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Surprising Results from Experiments of a Longitudinally Separated Slit
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For the first time, the paper reports the experimental results of a longitudinal separated
single slit. The asymmetric diffraction pattern in the experiments cannot be explained
by either the wave theory of light or quantum electrodynamics, and thus calls for a
theoretical breakthrough. The paper also upgrades the slit diffraction formula to include
the longitudinal separation distance and the formula fits the experimental data well.
However, the absolute value of the fitted parameter differs for the left and right fringe
patterns and for different experimental setting, suggesting potential role of factors other
than slit width, light frequency, and longitudinal separation.

1 Introduction

The studies on light diffraction and interference have a long
history and have dramatic impact on our understanding of the
nature of light. The effect of light diffraction were carefully
observed by Francesco Grimaldi before 1660 [1]. Christiaan
Huygens studied diffraction phenomenon in great details and
established his wave theory of light [2] which, however, was
suppressed by Newton’s corpuscles theory of light [3]. The
famous double-slit experiment of Thomas Young [4] reinvig-
orated Huygens’ theory and Fresnel [5, 6] did further exper-
imental studies and landed support for the wave theory of
light. Later, the wave theory was again challenged by Ein-
stein [7], who showed the particle nature of light. Eventually,
Bohr [8] and de Broglie [9] suggested the wave-particle du-
ality for light and for mass particles. With the ascendance
of quantum mechanics, Feynman [10] invented the path inte-
gral method which was applied to study the quantum nature
of light diffraction and interference. Now the quantum theory
is used to explain not only the diffraction and interference of
light but also of massive particles such as electrons, photo-
electrons, neutrons, atoms and molecules [11–22].

It seems that the experiments of light diffraction from slits
have examined all possible factors such as slit widths, light
frequencies, slit shapes, and the number of slits, but all exper-
iments so far have adhered strictly to the traditional definition
of a slit: the closely placed barriers to restrict the passage of
light or particles. This paper reports on an innovative single
slit experiment that breaks the definition of slit. In the exper-
iment, the barriers of a traditional slit are broken into two to
form two half slits which can be placed at different positions
along the light propagation direction.

2 Predictions from existing theories

Before we proceed to the experiments, we briefly discuss the
expected experimental results based on the currently main
theories related to light diffraction: the wave theory of light
and the quantum electrodynamics. The diffraction patterns
predicted by the wave theory of light is illustrated in Fig. 1.

When a laser beam hits the half-slit A, the wave theory

Fig. 1: Wave explanation of light diffraction from a longitudinally
separated slit.

suggests that the diffraction occurs because the light at A acts
as a point source of light waves illustrated by the spherical red
dashed curves (the diffraction angle is exaggerated for clearer
illustration). Similarly, the light at half slit B acts as a point
source of light waves shown as the solid black curves. Since
the light waves from both A and B interfere with each other,
the interference pattern will form at the observer plane MN.
Due to the nature of spherical wave propagation, the inter-
ference pattern on the observing plane should be symmetric,
i.e. OM=ON, a result similar to the normal single slit inter-
ference pattern.

In the above discussion considering only two wave sour-
ces at point A and B, it may be argued that this is an oversim-
plification because Huygens’ principle indicates that light at
any point between A and B can act as a source of light waves.
With the aid of Fig. 2, we can show that using n wave sources
give the same result.

In a traditional way we use the n coherent oscillators to
indicate n wave sources. In a traditional slit A0B, n oscillators
are evenly positioned on the dashed line between A0 and B.
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Fig. 2: Wavelets explanation of light diffraction from a longitudi-
nally separated slit.

A textbook derivation (e.g. [23]) gives the following intensity
of the diffraction pattern at the observer plane:

I = I0
sin2(Nδ/2)
sin2(δ/2)

(1)

where I and I0 are light intensity at the observer plane and at
the source respectively; δ = kd sin θ is the phase difference
of neighbouring coherent oscillators, k the wave vector, and θ
the diffraction angle; d sin θ is the length difference of neigh-
bouring propagation paths, as shown as BC in Fig. 2. The
principal maxima of the fringes occur at δ = kd sin θ = 2mπ,
where m = 0,±1,±2, . . . . This gives the diffraction formula:

d sin θ = mλ . (2)

In the case of longitudinally separated slit AB, the n wave
sources should be equally positioned between A and B. As
shown in Fig. 2, the phase difference of neighbouring coher-
ent oscillators δ should be calculated as δ′ = kd′ sin θ′, with
d′ =

√
x2 + d2. We can also add a fixed initial phase dif-

ference φ between neighbouring oscillators and upgrade δ′ to
δ′ = kd′ sin θ′ + φ. One may worry about applying to the
current case the wave amplitude approximation used in the
traditional derivation. As the longitudinal separation between
A and B is much smaller than their distance to the observer
plane, the longitudinal separation hardly affects the light in-
tensity at the observer plane and the approximation condition
for deriving the diffraction pattern holds.

For the setting shown in Fig. 2, half-slit A is at the left of
half-slit B, we have ∆L < 0, γ < 0, and θ′ < 0, so we can
relate the diffraction angle θ to θ′ by:

θ = −(γ − θ′) = arctan(∆L/D) + θ′ . (3)

As such, the traditional derivation should give the same
formula as (1). The only difference is that we need replace
δ with δ′. Consequently, the diffraction formula for the lon-
gitudinal separated slit should be: kd′ sin θ′ + φ = 2mπ, or

d′ sin θ′ = (m − φ/2π)λ. Solving for θ′ and substituting into
(3), we have:

θ = −(γ−θ′) = arctan(∆L/D)+arcsin[(m−φ/2π)λ/d′] . (4)

From this formula, it is apparent that the width of fringes
indicated by θ is different from that in (2), but the fringe width
should be almost equally spaced just as in the case of normal
single slit.

The wave-theory explanation of knife-edge diffraction is
also relevant here but it is unable to predict the pattern diffrac-
tion from a longitudinally separated slit. Based on Fresnel’s
integrals and Kirchoff’s scalar diffraction theory, Sommerfeld
[24, 25] provided a rigorous solution to knife edge diffrac-
tion pattern, which explained the fringe pattern of diffrac-
tion on the unrestricted side of a knife edge and the decay
of the diffracted light intensity (with no fringe) in the shadow
area. While the energy losses in the shadow areas due to sin-
gle and multiple knife-edge diffraction are intensively studied
and modelled, so far there is no study on the diffraction pat-
tern from knife edges that are placed on opposite sides. An
apparent reason is that the diffraction pattern in Summerfeld’s
solution is hard to be generalized to oppositely placed knife
edges.

The explanation from quantum electrodynamics (QED)
also gives rise to a symmetric diffraction pattern for longi-
tudinally separated slits. In the view of QED, the single-slit
diffraction pattern results from the momentum distribution of
the diffracted particles, and the probability of the momen-
tum distribution can be calculated by the square of ampli-
tudes of momentum-space wavefunction [26–29]. When a
photon passes through a slit, the real-space wavefunction of
the photon is constrained by the slit width. A Fourier trans-
formation of the constrained real-space wavefunction into the
momentum-space wavefunction gives the probability ampli-
tude and thus the diffraction pattern.

The real-space wave function can be expressed as [28]:

Ψ(y, w) =

 1/
√
w , for − w/2 ≤ y ≤ w/2

0 , otherwise


where w is the transverse width of the slit, y the transverse
distance from the centre of the slit.

A Fourier transform of this wave function into the mo-
mentum space gives the following momentum wave function:

Φ(py, w) =

∫ w/2

−w/2

1
√

2π~
exp

(
−

ipyy
~

) 1
√
w

dy

=

√
2~
πw

sin pyw
2~

py
.

The diffraction pattern is given by the square of the ampli-
tude of the momentum wave function |Φ(py, w)|2. Apparently,
the fringe minimals occur at pyw

2~ = ±nπ. This gives a sym-
metric pattern for both sides of the central maximum. It has
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Fig. 3: Experimental setup.

been showed that Feynman’s path integral method also gives
the same results [26, 30, 31].

Since our longitudinally separated slit maintains the same
transverse slit width w, the constraint on the real-space wave-
function (as well as on Feynman path integral) is unchanged,
so the wave function in both real and momentum space should
be the same as those for a traditional single slit. Conse-
quently, a QED explanation should also give a symmetric
diffraction pattern as in the case of normal single slit experi-
ments.

3 Experimental setup and results

To test the prediction from both the wave theory of light and
QED, an experiment of a longitudinal movable slit is design-
ed. The simple experimental setup is shown in Fig. 3.

The laser source S is a common red laser pointer of wave-
length of 532 ± 10 nm. The razor blade R is movable trans-
versely so as to change slit width while the blade L can move
along the longitudinal optical rail to change longitudinal sep-
aration. Since the transverse width of the slit (i.e. the trans-
verse distance between two blades) is small and crucial to the
interference pattern, it is important that this width has mini-
mum variation when the blade L is moving along the rail. As
such, it is important to align the laser beam to be parallel to
the longitudinal optical rail. This is achieved by centering the
laser beam on the centre of the adjustable iris when moving
it along the rail. To be sure that the laser beam is parallel to
the longitudinal when the laser source moves along a trans-
versely placed optical rail, a reflection mirror is employed to
confirm the overlapping of the retro-reflected light with inci-
dent light. The mirror is removed during the fringe pattern
measurement. By putting the two blades in the same plane
to form a normal single slit and measuring the total length of
two blades, the transverse width of the slit is measured indi-
rectly by subtracting the length of each blade from the length
of two blades at the normal single slit position.

The typical experimental results are shown in Table 1.
Scenario 3 shows the case of zero longitudinal separation,
i.e. the normal single slit case. The fringe pattern is, as ex-
pected, symmetric. However, the fringe patterns in other sce-

Table 1: Selected experiment measurement.

narios are not expected. In scenarios 1 and 2 where the blade
L on the left side is closer to the light source (and thus farther
away from the observer plane), the left side of fringe patterns
have smaller width while the right side of the fringe patterns
have much larger width. The larger longitude separation is,
the greater difference in fringe widths of both sides are. In
scenarios 4 and 5, where the blade L on the left side is closer
to the observing plane, it is the opposite story – the left-hand
side of fringes have larger widths. Qualitatively, this experi-
mental result is not consistent with the Huygens-Fresnel prin-
ciple or the prediction of QED.

One may argue that the pattern may be related to the Fres-
nel diffraction of the single blade or due to possible changes
in the transverse width of the slit as it moves along the rail.
Regarding the first argument, we display a diffraction pattern
caused by the edge of one blade in the last row of Table 1. The
diffraction from one blade does agree with knife-edge diffrac-
tion theory – there is no fringes in the shadow area but fringes
appear on the other side. However, the fringe width is very
small and can be observed directly, but cannot be observed
from the photo due to resolution limitation. As explained ear-
lier, how this fringe pattern affects the fringes after the sec-
ond blade is still a mystery. For the second argument, we
admit that there is a nonzero possibility of a change in trans-
verse width of the slit, but this would affect equally the fringe
width of both sides, and thus its impact should also be sym-
metric. As a result, these factors can be ruled out as the cause
of asymmetric fringe pattern.

Asymmetric diffraction patterns are not rare phenomena,
but all asymmetric patterns must have contributing factors
and mechanisms. The light diffraction patterns in our daily
life are often asymmetric or even have weird shapes, e.g. the
diffraction pattern from a spider web, skin hairs, spilt oil sur-
face. These kinds of uncontrolled natural experiments have
many contributing factors which are hard to disentangle. The
asymmetry in the diffraction pattern of a grating can rise due
to periodic errors [32]. The Bragg diffraction on thick grating
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involves multi-wave interference [33]. Asymmetric diffrac-
tion in a periodic potential can be generated by phase gradi-
ents and randomness [34,35]. In the present paper, the asym-
metric pattern is clearly caused by longitudinal separation,
but how the longitudinal distance affects the fringe pattern is
still a mystery.

In order to examine the relationship between the longitu-
dinal distance and the fringe pattern, the left and right fringe
widths are measured for a given longitudinal position of blade
L. The measurement of fringe width is limited by the 1 mm
accuracy of the ruler. However, this accuracy can be im-
proved by further measuring the width of the magnified im-
ages. For the case of multiple fringe spots on one side, the
measurement accuracy can be improved by measuring the
average width of many spots. The measurement of longitu-
dinal distance is also limited by the 1 mm accuracy of the
optical rail, but this limit can be offset partially by the large
distance between the observer plane and the fixed half-slit.
This distance is L=1600 mm in our experiment. The mea-
sured transverse width of the slit is D=0.26 mm for theabove
results, which is consistent with the calibration based on the
diffraction formula together with the measured fringe width
and known wavelength. To reduce the chance of possible
change in transverse width of slit when longitudinal distance
changes, the laser beam is aligned carefully and the position
of the left half-slit is locked properly after each movement.

4 An empirical formula explaining experimental results

Our target is to develop an empirical formula for fringe width
for the longitudinally separated slit. Since the experiments
show that both longitudinal distance and transverse width af-
fect fringe width, we assume that longitudinal separation ∆L
has a similar role to the transverse width D, so we can modify
the formula for normal slits slightly for our longitudinally-
separated slit:

sin θ =
λ

D + A ∆L
(5)

where sin θ indicates fringe width, λ the wavelength of light,
D the transverse width of the slit, ∆L the longitudinal separa-
tion. A is the parameter to be calibrated.

Because D � λ in our experiments, the diffraction angle
θ is very small, so we can use an approximation sin θ ≈ ∆y/L
for the above diffraction formula, where L is the distance be-
tween the observer plane and the fixed half-slit, and ∆y the
fringe width. A brief inspection reveals that the formula can
produce results that qualitatively agree with experiment re-
sults. Namely, when ∆L < 0, i.e. the left half-slit is farther
away from the observer plane, the formula with a positive
parameter A will produce a larger width for the right fringe.
Conversely, when ∆L > 0, the left half-slit is closer to the
observer plane, the formula with a positive parameter A pro-
duces a smaller width for the right fringe. For left fringes, the
formula should also work well if parameter A takes a negative
value.

Fig. 4: Fitting of experimental data with the proposed formula.

However, experimenting with different transverse width
of slit shows that the impact of ∆L on ∆y is very sensitive
to this width. A smaller transverse width D′ (with λ and L
unchanged) corresponds to a significantly larger ∆y′ and dra-
matically smaller ∆L′, suggesting that the impact of ∆L on ∆y
is inversely constrained by width D. Considering this as well
as the approximation for a small θ, we upgrade the formula
to:

∆y =
Lλ

D + A ∆L/D
. (6)

Next, we confront this formula with data. With experi-
mental measurements of D, L, ∆L and ∆y, as well as known
λ, we can fit the data with the above formula. The fitting
results are shown in Fig. 4.

The red dash curves are the automatic fitting based on the
least squares method. Overall, this fitting is pretty good, and
the fitted parameter A has the expected sign: negative value
for the left fringes and positive value for right fringes. How-
ever, the absolute values of the two fitted parameters differ
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considerably by about 2.5 times.
The automatic fitting fits the data especially well for the

parts of high fringe width. However, the measurement for
high fringe width is relatively less reliable for two reasons.
One is that only one or very few fringes are visible so the
method of reducing measurement error by averaging a num-
ber of fringe widths is not applicable. The other reason is
that the sizes of the first and the last fringes differ consider-
ably in some cases (see rows 4 and 5 in Table 1). Consider-
ing these factors, we can improve the fitting by giving more
weights to smaller fringe widths, which are obtained by aver-
aging a number of fringes at a given longitudinal separation.
The weighted fittings are shown in green solid curves, which
fit much better the data at small widths.

The parameter values of weighed fitting for the left and
right fringes are closer compared with the auto fitted val-
ues. Although the absolute parameter values for left and right
fringes data are of the same magnitude, they still differ by
50 percent. Since the fitting for both left and right fringes is
based on the same value of L, D, ∆L, λ, the significant dif-
ference in fitted parameter values for both sides suggest that
some other factors may also affect fringe width.

5 Conclusion

Performing the same experiments with slits of different trans-
verse widths and with light of different wavelengths, we find
that the experiment data fit well with the proposed formula.
However, the fitted parameter values are quite different, sug-
gesting other factors may play a significant role. Future ex-
periments may find missing variables and fit a constant pa-
rameter for experiments of all settings.

Received on December 11, 2023
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