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In this paper, we summarize the nature of the Spacetime Continuum (STC) as provided
by the Elastodynamics of the Spacetime Continuum (STCED). We note that, in addi-
tion to providing a physical explanation for inertial mass and for wave-particle duality,
STCED covers the Physics of the Spacetime Continuum. We show that the dimension-
ality of the Spacetime Continuum could be deduced mathematically if the value of the
Lamé elastic constants κ̄0, µ̄0 and λ̄0 of the Spacetime Continuum could be determined
experimentally. From Einstein’s field equation for an isotropic and homogeneous STC,
we derive the value of the Spacetime Continuum bulk modulus κ̄0 in terms of elemen-
tary constants. Understanding the nature of the Spacetime Continuum as provided by
STCED provides a better understanding of the general relativistic spacetime.

1 Introduction

In this paper, we summarize the nature of the Spacetime Con-
tinuum (STC) as provided by the Elastodynamics of the Spa-
cetime Continuum (STCED) [1–3]. STCED is a natural exten-
sion of Einstein’s General Theory of Relativity which blends
continuum mechanical and general relativistic descriptions of
the Spacetime Continuum. The introduction of strains in the
Spacetime Continuum as a result of the energy-momentum
stress tensor allows us to use, by analogy, results from contin-
uum mechanics, in particular the stress-strain relation, to pro-
vide a better understanding of the general relativistic space-
time.

2 Elastodynamics of the Spacetime Continuum

The stress-strain relation for an isotropic and homogeneous
Spacetime Continuum is given by [1, 3]

2µ̄0 ε
µν + λ̄0 g

µνε = T µν (1)

where λ̄0 and µ̄0 are the Lamé elastic constants of the Space-
time Continuum: µ̄0 is the shear modulus (the resistance of
the Spacetime Continuum to distortions) and λ̄0 is expressed
in terms of κ̄0, the bulk modulus (the resistance of the Space-
time Continuum to dilatations):

λ̄0 = κ̄0 −
1
2 µ̄0 (2)

in a four-dimensional continuum. T µν is the general relativis-
tic energy-momentum stress tensor, εµν the Spacetime Con-
tinuum strain tensor resulting from the stresses, and

ε = εαα , (3)

the trace of the strain tensor obtained by contraction, is the
volume dilatation ε defined as the change in volume per orig-
inal volume [4, see pp. 149–152] and is an invariant of the
strain tensor. It should be noted that the structure of (1) is
similar to that of the field equations of General Relativity,

Rµν − 1
2 g

µνR = −κT µν (4)

where Rµν is the Ricci curvature tensor, R is its trace, κ =

8πG/c4 and G is the gravitational constant (see [2, Ch. 2] for
more details).

In STCED, as shown in [1, 3], energy propagates in the
spacetime continuum (STC) as wave-like deformations which
can be decomposed into dilatations and distortions. Dilata-
tions involve an invariant change in volume of the Spacetime
Continuum which is the source of the associated rest-mass
energy density of the deformation. On the other hand, dis-
tortions correspond to a change of shape (shearing) of the
Spacetime Continuum without a change in volume and are
thus massless.

Thus deformations propagate in the Spacetime Contin-
uum by longitudinal (dilatation) and transverse (distortion)
wave displacements. This provides a natural explanation for
wave-particle duality, with the massless transverse mode cor-
responding to the wave aspects of the deformations and the
massive longitudinal mode corresponding to the particle as-
pects of the deformations.

The rest-mass energy density of the longitudinal mode is
given by [1, see Eq. (32)]

ρc2 = 4κ̄0ε (5)

where ρ is the rest-mass density, c is the speed of light, κ̄0 is
the bulk modulus of the STC as seen previously, and ε is the
volume dilatation given by (3).

3 The physicality of four-dimensional spacetime

Minkowski [5,7] first introduced the concept of a four-dimen-
sional spacetime and the description of particles in this space-
time as worldlines in 1908. This has given rise to the question
whether four-dimensional spacetime is real or a mathematical
abstraction. Eddington [7] considered this question in 1921:

It was shown by Minkowski that all these fictitious
spaces and times can be united in a single continuum
of four dimensions. The question is often raised whe-
ther this four-dimensional space-time is real,or merely
a mathematical construction; perhaps it is sufficient to
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reply that it can at any rate not be less real than the
fictitious space and time which it supplants.

Petkov [6, 7] provides a cogent summary of Minkowski’s pa-
per. Worldlines of particles at rest are vertical straight lines in
a space−ct diagram, while particles moving at a constant ve-
locity v are oblique lines and accelerated particles are curved
lines. This provides a physical explanation for length contrac-
tion as a manifestation of the reality of a particle’s extended
worldline, where the cross-section measured by an observer
moving relative to it (i.e. at an oblique line in the space−ct
diagram), creates the difference in perceived length between a
body at rest and one in movement. This is explored in greater
detail in [8, 9]. Minkowski’s work demonstrates the physi-
cality of four-dimensional spacetime, and that indeed, four-
dimensional physics is spacetime geometry.

The relation (2) between κ, and µ and λ can be generalized
to N dimensions, and is given by [10, p. 769]

κ =
2µ + Nλ

N
. (6)

The dimensionality of the Spacetime Continuum could thus
be deduced mathematically if the value of the Lamé elastic
constants κ̄0, µ̄0 and λ̄0 of the Spacetime Continuum could be
determined experimentally.

4 Physics of the Spacetime Continuum

From General Relativity and STCED, one can deduce the
properties of the Spacetime Continuum, as STCED includes
the physics of the Spacetime Continuum as an underlay of the
theory.

The Spacetime Continuum is modelled as a four-dimen-
sional differentiable manifold [11] endowed with a metric gµν.
It is a continuum that can undergo deformations and support
the propagation of such deformations. A continuum that is
deformed is strained.

An infinitesimal element of the unstrained continuum is
characterized by a four-vector xµ, where µ = 0, 1, 2, 3. The
time coordinate is x0 ≡ ct.

A deformation of the Spacetime Continuum corresponds
to a state of the STC in which its infinitesimal elements are
displaced from their unstrained positions. Under deforma-
tion, the infinitesimal element xµ is displaced to a new posi-
tion xµ + uµ, where uµ is the displacement of the infinitesimal
element from its unstrained position xµ.

The Spacetime Continuum is approximated by a deforma-
ble linear elastic medium that obeys Hooke’s law. Under
those conditions, for a general anisotropic continuum in four
dimensions [12, see pp. 50–53],

Eµναβεαβ = T µν (7)

where εαβ is the strain tensor, T µν is the energy-momentum
stress tensor, and Eµναβ is the elastic moduli tensor.

The Spacetime Continuum is further assumed to be isotro-
pic and homogeneous. This assumption is in agreement with
the conservation laws of energy-momentum and angular mo-
mentum as expressed by Noether’s theorem [13, see pp. 23–
30]. For an isotropic medium, the elastic moduli tensor sim-
plifies to [12]:

Eµναβ = λ̄0(gµνgαβ) + µ̄0(gµαgνβ + gµβgνα) (8)

where λ̄0 and µ̄0 are the Lamé elastic constants of the Space-
time Continuum as seen previously in Section 2. Substituting
(8) into (7), we obtain the stress-strain relation (1) seen previ-
ously in Section 2, for an isotropic and homogeneous Space-
time Continuum. The Spacetime Continuum is thus modelled
as an elastic medium (see [3, pp. 16–18,24]).

Blair [14, p. 3–4] writes Einstein’s field equation as

T =
c4

8πG
G , (9)

where T is the stress energy tensor, G is the Einstein curvature
tensor and G is the universal gravitational constant. He notes
the very large value of the proportionality constant. This
leads him to point out that spacetime is an elastic medium
that can support waves, but its extremely high stiffness means
that extremely small amplitude waves have a very high en-
ergy density. He notes that the coupling constant c4/8πG can
be considered as a modulus of elasticity (K) for spacetime. In
similarity to the acoustic case, where the specific impedance
z = K/v, he identifies the quantity c3/G with the characteristic
impedance of spacetime [14, p. 45].

Substituting for the Einstein curvature tensor in (9), the
equation becomes

T µν =
c4

8πG
Gµν =

c4

8πG

[
Rµν − 1

2 g
µνR

]
. (10)

For STCED, as seen in (7), the single modulus of elasticity
of (10) is replaced by the elastic moduli tensor Eµναβ of rank
4, consisting of 256 components. For an isotropic and homo-
geneous Spacetime Continuum, the elastic moduli tensor is
given by (8) and simplifies to two moduli, the shear modulus
µ̄0 for transverse waves and the bulk modulus κ̄0 for longitu-
dinal waves, as seen previously in (1):

T µν = 2µ̄0 ε
µν + λ̄0 g

µνε . (11)

As shown in [2, §2.5], (10) and (11) can be combined and
separated into a longitudinal relation

c4

8πG
R = 2(µ̄0 + 2λ̄0) ε = 4 κ̄0 ε = ρc2 (12)

where ρ is the rest-mass energy density present in the Space-
time Continuum, and a transverse relation

c4

8πG
Rµν = 2µ̄0 ε

µν − (λ̄0 + µ̄0) gµνε (13)
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which becomes

c4

8πG
Rµν = 2µ̄0

(
εµν −

1
2
λ̄0 + µ̄0

µ̄0
gµνε

)
(14)

where (λ̄0 + µ̄0)/µ̄0 is a numerical factor.
We can derive the relationship between the Spacetime

Continuum bulk modulus κ̄0 and known constants from re-
lation (12) as follows:

c4

8πG
R = 4 κ̄0 ε , (15)

where the constant c4/8πG has dimensions of [N], R has di-
mensions of [m−2], κ̄0 has dimensions of [N m−2] or [J m−3],
and ε is dimensionless. We need to express R as a dimen-
sionless quantity and combine its constant factor with con-
stant c4/8πG. Curvature R is expressed in [m−2]. As shown
in [15], the smallest Spacetime Continuum Burgers vector b0
is equal to Planck’s length

`P =

√
~G
c3 . (16)

The curvature of this smallest surface element will be con-
stant, such that we can write the curvature R as

R =
R̄
`2

P

(17)

where R̄ is the dimensionless curvature number in terms of
the smallest surface element `2

P.
Substituting (17) and (16) into (15), we obtain

c7

8π~G2 R̄ = 4 κ̄0 ε , (18)

where the units are [N m−2]. The dimensionless curvature R̄
and, as seen in Section 2, the dimensionless volume dilatation
ε corresponding to the change in volume per original volume
(∆V/V) [4, see pp. 149–152], result from the applied stresses
leading to the deformation of the Spacetime Continuum.

The latter corresponds to the definition of the bulk modu-
lus. The numerical factors can be included in the definition of
the dimensionless curvature R̄ and the dimensionless volume
dilatation ε to obtain

c7

~G2

R̄
8π

= κ̄0 (4ε) . (19)

One option is to equate the terms having dimensions of
[N m−2] to obtain the Spacetime Continuum bulk modulus,
with the understanding that there may be a numerical factor
on the R.H.S. of (20):

κ̄0 =
c7

~G2 . (20)

From one of my previous articles [1, Eq. (150)], we then have

µ̄0 = 32κ̄0 = 32
c7

~G2 . (21)

Numerically, κ̄0 = 4.6×10113 J/m3 and µ̄0 = 1.5×10115 J/m3.
With these constants, we are now in a position to calcu-

late the density of the Spacetime Continuum ρ̄0. Using the
relation [1]

c =

√
µ̄0

ρ̄0
, (22)

the density of the spacetime continuum is

ρ̄0 = 1.7 × 1098 kg/m3. (23)

This value is in the same ballpark as the vacuum energy den-
sity calculated by Carroll [16, see p. 173] (∼ 10112 ergs/cm3)
from quantum mechanical considerations.

5 Mass in the Spacetime Continuum

We have considered the origin of inertial mass in the Space-
time Continuum in [17], where we showed that integrating
(5) over the 3-D space volume,∫

V3

ρc2 dV3 = 4κ̄0

∫
V3

ε dV3 , (24)

and using

m =

∫
V3

ρ dV3 (25)

in (24), where m is the rest mass of the deformation, we obtain

mc2 = 4κ̄0

∫
V3

ε dV3 . (26)

This demonstrates that mass is not independent of the
Spacetime Continuum, but rather mass is part of the Space-
time Continuum fabric itself. Hence mass results from the
dilatation of the Spacetime Continuum in the longitudinal
propagation of energy-momentum in the Spacetime Contin-
uum. Matter does not warp spacetime, but rather, matter is
warped spacetime (i.e. dilated spacetime). The missing link
in General Relativity is the understanding that the trace of the
energy-momentum stress tensor is related to the trace of the
Spacetime Continuum strain tensor and is proportional to the
mass of matter as given by (5) and (26).

6 Discussion and conclusion

In this paper, we have summarized the nature of the Space-
time Continuum (STC) as provided by the Elastodynamics of
the Spacetime Continuum (STCED), which provides a bet-
ter understanding of general relativistic spacetime. We have
shown that the dimensionality of the Spacetime Continuum
could be deduced mathematically if the value of the Lamé
elastic constants κ̄0, µ̄0 and λ̄0 of the Spacetime Continuum
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could be determined experimentally. From Einstein’s field
equation for an isotropic and homogeneous STC, we derive
the value of the Spacetime Continuum bulk modulus κ̄0 in
terms of elementary constants.

STCED provides a physical model of the nature of inertial
mass, which also includes an explanation for wave-particle
duality. Mass is shown to be the invariant change in vol-
ume of spacetime in the longitudinal propagation of energy-
momentum in the spacetime continuum. Hence mass is not
independent of the spacetime continuum, but rather mass is
part of the spacetime continuum fabric itself.

Received on December 23, 2022

References
1. Millette P. A. Elastodynamics of the Spacetime Continuum. The Abra-

ham Zelmanov Journal, 2012, vol. 5, 221–277.

2. Millette P. A. Elastodynamics of the Spacetime Continuum: A Space-
time Physics Theory of Gravitation, Electromagnetism and Quantum
Physics. American Research Press, Rehoboth, NM, 2017.

3. Millette P. A. Elastodynamics of the Spacetime Continuum, Second
Expanded Edition. American Research Press, Rehoboth, NM, 2019.

4. Segel L. A. Mathematics Applied to Continuum Mechanics. Dover
Publications, New York, 1987.

5. Minkowski H. Space and Time. 80th Assembly of German Natural
Scientists and Physicians. Cologne, 21 September 1908. English trans-
lation reprinted in Lorentz H. A., Einstein A., Minkowski H, and Weyl
H. The Principle of Relativity: A Collection of Original Memoirs on

the Special and General Theory of Relativity. Dover Publications, New
York, 1952, pp. 73–91.

6. Petkov V. Relativity and the Nature of Spacetime, 2nd ed. Springer, New
York, 2009, pp. 111–114.

7. Petkov V. Inertia and Gravitation: From Aristotle’s Natural Motion to
Geodesic Worldlines in Curved Spacetime. Minkowski Institute Press,
Montreal, 2012, pp. 78–82.

8. Millette P. A. On Time Dilation, Space Contraction, and the Question
of Relativistic Mass. Progress in Physics, 2017, vol. 13 (4), 202–255.

9. Millette P. A. On the Question of Acceleration in Special Relativity.
Progress in Physics, 2017, vol. 13 (4), 215–219.

10. Kleinert H. Gauge Fields in Condensed Matter, Vol. II Stresses and
Defects. World Scientific Publishing, Singapore, 1989.

11. Millette P. A. The Elastodynamics of the Spacetime Continuum as
a Framework for Strained Spacetime. Progress in Physics, 2013,
vol. 9 (1), 55–59.
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