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As was found in the first paper of this series of papers, the rotation of space produces a
significant curvature (Progr. Phys., 2022, v.18, 31– 49). In the second paper, we showed
that light rays and mass-bearing particles are deflected near a rotating body due to
the curvature of space caused by its rotation (ibid., 50–55). In this article we show
that, since the rotation of the Earth around its axis curves the Earth’s space making it
“stretched” along the geographical longitudes, the measured length of a standard rod is
greater when the rod is installed in the longitudinal direction. Due to the same reason,
there is a time loss on board an airplane flying to the East (the direction in which the
Earth’s space rotates), and also a time gain when flying in the opposite direction, to the
West. Both of the above effects are maximum at the equator (where the curvature of
the Earth’s space caused by its rotation is maximum and, therefore, space is maximally
“stretched”) and decrease towards the North and South Poles.

This paper is dedicated to the memory of Joseph C.
Hafele, the outstanding American experimental physi-
cist known due to his famous around-the-world-clocks
experiment.

This is the third paper in the series of our papers on the effects
of the space curvature caused by the rotation of space.

Recall that in the first paper [1], besides many other sci-
entific results, it was found that the rotation of space produces
a significant curvature due to its space-time non-holonomity
(non-orthogonality of the time lines to the three-dimensional
spatial section). In the second paper [2] that followed the first
one, it was shown that light rays and mass-bearing particles
are deflected near a rotating body due to the space curvature
caused by the rotation of its space.

In particular, according to the formulae we have obtained,
the curvature of the Earth’s space, caused by its rotation, de-
creases from the equator, where it is maximum, to the geo-
graphical poles, and its effect depends on the direction of the
measurement path with respect to the direction in which the
Earth rotates.

This small paper is based of the previous two. We will cal-
culate here the effects of length stretching and time loss/gain,
which are due to the curvature of the Earth’s space, caused by
its rotation.

As always, we use the mathematical apparatus of chrono-
metric invariants, which are physically observable quantities
in the General Theory of Relativity. This mathematical appa-
ratus was created in 1944 by our esteemed teacher A. L. Zel-
manov (1913–1987) and published in his presentations [3–5],
among which [5] is most complete. For a deeper study of this
subject, read either our first article in this series [1] or the
respective chapters in our monographs [6, 7].

Chronometrically invariant quantities are projections of
four-dimensional (general covariant) quantities onto the line
of time and the three-dimensional spatial section, which are

linked to the physical space of a real observer, and are invari-
ant everywhere along the spatial section (his observed space).
They are calculated using operators of projection, which take
the structure of space into account. Since a real space can
be curved, inhomogeneous, anisotropic, deforming, rotating,
be filled with distributed matter etc., the lines of real time
can have different density of time coordinates, and the three-
dimensional coordinate grids can have different density of
real three-dimensional coordinates. Therefore, chronometri-
cally invariant quantities are truly physically observables reg-
istered by the observer.

In particular, the physically observable chr.inv.-projection
of the four-dimensional interval dxα onto the time line of an
observer is the interval of physically observable time

dτ =
√
g00 dt −

1
c2 vi dxi,

and the physically observable chr.inv.-projections of dxα onto
his spatial section are the regular three-dimensional coordi-
nate intervals dxi. Here vi is the linear velocity of the three-
dimensional rotation of space, which arises due to the non-
holonomity of the space-time (non-orthogonality of the time
lines to the three-dimensional spatial section). It is deter-
mined as

vi = −
cg0i
√
g00
, v i = −cg0i√g00 ,

where g00 is expressed through the gravitational potential w
as usually, i.e., w = c2 (1−

√
g00).

The fundamental metric tensor gαβ, projected onto the
three-dimensional spatial section of an observer, gives the
chr.inv.-metric tensor hik of his space

hik = −gik +
1
c2 vi vk , hik = −gik, hi

k = −g
i
k = δ

i
k ,

which has all properties of gαβ in the three-dimensional spa-
tial section. Using the chr.inv.-metric tensor, we can lift and
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lower indices in chr.inv.-quantities, and also get their squares.
Thus, the square of the three-dimensional physically observ-
able interval on the spatial section is calculated as

dσ2 = hik dxidxk =

(
−gik +

1
c2 vi vk

)
dxidxk.

In our further calculations, we will use the same space
metric that we used in two previous papers. This is the metric
of a space, where the three-dimensional space rotates due to
the non-holonomity of the space-time, but there is no field of
gravitation. More precisely, we neglect the influence of the
Earth’s gravitation, since in our further examples we do not
change the altitude above the Earth’s surface, so the influence
of the gravitational potential remains constant.

Assuming that the space rotates along the equatorial axis
φ, i.e., along the geographical longitudes, with the linear ve-
locity v3=ωr2sin2

θ (here ω= const is the angular velocity of
this rotation), we obtain g03 from the definition of vi,

v3 = ωr2sin2
θ = −

cg03
√
g00
,

and then we obtain the metric of such a space

ds2 = c2dt2 − 2ωr2sin2
θdtdφ−

− dr2 − r2
(
dθ2 + sin2

θ dφ2
)
.

The non-zero components of the fundamental metric ten-
sor gαβ of this metric are obvious from the above

g00 = 1 , g03 = −
ωr2sin2

θ

c
,

g11 = −1 , g22 = −r2, g33 = −r2sin2
θ ,

and the non-zero components of the chr.inv.-metric tensor hik,
calculated from the above, are equal to

h11 = 1 , h22 = r2, h33 = r2sin2
θ

(
1 +
ω2r2sin2

θ

c2

)
.

Now we have everything that is required for our further
calculations.

So forth, we will calculate two effects due to the curvature
of the Earth’s space caused by its rotation.

First, we will calculate the effect of length stretching of
a rod depending on its direction (in the equatorial, latitudi-
nal and radial directions), as well as on the geographical lati-
tude of the measurement site. According to the formulae for
the Ricci curvature tensor and the scalar curvature, which we
have obtained in the first paper [1, p. 45], the Earth’s space is
curved due to its rotation in the equatorial (longitudinal) di-
rection, and its curvature decreases with the latitude from the
equator, where the Earth’s space is maximally “stretched”, to
the geographical poles of the Earth. Therefore, the measured

length of a standard rod is expected to be greater when the rod
is installed in the direction along the geographical longitudes,
and this effect of length stretching is maximum at the equator
and decreases with the geographical longitudes towards the
North and South Poles.

Second, we will calculate the difference in time on board
an aircraft flying Westward and Eastward. It is expected that
the rotation of the Earth’s space causes a time loss when fly-
ing Eastward, the direction in which the Earth’s space rotates,
and a time gain when flying in the opposite direction, to the
West. We also expect that the mentioned effects of time loss
and time gain are greater when the airplane travels along the
equator (where the curvature of the Earth’s space caused by
its rotation is maximum and, therefore, space is maximally
“stretched”) and decrease from the equator towards the North
and South Poles.

1. Consider a standard rigid rod of an elementary length
dl0, which is installed in a laboratory located somewhere on
the surface of the Earth. Assume that the rod is installed in
stages in three different positions: in the equatorial direction
φ (along the geographical longitudes), in the polar direction θ
(along the geographical latitudes), and in the radial direction
r read from the centre of the Earth.

Using the formula for the square of the three-dimensional
physically observable interval dσ2= hik dxidxk and the com-
ponents of the physically observable chr.inv.-metric tensor hik

we have obtained for an Earth-like rotating space (see above),
we calculate the rod’s length measured in each of the three in-
dicated positions. It is respectively equal to

dlr =
√

h11 dr2 = dr = dl0 ,

dlθ =
√

h22 dθ2 = rdθ = dl0 ,

dlφ =
√

h33 dφ2 =

√
1 +
ω2r2sin2

θ

c2 r sin θdφ =

=

√
1 +
ω2r2sin2

θ

c2 dl0 ,

where dr= dl0 is the length of an elementary segment along
the radial r-axis, rdθ= dl0 is the length of an elementary arc
along the latitudinal θ-axis (where θ is the polar angle read
from the North Pole), and r sin θdφ= dl0 is the length of an
elementary arc along the equatorial φ-axis.

As you can see from the above formulae, the rod retains
its original physically observable length dl0, when installed
in the positions along the radial direction (dlr = dl0) and along
the geographical latitudes (dlθ = dl0).

However, when the rod is installed in the position along
the geographical longitudes, i.e., along the equatorial direc-
tion in which the Earth’s space rotates, its physically observ-
able length dlφ becomes greater by a small amount δl depend-
ing on the factor specific of the curvature of space caused by
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its rotation [1, p. 45], i.e.,

dlφ =

√
1 +
ω2r2sin2

θ

c2 dl0 ≃
(
1 +
ω2r2sin2

θ

2c2

)
dl0 ,

δl ≃
ω2r2sin2

θ

2c2 dl0 .

Let us calculate the numerical value of this length stretch-
ing δl. The angular velocity of the Earth’s rotation is equal to
ω=1 rev/day=7.27×10−5 sec−1. The Earth’s radius is equal
to r = 6.4×108 cm. Then the length stretching of a rod in-
stalled at the equator of the Earth in the direction along the
longitudinal axis φ is equal to

δl ≃ 1.2 × 10−12 dl0

of the original length dl0 of the rod. At the latitude of the
Greenwich Observatory (51◦ North Lat., θ= 90◦−51◦= 39◦)
the length stretching of a rod installed along the longitudinal
axis φ is less than at the equator and is equal to

δl ≃ 5.0 × 10−13 dl0 ,

and this effect of length stretching vanishes at the geographi-
cal poles of the Earth, since there sin θ= 0 and, hence,

δl = 0 , dlφ = dl0 .

So, we clearly see that the curvature of the Earth’s space
along the equatorial (longitudinal) axis, caused by the rota-
tion of the Earth, and, as a result, the “stretching” of physi-
cal coordinates along the geographical longitudes, lead to the
stretching of the physically observable length of a rod, in-
stalled in the position along the geographical longitudes.

The mentioned effect of length stretching is maximum at
the equator, where the curvature of the Earth’s space and the
longitudinal stretching of physical coordinates caused by the
Earth’s rotation is maximum, and decreases towards the geo-
graphical poles, where the length stretching vanishes.

2. Consider an atomic clock installed on board an air-
plane flying, in stages, Westward and Eastward around the
Earth. In this case, according to the definition of physically
observable time, and taking the characteristics of an Earth-
like rotating space into account (see above), the flight time τ
registered on board the airplane is equal to

τ =

(
1 −

1
c2 v3 u3

)
t =

(
1 −
ωr2sin2

θ

c2 u3
)

t ,

where t is the reference (coordinate) time counted using a ref-
erence clock installed at the point of departure (which is the
same as at the point of arrival in an around-the-world flight),
and u3 is the linear coordinate velocity of the airplane, which
is measured along the third, equatorial (longitudinal) axis φ

as the difference in the geographical longitudes traveled by
the airplane per second.

If the airplane stays at the airport, its coordinate velocity
is equal to zero u3= 0 and, therefore, the second term in the
above formula vanishes. In this case, the clock installed on
board the airplane count the same time as the reference clock
at the airport (τ= t).

Since the Earth rotates from West to East, an airplane,
when flying Eastward, travels in the same direction in which
the Earth’s space rotates (the airplane’s velocity is co-directed
with the rotation velocity of the Earth’s space). As a result,
the clock installed on board the airplane should register a time
loss, the amount of which is calculated as

δτEast = −
ωr2sin2

θ

c2 u3 t .

When an airplane flies Westward, its velocity is directed
opposite the rotation velocity of the Earth’s space. Accord-
ingly, in this case, the clock on board the airplane should reg-
ister a time gain, the amount of which is

δτWest = +
ωr2sin2

θ

c2 u3 t .

Assume that the airplane flies along the equator around
the Earth at a constant cruising speed of 800 km/hour, which
means that u3 =+ 3.5×10−5 sec−1 when flying Eastward and
u3 =− 3.5×10−5 sec−1 when flying Westward. Thus, the air-
plane returns to its point of departure in a time interval t =
= 1.8×105 sec. The angular velocity of the Earth’s rotation
is equal to ω=1 rev/day=7.27×10−5 sec−1 and the Earth’s
radius is equal to r = 6.4×108 cm. Thus, we obtain that the
clock on board this airplane should register a time loss when
flying Eastward and a time gain when flying Westward, which
are respectively equal to

δτEast = −210 nanosec, δτWest = +210 nanosec.

That is, the rotation of the Earth’s space results in a 210
nanosecond loss in time on board an Eastward-flying airplane
travelled around the world along the equator, i.e., in the direc-
tion in which the Earth’s space rotates, and a 210 nanosecond
gain of time when travelled around the world in the opposite
direction, to the West.

The above effect of time loss and time gain caused by the
rotation of the Earth’s space decreases with the geographical
latitude due to the sine of the polar angle, which is a multiplier
in the above formulae. For example, when flying Eastward
and Westward around the Earth along the Greenwich parallel
(51◦ North Lat., θ= 39◦), the effect of time loss and time gain
is respectively equal to

δτEast = −84 nanosec, δτWest = +84 nanosec.

This effect obviously vanishes at the geographical poles
of the Earth, since there sin θ= 0.
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Yes, the expected loss/gain in the flight time is only 210
nanoseconds at the equator, and it decreases to the geographi-
cal poles. Compare, in the Hafele-Keating around-the-world-
clocks experiment [8–10], the common effect of the relativis-
tic addition of the Earth’s rotation velocity to the airplane’s
velocity and also the decrease of the gravitational potential
of the Earth with the flight altitude resulted a time loss of
− 59±10 nanoseconds Eastward and a time gain of + 273± 7
nanoseconds Westward. Note that their results were different
when flying to the West and to the East, because the relativis-
tic velocity effect of Special Relativity was also taken into ac-
count (the airplane’s velocity was added to or subtracted from
the velocity of the Earth’s rotation). The UK’s National Mea-
surement Laboratory commonly with the BBC repeated the
Hafele-Keating experiment on its 25th anniversary in 2005,
on board a London-Washington-London flight and with a bet-
ter precision of ± 2 nanoseconds [11].

The loss/gain in the flight time, caused by the rotation of
the Earth’s space, is a “cumulative effect”: it depends linearly
on the flight time (see the formula above). That is, when
an airplane will “wind circles” around the Earth, the effect
of time loss/gain on its board, caused by the rotation of the
Earth’s space, will increase with each revolution. And, after
three-four-five revolutions around the Earth, the expected ef-
fect caused by the rotation of the Earth’s space will be many
times (or even dozens of times) higher than the measurement
precision.

This is the real way to register the effect of time loss/gain,
caused by the rotation of the Earth’s space. “Winding circles”
around the Earth is easier not using an airplane, but on board
a spacecraft orbiting the Earth because it travels around the
Earth two dozen times a day anyway and without the need
of aviation kerosene. Thus, having an atomic clock installed
on board an orbital spacecraft, the effect of time loss/gain,
caused by the rotation of the Earth’s space, can be accumu-
lated to a surely measurable numerical value in just a few
days, without doing anything for this.

The aforementioned effects of length stretching and time
loss/gain, occurring due to the curvature of the Earth’s space
caused by its rotation, are new fundamental effects of the
General Theory of Relativity. They are in addition to the ef-
fect of deflection of light rays and mass-bearing particles in
the field of a rotating body, which we theoretically discov-
ered earlier, and the well-known Einstein effect of deflection
of light rays in the field of a gravitating body.

We dedicate this paper to the memory of Joseph C. Hafele
(1933–2014), the outstanding American experimental physi-
cist who initiated and later performed (together with Richard
E. Keating) the famous around-the-world-clocks experiment,
now known as the Hafele-Keating experiment [8–10].

We had an extensive correspondence with Joseph Hafele

in the 2010s, in which we discussed various problems. Unfor-
tunately, his sudden death had interrupted our acquaintance.
He was a truly gentleman, good Catholic and a honest scien-
tist who never compromised [12].

Surely he would be happy, if he read this article and saw
it published.

Submitted on May 17, 2022
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