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We herein present what we propose could be a plausible solution to the current, in-
teresting and topical problem in cosmology — the Hubble Tension. This problem of
the Hubble tension seems to have thrown all of cosmology into a crisis. By employ-
ing the seemingly temarious hypothesis of varying Fundamental Natural Constants
(FNCs), namely Planck’s constant, ℏ, we demonstrate that for the case where the cos-
mological Interstellar Medium (ISM) is a perfect vacuo with a refractive index of unity,
the supernovae derived H0-value can be brought down from its current lofty height
of: HSNe

0 = 73.30 ± 1.03 km s−1 Mpc−1, down to a more humble and modest value
of: 68.70 ± 0.30 km s−1 Mpc−1, and within the margins of error, this new value is in
agreement with the Tip of the Red Giant Branch (TRGB) derived H0-value, namely:
HTRGB

0 = 69.80 ± 2.20 km s−1 Mpc−1, and this is much closer to the CMB-derived H0-
value: HCMB

0 = 67.40 ± 0.50 km s−1 Mpc−1. At a 2.2σ-level of statistical significance
in discrepancy, this new H0-value reduces the tension by 88%, and this surely is a
most welcome development. On the other hand, if the ISM is assumed to be homoge-
neous and isotropic with a slightly varying, if not near constant refractive index, nISM

r ,
for most photon wavelengths, then, a refractive index value of: nISM

r = 1.010 ± 0.006,
does bring the new SNe-derivedH0-value into complete and total concordance with the
CMB-derived H0-value, thus resolving the tension altogether. The final concordance
H0-value that matches or resolves both measurements after a final correction of the
ISM’s refractive index is found to be: H0 = 68.00 ± 0.90 km s−1 Mpc−1.

Cosmology is peculiar among the sciences for it is both the
oldest and the youngest. From the dawn of civilization man
has speculated about the nature of the starry heavens and the
origin of the world, but only in the present century has physi-
cal cosmology split away from general philosophy to become
an independent discipline.

Gerald James Whitrow (1912–2000)*

1 Introduction

Without an iota of doubt, the Hubble constant, denoted by
the symbol H0, is an all important constant in all of modern
cosmology and astrophysics [1–4]. It, amongst others, mea-
sures the expansion rate of the Universe and is pivotal in the
measurement of the age of the Universe [1–4]. Since the the-
oretical discovery [5] of the expansion of the Universe by the
Belgian Catholic priest, theoretical physicist, mathematician,
astronomer, and then professor of physics at the Catholic Uni-
versity of Louvain, Georges Henri Joseph Édouard Lemaı̂tre
(1894–1966), and the subsequent observational confirmation
[6] of this hypothetical expansion by the great American as-
tronomer, Edwin Powell Hubble (1889–1953), a great many
efforts have been made to measure this constant with the high-
est and optimum possible precision available at the time. The
importance of this parameter in cosmology cannot be over-
stated. Hence, accurate knowledge of this constant is not only

*In “Theories of the Universe” (1958)

a sine qua non, but very important as all of cosmology and the
cosmological models thereof, depend on it.

Rather worrisomely, initial measurements of this constant
in the past century were marred by serious scattering with the
resultant values thereof ranging from: ∼ 40 km s−1 Mpc−1 to
∼ 100 km s−1 Mpc−1 [4]. However, recent 21st century ad-
vances in science and technology have made it all possible
to obtain very accurate measurements of this constant using
at least three different methods — which methods measure
the Hubble constant on two different evolutionary epochs of
the Universe, namely the early-and-late Universe. Values of
H0 from the early Universe are typically referred to as global
measurements of H0, while those from the late Universe are
commonly referred to as local values of H0. Global H0 val-
ues measure the Hubble constant in the early Universe (dis-
tant past) while the local H0 values measure this constant in
our local neighbourhood which is the present epoch in the
Universe.

According to the widely accepted Standard ΛCDM cos-
mology model that is used to describe the Universe,H0 must
be the same for any evolutionary epochs of the Universe —
be it in early or late Universe, it does not matter, the value
of H0 aught to be the same. To the chagrin and against the
desideratum of the cosmologically searching mind, the local
and global values ofH0 seem to not be in agreement — each
yielding at a 4.9σ-level of statistical significance [10], two
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Table 1: Critical Measurements of the Hubble Constant

Group Cosmic Measurement H0 Reference
Epoch Type (km s−1 Mpc−1)

Supernova Cosmology (SCG) Late Universe Far Local 73.30 ± 1.04 [7]
Carnegie-Chicago Hubble Project (CCHP) Late Universe Near Local 69.80 ± 2.20 [8]
Planck Collaboration (PC) Early Universe Global 67.40 ± 0.50 [9]

different values that are not only ∼ 10% apart, but also out-
side of the provinces of their error margins. This interesting
and topical problem or discrepancy in the local and global
measurements of the Hubble constant has come to be known
as the Hubble tension and has thrown cosmology into a seri-
ous crisis.

From a fundamental theoretical stand point, before sus-
pecting that there possibly may be errors in the measurements
and/or systematics thereof, one needs to first trust that —
those that have made these measurements have done so metic-
ulously with due and requisite diligence, and with the best
precision at hand. Of course, one cannot rule out errors in the
measurements and/or systematics — we are human after all,
we err. Be that as it may, as our point of departure, we shall
assume that these measurements are flawless. With that hav-
ing been said, we must say that there are three main popular
and common techniques used to measureH0:

1. Supernovae Type Ia (SNe Ia) method;

2. Tip-of-the-Red-Giant-Branch (TRGB) method;

3. Cosmic Microwave Background (CMB) radiation method.

We shall discuss in detail these techniques in §4. Our inter-
est in taking a deeper look into these methods is to unravel
their dependence on FNCs because it is in these FNCs that
we believe the source of our error in the determination of the
Hubble constant may lay.

For further clarity, as already aforementioned, we shall
elaborate that the methods to measure the Hubble constant
fall into two classes: a) Local measurements, and, b) Global
measurements, i.e.:

1. Local H0 measurements: measure H0 in the present (local)
evolutionary epoch of the Universe. The present epoch is
the late Universe, hence, these type of measurements are also
referred to as late Universe measurements.

2. Global H0 measurements: are all-sky measurements of H0,
measuring the Hubble constant across the entire sky, hence,
they being referred to as global H0 measurements. These
measurements typically measure, H0, in the very early Uni-
verse hence they also being referred to as early Universe mea-
surements.

The TRGB and SNe Ia measurements are classified as local
H0 measurements as they measure H0 in the present (and
not past) evolutionary epoch of the Universe. The TRGB
method measures H0-values in galaxy systems much closer

to us (yielding: HTRGB
0 = 69.80 ± 2.20 km s−1 Mpc−1 [8]),

while the SNe Ia measurement H0-values in galaxy systems
relatively far in the local Universe (yielding: HSNe

0 = 73.30±
1.04 km s−1 Mpc−1 [7]). We shall say that the TRGB method
measures H0-values in the near-local Universe, while, the
SNe Ia methods measures H0-values in the far-local Uni-
verse. The near and far-localH0-values do not agree (69.80±
2.20 km s−1 Mpc−1 [8] and 73.30± 1.04 km s−1 Mpc−1 [7], re-
spectively), thus, giving raise to yet another tension within an
already existing tension.

On the other hand, the CMBH0 measurements are classi-
fied as a globalH0 measurements as these measurements are
all-sky measurements of H0 measuring the Hubble constant
across the entire sky, hence, they being referred to as a global
H0 measurements. The CMB method is a state-of-the-art pre-
cision method of globalH0 measurements by Aghanim et al.
[9] and this has yielded: HCMB

0 = 67.40±0.50 km s−1 Mpc−1.
A summary of these key measurements is presented in self-
explanatory Table 1.

Since Lemaı̂tre [5] and Hubble [6]’s initial estimates,
there has been numerous measurements of the Hubble con-
stant. For our purposes here, the above three measurements
(presented in [7–9], which are summarised in a clear and suc-
cinct manner in Table 1) shall constitute our focal point in
all the H0 measurements as these three important measure-
ments sufficiently capture the morass substance contained in
our current musings and at the same time — they drive our
point home regarding this important tropical issue of the Hub-
ble tension.

Astronomers, astrophysicists and cosmologists are
hard at work to figure out why the discrepancy in the val-
ues of H0 from the two different methods as a number have
wondered if this discrepancy is heralding some hitherto yet
unknown physics [3, 11, 12] or there might be some serious,
albeit subtle, error in our methods and analysis? We herein
present a suggestion to this problem and this suggestion is to
the effect that varying Fundamental Natural Constants
(FNCs) may be the cause of this tension. As will be demon-
strated, a simple hypothesis regarding the nature of the said
variation on the FNCs seem to deliver a bold solution to this
problem.

In closing this introductory section, we shall give a syn-
opsis of the reminder of this article, i.e.: the reminder of this
article is arranged as follows: for no other than smoothness,
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completeness and self-containment purpose, we present in the
next §2, a pedestrian derivation of the distance modulus for-
mula used in astronomy, astrophysics and cosmology. There-
after in §3, we discuss distances in cosmology with emphasis
on how the luminosity and Light travel distances are used in
the distance modulus formula in order to derive the Hubble
constant and having done this, in §4, we discuss the three
common and popular methods to measure the Hubble con-
stant. In §5, we present what we believe is the source of the
problem in our endeavour to compute the Hubble constant
leading to the current tension in the measurement of this con-
stant using the two major methods. In §6, we justify the idea
of variable fundamental natural constants. It is this idea that
our proposed solution to the Hubble tension is to be found,
hence there is need to justify the idea. In §7, we present our
proposed solution and application of this solution to real data
in §8. Lastly, in §10 and §11, we present a general discussion
and the conclusion drawn thereof.

2 Distance modulus

In this section, we are going to go through some necessary
trivialities and this is for no other purpose other than for self-
containment and smooth flow of the paper thereof. As is well
known, in astronomy, astrophysics and cosmology, the dis-
tance modulus, denoted by the symbol µ, is a way of express-
ing distances to stellar objects. It is a measure of the differ-
ence between the apparent (m) and absolute magnitude (M),
of an astronomical object, i.e.: µ = m − M. For a star (or
any stellar body of radius, R, mean temperature, T , and, with
surface emissivity, ϵ) whose luminosity: L = 4πR2ϵσ0T 4

(where: σ0 is the Stefan-Boltzmann constant), with a total
flux of: F(dL), and with this flux reaching at the arbitrary dis-
tance, dL, away from the star — the flux received at the said
arbitrary distance dL, obeys the following inverse square law:

F(dL) =
L

4πd2
L

. (1)

The absolute magnitude is by definition defined as follows:

M = −2.5 log10 F(dL) , (2)

while the apparent magnitude is by definition defined:

m = −2.5 log10 F(10 pc) , (3)

where: F(10pc) = L/4π(10 pc)2 is the flux of the given stellar
object at a distance: dL = 10 pc, away. Hence:

µL = m − M ,

= −2.5 log10

(
F(dL)

F(10 pc)

)
,

= −2.5 log10

(
10 pc

dL

)2

.

(4)

This further simplifies to:

µL = 5 log10

(
dL

10 pc

)
, (5)

In cosmology, one often works with distances in mega-parsec
(Mpc), so, it is convenient to write (5) with, dL, in Mpc and
not in in units of 10pc. Written in the units of Mpc, (5) be-
comes:

µL = 5 log10

(
dL

Mpc

)
+ 25 . (6)

Now, (6) applies in the case where the flux does not experi-
ence attenuation as a result of interstellar material along its
path — i.e., in the case where there is no extinction of the
flux.

In the case were there is extinction, the flux undergoes
attenuation. Let, τ, be the optical depth of the Interstellar
Medium (ISM) along the intervening spaces along the path
of the photons reaching our telescopes and let, F0, be the flux
at the surface of the star (or stellar body). Then, the flux at
distance dL away is such that:

F(dL) = F0

(
4πR2

4πd2

)
e−τ . (7)

For the absolute magnitude, we need the flux, F(10pc), at
a distance of 10 parsecs as this is to be evaluated without
extinction, i.e.:

F(10pc) = F0

(
4πR2

4π(10pc)2

)
. (8)

Therefore, from (7) and (8), it follows that:

F(dL)
F(10pc)

=
(10pc)2

d2
L

e−τ , (9)

hence:

µLτ = 5 log10

(
dLτ

10 pc

)
+ Aτ , (10)

where:
Aτ = −2.5 log10(e−τ) = 5 log10(e0.5τ) , (11)

is the extinction correction term to the distance modulus, and:
µLτ , is the extinction-corrected distance modulus. With, dL,
expressed in Mpc, the above can be written as follows:

µLτ = 5 log10

(
dLτ

Mpc

)
+ 25 , (12)

where:
dLτ = e0.5τdL , (13)

is the extinction-corrected luminosity distance. Eq. (12) is
what is used in cosmology in the study of supernovae to esti-
mate the distance to the Cepheid variables that are resident in
the Host galaxy of supernovae.
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In closing this section, allow us to say that we are very
much aware that we have presented an elementary and text-
book derivation of the distance modulus formula. We want
to rest assure our reader that this has been done for a very
good reason and the reason is that there is an esoteric subtlety
associated with this derivation that we want to exegetically
unmask (point out) and “correct”, all this in the hope that this
may be one of the problems from which the discrepancy in
the measurement of the Hubble constant might lie. There-
fore, we kindly ask our reader for their due indulgence as we
unpack this esoteric subtlety.

3 Distances in cosmology

If we get our distances wrong in astronomy, astrophysics and
cosmology, so is our interpretation of the results — they will
be wrong as well. So, the importance of the measures that we
use to obtain these distances cannot be overstated. Different
distance measures are used in astronomy, astrophysics and
physical cosmology. These distance measures give a natural
notion of the distance between two objects or events in the
Universe. They are often used to tie some observable quan-
tity to another quantity that is not directly observable, but is
more convenient for calculations such as the comoving co-
ordinates of quasars, galaxy, etc. The observable quantities
in question are quantities such as the luminosity of a distant
star (or quasar), the redshift of a distant galaxy, or the angular
size of the acoustic peaks in the CMB power spectrum. For
low redshift objects, these distance measures reduce to the
common notion of Euclidean distance. Of particular interest
in our present expedition are the luminosity and Light travel
distances.

3.1 Light travel distance

Herein denoted by the symbol dLT , the Light Travel Distance,
is a cosmological concept that refers to the distance Light
travels from one point (A) to the other (B), in particular, the
distance Light could travel say from one galaxy to our own
telescope at the time of observation. The Light travel distance
can be important for understanding phenomenon such as the
age of the Universe, its expansion rate and the spatial size
of the observable Universe for example. Wholly within the
framework of Einstein [13–15]’s General Theory of Relativ-
ity (GTR), the Light travel distance is calculated with respect
to proper time dτ, i.e.:

dLT =

∫ τr

τe

c dτ =
∫ τr

τe

(
c0

nr

)
dτ , (14)

where in this case: nr, is the refractive index of the Interstel-
lar Medium (ISM). In most considerations in the definition
and calculation of the Light travel distance, the refractive in-
dex does not appear in the formulae, the meaning of which
is that, the ISM is, in the said cases, being assumed to be a
perfect vacuo with a refractive index of unity. In the present

expedition, we shall be meticulous and exercise equanimity
by not assuming a perfect vacuo for the ISM. This is going to
help us in our effort to explain the remaining discrepancy in
the resulting Hubble constant after the correction of the FNCs
has been made.

From the homogeneous and isotropic metric tensor of
Friedmann (1924) [16], Lemaı̂tre (1933) [17], Robertson
(1935, 1933a,b,c) [18–20] and Walker (1937) [21] (hereafter,
FLRW-metric), which is what is used in the ΛCDM cosmol-
ogy model — by setting the proper time in this metric to equal
zero for the propagation of Light in an FLRW-Universe —
one can show from it that, the Light travel distance, dLT , de-
fined in (14), is such that:

dLT =
dH

nr

∫ z

0

dz

(1 + zλ) nr
√
Ω
= dH f (zλ) , (15)

where off cause:

f (zλ) =
∫ zλ

0

dzλ
(1 + zλ)

√
Ω
, (16)

and: dH = c0/H0, is what is called the Hubble distance with:

Ω =
1
H2

0

ȧ2

a2
= Ωm + ΩΛ + Ωk . (17)

The Ω’s appearing in (17) are the usual Ω-parameters used in
cosmology, with Ω, being the total Ω-parameter; while, Ωm,
is the Ω-matter parameter; ΩΛ, is the Ω-vacuum parameter
for the Λ-cosmological field; and, Ωk is the Ω-curvature pa-
rameter.

Now as is the usual case, using the Light travel distance,
dLT , one can calculate from it the corresponding distance
modulus, µLT , of the given supernovae, it is given by:

µLT = 5 log10

(
dLT

Mpc

)
+ 25 . (18)

Inserting (15) into (18), we obtain:

µLT = 5 log10
[
f (zλ)

]
+ K , (19)

where:

K = 25 + 5 log10

(
c0

Mpc

)
− 5 log10 (nrH0) . (20)

It is from the value of, K, as given in (20), that one is able to
calculate the Hubble constant.

3.2 Luminosity distance

We have already met the concept of luminosity distance in
our derivation of the distance modulus in §2, which distance
we have denoted by the symbol, dL. There are two concepts
relating to luminosity distance that we shall call the observa-
tionally derived luminosity distance and the redshift derived
luminosity distance. The former is what we have met. We
shall discuss these two concepts below:
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1. Observationally Derived Luminosity Distance: The observa-
tionally derived luminosity, is the luminosity distance that is
defined as the distance at which an object would need to be lo-
cated in order for its observed (apparent) luminosity to match
its intrinsic (absolute) luminosity. This is the distance, dL,
as defined in (1). That is to say, the luminosity distance, dL,
is related to the observed (apparent) flux (F) from the given
object and its intrinsic (absolute) luminosity (L) through (1).
At the instance of (8) leading to (13), the luminosity distance
has been corrected for extinction and the extinction-corrected
luminosity distance has been denoted by the symbol, dLτ . We
will argue in §5 that our understanding of the luminosity may
need to be updated if FNCs are variable over cosmic epochs.
It is this dearth and paucity of knowledge in our understand-
ing of the luminosity distance that may very well be the cause
of the Hubble tension.

2. Redshift Derived Luminosity Distance: The redshift derived
luminosity distance, dL(zλ), depends on cosmology under
probe and is given by:

dL(zλ)
dH

=
1 + zλ

a0

∫ zλ

0

dzλ
√
Ω
, (21)

where: dH = c0/H0, is the Hubble distance and Ω is the
total Ω-parameter already defined in (17). The cosmology
is defined by the total Ω-parameter.

What happens in the supernovae determinations of the Hub-
ble constant is that two distance moduli are constructed and
equated and the resulting equation, the Hubble constant is de-
termined. That is to say, from the observationally derived
luminosity distance, dLτ , the distance modulus, µLτ , is con-
structed as given in (12). From (21), one constructs the cor-
responding the redshift derived distance modulus:

µL(zλ) = 5 log10

(
dL(zλ)
Mpc

)
+ 25 . (22)

Now, from the equation: µLτ = µL(zλ), the Hubble constant is
determined.

4 Measuring the Hubble constant

The Hubble constant, can be determined through several dif-
ferent methods, each with its own advantages, disadvantages,
and limitations. Here are some of the primary methods:

1. The Distance Ladder Method makes use of standard candles
such as Cepheid variable stars and type Ia supernovae and
from these standard candle distance measures and the the cor-
responding redshift, one can infer the Hubble constant.

2. The Cosmic Microwave Background observations from mis-
sions like the Planck satellite provide a measurement of the
Hubble constant based on the early Universe’s conditions.

3. The Tip-of-the-Red-Giant Method makes use of stars at the
tip of the red giant branch on a IV-color-color diagram. These
stars have known fixed intrinsic brightness, hence, they are
standard candles. Using this fact other with their redshift,
one can infer the Hubble constant.

4. The Baryon Acoustic Oscillations (BAO) Method uses the
distribution of galaxies to infer distances and hence the ex-
pansion rate of the Universe.

5. The Gravitational Lensing Method uses the bending of light
from distant objects by massive foreground objects as this can
be analyzed to estimate the Hubble constant.

6. The Time Delay Measurements Method in systems with mul-
tiple images of the same astronomical event (like a super-
nova), the time delays in these systems can be used to calcu-
late the Hubble constant.

7. The Tying to Local Measurements Method links the Hubble
constant to local measurements in the Solar System, such as
the motion of nearby galaxies.

8. The Galaxy Cluster Dynamics Method utilizes the motion of
galaxies within clusters providing insights into the expansion
rate.

In the next two subsections [i.e., §4.1 and §4.2], we shall give
an exegetic exposition of the first two methods, namely the
Distance Ladder Method and the CMB-Method. The exegesis
that we institute is meant to pinpoint the plausible sources
of error that may need to be corrected so as to bring about
concordance in the H0-values derived from these two state-
of-the-art methods.

4.1 SNe Ia distance ladder method

In the SNe Ia method, three things are necessary:

1. A type Ia supernovae and its redshift, zλ.

2. A host galaxy for the given supernova.

3. A Cepheid variable star or Cepheid variable stars in the
supernovae host galaxy.

Cepheids are stars that vary periodically in brightness in a
predictable way, and their brightness can be used to deter-
mine their distance from Earth. The Cepheid distances are
then used to calibrate type Ia supernova luminosities, whose
luminosities are then applied to SN Ia out into the far-field to
measureH0 [22]. With the distance to the supernova known,
the distance modulus, µLτ , corrected for extinction is known.
From the calibrated supernova luminosity, the redshift of the
supernova is known. With the redshift of the supernova now
known, the theoretically derived redshift dependent luminos-
ity distance, dL(zλ), is then calculated and the value of,H0, is
deduced from the equation: µLτ = µLzλ .

4.2 CMB method

BAO experiments essentially measure two quantities,
one parallel to the line-of-sight:

β|| = H(z)rs(z⋆) , (23)

and the other perpendicular to the line-of-sight:

β⊥ =
rs(z⋆)
DA(z)

= θs(z⋆) , (24)
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where H(z) is the Hubble parameter, rs(z⋆) is the comov-
ing sound horizon at recombination (i.e., the standard ruler)
and DA(z) is the comoving angular distance to the observation
redshift, z. The latter is computed as:

DA(z) = dH

∫ z

0

dz
√
Ω
. (25)

The standard ruler rs(z⋆) is well constrained by CMB exper-
iments. For the shape of H(z), one needs to assume some
model (such as ΛCDM). Thus, by fitting the theoretical pre-
dictions for β∥ and β⊥ to the BAO data, we get indirect con-
straints on the expansion history of the Universe, H(z), and
thus on the Hubble constant H0 = H(z = 0). In a similar
way to other probes of the early Universe (as the CMB), this
method gives a value of H0 that is in tension with the direct
measurement in the local Universe (using the cosmic distance
ladder). Note that even if BAO observations are made in the
late Universe (by looking at the large-scale distribution of
galaxies), it is considered as an early probe because it pro-
vides a constraint on rs(z⋆), that gives information about the
primordial plasma.

To determine, H0, from the CMB data one calculates a
Monte Carlo Markov Chain (MCMC) which involves eval-
uation of the likelihood of parameter values and their asso-
ciated spectra at tens to hundreds of thousands of points in
the parameter space, and then one uses this chain to infer the
posterior density of, H0, or any other cosmological parame-
ter of interest [12, 23]. Apart from laying down the method
leading to the calculation of, H0, what we want at the end
of this section is a generic formula of how one proceeds to
calculateH0.

The Hubble constant is inferred from CMB temperature
anisotropies measurements. That is, measurements of tem-
perature anisotropies in the CMB have revealed a series of
(damped) acoustic peaks [12, 23]. These acoustic peaks con-
stitute the esoteric fingerprint of the early Universe’s BAO
during the era of the pre-recombination plasma — i.e.: sound
waves propagating in the baryon-photon plasma prior to pho-
ton decoupling, set up by the interplay between gravity and
radiation pressure [24–28]. The first acoustic peak is set up
by an oscillation mode which had exactly the time to com-
press once before freezing as photons decoupled shortly af-
ter recombination and this peak is precisely determined at:
θs = 1◦.

The first acoustic peak of the CMB carries the indeli-
ble imprint of the comoving sound horizon at last scattering
rs(z⋆), given by the following:

rs(z⋆) =
∫ z⋆

0

cs(zλ)dzλ
H(zλ)

=
c0

H0

∫ z⋆

0

cs(zλ)dzλ
c0
√
Ω
, (26)

where: z⋆ ∼ 1100, denotes the redshift of last scattering,
H(zλ) denotes the expansion rate, and cs(zλ) is the sound

speed of the photon-baryon fluid. For most of the expan-
sion history prior to last scattering, cs(zλ)/c0 ≃ 1/

√
3, before

dropping rapidly when matter starts to dominate.
On the other hand, the spatial temperature fluctuations at

last scattering are projected to us as anisotropies on the CMB
sky. As a consequence, the first acoustic peak actually carries
information on the angular scale θs (usually referred to as the
angular scale of the first peak), given by:

θs(z⋆) =
rs(z⋆)
DA(z⋆)

, (27)

where: DA(z⋆), is the angular diameter distance to the surface
of last scattering, given by:

DA(z⋆) =
c0

1 + z⋆

∫ z⋆

0

dzλ
H(zλ)

=
c0

H0 (1 + z⋆)

∫ z⋆

0

dzλ
√
Ω
,

(28)

From this, one can determine the CMB-derived Hubble con-
stant,HCMB

0 , from the following:

HCMB
0 =

θs(z⋆)
rs(z⋆)

(
c0

1 + z⋆

∫ z⋆

0

dzλ
√
Ω

)
. (29)

According (e.g.) to Vagnozzi (2020) [12], measurements of
anisotropies in the temperature of the CMB, and in particu-
lar the position of the first acoustic peak (which appears at a
multipole ℓ ≃ π/θs), accurately fix θs, therefore, any modifi-
cation to the standard cosmological model aimed at solving
the Hubble tension should not modify θs in the process.

In (29), we see that the CMB-derived redshift is not af-
fected by the variation of FNCs. Apart from, H0, the only
other FNC in the CMB H0 determination is the speed of
Light and in-accordance with the very strong reservations laid
down by [29] and [30], we are not going to vary this. The
sound speed, c0, in the pre-recombination plasma medium
is the only quantity that can depend on FNC via the radia-
tion density term, that is to say, the sound speed is such that:
cs = c0/

√
3(1 + ϱb/ϱγ), where: ϱb and ϱγ, are the densities

of baryonic matter and radiation in this plasma, respectively.
Because during the plasma era, radiation dominated the Uni-
verse, hence, it is generally assumed that: ϱb/ϱγ ≪ 1, so
that the sound speed in this cosmic plasma medium is ap-
proximately equal to c0/

√
3. Hence, the CMB measurements

of,H0, are not affected by the variation of FNCs.

5 Problem

So what is the problem? We are of the strong view that the
problem with the discrepancy leading to the Hubble tension
may arise from an underestimate of the distance modulus (µL)
from its determination using the luminosity distance and this
underestimate may be a result of the variation of the FNCs:
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most probably Planck’s constant, ℏ*. We will show in §7, that
if indeed FNCs are to vary with cosmological time, then, this
variation will introduce a form of “dark extinction” that is not
accounted for in the typical calibrations leading to the Hubble
constant and this is so for the case of the cosmic distance
ladder method. The reason for this omission is that at present,
the idea of a variable FNCs is not taken with the seriousness it
so deserves despite observations [31–39] of the FSC strongly
pointing to this possibility.

The two distance moduli, µLτ and µLT , are determined and
then compared (i.e.: µLτ = µLT ), with µLτ being determined
from the brightness of the Cepheids resident in the super-
novae galaxy, while, µLT , is determined from the supernova’s
redshift and in addition to the redshift, it relays on the chosen
parameters of the Friedmann model. It is in this comparison:
µLτ = µLT , that the Hubble constant, H0, is determined. One
thing that one can immediately deduce without fail from this
comparison is that dLτ , dLT . That is to say, from (12) and
(18), we have that:

µLτ = 5 log10

(
dLτ

Mpc

)
+ 25 , (30a)

µLT = 5 log10

(
dLT

Mpc

)
+ 25 , (30b)

and from (30), it is not difficult to deduce that the said com-
parison of µLτ and µLT (µLτ = µLT ) implies that:

dLτ = dLT . (31)

So, the luminosity and Light travel distances are generally not
equal and are only equal in the case of the ISM having a van-
ishing optical depth. Now, before we deliver our suggested
solution, we shall first motivate for our working model on the
variation of FNCs.

6 Variable fundamental natural constants

If we blindly were to go by their verbatim name, then Funda-
mental Natural Constants (FNCs) aught to be
what is purported or suggested by their very name “Funda-
mental”, “Natural” and “Constant”.

1. Fundamental— meaning intrinsic, inherent and foundational
in all reality where they are involved;

2. Natural— meaning that these FNCs must arise naturally in
our theories and are not imposed by our finite and limited
intellect, whim, will or desideratum;

3. Constant — meaning they are sacrosanct and unchanging
throughout the entire evolution of the Universe.

Pristinely and succinctly stated, the term Fundamental Nat-
ural Constant expresses a somewhat “divine” notion of the

*Typically, ℏ is referred to as the reduced or normalized Planck constant.
Fully cognisant of this fact, we shall however refer to this constant ℏ, simply
as Planck’s constant.

sacrosanctity of these seemingly immutable and divinely im-
posed physical quantities.

How far true is this assumption of sacrosanctity, immuta-
bility and constancy of these FNCs? For all we know, physics
is an experimental human endeavour where answers to the
questions that we pause regarding the inner and outer work-
ings of Nature are to be sought by way of physical enquiry via
ponderable measurements. That is to say, only measurements
can decisively and conclusively answer this deep and very
interesting question about the possible variation the FNCs.
Fortunately, this question of the possible variation of FNCs is
now a question capable of being answered from both experi-
mental and observational science — thanks to the capabilities
of modern state-of-the-art precision technology that has made
this a reality.

The path to the road of inquiry into the possible varia-
tion of the FNCs began sometime in 1935 and 1937 with
the great British theoretical physicists Edward Arthur Milne
(1896-1950) and Paul Adrian Maurice Dirac (1902-1984).
That is to say, Milne [40, 41] and Dirac [42] were perhaps
the first (in the recorded scientific literature) to question this
status quo by suggesting that this long held assumption that
Newton’s supposed universal constant of gravitation, G, was
a sacrosanct and sacred constant of Nature that has remained
constant since the Universe came into being.

To that end, if current observations [31–39] indicating the
cosmological variation of the Fine Structure Constant (FSC)
stand up to the most ruthless scientific scrutiny, then Milne
[40, 41] and Dirac [42] may have been right after all, albeit
not on the possible variation of Newton’s constant G, but the
cosmological variation of the FSC which involves four FNCs,
namely: the electronic charge, e = 1.602176634 × 10−19 C;
the permittivity of free space, ε0 = 8.8541878128(13) × 1012

F m−1; Planck’s constant, h = 6.62607015×10−34 J s; and, the
speed of Light in vacuo, c0 = 299792458 × 108 m s−1 (2022,
CODATA Values).

The dimensionless FSC, denoted by the symbol α0, is
such that:

α0 =
e2

4πε0ℏc0
=

1
137.035999074(44)

, (32)

hence:
∆α

α0
= 2

(
∆e
e

)
−
∆ε0

ε0
−
∆ℏ

ℏ
−
∆c
c0
, (33)

that is to say, a cosmological variation in α0, directly points
to a variation in any one, or any possible combination, of the
four FNCs: e, ε0, ℏ, and, c0.

At present, there exists no properly constituted and fairly
accepted theory that explains why any of the supposed FNCs
must vary. Most theories that do make the endeavour to ex-
plain the possibility of the variation of the FSC are specu-
lative theories based on exotic and exogenous ideas [43–48]
and some of these theories are yet to make contact with expe-
rience such as string and string-related theories.
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Following Dirac [42] on the variation of the Newtonian
gravitational constant that it must vary in proportional to the
age of the Universe, which also translates to a variation with
respect to the cosmological scale factor a = a(t), we shall as-
sume that the expansion of the Universe is what is responsible
for the variation of FNCs. That is to say, if for example, K, is
some arbitrary FNC, then, its variation will scale in propor-
tion to the scale factor, a, that is to say: K ∝ aβK , and as a
mathematical equation, this can be written as follows:

K = KHa
βK = KH (1 + zλ)−βK , (34)

where: KH, is the value of this constant at the beginning of
time where: t = τP, and βK, is the proportionality index for
this constant and a0, is the scale factor of the Universe while,
a, is the scale factor of the Universe at the time of emission
of the photon whose redshift we measure with our telescopes
today. We hypothesize that the Universe began when the cos-

mic clock was reading one Planck second τP =

√
Gℏ/c5

0. From
this, it follows that:

1. If: βK > 0, then, the FNC in question increases with time,
i.e., its value gets larger as the Universe gets older.

2. If: βK < 0, then, the FNC in question decreases with time,
i.e., its value gets smaller as the Universe gets older.

3. If: βK = 0, then, the FNC in question is indeed a true constant
of Nature.

In the present exploration of ideas, we shall assume that
one of, or all of, or any possible combination of the four FNCs
(e, ε0, ℏ, c0) making up the FSC will vary with cosmological
time, i.e.:

e = eHa
βe = eH (1 + zλ)−βe , (35a)

ε0 = ε0Ha
βε0 = ε0H (1 + zλ)−βε0 , (35b)

ℏ = ℏHa
βℏ = ℏH (1 + zλ)−βℏ , (35c)

c0 = c0Ha
βc0 = c0H (1 + zλ)−βc0 , (35d)

where: eH, ε0H, ℏH and c0H, are the values of the fundamen-
tal electronic charge, the permittivity of free space, Planck’s
constant and the speed of Light in vacuo at the beginning of
time and: βe, βε0 , βℏ, and, βc0 , are the corresponding indices
of the variation of these FNCs, respectively.

We want to be clear to our reader in that we are not pro-
posing that all the four FNCs e, ε0, ℏ, and, c0, do vary with
cosmic time. What we are saying is that the variation of the
FSC allows us to entertain the possibility of the variation of
at least one of these four constants. If we were asked our
inclination regarding which of the four do we really think are
varying, we would say, it is probably Planck’s constant. We
have our reasons, for we have pondered on this matter in our
on-going ideas that we are still working on and are yet to be
published; from the said ideas, we strongly holdfast that the
speed of Light and as well the electronic charge must be true
FNCs, thus leaving ℏ and ε0 as variables.

For our purpose here, it really does not matter as to which
FNC is varying, as long just one of them is variable, this
would lead to the Stefan-Boltzmann-Planck constant, σ0, be-
ing a variable as it does depend on the Planck constant and
the speed of Light in vacuo. That is to say, we know that:

σ0 =
2π5k4

B

15ℏ3c2
0

= 5.670374419 × 10−8 W m−2 K−4 , (36)

where: kB = 1.380649 × 10−23 J K−1 (2022, CODATA Value)
is Boltzmann’s constant. From (36), it follows that if say, ℏ,
or, c0, did vary with cosmological time, then, σ0, will vary
cosmologically as well, i.e.:

σ0 = σ0Ha
βσ , (37)

where as before: σ0H, is the Stefan-Boltzmann-Planck con-
stant at the beginning of time and, βσ = 4βkB − 3βℏ − 2βc0 , is
the corresponding index of the cosmological variation of σ0.
For our purposes here, following the strong advice of Ellis &
Uzan [29,30], we shall assume that: βc0 = 0, and also follow-
ing our own intuition, we shall assume: βkB = 0; hence, we
shall have: βσ = −3βℏ and this implies that the luminosity of
a star, L, will vary with the scale factor as follows:

L ∝ a−3βℏ . (38)

Equipped with this seemingly strange and exotic hypothetical
idea of the cosmological variation of FNCs, we are going to
suggest in the next section a plausible solution to the Hubble
tension problem.

7 Proposed solution

From the thesis just laid down in the previous section, it is
pristine clear that if FNCs are variable, then there aught to be
a discrepancy in the values of early and late measurements
of H0, and the reason is simple because these epochs have
different values of these FNCs that drive the physics thereof.
For example, late-type values are those from the local neigh-
bourhood where the FNCs (kB, ℏ, c0) in those galaxies are just
about the same as in our own galaxy, whereas in the early-
type H0-measurements, the FNCs are significantly different
from our own, hence we are comparing two significantly dif-
ferent cosmological epochs. Thus, from the foregoing, it is
clear that late-type H0-measurements aught to be the true
and correct values of H0, whereas those from the early-type
measurements are going to contain a hitherto intrinsic and in-
herent additional signal (term) which is not accounted for in
contemporary measurements, hence the tension.

Now, in order to see how this variation of FNCs comes in,
from (38), we now have the FNC variation term, a−3βℏ , in the
flux emitted by the source at distance, d, i.e.:

F(dL) = F0

4πR2

4πd2
L

 a−3βℏe−τ , (39)
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where in (39), we see that in comparison to (7), we have in
addition to the traditional extinction term, e−τ, there now is
supplemented a new extinction term a−3βℏ . Our claim is that
it is this term a−3βℏ that is not accounted for in contemporary
cosmology models that do not embrace the variation of the
FNCs.

Now, just as before for the absolute magnitude, we need
the flux, F(10pc), at a distance of 10 parsecs as this is to be
evaluated without any form extinction — either the optical (τ)
term or the FNC-variation term (βℏ), i.e.:

F(10pc) = F0

(
4πR2

4π(10pc)2

)
. (40)

From (39) and (40), it follows that:

F(dL)
F(10pc)

=
(10pc)2

d2
L

a
−3βℏe−τ , (41)

hence, the variation of FNCs corrected-distance modulus, µ′L,
is given by:

µ′L =

µLτ︷                          ︸︸                          ︷
5 log10

(
dL

Mpc

)
+ 25 + Aτ +

µD︷           ︸︸           ︷
5 log10

(
a

1.5βℏ
)

Dark−Term
. (42)

That is to say, (42) reads: µ′L = µLτ + µD, where: µD, is a
new emergent dark-term that arises from the variation of the
Planck constant (if the Planck constant is not variable, then it
must either be, kB, and, c0). Since: µ′L = µLT , it follows that:

µLτ︷                          ︸︸                          ︷
5 log10

(
dL

Mpc

)
+ 25 + Aτ +

µD︷           ︸︸           ︷
5 log10

(
a

1.5βℏ
)

Dark−Term
=

= 5 log10

(
dLT

Mpc

)
+ 25 .

(43)

Taking the dark-term to the right hand-side of (43), we will
have:

5 log10

(
dL

Mpc

)
+ 25 + Aτ =

= 5 log10

(
dLT

Mpc

)
+ 25 − 5 log10

(
a

1.5βℏ
)
.

(44)

We can re-write (44), as follows:

Flux−Dependent︷                           ︸︸                           ︷
µLτ = 5 log10

(
dLτ

Mpc

)
+ 25

Observationally Derived

=

=

Redshift−Dependent︷                            ︸︸                            ︷
5 log10

d∆σ0
LT

Mpc

 + 25 = µδℏLT

Theoretically Derived

,

(45)

where:
d∆σ0

LT = a
−1.5βℏdLT , (46)

is what we shall call the FNC variation-corrected Light travel
distance, where in the present case, the FNC for which the
Light travel distance has been corrected for, is the Planck con-
stant because it is the particular FNC that we have chosen is
variable, while the other two (kB, c0) have been held constant.

Now, given that in the ΛCDM cosmology model, the red-
shift, zλ, and the scale factor, a, are related as follows: 1+zλ =
a0/a, i.e.:

a =
a0

1 + zλ
, (47)

where: a0, is the present day scale factor of the Universe
while, a, is the Universe’s scale factor at the time of emis-
sion of the photon that we receive here on Earth. The present
scale factor of the Universe is set: a0 = 1. From this, it
follows that if we are to insert this into (42), we will obtain:

d∆σ0
LT = (1 + zλ)1.5βℏ dLT . (48)

Now, since: dLτ = d∆σ0
LT , it follows that:

dLτ = (1 + zλ)1.5βℏ dLT = dH (1 + zλ)1.5βℏ f (zλ) , (49)

hence:

µLτ = 5 log10

[
(1 + zλ)1.5βℏ f (zλ)

]
+ K , (50)

where, K, is no longer as has been defined in (20), but is now
defined as follows:

K = 25 + 5 log10

(
c0

Mpc

)
− 5 log10 (nrH0) . (51)

This completes our theoretical exegesis on the plausible ori-
gins of the Hubble tension. What is now left is for us to cal-
ibrate this result (50) against real data. In order to to do this,
there is need to first figure out what, f (zλ), is. This function,
f (zλ), is dependent on the cosmology model that one adopts.
In our present case, we shall adopt a cosmology for which the
total Ω-parameter is identically equal to unity, i.e.: Ω ≡ 1.
That is to say, Ω, does not happen to be equal to unity in the
present epoch of the Universe’s evolution, but is eternally so
for all times — i.e., from antiquity to eternity. If as declared:
Ω ≡ 1, it follows from (16), that:

f (zλ) = ln (1 + zλ) , (52)

hence:

µLτ = 5 log10

[
(1 + zλ)1.5βℏ ln (1 + zλ)

]
+ K . (53)

Thus, (53) is what we are going to test against observational
evidence and we must hasten to say that (53) has not been
priori designed to fit the observational data that it will excel-
lently fit. It actually came as nothing short of a non-posteriori
surprise that this model [(53)] agrees very well with empirical
evidence.
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8 Application of theory

We are now ready to apply our ideas onto some real and tangi-
ble data and for this, we are going to use the Supernova Cos-
mology Project (SCP) Union2.1 dataset spanning the redshift
range: 0.015 ≤ zλ ≤ 1.414, [49]. This dataset is a compila-
tion of 580 SNe type Ia drawn from 19 datasets [50–67]. We
must say that this dataset may very well be the most compre-
hensive and most accurate SNe data available to date. Fur-
ther, according to Suzuki et al. [49], all SNe were fitted using
a single light-curve fitter (SALT2-1) and uniformly analyzed
in blind-mode, i.e., without due consideration of a particular
cosmology model. With 580 data points in the sufficiently
large redshift range: 0.015 ≤ zλ ≤ 1.414, we certainly do
have a statistically significant dataset to make a meaningful
conclusion on the present model (53) of the plausible time
variability of FNCs.

What we really want in this section is to test the proposed
model presented in (53). We want to find the value of βℏ,
and, K; and from the value of K, we can deduce H0. To that
end, in Fig. 1, we have plotted the distance modulus, µLτ , vs
the redshift, zλ, of the 580 SNe from the Union2.1 dataset
and with this dataset, we perform a non-linear curve fitting
on the data and from this non-linear curve fitting exercise, we
obtain:

βℏ = +0.77 ± 0.02 , (54a)

K = 43.20 ± 0.01 mag . (54b)

From the value of K, obtained (43.20 ± 0.01 mag.), we find
for the Hubble constant, the value:

H0 =
68.70 ± 0.30 km s−1 Mpc−1

nr
=
HSNe

0

nr
. (55)

If the ISM is a perfect vacuo (which it obviously is not), then:

H0 = H
SNe
0 = 68.70 ± 0.30 km s−1 Mpc−1 . (56)

This value given (56) is the corrected vacuo SNe H0-value
where the correction made is that hypothesised variation in
the Planck constant and the tension in this value when com-
pared with the CMB-value is significant at a 2.2σ-level (97%)
of statistical significance.

Of this value, within the provinces of its own error mar-
gins, one can safely say that this rather unexpected result is
in very good agreement (0.5σ-level of statistical significance
in discrepancy) with that of Freedman et al. [8]’s TRGB-mid-
point value: H0 = 69.80 ± 2.20 km s−1 Mpc−1. Further, this
value is in agreement with the Wilkinson Microwave Aniso-
tropy Probe (WMAP) data for the CMB data — where: H0 =

69.30 ± 1.60 km s−1 Mpc−1 [68, 69], and, the Planck 2013
data — where: H0 = 69.80 ± 2.20 km s−1 Mpc−1 [70]. In
theH0 values of Anderson et al. [68], Mehta et al. [69]&Ade
et al. [70], the BAO data has been admitted together with the
CMB data, thus allowing Ωk to be a free parameter [68, 70,

71], and this is unlike in Aghanim et al. [9]’s case were the
curvature parameter has been tightly constrained to: Ωk ∼ 0.
Furthermore, applying the WMAP& CMB constraints to both
BAO and SNe data together with the CMB, Blake et al. [72]
obtained: H0 = 68.70 ± 1.90 km s−1 Mpc−1, and Anderson et
al. [68] obtained: H0 = 69.60 ± 1.70 km s−1 Mpc−1. Within
the margins of error — all these results are in very good
agreement with our result: H0 = 68.70 ± 0.30 km s−1 Mpc−1.
While this is the case — that our derived value is an im-
provement in matching the two discontent H0-values, if at
all possible, there is need to get a most perfect agreement be-
tween these two values and this can be done by considering
the fact that the ISM is not a perfect vacuo, the meaning of
which is that we need not assume a refractive index of unity
for the ISM.

9 ConcordanceH0–value

As stated above, the two discontent H0-values (HSNe
0 and

HCMB
0 ) can be brought into concordance by considering the

fact that the ISM is not a perfect vacuo. That is to say, in the
derivation of HSNe

0 , leading to (55), the refractive index was
taken into account but later in (56), it (refractive index) was
then set to equal unity. We shall drop this assumption that the
refractive index is unity. On the same pedestal, we must real-
ize that this same assumption that the refractive index of ISM
is unity is employed in the CMB-derivation ofHCMB

0 in (29).
In order for us to take the refractive index into account in

(29), what we need to do is to replace c0 with c0/nr. So doing,
we obtain:

HCMB
0 =

θs(z⋆)
rs(z⋆)

(
c0/nr

1 + z⋆

∫ z⋆

0

dzλ
√
Ω

)
=
H0

nr
. (57)

From (57), we obtain: H0 = nrH
CMB
0 , and proceeding to

substitute this into (55), we obtain:

nr =

√
HSNe

0

HCMB
0

,

=

√
68.70 ± 0.30 km s−1 Mpc−1

67.40 ± 0.50 km s−1 Mpc−1 ,

∴ nISM
r = 1.010 ± 0.006 .

(58)

In all probity, this value (nISM
r = 1.010 ± 0.006) is not at all

in bad agreement with the measured refractive index (nISM
r =

1.0001 to 1.0003 [73–75]) of the ISM. With this ISM refrac-
tive index value (1.010 ± 0.006), the concordance H0-value
is:

H0 = 68.00 ± 0.90 km s−1 Mpc−1 . (59)

Within the margins of error, this concordance H0-value is
in good agreement with Freedman et al. [8]’s TRGB H0-
value. This good agreement can very well be understood
from the fact that the TRGB stars, from which these mea-
surement are inferred, are nearby stars and as a direct result
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Fig. 1: Graph of Distance Modulus (µL) vs Redshift (zλ) from the Union2.1 data of [49]. The Best Fit Graph (RED) is described by the
non-linear curve: µLτ = 5 log10

[
(1 + zλ)1.5βℏ ln (1 + zλ)

]
+ K, and, from it we obtain the following best parameter fittings: βℏ = 0.77 ± 0.02,

and, K = 43.20± 0.01 mag. The R2-value or Coefficient of Determination (COD) of the fit to data is: 99.49%. Assuming an ISM refractive
index of unity — i.e.: nISM

r ≡ 1, the obtaining K-value leads to: H0 = 68.70 ± 0.30 km s−1 Mpc−1. In order to bring the CMB and SNe
Ia measurements into unity and harmony, an ISM refractive index of: nISM

r = 1.010 ± 0.006, is needed and this leads to a concordance
H0-value of: H0 = 68.00 ± 0.90 km s−1 Mpc−1.

of this fact, the value of Planck’s constant for these systems is
pretty much the same as the value of Planck’s constant here on
Earth, hence, the correction of the variation of Planck’s con-
stant needed on these measurements may very well be negli-
gible. Be that as it may, there is need to subject TRGB H0-
measurements to the present idea of a variable Planck con-
stant.

10 General discussion

We have herein suggested that cosmologically varying FNCs
may very well present a viable and perdurable solution to
the current crisis in cosmology, namely, the Hubble tension.
That is to say, from the same SNe Ia data that usually pro-
duces values of the Hubble constant in the range ∼ 70–to–
76 km s−1 Mpc−1, we have downgraded this old value to the
new concordance H0-value: 68.00 ± 0.10 km s−1 Mpc−1, and
in the same exercise, the Planck collaboration value of: 67.40
±0.50 km s−1 Mpc−1 has been upgraded to this concordance
H0-value. This has required two major ideas to be evoked,
namely, the:

1. Assumption of a cosmologically varying Planck constant, ℏ.
2. Adoption of a non-unity value for the refractive index of the

ISM.

The assumption of a cosmologically varying Planck constant
reduces the SNe Ia derived value of the Hubble constant from
the: 70–to–76 km s−1 Mpc−1, territory, to exactly: 68.70 ±

0.30 km s−1 Mpc−1. As pointed out in the penultimate of §4.2,
this assumption of a cosmologically variable Planck constant
does not apply to the derivation of the CMB-derived Hubble
constant because none of the physical parameters that enter
in the formulae leading to the HCMB

0 depend on ℏ. Effec-
tively, what this means is that the tension inHSNe

0 andHCMB
0

is reduced and not resolved. The initial tension* (gap in the
two values) is: 7.44 km s−1 Mpc−1, and this is reduced to:
2.10 km s−1 Mpc−1, and this is an 88% reduction. In order
to “resolve” the tension completely, the fact that the ISM is
not a perfect vacuo is taken into account and this fact affects
both measurements — i.e., the CMB and SNe Ia measure-
ment and is seen that a refractive index: nr = 1.010 ± 0.006,
resolves the tension completely, leading to the concordance
value: H0 = 68.00 ± 0.90 km s−1 Mpc−1.

We candidly must say that our choice in the Planck con-
stant, ℏ, as the likely culprit is informed by what we believe to

*By tension here we mean the difference within the margins of error be-
tween the two values: HSNe

0 = 68.00 ± 0.10 km s−1 Mpc−1, and, HCMB
0 =

67.40 ± 0.50 km s−1 Mpc−1. That is to say, the difference in: MIN(HSNe
0 ) =

71.97 km s−1 Mpc−1, and, MAX(HCMB
0 ) = 67.90 km s−1 Mpc−1. Clearly,

this difference is equal to: 4.07 km s−1 Mpc−1. Following the same line of
thought and reasoning, the tension in the new variable-ℏ corrected: HSNe

0 =

68.00 ± 0.10 km s−1 Mpc−1, and the old CMB-derived H0-value: HCMB
0 =

67.40 ± 0.50 km s−1 Mpc−1, is: 0.50 km s−1 Mpc−1. Clearly, the percent-
age reduction in tension is: (1 − 0.50 km s−1 Mpc−1/4.07 km s−1 Mpc−1) ×
100% = 88%.
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be our strong intuition rather than scientific objectivity. Be-
cause of a general lack or consensus on the variation of the
FSC; without fail, we must say that ideas of variable FNCs are
by their nature largely considered to be speculative and may
very well be outside of the realm of the general support of
contemporary scientific understanding because despite claims
of a variable FSC [31–39], at present, there is no direct “in-
criminating” and invigorating evidence to suggest that the
Planck constant could change over cosmic times [76–78].

The most widely considered FNCs to vary over cosmic
times is the speed of Light [79–87] but we have our deep-
seated reasons for holding back on taking this position*. We
are not going to take a position simply because everyone is
taking that position because we are aware that no amount of
research on the candle would have led mankind to discover
the Light bulb. To discover the Light bulb, it was needed
to consider ideas alien to our common experience. We have
here chosen to take the “road less travelled if not the road not
travelled” and vary Planck’s constant.

Because the Planck constant sets the scale for the quan-
tum nature of particles and their interactions with its value
determining the granularity of atomic energy levels and the
scale at which quantum effects become significant — in a
Universe with an increasing Planck constant such as the one
that we are suggesting, over cosmic times, the behaviour of
the Universe would tend to be more classical rather than quan-
tum mechanical. From a quantum probability calculus view
point, this means the initial state of the Universe must have
been less probabilistic (i.e., highly unpredictable) and has
been evolving into a more probabilistic state (i.e., more pre-
dictable). This evolutionary sequence of the Universe res-
onates well with the Second Law of Thermodynamics (SLT)
as this implies that the Universe must have started in a state
of lowest entropy and has been, and is, evolving into a state
of highest entropy.

Further, if the Planck constant ℏ, were to vary as sug-
gested here, it could help solve one of the outstanding prob-
lems in the Universe’s expansion to do with the conservation
of the photon’s energy and the expansion of the spacetime.
The problem is a simple one and is as follows. We know that
the energy, Eγ, of a photon is related to the photon’s wave-
length, λ, as follows: Eγ = 2πℏc0/λ. As a result of cosmic
expansion, the wavelength of the photon increases. If ℏ, and,
c0, are to remain constant as the spacetime expands, it follows
that the energy of the photon will diminish without any fore-
seeable compensation — i.e.: ∆Eγ , 0, and this obviously
violates the Law of Conservation of Energy.

*Completely in agreement with Ellis [29] and Ellis & Uzan [30], we are
of the view that the speed of Light cannot be varied in a “part or portion of
physics” but must be done wholesomely in a consistent manner at a most
fundamental level. At the very least, this requires a complete and total re-
write of physics. Varying the speed of Light is unimaginable at the very
least. We have held fast in the present exploration the idea of a sacrosanct
and invariant speed of Light.

Where does the diminished energy go to? This is some-
thing that has bothered the desideratum of the foremost the-
oretical physicist since this issue was first noticed and to this
day, it has not been resolved. In the advent of a time-variable
Planck constant and an invariant Light speed c0, one can pos-
tulate that the photon energy is conserved (∆Eγ = 0) and the
compensation in the increase in its wavelength comes in the
wake of an equal compensation in the increase of the Planck
constant — i.e.:

zλ =
∆λ

λ
=
∆ℏ

ℏ
. (60)

What (60) means is that the redshift, zλ, that we measure must
be a measure in the change of the Planck constant.

Regarding the evidence of a varying Planck constant,
there have been few direct references in the literature on the
subject of a variable Planck constant [88–90]. [88, 89] ap-
proaches the subject from a laboratory view point while [90]
does this on a purely speculative theoretical standpoint.
Searches for a variable Planck constant have been under the
guise of a variable FSC [31, 39] which amongst others also
implies a variable electronic charge, the speed of Light and/or
the permittivity of free space.

Hutchin [89] reports that a gradual and systematic drop
has been observed in the decay rates of 8 radionuclides[
226Ra, 154Eu, 238Pu, 3H, 54Mn, 60Co, 90Sr, 36Cl

]
over a 20

year span by six organizations on three continents (German,
American and Russian labs), including beta decay (weak in-
teraction) and alpha decay (strong interaction) and in the
search for a common cause, Hutchin [89] hypothesizes that
small variations in Planck’s constant might account for the
observed synchronized variations in these strong and weak
decays.

Hutchin [88] further suggests that this proposed variation
of ℏ, may very well be a good candidate for the cause of the
Casimir radiation and further proposes that if this Casimir ra-
diation were emitted by stars via a changing ℏ, then:

. . . this could provide an alternative explanation for the
Hubble constant, where the distant galaxies are redder
simply because ℏ is smaller back in time, making local
time move more slowly. In contrast to the expand-
ing model of the Universe, we could now consider
whether our Universe might simply be static, where
gravity is everywhere balanced on a large scale. Such
a conclusion would end the search for dark energy
since such a Universe is essentially static while the
usual red shift would still be observed.

Unlike Hutchin [88], we do not believe that a variable ℏ nec-
essarily rules out “the expansion of the Universe and points
to a Static Universe.”

As apparent fissures in the standard model have been
emerging, there are also indications that there may be cracks
that need attention in the local distance scale as well. For ex-
ample, the tip of the red giant branch (TRGB) method and
the Cepheid distance scale result in differing values ofH0 =
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69.60 ± 1.90 km s−1 Mpc−1 [8,91] for the TRGB and 73.30±
1.04, km s−1 Mpc−1 [7], for the Cepheids. This divergence
raises the question of whether the purported tension is be-
ing driven by yet-to-be-revealed systematic errors in the local
Cepheid data, rather than in the cosmological models.

11 Conclusion

Assuming what has been presented herein is acceptable, we
hereby present the following as the logical conclusion that
can be drawn thereof:

1. We have shown that the Hubble tension can in principle be
alleviated if we assume a cosmologically varying Planck con-
stant and as well as a dispersive non-zero refractive index
ISM.

2. Further — we have shown that the current supernovae de-
rived H0-value can be brought down from its current lofty
value: HSNe

0 = 73.30 ± 1.03 km s−1 Mpc−1, down to: 68.70 ±
0.30 km s−1 Mpc−1, and this new value is not in dire disagree-
ment with the CMB-derived H0-value: HCMB

0 = 67.40 ±
0.50 km s−1 Mpc−1. That is to say, at a 2.2σ-level of statis-
tical significance in discrepancy, this new H0-value reduces
the tension by 88%.

3. Furthermore — in order to “resolve” the tension completely,
the fact that the ISM is not a perfect vacuo is taken into
account and this fact affects both measurements — i.e., the
CMB and SNe Ia measurement and it is seen that a refrac-
tive index: nr = 1.010 ± 0.006, resolves the tension com-
pletely, leading to the concordance value: H0 = 68.00 ±
0.90 km s−1 Mpc−1.

4. Additionally — apart from providing a viable solution to the
Hubble tension problem, a time variable Planck constant has
the potential to solve the problem of the conservation of the
photon’s energy in an expanding Universe if it is to be as-
sumed that the photon’s redshift, ∆λ/λ, is compensated by a
change in Planck’s constant, ∆ℏ/ℏ. Ultimately, the photon’s
redshift under this model emerges as a measure in the change
in Planck’s constant.

5. Lastly — as demonstrated herein, the idea of varying FNCs
aught to be taken much more seriously than currently done as
this has the potential to solve the darkenergy and darkmatter
problem because if FNCs are really variable, this variation
may bring in “dark” effects that might explain away darken-
ergy and darkmatter.

Dedication

This reading is dedicated to my friend Anna Neff.

Received on September 21, 2024
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