length four-dimensional vector tangential to
the observer’s world line at each of its points

bα =
dxα

ds
, bαbα = 1 ,

while the operator of projection onto his three-dimensional
spatial section is the four-dimensional symmetric tensor

hαβ = − gαβ + bαbβ .

These operators are orthogonal to each other, i.e., their
common contraction is always equal to zero

hαβbα = 0 , hαβbα = 0 , hαβbα = 0 , hβαbα = 0 .

A regular observer rests with respect to his reference body
(bi = 0) and, thus, accompanies to his reference space. Thus,
the components of the projection operator bα are

b0 =
1
√
g00

, bi = 0 , b0 =
√
g00 , bi =

gi0
√
g00

,

while the components of hαβ have the form

h00 = 0 , h00 = −g00 +
1
g00

, h0
0 = 0 ,

h0i = 0 , h0i = −g0i, hi
0 = 0 ,

hi0 = 0 , hi0 = −gi0, h0
i =

gi0

g00
,

hik = −gik +
g0ig0k

g00
, hik = −gik, hi

k = δ
i
k .

According to Zelmanov’s theorem on the chronometrical-
ly invariant (physically observable) projections, the chr.inv.-
projections of a four-dimensional vector Qα are

bαQα =
Q0
√
g00

, hi
αQα = Qi,

while for a symmetric 2nd rank tensor Qαβ these are

bαbβQαβ =
Q00

g00
, hiαbβQαβ =

Qi
0

√
g00

, hi
αhk

β Qαβ = Qik.

Thus, the chr.inv.-projections of a four-dimensional inter-
val dxα are the physically observable time interval

dτ =
√
g00 dt +

g0i

c
√
g00

dxi

and the observable three-dimensional interval dxi which co-
incides with the spatial coordinate interval. The physically
observable velocity is the three-dimensional chr.inv.-vector

vi =
dxi

dτ
, vivi = hikvivk = v2,

which, on the trajectories of light, transforms to the three-
dimensional chr.inv.-vector of the physically observable ve-
locity of light ci, the square of which is cici = hik cick = c2.

Calculating the spatial chr.inv.-projections of the funda-
mental metric tensor gαβ, we see that

hαi hβk gαβ = −hik , hi
αhk

β g
αβ = −hik,

i.e., hik is the physically observable chr.inv.-metric tensor. It
has all properties of the fundamental metric tensor gαβ in the
observer’s three-dimensional spatial section

hαi hk
α = δ

k
i − bibk = δk

i ,

where δk
i is the unit three-dimensional tensor, which is part of

the four-dimensional unit tensor δαβ . Therefore, the chr.inv.-
metric tensor hik can lift and lower indices in chronometri-
cally invariant quantities.

The chr.inv.-operators of derivation
∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi =
∂

∂xi −
g0i

g00

∂

∂x0

are non-commutative
∗∂2

∂xi∂t
−

∗∂2

∂t ∂xi =
1
c2 Fi

∗∂

∂t
,

∗∂2

∂xi∂xk −
∗∂2

∂xk∂xi =
2
c2 Aik

∗∂

∂t
,

where

Fi =
1

1 − w
c2

(
∂w
∂xi −

∂vi

∂t

)
is the chr.inv.-vector of the gravitational inertial force,

Aik =
1
2

(
∂vk

∂xi −
∂vi

∂xk

)
+

1
2c2

(
Fi vk − Fk vi

)
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is the antisymmetric chr.inv.-tensor of the three-dimensional
angular velocity of rotation of the observer’s space, w is the
gravitational potential, and vi is the three-dimensional linear
velocity of rotation of the observer’s space due to the space-
time non-holonomity (non-orthogonality of the time lines to
the three-dimensional spatial section)

w = c2 (
1 −
√
g00

)
, vi = −c

g0i
√
g00

, v i = −cg0i √g00 .

In particular, vi gives a detailed formula for the chr.inv.-
metric tensor hik, which is

hik = −gik +
1
c2 vi vk .

It should be noted that the quantities w and vi do not have
chronometric invariance, despite the fact that vi = hik v

k and
v2 = vkv

k = hik v
iv k as for a chr.inv.-quantity.

The reference space can deform, changing its coordinate
grids with time that is expressed with the three-dimensional
symmetric chr.inv.-tensor of the space deformation

Dik =
1
2

∗∂hik

∂t
, Dik = −

1
2

∗∂hik

∂t
, D = hikDik =

∗∂ ln
√

h
∂t

,

where h = det ∥ hik ∥.
The regular 2nd rank Christoffel symbols Γαµν and the 1st

rank Christoffel symbols Γµν,σ are replaced with the respec-
tive chr.inv.-Christoffel symbols

∆i
jk = him∆ jk,m =

1
2

him
(
∗∂h jm

∂xk +
∗∂hkm

∂x j −

∗∂h jk

∂xm

)
,

where the chr.inv.-metric tensor hik is used instead of the fun-
damental metric tensor gαβ.

The chr.inv.-curvature tensor is derived similarly to the
Riemann-Christoffel tensor from the non-commutativity of
the 2nd chr.inv.-derivatives of an arbitrary vector

∗∇i
∗∇k Ql −

∗∇k
∗∇i Ql =

2Aik

c2

∗∂Ql

∂t
+ H ... j

lki ·Q j ,

where the 4th rank chr.inv.-tensor

H ··· j
lki · =

∗∂∆
j
il

∂xk −

∗∂∆
j
kl

∂xi + ∆
m
il∆

j
km − ∆

m
kl∆

j
im ,

is the basis for the chr.inv.-curvature tensor Clki j,

Clki j =
1
4

(
Hlki j − H jkil + Hkl ji − Hil jk

)
,

Clk = C ··· ilki · , C = hlkClk ,

which has all properties of the Riemann-Christoffel tensor in
the observer’s three-dimensional spatial section, and its con-
traction gives the observable chr.inv.-curvature C. Also

Hlki j = Clki j +
1
2

(
2 Aki D jl + Ai j Dkl +

+ A jk Dil + Akl Di j + Ali D jk

)
,

Hlk = Clk +
1
2

(
Ak j D j

l + Al j D j
k + Akl D

)
,

H = hlkHlk = C .

Please note that, as was found by Zelmanov, the physi-
cally observable chr.inv.-curvature of a space is depended on
not only the gravitational inertial force acting in the space, but
also the space rotation and deformation, and, therefore, does
not vanish in the absence of the gravitational field.

The general covariant Einstein equations

Rαβ −
1
2
gαβR = −κTαβ + λgαβ

with taking all possible factors into account have the chr.inv.-
projections called the chr.inv.-Einstein equations

∗∂D
∂t
+ D jl D jl + A jl Al j + ∗∇j F j −

1
c2 Fj F j =

= −
κ

2

(
ϱc2 + U

)
+ λc2

∗∇j

(
hi jD − Di j − Ai j

)
+

2
c2 Fj Ai j = κ J i

∗∂Dik

∂t
−

(
Di j + Ai j

) (
D j

k + A· jk·

)
+ DDik + 3Ai j A· jk· −

−
1
c2 Fi Fk +

1
2

(
∗∇i Fk +

∗∇k Fi

)
− c2Cik =

=
κ

2

(
ϱc2hik + 2Uik − Uhik

)
+ λc2hik



,

where the chr.inv.-derivative of the Ai j by x j

∗∇j Ai j =
∗∂Ai j

∂x j + ∆
i
jl A jl + ∆l

l j Ai j, ∆l
l j =

∗∂ ln
√

h
∂x j

is determined, as well as all other chr.inv.-derivatives

∗∇i Q k =
∗∂Qk

dxi − ∆
l
ik Ql ,

∗∇i Q k =
∗∂Q k

dxi + ∆
k
il Q l,

∗∇i Q jk =
∗∂Q jk

dxi − ∆
l
i j Qlk − ∆

l
ik Q jl ,

∗∇i Q k
j =

∗∂Q k
j

dxi − ∆
l
i j Q k

l + ∆
k
il Q l

j ,

∗∇i Q jk =
∗∂Q jk

dxi + ∆
j
il Q lk + ∆k

il Q jl,

∗∇i Q i =
∗∂Q i

∂xi + ∆
j
ji Q i, ∆

j
ji =

∗∂ ln
√

h
∂xi ,

∗∇i Q ji =
∗∂Q ji

∂xi + ∆
j
il Q il + ∆l

li Q ji, ∆l
li =

∗∂ ln
√

h
∂xi ,

by analogy with the respective absolute derivative, and

ϱ =
T00

g00
, J i =

cT i
0

√
g00

, U ik = c2T ik
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are the chr.inv.-projections of the energy-momentum tensor
Tαβ of the distributed matter that fills the space, e.g., an elec-
tromagnetic field: ϱ is the physically observable density of
the field energy, J i is the physically observable density of the
field momentum, and U ik is the physically observable stress-
tensor of the field (its trace is U = hmnUmn).

The electromagnetic field tensor is the curl of the four-
dimensional electromagnetic field potential Aα, i.e.,

Fµν = ∇µ Aν − ∇ν Aµ =
∂Aν

∂xµ
−
∂Aµ

∂xν
,

where
∇µ Aν =

∂Aν

∂xµ
− Γσνµ Aσ

is the absolute derivative of the Aν by xµ. The electromagnetic
field tensor has the physically observable projections

Ei =
F ·i0 ·
√
g00
=
giαF0α
√
g00

, Hik = F ik = giαgkβFαβ ,

called the chr.inv.-electric strength Ei and chr.inv.-magnetic
strength Hik of the field. The respective chr.inv.-pseudovector
H∗i and chr.inv.-pseudotensor E∗ik

H∗i =
1
2
εikm Hkm, H∗i =

1
2
εikmHkm ,

E∗ik = −εikmEm , εipqH∗i =
1
2
εipqεimn Hmn = Hpq

are created in accordance with the transposition of indices in
the antisymmetric “discriminant” chr.inv.-tensor

εikm =
eikm

√
h
, εikm = eikm

√
h ,

which was introduced by Zelmanov by analogy with the Levi-
Civita antisymmetric unit tensor eikm. Using εikm and εikm, we
can transform chr.inv.-tensors into chr.inv.-pseudotensors (see
§2.3 in our monograph [5]).

Thus, the general covariant energy-momentum tensor of
an electromagnetic field

Tαβ =
1

4π

(
−Fασ F ·σβ · +

1
4
gαβ Fµν Fµν

)
has the following chr.inv.-projections

ϱ =
T00

g00
=

1
8π

(
Ei Ei + H∗i H∗i

)
,

J i =
cT i

0
√
g00
=

c
4π

εikmEk H∗m ,

U ik = c2T ik = ϱc2hik −
c2

4π

(
EiEk + H∗iH∗k

)
.

Generally speaking, the mathematical apparatus of chro-
nometric invariants is extensive. We have given above only

that part of it that is necessary for understanding this article.
For a deeper study of this mathematics, we recommend the
respective chapters of our monographs [4, 5], especially —
the chapter Tensor Algebra and the Analysis in [5]. You can
also study Zelmanov’s publications [1–3], of which his 1957
presentation [3] is the most useful and complete.

3 The physical conditions under which the space-time is
fully degenerate

To deduce the physical conditions, under which the space-
time is fully degenerate, we considered the square of the four-
dimensional space-time interval ds2 = gαβ dxαdxβ in the form,
expressed in terms of chr.inv.-quantities, i.e.

ds2 = c2dτ2 − dσ2,

where dτ is the interval of physically observable time, dσ is
the physically observable three-dimensional interval

dτ =
(
1 −

w
c2

)
dt −

1
c2 vi dxi, dσ2 = hik dxidxk,

while w is the gravitational potential, and vi is the linear ve-
locity of rotation of the observer’s space due to the space-time
non-holonomity. Thus, considering the space-time interval
the path travelled by a particle, we have

ds2 = c2dτ2
(
1 −

v2

c2

)
, vi =

dxi

dτ
,

where vi is the physically observable chr.inv.-velocity of the
particle registered by the observer (see above).

Prior to our study, two types of trajectories and, respec-
tively, two types of particles were known in the General The-
ory of Relativity. First, these are the so-called non-isotropic
trajectories, along which, in terms of chr.inv.-quantities,

ds2 = c2dτ2 − dσ2 , 0 , c2dτ2 , dσ2 , 0 .

They lie in the so-called non-isotropic region of the space-
time, which is home to mass-bearing particles, and “mass-
bearing” means that the rest-mass of such a particle is non-
zero (m0 , 0). The relativistic mass (mass of motion) of such
a particle is non-zero too (m, 0). Such particles make up
substances.

Trajectories of the second type are the so-called isotropic
trajectories, along which, in terms of chr.inv.-quantities,

ds2 = c2dτ2 − dσ2 = 0 , c2dτ2 = dσ2 , 0 .

They lie in the so-called isotropic region of the space-
time, which is home to massless particles, for which “mass-
less” means that the rest-mass of such a particle is equal to
zero (m0 = 0), while its relativistic mass (mass of motion) is
non-zero (m, 0). Re-writting ds2 = 0 in the form

ds2 = c2dτ2
(
1 −

v2

c2

)
= 0 , c2dτ2 , 0 ,
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we see that massless particles travel at the velocity of light
(v2 = hik vivk = c2). The latter mean that massless particles are
related to the light-like family of particles.

The fact that ds2 = c2dτ2 − dσ2 = 0 and c2dτ2 = dσ2 , 0
along the isotropic trajectories means that this is a partially
degenerate region of the space-time.

Taking the above into account, we logically supposed that
the space-time becomes fully degenerate, if

ds2 = c2dτ2 − dσ2 = 0 , c2dτ2 = 0 , dσ2 = 0 .

Our expectations found full justification. Below we will
explain why.

As it is known from the geometry of metric spaces, a met-
ric space is fully degenerate if the determinant of its met-
ric tensor is equal to zero. In the four-dimensional pseudo-
Riemannian space, which is the basic space-time of the Gen-
eral Theory of Relativity, the determinant of the fundamental
metric tensor is g< 0. This means that the basic space-time
of the General Theory of Relativity is non-degenerate.

The condition dτ= 0 means that the physically observ-
able time interval between any two events in this space-time
region, when registered by an observer, whose home is the
regular (non-degenerate) space-time region, is equal to zero.
We re-write dτ= 0 in the form

dτ =
[
1 −

1
c2

(
w + vi ui

)]
dt = 0 , ui =

dxi

dt
,

where ui is the three-dimensional coordinate velocity of mo-
tion with respect to the observer, which is not a physically
observable chr.inv.-quantity; the ui is based on the time coor-
dinate increment dt, which is not equal to zero between the
events (dt, 0).

The condition dσ2 = 0 in the extended form is

dσ2 = hik dxidxk = 0 , dxi , 0

and means that in this space-time region the physically ob-
servable three-dimensional distance dσ between any two dif-
ferent points (dxi , 0) when registered by an observer, whose
home is a regular non-degenerate space-time region, is equal
to zero. This condition satisfies only if the determinant of the
chr.inv.-metric tensor hik is equal to zero

h = det ∥ hik ∥= h11h22h33 + h31h12h23 + h21h13h32 −

− h31h22h13 − h21h12h33 − h11h23h32 = 0 .

Zelmanov proved that the determinant of the fundamen-
tal metric tensor g = det ∥ gαβ ∥ is connected with that of the
chr.inv.-metric tensor h = det ∥ hik ∥ by the formula

h = −
g

g00
,

i.e., once the chr.inv.-metric tensor hik is degenerate, the fun-
damental metric tensor gαβ is degenerate too.

The above is an exact proof to why the entire space of
the Universe or a local space region in it, wherein c2dτ2 = 0
and dσ2 = 0, is fully degenerate. We therefore called such a
space-time zero-space, while the trajectories that lie in it —
zero-trajectories.

Using the formulae for dτ and hik, we obtained the phys-
ical conditions for full degeneracy, i.e., the physical condi-
tions in a fully degenerate space-time (zero-space)

w + vi ui = c2,
(
1 −

w
c2

)2
c2dt2 = gik dxidxk.

From a geometric point of view, the conditions for full
degeneracy mean the following.

Within the infinitesimal vicinity of any point in a Rimean-
nian space, we can introduce a flat space, which is tangential
to the Riemannian space in this point. The latter means that
the basis vectors e⃗(α) of the tangential flat space are tangen-
tial to the curved coordinate lines of the Riemannian space.
But, since the coordinate lines in a Riemannian space are
curved and non-orthogonal to each other (if the space is non-
holonomic), the lengths of the basis vectors e⃗(α) in the tangen-
tial flat space are different from the unit length. The vector
of an infinitesimal displacement in the Riemannian space is
expressed through the tangential basis vectors as

dr⃗= e⃗(α)dxα,

and, since the scalar product of the vector dr⃗ with itself gives
dr⃗dr⃗= ds2 and also it is ds2 = gαβ dxαdxβ, we obtain

gαβ = e⃗(α)e⃗(β) = e(α)e(β) cos (xα; xβ) ,

i.e., g00 = e2
(0), g0i = e(0)e(i) cos (x0; xi), gik = e(i)e(k) cos (xi; xk).

Thus, according to the definitions of vi and hik, we have

vi = − c e(i) cos (x0; xi) ,

hik = e(i)e(k)

[
cos (x0; xi) cos (x0; xk) − cos (xi; xk)

]
.

Taking into account that dτ= 0 and dσ2 = 0 in the zero-
space (the latter, as was shown above, means h= 0), we obtain
the geometric conditions for full degeneracy

e(0) = −
1
c

e(i) ui cos (x0; xi) ,

cos (x0; xi) cos (x0; xk) = cos (xi; xk) .

So, once the rotation of the observer’s space reaches the
light speed, cos (x0; xi)= 1 and, thus, cos (xi; xk)= 1: the lines
of time become “fallen” into the three-dimensional spatial
section (time becomes “fallen” into space), wherein all three
spatial axes become coinciding with each other.

As for the particles located is the zero-space, their physi-
cal sense is derived based on Levi-Civita’s rule, according to
which, in a Riemannian space of n dimensions the length of
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any n-dimensional vector Qα transferred in parallel to itself
remains unchanged (QαQα = const).

As it is known, any mass-bearing particle is characterized
by the four-dimensional momentum vector Pα, and any mass-
less (i.e., having the zero rest-mass) particle is characterized
by the four-dimensional wave vector Kα,

Pα = m0
dxα

ds
, Kα =

ω0

c
dxα

ds
,

each of which is transferred in parallel to itself along the par-
ticle’s trajectory in the space-time. The chr.inv.-projections of
the Pα and Kα onto the time line and the three-dimensional
spatial section of a regular observer are equal to

P0
√
g00
= m , P i =

m
c

vi,

K0
√
g00
=
ω

c
, Ki =

ω

c
ci.

To adapt the Pα and Kα to the zero-space condition, we
are looking for the condition in their structure. Based on the
interval of physically observable time dτ (page 32), we ob-
tain how the physically observable velocity depends on the
condition for full degeneracy w+ vi ui= c2, i.e.,

vi =
ui

1 − 1
c2

(
w + vkuk) ,

and then express ds2 in the form

ds2 = c2dτ2
(
1−

v2

c2

)
= c2dt2


[
1−

1
c2

(
w+ vkuk

)]2

−
u2

c2

 ,
which gives

Pα = m0
dxα

ds
=

M
c

dxα

dt
, Kα =

ω0

c
dxα

ds
=
ω

c2

dxα

dt
,

where dt, 0, and

M =
m

1 − 1
c2

(
w + vkuk) , ω =

ω

1 − 1
c2

(
w + vkuk)

take the condition for full degeneracy w+ vi ui = c2 into ac-
count and are not equal to zero in the zero-space.

For zero-space particles, the chr.inv.-projections of their
momentum vector Pα and wave vector Kα onto the time line
and the three-dimensional space of a regular observer outside
the zero-space are equal to

P0
√
g00
= M

[
1 −

1
c2

(
w + vi ui

)]
= 0 , P i =

1
c

Mui , 0 ,

K0
√
g00
=
ω

c

[
1 −

1
c2

(
w + vi ui

)]
= 0 , Ki =

1
c2 ωui , 0 .

The above result means that all zero-space particles have
zero rest-masses m0 = 0, zero relativistic masses m = 0 and
zero relativistic frequencies ω = 0. We therefore called the
particles, whose home is the zero-space, zero-particles.

This is the third, new type of particles in addition to mass-
bearing and massless (light-like) particles, already known in
the General Theory of Relativity.

As it is known, for any regular mass-bearing and mass-
less particle (their home is the regular non-degenerate space-
time), the relation between its energy and momentum remains
unchanged along its trajectory

E2 − c2 p2 = const .

This follows from Levi-Civita’s rule Pα Pα= const and
Kα Kα, const having the form for mass-bearing particles and
massless particles, respectively,

E2 − c2 p2 = E2
0 , E2 − c2 p2 = 0 ,

where E =mc2, p2=m2v2, E0 =m0 c2. For massless particles
this relation, taking into account that p2 =m2v2 =m2 hik vivk,
transforms into the banal formula hik vivk = c2 meaning that
they travel at the velocity of light.

On the other hand, Pα Pα, const and Kα Kα, const for
zero-particles: anyone can verify this fact by his own calcula-
tions based on the above. This fact means that Levi-Civita’s
rule is violated along the trajectories of zero-particles, and,
hence, the observed geometry along their trajectories is not
Riemannian.

The said does not necessarily mean that the zero-space
geometry is non-Riemannian itself, but only that it looks like
that from the point of view of a regular observer.

Of all the types of particles known in modern physics,
only virtual particles have E2 − c2 p2 , const. Feynman dia-
grams show that virtual particles are carriers of the interaction
between elementary particles, i.e., between each two branch-
ing points on the diagrams. According to Quantum Electro-
dynamics, all physical processes in our world are based on
the emission and absorption of virtual particles by real mass
and massless (light-like) particles.

That is, the interaction between particles in our regular
space-time is transmitted through an “exchange buffer” that is
the zero-space, while zero-particles transmitting the interac-
tion through this “buffer space” (zero-space) are virtual par-
ticles known in Quantum Electrodynamics.

The above is the solely interpretation of virtual particles
and Feynman diagrams in the framework of the space-time
geometry, and is a “bridge” connecting Quantum Electrody-
namics with the General Theory of Relativity.

To understand how zero-particles could be registered in an
experiment conducted by a regular observer, consider them as
waves travelling along their space-time trajectories.

As it is known, any massless particle in the framework
of the geometric optics approximation is characterized by the
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four-dimensional wave vector determined in the lower-index
form Kα through the wave phase ψ called eikonal. In analogy
to it, we introduce the four-dimensional momentum vector
characteristic of any mass-bearing particle, respectively,

Kα =
∂ψ

∂xα
, Pα =

ℏ

c
∂ψ

∂xα
,

where ℏ is Planck’s constant. Their physically observable
chr.inv.-projections onto the observer’s line of time are

K0
√
g00
=

1
c

∗∂ψ

∂t
,

P0
√
g00
=
ℏ

c2

∗∂ψ

∂t
,

and, since these chr.inv.-projections are also equal to ω/c and
m (see above), we obtain that, in the framework of the geo-
metric optics approximation,

ω =
∗∂ψ

∂t
, m =

ℏ

c2

∗∂ψ

∂t
.

Therefore, on the transition to the zero-space, i.e., under
the condition for full degeneracy w+ vi ui = c2, since ω= 0
and m= 0 (see above), we obtain

∗∂ψ

∂t
= 0 .

The eikonal equation KαKα = const means that the length
of the four-dimensional wave vector transferred in parallel to
itself remains unchanged. The chr.inv.-eikonal equation for
regular massless (light-like) particles and mass-bearing parti-
cles, taking the main property gασgβσ= δ

β
α of the fundamental

metric tensor gαβ into account, has the form, respectively,

1
c2

( ∗∂ψ
∂t

)2
− hik

∗∂ψ

∂xi

∗∂ψ

∂xk = 0 ,

1
c2

(
∗∂ψ

∂t

)2

− hik
∗∂ψ

∂xi

∗∂ψ

∂xk =
m2

0c2

ℏ2 ,

and is a travelling wave equation. On the transition to the
zero-space, the above eikonal equations take the same form

hik
∗∂ψ

∂xi

∗∂ψ

∂xk = 0 ,

which is a standing wave equation.
To understand the result we have obtained, we should take

into account the fact that a regular observer does not register
zero-space objects themselves, but only what he sees on the
transition to or from the zero-space (we assume that Levi-
Civita’s rule is satisfied on this boundary), and the zero-space
itself is the fully degenerate case of the isotropic space (home
to massless light-like particles).

Therefore, zero-particles, i.e., all particles, whose home
is the zero-space, should appear to a regular observer outside
the zero-space as standing light waves, while the zero-space
should appear as a point containing a system of standing light
waves (a light-like hologram) inside itself.

4 Non-quantum teleportation

Teleportation is the instant displacement of particles from one
point in the three-dimensional space to another.

Initially, scientists considered only quantum teleportation.
In fact, quantum teleportation is not a real instant displace-
ment, but a “probabilistic trick” based on the laws of Quan-
tum Mechanics [7]. This is despite the fact that, using quan-
tum teleportation, photons were first “teleported” in 1998 [8],
and atoms were “teleported” in 2004 [9, 10].

On the contrary, we considered instant displacement in
accordance with the geometric structure of the space-time of
the General Theory of Relativity, which is real teleportation
without any “probabilistic tricks”. This is why we called this
regular non-quantum method of particle teleportation non-
quantum teleportation.

In terms of physically observable chr.inv.-quantities, tele-
portation is a process of displacement in which the interval of
physically observable time between its beginning and end is
equal to zero (dτ= 0). If a mass-bearing particle is teleported
(mass-bearing particles make up substances), the teleporta-
tion condition dτ= 0 is added with the physically observable
three-dimensional interval between the point of departure and
the point of arrival, which is not equal to zero, i.e. dσ, 0.
Therefore, the space-time metric along the trajectories of non-
quantum teleportation of mass-bearing particles is

ds2 = c2dτ2 − dσ2 = −dσ2, c2dτ2 = 0 , dσ2 , 0 .

Since dσ2 = hik dxidxk and taking into account the condi-
tion w+ vi ui = c2 under which dτ= 0, the space-time metric
takes the form, which we called the non-quantum teleporta-
tion metric

ds2 = −dσ2 = −

(
1 −

w
c2

)2
c2dt2 + gik dxidxk =

= −
1
c2 viuivkukdt2 + gik dxidxk.

As you can see, in the non-quantum teleportation metric,
the regular signature (+−−−) of space-time is replaced with
the inverted signature (−+++). That is, from the point of view
of a regular observer, “time” and “space” are replaced with
each other on the teleportation trajectories: “time” of a tele-
porting particle is “space” of a regular observer, and “space”
of the teleporting particle is “time” of the regular observer.

The same is true for the non-quantum teleportation met-
ric, derived for massless (light-like) particles. If a massless
(light-like) particle is teleported, the teleportation condition
dτ= 0 is added with c2dτ2 = dσ2, since the latter is character-
istic of the isotropic region of the space-time, which is home
to such particles. Therefore, the space-time metric along the
trajectories of non-quantum teleportation of massless (light-
like) particles is fully degenerate

ds2 = c2dτ2 − dσ2 = 0, c2dτ2 = dσ2 = 0 ,
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which means that the trajectories along which massless parti-
cles are teleported lie in the fully degenerate space-time (zero-
space). The equation of such trajectories is derived from the
non-quantum teleportation metric (see above) equalized to
zero, and is the fully degenerate light hypercone equation(

1 −
w
c2

)2
c2dt2 = gik dxidxk.

So, according to the General Theory of Relativity, as soon
as we realize the physical condition

w + vi ui = c2

in the local space inside a device in our laboratory (under
this condition, dτ= 0), a mass-bearing or massless (light-like)
particle that is inside this device enters a teleportation trajec-
tory and, thus, can be instantly teleported to any other place
in our Universe. For this reason, we call w+ vi ui = c2 also the
physical condition for non-quantum teleportation.

5 Finding the teleportation condition accessible in a real
laboratory. Problem statement

The above results, which we obtained in the early 1990s, were
presented in our two monographs in 2001 [4, 5], and then in
the brief article [6]. The reason for such a long overview
of these results in the present article is that without a detailed
acquaintance with the above results, it would be impossible to
understand everything that follows, including the engineering
implementation of non-quantum teleportation at any distance
in our Universe.

So, the physical condition w+ vi ui = c2 under which the
interval of physically observable time is degenerate (dτ= 0)
is also the physical condition for non-quantum teleportation.
To implement this physical condition, a super-strong gravi-
tational potential and a near-light-speed rotation of the ob-
server’s space are required. Obviously, in a real laboratory,
this is extremely difficult, if not impossible.

On the other hand, when deriving the teleportation condi-
tion w+ vi ui = c2 from dτ= 0, we did not indicate the formu-
las for the individual components of the fundamental metric
tensor gαβ and the chr.inv.-metric tensor hik. That is, we did
not specify the specific local space of the real laboratory in
which we are going to teleport particles.

It is obvious that, as soon as we specify the metric of the
local space in a real laboratory, the teleportation condition de-
rived from this metric will be different from its general form
w+ vi ui = c2. Say, we have an electromagnetic field generator
installed and running in our laboratory. If so, then the local
space in our laboratory has an electromagnetic field. Accord-
ingly, we expect that the characteristics of the electromag-
netic field will appear in the teleportation condition derived
from dτ= 0. In particular, if the generated electromagnetic
field is super-strong (this is not a big problem when using
modern technologies), then the numerical values of the elec-
tromagnetic field terms in the teleportation condition can be

so significant that “replace” the gravitational potential and ro-
tation of the laboratory space. In such a case, the teleportation
condition, i.e., the condition under which particles enter tele-
portation trajectories and, thus, can be instantly teleported to
any other place in our Universe, can be implemented in a real
laboratory.

Which specific space metric is suitable for a real labora-
tory? Such a local space is connected either with the Earth, or
with another planet, or with another star system, and, at first
glance, is described by Schwarzschild’s mass-point metric.
On the other hand, the mass-point metric does not take into
account the rotation of space, which is one of the two “core”
factors in the teleportation condition w+ vi ui = c2. Another
drawback is that the space described by the mass-point met-
ric is filled only with a gravitational field, and does not have
an electromagnetic field. The third drawback is that the grav-
itational field is so weak in a real earth-bound laboratory that
this factor can be neglected in the teleportation condition.

We therefore have drafted the following research plan for
the next Sections of this article.

At our first step we will derive and analyze the teleporta-
tion condition for each of the three most popular space met-
rics. These are Schwarzschild’s mass-point metric, Schwarz-
schild’s metric inside a sphere filled with an incompressible
liquid and de Sitter’s metric of a space filled with the physical
vacuum. Then, based on the above metrics, we will introduce
three similar metrics containing a three-dimensional rotation
due to the space-time non-holonomity (expressed by g0i, 0).
After that we will derive and analyze the teleportation condi-
tion in each of these three types of rotating space.

At our second step, we will introduce the metric of a space
that rotates due to the space-time non-holonomity, but free
from the gravitational field. This metric will be our “working
metric” in this research.

It is not a fact that the introduced metric containing ro-
tation describes a Riemannian space. As it is known, a Rie-
mannian space metric must not only have the Riemann square
form ds2 = gαβdxαdxβ, determined by the Riemann funda-
mental metric tensor gαβ, and be invariant ds2 = inv every-
where in the space. It must also satisfy Einstein’s field equa-
tions — the relation between the Ricci curvature tensor, the
fundamental metric tensor multiplied by the curvature scalar,
and the energy-momentum tensor of the “space filler”, which
is satisfied in any Riemannian space. The latter means that
as soon as we substitute the components of the fundamen-
tal metric tensor gαβ (taken from the formula of a particular
Riemannian space metric) and the components of the energy-
momentum tensor of the medium filling the space into the
component notation of the field equations, this must turn the
field equations into the zero identity. This is why not many
space metrics are proven to be Riemannian and, thus, are used
in the General Theory of Relativity.

So, most likely, the introduced metric containing rotation
will turn out to be non-Riemannian due to the term taking the
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three-dimensional space rotation into account.
To correct this situation, at our second step, we will take

the gαβ components from the introduced metric, then substi-
tute them into the chr.inv.-Einstein equations, the right hand
side of which is non-zero and contains the energy-momentum
tensor of an electromagnetic field. The relations that van-
ish the resulting chr.inv.-Einstein equations (we call them the
Riemannian conditions), are the conditions under which the
metric is Riemannian and describes a non-holonomic (rotat-
ing) space-time filled with an electromagnetic field.

Please note that, as was found by Zelmanov (see page 33),
the physically observable chr.inv.-curvature of a space is de-
pended on not only the acting gravitational inertial force, but
also the space rotation and deformation, and, therefore, does
not vanish in the absence of the gravitational field.

At our third step, we will consider the teleportation con-
dition, derived for the introduced metric containing rotation,
and the Riemannian conditions for this metric in the presence
of an electromagnetic field (the latter follow from the Einstein
equations, see above).

The obtained system of equations will show how strong
the electromagnetic field should be and what additional con-
ditions are required to launch particles on teleportation trajec-
tories in a slow rotating laboratory space. Super-strong elec-
tromagnetic fields are not a big problem when using modern
technologies. For this reason, the obtained electromagnetic
field parameters and additional conditions will show how, un-
der the conditions of a real earth-bound laboratory, real physi-
cal bodies and photons can be instantly teleported to any other
place in our Universe.

6 The teleportation condition in the space of a mass-
point body

Schwarzschild’s mass-point metric describes a spherically
symmetric space filled with the gravitational field created in
emptiness by a spherically symmetrical massive island, which
is considered as a point-like mass. The metric has the form

ds2 =

(
1 −

rg
r

)
c2dt2 −

dr2

1 − rg
r

− r2
(
dθ2 + sin2

θ dφ2
)
,

where r is the distance from the centre of the island, while
rg = 2GM/c2 is its gravitational radius.

Here and below, in terms of the spherical coordinates, r is
the radial coordinate, θ is the polar angle, φ is the geograph-
ical longitude, dr is the elementary segment length along the
r-axis, rdθ is the elementary arc length along the θ-axis, and
r sin θdφ is the elementary arc length along the φ-axis.

Therefore, the non-zero components of the fundamental
metric tensor gαβ of the mass-point metric expressed in terms
of the spherical coordinates are equal to

g00 = 1 −
rg
r
, g11 = −

1

1 − rg
r

, g22 = −r2, g33 = −r2sin2
θ .

With the above gαβ components, we obtain that the inter-
val of physically observable time in the space of the mass-
point metric has the form

dτ =
√
g00 dt +

g0i

c
√
g00

dxi =

√
1 −

rg
r

dt ,

and the teleportation condition, which is dτ= 0 with dt, 0,
has the following form

1 −
rg
r
= 0 =⇒ r = rg .

In addition to the above, because g00 is expressed through
the gravitational potential w in the form

g00 =

(
1 −

w
c2

)2
,

the obtained teleportation condition can be re-written as

1 −
w
c2 = 0 =⇒ w = c2.

The obtained result means that, in the space of the mass-
point metric, i.e., in the field of a spherically symmetric non-
rotating mass, a particle enters a teleportation trajectory under
the condition of gravitational collapse, i.e., on the surface of
a gravitational collapsar.

In other words, if you are in the field of a spherically
symmetric non-rotating mass, in order to launch a particle on
a teleportation trajectory, you need to simulate a mini black
hole in your laboratory.

7 The teleportation condition in the space of a rotating
mass-point body

Introduce a mass-point metric, where a gravitational field is
created in emptiness by a spherically symmetrical massive
island, which rotates due to the space-time non-holonomity.
We use Schwarzschild’s mass-point metric as a basis. Assu-
me that the space rotates along the φ-axis (along the geo-
graphical longitudes) with the linear velocity v3=ωr2sin2

θ,
whereω= const is the angular velocity of this rotation. Since,
according to the definition of vi,

v3 = ωr2sin2
θ = −

cg03
√
g00

,

we obtain

g03 = −
1
c
v3
√
g00 = −

ωr2sin2
θ

c

√
1 −

rg
r
,

and, thus, we obtain a Schwarzschild-like mass-point metric
containing the above rotation, i.e.,

ds2 =

(
1 −

rg
r

)
c2dt2 − 2ωr2sin2

θ

√
1 −

rg
r

dtdφ−

−
dr2

1 − rg
r

− r2
(
dθ2 + sin2

θ dφ2
)
.
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Accordingly, the interval of physically observable time in
the rotating space of the Schwarzschild-like metric we have
introduced is

dτ =
√
g00 dt +

g0i

c
√
g00

dxi =

=

√1 −
rg
r
−
ωr2sin2

θ

c2

dφ
dt

 dt ,

and the teleportation condition, i.e., dτ= 0 with dt, 0, writ-
ten in the spherical coordinates has the form√

1 −
rg
r
−
ωr2sin2

θ

c2

dφ
dt
= 0 ,

or, that is the same

w + ωr2sin2
θ

dφ
dt
= c2,

where sin θ= 1 for the observer’s laboratory located at the
equator, and the last multiplier is the coordinate velocity of
the teleporting particle along the φ-direction, which is the
geographical longitude (we assume that the particle travels
either in the same or in the opposite direction in which the
space rotates).

This condition is different from that in the space of the
Schwarzschild mass-point metric in only the second term de-
pending on the rotation of space due to the space-time non-
holonomity: the faster the rotation of space and the faster
the teleporting particle, the farther the teleportation trajectory
from the surface of gravitational collapse.

8 The teleportation condition in the space inside a liquid
sphere

Consider the metric of the space inside a liquid sphere, which
was introduced by Schwarzschild. It describes the space in-
side a sphere, which is not empty, but filled with an incom-
pressible liquid. The gravitational field inside such a sphere
is created by a spherically symmetrical imcompressible liquid
that fills it. As it is known, this metric has the form

ds2 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2 rg
a3


2

c2dt2 −

−
dr2

1 −
r2rg
a3

− r2
(
dθ2 + sin2

θ dφ2
)
,

where rg = 2GM/c2 is the gravitational radius calculated for
the entire mass M of the liquid (source of the gravitational
field) inside the sphere, and a= const is the radius of the
sphere. Respectively, the non-zero components of the fun-
damental metric tensor gαβ of this metric are

g00 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2 rg
a3


2

,

g11 = −
1

1 −
r2rg
a3

, g22 = −r2, g33 = −r2sin2
θ .

As a result, we obtain that the interval of physically ob-
servable time inside such a sphere has the form

dτ =
√
g00 dt +

g0i

c
√
g00

dxi =

=
1
2

3
√

1 −
rg
a
−

√
1 −

r2 rg
a3

 dt ,

and the teleportation condition, i.e., dτ= 0 with dt, 0, has
the following form

3

√
1 −

rg
a
−

√
1 −

r2 rg
a3 = 0 .

The obtained formula is a condition under which a parti-
cle enters a teleportation trajectory inside a sphere filled with
an incompressible liquid.

It is obvious that the obtained teleportation condition is
satisfied if

r = rg = a ,

which means that a particle enters a teleportation trajectory
on only the surface of the liquid sphere (where the particle’s
radial coordinate is r= a), and the liquid sphere is a gravita-
tional collapsar (a= rg).

9 The teleportation condition in the space inside a rotat-
ing liquid sphere

Introduce the metric of the space inside a sphere filled with
an incompressible liquid, which rotates due to the space-time
non-holonomity.

We use the metric of a liquid sphere as a basis. Assume
that the liquid sphere has a radius a= const, a mass M and
rotates along the φ-axis (along the geographical longitudes)
with the linear velocity v3=ωr2sin2

θ, where ω= const is the
angular velocity of this rotation. With these characteristic pa-
rameters, according to the definition of vi, we obtain

v3 = ωr2sin2
θ = −

cg03
√
g00

,

g03 = −
1
c
v3
√
g00 = −

ωr2sin2
θ

2c

3
√

1 −
rg
a
−

√
1 −

r2 rg
a3

 .
Thus, the metric inside such a rotating liquid sphere is

ds2 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2 rg
a3


2

c2dt2 −

−ωr2sin2
θ

3
√

1 −
rg
a
−

√
1 −

r2 rg
a3

 dtdφ−

−
dr2

1 −
r2rg
a3

− r2
(
dθ2 + sin2

θ dφ2
)
.
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Therefore, the interval of physically observable time in-
side such a rotating sphere has the form

dτ =
√
g00 dt +

g0i

c
√
g00

dxi =

=

1
2

3
√

1 −
rg
a
−

√
1 −

r2 rg
a3

 − ωr2sin2
θ

c2

dφ
dt

 dt .

where sin θ= 1 for the observer’s laboratory located at the
equator, and the last multiplier is the coordinate velocity of
the teleporting particle along the φ-direction, which is the
geographical longitude (we assume that the particle travels
either in the same or in the opposite direction in which the
space rotates).

As a result, the teleportation condition (dτ= 0 with dt, 0)
inside such a rotating liquid sphere has the form

1
2

3
√

1 −
rg
a
−

√
1 −

r2 rg
a3

 − ωr2sin2
θ

c2

dφ
dt
= 0 .

This is a condition under which a particle enters a tele-
portation trajectory inside the space of a rotating sphere filled
with an incompressible liquid. It is different from that in the
space inside a non-rotating liquid sphere in only the second
term depending on the rotation of space due to the space-time
non-holonomity. The smaller the gravitational radius rg of
the rotating liquid sphere and the smaller the distance r from
the centre of the sphere, the faster the sphere should rotate
and a particle should travel in order for this particle to enter a
teleportation trajectory.

According to the obtained teleportation condition, two ul-
timate cases of particle teleportation are conceivable in the
space inside a rotating liquid sphere.

1. In the first ultimate case of particle teleportation, the
gravitational radius rg of the liquid sphere is much smaller
than the distance r of the teleporting particle from the centre
of the sphere, and this distance r is much smaller than the
radius a of the sphere

rg ≪ r , r ≪ a ,

which is possible if the liquid sphere has a small mass, the liq-
uid itself is very rarefied, and the teleporting particle is close
to the centre of the sphere.

In this case, the obtained teleportation condition takes the
simplified form

ωr2sin2
θ

dφ
dt
= c2,

i.e., the liquid sphere should rotate at the velocity of light and
the particle should travel at the velocity of light in order for
this particle to enter a teleportation trajectory.

2. In the second ultimate case of particle teleportation,

r rg = a2 =⇒ r = rg = a ,

and g00 of the metric is equal to zero

g00 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2 rg
a3


2

= 0 ,

which means gravitational collapse. In this case, the teleport-
ing particle is on the surface of the liquid sphere, which is a
gravitational collapsar. In this case, the obtained teleportation
condition takes the form

ωr2sin2
θ

dφ
dt
= 0 =⇒

dφ
dt
= 0 ,

which means that the teleporting particle rests with respect to
the liquid sphere, since the sphere rotates (v3 , 0) according
to the initial formulation of the problem.

In other words, in order for a particle to enter a telepor-
tation trajectory on the surface of a liquid sphere, which is
a gravitational collapsar, the particle should be at rest with
respect to the sphere.

10 The teleportation condition in the space filled with
the physical vacuum

De Sitter’s metric describes a space filled with the physical
vacuum (λ-field) and does not include any island of mass or
a distributed matter. The curvature is the same everywhere in
such a space, so it is a constant curvature space. The physi-
cal vacuum (λ-field) produces a non-Newtonian gravitational
force, which is proportional to the distance in the space, i.e.,
the force of non-Newtonian gravitation (λ-force) grows with
distance. If λ< 0, it is an attraction force. If λ> 0, it is a
repulsion force.

For details about the physical vacuum, its physically ob-
servable properties, and also the non-Newtonian gravitational
force, see Chapter 5 in our monograph [5].

As it is known, de Sitter’s metric has the form

ds2 =

(
1 −

λr2

3

)
c2dt2 −

dr2

1 − λ r2

3

− r2
(
dθ2 + sin2

θ dφ2
)
,

and, hence, the non-zero components of the fundamental met-
ric tensor gαβ of this metric are

g00 = 1−
λr2

3
, g11=−

1

1− λ r2

3

, g22 =−r2, g33 =−r2sin2
θ .

Using these components, we obtain that the interval of
physically observable time in a de Sitter space is

dτ =
√
g00 dt +

g0i

c
√
g00

dxi =

√
1 −

λr2

3
dt ,

and the teleportation condition, i.e., dτ= 0 with dt, 0, has
the following form

1 −
λr2

3
= 0 =⇒ r =

√
3
λ
,
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where, since λ= const, the r means the maximum distance in
the space. As it is known, λ⩽ 10−56 cm−2 with today’s mea-
surement accuracy. So, if our Universe is a de Sitter space,
the maximum distance in it is r⩾ 1028 cm.

In addition, the teleportation condition we have obtained
above means that the space is in the state of collapse, i.e.,

g00 = 1 −
λr2

3
= 0 .

The above means that a particle in a de Sitter space, i.e., in
a space filled with the physical vacuum in the absence of any
other matter, enters a teleportation trajectory at the maximum
distance from the observer, which is conceivable in the space.
Besides that, since the state of collapse occurs at the same
distance from the observer, we conclude that the entire space
should be in the state of collapse, i.e., the entire space filled
with the physical vacuum should be a collapsar.

11 The teleportation condition in the rotating space
filled with the physical vacuum

Introduce the metric of a space filled with the physical vac-
uum in the absence of other matter, which rotates due to the
space-time non-holonomity.

We derive the metric based on de Sitter’s metric. Assume
that the space rotates along the φ-axis (along the geographi-
cal longitudes) with the linear velocity v3=ωr2sin2

θ, where
ω= const is the angular velocity of this rotation. Thus, ac-
cording to the definition of vi, we obtain

v3 = ωr2sin2
θ = −

cg03
√
g00

,

g03 = −
1
c
v3
√
g00 = −

ωr2sin2
θ

c

√
1 −

λr2

3
.

As a result, we obtain the metric of a rotating space filled
with the physical vacuum

ds2 =

(
1 −

λr2

3

)
c2dt2 − 2ωr2sin2

θ

√
1 −

λr2

3
dtdφ−

−
dr2

1 − λ r2

3

− r2
(
dθ2 + sin2

θ dφ2
)
,

and, hence, the interval of physically observable time in such
a space has the form

dτ =
√
g00 dt +

g0i

c
√
g00

dxi =

=


√

1 −
λr2

3
−
ωr2sin2

θ

c2

dφ
dt

 dt ,

and the teleportation condition (dτ= 0 with dt, 0) has the
following form√

1 −
λr2

3
−
ωr2sin2

θ

c2

dφ
dt
= 0 ,

where r is the distance between the teleporting particle and
the observer, sin θ= 1 for the observer’s laboratory located at
the equator, and the last multiplier is the coordinate veloc-
ity of the teleporting particle along the φ-direction, which is
the geographical longitude (assuming that the particle travels
either in the same or in the opposite direction in which the
space rotates).

The above formula we have obtained is the condition un-
der which a particle enters a teleportation trajectory in a ro-
tating de Sitter space, which is a rotating space filled with the
physical vacuum in the absence of any other matter.

According to the obtained teleportation condition, two ul-
timate cases are conceivable for particle teleportation in a ro-
tating de Sitter space.

1. In the first ultimate case of particle teleportation,

λr2 ≪ 1 ,

and the obtained teleportation condition takes the following
simplified form

ωr2sin2
θ

dφ
dt
= c2.

Since λ⩽ 10−56 cm−2 (according to modern astronomy),
in this ultimate case of particle teleportation in a rotating de
Sitter space, the teleporting particle should be at the distance
r≪ 1028 cm from the observer. In addition, the space should
rotate at the velocity of light and the particle should travel at
the velocity of light.

2. In the second ultimate case of particle teleportation, the
teleporting particle should be very far from the observer

r =

√
3
λ
⩾ 1028 cm,

i.e., at the edge of the observable Universe or even beyond
that observable edge.

In this case, g00 of the metric is equal to zero

g00 = 1 −
λr2

3
= 0 ,

which means that the space is in the state of collapse (i.e., the
entire space is a huge collapsar), and the obtained teleporta-
tion condition takes the form

ωr2sin2
θ

dφ
dt
= 0 =⇒

dφ
dt
= 0 ,

which, since the space rotates (v3, 0), means that the tele-
porting particle is at rest.

In other words, in the second ultimate case of particle tele-
portation in a rotating de Sitter space, the teleporting particle
should be resting with respect to the space, be at the maxi-
mum distance from the observer, which is conceivable in the
space, while the entire space should be in the state of collapse
(it should be a huge collapsar).
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12 The metric of the space, which rotates, but is free
from the gravitational field

Introduce the metric of a space, where the three-dimensional
space rotates due to the space-time non-holonomity, but there
is no field of gravitation. This space metric most accurately
describes the local space of an observer, who is located in
an earth-bound laboratory, since the gravitational potential
on the Earth’s surface is so weak that its factor under the
teleportation condition can be neglected. Only the factors of
rotation of space and the teleporting particle’s speed affect
teleportation in this case. An addition, in the space of this
metric, the effect of rotation of space due to the space-time
non-holonomity is most clearly manifested.

For the above reasons, we will deduce the characteristics
of such a simplest rotating space in more detail.

Assuming that the space rotates along the φ-axis (along
the geographical longitudes) with the velocity v3=ωr2sin2

θ,
where ω= const is the angular velocity of this rotation, and,
according to the definition of vi,

v3 = ωr2sin2
θ = −

cg03
√
g00

, g03 = −
ωr2sin2

θ

c
,

we obtain the metric of such a space. It has the form

ds2 = c2dt2 − 2ωr2sin2
θdtdφ−

− dr2 − r2
(
dθ2 + sin2

θ dφ2
)
,

where the rest non-zero components of the fundamental met-
ric tensor gαβ are

g00 = 1 , g11 = −1 , g22 = −r2, g33 = −r2sin2
θ .

So forth, using the general formula for the chr.inv.-metric
tensor, which is

hik = −gik +
g0ig0k

g00
= −gik +

1
c2 vi vk ,

we obtain that its non-zero components in the specific space
we are considering are equal to

h11 = 1 , h22 = r2, h33 = r2sin2
θ

(
1 +
ω2r2sin2

θ

c2

)
,

h11 = 1 , h22 =
1
r2 , h33 =

1

r2sin2
θ
(
1 + ω2r2sin2θ

c2

) ,
where, since the matrix hik is diagonal, the upper-index com-
ponents of hik are obtained as hik= (hik)−1 just like the invert-
ible matrix components to any diagonal matrix.

To check the correctness of the above construction of the
space metric, we calculate v2= vi v

i = hik v
iv k. Since v i= hikvk,

we obtain the following

v2 = vi v
i =
ω2r2sin2

θ

1 + ω2r2sin2θ

c2

, v =
ωr sin θ√
1 + ω2r2sin2θ

c2

,

hence, the dimension of v is
[
cm/sec

]
. If the space rotates

slowly, the above formula transforms to v=ωr sin θ
[
cm/sec

]
that is completely “comme il faut”.

Based on the above formula for v3 and using the corre-
sponding hik components, we obtain that the antisymmetric
chr.inv.-tensor of the angular velocity of rotation of space, Aik

(see page 32), has the following non-zero components

A13 = ωr sin2
θ , A31 = −A13 ,

A23 = ωr2sin θ cos θ , A32 = −A23 ,

A13 =
ω

r
(
1 + ω2r2sin2θ

c2

) , A31 = −A13,

A23 =
ω cot θ

r2
(
1 + ω2r2sin2θ

c2

) , A32 = −A23.

To check the correctness of the above, we calculate the
square of the chr.inv.-pseudovector of the angular velocity of
rotation of space, Ω2 = Ω∗iΩ

∗i = hikΩ
∗iΩ∗i. Since

Ω∗i =
1
2
εikmAkm , εikm =

eikm

√
h
, Ω∗i = hikΩ

∗k

as for any pseudovector (see page 34 in this paper; for more
details on pseudovectors and pseudotensors see §2.3 of our
monograph [5]), after some algebra we obtain

Ω2 = Ω∗iΩ
∗i =

ω2

1 + ω2r2sin2θ

c2

, Ω =
ω√

1 + ω2r2sin2θ

c2

,

so, the dimension of Ω is
[
sec−1]. If the space rotates slowly,

the obtained formula transforms to Ω=ω
[
sec−1] that is com-

pletely “comme il faut”.
Using the non-zero hik components, we obtain the deter-

minant of the chr.inv.-metric tensor hik (see page 35)

h = det ∥ hik ∥ = r4sin2
θ

(
1 +
ω2r2sin2

θ

c2

)
.

So forth, we obtain nonzero chr.inv.-derivatives of ln
√

h.
According to the mathematical apparatus of chronometric in-
variants, they are equal to the respective chr.inv.-Christoffel
symbols, in which two indices have been contracted, i.e., ∆i

ik.
Such Christoffel symbols are used in our further calculation
of the chr.inv.-divergence of Aik, as well as the chr.inv.-Ricci
curvature tensor Cik, which are the left hand side terms of the
chr.inv.-Einstein equations. After some algebra, we obtain

∆i
i1 =

∗∂ ln
√

h
∂r

=
2

r
(
1 + ω2r2sin2θ

c2

) (
1 +

3ω2r2sin2
θ

2c2

)
,

∆i
i2 =

∗∂ ln
√

h
∂θ

=
cot θ

1 + ω2r2sin2θ

c2

(
1 +

2ω2r2sin2
θ

c2

)
,
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as well as their chr.inv.-derivatives
∗∂∆i

i1

∂r
= −

2

r2
(
1 + ω2r2sin2θ

c2

)2 −
3ω2sin2

θ

c2
(
1 + ω2r2sin2θ

c2

)2 −

−
3ω4r2sin4

θ

c4
(
1 + ω2r2sin2θ

c2

)2 ,

∗∂∆i
i1

∂θ
=

2ω2r sin θ cos θ

c2
(
1 + ω2r2sin2θ

c2

)2 ,

∗∂∆i
i2

∂r
=

2ω2r sin θ cos θ

c2
(
1 + ω2r2sin2θ

c2

)2 =

∗∂∆i
i1

∂θ
,

∗∂∆i
i2

∂θ
= −

1

sin2
θ
(
1 + ω2r2sin2θ

c2

) − 2ω2r2sin2
θ

c2
(
1 + ω2r2sin2θ

c2

)2 −

−
2ω4r4sin2

θ

c4
(
1 + ω2r2sin4θ

c2

)2 .

The chr.inv.-Ricci curvature tensor Clk is one of the terms
contained in the tensorial equation of the chr.inv.-Einstein
equations (see page 33). Its formula (page 33) is based on the
chr.inv.-Christoffel symbols ∆i

jk and their chr.inv.-derivatives.
Therefore, to calculate the chr.inv.-Ricci curvature tensor Clk

in the specific space we are considering, we need to calculate
the chr.inv.-Christoffel symbols. They are re-combinations of
the chr.inv.-derivatives of the chr.inv.-metric tensor hik (see
page 33). Thus, first, we obtain non-zero chr.inv.-derivatives
of the chr.inv.-metric tensor hik for the space we are consider-
ing. They have the form

∗∂h22

∂r
= 2r ,

∗∂h33

∂r
= 2r sin2

θ

(
1 +

2ω2r2sin2
θ

c2

)
,

∗∂h33

∂θ
= 2r2sin θ cos θ

(
1 +

2ω2r2sin2
θ

c2

)
.

So forth, according to the general formula for the chr.inv.-
Christoffel symbols (see page 33), we calculate all them one
by one in the specific space we are considering. After some
algebra, we obtain formulae for those of them that are differ-
ent from zero, i.e.,

∆1
22 = −r ,

∆1
33 = −r sin2

θ

(
1 +

2ω2r2sin2
θ

c2

)
,

∆2
12 = ∆

2
21 =

1
r
,

∆2
33 = − sin θ cos θ

(
1 +

2ω2r2sin2
θ

c2

)
,

∆3
13 = ∆

3
13 =

1

r
(
1 + ω2r2sin2θ

c2

) (
1 +

2ω2r2sin2
θ

c2

)
,

∆3
23 = ∆

3
32 =

cot θ

1 + ω2r2sin2θ

c2

(
1 +

2ω2r2sin2
θ

c2

)
.

Then, we look for non-zero components of the contracted
4th rank chr.inv.-tensor H ··· i

lki · , which, since the space we are
considering is free from deformations (Dik = 0), is equal to
the chr.inv.-Ricci curvature tensor Clk (for the full formulae
of the chr.inv.-curvature tensors see page 33)

Clk = C ···ilki · = H ···i
lki · =

∗∂∆i
il

∂xk −

∗∂∆i
kl

∂xi + ∆
m
il∆

i
km − ∆

m
kl∆

i
im ,

where, according to the mathematical apparatus of chrono-
metric invariants (see page 33), we have

∆i
ik =

∗∂ ln
√

h
∂xk .

As a result, we obtain that the chr.inv.-Ricci tensor in the
specific space we are considering has the following non-zero
components

C11 = H ···i
11i · =

∗∂∆i
i1

∂r
+ ∆2

21∆
2
12 + ∆

3
31∆

3
13 ,

C12 = H ···i
12 i · =

∗∂∆i
i1

∂θ
+ ∆3

31∆
3
23 − ∆

2
21∆

i
i 2 ,

C21 = H ···i
21i · =

∗∂∆i
i 2

∂r
+ ∆3

32∆
3
13 − ∆

2
12∆

i
i 2 ,

C22 = H ···i
22 i · =

∗∂∆i
i 2

∂θ
−

∗∂∆1
22

∂r
+

+ 2∆2
12∆

1
22 + ∆

3
32∆

3
23 − ∆

1
22∆

i
i1 ,

C33 = H ···i
33 i · = −

∗∂∆1
33

∂r
−

∗∂∆2
33

∂θ
+

+ 2∆3
13∆

1
33 + 2∆3

23∆
2
33 − ∆

1
33∆

i
i1 − ∆

2
33∆

i
i 2 ,

where

∆i
i1 =

∗∂ ln
√

h
∂r

, ∆i
i 2 =

∗∂ ln
√

h
∂θ

.

To calculate the components of the chr.inv.-Ricci tensor,
we already have the specific formulae for ∆i

i1 and ∆i
i 2 in the

metric we are considering (see page 43). In addition, we need
formulae for the chr.inv.-derivatives of ∆1

33 with respect to r
and ∆2

33 with respect to θ, which are contained in the chr.inv.-
Ricci tensor. We obtain that they are equal to

∗∂∆1
33

∂r
= − sin2

θ

(
1 +

6ω2r2sin2
θ

c2

)
,

∗∂∆2
33

∂θ
= sin2

θ +
2ω2r2sin4

θ

c2 − cos2
θ −

6ω2r2sin2
θ cos2θ

c2 .

44 Rabounski D. and Borissova L. Non-Quantum Teleportation in a Rotating Space With a Strong Electromagnetic Field



Issue 1 (April) PROGRESS IN PHYSICS Volume 18 (2022)

So forth, after some algebra, we obtain formulae for the
non-zero components of the chr.inv.-Ricci tensor

C11 =
3ω2sin2

θ

c2
(
1 + ω2r2sin2θ

c2

) − ω4r2sin4
θ

c4
(
1 + ω2r2sin2θ

c2

)2 ,

C12 =
3ω2r sin θ cos θ

c2
(
1 + ω2r2sin2θ

c2

) − ω4r3sin3
θ cos θ

c4
(
1 + ω2r2sin2θ

c2

)2 ,

C21 =
3ω2r sin θ cos θ

c2
(
1 + ω2r2sin2θ

c2

) − ω4r3sin3
θ cos θ

c4
(
1 + ω2r2sin2θ

c2

)2 ,

C22 =
3ω2r2cos2θ

c2
(
1 + ω2r2sin2θ

c2

) − ω4r4sin2
θ cos2θ

c4
(
1 + ω2r2sin2θ

c2

)2 ,

C33 =
3ω2r2sin2

θ

c2 −
ω4r4sin4

θ

c4
(
1 + ω2r2sin2θ

c2

) ,
where, in particular, we see that C12 =C21 that means a cer-
tain curvature symmetry in the space we are considering.

As a result, the physically observable chr.inv.-scalar cur-
vature C = hlkClk (see page 33) of the rotating space we are
considering is equal to

C =
6ω2

c2
(
1 + ω2r2sin2θ

c2

) − 2ω4r2sin2
θ

c4
(
1 + ω2r2sin2θ

c2

)2 ,

i.e., the origin of the physically observable chr.inv.-curvature
of such a space is only its three-dimensional rotation due
to the space-time non-holonomity (non-orthogonality of the
time lines to the three-dimensional spatial section).

As you can see, the obtained formula for the scalar curva-
ture and also every component of the obtained chr.inv.-Ricci
curvature tensor (used in the chr.inv.-Einstein equations, see
below) consists of two terms: the first order term, the goal
of which is very significant, and the second order (additional)
term, the influence of which is tiny. When Larissa first saw
the above formulae, she immediately said: “You just made a
fundamental theoretical discovery: if a space rotates due its
space-time non-holonomity, its curvature produces the first
order effect.”

The above characteristics of the space we are considering
will be used further to calculate the individual components of
the chr.inv.-Einstein equations in this space.

So forth, we obtain that the interval of physically observ-
able time in such a rotating space has the formula

dτ =
√
g00 dt +

g0i

c
√
g00

dxi =

(
1 −
ωr2sin2

θ

c2

dφ
dt

)
dt ,

where sin θ= 1 (the polar angle θ is equal to π
2 ) for the ob-

server’s laboratory located at the equator, and the last mul-
tiplier is the coordinate velocity of the teleporting particle

along the φ-direction, which is the geographical longitude
(assuming that it travels either in the same or in the opposite
direction in which the space rotates).

As a result, we obtain that the teleportation condition, i.e.,
dτ= 0 with dt, 0, has the form

ωr2sin2
θ

dφ
dt
= c2.

The obtained formula is the teleportation condition in a
rotating space that is free from the field of gravitation and a
distributed matter. In this case, as you can see from the above
formula, a particle enters a teleportation trajectory in such a
space, if it travels at the velocity of light, and the space rotates
at the velocity of light.

Next, we will look how this condition changes if the ro-
tating space is not empty, but filled with an electromagnetic
field. To do it we will consider Einstein’s field equations for
a space of the above metric, where the right hand side of
the equations is non-zero, but contains the energy-momentum
tensor of the electromagnetic field (such Einstein equations
characterize a space filled with an electromagnetic field).

As it is known, Einstein’s equations are one of the neces-
sary conditions for a space metric to be Riemannian. There-
fore, the considered rotating space filled with an electromag-
netic field is Riemannian under some particular conditions by
which the Einstein equations for this space metric vanish (for
this reason we call them Riemannian conditions).

We hope, the derived Riemannian conditions will some-
how replace the rotation of space (the main factor in the tele-
portation condition) with the electromagnetic field parame-
ters, thereby giving us the opportunity to “strengthen” the
space-time non-holonomity to the level necessary for parti-
cle teleportation without the need to mechanically rotate the
observer’s local space at the light speed.

13 Using Einstein’s field equations to find conditions un-
der which the introduced metric is Riemannian

In an empty rotating space of the metric we have introduced
above, the gravitational inertial force, the space deformation
and the λ-term are equal to zero, while the space curvature
and rotation are non-zero

Fi = 0 , Dik = 0 , λ = 0 , Cik , 0 , Aik , 0 .

The chr.inv.-Einstein equations (for their full formulae see
page 33) very simplify under the above conditions. If the
rotating space is filled with a distributed matter, they have the
non-zero right hand side and take the form

Aik Aki = −
κ

2

(
ϱc2 + U

)
∗∇k Aik = −κ J i

2Ai j A· jk· − c2Cik =
κ

2

(
ϱc2hik + 2Uik − Uhik

)


,
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where the right hand side contains the physically observable
projections of the energy-momentum tensor of the matter that
fills the space: ϱ is the chr.inv.-density of the field energy, J i

is the chr.inv.-density of the field momentum, and U ik is the
chr.inv.-stress-tensor of the field.

Calculate U = hmnUmn, i.e., the trace of the electromag-
netic field chr.inv.-stress-tensor U ik (see page 34). Since the
trace of the chr.inv.-metric tensor is hmn hmn = 3, we obtain
U = ϱc2. Thus, the chr.inv.-Einstein equations in a rotating
space filled with an electromagnetic field have the form

Aik Aki = −κϱc2

∗∇k Aik = −κ J i

2 Ai j A· jk· − c2Cik = κUik


,

or, extending the electromagnetic field characteristics,

Aik Aki = −
κc2

8π

(
Ei Ei + H∗i H∗i

)
∗∇k Aik = −

κc
4π

εikmEk H∗m

2 Ai j A· jk· − c2Cik =

=
κc2

8π

(
Ej E j + H∗ j H∗ j

)
hik −

κc2

4π

(
Ei Ek + H∗i H∗k

)


.

Taking into account the characteristics of the space metric
we are considering (see above), after some algebra we obtain
non-zero components of the left hand side terms

Aik Aki = −
2ω2

1 + ω2r2sin2θ

c2

,

∗∇k A3k =
ω

r2sin2
θ
(
1 + ω2r2sin2θ

c2

)
1 +

2ω2r2sin2
θ

c2
(
1 + ω2r2sin2θ

c2

)
 ,

2A1 j A· j1· − c2C11 = −
ω2sin2

θ

1 + ω2r2sin2θ

c2

+
ω4r2sin4

θ

c2
(
1 + ω2r2sin2θ

c2

)2 ,

2A1 j A· j2· − c2C12 = −
ω2r sin θ cos θ

1 + ω2r2sin2θ

c2

+
ω4r3sin3

θ cos θ

c2
(
1 + ω2r2sin2θ

c2

)2 ,

2A2 j A· j1· − c2C21 = −
ω2r sin θ cos θ

1 + ω2r2sin2θ

c2

+
ω4r3sin3

θ cos θ

c2
(
1 + ω2r2sin2θ

c2

)2 ,

2A2 j A· j2· − c2C22 = −
ω2r2cos2θ

1 + ω2r2sin2θ

c2

+
ω4r4sin2

θ cos2θ

c2
(
1 + ω2r2sin2θ

c2

)2 ,

2A3 j A· j3· − c2C33 = −ω
2r2sin2

θ +
ω4r4sin4

θ

c2
(
1 + ω2r2sin2θ

c2

) .

We see that the left hand side of the chr.inv.-Einstein equa-
tions does not vanish. This means that a rotating space char-
acterized by the considered metric is not Riemannian, if it is
empty. To be Riemannian, such a space must be filled with a
distributed matter so that the right hand side of the Einstein
equations equalized the non-zero left hand side.

Using the obtained left hand side of the chr.inv.-Einstein
equations, as well as the formulae for the electromagnetic
field characteristics ϱ, J i, Uik (see page 34), we get the above
chr.inv.-Einstein equations in the final form

ω2

1 + ω2r2sin2θ

c2
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)



,

where the right hand side is expressed through the chr.inv.-
electric strength vector Ei and the chr.inv.-magnetic strength
pseudovector H∗i of the field (see page 34 for detail).

Note that the dimension of the electric and magnetic field
strengths here is

[
gram1/2 cm−3/2] as well as everywhere in the
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relativistic electrodynamics. To avoid confusion, we note that
in our earlier works for these quantities we used the “electro-
magnetic” dimension

[
gram1/2 cm−1/2 sec−1], as is customary

in Classical Electrodynamics and technology. It is different
from the above by a unit coefficient, the dimension of which
is the same as that of the velocity of light.

Mathematically, the obtained chr.inv.-Einstein equations
mean that a rotating space filled with an electromagnetic field
of the specific configuration, as indicated in the equations, is
Riemannian. Therefore, the above Einstein equations are the
Riemannian conditions for this space metric. That is, we can
consider a rotating space in the General Theory of Relativity
only if it is filled with an electromagnetic field of the specific
structure determined by the Einstein equations.

14 The structure of the electromagnetic field

To obtain some information about the structure of the particu-
lar electromagnetic field determined by the obtained Einstein
equations, we analyze the equations in detail.

The scalar and tensorial equations give trivial relations
between E and H.

Since just one component ∗∇k A3k of the vectorial Einstein
equation is non-zero, ∗∇k A1k= 0 and ∗∇k A2k= 0 give

ε1kmEk H∗m = ε123E2 H∗3 + ε132E3 H∗2 = 0 ,

ε2kmEk H∗m = ε213E1 H∗3 + ε231E3 H∗1 = 0 ,

from which, since ε123 =−ε132 = ε312 and so on, we obtain

E2 H∗3 − E3 H∗2 = 0 ,

E1 H∗3 − E3 H∗1 = 0 .

The non-zero vectorial Einstein equation means

ε3kmEk H∗m = ε312E1 H∗2 + ε321E2 H∗1 =

= −
4πω

κcr2sin2
θ
(
1 + ω2r2sin2θ

c2

)
1 +

2ω2r2sin2
θ

c2
(
1 + ω2r2sin2θ

c2

)
 ,

which, taking into account that (see page 34)

εikm =
eikm

√
h
, e123 = +1 , e312 = −e132 = e123 = +1 ,

gives the following

E1 H∗2 − E2 H∗1 =

= −
4πω

κc sin θ
√

1 + ω2r2sin2θ

c2

1 +
2ω2r2sin2

θ

c2
(
1 + ω2r2sin2θ

c2

)
 .

Taking the above into account, we conclude that the elec-
tromagnetic field determined by the obtained Einstein equa-

tions is characterized by the system of relations
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16πω2
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,

which at small ω simplifies to

E2 + H2 =
16πω2

κc2

E2 H∗3 − E3 H∗2 = 0

E1 H∗3 − E3 H∗1 = 0

E1 H∗2 − E2 H∗1 = −
4πω
κc sin θ

E1 E1 + H∗1 H∗1 =
4πω2 (2 + sin2

θ)
κc2

E1 E2 + H∗1 H∗2 =
4πω2r sin θ cos θ

κc2

E2 E2 + H∗2 H∗2 =
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E3 E3 + H∗3 H∗3 =
12πω2r2sin2

θ

κc2



.
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Please note that E2 = Ei Ei = hik EiEk and H2 =H∗i H∗i =
= hik H∗iH∗k. The θ denotes the polar angle, i.e., sin θ= 1 and
cos θ= 0 in the laboratory located at the equator.

What do the above relations between the electric and mag-
netic strength of the field mean and how to implement them
in a real laboratory is rather better to ask engineers.

15 Non-quantum teleportation in the condition of a real
laboratory using a strong electromagnetic field

Looking at the obtained Einstein equations (see page 46), you
can see that the mechanical rotation of space, which appears
due to the non-holonomity of the space-time, can be replaced
by the magnetic or electric strength of the electromagnetic
field that fills the space. Two natural questions arise in this
regard: 1) Why is this even possible? 2) Is it possible to in-
crease the space-time non-holonomity by an electromagnetic
field in a real laboratory to such a level as to realize the non-
quantum teleportation condition?

1. To understand why this is possible, you need to un-
derstand what is the three-dimensional rotation of space due
to the non-holonomity of the space-time. An ordinary three-
dimensional rotation is expressed in terms of gik, 0 in the
space metric and, therefore, can be removed by a coordinate
transformation (moving to another, non-rotating coordinate
system on the observer’s reference body). On the contrary, a
rotation resulting from the non-orthogonality of the time lines
to the three-dimensional spatial section originates from g0i, 0
in the metric, and, therefore is not removable by a coordinate
transformation; this is one of the fundamental properties of
the observer’s reference space.

For example, consider an observer in a laboratory located
on the surface of the Earth. For him, the ordinary rotation
expressed in terms of gik, 0, which can be removed by a co-
ordinate transformation, is the rotation of an observed exter-
nal body, say, the Moon. On the contrary, the non-removable
rotation expressed in terms of g0i, 0 is the rotation of his ref-
erence body, the Earth, around its own axis.

In terms of the basis vectors e⃗(α) tangential to the curved
coordinate lines of the Riemannian space (see page 35),

g0i = e(0)e(i) cos (x0; xi) , vi = − c e(i) cos (x0; xi) ,

which means that the linear velocity vi of such rotation is
merely a manifestation of the inclination of the time coor-
dinate lines to the three-dimensional spatial section. Cosine
takes numeric values from +1 to −1. The length of the tan-
gential basis vectors is equal to 1 in the absence of perturbing
factors and decreases with increasing curvature of the coor-
dinate lines. Therefore, such rotation of space cannot be me-
chanically increased to superluminal speed.

On the other hand, according to the obtained Einstein
equations, the stronger the electromagnetic field, the faster
the rotation of space: the limit for increasing the rotation of

space is only the power of the electromagnetic field genera-
tor installed in your laboratory. This is because the angular
velocity ω of rotation of space contained in them (and in the
teleportation condition) has the same origin as the angular ve-
locity ω in the definition of vi.

As a result, we arrive at the conclusion that there are two
types of rotation of space, which cannot be removed by a co-
ordinate transformation. The source of the first type of rota-
tion is a mechanical rotation of the observer’s reference body,
say, the planet Earth. Such rotation cannot exceed the speed
of light. The second type is a “virtual rotation” that appears
in a space filled with a distributed matter, due to the non-zero
right hand side of the Einstein equations. Such “virtual rota-
tion” is formally added to the first type of rotation of space,
despite the fact that the observer’s reference body still me-
chanically rotates at its own rotation speed, as before. This
summation occurs because the angular velocity ω of both
types of rotation has the same mathematical origin. For exam-
ple, the Einstein equations showed that such “virtual rotation”
can be as fast as the electromagnetic field strong.

This situation is similar to that with the equations of mo-
tion of particles. A free particle travels along a geodesic (i.e.,
shortest) trajectory. The equation of its motion is the equation
of geodesic line: the right hand side of the equation is equal
to zero. If an external factor perturbs the particle’s motion,
it deviates from the geodesic line. In this case, its motion
is non-geodesic, and the equation of its motion contains the
deviating force on the right hand side.

2. Now a second question arises: can we increase ω with
an electromagnetic field to the level necessary to implement
the teleportation condition in a real laboratory? To answer
this question, let us consider the scalar chr.inv.-Einstein equa-
tion we have obtained (see page 46)

E2 + H2 =
16πω2

κc2
(
1 + ω2r2sin2θ

c2

) .
If the electric component of the electromagnetic field is

much weaker than its magnetic component (E≪H), then in
the first order approximation we obtain the relation

ω ≈

√
κc2

16π
H

connecting the angular velocity of the “virtual rotation” of
space with the magnetic strength of the electromagnetic field
(which is the source of this “virtual rotation”).

On the other hand, the non-quantum teleportation condi-
tion is a rotating space filled with an electromagnetic field has
the form (see page 45)

ωr2sin2
θ

dφ
dt
= c2,

where we assume that the space rotates with the linear ve-
locity v3=ωr2sin2

θ along the φ-axis (geographical latitude),
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ω= const is the angular velocity of this rotation, and the last
multiplier is the coordinate velocity ω̃ of the teleporting par-
ticle along the φ-direction (we assume that the particle travels
either in the same or in the opposite direction in which the
space rotates).

Assume that the observer’s laboratory is located on the
Earth’s equator. In this case, sin θ= 1. Then the ω neces-
sary to launch a particle onto a teleportation trajectory in the
observer’s laboratory has the form

ω =
c2

ω̃r2 .

Substituting here the formula for ω obtained above from
the scalar chr.inv.-Einstein equation, we obtain the magnetic
strength required for non-quantum teleportation in the condi-
tion of the earth-bound laboratory

H ≈

√
16π
κ

c
ω̃r2 .

That is, as soon as the magnetic strength inside the exper-
imental setup reaches a numerical value according to this for-
mula (and with the configuration of the electromagnetic field
according to the obtained Einstein equations), a teleportation
channel opens between this experimental setup and another
remote experimental setup located anywhere else in the Uni-
verse. Synchronization of these two experimental setups is
implemented using the same fine tuning of the magnetic field
configuration and other characteristics, which allows physi-
cal bodies to be teleported only between these two setups,
and not to some other place in the Universe.

Regarding the specific numerical value of H, necessary
to implement the teleportation condition in the earth-bound
laboratory, it depends on the understanding of the physical
sense of the ω̃ and r in the above formula, as well as on the
system of dimensions of electromagnetic quantities. Mean-
while, even on the basis of draft calculations and other infor-
mation (that cannot be made public), we are sure that such an
experimental setup is quite possible using a super-powerful
pulsed magnetic field generator. These specific calculations,
as well as the creation of such an experimental setup, are a
task for engineers rather than for a theoretical physicist who
is far from technology.

A century ago, Nikola Tesla claimed that the use of super-
strong electromagnetic fields will allow us to travel instantly
to any point in the Universe. We have no idea where he got
this information from. Nevertheless, we are very glad that
the words he uttered a century ago have now received a solid
mathematical foundation in Einstein’s theory.

Submitted on January 24, 2022
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