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Here we list three options that General Relativity has proposed over the past decade to
explain the non-linear cosmological redshift, observed by astronomers. 1) If the redshift
law is linear for nearby galaxies, then turns into exponential for distant galaxies, and
triangulation of galaxies reveals non-zero curvature of space, then our Universe is an
expanding Friedmann world. 2) If the linear redshift law turns into parabolic for distant
galaxies, then our Universe is a static de Sitter world with λ> 0, in which the physical
vacuum has a positive density, the observable curvature of space is positive, and the non-
Newtonian gravitational forces acting there are repulsive forces increasing with distance
(which cause photons to lose energy as they move). 3) If for distant galaxies the linear
redshift law turns into exponential, but triangulation of galaxies does not reveal even
the slightest curvature of space, then our Universe has a flat space, where the redshift in
the spectra of distant objects is due only to the fact that the light-like sub-space (home
of photons) of any metric space-time rotates with the speed of light, thereby creating a
repulsive centrifugal force (which causes photons to lose energy as they move). In this
case, any particular space metric creates only an addition to the exponential redshift
law, which must take place even in a flat unperturbed space.

Cosmological redshift was discovered by Vesto Slipher (Flag-
staffObservatory, Arizona), who first registered it on Septem-
ber 17, 1912 in the spectrum of Andromeda Nebula M31 [1],
then over subsequent years in the spectra of other galaxies
[2, 3]. Slipher’s discovery of the cosmological redshift and
the key contribution of his measurements into the discovery
of the redshift law are explained in detail in the comprehen-
sive 2013 surveys [4–6].

Slipher explained this result by the Doppler effect, saying
that most galaxies move away from the observer with high
velocities (therefore their spectra become redshifted). A few
years after the discovery in the early 1920s, a number of sci-
entists came up with the idea of explaining the cosmological
redshift in the framework of one of the cosmological mod-
els proposed by the General Theory of Relativity. They all
tried to deduce the dependence of the redshift and the corre-
sponding radial velocity of galaxies on their distance from the
observer as the Doppler effect in the framework of de Sitter’s
cosmological model. These were researchers such as Lud-
wik Silberstein, Knut Lundmark, Carl Wirtz, Edwin Hubble,
Willem de Sitter. Their work is discussed in detail in recent
historical studies by Michael Way, Harry Nussbaumer, Cor-
mac O’Raifeartaigh and their co-authors (if any), which are
referred here in context of the discovery of the redshift law
(see References).

Abbé Georges Lemaı̂tre was one of the researchers. After
his “Docteur en Sciences” graduation from Université catho-
lique de Louvain à Bruxelles and being ordained as a diocesan
(secular) priest, he spent 1923–1925 outside Belgium. During

1923 he was a research associate in astronomy with Arthur
Eddington at the Cambridge Observatory in England, then
during 1924 — with Harlow Shapley at the Harvard Observa-
tory (Massachusetts). Eddington introduced Lemaı̂tre to the
General Theory of Relativity and relativistic cosmology, and
with Shapley he studied the spectra of galaxies.

Returning to Belgium in 1925, Lemaı̂tre, like his afore-
mentioned predecessors, tried to explain the observed cosmo-
logical redshift in the framework of de Sitter’s cosmological
model. This is a spherical universe of constant curvature filled
with the physical vacuum called the λ-field, which is given by
the λ-term in de Sitter’s space metrics. Such a universe is usu-
ally static (λ= const), but can also be expanding if the λ-term
and the space curvature (it is proportional to λ), having the
same numerical value at any point in space, are proportional
to the expansion rate, i.e., they depend on time (the case con-
sidered by Lemaı̂tre and his predecessors). Galaxies in an
expanding universe are scattering away from the observer, so
their observed spectra must be redshifted due to the Doppler
effect. But, following his predecessors, Lemaı̂tre had come to
an unsatisfactory result. He had deduced the same linear red-
shift law as Silberstein before him. But the obtained solution
becomes invalid at the coordinate origin and even at a small
distance from it, and also there the light source and the ob-
server cannot be swapped (the solution depends on the coor-
dinates). This means that, if the λ-term and the space curva-
ture depend on time (the universe is expanding or compress-
ing), then they can have the same numerical values at any
point in space only if the space is either inhomogeneous or
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anisotropic (or both) thereby contradicting the conditions of
spherical symmetry and isotropy, which are assumed in de
Sitter’s metric. In other words, Lemaı̂tre had proved that the
studies of his predecessors, in which they tried to deduce the
Doppler redshift in an expanding de Sitter universe, lead to
nonsense. Lemaı̂tre explained all of the above in his 1925
paper [7], which was then reprinted in 1926 [8].

The mentioned defeat does not mean that de Sitter’s met-
ric itself is bad, but is due to the fact that this metric can only
be static. Whereas the Doppler redshift, which Lemaı̂tre and
his predecessors tried to deduce, is specific to such a space
metric that initially depends on time.

Therefore in 1926, Lemaı̂tre immediately turned to Fried-
mann’s cosmological model of an expanding (or compress-
ing) universe [9, 10], since the Doppler redshift naturally ac-
companies the expansion of space. This model describes an
approximately empty spherical universe (with no islands of
mass or distributed substance), which is expanding or con-
tracting on its own. Success awaited Lemaı̂tre on this path.
He assumed that the Friedmann universe is expanding with a
constant radial velocity, then easily expressed the expansion
velocity from Friedmann’s space metric and substituted it into
the Doppler law known from classical physics. As a result,
Lemaı̂tre had obtained a linear relationship between the cos-
mological redshift in the spectra of galaxies and the distance
from them to the observer, which means a linear redshift law
according to which the redshift for distant galaxies is greater
than for nearby ones and increases proportionally to the dis-
tance. Then, using Slipher’s measurements, he had estimated
the numerical value of the constant coefficient in this linear
relationship, which is now known as the Hubble constant.
Lemaı̂tre reported these results, including the discovery of
the redshift law and the estimation of the redshift law con-
stant, in his fundamental 1927 paper published in Annales de
la Societe Scientifique de Bruxelles [11]. But this publication
in the obscure French-language journal was not noticed in the
scientific community.

Two years later, Edwin Hubble published his 1929 paper
[12] that brought him worldwide fame. In this paper, with a
number of omissions because he was never fluent in General
Relativity, Hubble repeated the results obtained by Lemaı̂tre,
including the linear redshift law and the redshift law constant
estimated using Slipher’s measurement data. Hubble did not
refer to his use of Slipher’s measurements and Lemaı̂tre’s
1927 paper in which Lemaı̂tre reported his discovery of the
redshift law. Therefore, the redshift law later became known
as Hubble’s law or the Hubble redshift.

When in 1931 an English translation of Lemaı̂tre’s 1927
paper was submitted through Eddington to the Monthly No-
tices of the Royal Astronomical Society, the passages about
his discovery of the redshift law and his estimate of the red-
shift law constant were removed by the editor because these
results had already been attributed to Hubble. Finally, the En-
glish translation of Lemaı̂tre’s 1927 paper was published [13],

but with significant censorship. In the same issue of the jour-
nal, Lemaı̂tre also published another paper [14], in which he
outlined the details of his theory of the expanding Universe;
a short version of the second article was then reprinted in
French [15]. Lemaı̂tre did not discuss the above editorial de-
cision: as a truly good Catholic, he always believed that “God
hath commanded so” and never tried to defend his authorship
of the redshift law and the redshift constant.

This story was known to a narrow circle of scientists back
in the 1980s [16]. Then in the early 2000s, Hubble’s author-
ship of the redshift law was publicly questioned in favour of
Lemaı̂tre in the 2003 article [17] and the detailed 2009 book
[18] on this subject. This drama was revealed in full power
in 2011 by two historians of science [19, 20], which caused
widespread resonance in the scientific community in the same
2011 thanks to the science news reports on this subject, which
were first published in Forbes [21], then — in Nature News
[22, 23] and Nature [24]. All this in 2011–2013 led to a revi-
sion of Hubble’s rôle in this discovery and the recognition of
Lemaı̂tre’s authorship of the redshift law with the key contri-
bution of Slipher’s measurements; see [25–29] for example.

In the century passed since Slipher’s measurements, ob-
servational astronomy techniques and observational equip-
ment have made significant progress. Astronomers now have
a vast amount of data on the redshifts and radial velocities of
galaxies (instead of only a few dozens known in the 1920s).
As a result, in the last two decades, astronomers claim about
the possible existence of a deviation from the linear redshift
law, which needs a theoretical explanation: see, for example,
the surveys [30–32] on this subject and the original research
results referred therein.

However, if following the same way of theoretical expla-
nation as Lemaı̂tre and his predecessors did, we arrive at a
problem. The essence of the problem is that neither Lemaı̂tre
nor his predecessors deduced the cosmological redshift law
directly from the specific space metric that they chose. In
essence, they merely postulated that the redshift occurs in
the spectra of galaxies due to their scattering away from the
observer, i.e., due to the Doppler effect. They followed the
“two-step path” of mathematical deduction. At the first stage
of their deduction, they somehow extracted the expansion rate
of the Universe from the specific space metric that they chose
(as the change rate of the curvature radius of space). Then
they merely substituted this speed into the Doppler effect for-
mula known from classical physics, and thus obtained the
cosmological redshift law. This is what Lemaı̂tre did, and
this is what his predecessors did. It cannot be said that such a
method is very consistent with theoretical physics, since the
origin of the cosmological redshift is initially postulated as
a result of the Doppler effect in scattering galaxies in an ex-
panding universe, and also a “mixture” of classical physics
and General Relativity is used in the derivation.
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If, in solving a physics problem, we decide to solve, say,
the forced oscillation equation, we are essentially postulating
that the cause of this effect lies in forced oscillations, and then
we obtain a solution that automatically “confirms” the ini-
tially postulated forced oscillations. In other words, if we ini-
tially postulate the origin of the cosmological redshift effect,
say, as a result of the Doppler effect or something else, then
no matter what mathematical operations we perform next, we
get the same effect that we postulated at the beginning, but
only expressed in a mathematically more extended and ele-
gant form.

Therefore, if we like to find the truly origin of the cosmo-
logical redshift effect, we should newer postulate its origin.
In addition, in order to be honest, if we like to deduce the
cosmological redshift law as a space-time effect, i.e., as an
effect in the framework of a cosmological model provided by
General Relativity, we should follow only with the equations
of General Relativity, and never use the equations and laws
of classical physics (such as the Doppler effect formula). In
other words, the cosmological redshift law should be obtained
from the equations of General Relativity, and without any pre-
liminary assumptions about its origin. This is the solely right
way how to do things in theoretical physics.

In this letter, we list the newest solutions that are most fit
for explaining the observed cosmological redshift, including
its non-linearity. These solutions have been obtained since
2009 using the same original derivation method that has never
been used for this purpose before — solving the scalar geo-
desic equation (energy equation) for a photon travelling from
a source to an observer in the space-time of General Relativ-
ity. These solutions were obtained using only the equations of
General Relativity, and without any prior assumptions about
the nature of the cosmological redshift.

The solutions are different only because of the geometric
structure of space, which is different for different space met-
rics (cosmological models). In other words, the mathemati-
cal derivation merely follows the geometric structure of the
space in which it is performed. Thus, the resulting redshift
law merely shows how the frequency of a travelling photon
changes according to the geometric structure of the particular
space (cosmological model) in which the photon travels.

The mentioned new method used to derive the cosmo-
logical redshift law dates back to our research studies of the
1990s, which we summarized in 2001 in our two monographs
[33, 34]. The first monograph focuses on the geodesic (free)
motion of mass-bearing and massless (light-like) particles in
the space-time of General Relativity, and the second mono-
graph examines their non-geodesic (non-free) motion.

As always in our studies we used the mathematical appa-
ratus of chronometric invariants, which are physically observ-
able quantities in the space-time of General Relativity. Such
quantities are obtained as the projections of four-dimensional

(general covariant) quantities onto the three-dimensional spa-
tial section and the time line associated with a particular ob-
server and his laboratory. Such quantities depend on the ge-
ometric and physical properties of the real physical space of
the observer, as well as the laboratory standards to which he
compares his measurement results. Therefore, if we have all
quantities and equations of General Relativity expressed in
the chronometrically invariant form, then we do not need to
think about which of the obtained solutions are physically ob-
servable (that was a common problem in General Relativity
in the past), since all the obtained solutions are, by defini-
tion, measurable on practice. The mathematical apparatus
of chronometric invariants is also known as the Zelmanov
chronometric invariants in honor of Abraham Zelmanov, who
developed it in 1944; see our detailed survey of chronometric
invariants [35] and references therein.

As for the mentioned new method used to derive the cos-
mological redshift law, it is simple.

The four-dimensional equations of motion of a particle in
space-time have two physically observable projections. The
projection onto the time line of the observer is a scalar equa-
tion showing how the particle’s energy changes in time, de-
pending on the properties of the observer’s space. In other
words, this is the energy equation of the particle. The pro-
jection onto the spatial section associated with the observer
(his three-dimensional space) is the three-dimensional vector
equation of motion of the particle, which also depends on the
properties of the observer’s space.

Integrating the scalar equation of motion (energy equa-
tion) of mass-bearing particles, Dmitri in 2009–2011 derived
that the observable masses of cosmic bodies depend on their
distance from the observer. He had called this the cosmo-
logical mass-defect [36], which is a new effect predicted ac-
cording to General Relativity. The cosmological mass-defect
depends on the specific metric of space, i.e., on the geomet-
ric structure of the specific space (particular cosmological
model). Dmitri had calculated the cosmological mass-defect
in the space of the most commonly used space metrics (cos-
mological models), such as Schwarzschild’s mass-point met-
ric, Reissner-Nordström’s metric of the space of an electri-
cally charged mass-point, Gödel’s metric of the rotating space
with self-closed time-like geodesics, Schwarzschild’s metric
inside a sphere filled with an incompressible liquid, de Sit-
ter’s metric inside a sphere filled with the physical vacuum,
Einstein’s metric inside a sphere filled with an ideal liquid
and the physical vacuum, and also Friedmann’s metric of a
deforming (expanding or compressing) space.

Accordingly, by integrating the scalar equation of motion
(energy equation) of a massless light-like particle, such as a
photon, we obtain its physically observable frequency as a
function of the travelled distance. This is the way to derive the
cosmological redshift law in the space of any specific metric
(particular cosmological model), without any prior assump-
tions about the nature of the cosmological redshift. This is
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how Dmitri in 2011 derived the cosmological redshift law in
the space of each of the aforementioned cosmological mod-
els [37] (see also his 2012 short paper [38]), by analogy with
the cosmological mass-defect.

The above work [37] has its own background and contin-
uation. A year earlier, in 2010, Larissa considered a Sitter
sphere in the state of gravitational collapse (its radius coin-
cides with its gravitational radius). She showed that a de Sit-
ter collapsar (de Sitter bubble) is fit to the observed Universe
[39]. Integrating the scalar equation of motion (energy equa-
tion) of photons, based on her de Sitter bubble model, showed
a parabolic redshift law [37, §6], which remains valid outside
the state of gravitational collapse. Then in 2013, in our mono-
graph on astrophysics [40, §6.4–6.5] (§5.1 in the 1st edition),
we proved that the parabolic redshift law takes place a de Sit-
ter space, in which λ> 0, the physical vacuum has a positive
density, and the observable curvature radius of space is posi-
tive (otherwise it is a blueshift). Our redshift studies in a de
Sitter universe were summarized in a short paper in 2018 [41]
and then in an extended paper in 2023 [42].

The same method as above for deriving the cosmological
redshift law was used in the 2009 papers [43–45], in which
Dmitri had derived an exponential cosmological redshift due
to the global non-holonomity of space.

The term holonomity dates back to Schouten’s theory of
non-holonomic manifolds and was first used in General Rela-
tivity in 1944 by Zelmanov [35]. If the time lines that “pierce”
a three-dimensional spatial section are everywhere orthogo-
nal to it, then the space (space-time) is holonomic. Otherwise
it is non-holonomic. Zelmanov had proved that g0i , 0 in non-
holonomic spaces, which manifests itself in the form of a ro-
tation of the spatial section (three-dimensional space) with a
speed depending on g0i, and this rotation cannot be removed
by coordinate transformations. See [35] for detail.

Dmitri had showed in the third paper [45] that although
each particular space (space-time) has its own specific metric
and does not necessarily have a three-dimensional rotation,
its light-like sub-space (home of photons) always rotates with
the speed of light (varying depending on the gravitational po-
tential). The light-speed rotation of the light-like space can-
not be removed by coordinate transformations and is due to
the sign-alternating structure of any space-time metric (which
distinguishes the time axis from the spatial coordinate axes).
In other words, the light-like space (in which photons travel)
is always strictly non-holonomic. This rotation creates a cen-
trifugal force that affects only particles in the light-like space
(such as photons). By assuming the mentioned rotation when
integrating the scalar equation of motion (energy equation)
of photons, Dmitri had derived the exponential redshift law.
This law should take place even in a flat unperturbed space
(space-time), while each particular space metric creates only
an addition to the exponent.

As for the origin of the cosmological redshift and the cos-
mological mass-defect, it can be understood from the scalar

equation of motion (energy equation), which for photons and
mass-bearing particles has the form, respectively,

dω
dτ
−
ω

c2 Fi ci +
ω

c2 Dik cick = 0 ,

dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk = 0 ,

in which m is the relativistic mass of a mass-bearing particle,
travelling with the velocity vi= dx i

dτ , and ω is the frequency of
a photon (photons travel with the velocity of light ci= dx i

dτ , for
which ci ci = c2 = const).

If the space is static (the tensor of the space deformation
rate is Dik = 0), then dτ is reduced in the equations, which
then are integrated with respect to the radial coordinate x1 = r.
As a result, we obtain the mass-bearing particle’s mass m and
the photon’s frequency ω as a function of the distance r from
the observer (for whom r= r0 = 0).

If the gravitational inertial force is Fi = 0 (there is no grav-
itational field and rotation of space), but the space is deform-
ing (expanding or compressing), then when multiplying the
equations by the metric tensor hik, the multiplier hik cick = c2

is reduced and the equations are integrated with respect to the
travel time τ. In this case, we obtain the mass-bearing parti-
cle’s mass m and the photon’s frequency ω as a function of
the time t travelled from the source (where t= t0 = 0) to the
observer (which is the reverse path of integration, changing
the sign of the integration result).

Therefore, the origin of the cosmological redshift and the
cosmological mass-defect is clearly seen from the equations.
If the gravitational inertial force, consisting of a term given by
the gravitational potential and a term given by the centrifugal
force, is a force of repulsion (F1 > 0) or the space is expanding
(D11 > 0), then the repulsive force decelerates photons travel-
ling to the observer, thereby producing a loss of the photon
energy E = ℏω (photon redshift). In the case of mass-bearing
particles such as cosmic bodies, their masses (and energies
E =mc2) registered by the observer are less than their actual
masses (and energies) at their distant locations.

Otherwise, if the gravitational inertial force is a force of
attraction (F1 < 0) or the space is compressing (D11 < 0), then
the force accelerates photons travelling to the observer, there-
by producing a gain of their energy (photon blueshift), and the
masses of distant cosmic bodies registered by the observer are
greater than their actual masses at their distant locations.

This means that both the cosmological mass-defect and
the cosmological redshift arise from the specific geometric
structure of each particular space.

Below we list three different solutions for the cosmologi-
cal redshift law, which can be considered to fit to the observed
Universe. The first two were derived in 2011 [37], while the
third solution — in 2009 [43–45], all using the above method
of integrating the scalar equation of motion (energy equation)
for photons.
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Cosmological redshift in an expanding Friedmann uni-
verse. In such a universe, the frequency ω of a photon regis-
tered by an observer away from the emitted photon is

ω = ω0 e
− Ṙ

R
t
,

where R is the curvature radius of space (the Universe’s radius
in this case), and Ṙ is the rate of its expansion. This exponent-
ial law transforms into the linear

ω ≃ ω0

(
1 −

Ṙ
R

t
)

at short duration of the photon’s travel (and, respectively, at
small distances from the photon’s emitter to the observer).

We see from the above formulae that the photon’s fre-
quencyω registered by the observer is lower that its frequency
ω0 at the initial moment of time t= t0 = 0, when it was emitted
by a source in the far cosmos. The farther the photon’s emitter
is located from the observer, the lower the photon’s frequen-
cy ω registered by him: the photon’s frequency is redshifted
upon arrival at the observer.

The above formulae for the photon’s frequency result in
the exponential redshift law

z =
ω0 − ω

ω
= e

Ṙ
R

t
− 1 , z > 0 ,

which transforms into the linear redshift law at short duration
(and small distances) of the photon’s travel

z ≃
Ṙ
R

t .

As was shown in [37], the above formulae for the photon’s
frequency and redshift are the same in both a constant-speed
expanding Friedmann universe (Ṙ= const) and a constant-
deformation Friedmann universe (where Ṙ

R = const).
So, the cosmological redshift in an expanding Friedmann

universe increases with distance to cosmic bodies according
to the exponential redshift law, which transforms into the lin-
ear redshift law at short duration (and small distances) of pho-
tons’ travel.

Here we should make a short remark about Lemaı̂tre’s lin-
ear redshift law. With all our respect to Georges Lemaı̂tre, he
did not solve any equations. His 1927 paper focused on how
to find the expansion rate of the Universe from Friedmann’s
metric. Then he substituted this rate into the Doppler redshift
formula taken from classical physics. In fact, he merely re-
named the emitter’s velocity in Doppler’s formula as the ex-
pansion rate of the Universe (and justified this renaming by
showing how the expansion rate is found from Friedmann’s
metric). But by doing this, Lemaı̂tre could not obtain any-
thing other than the linear redshift law, because it initially
follows from Doppler’s formula at the velocity of the emitter,
much lower than the velocity of light.

In contrast to what Lemaı̂tre did, the exponential redshift
law formula that above is a mathematical solution obtain-
ed directly by solving the scalar equation of motion (energy
equation) for photons travelling in an expanding Friedmann
universe. It was derived without any prior assumptions about
the form of the redshift law. This is the solely right way how
to do things in theoretical physics.

The said does not affect the memory about Abbé Lemaı̂tre
as an outstanding scientist and good Catholic, an exemplar of
human decency and honesty, and does not diminish his fun-
damental contribution to relativistic cosmology.

Cosmological redshift in a static de Sitter universe. In a de
Sitter universe, the frequency ω0 of a photon registered by an
observer (for whom r= r0 = 0) upon its arrival is also lower
than its frequency ω at the location of its distant source, from
which it was emitted. This dependence is expressed with the
parabolic (square) law

ω =
ω0√

1 − λr2

3

,

which at small distances r between the photon’s source and
the observer transforms into the simplified law

ω ≃ ω0

(
1 +
λr2

6

)
.

The farther the emitter is located from the observer, the
lower the photon’s frequency ω0 registered by him. Thus, the
photon’s frequency is redshifted upon arrival at the observer
in a de Sitter universe.

These formulae for the photon’s frequency result in the
parabolic (square) redshift law

z =
ω − ω0

ω0
=

1√
1 − λr2

3

− 1 , z > 0 ,

which at small distances r takes the simplified form

z ≃
λr2

6
.

At the ultimately large distance in space (event horizon,
where r= a), which is determined in a de Sitter universe by
the condition λr2

3 =
λa2

3 =1, the photon’s frequency and red-
shift are maximum: ωmax =∞ and zmax =∞.

So, the cosmological redshift in a static de Sitter uni-
verse increases with distance to cosmic bodies according to
the parabolic (square) redshift law.

This redshift law depends on the sign of the λ-term and,
accordingly, the sign of the density of the physical vacuum
(which is the filler of de Sitter space) and the sign of the phys-
ically observable curvature of space (since these quantities
are connected with λ). It was proved in [40, §6.4–6.5] (§5.1 in
the 2013 edition) and then summarized in [41, 42] that the
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cosmological redshift (z> 0) takes place in a de Sitter uni-
verse, where λ> 0, the physical vacuum has a positive den-
sity (like substance, and not a negative density like field), the
curvature radius of space is positive (the geometry of space is
spherical, and not hyperbolic), and the non-Newtonian gravi-
tational forces that act in any de Sitter space and increase with
distance from the observer are repulsive forces. These repul-
sive forces cause photons to lose energy as they travel to the
observer, thereby producing a redshift in the frequency of the
photons. Otherwise (if λ< 0), there is not a cosmological red-
shift, but a blueshift (z< 0) and the curvature radius of space
takes an imaginary numerical value (the geometry of space is
hyperbolic).

Cosmological redshift due to the global non-holonomity of
the light-like space. The term non-holonomity dates back to
Schouten’s theory of non-holonomic manifolds and was first
used in General Relativity in 1944 by Zelmanov. If the time
lines that “pierce” a three-dimensional spatial section are ev-
erywhere orthogonal to it, then the space (space-time) is holo-
nomic. Otherwise it is non-holonomic. Zelmanov had proved
that g0i = 0 in holonomic spaces and g0i , 0 in non-holonomic
spaces. The latter manifests itself as a rotation of the spatial
section (three-dimensional space) with a speed depending on
g0i, which cannot be removed by coordinate transformations.
For detail, see our survey [35] and references therein.

It was proved [45] that the light-like sub-space of any
space-time metric rotates with the speed of light, thereby cre-
ating a repulsive centrifugal force. This repulsive force only
acts on particles in the light-like space (i.e., photons) in the
direction away from the observer (coordinate origin), thereby
causing photons to lose energy and frequency as they travel
to him

ω = ω0 e−Ω t
, Ω ≡ H0 ,

resulting in the exponential redshift law

z =
ω0 − ω

ω
= eΩ t

− 1 , z > 0 ,

where ω0 is the photon’s frequency at the initial moment of
time t= t0 = 0, when it was emitted by a distant source in the
cosmos, ω is its frequency upon arrival at the observer, and Ω
is the angular rotational velocity of the light-like space due
to its global non-holonomity (light-speed rotation), which is
equal to the Lemaı̂tre-Hubble constant H0 = 2.3±0.3× 10−18

sec−1 (as measured in the framework of the Hubble Space Te-
lescope Key Project for 2001 [46]).

We see that the repulsive centrifugal force, which is al-
ways present in the light-like space (home of photons) due to
its light-speed rotation, causes a redshift (loss of energy) in
the frequency of a photon arrived from a distant source at the
observer. The farther the photon’s emitter (and longer is its
travel time t), the lower the photon’s frequency ω registered
by the observer upon its arrival.

At short duration (and small distances) of the photon’s
travel we have the linear approximation for the photon’s fre-
quency

ω ≃ ω0 (1 − H0 t)

and the linear redshift law

z ≃ H0 t .

So, the cosmological redshift due to the light-speed rota-
tion of the light-like space (its global non-holonomity) increa-
ses with distance to cosmic bodies according to the exponen-
tial redshift law, which at short duration (and small distances)
of photons’ travel transforms into the linear redshift law.

Since the light-like space rotates with the speed of light
due to only the sign-alternating structure of any space-time
metric (which distinguishes the time axis from the spatial co-
ordinate axes), and this rotation cannot be removed by coordi-
nate transformations, the above exponential redshift law and
its linear approximation at small distances should take place
even in a flat unperturbed space. Any particular space met-
ric should create only an addition to the above exponential
redshift law, straightening this exponential curve or making it
more curved.

Thus, the following three versions have been proposed
according to General Relativity to explain the observed non-
linear cosmological redshift law.

1. If the redshift in the spectra of nearby galaxies in-
creases linearly with distance to them, then it turns into expo-
nential for distant galaxies, and triangulation of galaxies re-
veals non-zero curvature of space, then our Universe is an
expanding Friedmann world. In this case, photons lose en-
ergy as they travel to the observer due to the fact that they are
decelerated by the expansion of space.

2. If the linear redshift law turns into parabolic for distant
galaxies, then our Universe is a static de Sitter world with
λ> 0, in which the physical vacuum has a positive density,
the observable curvature is positive, and the non-Newtonian
gravitational forces acting there are repulsive forces increas-
ing with distance from the observer (which cause photons to
lose energy as they travel to the observer).

3. If for distant galaxies the linear redshift law turns into
exponential, but triangulation of galaxies does not reveal even
the slightest curvature of space, then our Universe has a flat
space, where the redshift in the spectra of distant objects is
due only to the light-speed rotation of the light-like sub-space
(home of photons) in any metric space-time, which creates a
repulsive centrifugal force causing photons to lose energy as
they travel to the observer. But in this case we should assume
that the device with which the observer measures the redshift
is connected with a light-like reference frame, which creates a
problem for an ordinary observer, since he and his laboratory
reference frame are related to ordinary substance.
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Which of the above three options best explains the cosmo-
logical redshift in our Universe will be decided in accordance
with astronomical observations.

Submitted on February 5, 2024
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