
Volume 18 (2022) PROGRESS IN PHYSICS Issue 1 (April)

Deflection of Light Rays and Mass-Bearing Particles in the Field
of a Rotating Body

Dmitri Rabounski and Larissa Borissova
Puschino, Moscow Region, Russia

E-mail: rabounski@yahoo.com, lborissova@yahoo.com

As proved earlier, the space of a rotating body is Riemannian only if it is filled with a
distributed matter (Progr. Phys., 2022, v.18, 31– 49). In this paper we consider motion
of massless (light-like) and mass-bearing particles in the space of a rotating body filled
with an electromagnetic field, where the influence of gravitation is negligible. Solving
the equations of motion of a particle that does not have an electric charge, we find that its
motion deflects from a straight line due to the space curvature caused by the rotation of
space. That is, the trajectories of light rays and mass-bearing particles are deflected near
a rotating body due to the curvature of space caused by its rotation. This is one more
fundamental effect of the General Theory of Relativity, in addition to the deflection of
light rays in the field of a gravitating body.

In this small paper, which is a continuation of the previous
one [1], we consider the equations of motion of a massless
(light-like) particle and a mass-bearing particle in the space
of a rotating body, which is filled with an electromagnetic
field, and the influence of gravitation is negligible.

As proved in the previous paper, a rotating space has a sig-
nificant curvature due to its space-time non-holonomity (non-
orthogonality of the time lines to the three-dimensional spa-
tial section). For this reason, we expect to find that the space
curvature caused by the rotation of space deflects light rays
and mass-bearing particles near a rotating body.

Please note that, as proved earlier using Einstein’s equa-
tions [1], the space of a rotating body is Riemannian only if
it is filled with a distributed matter, say, an electromagnetic
field. Therefore, the above problem statement will not be
valid and mathematically correct in an empty space or in a
space filled only with a gravitational field. In the case we are
considering, as in the previous article, the “space filler” is an
electromagnetic field.

In this work, as well as in our other works, we use the
mathematical apparatus of chronometric invariants, which are
physically observable quantities in the General Theory of Re-
lativity. This mathematical apparatus was created in 1944 by
our esteemed teacher A. L. Zelmanov (1913–1987). Its basics
can be learned from Zelmanov’s publications [2–4], of which
his 1957 presentation [4] is the most useful and complete, and
also from our previous article [1]. For a deeper study of this
mathematical apparatus, read the respective chapters of our
monographs [5, 6], especially — the chapter Tensor Algebra
and the Analysis in [6].

The equations of motion of both mass-bearing and mass-
less (light-like) particles were studied in detail in our two
monographs [5, 6]. The first one [5] focused onto free mo-
tion of particles, and the second one [6] focused onto non-
geodesic motion of particles: the right hand side of the equa-
tions of non-geodesic motion is non-zero, and contains the

external force deflecting the particles from geodesic (short-
est) trajectories.

The chronometrically invariant equations of motion are
the physically observable projections of the general covariant
four-dimensional equations of motion onto the time line and
the three-dimensional spatial section of a particular observer.
Such projections are invariant along the spatial section of the
observer (his observed space) and are expressed through the
properties of his local reference space. Those who are inter-
ested in how the equations of motion are derived can refer to
the respective chapters of our monographs, where all these
equations are explained in detail.

In this paper we consider mass-bearing particles that do
not have an electric charge, and massless (light-like) parti-
cles are not electrically charged by definition. As a result,
the right hand side of the equations of their motion, contain-
ing the force acting on electrically charged particles from the
electromagnetic field, is equal to zero. Therefore, these are
free particles, and the equations of their motion are the equa-
tions of motion along geodesic lines.

The chr.inv.-equations of motion of a free mass-bearing
particle describe the motion along an ordinary geodesic line

dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk = 0

d (mvi)
dτ

+ 2m
(
Di

k + A·ik ·
)

vk − mF i + m∆i
nkvnvk = 0

 ,
and the chr.inv.-equations of motion of a free massless (light-
like) particle describe the motion along an isotropic geodesic
line (a.k.a. a null geodesic line)

dω
dτ
−
ω

c2 Fi ci +
ω

c2 Dik cick = 0

d (ωci)
dτ

+ 2ω
(
Di

k + A·ik ·
)

ck − ωF i + ω∆i
nk cnck = 0

 .
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Here in the equations of motion and so forth, m is the rel-
ativistic mass of the travelling particle, ω is the relativistic
frequency of the massless (light-like) particle, dτ is the phys-
ically observable time interval expressed through the linear
velocity vi of the rotation of space

dτ =
√
g00 dt −

1
c2 vi dxi,

vi = −
cg0i
√
g00
, v i = −cg0i√g00 ,

and, respectively the chr.inv.-vector of the physically observ-
able velocity of the travelling particle has the form

vi =
dxi

dτ
, vivi = hikvivk = v2,

which in the ultimate case transforms into the chr.inv.-vector
of the physically observable velocity of light, the square of
which is ci ci = hik cick = c2.

Please note that, according to the theory of chronometric
invariants, the square of any chr.inv.-quantity, and also lift-
ing and lowering indices in chr.inv.-quantities is determined
through the chr.inv.-metric tensor

hik = −gik +
1
c2 vi vk , hik = −gik, hi

k = −g
i
k = δ

i
k ,

which is obtained as the spatial chr.inv.-projection of the fun-
damental metric tensor gαβ and has all its properties every-
where in the observer’s three-dimensional spatial section.

Concerning the physically observable characteristics of
space, which are terms in the equations of motion, these are
the chr.inv.-vector of the gravitational inertial force F i (where
w = c2 (1−

√
g00) is the gravitational potential), the antisym-

metric chr.inv.-tensor of the angular velocity of rotation of
space, Aik, the symmetric chr.inv.-tensor of deformation of
space, Dik, and the chr.inv.-Christoffel symbols ∆i

jk, (coher-
ence coefficients of space), i.e.

Fi =
1

1 − w
c2

(
∂w
∂xi −

∂vi
∂t

)
,

Aik =
1
2

(
∂vk
∂xi −

∂vi

∂xk

)
+

1
2c2

(
Fi vk − Fk vi

)
,

Dik =
1
2

∗∂hik

∂t
, Dik = −

1
2

∗∂hik

∂t
,

∆i
jk = him∆ jk,m =

1
2

him
(
∗∂h jm

∂xk +
∗∂hkm

∂x j −

∗∂h jk

∂xm

)
,

where the chr.inv.-operators of derivation have the form
∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi =
∂

∂xi −
g0i

g00

∂

∂x0 .

In our further calculation of the deflection of light rays
and mass-bearing particles in the field of a rotating body we

will use the same space metric that we introduced in the previ-
ous paper [1]. This is the metric of a space, where the three-
dimensional space rotates due to the non-holonomity of the
space-time, but there is no field of gravitation (or, to be more
exact, the influence of gravitation is negligible).

Assume that the space rotates along the equatorial axis
φ, i.e., along the geographical longitudes, with the velocity
v3=ωr2sin2

θ, where ω= const is the angular velocity of this
rotation. Then, according to the definition of vi,

v3 = ωr2sin2
θ = −

cg03
√
g00
,

we obtain the metric of such a space

ds2 = c2dt2 − 2ωr2sin2
θdtdφ−

− dr2 − r2
(
dθ2 + sin2

θ dφ2
)
.

As you can see, the non-zero components of the funda-
mental metric tensor gαβ of this metric are equal to

g00 = 1 , g03 = −
ωr2sin2

θ

c
,

g11 = −1 , g22 = −r2, g33 = −r2sin2
θ ,

and, according to the definition of the chr.inv.-metric tensor
hik, its non-zero components in the metric are equal to

h11 = 1 , h22 = r2, h33 = r2sin2
θ

(
1 +
ω2r2sin2

θ

c2

)
,

h11 = 1 , h22 =
1
r2 , h33 =

1

r2sin2
θ
(
1 + ω2r2sin2θ

c2

) ,
where, since the matrix hik is diagonal, the upper-index com-
ponents of hik are obtained as hik= (hik)−1 just like the invert-
ible matrix components to any diagonal matrix.

Using the definition of the antisymmetric chr.inv.-tensor
of the angular velocity of rotation of space, Aik, we obtain that
its non-zero components in the rotating space we are consid-
ering are equal to

A13 = ωr sin2
θ , A31 = −A13 ,

A23 = ωr2sin θ cos θ , A32 = −A23 ,

A13 =
ω

r
(
1 + ω2r2sin2θ

c2

) , A31 = −A13,

A23 =
ω cot θ

r2
(
1 + ω2r2sin2θ

c2

) , A32 = −A23.

Using the definition of the chr.inv.-Christoffel symbols
∆i

jk (coherence coefficients of space), after some algebra, we
obtain formulae for their non-zero components in the rotating
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space we are considering. They have the form

∆1
22 = −r ,

∆1
33 = −r sin2

θ

(
1 +

2ω2r2sin2
θ

c2

)
,

∆2
12 = ∆

2
21 =

1
r
,

∆2
33 = − sin θ cos θ

(
1 +

2ω2r2sin2
θ

c2

)
,

∆3
13 = ∆

3
13 =

1

r
(
1 + ω2r2sin2θ

c2

) (
1 +

2ω2r2sin2
θ

c2

)
,

∆3
23 = ∆

3
32 =

cot θ

1 + ω2r2sin2θ

c2

(
1 +

2ω2r2sin2
θ

c2

)
.

Now, using the obtained physically observable character-
istics of the rotating space we are considering, we will modify
the general formulae of the chr.inv.-equations of free motion
(see above) in accordance with the space metric. As a result,
we will obtain the chr.inv.-equations of motion of a free mass-
bearing particle and a free massless (light-like) particle in the
rotating space. The solution of these equations will show the
effect of deflection of light rays and mass-bearing particles in
the field of a rotating body.

Since g00 = 1 in the metric, and the rotation of space is sta-
tionary (v3=ωr2sin2

θ is not time-dependent), then the gravi-
tational potential w=c2 (1−

√
g00) is equal to zero and, hence,

the gravitational inertial force vanish, Fi = 0.
In addition, you can see that neither the fundamental met-

ric tensor gαβ nor the chr.inv.-metric tensor hik of the metric
are not time-dependent, the rotating space we are consider-
ing does not deform and, hence, the tensor of deformation of
space vanish, Dik= 0.

As a result, since Fi = 0 and Dik= 0, the chr.inv.-equations
of motion of a free mass-bearing particle in the rotating space
we are considering take the simplified form

dm
dτ
= 0

d (mvi)
dτ

+ 2mA·ik ·v
k + m∆i

nkvnvk = 0

 ,
and the chr.inv.-equations of motion of a free massless (light-
like) particle are simplified to the form

dω
dτ
= 0

d (ωci)
dτ

+ 2ωA·ik ·c
k + ω∆i

nk cnck = 0

 .
The above equations are identical. Therefore they are

solved in the same way and have the same solution.

Consider the above equations of motion of a free mass-
bearing particle as a sample (the solution for a free massless
particle will be the same).

The scalar equation of motion solves as m= const. With
this solution taken into account, we substitute here the ob-
tained formulae for the tensor of the angular velocity of ro-
tation of space, Aik, and the Christoffel symbols ∆i

jk. As a
result, neglecting higher order terms (otherwise the equations
are unsolvable), we obtain the vectorial equations of motion
in the component form suitable for their further analysis

d v1

dτ
− 2ωr sin2

θ v3 − r v2v2 − r sin2
θ v3v3 = 0

d v2

dτ
− 2ω sin θ cos θ v3 +

2
r

v1v2 − sin θ cos θ v3v3 = 0

d v3

dτ
+

2ω
r

v1 + 2ω cot θ v2 +
2
r

v1v3 + 2 cot θ v2v3 = 0


.

Even a brief look at the obtained equations of motion
shows that the three possible effects are conceivable:

1. The deflection of a travelling free particle along the
geographic longitudes (the third equation in the above
system);

2. The deflection of a travelling free particle along the ge-
ographic latitudes (the second equation);

3. The acceleration or braking of a travelling free particle
in the radial direction (the first equation).

The problem is that the above system of differential equa-
tions is unsolvable in the general form. Therefore, we will
consider a simplified particular case of the equations, and cal-
culate all three of the above effects just for this case.

Consider a particle travelling at a very high radial veloc-
ity v1 in the equatorial plane exactly along the radial axis to
the origin of the coordinates. Say, a particle from the near-
Earth space travels freely in the equatorial plane directly to
the Earth’s surface. In this case, the velocities of its deflec-
tion along the geographical latitudes and longitudes, v2 and
v3, are negligible compared to v1, and the above equations
take the simplified form

d v1

dτ
− 2ωr v3 − r v2v2 − r v3v3 = 0

d v2

dτ
+

2
r

v1v2 = 0

d v3

dτ
+

2ω
r

v1 +
2
r

v1v3 = 0


.

In addition, we assume that the particle’s velocity in the
radial direction gains only a very small increment or decre-
ment α′ compared to its numerical value v1, which, accord-
ing to our initial assumption, is very large. As a result, we set
v1 = const in the equations of motion along the equatorially
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longitudinal axis φ (third equation) and the latitudinal axis
θ (second equation), but solve the equation of motion along
the radial axis r (first equation) with respect to v1 +α′, i.e.,
with respect to the small parameter α. Otherwise, the above
system of differential equations is unsolvable.

1. Consider the third equation of motion (along the equa-
torial axis φ). With the above assumptions, this equation takes
the form, respectively,

y′ + ay + b = 0 , φ′′ + aφ′ + b = 0 ,

where we used the following notations

y = v3 =
dφ
dτ
, a =

2
r

v1 = const, b =
2ω
r

v1 = const.

The above differential equations for the velocity y= v3

and the coordinate φ with respect to the physically observ-
able time τ= x are solved as

y =
C

eax −
b
a
, φ =

C1

eax −
bx
a
+C2 ,

where the constants of integration found using the initial con-
ditions x= x0 = 0 and y= y0 = 0, are equal to

C =
b
a
= ω , C1 = −

b
a2 = −

ωr
2v1 , C2 = −C1 =

ωr
2v1 .

As a result, we obtain solutions for the particle’s velocity
y= v3 along the equatorial axis (along the geographic longi-
tudes), as well as for the equatorial coordinate φ (geographi-
cal longitude) of the arrival point of this particle.

The obtained solution for the particle’s velocity along the
equatorial axis φ has the form

v3 = −ω + ωe−
2
r v1τ.

Here the first term −ω is the particle’s basics equatorial
velocity, the origin of which is the banally shift of the equa-
torial coordinate φ to its negative numerical values due to the
Earth’s turn over the particle’s travel to the Earth.

The second, additional term means that a particle freely
travelling to the surface of a rotating body gains an additional
velocity directed along the equator (geographical longitudes)
opposite to the rotation of the body.

The obtained solution for the equatorial coordinate φ of
the arrival point of this particle has the form

φ = φ0 − ωτ +
ωr
2v1

(
1 − e−

2
r v1τ

)
.

The third, additional term of this solution means that a
particle freely travelling to the surface of a rotating body is
deflected along the equator (geographical longitudes) oppo-
site to the rotation of the body.

All this is because the rotation of any body gets space
curved near it, thereby creating a “slope of the hill” slowing

“down” along the equator towards the rotation of this body. In
other words, space is curved by a rotating body in the direc-
tion of its rotation. As a result, a particle freely travelling to
a rotating body “rolls down the curvature hill” of space along
the equator in the direction in which the body rotates.

The same effect is expected for light rays, since the equa-
tions of motion for a massless (light-like) particle and a mass-
bearing particle are identical, and, hence, their solutions co-
incide (see above). Only the mass-bearing particle’s velocity
is replaced with the physically observable velocity of light.

Please note that, as Zelmanov showed in 1944 using the
mathematical apparatus of chronometric invariants, the vecto-
rial components of the physically observable velocity of light
depend on the geometric properties of space, as well as on the
physical properties of distributed matter, despite the fact that
the square of the velocity remains invariant.

As a result, the solution for the equatorial coordinate φ of
the arrival point of a light ray falling down from space onto
the Earth’s surface in the equatorial plane has the form

φ = φ0 − ωτ +
ωr
2c1

(
1 − e−

2
r c1τ

)
,

where c1 is the physically observable velocity of light in the
radial direction.

Since the Earth, as well as any other planet or star, has its
own gravitational field, a mass-bearing particle freely travel-
ling to its surface gains a substantial acceleration. In this case,
the particle’s radial velocity cannot be assumed to be constant
even in the first order approximation. For this reason, we will
calculate the numerical value of the above effect, which we
theoretically discovered, for a light ray.

Consider a light ray travelling, say, from the Moon to the
Earth’s surface along the radial axis r in the equatorial plane
of the Earth. In this case, the physically observable velocity
of light is equal to c1 =− 3× 1010 cm/sec, since the vector
of the velocity of light is directed opposite to the reading of
the radial coordinates, the origin of which is the centre of
the Earth. The Earth rotates around its axis with the angular
velocity ω=1 rev/day=1.16×10−5 rev/sec, and the Earth’s
radius is equal to r = 6.4×108 cm. As a result, we obtain that
the curvature of space caused by the Earth’s rotation around
its axis deflects a light ray coming to the Earth’s surface from
the Moon (τ =1 sec) in the longitudinal direction in which the
Earth rotates by the angle equal to

∆φ =
ωr
2c1

(
1 − e−

2
r c1τ

)
= 1.2 × 10−7 rev = 0.16 ′′,

where the main goal into the effect is made due to the first
term, and the second term is equal to 1.5× 10−41 and, there-
fore, can be neglected.

The effect calculated for the Earth is small. Meanwhile,
this effect increases with the radius and rotation velocity of
the cosmic body. For example, the Sun has the radius equal to
r = 7.0×1010 cm, and rotates around its axis with the angular
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velocity ω=4.5×10−7 rev/sec. Therefore, the curvature of
space caused by the Sun’s rotation around its axis deflects
a light ray coming to the Sun’s surface in the longitudinal
direction in which the Sun rotates by the angle equal to

∆φ = 5.3 × 10−7 rev = 0.68 ′′.

Obviously, this effect has a much larger numerical value
near a rapidly rotating star, such as Wolf-Rayet stars or neu-
tron stars.

2. Now consider the second equation of motion (along
the geographical latitudes, where the polar angle θ is read
from the North pole). With the same assumptions as those
we used in the third equation above, neglecting higher order
terms and taking the obtained solution v3 =−ω into account,
this equation takes the form, respectively,

y′ + ay = 0 , θ
′′ + aθ′ = 0 ,

where
y = v2 =

dθ
dτ
, a =

2
r

v1 = const.

The above differential equations are solved as

y =
C

eax , θ =
C1

eax +C2 ,

where the constants of integration found using the initial con-
ditions x= x0 = 0 and y= y0 = 0, are equal to C = 0, C1 = 0 and
C2 = θ0. As a result, the solutions take the final form

v2 = 0 , θ = θ0 ,

i.e., a particle freely travelling to the surface of a rotating
body is not deflected up or down the geographical latitudes.

3. Finally, consider the first equation of motion (along the
radial coordinates). As is explained in the beginning, we as-
sume that the particle’s velocity in the radial direction gains
a very small increment or decrement α′ compared to its nu-
merical value v1, which, according to our initial assumption,
is very large. Thus, we assume v1 = const and solve the first
equation of motion with respect to v1 +α′, i.e., with respect
to the small parameter α. Neglecting higher order terms and
taking the obtained solutions v3 =−ω and v2 =0 into account,
the first equation of motion takes the form, respectively,

y′ + b = 0 , α′′ + b = 0 ,

where y=α′ and b=ω2r= const (here r is the radius of the
rotating body). These simplest equations are solved as

y = C − bx , α = −
bx2

2
+C2 x +C1 ,

where, using the initial conditions x= x0 = 0, α=α0 = 0 and
y= y0 = 0, we find that the constants of integration are equal
to zero. As a result, we obtain

α′ = −ω2rτ, α = −
ω2rτ2

2
.

This solution means that a particle freely travelling to a
rotating body gains an additional speed, and the length of its
path is physically “stretched” due to the curvature of space
caused by the body’s rotation. As a result, the particle reaches
the body later (with a delay in time) compared if the body did
not rotate.

Thus, according to the obtained solution, the increment
of the path length of a light ray that travelled, say, from the
Moon to the Earth, and also the delay in time of its arrival are
equal to

α = −1.7 cm, ∆τ =
α

c1 = 5.7 × 10−11 sec,

while such corrections for a light ray that travelled from the
Earth to the Sun are equal to

α = −6.6 × 104 cm, ∆τ =
α

c1 = 2.2 × 10−6 sec.

So, we theoretically found that a particle travelling freely
to a rotating body is deflected slightly from its radial trajec-
tory in the equatorial direction, in which the body rotates,
i.e., along the geographical longitudes. In addition, during
the travel, the particle gains a small increase of its velocity,
and its path is physically “stretched” for a little, as a result
of which the particle reaches the body with a delay in time
compared to if the body did not rotate.

These two effects take place both for mass-bearing parti-
cles and for light rays (massless light-like particles).

The origin of these effects is the space curvature caused
by the rotation of space. When any body rotates, the space
around it curves towards the direction of its rotation and the
centre of the body (the centre of rotation), thereby creating
a “slope of the hill” descending “down” along the equator
in the direction, in which the body rotates, and also to the
centre of the body. When a particle travels freely to a rotating
body, it “rolls down” the slope of the space curvature along
the equator in the direction, in which the body rotates, as well
as to the centre of the body.

These are two new fundamental effects of the General
Theory of Relativity, we have discovered “au bout d’un stylo”
in addition to the Einstein effect of the deflection of light rays
in the field of a gravitating body.

Submitted on May 5, 2022
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