

A Discrete Vacuum Energy Cutoff as a Solution to the Cosmological Constant Problem

Travis S. Taylor

QuantumFrontier, LLC, Huntsville, AL, USA
 University of Alabama in Huntsville, Department of Physics
 Email: tst0072@uah.edu

The cosmological constant problem remains one of the greatest challenges in modern theoretical physics, arising from the stark discrepancy between vacuum energy density predictions from quantum field theory (QFT) and observations. In this paper, we propose a novel approach where the vacuum energy is discretized into finite “voxels” of energy, introducing a natural infrared cutoff that matches the observed cosmological constant without fine-tuning. This approach offers a fresh perspective on vacuum fluctuations and suggests a large-scale structure to vacuum energy that could fundamentally alter our understanding of dark energy.

1 Introduction

The cosmological constant problem highlights a profound inconsistency between quantum field theory (QFT) and cosmological observations. QFT predicts a vacuum energy density that exceeds the observed value by approximately 10^{120} orders of magnitude [1]. This discrepancy has been termed the “worst theoretical prediction in physics”.

The Planck scale: fundamental or arbitrary?

A key factor in the cosmological constant problem is the choice of the energy scale at which vacuum fluctuations are cut off. The most common choice is the Planck energy, which is derived from fundamental constants through dimensional analysis. The Planck energy (E_P) is defined as:

$$E_P = \sqrt{\frac{\hbar c^5}{G}} \approx 1.22 \times 10^{19} \text{ GeV}, \quad (1)$$

where \hbar is the reduced Planck constant, c is the speed of light, and G is Newton’s gravitational constant.

The Planck scale is often considered the energy regime where quantum gravitational effects become significant, marking the breakdown of classical general relativity. However, this derivation relies solely on dimensional analysis, without direct empirical evidence confirming its fundamental role in the universe’s structure. Carlo Rovelli discusses the Planck scale extensively in the context of loop quantum gravity [2]. He highlights how the Planck length and energy arise from dimensional analysis and questions whether these scales represent physical limits or merely theoretical constructs until confirmed experimentally. Rovelli examines how quantum gravitational effects are expected to become significant near the Planck scale, but also acknowledges the lack of direct empirical evidence for this assumption [2].

Padmanabhan explores the significance of the Planck scale in cosmology and quantum gravity. He points out that while the Planck scale is widely accepted as a natural cutoff, this is

based purely on dimensional reasoning without empirical verification [3]. He also questions whether the Planck scale holds any intrinsic physical meaning or if its prominence results from the limitations of current theoretical frameworks.

This raises the question: is the Planck scale a true physical limit, or is it an arbitrary construct arising from our current theoretical frameworks?

In the context of the cosmological constant problem, using the Planck scale as a cutoff leads to an overestimation of vacuum energy density by approximately 120 orders of magnitude. This immense discrepancy suggests that the Planck scale may not be the appropriate boundary for vacuum fluctuations when considering their gravitational effects. It opens the door to alternative models, such as the discrete vacuum energy hypothesis proposed in this paper, which introduces a natural infrared cutoff based on large-scale discretization rather than high-energy suppression.

By revisiting the assumptions underlying the Planck scale, this hypothesis challenges the conventional view and proposes that the cosmological constant problem may stem from a misinterpretation of the energy scales relevant to vacuum energy’s gravitational influence.

Traditional approaches attempt to explain this mismatch through high-energy cutoffs, supersymmetry, or anthropic arguments [4, 5], yet none have provided a fully satisfactory solution. In this paper, we explore an alternative hypothesis: that vacuum energy is inherently discrete, composed of finite energy “voxels”, leading to a natural cutoff at large scales that aligns with the observed cosmological constant.

2 The cosmological constant problem

2.1 Quantum field theory predictions

In QFT, the vacuum energy density is calculated by integrating over all zero-point fluctuations of quantum fields:

$$\rho_{\text{vac}} = \frac{1}{2} \int_0^{E_{\text{cutoff}}} \frac{d^3 k}{(2\pi)^3} \hbar \omega_k. \quad (2)$$

Using a Planck-scale cutoff ($E_{\text{cutoff}} \sim 10^{19}$ GeV) leads to a vacuum energy density [1]:

$$\rho_{\text{vac}}^{\text{QFT}} \sim (10^{19} \text{ GeV})^4 = 10^{76} \text{ GeV}^4, \quad (3)$$

which vastly exceeds the observed value [4]:

$$\rho_{\Lambda}^{\text{obs}} \approx 10^{-47} \text{ GeV}^4. \quad (4)$$

2.2 Observational constraints

The observed cosmological constant, inferred from Type Ia supernovae, the cosmic microwave background (CMB), and large-scale structure [4, 5], corresponds to a tiny vacuum energy density responsible for the accelerated expansion of the universe.

3 A discrete vacuum energy hypothesis

3.1 Conceptual framework

In Quantum Field Theory, fields are continuous vector fields defined over spacetime, with energy manifesting as quantized local excitations (particles). We propose that while the fields themselves remain continuous [1], the contribution of vacuum energy to spacetime curvature is discretized into finite “energy voxels”. This introduces a natural infrared cutoff, limiting the cumulative vacuum energy density and potentially resolving the cosmological constant problem. Each voxel represents the smallest indivisible unit of vacuum energy, introducing a natural infrared cutoff.

3.2 Calculating the voxel scale

Assuming that the observed vacuum energy density corresponds to a single quantum voxel per unit volume, the energy per voxel is:

$$E_{\text{voxel}} = \rho_{\Lambda}^{\text{obs}} \times V_{\text{voxel}}. \quad (5)$$

Relating this to the energy of a mode with characteristic length l_{voxel} :

$$E_{\text{voxel}} \sim \frac{\hbar c}{l_{\text{voxel}}}, \quad (6)$$

we find:

$$l_{\text{voxel}} = \left(\frac{\hbar c}{\rho_{\Lambda}^{\text{obs}}} \right)^{1/4} \approx 1.2 \times 10^{10} \text{ m} \approx 80 \text{ A.U.} \quad (7)$$

This length scale, approximately 80 astronomical units, suggests a large-scale discretization of vacuum energy.

4 Implications and discussion

4.1 Infrared nature of dark energy

This model implies that dark energy is an infrared phenomenon, arising from large-scale discretization rather than high-energy fluctuations. It provides a natural explanation for the smallness of the cosmological constant without requiring extreme fine-tuning.

4.2 Connections to quantum gravity

The discrete vacuum energy hypothesis aligns with concepts from loop quantum gravity [6], holography [7], and emergent spacetime theories, where spacetime itself may have a granular structure.

4.3 Singularity theorems and quantum discretization

Hawking and Penrose’s singularity theorems [8] demonstrate that under classical general relativity (GR) and certain energy conditions, spacetime singularities — such as those found in black holes and the Big Bang — are inevitable. These singularities represent regions where the known laws of physics break down.

The discrete vacuum energy hypothesis offers a potential pathway to avoid such singularities. By introducing a natural infrared cutoff through energy voxels, the hypothesis inherently limits the maximum curvature spacetime can achieve. This mechanism could regularize the infinite curvatures predicted by classical GR, potentially smoothing out singularities and providing a quantum gravity-inspired resolution to one of GR’s fundamental issues.

Such an approach aligns with the expectation that quantum gravitational effects should dominate near singularities, leading to new physics that prevents the breakdown of spacetime.

4.4 Energy conditions and vacuum energy discretization

Hawking and Ellis’s framework relies heavily on classical energy conditions, such as the strong, weak, and dominant energy conditions, to derive key theorems about spacetime structure [8]. The cosmological constant, with its negative pressure, violates the strong energy condition, leading to the observed accelerated expansion of the universe.

The discrete vacuum energy hypothesis modifies this classical picture by suggesting that vacuum energy contributions to spacetime curvature are not continuous but instead discretized into finite energy voxels. This discretization introduces a new form of effective energy condition, where the cumulative impact on spacetime curvature is limited by the size and distribution of these voxels.

Such a model could offer an explanation for the smallness of the cosmological constant, as the vacuum energy’s gravitational influence would be inherently capped by the discrete structure, rather than requiring extreme fine-tuning within quantum field theory.

4.5 Causal structure and discrete spacetime

One of the central themes in *The Large Scale Structure of Space-Time* is the role of causal structure in defining the geometry and evolution of spacetime [8]. Light cones, event horizons, and singularities all emerge from the causal relationships between points in spacetime.

The introduction of discrete vacuum energy voxels could subtly modify this causal structure. If spacetime curvature is quantized at large scales, the shapes and behaviors of light cones and event horizons might deviate from their classical forms. This could lead to modifications in the evolution of cosmological horizons or black hole event horizons, potentially leaving observable imprints on gravitational wave signals or black hole shadow measurements.

Additionally, the discretized vacuum energy could influence the formation and evolution of causal boundaries in the universe, altering the global topology of spacetime in ways that might be detectable through precise cosmological observations.

4.6 Quantum fluctuations and large-scale structure

While *The Large Scale Structure of Space-Time* primarily focuses on classical general relativity, Hawking's later work on quantum cosmology — particularly in the context of inflation — highlights the importance of quantum fluctuations in shaping the large-scale structure of the universe [9, 10].

In standard inflationary models, quantum fluctuations at microscopic scales are stretched to cosmological sizes, seeding the anisotropies observed in the cosmic microwave background (CMB) and the formation of large-scale structures.

The discrete vacuum energy hypothesis introduces a new perspective: if vacuum energy is discretized at large scales (e.g., on the order of 80 AU), certain modes of quantum fluctuations could be suppressed or altered. This might lead to observable deviations in the CMB power spectrum or in the distribution of galaxies, offering a potential avenue to test the hypothesis through cosmological observations.

4.7 Connections to Hawking's large scale structure of spacetime

Hawking and Ellis's seminal work [8] laid the foundation for understanding the global properties of spacetime, focusing on the interplay between energy conditions, singularities, and causal structure. The discrete vacuum energy hypothesis builds upon these ideas by introducing a quantum-inspired modification to the classical framework.

By discretizing the vacuum energy, the hypothesis offers a potential mechanism for resolving singularities, modifying energy conditions, and altering causal structures — all central themes in Hawking and Ellis's work. Moreover, it provides a bridge between classical general relativity and quantum gravity, aligning with the broader goal of unifying these two pillars of modern physics.

Future research could explore how this discretization framework fits within existing quantum gravity approaches, such as loop quantum gravity or holographic models, further expanding on the foundational ideas presented in *The Large Scale Structure of Space-Time*.

4.8 Penrose's contributions to spacetime structure

Roger Penrose's pioneering work on spacetime singularities and causal structure [11] has profoundly influenced our understanding of general relativity. His singularity theorem, which predates the collaborative theorems with Hawking, laid the groundwork for recognizing the inevitability of singularities under specific energy conditions.

The discrete vacuum energy hypothesis complements Penrose's insights by proposing a mechanism that could mitigate or even avoid singularities. By introducing a natural cutoff to the energy density that contributes to spacetime curvature, the hypothesis suggests a pathway for limiting the infinite curvatures predicted by classical general relativity.

Additionally, Penrose's work on conformal structures and twistor theory [12] offers intriguing possibilities for how a discretized spacetime might be mathematically represented. These frameworks could provide fertile ground for developing a more rigorous formulation of the discrete vacuum energy hypothesis.

4.9 Implications for the Casimir effect

The Casimir Effect, a well-documented manifestation of quantum vacuum fluctuations, provides a compelling framework to explore the potential consequences of the discrete vacuum energy hypothesis [13]. We examine here how discretizing vacuum energy into large-scale “voxels” might influence the Casimir force and its experimental observability.

Casimir effect in standard quantum field theory

In standard Quantum Field Theory (QFT), the Casimir Effect arises due to boundary-induced modifications of the vacuum energy density between two parallel, perfectly conducting plates. The quantization of electromagnetic modes between the plates leads to a net attractive force, given by [14]:

$$F = -\frac{\pi^2 \hbar c}{240 d^4}, \quad (8)$$

where d is the separation between the plates. This force results from the exclusion of long-wavelength modes between the plates, leading to a difference in vacuum energy density inside and outside the cavity.

Impact of discrete vacuum energy hypothesis

The discrete vacuum energy hypothesis, which introduces a natural infrared cutoff via energy voxels (on the order of ~80 AU), would alter the allowed modes contributing to the Casimir Effect.

Modification of allowed modes

In the traditional Casimir setup, the summation over vacuum modes extends up to a high-energy cutoff, often related to the

material properties of the conducting plates [14]. Under the discrete vacuum energy framework, modes with wavelengths longer than the voxel size ($l_{\text{voxel}} \sim 1.2 \times 10^{10} \text{ m}$) would be excluded:

$$E_{\text{Casimir}}^{\text{discrete}} = \frac{\hbar c}{2} \sum_{\substack{n=1 \\ \lambda_n < l_{\text{voxel}}}}^{\infty} \omega_n, \quad (9)$$

where λ_n is the wavelength of the n^{th} mode. This implies that while short-wavelength modes (dominant at small separations) remain unaffected, the contribution of long-wavelength modes would be suppressed.

Large-scale suppression

At microscopic scales (nanometers to micrometers), the Casimir force would remain consistent with experimental results [15], as these regimes are dominated by high-frequency modes well below the voxel scale. However, at macroscopic separations approaching or exceeding the voxel size, the Casimir force could diminish or vanish due to the absence of long-wavelength vacuum modes. This introduces a scale-dependent suppression, potentially leading to observable deviations at large distances.

Experimental signatures and tests

The discrete vacuum energy hypothesis predicts specific deviations from standard Casimir force calculations, particularly at intermediate to large separations:

- **Intermediate Scales (100 μm to mm):** Precision Casimir force measurements at these scales could reveal slight deviations if the discretization impacts certain modes [16].
- **Casimir-Polder Forces:** Forces between atoms and surfaces may also exhibit modifications due to altered vacuum fluctuations.
- **Long-Range Experiments:** Testing the Casimir effect at macroscopic distances (meters to kilometers) could reveal force suppression consistent with the proposed voxel size.

Conceptual implications

The Casimir Effect is often cited as empirical evidence for vacuum energy. Under the discrete vacuum energy hypothesis, local manifestations like the Casimir force would arise solely from short-wavelength modes, while large-wavelength (infrared) modes — those responsible for the cosmological constant — would be filtered out by the discretization. This dichotomy offers a unified view where vacuum energy contributes differently at varying scales: locally through the Casimir Effect and cosmologically through dark energy. The discrete vacuum energy hypothesis maintains consistency with observed short-range Casimir forces while predicting

a potential suppression at large scales. This offers an intriguing experimental avenue to test the hypothesis and further understand the scale-dependent behavior of vacuum fluctuations.

5 Experimental signatures

While challenging, potential observational signatures could include deviations in large-scale cosmological structures or subtle effects in gravitational lensing over vast distances.

Recent observations from the Dark Energy Spectroscopic Instrument (DESI) have provided insights that support the notion of dark energy as an infrared phenomenon, influencing the universe's large-scale structure [17]. DESI's extensive mapping of galaxies and quasars has revealed subtle hints that dark energy, once assumed to be constant, may be evolving over time. This evolution suggests that dark energy's effects are more pronounced at larger, cosmological scales, aligning with the hypothesis that it operates predominantly in the infrared regime. Such findings offer a natural explanation for the smallness of the cosmological constant without necessitating extreme fine-tuning.

Additionally, analyses combining DESI data with other cosmological observations have indicated a suppression in the growth of cosmic structures. This suppression is consistent with models where dark energy influences the universe's expansion dynamics at large scales, further supporting its characterization as an infrared phenomenon [18, 19].

These empirical findings bolster the perspective that dark energy's primary effects manifest at vast, cosmological distances, reinforcing its classification as an infrared phenomenon.

6 Conclusion

We have proposed a novel approach to the cosmological constant problem by introducing a discrete vacuum energy cutoff. This model naturally produces the observed vacuum energy density without fine-tuning and suggests a profound connection between quantum fluctuations and large-scale cosmology.

Further research is needed to explore the implications of this hypothesis and its potential integration with quantum gravity frameworks.

Acknowledgments

The author thanks professors James Miller, Kevin Ludwick, and Richard Lieu from the University of Alabama in Huntsville Physics department for courses sparking the idea.

Submitted on January 22, 2026

References

1. Weinberg S. The cosmological constant problem. *Reviews of Modern Physics*, 1989, v. 61, 1–23.
2. Rovelli C. *Quantum Gravity*. Cambridge University Press, Cambridge, UK, 2004.
3. Padmanabhan T. Understanding our universe: Current status and open issues. *Current Science*, 2005, v. 88 (7), 1057–1068.

4. Carroll S.M. The cosmological constant. *Living Reviews in Relativity*, 2001, v. 4, 1.
5. Padmanabhan T. Cosmological constant — the weight of the vacuum. *Physics Reports*, 2003, v. 380, 235–320.
6. Rovelli C. Loop quantum gravity. *Living Reviews in Relativity*, 1998, v. 1, 1.
7. t'Hooft G. Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026 (1993).
8. Hawking S.W. and Ellis G.F.R. The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge, UK, 1973.
9. Hartle J.B. and Hawking S.W. Wave function of the universe. *Physical Review D*, 1983, v. 28(12), 2960–2975.
10. Hawking S.W. The development of irregularities in a single bubble inflationary universe. *Physics Letters B*, 1982, 115(4), 295–297.
11. Penrose R. Gravitational collapse and space-time singularities. *Physical Review Letters*, 1965, v. 14, 57–59.
12. Penrose R. The Road to Reality: A Complete Guide to the Laws of the Universe. Jonathan Cape, London, UK, 2004.
13. Casimir H.B.G. On the attraction between two perfectly conducting plates. *Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen*, 1948, v. 51, 793–795.
14. Bordag M., Mohideen U., and Mostepanenko V.M. New developments in the Casimir effect. *Physics Reports*, 2001, v. 353(1–3), 1–205.
15. Decca R.S., Lopez D., Fischbach E., and Krause D.E. Precise comparison of theory and new experiment for the casimir force leads to stronger constraints on thermal quantum effects and long-range forces. *Annals of Physics*, 2005, v. 318(1), 37–80.
16. Lamoreaux S.K. Demonstration of the casimir force in the 0.6 to 6 μ m range. *Physical Review Letters*, 1997, v. 78(1), 5–8.
17. DESI Collaboration. Is dark energy weakening? new uncertainty invites optimism about the fate of the universe, 2024. Accessed: 2024-04-22.
18. DESI Collaboration. The desi experiment part i: Science, targeting, and survey design. *The Astrophysical Journal Supplement Series*, 2022, v. 253(3), 5.
19. Phys.org. Scientists detect mysterious suppression in cosmic growth, 2025. Accessed: 2025-01-15.