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Using the chronometrically invariant notation of General Relativity (chronometric in-
variants are the physically observable projections of four-dimensional quantities onto
the time line and the three-dimensional space of an observer), we deduce Galileo’s
principle and Newton’s law of gravitation as a particular case of the chr.inv.-formula for
the gravitational inertial force acting in the four-dimensional pseudo-Riemannian space
(space-time of General Relativity). This is a “mathematical bridge”, connecting the em-
pirical laws of Newton’s theory of gravitation with the purely geometric laws of Gen-
eral Relativity. We also show that the origin of the gravitational field in the space of the
Schwarzschild mass-point metric is a spherical surface that surrounds any mass-point
at a very small radius, equal to the gravitational radius calculated for the mass. There, on
the spherical surface, a breaking of the three-dimensional observable space takes place,
and the observer’s physical observable time stops. It is not possible to get these results
using the general covariant notation of General Relativity, because physically observ-
able quantities in the general covariant notation are not mathematically defined.

We dedicate this article to Prof. Kyril Stanyukovich
(1916 –1989), our long friendly conversations with
whom in the 1980s formed the basis of this study 40
years later and prompted us to write this article.

1 Problem statement

Our closest colleague, patron and friend over decades was
Prof. Kyril Stanyukovich (1916 –1989). In addition to his
groundbreaking works on gas dynamics and super-powerful
non-nuclear ammunition, he was also a prominent researcher
in the field of General Relativity; see [1–4] and References
therein. Over many years in the 1980s, he repeatedly focused
our attention onto a still unsolved problem: in the framework
of Riemannian geometry (which is the basis of General Rela-
tivity), the fundamental laws of Newtonian classical mechan-
ics have not yet been mathematically deduced as an unam-
biguous special case of the purely geometric laws of General
Relativity.

This problem was also pointed out earlier by Alexei Pet-
rov (1910–1972), the outstanding scientist in the field of Gen-
eral Relativity, who in 1950 introduced an algebraic classifi-
cation of the spaces (and the gravitational fields) known in the
framework of General Relativity [5–8]. This classification is
called the Petrov classification of Einstein spaces thanks to
his monograph Einstein Spaces [7], first published in 1961.

In our personal opinion, the fundamental laws of New-
tonian classical mechanics have not yet been deduced as a
special case of the geometric laws of General Relativity only
because the researchers, who worked on this problem earlier,
used the general covariant notation of General Relativity. In
the framework of the general covariant notation, physically
observable quantities are not mathematically determined. As

a result, there is no clear mathematical transition from the
four-dimensional quantities of General Relativity to the three-
dimensional quantities of Newton’s theory, which are measur-
able in experiment.

In this paper, we will solve the mentioned problem using
the chronometrically invariant notation of General Relativity,
i.e., the mathematical apparatus of chronometric invariants,
which are mathematically determined as physically observ-
able quantities in the four-dimensional pseudo-Riemannian
space (space-time). To do this, we compare the mathematical
basis of Newton’s theory of gravitation with the mathemat-
ical basis of General Relativity. This comparison will allow
us to consider the fundamental laws of Newton’s theory as the
three-dimensional spatial projections of the four-dimensional
(space-time) laws of General Relativity.

2 The mathematical basis of Newton’s theory of gravita-
tion and that of Einstein’s theory of relativity

It is well known that Newton’s theory of gravitation and Ein-
stein’s theory of relativity are based on different mathemati-
cal foundations. The bases of both theories are sets, each of
which has its own method of measuring infinitely small dis-
tances ds between its elements (points). Such sets are called
metric spaces, and the quantity ds2 is called the space met-
ric. Metric spaces play a huge rôle in topology, geometry,
and in the sections of theoretical physics where we study the
structure of space and time.

Newton’s fundamental laws, including the Law of Univer-
sal Gravitation, are formulated in the framework of the three-
dimensional flat, homogeneous and isotropic (Euclidean)
space E3. Such a space allows the existence of inertial ref-
erence frames: in an inertial reference frame, free bodies
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either travel uniformly and rectilinearly or are at rest rela-
tive to the observer. In any inertial reference frame, time is
homogeneous, and space is homogeneous and isotropic. The
homogeneity of time means uniformity of its pace. The ho-
mogeneity of a space means the equality of all its points, and
the isotropy of a space means the equality of all directions
in it. The homogeneity and isotropy of space follow from
Newton’s first law (the law of inertia), which says: “if in the
region, where inertial reference frames exist, no forces act on
a body, or all forces acting on the body balance each other,
then the body is either at rest or travels rectilinearly and uni-
formly”.

In a three-dimensional flat space E3 (Euclidean space),
the square of the length of an elementary three-dimensional
interval ds, characterizing the distance between two infinitely
close points of the space, in the Cartesian coordinates x, y, z
has the form

ds2 = dx2 + dy2 + dz2, (1)

where the numerical value of ds2 can only be positive and,
hence, the three-dimensional interval ds is always a substan-
tional quantity. The metric (1) is called positive definite, and
the space E3 described by it is properly Euclidean. Here the
word “properly” means that all basis vectors of E3 have sub-
stantional lengths. The three-dimensional curvature of the
space E3 is zero. For this reason, the space E3 is flat. The
condition ds2 = 0 is satisfied only in the coordinate origin
x = y = z = 0.

The laws of Newtonian classical mechanics, including
Newton’s law of gravitation, are formulated in the framework
of a flat three-dimensional (Euclidean) space E3.

Einstein’s theory of relativity was created to describe
space and time as a single entity, which is “space-time”. The
necessary prerequisites for Einstein’s theory were obtained
in the works of several other scientists, mainly in the works
authored by Hermann Minkowski and Henri Poincaré. The
basis of the theory is the four-dimensional curved pseudo-
Riemannian space V4. The prefix “pseudo” in this case indi-
cates the fundamental difference between the mathematical
basis of Newton’s theory and the mathematical basis of Ein-
stein’s theory: this prefix means that one coordinate basis
vector (time basis vector) has an imaginary length, and three
other three-dimensional (spatial) basis vectors have substan-
tional lengths (or vice versa, which is the same).

Initially, Einstein created the Special Theory of Relativity,
the mathematical basis of which is the flat four-dimensional
pseudo-Euclidean space E4, later called the Minkowski space.
The Minkowski space is a simplest particular case of four-
dimensional pseudo-Riemannian spaces, which is homoge-
neous and isotropic, while its four-dimensional curvature is
zero: the three-dimensional subspace of the Minkowski
space may be non-uniform and anisotropic in one reference
frame, but these factors in the Minkowski space depend on
the observer’s reference frame and, therefore, they can be re-

duced to zero simply by choosing another different reference
frame. Bodies that are not affected by external forces travel
uniformly and rectilinearly in the Minkowski space.

The Minkowski space is described by the metric

ds2 = – (dx0)2 + (dx1)2 + (dx2)2 + (dx3)2, (2)

where x0 = ct is the time coordinate, in which c is the velocity
of light, t is the ideal (uniform) coordinate time, and x1 = x,
x2 = y, x3 = z are the Cartesian three-dimensional (spatial)
coordinates. In this notation, each of the three-dimensional
spatial basis vectors ei (where i = 1, 2, 3) has a substan-
tional unit length, and the time basis vector e0 has an imag-
inary unit length (e0)2 = –1 or vice versa, depending on
the choice for the space signature (−+++) as in (2) above or
(+−−−) as is most commonly used in General Relativity.

The basic space (space-time) of the General Theory of
Relativity is the curved four-dimensional pseudo-Riemannian
space V4 — the generalization of the flat four-dimensional
pseudo-Euclidean (Minkowski) space E4, which can be inho-
mogeneous, anisotropic, etc. per se, i.e., independently of the
choice of the observer’s reference frame. The laws of Gen-
eral Relativity are formulated in the framework of the curved
four-dimensional pseudo-Riemannian space V4.

The square of the elementary distance ds between two in-
finitely close points (i.e., the space metric) in V4 is expressed
as follows

ds2 = gαβ dxαdxβ =

= g00 dx0dx0 + 2g0i dx0dxi + gik dxidxk, (3)

where α, β = 0, 1, 2, 3 are the space-time (four-dimensional)
indices, i, k = 1, 2, 3 are the spatial (three-dimensional) in-
dices, and gαβ is the fundamental metric tensor of the space
(it is a symmetric tensor, i.e., gαβ = gβα). In the pseudo-
Riemannian space, the time basis vector e0 has the length de-
pendent on the gravitational field potential, and the lengths of
the three-dimensional spatial basis vectors ei depend on the
inhomogeneity and anisotropy of space, i.e., they are not unit
length vectors, in contrast to the four-dimensional pseudo-
Euclidean (Minkowski) space. The factors that deviate the
lengths of the space basis vectors from unit are determined by
the components of the fundamental metric tensor gαβ (while
in the Minkowski space we can always find an inertial ref-
erence frame, in which the diagonal components of gαβ are
units, and its non-diagonal components are zero). The time
component g00 characterizes the gravitational field potential,
the spatial components gik characterize the inhomogeneity
and anisotropy of the observer’s three-dimensional space, and
the mixed (space-time) components g0i characterize the an-
gle of inclination of his three-dimensional space to the lines
of time (the spaces in which this inclination takes place are
called non-holonomic spaces; see Section 3, where we ex-
plain the basics of the theory of physically observable quan-
tities in the space-time of General Relativity). In particular,
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the physically observable time of the observer depends on the
magnitude of the gravitational potential at the place of obser-
vation, and also on the magnitude and direction of the rotation
speed of his three-dimensional physical space (its inclination
to the time line).

As a result of the aforementioned absolute factors of gαβ,
which cannot vanish by choosing an inertial reference frame
in the pseudo-Riemannian space (in contrast to the pseudo-
Euclidean space of Special Relativity), we formulate New-
ton’s first law (the law of inertia) in General Relativity as
follows: “a body can be at rest or travelling rectilinearly and
uniformly only in the absence of the gravitational field, in-
homegeneity and isotropy of space and its rotation (the latter
means the absence of the inclination of the three-dimensional
space to the time lines)”.

3 Physically observable quantities in the space-time of
General Relativity

Before comparing the mathematical foundations of Newton’s
theory of gravitation and Einstein’s theory of relativity, we
must explain the basics of the theory of physically observable
quantities in the four-dimensional pseudo-Riemannian space
(which are also known as the Zelmanov chronometric invar-
iants).

This mathematical apparatus that uniquely determines
physically observable quantities in the space-time of General
Relativity was created in 1944 by Abraham Zelmanov [9–11],
who was our teacher. In addition to Zelmanov’s original pub-
lications, which were very concise, this mathematical appara-
tus was explained in detail by us in a special Chapter given in
each of our three research monographs, originally published
in 2001 [12,13] and 2013 [14]. The most comprehensive sur-
vey of Zelmanov’s mathematical apparatus was published by
us in 2023, in the special paper [15], where we collected ev-
erything (or almost everything) that we know about this math-
ematical apparatus personally from Zelmanov and on the ba-
sis of our own research studies.

Over the past decades, the following problems of General
Relativity have been solved using the mathematical apparatus
of chronometric invariants:

— The theory of non-quantum teleportation in the space-
time of General Relativity [12, 16, 17], the basics of
which were first outlined in 2001 in our book [12] and
then developed in all necessary details in 2022 [17];

— The theory of the direct and opposite flow of time, and
also the three kinds of particles in the space-time of
General Relativity, published in 2001, in the book [12];

— The theory of frozen/stopped light according to Gen-
eral Relativity, which explained the frozen light exper-
iment (2000). This theory was first drafted in 2001, in
the 1st edition of our book [12], then in 2011 published
in all necessary details in our paper [18] and since 2012
added to all subsequent editions of the book [12];

— The cosmological mass-defect — a new effect of Gen-
eral Relativity, predicted in 2011 [19], according to
which the observed masses of cosmic bodies depend
on their distance from the observer if they are at cos-
mological large-scale distances from him (depending
on the specific metric of space);

— The non-linear cosmological redshift, deduced in 2012
[20] for various space metrics, including the Friedmann
expanding universe and the de Sitter static universe.
Three short papers [21–23] were then focused on spe-
cific aspects of the obtained solutions, and a final anal-
ysis of those of them that are most suitable for explain-
ing the non-linear cosmological redshift observed by
astronomers was given in 2013, in the paper [24];

— The deflection of light rays and mass-bearing particles,
and also the length stretching and time dilation in the
field of a rotating body — these are three new effects
of General Relativity, deduced in 2023 [25, 26];

— The condensed matter model of the Sun, created in the
framework of General Relativity, according to which
the space breaking in the gravitational field of the Sun
meets the maximum concentration of the asteroids in
the Asteroid belt. This study was first published in
2009–2010 [27, 28];

— The theory of the internal constitution of stars and the
sources of stellar energy according to General Relativ-
ity, which was first published in 2013, in the book [14];

— The exact solutions, obtained in 2005 to the equations
of deviating geodesics for solid-body and free-mass
gravitational wave detectors [29,30] (different from the
approximate solutions presumed in 1961 by Joseph
Weber). Since 2008, this study was added to all sub-
sequent editions of our book [12]. The obtained solu-
tions are based on the comprehensive theoretical study
of gravitational waves performed during a decade in
1968–1978 [31–33];

— “Zitterbewegung” of travelling electrons, explained in
2023 by Pierre Millette [34] on the basis of the the-
ory of spin-particles in General Relativity, published in
2001 [13, Chapter 4].

For a complete list of the published research studies per-
formed using the mathematical apparatus of chronometric in-
variants as of January 2023, see Bibliography in our compre-
hensive paper on this subject [15].

In short, the essence of Zelmanov’s mathematical appara-
tus of chronometric invariants (known also as the chronomet-
rically invariant formalism) is as follows. Zelmanov unam-
biguously determined physically observable quantities in the
space-time of General Relativity as the projections of four-
dimensional tensor quantities onto the time line and the three-
dimensional spatial section of the space-time, which are as-
sociated with an observer. Such projections remain invariant
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throughout the three-dimensional spatial section associated
with the observer (his observable three-dimensional physical
space), i.e., they are “chrono-metric invariants” in the physi-
cal reference frame of the observer and depend on the phys-
ical and geometric properties of his space, such as the grav-
itational potential, rotation, curvature, etc., which are deter-
mined by the respective components of the fundamental met-
ric tensor gαβ and their derivatives.

The “chronometrically invariant” projections of any four-
dimensional tensor quantity onto the time line and the three-
dimensional spatial section associated with an observer are
calculated using the Zelmanov operators of projection, which
take the physical and geometric properties of the observer’s
space into account (see our comprehensive survey [15] of the
chronomerically invariant formalism for detail).

As a result, the square of the four-dimensional (space-
time) interval ds2 = gαβ dxαdxβ, expressed with chronomet-
rically invariant (physically observable) quantities, has the
form

ds2 = c2dτ2 − dσ2, (4)

where dτ is the chr.inv.-time interval (physically observable
time interval), obtained as the chr.inv.-projection of the four-
dimensional displacement vector dxα onto the observer’s time
line

dτ =
√
g00 dt −

1
c2 vi dxi,

√
g00 = 1 −

w
c2 , (5)

and dσ2 is the square of the chr.inv.-spatial interval (physi-
cally observable three-dimensional spatial interval)

dσ2 = hik dxidxk, (6)

created using the chr.inv.-metric three-dimensional tensor hik

hik = −gik +
1
c2 vivk , hik = −gik, hi

k = δi
k , (7)

which is the chr.inv.-projection of the fundamental metric ten-
sor gαβ onto the observer’s three-dimensional space (the spa-
tial section of the space-time, which is associated with him).
So forth, w is the physically observable chr.inv.-potential of
the gravitational field that fills the observer’s space, and vi is
the three-dimensional vector of the linear velocity of rotation
of the observer’s space

w = c2 (
1 −
√
g00

)
, vi = −

cg0i
√
g00

, (8)

dxi is the elementary interval of the three-dimensional spa-
tial coordinates (i = 1, 2, 3), and vi = dxi/dτ is the chr.inv.-
velocity vector (physically observable three-dimensional ve-
locity), which is different from the three-dimensional coordi-
nate velocity vector ui = dxi/dt.

If all g0i of a four-dimensional (space-time) metric ds2

are zero, then such space-time is holonomic. In this case the
three-dimensional spatial section associated with the observer

(his observed three-dimensional space) is everywhere orthog-
onal to the time lines x0 = ct = const that pierce it. If at least
one of the components g0i of the four-dimensional metric is
different from zero, then such space-time is non-holonomic.
In such a (non-holonomic) space-time, the observer’s three-
dimensional spatial section x0 = const is inclined to the time
lines. In this case, at different points the observed three-
dimensional space can be inclined to the time lines at dif-
ferent angles depending on the local geometric structure of
the particular four-dimensional space-time.

The formula for the physically observable time interval
dτ (5) can therefore be re-written as

dτ =

(
1 −

w + vi ui

c2

)
dt , (9)

where vi ui is the scalar product of the linear rotational veloc-
ity of the observer’s space vi and the three-dimensional coor-
dinate velocity vector ui

vi ui = |vi ||ui | cos (vi ui) , (10)

which means that if the vectors vi and ui are orthogonal to
each other, then their scalar product vi ui = 0. In this case,
the rotation of the three-dimensional reference space does not
contribute to the change in the observer’s physically observ-
able time τ. If the vectors vi and ui are inclined to each other,
then their mutual orientation in space affects the physically
observable time τ, as well as its direction to the future or to
the past: in the case, where the vector of the linear rotational
velocity of the observer’s reference space vi is inclined in the
same direction as the velocity motion vector of his reference
body ui (i.e., vi ui > 0), the observer’s physical time τ flows
faster; in the case, where the vectors vi and ui are inclined
in opposite directions (vi ui < 0), the observed time τ flows
slower. This purely theoretical conclusion was confirmed by
the Hafele and Keating experiment (1971, repeated in 2005),
in which they compared the readings of atomic clocks in-
stalled on board a jet airplane flying along a parallel around
the globe with the readings of atomic clocks left on the sur-
face of the Earth [35–39]. Thus, it was proven that the ob-
served time on our planet depends on the following physical
factors: 1) the magnitude of the gravitational field potential at
the place of observation; 2) the speed of the Earth’s rotation
around its own axis (diurnal rotation); 3) the speed of the ob-
server’s motion relative to the Earth’s rotation. For detail, see
our recent publication on this subject [26].

In the theory of chronometric invariants, there are phys-
ically observable (chronometrically invariant) analogues of
the quantities known in Newtonian classical mechanics. This
fact will help us to find a connexion between Newton’s theory
of gravitation and General Relativity.

So, the physical reference space of a real observer (which
is his physical reference frame) is characterized by the fol-
lowing physically observable chr.inv.-quantities. These are
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the chr.inv.-vector of the physically observable gravitational
inertial force Fi acting in the observer’s space, the first (grav-
itational) term of which is created by the gradient of the grav-
itational potential w and the second (inertial) term is created
by the centrifugal force of inertia

Fi =
1
√
g00

(
∂w
∂xi −

∂vi

∂t

)
,
√
g00 = 1 −

w
c2 , (11)

the antisymmetric chr.inv.-tensor Aik of the physically observ-
able three-dimensional angular velocity of rotation of the ob-
server’s space

Aik =
1
2

(
∂vk

∂xi −
∂vi

∂xk

)
+

1
2c2

(
Fi vk − Fk vi

)
, (12)

the symmetric chr.inv.-tensor Dik of the physically observable
deformation rate of the space

Dik =
1
2

∗∂hik

∂t
, Dik = −

1
2

∗∂hik

∂t

D = hikDik =
∗∂ ln
√

h
∂t

, h = det ‖ hik ‖

 , (13)

the chr.inv.-Christoffel symbols of the 1st rank ∆ jk,m and the
2nd rank ∆i

nk (they are the coefficients of the physically ob-
servable inhomogeneity of the observer’s space)

∆i
nk = him∆nk,m =

1
2

him
(
∗∂hnm

∂xk +
∗∂hkm

∂xn −
∗∂hnk

∂xm

)
, (14)

and the physically observable chr.inv.-curvature of the ob-
server’s space, which is expressed with the chr.inv.-curvature
tensor Clkij that has all properties of the Riemann-Christoffel
curvature tensor throughout the entire three-dimensional spa-
tial section associated with the observer, whereas its subse-
quent contractions produce the chr.inv.-curvature scalar C

Clkij =
1
4

(
Hlkij − Hjkil + Hklji − Hiljk

)
=

= Hlkij −
1
2

(
2 Aki Djl + Aij Dkl + Ajk Dil +

+ Akl Dij + Ali Djk

)
, (15)

Clk = C ··· i
lki · = Hlk −

1
2

(
Akj D j

l + Alj D j
k + Akl D

)
, (16)

C = hlkClk = hlkHlk , (17)

where it is denoted, for brevity and a better association with
the Riemann-Christoffel curvature tensor,

H ··· j
lki · =

∗∂∆
j
il

∂xk −

∗∂∆
j
kl

∂xi + ∆m
il ∆

j
km − ∆m

kl∆
j
im , (18)

and the operators
∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi =
∂

∂xi +
vi

c2

∗∂

∂t
(19)

are the chr.inv.-operators of derivation with respect to time t
and the spatial coordinates xi.

It should be noted that the physically observable chr.inv.-
curvature of the observer’s space is depended on not only the
space inhomogeneity (Christoffel symbols), but also on the
rotation Aik and deformation Dik of the space, and, therefore,
does not vanish in the absence of the gravitational field.

Since the task here is to find a connexion between Ein-
stein’s theory of relativity and Newton’s theory of gravita-
tion, in which space-time is static (non-deforming) and flat,
we will not consider the deformation and curvature of space
(i.e., we will assume that Dik = 0 and Clkij = 0). In addition, if
in this particular case the three-dimensional observable space
does not rotate or if its rotation velocity does not depend on
time, then the gravitational inertial force Fi depends only on
the numerical value of the gravitational potential w and its
spatial derivatives. We will therefore consider this particu-
lar case in the next Section to deduce Galileo’s principle and
Newton’s law of gravitation as consequences of the purely
geometric laws of General Relativity.

4 Galileo’s principle and Newton’s law of gravitation in
the framework of General Relativity

According to the biography of Galileo, in 1589 he conducted
his famous experiments with bodies falling from the Lean-
ing Tower of Pisa to the surface of the Earth. Galileo wanted
to prove his case in a correspondence dispute with Aristo-
tle, who, in turn, about 2000 years before Galileo, in 360–
330 B.C., argued that the motion speed of falling bodies de-
pends on the magnitude of their masses: he argued the greater
the mass of a falling body, the faster it falls down.

In contrast to Aristotle, Galileo made a supposition that
the fall time of bodies does not depend on their masses. In
support of his hypothesis, Galileo dropped down balls of dif-
ferent masses from the Leaning Tower of Pisa. With this ex-
periment, Galileo established that bodies of different masses,
dropped down to the surface of the Earth simultaneously from
the same altitude above the Earth’s surface, access the ground
simultaneously. Since the Tower’s height h is much less than
the radius of the Earth (h�R⊕), it can be assumed that any
body located at a small altitude above the Earth’s surface is
attracted to the centre of the Earth with a force proportional to
the numerical value of the body’s mass. In fact, Galileo had
discovered that the fall time of the body does not depend on
the numerical value of its mass. Therefore, he had arrived at
the conclusion that is now called Galileo’s principle:

All bodies, regardless of the numerical values of their
masses, fall to the surface of the Earth with the same
acceleration, called the free-fall acceleration.

Later, in 1666, Isaac Newton formulated the Law of Uni-
versal Gravitation. According to this law, the force of attrac-
tion F between two material points with masses m1 and m2,
located at a distance r from each other, acts along the line
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connecting their centres. This force is formulated as

F = −
Gm1m2

r2 , (20)

where G = 6.67× 10−8 cm3/gram sec2 is the Newton grav-
itational constant. From the above formula (20) it follows
that in a flat (Euclidean) space E3 the gravitational force of
attraction F is determined only by the numerical values of
the interacting masses and the distance between them, and
does not depend on the size of the bodies. Such an interac-
tion is called point interaction. Thus, in Newton’s theory of
gravitation, the gravitational interaction between two bodies
is “point-like”, i.e., it is carried out between the gravitating
centres of these bodies (material points).

Applying (20) to the gravitational interaction between the
Earth and a body of mass m falling to the Earth’s surface, we
obtain

F = −
GmM⊕

R2
⊕

= −mg , (21)

where g = GM⊕/R2
⊕ is the free-fall acceleration due to the

Earth’s gravitation, M⊕ = 5.97× 1027 gram is the mass of the
Earth, R⊕ = 6.37× 108 cm is the radius of the Earth, and m
is the mass of the body falling down to the Earth’s surface.
Formula (4.2) explains the results of Galileo’s experiments
under the condition that the bodies fall on the surface of the
Earth from a small altitude h�R⊕. In this case, it is easy
to calculate the magnitude of the free-fall acceleration on the
Earth’s surface: g = 981 cm/sec2.

Formula (21) is the mathematical expression of Galileo’s
principle in the framework of Newton’s theory of gravitation.

Let us now deduce Galileo’s principle and Newton’s law
of gravitation in the framework of the four-dimensional space
(space-time) of General Relativity. To do this, we consider
Schwarzschild’s mass-point metric. This metric is an exact
solution of Einstein’s field equations, which describes a
spherically symmetric gravitational field created in an empty
space (space-time) by a spherical island of substance, the
mass of which is M, and which is approximated by a mass-
point. The Schwarzschild mass-point metric in the spherical
coordinates r, θ, ϕ has the form

ds2 =

(
1 −

rg
r

)
c2dt2 −

dr2

1 −
rg
r

− r2
(
dθ2 + sin2θdϕ2

)
, (22)

where rg = 2GM/c2 is the so-called gravitational radius cal-
culated here for a spherical body of the mass M (which we
approximate by a mass-point). The polar coordinate angle θ
is measured from the North pole to the equator.

Since, according to the chronometrcally invariant formal-
ism, the component g00 in a general case is expressed with
the gravitational field potential w as

g00 =

(
1 −

w
c2

)2
, (23)

and according to the Schwarzschild mass-point metric (22)
we have

g00 = 1 −
rg
r
, (24)

then in the space of the Schwarzschild mass-point metric the
gravitational field potential w = c2 (1 −

√
g00 ) has the form

w = c2
1 − √

1 −
rg
r

 = c2

1 − √
1 −

2GM
c2r

 , (25)

which in the quasi-Newtonian approximation (rg� r), where
the ratio rg/r takes small numerical values and, therefore,√

1 −
2GM
c2r

' 1 −
GM
c2r

, (26)

takes the form

w = c2

1 − √
1 −

2GM
c2r

 ' GM
r

, (27)

which coincides with the gravitational field potential accord-
ing to Newton’s theory of gravitation.

So forth, looking at the Schwarzschild mass-point metric
(22), we realize that it is static, since all components of its
fundamental metric tensor gαβ do not depend on the time co-
ordinate x0 = ct. This means that the space of the Schwarz-
schild mass-point metric does not deform (Dik = 0). In ad-
dition, since all space-time components of the fundamental
metric tensor of the metric are zero (g0i = 0), such a space
does not rotate (vi = 0, Aik = 0). As a result of the above, the
physically observable time interval dτ in the Schwarzschild
mass-point field has the form

dτ =
√
g00 dt −

1
c2 vi dxi =

√
g00 dt =

(
1 −

w
c2

)
dt =

=

√
1 −

rg
r

dt =

√
1 −

2GM
c2r

dt , (28)

which means that the flow of the physically observable time
τ in the Schwarzschild mass-point field is determined only by
the numerical value of the gravitational field potential w.

Since the space of the Schwarzschild mass-point metric
is static (Dik = 0) and does not rotate (vi = 0, Aik = 0), the
components of the chr.inv.-vector of the physically observable
gravitational inertial force Fi (11) that acts on a unit mass in
such a space take the form

F1 =
1
√
g00

∂w
∂r

, F2 = 0 , F3 = 0 , (29)

where w = c2 (1 −
√
g00 ) is the gravitational field potential.

Therefore, in terms of the gravitational radius rg = 2GM/c2

calculated for the mass M, the solely non-zero component of
the physically observable gravitational inertial force acting in

74 Borissova L. and Rabounski D. Galileo’s Principle and the Origin of Gravitation According to General Relativity



Issue 2 (December) PROGRESS IN PHYSICS Volume 20 (2024)

the space of the Schwarzschild mass-point metric is

F1 = −
c2

2g00

∂g00

∂r
= −

c2

2
(
1 −

rg
r

) rg
r2 . (30)

Apply the obtained formula (30) to a body having a mass
m (different from unit mass) and located on the Earth’s sur-
face (r = R⊕) or at a small altitude h above it (h�R⊕). Since
the radius of the Earth is R⊕ = 6.37× 108 cm, and its gravi-
tational radius is rg = 0.89 cm, the ratio rg/R⊕ on the Earth’s
surface takes a very small numerical value rg/R⊕ = 1.4× 10−9

that can be neglected. In this case, the formula for the gravi-
tational force F1 (30), which we have obtained in the frame-
work of General Relativity, takes the following form

Φ1 = mF1 = −
c2

2
(
1 −

rg
r

) mrg
r2 = −

GmM⊕
R2
⊕

= −mg , (31)

which coincides with the formula (21), which, in turn, is the
mathematical expression of Galileo’s principle in the frame-
work of Newton’s theory of gravitation.

This means that, according to General Relativity, all bod-
ies located on the surface of the Earth or at a small altitude
above it are attracted to the centre of the Earth with the same
acceleration, equal to the free-fall acceleration g = GM⊕/R2

⊕

= 981 cm/sec2 (which is a conclusion, analogous to Galileo’s
principle in Newton’s theory of gravitation).

In fact, using the chronometrically invariant notation of
General Relativity, we have just deduced the following:

Both Galileo’s principle and Newton’s law of gravita-
tion (empirical laws of classical mechanics) are direct
consequences of the geometric structure of the four-
dimensional pseudo-Riemannian space (space-time of
General Relativity), since the force of gravity, which at-
tracts material bodies to the Earth, is the chr.inv.-vector
of the physically observable gravitational inertial force
acting in the space (gravitational field) of the Schwarz-
schild mass-point metric.

This cannot be shown using the general covariant notation
of General Relativity, because it does not include physical
observable quantities. This is why there is no unambiguous
mathematical transition from General Relativity to Newton’s
theory of gravitation in the framework of the general covari-
ant notation of General Relativity.

5 The origin of the gravitational field according to Gen-
eral Relativity

Let us now consider the origin of gravitation using the chron-
ometrically invariant notation of General Relativity.

In the space of the Schwarzschild mass-point metric, on a
spherical surface of the radius r = rg from the coordinate ori-
gin (which is the centre of the gravitating body approximated
by a mass-point), the time component g00 of the fundamental

metric tensor is zero (g00 = 0), and the radial component g11
becomes infinitely large (g11→∞)

r = rg , g00 = 1 −
rg
r

= 0 , g11 =
1

1 −
rg
r

→ ∞ , (32)

and, since the Schwarzschild space does not rotate (vi = 0),
hence the radial component h11 of the chr.inv.-metric tensor
hik = − gik + 1

c2 vivk becomes also infinite (h11→−∞).
This means that on the spherical surface r = rg that sur-

rounds any mass-point (located at the coordinate origin in the
space of the Schwarzschild mass-point metric) the following
conditions take place:

1) The three-dimensional observable space (and the grav-
itational field of the mass-point, which fills the space)
has a space breaking (g11→∞, h11→−∞);

2) The physically observable time τ of the observer stops
(dτ = 0) on this surface

dτ =
√
g00 dt −

1
c2 vi dxi =

√
g00 dt = 0 . (33)

That is, there on the surface of the gravitational radius
r = rg, which surrounds the centre of gravity inside any ma-
terial body, the physically observable time stops (dτ = 0), and
the observable three-dimensional space is expanded infinitely
in the radial direction x1 = r since the three-dimensional
physically observable chr.inv.-interval dσ that is determined
as dσ2 = hik dxidxk (6) on such a surface is

dσ =
√

h11 x1x1 =
dr√
1 −

rg
r

→ ∞ . (34)

Equating dτ in the Schwarzschild mass-point field, which
is dτ =

(
1 − w

c2

)
dt (28), to zero (since dτ = 0 on the surface

of the gravitational radius), we obtain

E = Mw = Mc2, (35)

i.e., the energy E = Mw of the gravitational field, created by
a body having a non-unit mass M, on the surface of the grav-
itational radius r = rg (which surrounds the centre of gravity
inside any material body) is the same as the total energy of
the body E = Mc2.

We therefore arrive at the following conclusion:

The gravitational field of any body is originated in the
surface of the gravitational radius r = rg, which is sur-
rounding the centre of gravity inside the body.

This is the origin of the gravitational field according to
General Relativity. Since the gravitational radius of an ordi-
nary body is incomparably smaller than its physical radius,
the conclusion we have obtained in the framework of General
Relativity is completely consistent with Newton’s theory of
gravitation, according to which the gravitational field of any
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body is originated in its center of gravity (which coincides
with its geometric center in the case, where the body has a
spherically symmetrical shape).

For example, the surface of the gravitational radius, which
is surrounding the centre of gravity of the planet Earth, is the
origin of the Earth’s gravitational field attracting to this sur-
face near the centre of the planet everything that is under-
ground, grows on the Earth’s surface, moves along it and
above it (in the Earth’s atmosphere and in the cosmos). Trees
indicate this fact: their trunks are always directed from the
centre of the Earth, and not at an angle to this direction. This
is especially clearly seen in cases, where the ground on which
the tree grows lies at an angle to a flat surface, for example,
on a mountain slope: in this case, the tree does not grow per-
pendicular to the slope, but its trunk is oriented strictly in the
direction from the centre of the Earth.

From the above conclusion about the origin of the gravi-
tational field it also follows that a collapse surface (in terms
of General Relativity, this is a surface on which g00 = 0 and,
as a result, the physically observable time stops dτ= 0) is not
exclusively the surface of a black hole (gravitational collap-
sar) — a body, the substance of which is compressed to such a
super-dense state that it is concentrated under its gravitational
radius. Indeed, ordinary bodies are not in the state of grav-
itational collapse, since almost all mass of an ordinary body
is located above its gravitational radius (which is very small
compared to its physical radius). However, the tiny sphere of
the gravitational radius that takes place at the centre of every
ordinary body is also a collapse surface, because the physi-
cally observable time stops and the spatial metric has a break-
ing on this tiny sphere, just like on the surface of a black hole
(gravitational collapsar).

The same conclusion about the origin of the gravitational
field follows from the geodesic equations (equations of mo-
tion of free particles) in the space of the Schwarzschild mass-
point metric. “Free” here means that the moving particle is
affected only by the forces, the source of which is the geo-
metric structure of the space itself (i.e., in the absence of ex-
traneous fields).

The geodesic equations in the chronometrically invari-
ant notation are a system of the chr.inv.-projections onto the
time line (the chr.inv.-scalar projection) and onto the three-
dimensional space (the chr.inv.-vector projection) associated
with a particular observer. They have the following form (see
References to the Zelmanov chronometric invariants)

dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk = 0 , (36)

d(mvi)
dτ

− mF i + 2m
(
Di

k + Ai·
·k
)

vk + m∆i
nk vnvk = 0 , (37)

where m is the relativistic mass of the particle, τ is the phys-
ically observable time of its motion, vi = dxi/dτ is its phys-
ically observable chr.inv.-velocity, Fi is the chr.inv.-vector of

the gravitational inertial force, Aik is the chr.inv.-tensor of the
angular velocity of rotation of the observer’s space, Dik is the
chr.inv.-tensor of the rate of its deformation, and ∆i

nk are the
chr.inv.-Christoffel symbols of the 2nd rank (which are the co-
efficients of the physically observable inhomogeneity of the
observer’s space).

The chr.inv.-geodesic equations (36, 37) are simplified in
the space of the Schwarzschild mass-point metric

dm
dτ
−

m
c2 Fi vi = 0 , (38)

d(mvi)
dτ

− mF i + m∆i
nk vnvk = 0 , (39)

since such a space does not rotate or deform (see above). Here
v1 = dr/dτ, v2 = dθ/dτ, v3 = dϕ/dτ. In addition, only the
radial component F1 of the gravitational inertial force Fi is
non-zero. According to (29), it is

F1 =
1
√
g00

∂w
∂r

=
c2

c2 − w
∂w
∂r

, (40)

where w = c2 (1 −
√
g00 ) is the potential of the gravitational

field (created by a massive body, approximated by a mass-
point), in which the particle travels. Therefore, the scalar geo-
desic equation (38) takes the form

dm
m

=
1
c2 F1 dr , (41)

which can be re-written as

dm
m

= −
d
(
c2 − w

)
c2 − w

, (42)

which is the same as

d (ln m) = − d
[
ln

(
c2 − w

)]
. (43)

Integrating (43), we obtain the solution

mc2 − mw = C , (44)

where C in the integration constant. Since w = c2 (1−
√
g00 ),

g00 = 1 − rg/r, and rg = 2GM/c2, then C = 0 under the con-
dition g00 = 0, which satisfies at the spherical surface of the
gravitational radius r = rg (where w = c2).

From the obtained solution (44) we see that a particle of
mass m, which travels in the gravitational field of a mass
M, has a maximum energy mw = mc2 under the condition
g00 = 0, which satisfies on the surface of the gravitational ra-
dius r = rg = 2GM/c2 from this mass-point (on which the
physically observable time stops dτ = 0, and the space and
the gravitational field have a breaking g11 =−h11 → ∞).

In particular, the above solution is applicable to the Earth,
planets, the Sun, stars, galaxies and generally any bodies in
the Universe.
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In conclusion, we note that Riemannian spaces are non-
degenerate by definition: the determinant g = det ‖gαβ ‖ of
the fundamental metric tensor satisfies the condition g < 0.
In addition, Zelmanov had obtained a relation connecting the
determinants of the four-dimensional metric tensor gαβ and
the three-dimensional chr.inv.-metric tensor hik

h = −
g

g00
, (45)

where h = det ‖hik ‖, g = det ‖ gαβ ‖, and g00 is the time com-
ponent of the four-dimensional Riemannian metric.

These quantities in the space of the Schwarzschild mass-
point metric (22) are

h =
r4 sin2θ

1 − rg
r

, g00 = 1 −
rg
r
, g = − r4 sin2θ . (46)

From this we see that the numerical values of h and g de-
pend on the location of the observer with respect to the polar
coordinate θ (which is opposite to the geographic latitude, be-
cause it is measured from the North pole to the equator). At
the North and South poles, where θ = 0◦ and 180◦, respec-
tively, the space-time of the Schwarzschild mass-point metric
is completely degenerate, since in this case g = 0. The ob-
servable three-dimensional space is also degenerate (h = 0)
at the North and South poles. In addition, the radial compo-
nent h11 becomes infinite over the entire surface of the gravi-
tational radius r = rg that means a breaking in the space (and
the gravitational field) on this surface.

It should be noted that the complete degeneration of the
four-dimensional space-time and the three-dimensional ob-
servable space takes place in the Schwarzschild mass-point
field not only on the spherical surface of the gravitational ra-
dius r = rg (around the centre of gravity of the mass-point),
but also everywhere along the radial coordinate r directed to
North and South. But even with a tiny deviation from the po-
lar direction θ = 0◦ or θ = 180◦ (i.e., from the polar axis of
the coordinate frame) the space is already non-degenerate.

The above conclusion means that the surface of the gravi-
tational radius r = rg is not only the origin of the gravitational
field of any body, which spreads outside and inside the sur-
face, but is also the special space-time “membrane” separat-
ing the external space (gravitational field) of the body, where
r > rg, from its internal space (gravitational field), where
r < rg. Since both the space-time metric and the spatial met-
ric are degenerate inside the “membrane”, the space (space-
time) inside the “membrane” is different from the ordinary
pseudo-Riemannian space (space-time) and is a completely
degenerate space-time.

6 Conclusion

So, using the chronometrically invariant notation of General
Relativity (chronometric invariants are the physically observ-
able projections of four-dimensional quantities onto the time

line and the three-dimensional space of an observer), we have
deduced Galileo’s principle and Newton’s law of gravitation
as a particular case of the chr.inv.-formula for the gravita-
tional inertial force acting in the four-dimensional pseudo-
Riemannian space (space-time of General Relativity).

In fact, by doing this, we have created a “mathematical
bridge”, connecting Newton’s theory of gravitation with Gen-
eral Relativity. This “mathematical bridge” is important for
theoretical physics, since no one earlier than us had derived
the empirical laws of Newton’s theory of gravitation as a par-
ticular case of the purely geometric laws of General Relativ-
ity.

We have also showed that on the spherical surface that
surrounds any mass-point at a very small radius, equal to the
gravitational radius calculated for the mass, a space breaking
takes place in the gravitational field of the mass-point (and
in its three-dimensional observable space), and the observer’s
physical observable time stops. That is, the gravitational field
of any mass-point extends both inward from the mentioned
spherical surface to the coordinate origin (which coincides
with the mass-point), and outward from the mentioned sur-
face into the surrounding space to infinity, but is absent on
the surface itself. This theoretical result leads us to the con-
clusion that the origin of the gravitational field in the space
of the Schwarzschild mass-point metric is a spherical surface
that surrounds any mass-point at the gravitational radius cal-
culated for the mass.

The above results were obtained only thanks to the chron-
ometrically invariant notation of General Relativity, which
provides an unambiguous mathematical definition of phys-
ically observable quantities in the four-dimensional pseudo-
Riemannian space (space-time). It would be impossible to get
these results using the conventional general covariant notation
of General Relativity, because physically observable quanti-
ties in the general covariant notation are not mathematically
defined.

Submitted on July 21, 2024
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