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In this paper, we investigate the role of action S in the Spacetime Continuum (STC)
as provided by the Elastodynamics of the Spacetime Continuum (STCED). We find
that energy applies to three-dimensional space, while action applies to four-dimensional
spacetime. Planck’s reduced constant ~ corresponds to an elementary quantum of action
S 0, with action units being the same as those of angular momentum. We thus find that
action is the fundamental four-dimensional spacetime scalar quantity corresponding to
energy for three-dimensional space. This helps explain why equations of motion in
the Spacetime Continuum are determined by minimizing action, not energy, using the
principle of least (or stationary) action. The contribution of a path, in the path integral
formulation of quantum mechanics and quantum field theory, depends on the number
of elementary quanta of action S 0 in the path.

1 Introduction

In this paper, we investigate the role of action S in the Space-
time Continuum (STC) as provided by the Elastodynamics
of the Spacetime Continuum (STCED) [1–3]. STCED is a
natural extension of Einstein’s General Theory of Relativ-
ity which blends continuum mechanical and general relativis-
tic descriptions of the Spacetime Continuum. The introduc-
tion of strains in the Spacetime Continuum as a result of the
energy-momentum stress tensor allows us to use, by analogy,
results from continuum mechanics, in particular the stress-
strain relation, to provide a better understanding of the gen-
eral relativistic spacetime.

2 Elastodynamics of the Spacetime Continuum

The stress-strain relation for an isotropic and homogeneous
Spacetime Continuum is given by [1, 3]

2µ̄0 ε
µν + λ̄0 g

µνε = T µν (1)

where λ̄0 and µ̄0 are the Lamé elastic constants of the Space-
time Continuum: µ̄0 is the shear modulus (the resistance of
the Spacetime Continuum to distortions) and λ̄0 is expressed
in terms of κ̄0, the bulk modulus (the resistance of the Space-
time Continuum to dilatations), in a four-dimensional contin-
uum as:

λ̄0 = κ̄0 −
1
2 µ̄0 . (2)

T µν is the general relativistic energy-momentum stress tensor,
εµν the Spacetime Continuum strain tensor resulting from the
stresses, and

ε = εαα , (3)

the trace of the strain tensor obtained by contraction, is the
volume dilatation ε defined as the change in volume per orig-
inal volume [4, see pp. 149–152] and is an invariant of the
strain tensor. It should be noted that the structure of (1) is
similar to that of the field equations of general relativity,

Rµν − 1
2 g

µνR = −κT µν (4)

where Rµν is the Ricci curvature tensor, R is its trace, κ =

8πG/c4 and G is the gravitational constant (see [2, Ch. 2] for
more details).

In STCED, as shown in [1, 3], energy propagates in the
Spacetime Continuum as wave-like deformations which can
be decomposed into dilatations and distortions. Dilatations
involve an invariant change in volume of the Spacetime Con-
tinuum which is the source of the associated rest-mass energy
density of the deformation. On the other hand, distortions
correspond to a change of shape (shearing) of the Spacetime
Continuum without a change in volume and are thus mass-
less.

Thus deformations propagate in the Spacetime Conti-
nuum by longitudinal (dilatation) and transverse (distortion)
wave displacements. This provides a natural explanation for
wave-particle duality, with the massless transverse mode cor-
responding to the wave aspects of the deformations and the
massive longitudinal mode corresponding to the particle as-
pects of the deformations.

The rest-mass energy density of the longitudinal mode is
given by [1, see Eq. (32)]

ρc2 = 4κ̄0ε (5)

where ρ is the rest-mass density, c is the speed of light, κ̄0 is
the bulk modulus of the STC as seen previously, and ε is the
volume dilatation given by (3).

3 Action in the Spacetime Continuum

In a previous paper [5], we considered dislocations in the
Spacetime Continuum as a framework for quantum physics.
In a subsequent paper [6], we expressed Planck’s constant in
terms of the Burgers spacetime dislocation constant b0, given
by

~ =
κ̄0 b4

0

c
, (6)

where κ̄0 is the Spacetime Continuum bulk modulus, b0 is the
Burgers spacetime dislocation constant, c is the speed of light
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in vacuo and ~ is Planck’s reduced constant. This equation
can be considered to be a definition of Planck’s reduced con-
stant ~. We consider this equation in greater detail.

On the right-hand side of the equation, we have the Space-
time Continuum bulk modulus constant κ̄0 in units of energy
density [J m−3], that is energy per 3-D volume. We can mul-
tiply κ̄0 by a 3-D volume to convert it to energy. However, κ̄0
is a Spacetime Continuum constant. We need a conversion in
terms of the 4-D spacetime volume.

The right-hand side of (6) also includes the term b4
0 which

can be taken to be the 4-D volume of a four-dimensional el-
ementary hypercube of side b0 = 1.616 × 10−35 m. This 4-
D hypervolume has units of [m4] while the four-dimensional
Spacetime Continuum hypervolume consists of three space
dimensions and one time dimension with units [m3 s]. This
requires that one of the four-dimensional hypercube dimen-
sions b0 be divided by c to convert it to a time elementary
dimension t0 = b0/c = 5.39 × 10−44 s as is observed in (6).
Eq. (6) can thus be written as

~ = κ̄0 b3
0

b0

c
= κ̄0 b3

0 t0 = κ̄0 VS TC
0 (7)

where VS TC
0 is the four-dimensional elementary Spacetime

Continuum hypervolume and ~ has units of [J s] which are
units of action S.

Hence multiplying κ̄0 by a 3-D space volume converts it to
energy, while multiplying it by a 4-D spacetime volume con-
verts it to action. Energy applies to three-dimensional space,
while action applies to four-dimensional spacetime. From
(7), we see that Planck’s reduced constant corresponds to an
elementary quantum of action S 0:

~ = κ̄0 VS TC
0 = S 0 (8)

which has units of [J s]. Action units are the same as those of
angular momentum, but this equivalence is accidental. The
basic nature of ~ is an action, not an angular momentum.
Calling ~ a “spin” quantity is an unfortunate misnomer from
the early days of quantum mechanics. It needs to be called
more appropriately an action quantity, i.e. the fundamental
quantum of action of the Spacetime Continuum.

We thus find that action is the fundamental four-dimen-
sional spacetime scalar quantity corresponding to energy for
three-dimensional space. This helps explain why equations of
motion in the Spacetime Continuum are determined by mini-
mizing action, not energy, using the principle of least (or sta-
tionary) action given by

δS = 0 (9)

where the action S is expressed in terms of the Lagrangian L
of the system as

S =

∫ t2

t1
L (q(t), q̇(t), t) dt (10)

where q = (q1, q2, ..., qN) are the N generalized coordinates
defining the configuration of the system and q̇ denotes the
time derivative of q.

In Lagrangian field theory, the action is written in terms
of the Lagrangian densityL specified in terms of one or more
fields φ(x) and their derivatives ∂µφ as [7, see p. 15ff]

S =

∫ x2

x1

L
(
φ(x), ∂µφ

)
d4x . (11)

The path integral formulation of quantum mechanics and
quantum field theory is a generalization of the action principle
of classical mechanics [8]. Interestingly enough, Feynman
who developed this formulation [9]

... belie[ved] that the path integral captures the fun-
damental physics, and that hamiltonians and Hilbert
space are merely mathematical methods for evaluating
path integrals. [10, see p. 143]

In STCED, the path integral between two points x1 and x2 can
be understood to be equivalent to the different possible wave
paths between the two points.

The propagation amplitude G(x2; x1) between the points
x1 and x2 is determined from the path integral using the ap-
propriate action for the system under consideration. One can
see that since the contribution of a path is proportional to
eiS/~ [10, see p. 146], then, from (8), it is equivalent to eiS/S 0 .
In other words, the contribution of a path depends on the num-
ber of elementary quanta of action S 0 in the path.

The quantization of action implied by the above, points
to the approach required to achieve quantization of path in-
tegrals in quantum physics. Coupled with the understanding
that equations of motion in the Spacetime Continuum are de-
termined by minimizing action as per (9) provides an indi-
cation for its potential application to the development of a
quantized theory of path integrals.

4 Discussion and conclusion

In this paper, we have investigated the role of action S in the
Spacetime Continuum as provided by the Elastodynamics of
the Spacetime Continuum (STCED). We have found that mul-
tiplying the Spacetime Continuum bulk modulus constant κ̄0
by a 3-D space volume converts it to energy, while multiply-
ing it by a 4-D spacetime volume converts it to action. Hence
energy applies to three-dimensional space, while action ap-
plies to four-dimensional spacetime. Planck’s reduced con-
stant ~ corresponds to an elementary quantum of action S 0,
with action units being the same as those of angular momen-
tum. We thus find that action is the fundamental four-dimen-
sional spacetime scalar quantity corresponding to energy for
three-dimensional space. This helps explain why equations of
motion in the Spacetime Continuum are determined by mini-
mizing action, not energy, using the principle of least (or sta-
tionary) action. In particular, the contribution of a path, in the
path integral formulation of quantum mechanics and quantum

118 Pierre A. Millette. On Action in the Spacetime Continuum



Issue 2 (October) PROGRESS IN PHYSICS Volume 18 (2022)

field theory, depends on the number of elementary quanta of
action S 0 in the path.
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