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We show, through resonance formulas, that the free parameters of the standard models
of particle physics and cosmology fit a single resonant system – from the mass of el-
ementary particles to gravitation and cosmology, and couplings mirroring resonances;
and finally that all is encoded in the Planck mass resonance. Instead of extending the
theory or its degrees of freedom to obtain predictions, we consider the reverse problem;
paying interest to the free parameters structure we find formulas which consistency im-
plies physical constraints hitherto unknown.

1 Introduction

Here we take a hypothesis that extends and generalizes Louis
de Broglie’s original idea of a wave and its resonance:

A single resonant phenomenon defines the physical world in
its entirety where pulsations, wave numbers, and rotations
refer to the same quantum and compare as lengths.

It leads to the direct calculation of the Sommerfeld constant
with all the precision available [5]. This calculation implies a
composite wave, so that the electron has a wave substructure,
governed by mechanisms, of which electrodynamics is one
effect – and then the same must be said of all particles. It is
an intermediate result of a wider exploration published in part
[5,6,8] which initially ranges from the mass of the electron to
that of the Planck particle, via the associated couplings. This
text presents more advanced results through a sequence of
formulas consistent with each other and available data, with
minimal concepts, and now extends to cosmology (following
[7] in particular).

From the beginning of physics, the first aim is not to build
a theory, but to explore virgin territory, analyze data and dis-
cover its internal logic and structure; mathematical theories
always come after. Hence we present the results of an explo-
ration of free parameters; first those obtained at the level of
masses, second the associated couplings, third an approach to
the origin, fourth the resulting natural cosmology, and last a
few logical extensions. The method is straightforward: Find a
general structure to a data set, insist on precision, understand
the minimum and move on to the next set based on what is
understood. Most importantly, precision will allow under-
standing some unexpected links between different data sets.
Again, the aim is not to build a theory, but to poke holes in a
supposed invisible wall of ignorance, a few bricks of which
can be seen in the above-mentioned calculation.

This exploration is easily justified by the fact that theo-
ries beyond the Standard Model (SM) have nothing new to
model and are therefore motivated by some kind of faith that
something is missing. The various interpretations of quantum

mechanics strongly suggest that something is missing at the
bottom, and there is definitely a problem with our understand-
ing of the nature of reality, a psycho-philosophical issue; so
we shall discuss some formulas about its structure.

2 The mass spectrum

The Standard Model divides massive particles into four dis-
tinct groups of interaction symmetries. These symmetries
necessarily reflect the internal mechanisms we assume. We
must therefore rely on these groups to analyze masses and
extract invariant quantities and universal mechanisms. The
exception is the three massive bosons whose masses come
from the same potential. The analysis is therefore reduced to
three groups, with the three bosons forming one.

Particles are studied as resonances, which can be modeled
as a cyclic phenomena. Suppose that the electron matter wave
is made up of two waves crossing each other in a resonator
of unit size. In one dimension, the harmonic N in a length 1
gives a frequency N2 at which the anti-nodes of the two waves
cross; N2 is a wave number and 1/N2 a length. Then we add
a coupling also modeled as a length, we get K D, with D the
coupling-length and K an integer used to quantize. Now in
one dimension we have a mass formula

m =
1(

1
N2 + K D

) , (1)

which is roughly equivalent to the inverse relation between
a mass and its Compton wavelength, and can be extended
to more components; we may have composite resonances or
couplings. In essence it addresses a harmonic system de-
formed by quantized couplings where mass is a harmonic
mean – but this is only the 1-dimension case. In three di-
mensions, the resonance can be radial like in (1), circular or
mixed, and are identified with three groups of particles. The
radial case will correspond to the three electrons, bosons to
the circular case, and the mixed case to quarks.
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2.1 Electrons

The first mass formula applies to electrons and quarks:

m =
X(

1
N P
+ K D

)3 + µ , (2)

where

• X is a mass constant, the choice of a unit.

• (1) is raised to the cube since the wave occupies a three-
dimensional volume. This formula is now thermody-
namics’ P V = KB T , with a constant volume V where
the oscillator defines P ≡ T .

• N P are two integers for two waves components; either
face to face (so N = P), or mixed with P radial and N
circular (so N , P and 2 N P π ≈ integer).

• And µ in units of mass represents a bridge between
two complementary cuts of the resonance responding
to each other, which is necessary to fit the electron
masses, and justified by U(1)Y × S U(2)L → U(1)EM .

So this formula must admit two solutions for each of the three
electrons, with two sets of constants and resonances. The
first one corresponds to a radial resonance and therefore N =
P, which we call the primary field since the same constants
will be used for all other particles. But the magnetic moment
suggests a rotation, and in 3 dimensions a rotation implies an
axis and one set of parallel planes is conserved; then P = K
imposes two synchronous axis combining the resonance and
the effect of the rotation in the product N P, rotation to which
N is orthogonal. We call this cut the secondary field.

An adjustment of the parameters to find the known masses
with N = P and a choice of minimal harmonics N, P, K lead
to the primary field constants below (index e) and the har-
monics and masses calculated in Table 1.

Xe = 8.14512139242128 KeV/c2 . (3)

µe = 0.24167661872330 KeV/c2 . (4)

De = 8.53221893719202 × 10−4 . (5)

Table 1: Primary resonances; electron, muon, tau (KeV/c2).

- P=N K Calculated Reference

e 2 2 510.99895000 510.99895000 (15)
µ 7 − 2 3 105,658.3760 105,658.3755 (23)
τ 7 + 2 5 1 776,840 1 776,861 (118)

For the secondary field we start with N = P = K = 2 for
the electron as the three phases are synchronous in Table 1;
imposing P = K for the other two particles gives the constants

below (index α) and Table 2, where the calculated masses are
identical to those in Table 1 only for the decimals shown,

Xα = 8.021608017449 KeV/c2 , (6)

Dα = 2.255984540570 × 10−4 , (7)

and µα in (8) linked to µe (4) by an empirical relation of ob-
vious interest as we find three length ratios between rotations
(giving π in the numerators) and twice the main term of the
Sommerfeld constant calculation (137 in the denominators):

µα
µe
=
π

2
+

π

137
+

(
2 π
137

)2

(8)

→ µα = 0.3856750508181 KeV/c2 . (9)

Table 2: Secondary resonances; electrons, muon, tau (KeV/c2).

- P=K N Calculated Reference

e 2 21 510.99895000 510.99895000 (15)
µ 3 23 105,658.3760 105,658.3755 (23)
τ 4 24 1 776,840 1 776,861 (118)

Note 1) that the harmonics P = K are minimal, and the
powers of 2 for N; 2) that K D > 0 in Tables 1 and 2 is rem-
iniscent of the Poincaré stress; and 3) that in the reduction
N = P = 7 ± 2 Table 1, which can be seen artificial in this
table, 7 will be recurring for the other particles.

2.2 Quarks

For quarks, the formula (2) is used with N , P for a mixed
resonance where P is radial and N circular, and µ = 0. The
parameter Xe is that of the primary field (3), the coupling is
composite, and combines De and Sommerfeld’s constant α:

Dq = De (1 + α) . (10)

Table 3 shows the harmonics and calculated masses where
the reference masses are in the natural scheme taken from
Wikipedia (not found elsewhere in this scheme), and for the
top quark a direct measurement average (PDG 2023).

Table 3: Quark resonances (MeV/c2).

- P N K Calculated Reference

u 3 14/7 −8 2.00 2.01 ± 0.14
d 3 19/7 −4 4.79 4.79 ± 0.16
s 3 7 −6 106 105 ± 25
c 3 14 −6 1,255 1250 ± 100
b 3 19 −6 4,286 4350 ± 150
t 3 38 −6 172,380 172, 690 ± 300
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Several points in this table are remarkable:
• P = 3 is constant and appears consistent with fractional

charges since N = P = 2 for the electron, and 2 ± 7 for
the muon and tauon; meaning that 2 comes from the
electric charge and 7 from something else.
• K = −6 for the four heavy quarks, the sum of the Ks is
−12 for any generation.
• All N depend on 2, 7, and 19.
• In all three generations, there is a factor 2 in one res-

onance (N, or K), fitting the ratio of electric charge;
consistent with α part of the coupling.
• The resonances of the u and d can actually be seen as a

double mixture of the four others since 14/7 = 38/19
and 19/7 = 38/14.
• A mixed resonance imposes 2πN P ≈ integer, which is

well verified for all.
The coupling is composite and the parameter K is negative,
indicating a second attractive force reminiscent of the strong
force, and the new coupling term ∼ αDe tells us that it is
about 137 times stronger than the coupling De of the electron
masses. The reference allows a value in a range De/(137±10),
so αDe is tentative.

2.3 Massive bosons

A double circular resonance gives N = P, and since the Higgs
potential is unique, N P is independent of the particle. This
circular resonance creates a radial wave, so the mass must
be reduced by a factor π to extract the radial equivalent (just
as with 2πN P ≈ integer for the mixed resonance we have
N P in the mass formula); a mixed resonance imposes a phase
constraint between its two components; so we need a correc-
tion to ensure the internal coherence of the phases of these
particles. At a single potential, they cannot admit a mass µ,
which must therefore be integrated into the formula to reason
at constant Xe, which gives

m =
me

me − µe
×

Xe

k π
(

1
N2 + K Db

)3 , (11)

where me is the electron mass and Db a boson-dependent cou-
pling; and where the small k in the denominator represents
the correction quoted above. After a first estimate of the cou-
plings, and assuming charge transport, by the simple but rela-
tively long reasoning detailed in [8] we deduce two couplings
composites of α and De, identical for Z0 and W±

DWZ =
α2

1 + α2 +
αDe

2 (1 + α2)
−

D2
e

6 (1 − α2)
, (12)

and very close but different for the H0

DH =
α2

1 + α2 +
αDe

2 (1 + α2)
−

D2
e

1 − α2 , (13)

where α2 represents a free field and the denominators are
given by infinite interaction loops. We also showed (see also
section 8.1) that the small k of (11) must be computed from

k3 π

144
= 266 Db

(
π

k

)1/3
, (14)

where Db is the related boson coupling and the resonances
(144 and 266). On this basis, Table 4 shows the harmonics
and calculated masses (reference PDG 2023*).

Table 4: Massive bosons resonances (MeV/c2).

- P=N K Calculated Reference

W± 12 −2 80, 384.9 80, 385 (15)
Z0 12 −7 91, 187.3 91, 187.6 (2.1)
H0 12 −19 125, 206 125, 250 (170)

We also checked in [8] the phase loop between the circu-
lar path, N2 = 122, and the radial path in 266 with the three
values of K ∈ {−2,−7,−19}. Phase coherence with −7 and
−19 is trivial since 12 = 19 − 7. The W± loop is also syn-
chronous with K = −2, since 266 − 2 is a multiple of 12,
of which 2 is a sub-multiple. Internal phase coherence there-
fore allows all three resonances to exist. On the other hand,
reasoning in the same way and on the same model, the other
divisors of 266, K ∈ {−133, −38, −14} do not check.

It is important to see that it is “really” the fine-structure
constant in the expressions of DWZ and DH , and not a close
value; because if we replace this value by 1/137, the mass of
the Z0 becomes 91.2097 GeV/c2, a factor of 10 outside the
experimental uncertainty. Similarly, the specificity of DH is
necessary; without it we would get MH = 126.5 GeV/c2.

2.4 Boson widths

With (11), a resonance formula we calculate pole masses; we
should therefore be able to calculate their total widths from
the resonance geometry. There is no way of varying N, P,
which are integers, nor D, which depends on charges; widths
should therefore be given by a displacement of charges giving
K → K + ∆K → ∆m needed for the resonance to blow.

These three particles carry multiple charges organized in
a minimal way; at the ends of a simple line for the W± and
Z0, and at the vertices of a tetrahedron for the H0 (giving the
difference between DWZ and DH). Then for the first two, ±1/2
on the radial axis and half of 1/12 from the circular path gives

W± → ∆K =
(
1 +

1
24

)
→ ΓW = 2.0857 GeV/c2 , (15)

in great agreement with the reference 2.085 ± 0.042 GeV/c2.

Z0 → ∆K =
(
1 +

1
24

)
→ ΓZ = 2.4684 GeV/c2 , (16)

*Particle Data Group
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1% less than the reference (2.4952 ± 0.0023 GeV). And for
the H0, the tetrahedron is stable in K but the six line of forces
can stand a displacement of ±1/144/2, so

H0 → ∆K =
1

144 × 6
→ ΓH = 4.11 MeV/c2 , (17)

also to 1% of the theoretical reference. So at first order, the
widths are in good agreement with experiment and theory. A
small difference remains for the Z0, which calls for a com-
plement that can only depend on the charges it transports, as-
suming 2 × ±e/3 and/or 2 × ±2e/3, gives the fit:

∆K =
(
1 +

1
24
+

1.5
137

)
→ ΓZ = 2.4946 GeV/c2 . (18)

The H0 width will be re-discussed in section 5.6.

2.5 Neutrinos

The masses of neutrinos are much lesser than the constants Xe

and Xα, so we cannot fit the formula parameters in the same
way as for other particles. We suppose an inversion and fit
the mass formula parameters from constraints that then seem
logical:

• There is a progression of α and De powers in the cou-
plings, up to D2

e and α2 for the bosons. So no new
coupling (use De and/or α), and we are looking for a
negative power of α or De.

• Similarly there is a progression of resonances N, P; a
unitary resonance is all that is left, we impose N P = 1
and only K varies.

• Use the lepton mass equation (3) with µ = 0 and the
primary field constant Xe (7).

• Assume a resonance conservation law (in-line with sec-
tion 8.3), and use resonances inherited from the corre-
sponding electron; thus an echo of the related electron
N and K constitutes a neutrino K.

The coupling is

Dν =
2
α
≈ 274 , (19)

and corresponds to the inverse of the Dirac monopole, and
the constraints above lead to Table 5 where the echo of the

Table 5: Neutrinos resonances (eV/c2).

- P = N K Calculated mass

νe 1 1/2 0.00310
νµ 1 1/(3 − 1/9) 0.00924
ντ 1 1/(5 + 1/9) 0.04998

related electron resonances is obvious:

• K → 1/K, and

• N = P = 7 ± 2→ 1/(K ± 1/9), with the sign of ±2.

Table 6 compares the results with the corresponding limits
(reference ∆m2

i j 1σ NO, NuFIT 5.2-2022 – where ∆m2
31 =

∆m2
32).

Table 6: Comparison to reference data.

Quantity Calculated Reference Unit

∆m2
21 0.0000759 0.0000741 (+21

−20) (eV/c2)2

∆m2
31 0.002488 0.002511 (+28

−27) (eV/c2)2

∆m2
32 0.002412 0.002511 (+28

−27) (eV/c2)2

max{mi} 0.0500 ≥ 0.0501 (+28
−27) eV/c2

mtot 0.062 0.06 < mtot < 0.12 eV/c2

2.6 The µe mass

The µe mass can be seen as an artifice since it is needed only
for electrons and all particles are supposedly elementary, but
its existence is now easy to justify.

Firstly, the calculation of the Sommerfeld constant in [5]
requires four dimensions and two rotations. A rotation in four
dimensions implies two planes conserved. A cut of a four-
dimensional resonance to the three space dimensions (x, y, z)
will give a rotation axis, i.e. the magnetic moment axis, say
z, then in Table 1 N = P for x and y. But we can make
a second cut on (x, z, t) and impose P = K on z, t; if the
two rotations are synchronous we get Table 2 (or P = n K or
P = K/n with n integer which would only affect Dα – but is
eventually not needed). From this we need a couple of masses
µe and µα linked by a constant factor because in this process
we eliminate one of the two rotations in Table 1, and take
the ratio of both in Table 2. It is still possible to make any
other cut that will mix space and time differently, but hard
to believe that the mass µ can be set to zero or close enough
without using large integers for the resonances.

Secondly, we can see it in all non unitary resonances, but
in three different ways:

• Like a simple addition for electrons (Table 1).

• With the coupling Dq of quarks (Table 3).

• And integrated into the resonance mass coefficient (11)
in the case of bosons (Table 4).

The second form is indirect because here it appears from the
ratio µα/µe when we look at (8) and (10) Dq = De(1 + α)
means that a scaling in α or 2α is omnipresent; but when we
discuss resonance length ratios it becomes 137 or 68.5.

Now the µe mass is part of the primary field and we need
to find its resonance. It is understood as one side of the in-
variant bridge to the secondary field; hence its resonances in
the two fields should be synchronous with those of the three
electrons. So in order to estimate it we impose:
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• A composite resonance compatible with those of all
three electrons in both fields, Tables 1 and 2 simulta-
neously.
• Use of the primary field constant Xe (3).
• No new coupling (De and/or α).

As a result, the coupling (best fit) is composite and uses Som-
merfeld’s constant

Dµe =
(
exp (1) + 1

)
α − ln (1 + α) . (20)

The logarithm and its base in this expression are typical signa-
tures of cumulative phenomena. The expression below gives
the mass in (4), and includes two resonance

µe = Xe

(
7
2
−

1
4
− Dµ

)−3

. (21)

The fractions are equivalent to two resonances – N P = 2/7
and N P = 4 – and take the numbers of the primary reso-
nances of the three electrons (N = P ∈ {2, 7 − 2, 7 + 2}), and
4 is also the electron resonance of Table 2, compatible with
the others as it is a submultiple of the three products N P of
this Table.

Finally the coupling of the µe mass depends solely on α
and mathematically natural constants or functions, meaning
that the couple it forms with µα “is” an electric charge on one
side and looks like a magnetic current on the other.

2.7 Comments

Tables 1 and 2 use four degrees of freedom each, for two mass
ratios, hence of no value if considered alone. Tables 3 and 4,
on the other hand, use only one variable integer (or two for
the u and d), and combine known couplings (α, De). With
variations using only 2, 7 and 19 in these two tables for 9
particles, we must suppose that there is no freedom here; and
neutrinos and electron resonances also fit the same numbers.
Last, the µe resonance is synchronous of all electrons. Hence
a global scheme is present.

Note that for the calculated masses, excluding neutrinos
and µe, we have

|N P K D| < 1 , (22)

which, since we start with a unit-size resonator, should ex-
press a geometric constraint limiting the particle spectrum. If
we imagine a fourth generation of electrons as a continuation
of Tables 1 the next resonance is N = P = 19 − 2 (start-
ing from {2, 7, 19}), and K = 7 at the very least (following
the progression of Table 1), and this inequality is not veri-
fied. The same result applies to quarks since the next product
of two numbers from the same set is N = 7 × 19 = 133,
and P and K are constant Table 3 for the heavy quarks. The
impossibility of bosons with masses other than those in Ta-
ble 4, and using the same resonance model, is verified with
the resonance paths coherence in N = P and K (essentially
N = P = 12 = 19 − 7 and 266 − 2 is multiple of 12).

3 Couplings

3.1 Analysis

Table 2 shows two components of the Sommerfeld constant
calculation [5, Eq. (4)], as a reminder:

α−2 = 1372 + π2 −
1

137.5

(
1
2
+

1
8
±

1
137.5

(
1
2
±

1
8

))
, (23)

namely N = 21 for the electron and N = 23 for the muon,
the inverses of 1/2 and 1/8 identified in this calculation as
identical resonances in 1 and 3 dimensions; the third reso-
nance, that of the tau N = 16 is their product, therefore 3+1
dimensions.

The relation (8) between µe and µα uses twice the number
137, which implies an underlying origin, as it is one of the
two common aspects of the three electrons. Now one way
or another all particles discussed so far couple in α, meaning
it constrains their resonances; then we calculate the sum of
all the integral and distinct resonances in N and P (omitting
fractions: µe, neutrinos, and quarks u and d):

ΣNP = 2+3+4+5+7+8+9+12+14+16+19+38 = 137 . (24)

It is from this sum that we can first imagine to calculate Som-
merfeld’s constant using the Bohm-de Broglie model, as it
simply suggests that resonance and couplings act in mirror in
a finite harmonic system; and again that the full mass spec-
trum is known. We must then look at the other axis K, and
take into account the boson mass calculation which uses sub-
multiples of 266 on this axis. So, again excluding µe, neu-
trinos and the quarks u and d, taking all the distinct K and
replacing those of the bosons by +266, the sum

ΣK = (2 × 7 × 19) + 2 + 3 + 4 + 5 − 6 = 274 , (25)

is also compatible with a harmonic system between couplings
and resonances, where the factor 2 with ΣNP = 137 would
constitute a second level of harmony.

3.2 De and Dα

According to this logic, the three couplings used, intervening
at the same level in the mass formulas, should proceed from
a unique mechanism and obey the same constraints; their ge-
ometrical structures should therefore be similar and their for-
mulation obey the same pattern that we know from Sommer-
feld’s constant (23), i.e.

D−2 = a2 + b π2 +
c
d
, (26)

with geometric and action constraints between their compo-
nents, which dictate that

1. a is the integer whose square is closest to D−2,
2. b is the integer such that a2 + b π2 − D−2 is minimal in

absolute value,

160 Jacques Consiglio. From Particle Physics to Cosmology, on the Gravitational Sub-structure of Everything



Issue 2 (December) PROGRESS IN PHYSICS Volume 19 (2023)

3. d is a rotation term where π2 is suppressed,

4. |b| > |c/d|,

5. one of the terms is negative, and

6. all terms are numbers known through resonances.

Then a constrained division of the empirical value gives

D−2
e =

(
(7 − 3) × (274 + 19)

)2
+ 7π2 −

19π
19 − 1

, (27)

D−2
α =

(
(19−3)×(274+3)

)2
+2×

(
274+19+1

)
π2−

19
4π

. (28)

After reducing a to prime numbers, we make 274, 7 and 19
appear from which 3 is subtracted. We find in the b term
of Dα the electron wave signature present in α with 275 π2,
but augmented of 19 like 274 in the a term of De. There is
a neat numerical recurrence between the couplings, a form
of similarity between De and Dα, and a double connection
with α (and two more if we also count 274 = 2 × 137). As
expected, it agrees with a one to one mirror effect between
couplings and resonances.

3.3 Ghost coupling

The three couplings appear to take the same resonances as
particles, with 274 twice and 274 + 1; they include two iso-
lated rotations 1 π2 and 7 π2, the expected third 19 π2 is ab-
sent; it is found in the resonance of two quarks t and b, K =
−19 to calculate the mass of the H0, and twice added to 274.
We find 274 twice in the a terms and 137 only once. So we
are missing a coupling that will include 137 like Sommer-
feld’s constant and −19π2, the latter negative to fit subtrac-
tion at the denominator of the term d of De where the 1pi2

and 19 π2 subtract. The missing elements give a and b and a
spin 2 gives c:

D−2
p = 1372 − 19π2 +

4 π
19

, (29)

each term of which and/or its inverse is present in the other
couplings formulas, therefore adds no new resonance, and
which force has no coupling effect on the calculus of masses
(so can we guess at this stage).

3.4 Comments

We note that all the conditions listed in section 3.2 are veri-
fied for three couplings, i.e. less than one chance in 105 for a
random draw of three values. For Dp the point 1 is violated;
this is imposed by +137 positive and −19 π2 negative, with-
out which there would be no consistency either with α or with
the terms in 19 of De and Dα.

The geometrical form and connections of the couplings
extend the underlying unity found in masses, and imply the
non-separability of the forces.

4 The Planck mass

4.1 Notations

From now on, we shall use the Planck mass and length in their
original formulations:

mp =

√
h c
G

; lp =

√
h G
c3 , (30)

denoted in lower case. We shall be using SI units. The values
of the constants used are

G = 6.67430 (15) × 10−11 N m2 kg−2 . (31)

and by definition

h = 6.62607015 × 10−34 J s ; c = 299792458 m s−1 . (32)

We shall also use the Planck mass integrating the constant of
quantum theories ℏ and the Einstein constant 8πG:

Mp =
mp

4π
=

√
ℏ c

8πG
= 4.341358(47) × 10−9 kg , (33)

denoted capitalized. The value of the constant Xe (3) is in SI:

Xe = 1.451999775331 × 10−32 kg . (34)

To avoid confusion, the subscript p will be used for quantities
calculated with the classical formulas, and with the subscript
ω when calculated from the harmonic system.

4.2 Unity and GR-QM reverse symmetry

The denominator of mass formulas relates a resonance ex-
pressed as a length (1/N P) within a resonator of length 1 –
equivalent to stress or pressure – to a force expressed as a
coupling (K D). In terms of Einstein’s field equations, this is
the fundamental unity of force, stress and energy: here, mass
is stress, and therefore, by a natural extension, all forms of
energy. There is a trivial geometric and quantitative symme-
try between GR and QM, which is a priori compatible with
the preceding results, since the three following relations must
be compatible with the harmonic system:

• Newton’s force in its natural quantum form, as each
mass ratio must be physically homogeneous:

F = −
G m1 m2

r2 = −
2π ℏ c

r2

m1

mp

m2

mp
. (35)

• The relation for a given mass between a Schwarzschild
radius and a Compton wavelength:

RS λ = 2 l 2
p . (36)

• Or, in the form of three unitless ratios,

m
mp
=

lp

λ
=

RS

2 lp
. (37)
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The volume at the denominator of the mass formula then rep-
resents two inverse quantities, depending on whether we see
1/N P in the denominator or its inverse in the numerator. By
writing it in the following form

m = X
( N P
1 + N P K D

)+3

, (38)

the couplings appear as a mirror effect characterized by the
product N P K D which, according to (36) in particular, must
be centered on a resonance corresponding to the Planck par-
ticle. Its mass should therefore be calculable with

1. a mass formula,
2. what is missing, 266 and Dp,
3. and what is universal, Xe and De,
4. taking into account a dispersion in 4 π,

because then Xe cancels in the ratio m/mp of (35) and it ex-
presses only stress ratios in a unique harmony. We find

Mω = Xe

( De

2662 + D4
p

)−3

= 4.341421 × 10−9 kg , (39)

which is the Planck mass Mp (33).

4.3 Comments

Now the harmony, its formulas and its two universal parame-
ters cover the twenty-one orders of magnitude separating the
mass of the Planck particle from that of the electron – or thirty
with neutrinos. It shows once again the underlying unity, and
that the form given to the couplings is correct as well as their
assumed connections.

5 Toward the origin

While the origin of the resonances is not understood there is
all the material needed in the mass Mω (39) with two cou-
plings De and Dp based respectively on ΣN, P = 137 and
ΣK = 274, a term in 266, and the constant Xe. It suggests
that we are close to the end and that the next step is to find an
origin of the particle resonances; for this we need to find the
constraints that apply. Since the Planck mass defines grav-
ity we need to find-out how it defines space-time locally and
globally and why it oscillates.

5.1 Classical anomaly

The calculation of Mω (39) uses two couplings De/2662 and
D4

p; two orthogonal forces and lengths, respectively the sine
and cosine of an angle

Ω = arctan
 De

2662 ×
1

D4
p

 = 1.33509... ≈
4
3

rad . (40)

Now assume a spherical object with radius R greater than its
Schwarzschild radius RS ; in the Newtonian gravity case, for
a test particle at D < R which wave function is ψ = eiϕ, the

phase shift ∆ϕ in R for the momentum p̂ψ along r⃗ would only
depend on mass and obey:∫ R

0
4π r2 ρ(r) dr = Λ

∫ R

D
dϕ , (41)

where the right-hand side is just the phase shift between D
and R, ρ(r) the energy density in r, and Λ a constant inde-
pendent of R and RS . Above all, this equation represents the
effect of one phase variance, that of the massive object, say
S , on another, that of the particle momentum. Now, the con-
stitutive stress of this object is locally ρ(r) = S/π because,
firstly, there is here identity between stress, energy and phase
variance, and secondly, the point of no return is π; so (41) can
be written in unitless form where ϕ, S and Λ are three angles:∫ R

0
4 π

(S
π

)2

d
(S
π

)
= Λ

∫ R

D
dϕ . (42)

So if R tends to RS , the integral of the left-hand side tends to
4 π/3 (S tends to π) and that of the right-hand side to π, hence
Λ = 4/3. Now we compare two forces in (40) to their effects
in (42) – where there is identity, then in the Newtonian gravity
case we should find Ω = 4/3. It is easy to see that the differ-
ence is not due to the precision of G, hence neither De nor Dp.
It only expresses the incompleteness of our knowledge of the
forces structure – and therefore of their effects. Then, since
all energies gravitate we assume a complement also coming
from the harmonic system representing all possible interac-
tions through De and the powers of Dp, which should cover
all the oscillator forms, known or not; thus a quantized series
hi D i

p such that:

n∑
i=0

hi D i
p

D4
p
×

De

2662 = tan
(

4
3

)
, (43)

where h0 = 1 for the Planck mass, and n any, possibly infinite.

5.2 Method

The series in (43) will be used as a probe; for this we need to
estimate its terms one by one (h1, then h2, etc...). But we do
not yet know what to search as there is a priori no experimen-
tal data to rely on. Still, each step must bridge part of the gap
and reflect the unity that has so far been expressed through
couplings and resonances; geometric shapes, a topology cov-
ering all forms of the oscillator as each of the products De D i

p
corresponds to an increasingly large coupling, and the whole
to a nested topology. So

• From the couplings at its origin, the sequence should
talk of Sommerfeld’s constant and particle resonances.
These aspects should make its terms identifiable, hence
logic imposes to recognize what we find.
• There is no turning back, then each term should re-

duce the residual by roughly 2 orders of magnitude –
or maybe more.
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• The precision of each term is infinite; the very structure
of the sequence as a quantized oscillator implies that
approximation is illusory.

These constraints severely limit the field of exploration; we
use them with the following method:

1. At step n consider the residue, and divide by Dn
p.

2. Recognize what it is, round up or down to significant
number(s) in line with n − 1 and compute the residue.

3. If the residue is small enough go to step 1 for n+1, and
continue with the next quantity of similar kind.

4. If not it may be a border then if hn describes a known
shape go to step 1 for n + 1; or hn is wrong, then go
back to step 2 and make a better guess.

Two high precision online calculators [15] and [16] are used
to calculate and check.

5.3 Sector one, particle resonances

Mω corresponds to

h0 = 1 [+1.9 × 10−3] , (44)

with the residue with respect to tan(4/3) in square brackets.

h1 = −1 [+8.4 × 10−5] , (45)

a unit resonance represents a massless particle that can be
identified with either a photon or neutrino(s).

h2 = −3 − 4 [−2.2 × 10−6] , (46)

is a little more complex, −4 is identified to the resonances of
the electron (NP = 4 Table 1), and −3 with the P of quarks
(Table 3) – two radial components linked to the electric field,
the latter to fractional charges. In addition −4−3 = −7, twice
the first part of the µe resonance 7/2, and 4 is the inverse of
1/4, the second part.

h3 = +25 [+5.1 × 10−8] , (47)

the muon resonance (NP = 25 Table 1, and NP = 24 Table 2
is close to optimum).

h4 = −81 [−2.7 × 10−9] , (48)

the tau resonance (NP = 81 Table 1, and NP = 64 Table 2 is
also in the optimum range).

h5 = 2π
(
7 + 14 + 19 + 38 +

38
19
+

14
7
+

38
14
+

19
7

)
[2 × 10−11] , (49)

the sum of quarks’N (Table 3) by 2π for circular paths.

h6 = −556 = −8 × 69.5 [5.7 × 10−14] , (50)

which, by its position must correspond to the gluons eight
degrees of freedom; without mass it would be either 1 or 8×1,
this a point to understand. The last harmonic of this sector is

h7 = −217 = −144 ×
3
2
− 1 [3.9 × 10−17] . (51)

The first term -144 identifies the resonances of the three mas-
sive bosons (Table 4) with a factor of 3/2; and the second
either the photon or the neutrino(s) with −1.

The resonances N, P of all particle of the Standard Model
are entirely covered by this sector and simple to identify – in-
cluding massless particles or supposed so. Note 1) that all hi

give directly comparable quantities, irrespective of the power
associated with Dp; 2) that within a single harmonic all terms
have the same sign, otherwise the result would be meaning-
less; 3) that the presence of 2 π for quarks is consistent with
the inferred geometry, as is its absence for electrons and mas-
sive bosons; 4) that the assumed logic of generating the Som-
merfeld constant is verified for particles of known mass; 5)
the µe mass resonance may also be here in h2 (the part 7/2);
and 6) the unitary resonance of h1 or h7 justifies the neutrino
mass calculation in section 2.5.

5.4 Sector two, spheres

The second sector starts with spherical coefficients of dimen-
sions 4 to 7, with phase variances according to the template
of the Mω anomaly, then similar but inverted coefficients.

h8 = −2 π2 −
1
π

[7.2 × 10−20] , (52)

the four-dimensional sphere surface coefficient (2 π2) and a
phase variance (1/π).

h9 = −
8 π2

15
+

1
2 π

[1.2 × 10−22] , (53)

the five-dimensional sphere volume coefficient (8 π2/15) and
a phase variance (1/2 π).

h10 = −
π2

6
+

3
2 π

[−5.7 × 10−24] , (54)

both a) the six-dimensional sphere volume coefficient (π3/6)
divided by π, b) its surface coefficient divided by 6 π, and c)
curiously, the Riemann function, ζ(2) = π2/6, and a phase
variance (+3/2 π).

h11 = +
3
2
×

16 π3

105
+

1
π

[1.7 × 10−27] , (55)

the seven-dimensional sphere volume coefficient (16 π3/105)
times 3/2, i.e. 16 π3/70, and a phase variance (+1/π). The
same factor 3/2 is also present in h7.

h12 = −
1
π

[−6.3 × 10−29] , (56)
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a simple phase variance, which defines a boundary.

h13 = +
2

5 π2 −
π

2
[3.3 × 10−32] , (57)

an inversion of h9, with π→ π−1 by multiplying the first term
by 3/4, the inverse of the original tangent.

h14 = −
1

4 π
−

1
π3 [−5.6 × 10−34] , (58)

the inverse of the surface coefficient of a three-dimensional
sphere (4 π), and that of a six-dimensional sphere (π3).

This sector, like the others, identifies stress coefficients
and therefore forces and shapes. Finding spherical coeffi-
cients and phase variance terms can be identified with forces
in at least 7-dimensional space. The signs of the components
in (and between) harmonics are not always the same, possibly
indicating opposite effects.

5.5 Sector three, wave and coupling

Convergence in this sector is extreme.

h15 = +
1
22 +

1
133 π + π

6
[2.5 × 10−40] , (59)

two phase variances (or inverted resonances).

h16 =
−1

2662 − 69.52 − 137 − 3
2 ×

(
1 + 1

69.5 −
π

8×69.5+3

)
[3.8 × 10−51] , (60)

corresponds, by its shape, to the difference of the squares of
two couplings (A2 − B2), separating for instance the three
terms in 69.5 from the others.

5.6 Sector four

The fourth sector is separated from the third by seven null har-
monics (h17 to h23 inclusive) and begins with two identically
shaped resonances that seem to complement each other.

h24 = −33 −
2 π3

34
(
1 − 1

2×7

) [−5.2 × 10−56] , (61)

a resonance term associated with a coefficient in π3 that must
be associated with a dimension. Then h25 = 0, and

h26 = +22 +
3 π3

24
(
2 −

(
3
2

)3
× 1

2×19

) [5.7 × 10−60] , (62)

whose form is an almost exact copy of the previous one, re-
versing 3 and 2, and 7 and 19. Then h27 = 0 and finally

h28 = −
144
π2 +

1
24
+

1
(144 + 1) × 6 π

[3.0 × 10−68] . (63)

This harmonic corresponds to the three bosons resonance (i.e.
N P = 144) and their resonance widths (1/24 and 1/144/6)
seen in the radial direction. The last term being different from
the expected one, we recalculate the H0 width:

H0 → ∆K = 1/((144+1)×6)→ ΓH = 4.079 MeV/c2 , (64)

which, if compared to (17), is closer to the theoretical value
at 125.206 GeV/c2.

6 Coherence

The sequence can only be proven based on a detailed knowl-
edge of the geometry it defines; we are not there, we do
not know how it works or whether it ends or not. We can,
firstly, find internal correspondences and, secondly, relate it to
known quantities. This is the purpose of this section, whose
aim is to get a first estimate of coherence with the harmonic
system, in particular the mass spectrum.

6.1 First points

We recognize many structuring points; a non-exhaustive list:
• First sector: All resonance numbers (N, P or NP) of

massive particles are present with two well-defined or-
ders, 1) that of total resonance lengths, and 2) that of
the internal couplings progression in the primary field,
and therefore groupings either in the same zone or in
the same harmonic, the resonances of particles with
similar properties.
• First sector: Similarly we find first all radial resonances

(from h2 to h4), and then rotations (with h5 and h7);
mixed quark resonances are split in two between h2 for
the radial part P, and h5 for rotations N.
• First sector: So, having assumed that at this level the

forces and their effects are one, which leads to equa-
tion (43), we have complemented the structure of the
forces with the known structure of their effects, the res-
onances.
• Second sector: Contains four spherical coefficients, h8

to h11, in order from 4 to 7 dimensions. Then what
identifies with interactions between these structures in
h13 and h14, and a single phase variance h12 in the mid-
dle that looks either like the interaction center between
these spaces, or a pure absorber in 8 dimensions.
• h15: We find 133 + 4 = 137 = ΣNP, inverting the two

main terms and removing π and π/6.
• h15: The numbers 4, and 133 π = 7× 19×π correspond

respectively to the resonances of electrons and quarks.
So this harmonic is linked to the fermionic wave.
• h15: the term π/6 is a phase advance for 133 π; if it

corresponds to an inverted length π/6 π2 we get 133 +
6 = 139, the full resonance spectrum (ΣNP = 137 plus
the two unit resonances) – excluding h6 = 8× 69.5, but
139 = 2 × 69.5, the same ratio as between ΣK and ΣNP.
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• h15: 133π is a harmonic of quark resonances 7 and 19
(plus a factor of 2 for charges 2/3), and π/6 a phase
advance giving a negative length; so K = −6 Table 3.

• h24 and h26: The two phase advances in the denomina-
tor multiply to give 133 and 266, depending on how the
factors 2 is considered.

• h24 and h26: Taking into account the factor 2 in the
denominator of the second, as well as the ratio 33/23 we
obtain 27 and 8, their difference is 19. There are also 7
and 19, the two rotations of De and Dp respectively.

• h28: The bosons resonance and widths. This harmonic
therefore represents the Higgs field potential – unique
as assumed – and h28 is complete and in agreement with
the calculation of boson masses and lifetimes.

Such structure means an extremely entangled system where
each element has a specific role – a global equilibrium work-
ing as a whole, coherent and inseparable.

6.2 The electrons, h6 and h16

We find 8 × 69.5 in h6, which is rather strange as we ex-
pect gluons supposedly massless. Conversely, meson spec-
troscopy has been suggesting a monopole (e.g. [1]) for sev-
eral decades without finding it, and we could also write h6 =

8×1+8×68.5. But we also find 69.5 three times in h16, twice
in the denominators and 69.52, which makes it unbreakable;
but suggests considering

69.52 = 68.52 + 137 + 12 , (65)

by the similarity of this expression with the ratio between the
two mass constants µe and µα given by the empirical relation
(8), except for the last term for which we would expect 2
instead of 1. In Table 1, the resonances N and P are 2, 7 – 2
and 7+2, while in Table 2 we have 21, 23 and 24 for N. These
two tables represent the primary and secondary fields. So the
12 divides to give resonances 2, with Table 2 rotations in π for
P and radial terms for N; and Table 1 only radial components
for 2 (mixed with 7 if it is circular). Then divide 69.5 by π,
invert each term of (65) replace 1 by 2 π, and the sum of the
inverses gives a ratio of resonance, therefore of masses:(

69.5
π

)2

→
π

2
+

π

137
+

(
2 π
137

)2

, (66)

is the ratio µα/µe (8). This expression also corresponds term
to term to that of Sommerfeld’s constant (23) and to the logic
to its calculus, but in an inverse manner:

• (2 π/137)2 for 1372, the electron pulsation.

• π/137 for π2, the electron spin,

• and π/2 for 1/137.5 × (1/2...), the wave.

Consequently, this relation must be reflected in the difference
between Xe and Xα as well as in the composite coupling Dµe

(20); considering those as two pressure fields, each being a
dynamic transformation of the other, and inverting the rela-
tion (8) by taking into account the common share of the res-
onances of the three electrons leads to the following semi-
empirical formula:

Xe

(
1 − exp(1)α2

)
+ Xα

(
1 + exp(1)α2

)
Xe (1 − α) − Xα (1 + α)

=
1372

2 π
×

(
1 −

π

137

)
, (67)

whose relative accuracy is 1.4× 10−8, and then relative errors
of 4.8 × 10−12 on Xe and Xα in opposite directions, better
than the uncertainty range on lepton masses (3 × 10−10 for
the electron). The formula used here for α is expression (6)
of [5].

The left hand side contains α, which is also found in the
Dµe coupling (20), as well as the basis of the natural loga-
rithm. The main term, 137/2 π of the right hand side is mod-
ified by (137 − π), which includes a phase advance; we find
again the logic of the calculation of the constant α [5] with
1372/2 π for an electron pulsation and a phase delay π/137
per pulsation corresponding to the spin, and we obtain a res-
onance length

√
1372 + π2 where the fractional wave terms

of α, which are related to the electron movement, are natu-
rally absent. Both expressions (8) and (67) therefore speak of
a dynamical shift between the primary and secondary fields,
which corresponds to electrodynamics and its coupling.

6.3 The Planck length

The Planck length is identified to the maximum resolution
and is expressed in units of length. But here it may be in-
scribed in the denominator of the mass Mω, which is a pure
number. We will therefore calculate the Planck length as an
angular resolution independent of the system of units – even
though the ice becomes thin as it questions units systems.

In h15 we recognize the fermion wave, which is obvious,
and h16 as the universal coupling forming particles on the sur-
face of a 4D sphere defined by h8 dominating the first sector,
for we can write it h16 = A2 − B2 ∼ m2c4 = E2 − p2 c2. They
must then define the Planck length or Planck time, which we
must be able to calculate with very good accuracy since this
sector covers 17 orders of magnitude. Starting with h15, we
consider 4 and 133 π as resonances and π/6 as a phase ad-
vance, and calculate an uncertainty from distinct paths; each
path corresponds to a synchronicity S :

• 4 is the electron resonance, also present in the muon
and tauon, and defines a 2 π cycle. The first length is
therefore a quarter of 2 π.

S 1 =
π

2
. (68)

• 133 π, is directly a length so

S 2 = 133 π . (69)
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• The phase advance π/6 desynchronizes the two reso-
nances. Combine it with 1/4, the length to consider is:

S 3 =
π

6
×

1
4
= +

π

24
. (70)

• It remains to combine the three terms; π/6 represents a
phase advance for 133 and shortens its length; the har-
monic h5 is a multiple of 2π so since 133 is multiplied
by π and 6 divides it, for a full turn this makes a length
2 π × (133 − 1/3), which applies to the denominator of
1/4. A simple phase advance gives a negative quantity,
hence a minus sign:

S 4 = −π

(
23

(
133 −

1
3

))−1

. (71)

To obtain a quantity relating to order zero of the sequence,
i.e. relative to one unit, we take into account the coupling D15

p
corresponding to h15, which gives:

L0 =
D15

p

S 1 + S 2 + S 3 + S 4
= 2.2856968.. × 10−35 rad . (72)

Then h16 is a coupling that modifies L0, also a length and no
degrees of freedom, but we have to unfold rotations to obtain
a full length.

π

8 × (69.5 + 3/8)
→ 8 π2 × (69.5 − 3/8) , (73)

where the sign of the phase advance (3/8) is inverted to obtain
the corresponding length, and for the other term

1
69.5

→ 69.5 π . (74)

Those allow us to calculate a quantity h∗16 by making the
above replacements in the expression of h16. We need to add
a geometric factor to h16, since it is also this coupling that
compresses the surface of the 4D sphere h8. Then, as h16 de-
pends on D16

p , we multiply by Dp to obtain a value relative to
L0, which gives a correction that may seem marginal

h∗16 Dp

2 π2 = −5.0462626214390 × 10−9 . (75)

Then by posing

Lω =
D15

p
√
π

S 1 + S 2 + S 3 + S 4
×

(
1 +

h∗16 Dp

2 π2

)
, (76)

we obtain the unreduced Planck length

Lω = 4.051292235148901 × 10−35 rad , (77)

Using Mω to cancel the uncertainty on G, we get Planck’s
constant, h = mp lp c with a relative precision of 6 × 10−13:

4πMω Lω c = 6.626070150004 × 10−34 J s . (78)

The fact that the Planck length is calculated in this way makes
it independent of the system of units. We calculate an angular
correction and speak of the GR-QM symmetry given by the
relation

RS λ

2
= l 2

p = L 2
ω , (79)

which is then read in steradian (or radian2), where RS λ/2 π
is the product of the two half-axes of an ellipse of invariant
surface (independent of the particle) inscribed on a sphere of
unit radius seen from its center; in other words, the angular
resolution in a three-dimensional space – the surface of an el-
lipse is π a b, in agreement with the square root of π in the
expression (76). The term on the right is therefore a solid an-
gle and Lω/

√
π the angle of the cone that defines it, both of

which are independent of the system of units (see also section
7.1). Now we can calculate Newton’s constant with the pre-
cision of the constant Xe, equivalent in principle to that of the
electron mass; using G = Lω c2/4 πMω we get:

G = 6.67410788487 (180) × 10−11 m3 kg−1 s−2 . (80)

The above decimals are the same if we calculate G = L2
ω c3/h

(which is not guaranteed at all as (80) depends on Mω), the
next differs in accordance with the residual error on h (78).
The Bohr radius a0 is then also a pure number:

a0 =
ℏ

αme c
=

2 Mω

me
×

Lω
α
, (81)

because in this expression the mass ratio is a harmonic ra-
tio. Consequently, the interpretation of Lω holds because α is
calculated as the inverse of a resonance length, like Lω.

6.4 Space-time and couplings

The first sector of the hi gives the particle resonances, N P,
as a product or separately, meaning that the resonances are
part of the structure of space-time; but nothing about their
couplings and K, which play at the same level in the mass
formulas. Resonances are given in a specific order; for mas-
sive particles whose resonances are not unitary, the couplings
increase with the i index and mix De and α. Hence couplings
and K should also be inscribed in the space-time structure in
the same order.

When calculating Ω the angle 4π/3 is in 3D space as well
as the phase reversal of π. So there is nothing here about
space-time and 3 + 1D, which would seem to be mandatory.
A resonance in space-time means a period, the time needed
for a resonance to loop which is a space-time interval; we can
then use the standard invariant

c2 t2 − r2 = c2 τ2 , (82)

where τ is a particle period and defines, for this particle, a
hyperboloid – and is reminiscent of de Sitter space. Then we
pose R and u in hyperbolic coordinates

r = R cosh (u) ; c t = R sinh (u) . (83)
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The ratio between space and time is

r
c t
= coth (u) , (84)

which is independent of R. Then for the angle Ω (40) notice

coth
(
Ω−1

)
≈
π

2
, (85)

close but not equal, and cot (π/2) = 0; the meaning of which
is that the ratio of forces in Mω does not fit flat space-time,
so let us check what is missing. With the hi we get the N Ps
which response in the mass formulas are the K Ds, and all this
is perfectly ordered since we cannot mix the resonances and
couplings at random. Then, in order to find the K Ds’ origin
we should complement a second series as follows:

A = arctan

 n∑
i=0

ci ×
De

2662 D4
p

 , (86)

with n any, where the ci should complement the mass formu-
las; so that

coth
(
A−1

)
=
π

2
, (87)

and eventually relates to forces meaning that space-time is
flat, because then

cos
(
coth

(
A−1

))
= 0 ; sin

(
coth

(
A−1

))
= 1 . (88)

The resolution logic for this series is basically the same as for
the hi; but we know a little more of what to search. The first
sequence gives the particle resonances in order of mass and
of increasing gravitational couplings Di

p; we should logically
expect a similar order with the couplings α and De. Then
since De ≈ 16α2, the gain at each step may be rather chaotic
but show the same progression as for the hi, with a known
coupling responding to De Di

p. The two couplings giving a
minima the progression α, De, αDe, and D2

e ; respectively that
of µe, electrons, quarks, and bosons; we should not use α2 as
it represents infinite loops in the boson mass couplings DWZ

and DH . On this basis the empirically fit sequence is

c0 = +1 [3.2 × 10−3] . (89)

for the Planck particle.

c1 = −α ×
7
2
= −α ×

(
4 −

1
2

)
[1.6 × 10−4] . (90)

This is h2 = 7 divided by 2, and the coupling and primary
resonance of µe, which indirectly responds to h2, h3 and h4.
It also decomposes in 4 − 1/2, where 4 is the electron reso-
nance Table 1 and sub-multiple of all N P of Table 2; and a
resonance 1/2.

c2 = −De ×

(
1
2
+

1
25
+

1
81

)
[6.8 × 10−5] . (91)

The primary coupling and the inverse of the resonances N or
N P of the three electrons Table 1, though for the electron we
would expect 1/4 instead of 1/2; we consider it responds to
h2, h3 and h4 with De.

c3 = −αDe ×
h5

4 π
[1.4 × 10−5] . (92)

The primary field coupling appearing with quarks (αDe), and
the associated quark resonances N Table 3. So it responds to
h5 (49) but only for the coupling appearing with quarks.

c4 = −D2
e ×

(
144 ×

2
3
+ 2 −

1
7
−

1
19

)
[3.6 × 10−9] . (93)

The primary coupling specific to bosons (D2
e) and associated

resonances, though multiplied by 2/3 instead of 3/2 in h7 for
144, and the other numbers fit the boson’s K. Again it re-
sponds to the coupling appearing with bosons except α2. We
have all what we know of, but let us continue.

c5 = −αD2
e ×

(
7
2

)
[7.8 × 10−11] . (94)

Now c5 = c1 D2
e .

c6 = +D3
e ×

(
1
2
+

1
25
+

1
81

)
[9.8 × 10−12] . (95)

And now c6 = −c2 D2
e . We stop here because we do not have

enough precision on α to continue (even c6 is doubtful).
Overall, we have a progression of the primary couplings

together with the resonances they apply to – plus maybe a bit
more that repeats the same resonances. We notice:

1. That the rotations of quarks appear radially to the asso-
ciated piece of coupling.

2. That the factor 3/2 of h7 is inverted.
3. That the electrons N or N P appear as inverses.
4. That nothing comes out for gluons h6, neutrinos h1,

photons in h8.

6.5 Connection hi − ci

Connecting this sequence to the hi is not difficult as it obeys
the following rules:

1. For a given particle group, the resonances N, P and the
strongest part of the associated coupling can be taken
from a single element of this suite.

2. Any integer is a resonance N P or K, to be taken as is.
3. Any fraction is an inverted N P or K, whose sign must

be reversed.

With the following consequences:

• The N P resonances of electrons is the inverse number
of c2, except for the electron where we get N = P =
K = 2 for Tables 1 and 2.
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• A circular resonance N of a quark is taken in c3 as ra-
dial effect of the same number in h5.

• The resonances N P, K of the massive bosons are in c4,
with 3/2 and two of the Ks inverted.

Overall, we get the N, P, Dmax, where Dmax is the strongest
part of a particle coupling, and the boson’s K. But we can
complement the couplings for each particle group with a sim-
ple addition of Dn−1 to Dn:

• The K of the bosons being known from c4 we use the
same number from c3 to get the part in αDe/2; the fac-
tor 1/2 comes from the interaction of two charges.

• For quarks, we get Dq = De + αDe taking De from c1.

• For electrons, the coupling is complete from c2; and we
get the electrodynamics coupling α from c1 – which is
also valid for quarks.

• Massive bosons are composites, then α2 is taken as the
square of α from c1; in agreement with a free field giv-
ing the denominators of DWZ and DH by infinite inter-
action loops.

We miss the electrons and quarks K, which origin is still un-
known. And by the way, the bosons resonance N P = 144 =((

3
2 × 144

)
×

(
2
3 × 144

))1/2
is the geometric mean of two com-

ponents from h7 and c4.

6.6 Comments

The two sequences hi and ci appear to be working together
with respect to the particle resonances. We first showed that
the angle Ω must be complemented to 4/3 to get the harmon-
ics N, P, and then that the hyperbolic cotangent of its inverse
must be complemented to π/2 to get a mix of coupling and
resonances – both sequences in the same “right” order. Now
we have

coth
(
Ω−1

)
>
π

2
> coth

(
3
4

)
, (96)

so Mω, a black hole, does not reach π/2, and 4/3 exceeds it.
So the particle spectrum is needed to get to π/2, and this is
done by the coupling α. Consequently, Dp (gravitation) and
α (electromagnetism) are complementary to each other for
the existence of space-time. Electromagnetism is born from
gravitation, which cannot survive without it.

We now have several points justifying the limits of the
particle spectrum:

• The first sector of the hi defines resonances, there are
no others.

• It defines the N P products of the primary field as a set
of elementary oscillators occupying the Planck length.
Hence the limitation |N P K D| < 1 suggested by the
resonances of the primary field makes sense because
otherwise the resonance of a particle would overflow

the Planck length. The resonator of unit length imag-
ined to get the mass formula is simply a Planck particle
defining a unitary box.
• The wave h15 and the coupling h16 only use numbers

known through the mass spectrum and h6.
• The Higgs field as it appears at h28 requires no other

particles.
• The second sector involves interactions directed by di-

mensions and there then by symmetries; this is more
than enough to encompass the symmetries of the stan-
dard model but also imply a form of selection by the
fact that all the second sector must work together – a
form of filtering.

We understand that space-time, particle resonances, and
couplings are of gravitational and electromagnetic origin and
that there is no freedom in the structure of the particle spec-
trum. The resulting laws and parameters form a coherent,
compact, inseparable, and non-adjustable block.

7 Wave-coherent cosmology

An expanding universe where the laws of physics are every-
where identical and whose parameters are consistent with the
preceding sections is necessarily a single resonance with a
localized origin; if considered homogeneous its macroscopic
quantities cannot have any degree of freedom. All must there-
fore be calculated from its geometry; hence from its age alone
or from its horizon.

7.1 Black holes

The calculation of the Planck mass from an oscillator made
of pure numbers poses a real problem, because the oscilla-
tor alone must define space-time; hence the metric by which
it scales the particle resonances; therefore the Planck length
varies in space and time. Consequently for a Schwarzschild
black hole of mass M, the radius

RS =
2 G M

c2 , (97)

can only be a wave number. We naturally think of

RS = n lp ± lp , (98)

with n an integer and ±lp an uncertainty. But its charac-
teristics are entirely defined by a real factor E defined by
M = E Mω and verify:

RS ≡ M = E Mω = E Xe

( De

2662 + D4
p

)−3

, (99)

and its average mass density ρS reported inside the sphere of
radius RS verifies:

RS ≡ M =
4 π
3
ρs R3

S → ρs ∼ R−2
S . (100)
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Then we identify the squares and the cubes in this relation

M = EMω = ρS R3
S =

E3

E2 Mω

→ ρs ≡
Xe

E2 ; RS ≡ E
( De

2662 + D4
p

)−1

. (101)

This expression shows the gravitational nature and structure
of the mass formulas, and that the Schwarzschild radius of the
Planck mass, say Rω, can be considered as a unit wavelength
because in natural units

Rω = 4 π lp ≡ 4 π
( De

2662 + D4
p

)−1

. (102)

We then recognize the Hawking temperature which, even if
in principle external, can only be the effect of the harmonic
system:

KB TH =
ℏ c3

8πG M
= Mω c2 Mω

M
=

Mω c2

E
, (103)

where we recover the scale factor E of the expression (99).
And Mω is a resonance; this relation identifies this tempera-
ture to its wavelength; giving a GR – MQ symmetry where lp,
λ and RS evolve together in the gravitational field for a par-
ticle at rest seen by a distant observer, and not the other way
round for the last two. Likewise it comes

KB TH =
ℏ c3

8πG M
=

h νω
E

, (104)

where νω = Mω c2/h is a frequency, and νω/E is that of the
black hole. The wavelength of a black hole then varies like
its mass and its radius, and its frequency conversely. Now the
similarity with the equation of an ideal gas P V = KB T al-
ready discussed after the formula (2) is obvious. In the case
of a black hole, P represents a surface pressure, but in the
case of an ideal gas the internal pressure is constant, which
perfectly fits the scale factor E. However, according to (101)
we can identify a wave internal to the black hole whose dis-
persion at r > RS defines the metric. This wave is then the
effective Planck length at the place considered, the maximum
resolution decreases near the black hole down to RS at its sur-
face; we note the absence of singularity.

With the connections between the couplings and the two
sums ΣNP and ΣK , we have linked gravity (as a force) to reso-
nances and couplings through relative variations of the Planck
length, therefore of the relative resolution. Consequently, the
harmonic h8 expressing a constraint in the form of a four-
dimensional sphere surface coefficient (2π2) associated with
a phase variance (1/π) and dominating the spectrum of res-
onances, the universe is studied as the surface of a resonant
4-sphere which expands into a four-dimensional exterior. We
consider a homogeneous universe where the celerity c is con-
stant and where, due to homogeneity, the effective Planck

length lp varies only in time and defines a homogeneous met-
ric in 3-space at any time. Obviously we forbid ourselves to
add particles or fields, but suppose a single field or space un-
dergoing a transformation. In this way the past is static, the
future dynamic, and the present a phase transition.

7.2 Universe mini-model

Expanding into an exterior, the universe is modeled by a solid
expanding 4-sphere centered on its origin of which 3D space
(the present) is the surface. We therefore assume that the par-
ticles are growing strings, and that the interior of the sphere
is fixed in the sense of the events – not in the sense of the
phases of the resonances, but in the sense of the derivatives of
the phase variations of the wave at any point.

In a perfectly homogeneous universe the cosmic time T is
the meaningful physical quantity; in wave number n = T/tp

is the number of “Planck sheets” or layers constituting the
past. Taking the original event at n = 1, its resonance length
L1, then for n >> 1 the sum of the inverses of the resonance
lengths is

1
L(n)

=
1
L1

n∑
i=1

1
i
=

1
L1

(ln (n) + γ) , (105)

with γ the Euler-Mascheroni constant. This formulation cor-
responds to the fact that in an expanding universe the surface
of the layer n depends on n3, which complies with the mass
formulas; this expression means that the present “feeds” the
past and that a source energy is consumed (actually of unit
J m ∼ h c). The sphere is divided into layers, the weight of
each is its layer number, and we sum the inverses according
to the rule. The energy of the layer n then evolves like

E(n) = E(1) (ln (n) + γ) = E(1) ln (k n) . (106)

Massive particles are harmonics of the Planck mass; it is then
necessary to count in Planck time to obtain a universal clock,
since it is the natural one and the logarithm implies that the
numerical results depend on the clock we choose. In the ab-
sence of creation of matter, the Compton wavelength of a par-
ticle is therefore

λ(n) =
λ(1)

ln (k n)
. (107)

This mechanism and this formula apply to any particle and
therefore to the Planck length. This relation amounts to writ-
ing ∆E ∆t = 1 for any string between any two layers with
a naturally oriented time; that is one quantum of action ex-
changes between any two layers of any string; actually not
action h but h c, which in 4D is to energy what energy is to
power in 3D.

Now if masses add up, charges multiply; then from the
same logic as for the evolution of wavelengths, we obtain a
charge formula for a given epoch

C =
n∑

i=1

1
n!
= exp(1) . (108)
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For the observable universe n > 1055, we can therefore write
an equality. The base of the natural logarithm also intervenes
in the coupling Dµe (20) with Sommerfeld’s constant in the
form exp(1) × α; a logarithm is also present in the same for-
mula; these component denote temporal resonances.

The expression (107) defining the wavelengths evolution
is all we need to discuss cosmology. The rest of this section
contains only solutions to outstanding tensions and myster-
ies which, as far as we know, cosmological models do not
relate to each other; all derived from the geometry of this
mini-model and this expression.

7.3 The Hubble parameter

The immediate application concerns the Hubble parameter
which is a function of time H(n). We have on the one hand
the expansion of the 4D sphere, therefore of 3D space at
its surface, which depends only on proper time. The asso-
ciated scale factor is therefore for a homogeneous spherical
universe, still using the Planck time and lengths as units

ae(n) = n . (109)

The expansion implies a second scale factor coming from the
contraction of wavelengths (107),

am(n) = ln(k n) , (110)

which corresponds to a contraction of rulers. Their product
gives the transformation of measurable space-time intervals

ait(n) = ae(n) am(n) = n ln(k n) . (111)

In the laboratory the space intervals defining the measurement
rods evolve over time

al(n) =
1

am(n)
=

1
ln(k n)

. (112)

The cosmic microwave background by which the Hubble pa-
rameter Hcmb is measured was emitted at

Tcmb = 380 000 years→ p =
Tcmb

tp
= 8.87 × 1055 ,

a unitless wave number; and we now are at

T = 13.801 Gy→ n =
T
tp
= 3.22 × 1060 ,

and according to (112) the contraction of ruler between these
two epochs is

ln(p)
ln(n)

≈
1

1.082
. (113)

The photon is a string like any other, its wavelength evolves
exactly like that of massive particles. So the Hubble param-
eter Hcmb measured through the frequency shift of the fossil
radiation depends only on ae, the scale factor due to recession.

At the opposite, the local Hubble parameter Hloc is measured
from supernovae luminosity, so 1) as a time interval, since
this signal has a duration, and 2) as a solid angle which de-
pends on the telescope and the expansion. Nothing new on
the principle, but the measurement of the signal duration de-
pends on ait, and its instantaneous power of the solid angle
of capture of the signal, that is a2

l /a
2
e = a−2

it because space
has expanded between emission and reception, and simulta-
neously the lengths defining the telescope have contracted.
The instantaneous luminosity therefore depends on a−3

it and
the total luminosity measured on a−2

it ; the measured recession
is therefore ait. In the end, therefore, we have the following
dependence between the two methods of measurement

Hloc = Hcmb
ln(n)
ln(p)

= Hcmb × 1.082 . (114)

Estimates using standard candles methods [14] concentrate
around Hloc = 73 km/s/Mpc, and the Planck mission indi-
cates [13] Hcmb = 67.66 (42) km/s/Mpc. The relation (114)
gives

67.66 (42) × 1.082 = 73.17 (45) .

Here the associated tensions are natural and explained. The
precision may seem very good, but this is not so because the
logarithm attenuates the errors on n; if we multiply n by 2 we
obtain 1.083, by 10 we get 1.10, not much but we clearly see
this ratio increasing over time. Consequently, the universe is
permanently building resolution.

The ΛCDM model interprets these measurements as an
accelerated expansion because a cosmological constant is the
natural solution in GR. Then, deriving (110) to (112) and us-
ing the cosmological radius RU = c T , it comes

äm = (ȧm)2 =
1
a2

e
=

1
n2 →

1
R2

U

≈ 0.6 × 10−52 m−2 , (115)

which is close to the estimated value of the cosmological con-
stant (to within a factor of the order of 2).

Let us now return to the Planck clock and the rulers con-
traction between two epochs. With another clock such that
n→ n/q and q > 1, it comes

ln(n)
ln(p)

→
ln(n) − ln(q)
ln(p) − ln(q)

=
logq(n) − 1

logq(p) − 1
, (116)

which amounts to changing the constant of integration. It
is only when the constant is zero that the universe has unit
size at the origin. We can also see there a change of base of
the logarithm and the introduction of a negative constant of
integration showing that the length of the ruler is in excess,
then irrelevant, and that the beginning physically compares
only to the Planck time. We can also write

am(n)
am(q)

=
ln(n)
ln(q)

= logq(n) = logq

(
n
q

)
+ 1 , (117)

which clearly indicates the choice of time unit and allows us
to change it, on the condition of knowing the absolute date.
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7.4 Dark energies and energy

The object of this section is to study the correspondence with
the ΛCDM model through the respective proportions of its
four main parameters, namely the proportions of ordinary
matter, dark matter, dark energy, and the total density. We do
not yet look for absolute quantities, only to understand how
these parameters relate to each other in relative terms.

Consider a uniform positive pressure P in the surface of
nonzero thickness of a four-dimensional Euclidean sphere of
radius R. The condensation of a new layer corresponds to
an absorption producing the growth of the strings and a pres-
sure deficit which, seen by an observer in the surface of the
sphere using GR to model cosmology, will guess a constant
negative pressure. This negative pressure is understood here
as a condensation density simultaneously generating the par-
ticles’ energy and gravity. The source energy MS invested
in the condensation must then be separated into three parts,
namely 1) the visible energy, 2) a remainder of force with-
out visible source (dark mass) because the wavelengths vary
from one time to another, and 3) a dark energy of negative
pressure causing the expansion of the sphere. Condensation
can be modeled in 3+1D as a kinetic energy MS = p c; but
here it is the transformation Xe ↔ Xα which is equivalent to a
bounce and implies MS = 2 p c. The dark energy of the stan-
dard model therefore represents 2/3 of all (2 for the source
energy and 1 for the masses). Quantitatively, the condensa-
tion occurs with h8 which implies proportions 1 for ordinary
matter and 2π2 for source energy (1 is the time axis, 2π2 the
surface of the sphere); so for convenience let us define

ϕ =
1

2π2 . (118)

The ΛCDM model considers ordinary matter separated from
the dark side, its proportion of mass is therefore given by

MV

ϕ
=

MS

1 + 2 ϕ
3

→
MV

MS
= 4.90 % . (119)

The mass of matter will be one-third the source energy, but is
separated into ordinary and dark matter; the proportion of the
latter is therefore

MD

MS
=

1
3 × (1 + ϕ)

−
MV

MS
= 26.83 % , (120)

and dark energy is the remainder

MDE = MS − MD − MV →
MDE

MS
= 68.27 % . (121)

Finally:

1. These proportions are invariant over time.

2. They agree perfectly with the Planck mission results
[13]: MB = 4.9 %, MD = 26.8 %, and MDE = 68.3 %.

3. The absorption density is the saturation point known
from the mass Mω, imposed by the mechanism: The
entire source energy intervenes there through the divi-
sion by ϕ giving a surface density on the 4-sphere.

On this basis we can complement the calculation of the cos-
mological constant. Using äm (115), the expansion factor of
space is that of a 3-sphere in GR, 4π/3, and there is the fac-
tor 1/2 from MS = 2 pc to take into account. Then using the
Hubble factor

Λ =
2 πH2

cmb

3 c2 = 1.121 × 10−52 m−2 , (122)

in good agreement with the Planck mission results (to 1.3%).

ΛPlanck = 1.106 × 10−52 m−2 . (123)

The current value, using Hloc = 73.17 km/s/Mpc gives

Λloc =
2 πH2

loc

3 c2 = 1.31 × 10−52 m−2 . (124)

Last, using the cosmological radius RU = c T , which is the
legitimate way in this mini-model

ΛRU =
2 π

3 R2
U

= 1.23 × 10−52 m−2 , (125)

logically a median value.

7.5 The cosmological constant

The method used here to model the impact of ae am is to re-
verse their roles; we model an increase of masses, insert it
into the Schwarzschild solution, and modify it à la de Sitter;
with a little more because the masses are not constant. By
setting the total universe energy to MT = MS , the previous
section states

2 G =
RU c2

MT
, (126)

where RU = c T is the cosmological radius at date T and MT

the total energy of the ΛCDM at T , which symmetries the
Schwarzschild solution

Rs

r
=

RU M
MT r

. (127)

This equation simply indicates that Newton’s constant con-
forms to a condensation whose saturation point is the density
of a mass E Mω on the observable scale. It is legitimate with
RU (and the following calculations can only work) because
the proportions of matter and dark energy are constant over
time, and the resonance is temporal. We therefore perform
the calculations as if the universe was a plane, of size RU ,
and of constant densities. To continue, it is necessary to add
variable terms that depend on r/RU , which requires two pa-
rameters α, β,

Rs

r
=

RU M
MT r

→
RU M
MT r

×
RU − α r
RU + β r

. (128)
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The term in α in the numerator corresponds to the expansion
of the source energy like RU , and the term in β in the de-
nominator to the derivative of the masses expansion. The two
terms are obtained by adding lengths because we are talking
about the inverse of the gradient of Lp in space and the inverse
of its derivative in time, which also inverts the signs. A series
expansion to the second order gives

RU M
MT r

→
RU M
MT r

−
(
α + β

) M
MT
+ β

(
α + β

) M r
MT RU

. (129)

Let us examine this expression:
• The first term is nominal and defines static space, fields,

and masses; the others can then be considered as addi-
tion of a variable gravity field.
• The middle term is independent of r and therefore in-

volves the total mass of the universe; M must then be
integrated to MV , and the total must give −1 the flat
metric. Then we have α + β = 2π2 + 1.
• So the term on the right must also be integrated into

MV to give MT (and becomes r/RU); therefore β = 1
the visible masses and α = 2π2 the source energy.

Note that with a series expansion in r we cannot integrate to
RU , but we can do it to MV as the central term requires. In the
end, after replacements and integration to MV we find

Rs

r
=

RU M
MT r

→
2 G M

r c2 − 1 +
r

RU
. (130)

The Schwarzshild-de Sitter solution has a similar formulation

−
Rs

r
→ −

Rs

r
−
Λ r2

3
. (131)

Adding a variable term then gives

−
Rs

r
− Λ r2 → −

Rs

r
− Λ r2 − δΛ r2 , (132)

which is identified term to term with (130), and where the
factor 1/3 of (131) is removed because it comes by integration
to give Λ r2/3, and here it is δΛ r2 which must be integrated.
The introduction of a geometrical constant k allows to solve
the equation as it must give (130):

−kΛ r2 − δΛ r2 → −1 +
r

RU
. (133)

Since Λ is now constant, integration to RU is possible and
gives the flat metric identified in the unit term of (130); hence:

−kΛ
∫ RU

0
r2dr = −1→ kΛ = −

3
R3

U

. (134)

Now we need to derive kΛ, but here masses increase and Λ
constant, and δΛ represents the inverse of the masses deriva-
tive; so we need to derive the inverse to get δΛ; for all r we
set RU → r, and since k is a geometrical factor we remove it

δ(Λ(r)) =
(

d
dr

(
r3

3

)
dr

)−1

→ −δ(Λ(r)) = −
1
r2 , (135)

and put it back to cancel the integration factor over the solid
angle; then multiply by 1/2 and identify with −r/RU we get

4π k
2

∫
−δ(Λ(r)) r2 dr =

∫
−2π k dr = −

r
RU

. (136)

Therefore
k =

1
2 πRU

. (137)

Last, report in (134)

Λ =
2 π

3 R2
U

, (138)

as expected we get (125). The Schwarzschild and de Sitter
solutions as modified here amount to differential equations
that we integrate; it corresponds to the mini-model but contra-
dict GR, but recall Einstein designed this theory with a static
universe in mind – proof is his famous mistake to stabilize
it. This is why in this mini-model space and time are not on
strict equal grounds. Moreover, because of integration to MV

made after (129) the results are independent of the creation of
particles at any time.

7.6 Anomalous accelerations, MOND

The standard model of cosmology evaluates the parameters
necessary for its operation; but here the absence of dark mat-
ter particles makes it incompatible with the phenomenology
of gravitation. However, in the absence of dark matter parti-
cles we can use the mini-model to recover MOND [11], [12].

The radius of the universe 4-sphere being n its circum-
ference is 2 π n; and from (110) an observer will see the ex-
pansion accelerating. The instantaneous acceleration A of the
expansion will depend on

ȧm =
1
n
→ A =

1
2 πRU

m−1 , (139)

which, as we expect, is the k factor in (137). A remote object
recession will be seen accelerating:

d2r
dt2 = A c2 → a =

c2

2 πRU
= 1.185 × 10−10 m s−2 , (140)

which, according to Milgrom is MOND limit acceleration
1.20 (±0.2) × 10−10 m s−2 [11] [12]. Another direct way to
this result is to understand the effect of the evolution of the
electron Compton wavelength on the Bohr radius; it shrinks
when the wavelength decreases

a0 =
λdB

2 π
=

λ

2 πα
, (141)

where the factor 2 π is consistent with (140) and implies that,
unlike energy, angular momentum is absolute and conserved;
in agreement with QM and with the interpretation of ∆E∆t
in (106). Now we can discuss the central mass problem in
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which the expansion of the central mass adds a term to the
classical potential, making it increase in time. Therefore a
simple sum of a and the Newtonian acceleration AN giving
AN + a is unacceptable, as the so-called anomalous acceler-
ations are free fall in an evolving gravity pit. We therefore
return to the weak equivalence principle, according to which
an acceleration is indistinguishable from gravity; the opposite
case makes it possible to reason by symmetry on the acceler-
ation formula. A force f on an object of mass m in free fall
with a Newtonian acceleration AN giving an effective accel-
eration Ae f f is felt as Ar > 0:

AN

(
1 +

Ar

AN

)
= Ae f f → Ar =

f
m
, (142)

here the acceleration felt, Ar = f /m, is the effect of inertia and
we are looking for the effect of an increase in gravity. So to
link the effective acceleration Ae f f and the two quantities AN

and a in a classical form we need to write the transformation
inverse to (142); an inversion of the roles which amounts to
calculating AN . Firstly we rewrite (142):

AN = Ae f f

(
1 +

Ar

AN

)−1

→ Ar =
f
m
,

Secondly, we use the fact that Newton’s acceleration AN have
no physical reality; on the right-hand side we replace it with
the real one, and the acceleration felt by the unfelt:

Ae f f

(
1 +

a
Ae f f

)−1

= AN → Ar = 0 . (143)

This expression is MOND simple interpolation function, one
of three possible [12]. We can also derive the same formula
from the harmonic system in a direct and elegant manner that
treat space and time on natural non-equal grounds: Ae f f de-
pends on the gradient of the effective Planck length, which
has two components, 1) its instantaneous gradient in space,
and 2) its variation in time. The former gives the classical
acceleration AN , which can be approximated by subtracting
the effect of the latter from the total. Then by adding the
inverses, we subtract from the effective gradient of resonance
length (total gradient with Ae f f ) its variation over time in pro-
portion of the gradient (a/Ae f f ) at the considered location to
get AN , i.e.

1
AN
=

1
Ae f f

(
1 +

a
Ae f f

)
→ Ar = 0 , (144)

which is identical to (143). We use again the same formula
for length addition, now applied to the variations of resolution
in space and in time. The evolution of a is immediate as it
depends on 1/T and decreases with time; this acceleration is
therefore a lot stronger in the early universe than at present
time, up to a→ ∞ when T → 0.

7.7 Comments

To begin this section, we applied the length addition formula
used for masses to the entire universe, simply our initial hy-
pothesis, to obtain a temporal resonance formula (106) based
on a logarithm which complies with the mass formulas. Then,
by extending the logic to charges, we found an exponential
(107); both are in the calculation of the µe mass (21) and in
the relation (67) between Xe and Xα, and only there, showing
a scaling effect.

On this basis we deduced the Hubble factor correction,
the four densities, the cosmological constant, the limit ac-
celeration and interpolation formula of MOND; we obtained
eight coherent quantities from the age of the universe alone,
which is not possible with the models and theories that use
them.

We remark that the expansion of space ae (109) and ener-
gies am (110) can be inverted, resulting in a logarithmic ex-
pansion of space and a linear expansion of energy (as we did
in section 7.5); the resulting model gives the same results pro-
vided that the unitary resonances of neutrinos and photons
have specific properties. We discussed the simplest scheme
where the dimension that we call time expands linearly in 4-
space.

8 Questions and extensions

8.1 Dimensions and resonances

The whole sequence hi seems to include a triple cycle, 4 to
4, 7 to 7, and 8 to 8. The dimensional coefficients from h8
to h11 rise from 4 to 7; the objects present for h13 are the 3D
and 5D sphere volumes, and for h14 two sphere surfaces in
6D and 3D. Then we apparently have a limit with 8D. Since
the super-coupling h16 can be decomposed into two, we also
assume that it is in 4+4=8D. Consequently, Dp and De are
dimensional couplings and the first sector range from 1 to 7
dimensions. Since particle resonances are radial or rotations,
a single 4D space is sufficient for resonances to build a 7 or
8D structure: We assume for the discussion that a 4D space
is native and, from the sequences hi and ci, that space-time is
built by the interplay of resonances. The first sector and the
particle resonances K are then explained by Table 7; the par-
ticle spectrum is defined by the dimension of each resonance.

• Sign = the resonance has an echo of same dimension.

• Sign + the dimensions add.

• Sign , distinct resonances in the two spaces.

We find the following concordances

• The larger the resonance dimension, the larger the mass
and the stronger the coupling strongest component.

• Tables 1 and 2 use the same K for the electron and
muon, simply the dimension of their resonances.
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Table 7: Resonances and dimensions.

- Particle Dim 4D ↔ 3+1D Tbl

h0 Mω 0/8 0/4 = 0/3+1 (43)
h1 ν 1 1 = 1 6
h2 e 2 1 + 1 1, 2
h2 q (P) 2 1 + 1 3
h3 µ 3 3 = 3 1, 2
h4 τ 4 4 , 3+1 1, 2
h5 q (N) 5 4 + 1 3
h6 g 6 3 + 3 -
h7 W, Z, H, γ 7 3 + 3+1 5

• The tauon is exceptional in that it admits two unequal
solutions, two distinct ways of oscillating in 3+1 and 4
dimensions.
• The rotational part N of quarks mix, this is clear for the

u and d, and not P the radial part, but P = 3 constant
pose no problem to mixing.
• We understand that the left-hand side of the relation

(14) giving the small k of the boson resonance, which
seems a bit strange in 3 dimensions, corresponds to
3+(3+1) dimensions with a resonance of a 6-sphere as
seen in 3; by introducing a factor k π in the denomina-
tor of the mass formula (11) the volume of the 6-sphere
becomes

π3r6 → π3(k r)6 → π2 (k r)6 , (145)

then taking the square root to return to 3 dimensions we
obtain the term on the left of (14)

π2(k r)6 → π (k r)3 , (146)

with r = 1 and π → π/144, since this part is circular.
And on the right-hand side, we calculate a radial im-
pact as the compression of a 1 dimension line by stress
or forces in 3 dimensions, i.e. with an inverse effect be-
tween forces and lengths:

π r3

k
→

(
π

k

)1/3
r , (147)

now with r = 266 Db. Since r is a wave number or
its inverse, we introduce it as the two sides of the reso-
nance and obtain (14).

Resonances organize well by counting only 1, 3 or 4 dimen-
sions, and all bosons use at least 3+3 dimensions. Logically,
the photon is in h7 and neutrinos in h1; leptonic resonances
from h1 to h4, and bosonic resonances from h5 to h7. Quarks
are supposed to mix; they take one component of each side
with P = 3 in h2 and one of the rotations of h5 for N.

The electrons and quarks K are given here by the dimen-
sion, provided that time counts for 2D in space-time:

• The electron resonance in h2 is in 2 dimensions of time.
• The muon h3, 3 dimensions of space.
• The tau h4, 4 dimensions in native space and K = 4 Ta-

ble 2, and 3+1 in space-time where time counts double
then K = 3 + 2 = 5 Table 1.
• Heavy quarks ring in 2 dimensions h2, and 5 dimen-

sions h5, but time must be accounted for only once then
subtract 5D from 2D to get K = 2 × (2 − 5) = −6.
• Light quarks ring in 2 dimensions h2, but N uses two

rotations and time may be accounted for differently,
then possibly:
- d remove one, 4D and K = 2 × (2 + (1 − 5)) = −4;
- u multiply by 2 for charge 2/3 versus 1/3 for the d.

8.2 Super-minimal super-strings?

In the universe mini-model the present feeds the past, which
means that downtime currents feed the strings, providing the
necessary “power” for both downtime and uptime currents.
There should be a dissymmetry in strength between up-time
and down-time in a ratio 1 to 2. Downtime currents twice
as strong as the uptime will give double charges; i.e. 2/3 and
1/3 and impact the resonance by a factor of 2 like in Table
3, the electron charge being the fusion of the two. The ex-
planation for the existence of 3 elementary electric charges is
very basic and can correspond to a quantitative law of trans-
formation. In the two series hi and ci resonances and cou-
plings appear separately, like in the mass formulas, and the
couplings do mirror resonances. Overall, three different man-
ners to observe the same mirror where 1/N P > K D for all
resonances where N P > 1 which can mean a form of super-
strings – except for Mω where the resonance can be seen in-
verted since D4

p < De/2662. Then we associate the apparent
electric charge of a particle with the direction of a current
independently of the resonance. On this basis we need four
rules to complete the elementary particles’ charges contents
which we denote with arrow and sign:

1. The signs correspond by convention to the current, the
measurable electric charge reverses for downtime cur-
rents (like electricity going backward in time).

2. Two currents of opposite charge can combine to form a
single string, or a (sub)string within a string.

3. Two currents of the same charge cannot.
4. Currents can make massive particles, then vertical ar-

rows propagating in time like a massive particle; or
mass-less, then propagating on the light cone, oblique
arrows (neutrinos and photons).

Table 8 shows all particle types regardless of their resonance.
The parentheses represent sub-strings association, and brack-
ets a particle contents.

The mass µe is the proper mass of [+ ↑,− ↓], which
can fall into the three electron resonances (h2, h3, h4), as can
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Table 8: Minimal scheme for currents symmetry.

Charge Particle Spin Currents

0 ν 1/2 [(− ↙ +↙) (− ↗ +↗)]
+1 µe/µα 1/2 [(+ ↑ − ↓)]
−2/3 u, c, t 1/2 [(+ ↓)]
+1/3 d, s, b 1/2 [(+ ↑)]
+1 W+ 1 [(+ ↑) (− ↓)]
0 Z0 1 [(− ↓ + ↓) (− ↑ + ↑)]
0 H0 0 or 2 [(− ↑) (+ ↓) (+ ↑) (− ↓)]
0 γ 1 [(− ↗ +↙) (− ↙ +↗)]

quarks with [± ↑] and [± ↓] and h5, and the four bosons with
h28. The distinctions between W±, H0 and Z0 are consistent
with the calculation of their masses and widths. The spins
agree with 1/2 for any inner string (the most inner parenthe-
sis for each scheme). In the end, there is only one type of
current, oriented only in charge and with respect to time; all
assemblies are symmetrical except for quarks, which are con-
fined. We’re missing the gluons, which should correspond to
eight separate horizontal arrows, with the ubiquitous quality
of also manifesting like a monopole. Now let us draw a few
examples of transmutations, to begin with d+ → u− + W+

[(+ ↑)]→ [(+ ↓)] + [(− ↓) (+ ↑)] . (148)

The d+ current is conserved and passes into the W+, what
remains (i.e. the (+ ↓) and (− ↓) not underlined) does not
exist as a particle; if this is a systematic rule it prohibits FCNC
because in the following case the remainder is also a Z0 which
is an existing particle, s+ → d+ + Z0

[(+ ↑)]→ [(+ ↑)] + [(− ↓ + ↓) (− ↑ + ↑)] . (149)

The muon case, µ− → W− + νµ:

[(− ↑ + ↓)]→ [(− ↑) (+ ↓)] + [(− ↙ +↙) (− ↗ +↗)] , (150)

next is its symmetric, W− + νe → e−:

[(− ↑) (+ ↓)] + [(− ↙ +↙) (− ↗ +↗)]→ [− ↑ + ↓] . (151)

This is because neutrino and anti-neutrino are identical. Two
up-time or down-time arrows for neutrinos and Z0 can also
be removed for the same results; the choice made here is that
every up-time current is associated with a downtime current,
and conversely – except for quarks, where currents have the
same sign and the association of particles/strings is made by
confinement.

The γ and Z0 cases are the simplest, as we obtain (for
example) the following two reversible cases. For e+ + e− →
Z0:

[(+ ↑ − ↓)] + [(− ↑ + ↓)]→ [(− ↓ + ↓) (− ↑ + ↑)] (152)

and for a photon, e+ + e− → γ:

[(+ ↑ − ↓)] + [(− ↑ + ↓)]→ [(− ↗ +↙) (− ↙ +↗)] . (153)

A minimal form of (super) symmetry is evident, where each
lepton charge (µe mass or neutrino) is associated with a bo-
son of same charge. Since we find 8 resonances for quarks
in h5 (49) and c3 (92), including twice two indistinguishable
masses for u and d, we’re all set with 8 gluons in h6. It is the
µe mass and h6, together with the separation of resonances
and couplings in the sequences hi and ci that makes this min-
imal scheme possible as the resonances (N, P) do not define
charges and spin, the couplings and inner currents do.

8.3 Transmutation and resonance

At the general level, the N = P = 19 − 7 of bosons includes
all circular resonances (7 and 19), enabling transmutations of
N or P of electrons and quarks; the product of their K = 266
includes all primary field resonances. In transmutations, this
allows exchanges of resonances by sums and products:

• by product, with the K = −2 of the W± for the N of
quarks within the second or third generation.
• for u and d quarks, by product with the K = −2 of the

W± for the K, and cross exchanges of 14 and 19 for N.
• by sum ±12 = 19 − 7 associated with a product ex-

change by the K = −2 of the W± between the second
and third generation of quarks.
• by mixed exchanges of the previous ones when the first

and another generation is involved.
• FCNC would imply a product exchange in N which is

not the K of a neutral boson.
• by sum or subtraction of the K = −7 of the Z0 for the

N and P of the electrons.
• The resonances of neutrinos (K) are an inverted echo

of the resonances N, P of the corresponding electron,
there is a form of conservation in these transmutations
to which the Z0 and the W± are neutral.
• All particles couple in N, P, sometimes separated, with

Di
p through its 137 and −19π2, which is the K = −19

of the H0, coupling in mass in the Standard Model.

Recall also that the total resonance widths of the three bosons
were calculated in section 2.4. Hence the resonances speak
directly of transmutations; the form of which obeys, and then
implements, some conservation of the resonances geometry.

8.4 And the strong force coupling?

According to Table 8, quarks should be the expression of the
most fundamental components of massive particles, and then
also the quark mass coupling Dq, which we compare to that
of electrons to get a ratio of lengths:

Dq

De
= 1 + α , (154)
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and specifically for the full coupling K D of the electron itself
compared to that of a heavy quark

−6 Dq

2 De
= −3 − 3α . (155)

Now recall that in Table 3 the charge ratio of 1/3 to 2/3 cor-
responds to a resonance ratio (N → 2 N for the second and
third generation, and K → 2 K for the d and u), hence we find
again the signature of a monopole with α, including the ratio
of charge 1 to 1/3. But according to h6 (50) and h16 (60), it is
the gluon that rings in 69.5 and it does “make” the coupling α
for the mass µe, and the ratio µα/µe. So, consider De the most
fundamental mass coupling and compare

De

α
= 0.1169 (156)

and, since 139 = ΣN, P + 2 includes the photon and neutrino
unitary resonances corresponds to the entire particles field:

139 De = 0.1186 , (157)

to the range of values of αS (M2
Z) reported in the literature

0.117 ≤ αS (M2
Z) ≤ 0.119 . (158)

8.5 Do photons have mass?

The current limit of the photon mass is mγ < 10−18 eV (PDG
2023). Now, from the calculation of neutrinos masses and
the identification of the photon resonance in h7, we can ask
whether the photon has mass. If so, we should be able to es-
timate its resonance; for this we apply an inversion similar to
neutrinos, which was De → 1/α, this time from the compo-
nents of DWZ and DH the coupling should be as a minimum

Dγ =
−1
D2

e
. (159)

The choice of K is not immediate; since N P = 1 for this res-
onance and not 144 we cannot make use of any phase coher-
ence constraint. The best we can provide is a possible lower
limit with K = ±266, since 266 is part of ΣK and not used in
any other particle resonance. We obtain

mγ ⩾
me

me − µe
×

Xe

π(1 ± 266 Dγ)3 ≈ 5.3×10−23 eV/c2 . (160)

Using K = −19 gives ≈ 1.5 × 10−19 eV/c2 a likely maximum
since using K = −7 the calculated mass exceeds the limit by a
factor of 3. In this logic the last candidate would be K = −133
giving ≈ 4.3 × 10−22 eV/c2.

8.6 SM symmetries and resonances?

The standard model of particle physics is based on U(1) ×
S U(2)×S U(3) with U(1)Y×S U(2)L → U(1)EM . With respect
to the three rotations in the primary field couplings formulas
of α, De and Dp which are respectively +1 π2, +7 π2, −19 π2,
we naively notice:

7 = 23 − 13 , (161)

and
19 = 33 − 23 . (162)

Simultaneously, except for the mass µe all resonances N, P
of the primary field use 1, 2, 3, 7, 19, and 12 = 19-7; and
the mass µe includes 2/7. Here we find a bijective correspon-
dence between the symmetries of the SM and the resonances
which states that 1 is an instance of U(1), 2 of S U(2) and 3
of S U(3). This is straightforward and needs no comment; but
what could it mean?

The mass formulas are based on a cube and represents
stress in the form P V = KB T where only P and T can vary
(except maybe for gravitation, which is of no importance here
as we only discuss particles). So, except for the electron the
resonance N, P systematically include a cube difference in a
cube! For the three bosons we get m ∼ 1443 = ((19 − 7)2)3

which is a power six of the difference of two cube differences.
It means a general mechanism by which symmetries resonate
individually and with each other. For electrons and quarks:
• A symmetry of order N will give N3 as say a number

of “resonance points” per unit volume.
• The symmetries of order N − 1 will remove (N − 1)3

from the order N resonance.
• And S U(3) includes instances of S U(2) which includes

instances of U(1).
It means that each and every “resonance point” is a unitary
resonance with unitary impact on the mass calculation.
• For the three electrons we only have 2 and 7 in the res-

onances meaning that S U(3) is absent at this level, and
may intervene only through the coupling of the mass
µe.
• for quarks, S U(3) is present giving 19 and 38; S U(3)

includes instances of S U(2), then 7 and 14, the u and d
include the four possible fractions using these numbers
where from Table 3 N = a/b > 1.
• For the three (massive) bosons we find the same struc-

ture, this time not with respect to the symmetries but to
the fermion field elementary resonances 2, 7, and 19,
giving 12 = 19 − 7 and 266 = 2 × 7 × 19.

Now for U(1) we should have 1 instead of 2; but with the
three electrons we have two symmetries in resonance with
each other. And we get the product N P = 1 for the pho-
ton and the neutrinos; hence, all along, it looks like we only
counted all combinations of possible unitary resonances given
by the SM symmetries; a logic that extends to transmutations.
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9 Conclusion

Based on a single hypothesis used to study the parameters of
the standard models of particle physics and cosmology, we
found a suite of formulas, coherent with each other, showing
how it holds from the mass of neutrinos to the energy param-
eters of cosmology – down to the last known decimal places;
and some ideas, new or otherwise, about the internal structure
of the system under study: A unique resonance where each
and every quantity we addressed is a dynamical substructure.

Each one of those appear to be part of a single physical
object, which expression is found in the Planck mass oscil-
lator, and where each formula speaks directly of the others
in various manners. Therefore, we have most probably dis-
cussed the shapes of an unknown or poorly understood level
of physical reality – some information hidden in the structures
of space-time and fundamental particles.

Hence, in conclusion, highlight that the expressions (106)
and (108), together with the suite hi and ci, seem to reveal
the nature of quantum mechanics as they fit the de Broglie-
Bohm [3] [2] and Cramer [9] interpretations – where 4-space,
space-time, and strings, are ringing as a whole, permanently
communicating between any two epochs down to the origin in
one Planck time. Of course energy cannot be transferred in-
stantly between any two points in space and time – of course;
but now energy, what is it made of?

Received on September 23, 2023
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