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Fermion Mass Derivations: I. Neutrino Masses
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We derive neutrino masses from discrete symmetry binary subgroups of SU(2), 2T for
the electron family, 2O for the muon family, and 2I for the tau family, acting collectively
to generate the PMNS mixing angles. Using the modulus τ near ω = exp(2πi/3) in the
domain of SU(2) converts the PMNS matrix into the 24th root of unity and produces a
factor of 311 to predict neutrino masses: m1 = 0.3 meV, m2 = 8.9 meV, m3 = 50.7 meV.

1 Introduction

One of the most challenging fundamental problems in par-
ticle physics is to calculate the mass values of the leptons
and quarks. We tackle this problem within the framework
of the Standard Model by considering the three specific dis-
crete symmetry binary subgroups of SU(2) that we have es-
tablished previously [1,2]. The three lepton families represent
the binary tetrahedral group 2T for the electron family, the bi-
nary octahedral group 2O for the muon family, and the binary
icosahedral group 2I for the tau family. The mass values for
the quark families will be derived via an identical approach
in a separate article.

After a brief review of some of the limitations of the Stan-
dard Model, we explain some of the consequences of the dis-
crete symmetry binary subgroups of SU(2), including how
we utilized their generators to derive the correct mixing an-
gles for the lepton PMNS‡ mixing matrix. These subgroups
have a domain in the upper half of the complex plane and we
use their modulus τ for fractional linear transformations near
its symmetry point τ0 = ω = exp(2πi/3) in our procedure to
predict the lepton mass values. Note that the modular sub-
groups of SL(2,Z) used to calculate lepton masses via many
parameters [3, 4] are isomorphic to our subgroups of SU(2).

We find that by treating the three lepton families equiva-
lently leads to the circulant matrix method used to derive [5,6]
the 1982 Koide formula [7] that accurately predicted the mass
value of the tau lepton. We move the value of τ slightly away
from ω, thereby introducing CP symmetry breaking, to con-
vert our PMNS mixing matrix into the 24th root of unity, from
which we calculate neutrino mass values by using the factor
of 311 difference from the charged-lepton mass values.

Finally, we examine how the unique invariant N for each
binary subgroup can be used to derive the lepton mass values
from geometry. According to F. Klein [8] in 1884, each of the
three binary subgroups has an invariant N inversely related to
j(τ) of elliptic modular functions, the N being: 1 for 2T, 108
for 2O, and 1728 for 2I, integer values that have a similar
hierarchy to the 0.511 MeV, 105.66 MeV, and 1776.82 MeV

‡Pontecorvo-Maki-Nakagawa-Sakata

mass values for the charged leptons!

2 SM limitations

The Standard Model (SM) of leptons and quarks has been an
extremely successful effective field theory [9–12] for combin-
ing the unified electroweak interaction with the nuclear color
interaction since its formulation in the 1970s. Its fundamen-
tal particles represent quantum fields, with the SM probably
being an approximation to an underlying theory.

The physical world is artificially partitioned into a (3+1)-
D spacetime and an internal symmetry space at each point in
spacetime. The known fundamental particle quantum states
are defined in the internal symmetry space, but the number
of dimensions of the internal symmetry space has yet to be
established.

The two particle quantum states for each lepton family
and for each quark family represent the continuous symmetry
group SU(2), i.e. the ±1/2 weak isospin states which are also
called the up and down flavor states. Of the 3 known lepton
families, the electron family (νe, e−), the muon family (νµ,
µ−), and the tau family (ντ, τ−), the more massive muon and
tau charged leptons are known to not be excited higher mass
states of the electron. Likewise, the two known quark fami-
lies beyond the first quark family are not simply higher mass
states of the first quark family.

The SM as presently understood cannot predict the num-
ber of lepton families nor the number of quark families. How-
ever, the weak interaction Z0 boson decays suggest that there
are exactly the 3 lepton families [13] if there are only neutri-
nos with mass values below about 90 GeV, which appears to
be the case. In addition, there is a cosmological limit of 15
total fundamental leptons plus quarks. There being 12 known
fundamental leptons plus quarks, at least one more family of
two particles is possible. [14, 15]

Lepton mixing occurs [16–18] when one neutrino type or
charged-lepton can change into another on the journey from
source to detector. This behavior is in direct conflict with the
SM expectation for massless neutrinos. However, most con-
served quantities still hold true, such as electric charge con-
servation with the electromagnetic interaction being equiva-
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Table 1: Lepton Family Group Assignments.

Family Group Order 3-D Mass
(MeV)

νe < 0.001

e− 2T 24 0.511
νµ < 0.001

µ− 2O 48 105.7
ντ < 0.001

τ− 2I 120 1776.8

lent for all electrically charged particles as well as the weak
interaction being identical for each of the lepton and quark
family particles, a property called weak universality. Further
tests challenging this weak interaction lepton flavor univer-
sality (LFU) continue to be carried out at many different ex-
periments worldwide.

3 Lepton mixing

In order to better understand the physical behavior of the SM
particle states, in the 1990s we introduced [1] specific differ-
ent discrete symmetry binary subgroups of SU(2) in R3 for
each family of leptons and in R4 for each family of quarks.
This approach has gained in importance in the past decade as
other approaches have become less likely or eliminated. The
discrete symmetry binary subgroups for the lepton families
are the assignments listed in Table 1 along with their 3-D rep-
resentations as the Platonic solids at the Planck scale. The
justification for these specific binary subgroup assignments
includes the correct mixing angles for the lepton PMNS ma-
trix that relates the wave functions for the SM flavor states to
their mass states.

One major consequence of having the fundamental par-
ticles represent specific discrete symmetry binary subgroups
is that the lepton and quark SM weak isospin states are not
the same as the mass states, in agreement with experimental
results. Otherwise, in the traditional SM view with the lep-
ton and quark families representing the continuous symmetry
group SU(2), there is no known reason for the mass states
to be different from the SM weak isospin states and this dif-
ference is simply attributed to a mismatch between the weak
isospin states and the mass states!

We proposed [2] that the reason for the difference between
the SM weak isospin flavor states and the mass states depends
upon the continuous symmetry requirement of quantum field

Table 2: Quaternion Generators. φ = (1+
√

5)/2

Fam. Grp. U3 Generator Factor Ang./2
SU(2) k

νe, e− 2T - 1
2 i − 1

2 j + 1
2 k -0.2642 52.66o

νµ, µ
− 2O - 1

2 i − 1
√

2
j + 1

2 k +0.8012 18.38o

ντ, τ
− 2I - 1

2 i − φ
2 j + 1

2φk -0.5370 61.24o

Table 3: Comparison to NuFit 5.2 values for neutrino observables.

bfp ±1σ 3σ range predicted

sin2 θ12 0.303+0.012
−0.012 0.270→ 0.341 0.3172

θ12/o 33.41+0.75
−0.72 31.31→ 35.74 34.29o

sin2 θ23 0.451+0.019
−0.016 0.408→ 0.603 0.4627

θ23/o 42.2+1.1
−0.9 39.7→ 51.0 42.85o

sin2 θ13 0.0222+0.0006
−0.0006 0.0205→ 0.0240 0.0223

θ13/o 8.58+0.12
−0.12 8.23→ 8.91 8.56o

theory (QFT) because the fields are required to be continuous.
Having our specific discrete symmetry binary subgroups de-
fine their weak isospin states within the framework of the SM
violates this QFT continuous symmetry requirement. There-
fore, to eliminate this violation, we determined that a linear
superposition of the binary subgroup generators was needed
so that acting collectively the three discrete symmetry bi-
nary subgroups could mimic the continuous symmetry group
SU(2).

This linear superposition is achieved separately for the
lepton families and for the quark families. The quaternion
generators for each of the three lepton binary subgroups are
the same for the first two generators, i.e. the quaternions U1
= i and U2 = j of SU(2), but the third generators, the U3’s,
which should each be k, are different for each subgroup and
are listed in Table 2. The normalized contributing factors to
the linear superposition for each lepton family binary sub-
group are listed in column four of Table 2 as well as their half-
angle contributions whose differences determine the PMNS
mixing angles.

The absolute values of our predicted mixing angles for
the lepton PMNS mixing matrix are listed in Table 3, show-
ing that they agree with the empirically determined ranges of
values. Note that we predict the θ23 angle of 42.85o to be in
the first quadrant, in agreement with some of the empirical
values but in contrast to other results that suggest the second
quadrant.

The PMNS matrix for the lepton families is the product
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of the charged-lepton and the neutrino matrices

UPMNS = U†e Uν . (1)

If the charged-lepton states do not mix, or their mixing is
minimal, Ue is diagonal, an assumption that is discussed in
a later section, then the PMNS mixing matrix represents neu-
trino mixing only. Therefore, the PMNS matrix relates the
neutrino mass states (ν1, ν2, ν3) to the SM weak isospin states
(νe, νµ, ντ) as 

νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1

ν2

ν3

 . (2)

Keeping a phase factor δ for CP violation consideration, our
PMNS matrix in the standard popular 3x3 formulation is

0.817 0.557 −0.1491e−iδ

−0.413 − 0.084eiδ 0.606 − 0.057eiδ −0.669

−0.383 + 0.051eiδ 0.558 + 0.062eiδ 0.725

 . (3)

Therefore, we have established the very important result
that each lepton family represents its own specific discrete
symmetry binary subgroup of SU(2) because our assigned
groups lead directly to correct predictions of the mixing an-
gles for the PMNS mixing matrix. And we know that the
origin of this mixing is the QFT requirement for continuous
symmetry behavior. So the discrete symmetries of the lepton
families mix collectively via a linear superposition to mimic
the continuous symmetry group SU(2).

Our binary subgroups of SU(2) have their fundamental
domain D in the upper half of the complex plane between
−1/2 and +1/2 as shown in Fig. 1 with three symmetric points
τsym = i∞, i, and ω = exp(2πi/3). Although no value of
the modulus τ preserves the full symmetry of SU(2) (or its
isomorphic modular group SL(2,Z)), at the three τsym val-
ues, specific ZN symmetries are preserved, with N = 2, 3,
or 4. When τ lies on the border of D, CP symmetry is pre-
served [3,4], but small deviations expressed by |τ− τsym| lead
to CP symmetry being broken and hierarchial mass patterns
emerging according to the sequence (1, ε, ε2), where ε � 1.
See Appendix A for the details which were introduced in a
modular group analysis.

4 Circulant matrix approach

We know from the collective action dictated by the continu-
ous symmetry constraint of QFT that perhaps the three lepton
families should be treated as equals, a symmetry that suggests
they obey the group U(3). If we assume U(3) symmetry for
this equal treatment, we can utilize its expression as a 3x3 cir-
culant matrix [5,6], from which the famous Koide formula [7]
has been derived.

Fig. 1: The fundamental domain of our three SU(2) subgroups 2T,
2O, and 2I (and of the modular group Γ = SL(2,Z)) with its three
symmetric points τsym = i∞, i, ω, where ω = exp(2πi/3) = −0.5 +

0.866i, with a small ring of acceptable values around ω.

We now paraphrase a 2006 article by C. Brannen [5],
which shows how to use this type of equality to derive the
Koide formula for the charged-lepton mass values from a cir-
culant matrix and then proceeds to derive the mathematical
relations that lead to the prediction of reasonable neutrino
mass values in the meV energy range.

The 3x3 1-circulant matrix

G(A, B,C) =


A B C

C A B

B C A

 , (4)

where A, B and C are complex constants, has eigenvectors of
the form

|n〉 =
1
√

3


1

exp(+2niπ/3)

exp(−2niπ/3)

 , (5)

with n = 1, 2, 3. By requiring the eigenvalues λn to be real,
the circulant matrix can be rewritten in the form

G(µ, η, β) = µ


1 η exp(+iβ) η exp(−iβ)

η exp(−iβ) 1 η exp(+iβ)

η exp(+iβ) η exp(−iβ) 1

 , (6)

with η assumed to be non-negative. The η and β are pure
numbers, whereas µ will scale with the eigenvalues given by

G(µ, η, β) |n〉 = λn|n〉 = µ (1 + 2η cos(β + 2nπ/3)) |n〉 . (7)

From the traces of G and G2 one derives the eigenvalue rela-
tionships

λ1 + λ2 + λ3 = 3µ (8)
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and
λ2

1 + λ2
2 + λ2

3 = 3µ2 (1 + 2η2) . (9)

From here one obtains the Koide formula by setting η2 = 0.5:

(λ1 + λ2 + λ3)2

λ2
1 + λ2

2 + λ2
3

=
3
2
. (10)

By setting the eigenvalues λi =
√

mi, the 1982 formula pro-
posed by Koide for the masses of the charged leptons is:

(
√

me +
√mµ +

√
mτ)2

me + mµ + mτ
=

3
2
. (11)

Using the known mass values of the electron and the muon,
the mass value of the tau was predicted [7] to be in agreement
with future experimental results to better than two decimal
places!

Consequently, from knowing the masses of the charged
leptons, one determines [5] that

µ1 = 17716.13(109) eV0.5

η2
1 = 0.500003(23)

β1 = 0.2222220(19)

(12)

where the subscript 1 has been added to distinguish these pa-
rameters from the future neutrino parameters. Notice that β1
is essentially 2/9 and perhaps could be related to the phase
φ = −2π/9 of the scalar potential in the modular group ap-
proach introduced in the Appendix.

5 Lepton mass hierarchy

Before there was any evidence of tau neutrino mixing with
the electron neutrino, the tribimaximal matrix with its zero
value in the (1,3) position was thought by researchers to be
the PMNS matrix that best represented the neutrino data:

2
√

6
1
√

3
0

− 1
√

6
1
√

3
− 1
√

2

− 1
√

6
1
√

3
1
√

2

 . (13)

Of course, we will substitute our PMNS matrix for this ap-
proximate matrix, but first we shall continue to follow the
original article [5] in order to reveal its amazing result.

Left-multiplying this tribimaximal matrix by a matrix of
the circulant eigenvectors achieves a simple product with the
value of τ = ω, i.e. the lower left corner at τ0 = exp(2πi/3) in
the domain region:

α = ω = e2πi/3 = −0.5 + 0.866i : (14)

1
√

3


1 α α∗

1 1 1

1 α∗ α




0.8165 0.5773 0

−0.4082 0.5773 −0.7071

−0.4082 0.5773 0.7071

 = (15)

=


0.7071 0 −0.7071i

0 1 0

0.7071 0 0.7071i

 .
This resulting matrix is the 24th root of unity! That is, its
24th power is the unit matrix.

Note there exists many mathematical relationships from
here which we could list, such as relationships to the expan-
sions of the j-invariant j(τ), the eta function, etc., which in-
volve 24th powers or 24th roots, but we do not need these
mathematical functions to derive the neutrino mass values.
However, these functions would be needed for expressing the
wave functions of the particles.

Continuing onward, we know that the true PMNS mix-
ing matrix is not the tribimaximal matrix but our PMNS ma-
trix determined by our binary subgroups. We can achieve the
same result, i.e. the 24th root of unity matrix, by using a value
of τ slightly different from ω. After trying several different
values, using this value of τ:

α = τ = −0.496 + 0.877i , (16)

to multiply the values in our PMNS matrix leads to

1
√

3


1 α α∗

1 1 1

1 α∗ α




0.817 0.557 −0.149

−0.4213 0.6084 −0.669

−0.3936 −0.5654 0.7248

 =

=


0.7014 − 0.0731i 0.021 0.021 − 0.7059i

0.008 0.927 0.116

0.7014 − 0.0731i 0.021 0.0707 + 0.7075i

 .
(17)

The result is within 1% of the 24th root of unity when us-
ing our PMNS mixing matrix and this value of α. A slight
adjustment in the α value could make the fit closer.

As shown in the Appendix, the modular subgroup ap-
proach agrees that this value of α is a universal fit for the
SU(2) subgroups or their equivalent modular subgroups.

Therefore, we will consider our α to be close enough and
continue with this approach in order to establish the relation-
ship between the charged-lepton states and the neutrino states
as well as to determine the neutrino mass values.

Following the procedure, we define the mass operator M
associated with the eigenvalue λi =

√
mi to take left-handed

states to right-handed states and vice-versa:

M |R〉 = |L〉

M |L〉 = |R〉 .
(18)

In general, M2 picks up a Berry-Panchartnam or topological
phase to become complex upon returning to the original state,
so we can express

M2 |L〉 = p2 exp(2iκ) |L〉 . (19)
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Note that if κ = 2π/24 = π/12, then the state |L 〉 is brought
back to a multiple of |L 〉 by

M24 |L〉 = p24 |L〉 . (20)

Therefore, if M2 operates on the left-handed electron as

M2 |eL〉 = p2 |eL〉 , (21)

then we would have

M24 |νL〉 = p24 |νL〉 , (22)

meaning that the masses of the two particle states in the lepton
family differ by a factor of p22.

The mass scale factors µ1 for charged leptons and µ0 for
neutrinos are therefore related by

µ2
0 = µ2

1/3
22 = 0.1002 , (23)

where the factor of three comes from the square of the nor-
malization factor 1/

√
3 for the three eigenvectors in the ma-

trix multiplying the PMNS matrix above. Likewise, there is a
phase difference

β1 − β0 = −
π

12
. (24)

Neutrino mass predictions using µ1/µ0 = 311 and the
phase difference β1 − β0 = −π/12 in the eigenvalue G(µ, η, β)
results in these reasonable predicted neutrino mass values:

m1 = 0.3 meV

m2 = 8.9 meV

m3 = 50.7 meV ,

(25)

assuming still that η2 = 0.5. Although these predicted mass
values fit the neutrino values estimated from experimental re-
sults, we will need to wait for confirmation from ongoing and
future experiments.

However, do these values produce the 3/2 value in the
Koide formula? Not with the original version, but they do
agree if we utilize the valid alternative version in which the
square root of the lowest mass neutrino m1 is preceded by a
negitive sign [5, 6].

Our results for the leptons being 3-D objects with the dis-
crete symmetries of the binary subgroups 2T, 2O, 2I of SU(2)
not only predict reasonable neutrino mass values but also pre-
dict the normal mass hierarchy NH of the neutrino mass states
as m1 < m2 < m3. However, the present experimental data
also allows for an inverse hierarchy IH as m3 < m1 < m2.

In addition, we have exactly 3 lepton families, in agree-
ment with the Z0 decay results, but there continues to be spec-
ulation about an additional lepton, such as a sterile neutrino.
And, our approach treats the 3 lepton families as symmetrical
contributors as eigenvectors of a 1-circulant matrix, whereas
all other analyses place the charged leptons and the neutrinos
into irreducible representations of a subgroup, usually in a 3
or 3′ irreducible representation. Which method Nature has
chosen will be determined by experiments in the near future.

6 Review of the derivation

Our sequence of steps to neutrino mass predictions were:

1. We first established that the three discrete symmetry 3-
D binary subgroups 2T, 2O, 2I of SU(2) are represented
by the three lepton families and are 3-D objects instead
of point particles at the Planck scale. These are the
correct groups because when they collectively mimic
the continuous group SU(2) to satisfy the requirement
of QFT they produce the correct mixing angles for the
PMNS mixing matrix.

2. By treating the lepton families as equals in symmetry
group U(3), the famous Koide formula is derived via
a 3x3 1-circulant matrix, revealing that the important
mass quantity is the square root of the mass values λ =
√

m instead of the mass value itself. Three parameters
µ1, η1, and β1 for calculating the mass eigenvalues of
the charged leptons were determined.

3. With the value α = τ = −0.496 + 0.877i in the domain
of SU(2), we derived the 24th root of the unity matrix
by multiplying our PMNS matrix by the appropriate
1-circulant eigenvector matrix. This specific value of α
agreed with the findings of the modular group approach
that uses subgroups of SL(2,Z), i.e. that the value ap-
plies equally to our three subgroups of SU(2).

4. By inserting the Berry-Panchartnam phase factor when
returning a left-handed lepton state back to its original
state for the mass-squared operator M2, there resulted
a factor of p22 difference between the charged-lepton
states and the neutrino states as well as a phase differ-
ence of π/12.

5. Finally, using the factor of 311 that connected the neu-
trino mass values to the charged-lepton mass values for
the parameter ratio µ1/µ0, with the eigenvalue expres-
sion G(µ, η, β) we predicted reasonable neutrino mass
values in the meV range in NH: m1 = 0.3 meV,m2 =

8.9 meV,m3 = 50.7 meV.

In the next section, our goal is to relate the above results
to the invariants N = 1, 108, 1728 of the three lepton fam-
ily binary subgroups 2T, 2O, 2I respectively. Therefore, we
should be able to understand how the lepton family mass val-
ues originate from their 3-D geometric properties.

7 Invariant theory connection

Invariant theory connects the elliptic modular function j(τ)
to invariants of our specific discrete symmetry binary sub-
groups. Each invariant N is related by

j(τ) =
W1

NW2
, (26)

where W1 is expressed in two complex variables for the ver-
tices and W2 for the face centers of the polyhedrons [8] for

Franklin Potter. Fermion Mass Derivations: I. Neutrino Masses 59



Volume 19 (2023) PROGRESS IN PHYSICS Issue 1 (June)

the binary groups 2T, 2O, and 2I, with N = 1, 108, and 1728,
respectively.

These invariants are similar to the charged-lepton mass
values in MeV, i.e. 0.511, 105.66, and 1776.82, but they have
no energy units, so we would naturally consider their ratios
instead. However, the question remains, why is there a chan-
ge from the original geometrical values N that are invari-
ant under all fractional linear transformations to the experi-
mentally determined universal values for the charged lepton
masses?

One possible answer could be related to the change of the
value of τ from ω = exp(2πi/3) = −0.5+0.866i to the nearby
value, α = τ0 = −0.496 + 0.877i in the domain. However,
we realize that we have simply changed the question without
providing the reason for the change.

However, recall that the lepton PMNS mixing matrix

UPMNS = U†e Uν , (27)

relates the wave functions, so we can speculate that there
could be a slight mixing among the charged-lepton states,
particularly among the electron and the muon states. Experi-
ments are being planned specifically to check for this mixing
possibility.

If we want the tentative geometrical state mass values
suggested by the SM binary group N values to become the
measured mass state values, one would have a mass matrix
very close to being the unitary matrix but containing some
small off-diagonal terms. Such a mass matrix might look like

1 −0.0274 0

0.0274 1 −0.0033

0 0.0558 1



√

1
√

108
√

1728


=


√

0.511
√

105.66
√

1776.82

 ,
(28)

in which we have used the square root of the mass values
as determined by the Koide relationship. That is, the slight
mixing among the charged-lepton wave functions could be
carried over to a mass matrix relating our N values to the
measured mass values. Of course, mass ratios would be pre-
ferred. But we are still left with determining an energy scale
for these mass values.

8 Conclusions

We have been able to calculate the mass values of the neu-
trinos by following a series of steps beginning with the cor-
rect identification of the discrete symmetry binary subgroups
of SU(2), which are equivalent to subgroups of the modu-
lar group SL(2,Z). The three lepton families represent 2T,
2O, and 2I, and we derived their PMNS mixing matrix for

their wave functions from their quaternion generators in or-
der to agree with a continuous symmetry constraint dictated
by quantum field theory (QFT).

Assuming that these binary subgroups together act as a
U(3) symmetry, the famous Koide formula follows directly
via a 1-circulant matrix approach that also relates the PMNS
matrix to the 24th root of unity matrix by using a modu-
lus τ value slightly different from the symmetry point value
ω = exp(2πi/3) = −0.5 + 0.866i in the fundamental domain
of SU(2) and its isomorphic modular group SL(2,Z). That is,
we set τ = −0.496+0.877i. This method then produced a fac-
tor of 311 difference in the mass values of the charged leptons
and the neutrinos, which led directly to the predicted neu-
trino mass values being m1 = 0.3 meV,m2 = 8.9 meV,m3 =

50.7 meV.
Although we assumed that the charged-lepton mixing ma-

trix was diagonal, the invariants N = 1, 108, and 1728 from
geometry and invariant theory for the electron family, muon
family, and tau family binary subgroups, respectively, indi-
cated that there is a slight mixing of the charged leptons also.
We suggested a matrix that has unit values on the diagonal
but also has a few very small off-diagonal terms to relate the
N values to the actual charged lepton universal mass values
0.511 MeV, 105.66 MeV, and 1776.82 MeV. Of course, the
mass scale would still remain to be determined.

In a future article, i.e. part II, we determine the origin of
the quark mass values. We will establish that a similar ap-
proach succeeds for modulus τ values near to the other sym-
metric point τ = i within the fundamental domain. In the
quark case, we predict 4 quark families, (u,d), (c,s), (t,b), and
(t’,b’), which represent [1, 2] the discrete symmetry binary
subgroups [333], [433], [343], and [533], respectively, in R4.
QFT dictates a continuous symmetry group behavior, so the
linear superposition of their generators to mimic SU(2) pro-
duces the CKM4 mixing matrix with CKM‡ submatrix val-
ues.

The quark mass values fit a four term Koide formula sep-
arately for the up and the down states, and a 4x4 circulant
matrix defines eigenvectors. The predicted t’ quark should
have a mass value of about 3 TeV, a mass value large enough
to gain a factor of about 1013 multiplying the present Jarlskog
constant, thereby providing a value large enough to help ex-
plain the baryon asymmetry of the Universe [BAU] in terms
of CP violation [19].

Appendix: Modular group

A brief look into what researchers in the past decade have
achieved using subgroups of the modular group SL(2,Z) in or-
der to calculate neutrino mass values will demonstrate some
agreement with our results. We therefore provide a summary
of their research by paraphrasing a recent article [3, 4] to il-
lustrate how our bottoms-up approach from the binary sub-

‡Cabibbo-Kobayashi-Maskawa
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groups of SU(2) can relate to the top-down calculations using
modular groups related to superstring theory. The modulus
τ of SL(2,Z) is the single field quantity associated with the
fermion particle states.

Our three discrete symmetry binary subgroups 2T, 2O,
and 2I of SU(2) for the lepton families are isomorphic to these
modular double cover subgroups:

2T = Γ′3, 2O = Γ′4, 2I = Γ′5 . (29)

Therefore, their modular mathematical properties apply to
our discrete symmetry binary subgroups of SU(2) as well.

Lepton flavor models based upon the modular symmetry
group Γ = SL(2,Z) utilize its subgroups Γ′N = SL(2,ZN), such
as the double covers Γ′2 = S ′3, Γ′3 = A′4, Γ′4 = S ′4, Γ′5 = A′5
of the permutation groups S 3, A4, S 4, A5. With significant
fine-tuning and a number of coupling constants, the mass hi-
erarchies of the leptons can be reproduced in terms of a small
parameter when the three lepton families are assigned to an
irreducible representation of a modular subgroup, such as Γ′3
= A′4.

The modular group’s fundamental domain D shown in
Fig. 1 has the three symmetric points τsym = i∞, i, and ω =

exp(2πi/3) with its three τsym values preserving specific ZN

symmetries,i.e. those with N = 2, 3, or 4. When τ lies on the
border, CP symmetry is preserved, but small deviations lead
to CP symmetry being broken and hierarchial mass patterns
emerging according to the sequence (1, ε, ε2).

This recent research has revealed that the lepton data sug-
gests a value of τ near the cusp τ0 = ω = −0.5 + 0.866i, with
the best fit being

τ = −0.496 + 0.877i (30)

with a viable region being a small ring of values around the
cusp ω, as shown in Fig. 1. The result is universal, meaning
that its value is independent of which modular subgroup is
being considered.

The research defined a scalar potential Vm near τ0 = ω
that depends upon an integer parameter m and a phase angle
φ, with a minimum in the scalar potential at

0.0145
m + 0.0025

. (31)

If the phase angle is included, the minimum occurs at

φmin =
−2π

9
(32)

independent of m, producing for m = 2 the result

0.0145
2 + 0.0025

exp
(
−2πi

9

)
↔ τmin = −0.492 + 0.875i . (33)

The scalar potential Vm has a deep trench from ω upward
from ω in the first quadrant direction that depends upon the
quantity

[ j(τ) − 1728]m/2 (34)

where j(τ) is the j-invariant of elliptic modular functions.
Therefore the modular group approach has revealed some

very important results, particularly telling us that there seems
to be no dependence upon which modular subgroup Γ′N is be-
ing used as the modular subgroup for lepton flavor symmetry!
Whence, the above results apply to all the modular subgroups
equally or, equivalently, to our specific binary subgroups of
SU(2) for the lepton families.
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