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Calibration of Microwave Reference Blackbodies and Targets for Use in Satellite
Observations: An Analysis of Errors in Theoretical Outlooks

and Testing Procedures

Pierre-Marie Robitaille
Department of Radiology, The Ohio State University, 395 W. 12th Ave, Suite 302, Columbus, Ohio 43210, USA

E-mail: robitaille.1@osu.edu

Microwave reference blackbodies and targets play a key role in astrophysical and geo-
physical studies. The emissivity of these devices is usually inferred from return-loss
experiments which may introduce at least 10 separate types of calibration errors. The
origin of these inaccuracies depends on test conditions and on the nature of each target.
The most overlooked errors are related to the geometry adapted in constructing refer-
ence loads and to the effects of conduction or convection. Target shape and design can
create an imbalance in the probabilities of absorption and emission. This leads to loss of
radiative equilibrium, despite the presence of a thermodynamic steady state. Heat losses
or gains, through conduction and convection, compensate for this unexpected physical
condition. The improper calibration of blackbodies and targets has implications, not
only in global climate monitoring, but also relative to evaluating the microwave back-
ground.

1 Introduction

Blackbodies [1–4] can be difficult to construct and analyze.
For example, by unknowingly pumping normal radiation
[2, 3] into cavities using their detectors, scientists can eas-
ily make the interior of enclosures appear black [4]. They
thereby create the illusion that all cavities emit normal radi-
ation [1–3]. Relative to microwave reference targets, the sit-
uation is further complicated by the realization that these de-
vices are pseudo-cavities and become subject to geometrical
considerations. These problems are important as microwave
targets are present on numerous satellites monitoring the mi-
crowave background [5–7] and global climate (e.g. [8]).

Calibration targets for microwave frequencies [9–15] are
typically made from carbon or iron containing foams and
epoxy resins, such as Eccosorb foams and Eccosorb CR-110
and 117 [Emerson and Cuming, Randolph, MA]. Recently,
an aqueous blackbody has been proposed for calibration pur-
poses [16]. Such a device takes advantage of the powerful
microwave absorbance of water. As for Eccosorb surfaces
used in the microwave [5,7], unlike graphite and carbon black
paints in the infrared [3, 17–20], they manifest significantly
increased absorbance as a function of thickness. Therefore,
it is impossible to obtain a blackbody emission from a thin
layer of Eccosorb, irrespective of claims to the contrary. For
example, a 1 cm layer of Eccosorb CR-110 has an absorbance
of only ∼6 dB at 18 GHz [21]. Despite this reality, space
restrictions aboard spacecraft often limit the volume avail-
able for satellite reference targets [7]. Further complicat-
ing the situation, these materials permit transmission at mi-
crowave frequencies and are not opaque. Consequently, the
correct treatment of their properties involves the considera-
tion of transmission. Unfortunately, since reference targets

are often backed by highly reflective metal casings [10–15],
it becomes easy to ignore the effects of transmission in the ab-
sorber. This can lead to a serious overestimation of calibrator
emissions, as will be demonstrated.

2 The testing of reference targets

Almost without exception, the testing of microwave refer-
ence targets involves their placement within an anechoic
chamber (e.g. [10–15]). Here, they are subjected to incident
microwave radiation emitted from a test horn, typically driven
at the frequency of interest by a network analyzer. This is
achieved while making the assumption that the target, with
its absorbing material and metal casing (e.g. [10–15]), can be
treated as a single opaque unit. By measuring the return-loss
produced in this configuration, the emissivity of the target can
be inferred, but not without risk of error.

Return loss measurements are based on the validity of
Stewart’s formulation, which advances the equivalence of
emission and absorption under conditions of thermal equi-
librium [22, 23]. This statement is commonly viewed by the
scientific community as Kirchhoff’s law [1]. However, Kirch-
hoff’s law differs from Stewart’s formulation by advocating
that all radiation within cavities must be black. Such a con-
cept is demonstrably false [4, 17, 23]. As a result, the law
of equivalence between emissivity and absorptivity, must be
attributed uniquely to Stewart [22, 23].

The emissivity of a target is usually estimated through the
relationship εt = 1 − σtn, where εt and σtn represent target
emissivity and normal reflectivity, respectively (i.e. [10–15].
This treatment assumes that only normal reflection takes
place and also constitutes an implicit formulation of Stewart’s
law [23]. Nonetheless, in this discussion, we will consider the
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measurement of absorption, rather than emission, and write
κt = 1−σtn, where κt represents the absorptivity of the target.
In the end, it is demonstrated that the measurement of absorp-
tivity from return loss measurements in no way implies that
the emissivity of the target has been properly evaluated.

2.1 Type-1, -2, -3 and -4 errors

The first error in the determination of emissivity using re-
turn loss measurements, involves leakage of incident radia-
tion from the horn, directly into the anechoic chamber, with-
out ever striking the target. This will be referred to as a Type-
1 error (see Figure 1A) and symbolized as Γbp, as it depends
on the beam pattern of the horn. Type-2 errors can occur
when incident radiation is diffracted around the edges of the
horn on transmission, as shown in Figure 1A. Type-2 errors
will be symbolized as Γdh as they represent diffraction on the
horn. These errors are also associated with the beam pattern.
Since corrugated edging can be placed on a horn to minimize
the effects of diffraction, it is treated as a separate error. Type-
3 errors are similar in nature to Type-2 errors, but involve the
diffraction of incoming radiation on the edges of the target,
Γdt. This term also includes radiation which is scattered by
the target. Finally, a Type-4 error results from the neglect of
diffuse reflection off the target surface, σtd.

Each of these error types result in radiation being lost to
the walls of the anechoic chamber. Such radiation will not
be available to the horn and will subsequently contribute to
lowering the measured return radiation. In order to overcome
this problem, it is important to numerically evaluate the beam
pattern of the horn, thereby inferring the percentage of inci-
dent radiation that does, in fact, strike the target. It is also
possible to place pick-up horns in the anechoic chamber and
evaluate the beam patterns directly, in the absence of a tar-
get. Thus, whether through calculations or direct measure-
ment, the magnitude of these errors can be understood and
are usually properly addressed. Nonetheless, and for the sake
of completeness, it is clear that the absorptivity of the target
is actually given by:

κt = 1 − σtn − σtd − Γbp − Γdh − Γdt . (1)

When viewing the target as a single unit, Type-1, -2, -3,
and -4 errors can lead to the inaccurate assessment of target
emissivity from return-loss experiments. Yet, it is the effect
of using a transmissive absorber, in the presence of a metal
casing or support, which can lead to the greatest errors in
evaluating emissivity.

2.2 Type-5 and -6 errors

The emissivity of microwave targets is exclusively dominated
by an absorbing material, like Eccosorb, which is also trans-
missive [9, 21]. Accordingly, it is unwise to treat these de-
vices as single units. Instead, clearer insight into the problem
can be gained if one views the target as made from its two

Fig. 1: Schematic representation of error types when assessing ef-
fective emissivity using return-loss measurements.

components: the absorbent material and the perfectly reflec-
tive metallic backing. In this scenario, the absorbent material
can be considered as possessing absorptivity, κa, and emis-
sivity, εa, equal to one another (κa = εa), along with normal
reflectivity, σan, diffuse reflectivity, σad, and transmissivity,
τa. The metallic casing, c, often constructed from aluminum,
is viewed as having perfect reflectivity (σc = 1).

Under such conditions, the difficulties in ascertaining the
emissivity of the target become evident, since for any non-
opaque substance, ε = 1−σ− τ, rather than ε = 1−σ. Be-
cause the absorber has transmittance, it can permit microwave
energy to pass through its body and strike the metallic back-
ing at virtually any angle. While an object transmits incident
radiation, it is not required to preserve either phase or angle of
incidence. As such, when the transmitted component strikes
the casing, it can do so in a manner whereby the microwave
energy, following reflection, re-enters the absorber only to be
absorbed, transmitted towards the horn, scattered into space,
or diffracted by the edge of the casing. This would lead to a
good return-loss measurement on the network analyzer; but it
would be improper to assume that ε = 1 − σ. Therefore, it
becomes nearly impossible to measure emissivity, as will be
demonstrated.

In reality, by treating the target as an opaque unit made
up of two components (i.e. the absorber and the reflective
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casing), it is apparent that its absortivity is now given by:

κt = 1 − σan − σad − Γbp − Γdh − Γdc −
− κa τaσc − τa τaσc − sa τaσc − da τaσc , (2)

where the normal and diffuse reflection of the absorber are
now being considered (σan and σad), along with the diffrac-
tion of incident radiation on the casing, Γdc (previously
viewed as Γdt), and four new terms arise, whose coefficients
sum to 1 (i.e. κa +τa + sa +da = 1). The seventh term, κa τaσc,
corresponds to that fraction of transmitted power which is re-
flected by the casing, σc, and absorbed, κa, upon reentry into
the absorber. The eighth term, τa τaσc, represents that frac-
tion of the transmitted power which is reflected by the cas-
ing and is subsequently re-transmitted, τa, towards the horn.
The seventh term, like the eighth term, has been innocently
considered when treating the target as an opaque unit in sec-
tion 2.1. These terms introduce no errors in the return-loss
measurement itself. For instance, it is evident that, with rear-
rangement, Eq. (2) becomes:

κteff
= (κt + κa τaσc) = 1 − (σan + τa τaσc) − σad −

− Γbp − Γdh − Γdc − sa τaσc − da τaσc . (3)

In this expression, the seventh term in Eq. (2), κa τaσc,
is moved to the left as it makes a positive contribution to the
effective absorptivity of the target, where on measurement,
κt is indistinguishable from κa τaσc. Unfortunately, we must
now consider the effective absorptivity, κteff

, from the target.
In fact, the seventh term, κa τaσc, brings such difficulty in the
determination of emissivity that it will be considered below
separately as a Type-7 problem. This occurs as the targets
permit repeated cycles of absorption and reflection. The as-
sociated Type-7 errors experience geometric growth. It is also
clear that, in Eq. (2), the eighth term, τa τaσc, can be paired
with normal reflection, σan, the two being indistinguishable.

The ninth term in Eq. (2), sa τaσc, generates a Type-5 er-
ror as shown in Figure 1B. It accounts for that fraction of the
transmitted power which is reflected by the casing, re-enters
the absorber, and is then scattered, sa, into the anechoic cham-
ber. The term resembles a Type-4 error, σtd, involving the
effect of diffuse reflection when considering the entire target.
However, it is not diffuse reflection, though indistinguishable
from such a process. It is properly viewed, as a Type-5 error,
as it involves scattering by the absorber following reflection
on the casing.

Finally, the tenth term in Eq. (2), da τaσc, introduces a
Type-6 error. It corresponds to that fraction of the transmitted
power which is reflected by the aluminum casing, re-enters
the Eccosorb and is then diffracted, da, by the edge of the
casing into the anechoic chamber (see Figure 1B). The tenth
term involves diffraction on the casing from a direction op-
posite to the incident radiation. It resembles a Type-3 error,
Γdc (previously referred to as Γdt), in being indistinguishable
from it on measurement, but is distinct in its origin. It is real-

ly a “reverse diffraction” since it is produced from radiation
which was previously reflected by the metallic casing. It will
be properly viewed as a Type-6 error. The distinction is im-
portant because, while corrugations can be placed on horns to
minimize diffractions on their edges during transmission, they
are often not present on the metallic casings of their reference
targets [7]. Hence, the diffraction produced as radiation exits
the interior of the target is often ignored [7].

If we now represent the seventh through the tenth terms
as Γκσ, Γτσ, Γsσ, and Γdσ, Eq. (2) can be re-expressed, with
pairing of indistinguishable terms, as follows:

κteff
= (κt + Γκσ) = 1 − (σan + Γτσ) − (σad + Γsσ) −

− (Γbp + Γdh) − (Γdc + Γdσ) . (4)

2.3 Type-7 errors

The most serious problem with microwave target return-loss
measurements can be viewed as Type-7 errors which involve
the geometry of the targets themselves. This problem exists
in all determinations of emissivity from return-loss measure-
ments in the presence of a metal casing. In reality, we are
returning to the κa τaσc, or Γκσ term. As previously men-
tioned, this term does not lead to an error in the return-loss
measurement. But, it can cause an enormous error in the de-
termination of emissivity from such measurements. This is
a geometric effect, which is best understood by considering
targets of varying geometry.

2.3.1 The Planck LFI

Consider, for instance, the target geometry for the ∼4 K ref-
erences on the Planck LFI [7]. These targets are box-like
in appearance. They are composed of various layers of Ec-
cosorb, including a small pyramid, enclosed on 5 sides by an
aluminum casing (see Figures 8, 10 and 12 in [7]). Given
incident radiation from the test horn and neglecting Type-1
through -4 errors, the layer of Eccosorb can initially absorb
some of the microwave power. The radiation which is not
absorbed is transmitted through the Eccosorb and strikes the
aluminum casing. At this point, it ideally experiences normal
reflection on the casing and travels back through the absorber.
If this radiation is not absorbed following reentry, it travels
into space. There, neglecting Type-5 and -6 errors, it can be
detected by the horn and registered as return radiation. Note
that, now, there are two chances for the incident microwave
radiation to be absorbed: first on incidence and then follow-
ing reflection on the metal casing (term κa τaσc above). The
situation is not balanced on emission.

Relative to pure emission, the absorber is unable to pro-
vide the same performance. For instance, microwaves emit-
ted from the upper surface of the absorber can travel unin-
terrupted towards the detector. Conversely, radiation emitted
through the lower surface of the absorber immediately en-
counters reflection on striking the metal casing and then re-
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enters the material of origin. Once in the absorber, the ra-
diation which had been emitted from the lower surface has a
chance of being absorbed before exiting towards the test horn.
Furthermore, it is unlikely that the lower surface of such a test
target can emit any photons towards the casing, since conduc-
tion is also taking place at the interface of the Eccosorb and
the aluminum casing (see section 2.4). The effective emis-
sivity, εeff, of the absorber is reduced by the presence of the
metal casing, whereas the effective absorptivity, κeff, is being
increased.

Speaking in quantum mechanical terms, the presence of
the metal casing has created a condition where the proba-
bility of absorption is no longer equal to the probability of
emission. Herein lays the major flaw associated with such ap-
proaches. Geometry has produced a condition where return-
loss measurements can no longer properly evaluate the effec-
tive emissivity of the target. The effective absorbtivity has
been enhanced by geometry and the effective emissivity re-
duced. This is a Type-7 error. Effective radiative equilibrium
is being destroyed by geometry and εeff , κeff. This occurs
precisely because the highly conductive metallic casing en-
sures that thermodynamic steady state remains. Conduction
now compensates for the imbalance created in effective ab-
sorptivity and emissivity. In fact, conduction and convection
can introduce Type-8 and 9 errors, respectively, as will be
discussed in section 2.4.

2.3.2 Pyramidal targets

In order to emphasize the effect of geometry, consider a target
where a metal casing is built, composed of a group of small
pyramidal structures [10–12]. Such targets are important on
geophysical satellites and in radiometry standards laborato-
ries [8, 10–12]. In these targets, each pyramid is about 4 cm
in height with a 1×1 cm base [10–12]. A large array of such
pyramids, coated with a thin layer of absorber, will form the
target. Often, the aluminum casing supports a thin layer of
Eccosorb, as seen in the ARIS instrument [8] and other cal-
ibration sources [10–12]. In Figure 2A and B, a section of
these calibrators is expanded, displaying only the valley cre-
ated by two adjacent pyramids. Figure 2A treats the situation
experienced in measuring absorption from such a target. Con-
versely, in Figure 2B, emission from a small surface element,
at the bottom of the valley, is being considered. In order to
simplify the presentation, only absorption and emission to-
wards or away from a single element at the bottom of the
valley is considered.

Thus, when radiation is incident on such a structure (see
Figure 2A), it has an initial probability of being absorbed
when it first enters the Eccosorb, P1. If the radiation is not
absorbed at this interface, it is transmitted to the metal casing
where it is immediately reflected. At this point, the radia-
tion re-enters the Eccosorb, where it still has another proba-
bility of being absorbed, P2. Should the photons not be ab-

Fig. 2: Schematic representation of geometric, or Type-7 errors, in
the assessment of effective emissivity. A) Path of a photon towards
an absorptive element at the bottom of the valley. B) Path of a photon
emitted by an element at the bottom of the valley. See Table 1 for
the effect of geometries on effective emissivity of this element.

sorbed, the radiation travels to the adjacent pyramid. Here,
once again, it has a probability of being absorbed, P3. This
scenario continues through many reflections and absorptions.
As the photons travel towards the element at the bottom of the
valley, a tremendous increase in the probability of being ab-
sorbed is generated. This effective absorptivity is made up of
the sum of all individual absorption probabilities created from
geometry in the presence of the casing. Because of repeated
chances of absorption and reflection, the total probability for
effective absorptivity, κeff, is tremendous as shown in Table 1.
In fact, this represents geometric growth. For instance, if one
permits a total of 8 interactions with the Eccosorp on the
way to the small element (9 interactions in total), any pho-
ton will have nearly an 87% chance of being absorbed even
if the emissivity of the Eccosorb layer (in isolation) was only
0.2. To make matters worse, if that same photon then tries to
leave the valley, it must do so while dealing with the prob-
abilities of absorption on exit. Other examples are provided
in Table 1. Of course, the effective absorptivity of the target
involves the sum of all probabilities for all photons and for all
elements. The path through the Eccosorb layers will also be
slightly different with each crossing. Nonetheless, it is easy to
visualize why these geometric configurations give such out-
standing results for effective absorptivity. This is true, even
when extremely thin layers of absorber are placed on the sur-
faces of the metal casing.

Unfortunately, while this situation is outstanding for ab-
sorption, it is suboptimal relative to emission. Consequently,
a photon produced by a surface element at the bottom of the
valley, which is not emitted directly in the direction of the
horn, will be subject to repeated chances of being absorbed as
it tries to make its way out of this microwave “death valley”
(see Table 1). For instance, in considering the reverse path
of Figure 2B, we can see that an element with an emissiv-
ity of 0.2, will be able to contribute an effective emissivity of
only 0.034 after 8 interactions with the Eccosorb (4 changes
in direction). Just 4 interactions would more than half the
effective emissivity from this element. Once again, the effec-

6 Pierre-Marie Robitaille. Calibration of Microwave Reference Blackbodies and Targets for Use in Satellite Observations
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Fig. 3: Schematic representation of A) Type-8, or conductive, errors
and B) Type-10, or standing wave errors. These errors can occur
when assessing effective emissivity using return-loss measurements.

tive emissivity must include emission over all possible angles.
Nonetheless, the situation is unfavorable, as geometry is hin-
dering free emission from most elements.

Moreover, the situation is greatly accentuated if each el-
ement of the Eccosorb has a real emissivity of 0.7. In this
case, after only 4 interactions with the Eccosorb (2 changes
in direction), a photon leaving the bottom of the valley would
contribute an effective emissivity of only 0.006. As such, su-
perior absorptive characteristics of the surface absorber lead
to inferior performance on effective emission. Furthermore,
even a photon emitted near the tips of the pyramid has a
chance of doing so in the direction of the valley, not the detec-
tor. Such a photon would have almost no chance of escaping
the valley. This demonstrates the profoundness of Type-7 er-
rors and the impact of geometry on calibration targets.

It is clear that the probability of absorption or the effective
absorptivity, in this geometry, far surpasses the effective emis-
sivity and all return-loss measurements involving such con-
figurations improperly overestimate emission. In fact, rather
than building a calibration target which ensures good emis-
sion, scientists unknowingly accomplished exactly the oppo-
site. For instance, using infrared imaging, thermal variations
in the targets are revealed, wherein the pyramidal tips display
a reduced temperature (see Figure 5 in [10]). Such tempera-
ture distributions within calibration targets point to the pres-
ence of conductive and radiative imbalances which prove that
the targets are not black (see section 2.4.1). Figure 5 in [10]
constitutes a direct manifestation of Type-7 errors. Relative
to emission, it would have been better to provide a very thick
surface of Eccosorb. Unfortunately, return-loss measurement
would indicate considerable diffuse reflection from such a
surface. This had been circumvented by using valleys.

κeff κ N εeff ε N

0.865 0.2 8 0.034 0.2 8
0.672 0.2 4 0.082 0.2 4
0.488 0.2 2 0.128 0.2 2
0.2 0.2 0 0.2 0.2 0
0.99 0.4 8 0.0067 0.4 8
0.922 0.4 4 0.0518 0.4 4
0.784 0.4 2 0.144 0.4 2
0.4 0.4 0 0.4 0.4 0
0.99998 0.7 8 0.00005 0.7 8
0.9975 0.7 4 0.00567 0.7 4
0.973 0.7 2 0.063 0.7 2
0.7 0.7 0 0.7 0.7 0

Table 1: Summary of calculated effective absorptivity and emissiv-
ity. In this table, κeff represents the effective absorptivity obtained
after N interactions of an incoming photon with the absorber and
1 interaction with the element at the bottom of the valley (see Fig-
ure 2). It is assumed that Eccosorb is coating the 4×1×1 cm metal-
lic pyramids [10–12]. The process involves geometric growth as
given by κeff = 1 − (1 − κ)N+1. Similarly, εeff represents the effective
emissivity from a single element obtained after N interactions of an
emitted photon with the Eccosorb. If the emitted photon travels di-
rectly to the detector, without further interactions with the Eccosorb,
then N = 0. For effective emissivity, geometric decay is occurring
corresponding to εeff = ε − ε [1 − (1 − κ)N]. As a consequece of
thermodynamic steady state, it is assumed that the ability of an in-
dividual element to absorb or emit radiation remains equal (κ = ε).
The total effective emissivity of the target constitutes the summation
of effective emissivities over all elements, e, and angles (θ and ϕ):
εeffT = ΣΣΣ εeff.

2.4 Type-8, -9 errors

Type-8 and -9 errors can occur when heat flows out of the
target through either conductive or convective paths, respec-
tively. To ensure that radiative heat transfer dominates the
equilibrium thermodynamics of the target, it is important to
minimize all contacts.

A conductive path out of the reference target created with
metallic fixtures can set up a Type-8 error as shown in Fig-
ure 3A. In this case, it is possible to produce an imbalance
between thermal absorption and emission which immediately
renders return-loss measurements invalid.

It is evident that a target bombarded with incident mi-
crowave radiation on absorption can dissipate such energy
through conduction out of the target. It does not need to resort
to emission. In this situation, the effective absorptivity of the
target will not be equal to its effective emissivity (εeff , κeff),
even though thermodynamic steady state is being maintained.
This also explains why geometry can produce imbalances in
effective emissivity and absorptivity while still maintaining a
fixed target temperature.

In theory, a Type-9 error could also be produced, with the
same consequences, if convective paths out of the target are
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present. Such effects are unlikely to be significant in most
scenarios as convective heat transfer is usually ineffective rel-
ative to conductive mechanisms.

Consequently, the presence of conduction and convection
can introduce two new error terms, Γcond and Γconv, such that
Eq. (4) now becomes:

κteff
= (κt + Γκσ) = 1 − (σan + Γτσ) − (σad + Γsσ) −
− (Γbp + Γdh) − (Γdc + Γdσ) − Γcond − Γconv . (5)

Conductive and convective errors in target calibration are
often not properly addressed and the use of conduction to
“cool the target” unwisely advocated [7]. Such approaches
highlight elementary errors relative to the understanding of
heat transfer. For instance, it is true that conductive paths
can be used to heat a target to steady state with all heat being
dissipated through radiation. In fact, this was the approach
first used to make radiant cavities isothermal [24] in the days
which led to Planck’s formulation of the blackbody relation-
ship [2, 3]. In this case, conductive paths bring heat into the
device which is then forced to escape through radiation. It is
quite another matter to permit conductive or convective paths
to bring heat out of a target. In the former case, heat leaves the
target exclusively through radiation. In the later, it can leave
either through radiation or conduction. Accordingly, there is
no reason to expect that brightness temperatures in the second
setting will be correct.

2.4.1 Max Planck and heat radiation

Relative to this question, Max Planck insists that blackbodies
be isolated from the surrounding system. He writes: “A sys-
tem of bodies of arbitrary nature, shape, and position which
is at rest and is surrounded by a rigid cover impermeable
to heat will, no matter what its initial state may be, pass in
the course of time into a permanent state, in which the tem-
perature of all bodies of the system is the same. This is the
state of thermodynamic equilibrium, in which the entropy of
the system has the maximum value compatible with the total
energy of the system as fixed by the initial conditions. This
state being reached, no further increase in entropy is possi-
ble” [3]. In this treatment, Planck is really making a state-
ment of Prévost’s theory of exchanges [25, 26]. However, he
is moving beyond Prévost, because he is considering the en-
tropy of the radiation itself. For Planck, the normal spectrum
is obtained when the entropy of radiation is maximized [3].
In any case, he continues: “We shall begin with the simplest
case, that of a single medium extending very far in all direc-
tions of space, and like all systems we shall here consider,
being surrounded by a rigid cover impermeable to heat” [3].
Finally, Planck makes the point relative to conduction: “Now
the condition of thermodynamic equilibrium requires that the
temperature shall be everywhere the same and shall not vary
with time. Therefore in any arbitrary time just as much ra-

diant heat must be absorbed as is emitted in each volume-
element of the medium. For the heat of the body depends only
on the heat radiation, since on account of the uniformity of
temperature, no conduction of heat takes place” [3]. Remem-
ber, in this case, that Planck is dealing with a closed system.
As such, once thermal equilibrium exists in such a system,
there can be no net conduction.

Nonetheless, in open systems, an object can assume a
fixed temperature, even if net conduction takes place. Such
a situation can be devastating to the production of thermal
photons as seen in section 2.4.2.

2.4.2 An example from the remote sensing of soil mois-
ture

Soil moisture can be evaluated through emission profiles in
the microwave region [27]. It is well known that the bright-
ness temperature of soil drops dramatically with moisture
content [27]. Given the presence of water, the soil can dis-
sipate its heat through conduction, directly into the water,
or through convection, as the liquid evaporates. In response,
brightness temperatures drop [27]. When soil moisture is re-
moved, brightness temperatures recover, for the simple rea-
son that thermal emission now becomes the primary means
of dissipating heat. Placing a body in direct contact with
conductive or convective paths, allows heat to escape using
non-radiative means, resulting in the lowering of brightness
temperatures. In such a scenario, the brightness temperature
recorded will be unrelated to the actual temperature of the ob-
ject of interest. This is precisely what has been done in the
case of the LFI reference targets on the Planck satellite [7,28].

2.5 Type-10 errors

In addition to all of the issues discussed so far, a Type-10 er-
ror can exist when standing waves are able to form inside the
metal casing, enclosing the absorber (see Figure 3B). Thus,
since the casing is made of metal, often possessing a back-
ing along with small walls [7], it introduces the possibility of
forming a pseudo-cavity in front of the horn wherein stand-
ing waves can build [4]. This leads to a Type-10 error. Such
waves would trap energy into the target, making it unavail-
able to return-loss measurements. Nonetheless, absorption
has not occurred. Standing waves simply confine the mi-
crowaves [4] and the return-loss measurements suggest an
emissivity which is superior to that actually present.

As a result, a complete expression for the determination
of absorptivity is as follows:

κteff
= (κt + Γκσ) = 1 − (σan + Γτσ) − (σad + Γsσ) −
− (Γbp + Γdh) − (Γdc + Γdσ) − Γcond − Γconv − Γsw , (6)

where Γsw accounts for the presence of standing waves. Once
again, this term is important in addressing the reference tar-
gets on the Planck satellite [28].
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3 Conclusions

Much can be gained by carefully considering all thermal com-
ponents in a heat transfer problem. A complete analysis of
error leads to the realization that progress must be made in
the fabrication and testing of microwave reference loads and
targets. At the same time, these considerations also impact
the design of test facilities and anechoic chambers. Ideally,
by lining room surfaces with temperature controlled metallic
pyramids covered with Eccosorb, it should be possible to si-
multaneously create tremendous effective absorptivity by the
walls and bring their effective emissivity down to very low
levels. Such conditions would be ideal in many test scenarios
involving anechoic chambers.

At the same time, the measurement of emissivity from
microwave targets is a complex problem, wherein up to 10
or more, error types can be identified. Most of these errors
are familiar to the geosciences and astrophysics communi-
ties. Some may have escaped analysis. Often though, calibra-
tion errors have been inappropriately dismissed as insignif-
icant [7]. This is true for Type-10 errors, as the presence
of standing waves in the metal casing is almost always ig-
nored [7]. Nonetheless, a greater concern rests in the Type-7
errors which alter the effective radiative balance of the target
due to geometrical arguments. Such errors can also be present
in calibration blackbodies for use in the infrared [18,19]. Tar-
gets are not enclosures [4] and are never blackbodies. Hence,
they become subject to geometrical considerations. In addi-
tion, Type-8 errors can easily occur raising the possibility that
conduction itself, by allowing heat to flow out of the target, is
creating an imbalance between effective target emission and
absorption. If heat can be funneled out of a target through
conduction, its emissivity will fall. This can constitute an im-
portant limitation in building calibration targets.

As a result, though attempts have been made to quantify
error sources in microwave calibration targets [13–15], it ap-
pears that many of the devices used as emissivity references
on satellites and in the laboratory (e.g. [4–15] are inaccurate.
They are simply unable to provide the emissivity believed to
exist using return-loss measurements. This is a significant
scientific oversight which affects the monitoring of global cli-
mate change (e.g. [8]) and the microwave background [5, 7].
Perhaps it is for this reason that geoscientists are now turn-
ing to Earth surfaces as potential calibration sources [29].
Nonetheless, this solution is not available to satellites such as
Planck [7,28] which must rely on their internal reference tar-
gets. The proper functioning of spacecraft internal reference
targets can have the most profound consequences on scien-
tific advancement, as will be discussed in the accompanying
work [28].
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Armed with ∼4 K reference targets, the Planck satellite low frequency instrument (LFI)
is intended to map the microwave anisotropies of the sky from the second Lagrange
point, L2. Recently, the complete design and pre-flight testing of these ∼4 K targets has
been published (Valenziano L. et al., JINST 4, 2009, T12006). The receiver chain of
the LFI is based on a pseudo-correlation architecture. Consequently, the presence of
a ∼3 K microwave background signal at L2 can be established, if the ∼4 K reference
targets function as intended. Conversely, demonstration that the targets are unable to
provide the desired emission implies that the ∼3 K signal cannot exist, at this location.
Careful study reveals that only the second scenario can be valid. This analysis thereby
provides firm evidence that the monopole of the microwave background, as initially
detected by Penzias and Wilson, is being produced by the Earth itself.

1 Introduction

Over the years, I have expressed growing concern [1] about
the origin of the microwave background [2]. My evaluation
has focused on three fronts. First, I have highlighted that
errors exist in the derivation of Kirchhoff’s law of thermal
emission (e.g. [3, 4] and references therein) which renders
its use inappropriate in physics. The universality of black-
body radiation is invalid on both theoretical and experimen-
tal grounds [3, 4], making it impossible to assign an absolute
temperature to the Penzias and Wilson [2] signal. At the same
time, I have emphasized that the law of equivalence between
emission and absorption, under conditions of thermal equilib-
rium, remains valid [4]. This is properly referred to as Stew-
art’s law [5]. Second, I have questioned the assignment of the
microwave background to the cosmos [6], invoking (see [1]
and references therein), along with Borissova and Raboun-
ski [7], that the Earth’s oceans are responsible for this signal.
It is the presence of the hydrogen bond within water which
gives cause for reconsideration [8]. The emission of this bond
has not yet been assigned for the Earth’s spectrum, despite the
reality that our planet is 70% water. Finally, I have outlined
shortcomings in the measurements of the microwave back-
ground, especially relative to the COBE [9] and WMAP [10]
satellites. Concern, relative to the results of these satellites,
has also been voiced by a number of other groups [11–18].
Now, the Planck mission [19] is drawing the attention of the
scientific community. But early reports [20] and system eval-
uations [21] should provoke uneasiness. This can only be
appreciated when the function of the low frequency instru-
ment (LFI) is understood [22–26]. It is through the analysis
of the LFI’s performance that the origin of the microwave
background can be established [27].

On July 30, 2009 the ESA Planck team wrote: “In the
case of LFI, the results show even better than expected per-

formances due to benign space environment and an improved
tuning process” [20]. On first consideration, it would seem
that the monopole of the microwave background was present
at L2, as expected by the astrophysics community. Unfor-
tunately, upon careful review, this statement directly implies
that the opposite situation has taken place. There can be no
3 K signal at this location. The arguments center on the func-
tioning of the ∼4 K targets, whose full description only re-
cently became available [21]. When the performance of these
references is considered, in combination with the function
of the pseudo-correlation receivers [22–26], solid evidence
emerges that there can be no ∼3 K signal permeating space.

2 The performance of the Planck LFI

The proper characterization of the ∼4 K reference loads [21]
and LFI [22–26] on the Planck satellite is critical to under-
standing whether the monopole of the 2.7 K microwave back-
ground is present at L2 [27]. This situation occurs, since
the presence of a monopole cannot be ascertained with the
high frequency instrument, HFI [28]. Relative to the HFI,
the Planck team writes: “Plank cannot measure accurately
the monopole (uniform part of the emission) because many
sources contribute (telescope, horns, filters,. . . )” [29]. Thus,
the HFI bolometers, though operating in absolute mode, can
receive thermal photons from the spacecraft itself much of
which is in a 50 K environment. As Planck’s mirrors are ex-
posed to 300 K at L2, photons of instrumental origin can enter
the bolometers, making it difficult for the HFI to extract the
∼3 K background signal from instrumental foregrounds. It
is anticipated that such effects are less important at the fre-
quencies of the LFI. Consequently, it seems that only the LFI
[22–26] can properly address the existence of a monopole at
L2. The issue is critical since, in the absence of the monopole,
any anisotropy measurements by this satellite would have lit-
tle or no scientific value.
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Expected performance of the PLANCK LFI receivers

Sky Temperature ∼3 K Sky Temperature ∼0 K

Reference ∼4 K As expected Poor
Reference ∼0 K Poor Better than expected

Table 1: Summary of the scenarios which impact the expected performance of the pseudo-correlation receivers on the Planck satellite. Four
possibilities exist depending on the actual brightness temperatures of the sky and the reference targets. It is assumed that the sky can be
either at ∼3 K (the Penzias and Wilson temperature [2]) or at ∼0 K [1]. Similarly, the reference targets can be either operating as intended
near 4 K [21], or are unable to generate a meaningful blackbody spectrum, ∼0 K (as proposed herein).

As discussed in considerable detail [22–26], the low fre-
quency instrument (LFI) functions as a pseudo-correlation re-
ceiver, wherein the sky signal is constantly being compared
against a ∼4 K reference signal. In this configuration, the re-
ceiver displays optimal performance only when the two in-
put signals display approximately the same amplitude. Under
these conditions, the input offsets are nearly identically zero,
the knee frequency of the receiver is minimized and so is the
1/ f noise [22–27]. The LFI team states, “to minimize the 1/ f
noise of the radiometers, the reference blackbody tempera-
ture should be as close as possible to the sky temperatures
(∼3K)” [21]. This represents an ideal situation, wherein the
mechanical configurations of both receiver chains are iden-
tical. In practice, this cannot be achieved, as the reference
horns are much smaller than the sky horns. Thus, a gain
modulation factor is utilized to partially account for such ef-
fects [21–27]. In any case, the radiometric temperature dif-
ference between the signals captured by the sky and the ref-
erence horns constitutes a critical element in receiver perfor-
mance. In order for the LFI to function properly, the sky sig-
nal must balance the reference signal.

There are four scenarios which need to be considered
relative to the performance of the LFI receiver chains. These
scenarios are summarized in Table 1 and are described as
follows:

2.1 Sky at ∼3 K, reference loads at ∼4 K

The cosmology community is expecting a 2.7 K monopole
signal at L2 [2]. In addition, some thermal photons might
be expected from the galactic foreground and the spacecraft
itself. As a result, the receiver would have optimal perfor-
mance, if the sky signal was being compared with a refer-
ence signal at 2.7 K. However, the LFI group mentions that
“there is no convenient spacecraft source of 2.7 K with suf-
ficient cooling power” [21], and chose to passively cool the
reference loads to ∼4 K by mounting them on the 4 K ther-
mal shield of the HFI. At first glance, this appears to be an
elegant solution. But in actuality, as will be seen in section
3, this placement demonstrates suboptimal conditions rela-
tive to the principles of heat transfer. In any event, should the
sky be at 2.7 K and the ∼4 K load properly constructed, the
receiver performance would be as expected from pre-flight
modeling. Being approximately balanced, the sky and refer-

ence signals would generate a receiver performance matching
the pre-flight technical specifications [22–26].

2.2 Sky at ∼0 K, reference loads at ∼4 K

Alternatively, if the monopole signal does not exist at L2
and if the reference loads are truly acting as ∼4 K blackbody
sources, a tremendous input offset would be generated in the
receiver. The knee frequencies would rise, as would the 1/ f
noise. The result would be significant stripes in the maps
generated by the satellite. These concerns were previously
outlined in detail [27], on the assumption that the ∼4 K ref-
erence loads would be properly designed and able to provide
the needed emission.

2.3 Sky at ∼3 K, reference loads acting as ∼0 K sources

An interesting case can also manifest itself if the microwave
sky is indeed at 2.7 K, but the reference loads, due to im-
proper fabrication, do not produce an emission correspond-
ing to a ∼4 K blackbody source. In the extreme, the reference
loads might be considered as producing no valuable emission
signal. This would produce an emission from the loads in-
distinguishable from a ∼0 K source, despite their ∼4 K actual
temperature. Under such a scenario, a tremendous imbalance
would once again be produced in the receivers, the knee fre-
quencies would rise, and 1/ f noise would be manifested in
the resultant maps.

2.4 Sky at ∼0 K, reference loads acting as ∼0 K sources

Finally, there is the possibility that the microwave sky is at
∼0 K and that improperly manufactured reference loads pro-
duce a signal much inferior to the expected ∼4 K source.
Once again, in the extreme, the reference loads might be con-
sidered as producing no valuable emission signal, thereby be-
having as ∼0 K sources. Interestingly, in the case, the perfor-
mance of the spacecraft would be better than expected. Only
relatively small microwave emissions from the sky would be
observed, and their lack of power would be complemented by
the lack of power coming from the reference loads.

Of these four scenarios, only the first and last can be valid,
given what we now know [20] about the performance of the
LFI [22–26]. In fact, assuming that the ∼4 K references were
properly constructed, the performance of the LFI receivers,

12 Pierre-Marie Robitaille. The Planck Satellite LFI and the Microwave Background: Importance of the 4 K Reference Targets



July, 2010 PROGRESS IN PHYSICS Volume 3

by themselves, would prove that there is indeed a monopole
signal at L2 [27]. Everything hinges on the quality of the
∼4 K reference blackbodies [21]. But given that “even bet-
ter than expected performances” [20] were obtained, there is
concern that the ∼4 K reference loads are not functioning as
they should and that the last scenario (Sky at ∼0 K, reference
loads ∼0 K) is the one which will prevail. Unfortunately, a
detailed description of the ∼4 K loads was not available to the
general public until December 29, 2009 [21]. The materials
contained in this work provide enough information to resolve
the question.

3 The ∼4 K Reference Loads on the PLANCK LFI

A schematic representation of a ∼4 K reference load system
for the LFI is displayed in Figure 1. Each reference load
system is comprised of a small horn, separated from a tar-
get by a 1.5 mm gap in order to preserve thermal isolation
between the 20 K shield which houses the LFI and the ∼4 K
shield housing the HFI [21]. The Planck team states: “One
of the main requirements of the 4KRL design was to minimize
the heat load on the HFI to a value lower than 1 mW. Safety
considerations (a thermal short between the two instruments
will prevent the HFI to work) lead to mechanically decou-
ple the loads, mounted on the HFI external shield, from the
LFI radiometers, at 20 K” [21]. They continue: “This solu-
tion implies the presence of a gap in the radiometer reference
arm, through which external spurious signals can leak in the
radiometers” [21]. They attempt to address this issue, by in-
troducing grooves on the edge of the horn, in order to limit
spillover. In addition, they state: “Targets also need to be
small and placed in the very near field of the reference horns
to reduce the leak from the gap” [21]. The LFI group notes
that: “the conceptual design is therefore based on small ab-
sorbing targets, mounted inside a metal enclosure (“case”)
to confine the radiation. . . ” [21].

The satellite team relays that: “Each target is basically a
rectangular EccosorbTM CR block, shaped for optimal match-
ing with the incoming field. The back part is made of highly
absorbing CR117, while the front sector, made from CR 110,
reduces the mismatch” [21]. The absorbing material for each
target is then enclosed on 5 sides, within an aluminum cas-
ing. These targets are mounted on the 4 K shield of the HFI
using “stainless steel (AISI304) thermal washers” which are
“interposed between the loads and the interface points to the
HFI” [21]. The LFI group explains that: “These are small
cylinders (typically 5 mm long, 1 mm wall thickness) whose
dimensions are optimized to dump temperature fluctuations in
order to meet requirements” [21]. Apparently, the ∼4 K refer-
ence loads are then attached directly through the washers onto
the HFI 4 K shield with “screws (mounted on the HFI)” [21].

The designers opt to conduct heat out of the ∼4 K refer-
ence loads into the 4 K shield of the HFI in order to achieve
a stable temperature. They enclose the Eccosorb material in

an aluminum casing to help ensure that conductive paths are
open which can suppress any thermal fluctuations within the
loads. In so doing, they have introduced Type-8 errors into
their system [30]. In fact, the LFI group, during the testing
stage, observes that they must work to better suppress thermal
fluctuations. Therefore, they attempt to increase thermal fluc-
tuation damping. They write: “the RF and thermal test results
were used to further refine the design (i.e. thermal dumping
was increased, mounting structure was slightly modified to
facilitate integration)” [21] and “The optimization of the ther-
mal washers allowed to increase the damping factor. . . ” [21].
Thus, they are trying to adopt a delicate balance between the
necessity to cool the references on the 4 K shield and the need
to efficiently address heat fluctuations: “Cases, supported by
an Al structure, are mounted on the HFI using Stainless Steel
thermal decouplers (washers), which allows to carefully con-
trol the thermal behavior” [21]. In reality, while the presence
of the washers and their construction primarily impacts the
time constants for damping heat fluctuations, they still pro-
vide a very efficient conductive heat path out of the targets.
After all, the references remain cooled by conductive mecha-
nisms which rely on thermal contact with the 4 K HFI shield.
Herein is found the central design flaw of the Planck LFI.

3.1 Conductive paths and Type-8 errors

The Planck reference loads are cooled by conduction, not
self-radiation. As a consequence, there is no reason to ex-
pect that the reference loads can output any photons at ∼4 K.
Being cooled by conduction, the references do not need to
invoke thermal radiation in achieving steady state. Indeed,
the Planck team writes: “Thermal interface is dominated by
conduction through thermal washers” [21]. They continue:
“Metal parts are assembled using Stainless Steel screws at
high torque, to make thermal contact as close as possible to
an ideal value” [21]. Relative to thermal modeling they write:
“the 70 GHz loads are assumed to be perfect thermal conduc-
tors, due to their small thickness and mass” [21]. Hence, the
LFI group members, by introducing conduction directly into
their loads, have rendered them ineffective as ∼4 K blackbody
sources.

Certainly, in order for an object to act as a true black-
body, it must be devoid of all outgoing conductive paths of
heat transfer. Reference targets must be spatially isolated
from their surroundings, such that only radiation can domi-
nate [30]. Yet, the ∼4 K targets on the Planck satellite are
configured such that net conduction of heat out of the tar-
get is allowed to take place. The targets are mounted onto
the 4 K shield of the HFI, and heat can flow continuously
using conduction into that heat sink. Since the targets are
continually exposed to a 20 K environment, their temperature
is being ensured by conduction, not heat radiation. In this
manner, thermodynamic steady state and a stable tempera-
ture is maintained, but through conduction, not heat radia-
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Fig. 1: Schematic representation of a Planck LFI reference load.
Each load is comprised of a horn (upper section) and a target (middle
section) separated by a 1.5 mm gap. The targets are constructed
from molded Eccosorb (CR-110 or 117) absorber surrounded by an
aluminum casing which acts to preserve thermodynamic steady state
within each unit, using conduction. Heat is allowed to flow out of
the target casing through a conductive path into the 4 K shield of
the HFI (represented by the cross hatched area in the lower section).
This path is provided by stainless steel cylindrical washers (see text
and [21] for more detail). By providing a conductive path out of the
target, the Planck LFI team has created a situation wherein a Type-8
error is introduced [30]. By itself, such a design ensures that these
targets cannot operate as ∼4 K loads as intended (see text).

tion. The Planck LFI ∼4 K targets are directly linked, which
good thermal contact, through stainless steel washers, onto a
4 K shield. Such a scenario will not only reduce the bright-
ness temperature, relative to the real temperature, it is likely
to completely inhibit the emission of photons [30]. In this
respect, the presence of conductive paths in the Planck LFI
∼4 K targets provides a much worse scenario for achieving
the expected brightness temperature, then when water perme-
ates soil [30].

Rather than using conductive washers, stainless steel
screws, and an aluminum casing, it would have been prefer-
able to encase the Eccosorb in a strong insulator suspended
in air with thin non-conducting support rods. Such a load
could then be enclosed in a perfectly reflective shield at 4 K.
It is only through this kind of geometry that a ∼4 K load can
suitably act as a reference.

By itself, the Type-8 error indicates that no 3K signal ex-
ists at L2. The loads do not need to cool by radiation. Ac-
cordingly, they do not need to emit a single photon. They are
unable to act as blackbodies in the intended capacity. Still,
beyond the Type-8 error, there are sufficient concerns with
the ∼4 K reference loads, that their lack of functionality can
be established. In order to properly follow these issues, it is
important to consider all of the potential errors related to mea-
suring emissivity using return-loss methods on microwave
targets [30].

3.2 Type-3, -4, -5, -6, and -7 errors

First, the ∼4 K reference loads are subject to a Type-3 error
[30]. Radiation from the horn during testing can be diffracted
on the edge of the target casing through the 1.5 mm ther-
mal gap into the surroundings. This is because, unlike the
horns, the casing contains no edge structure which can min-
imize diffraction. Secondly, the ∼4 K reference systems are
subject to a Type-4 error, wherein incident radiation from the
horn, experiences diffuse reflection on the surface of the Ec-
cosorb, and is lost through the gap into space [30]. Similarly,
Type-5 errors can occur. Incident radiation, in this case, en-
ters the Eccosorb, is reflected on the casing, and then, after re-
entry into the absorber, becomes scattered into space through
the gap. In the same way, a Type-6 error can occur [30].
That is, incident radiation which traverses the Eccosorb layer
can be reflected by the casing, and on re-entry into the ab-
sorber, is diffracted upon striking the edge of the casing. Once
more, such radiation could exit the system through the 1.5
mm thermal gap which separates the horn and the target (see
Figure 1). In addition, Type-7 errors exist as previously dis-
cussed in detail [30]. These are errors which depend on the
geometry of the target. They occur when a transmissive ab-
sorber is mounted on a reflective metallic casing and their
characteristics have been addressed [30].

3.2.1 Planck test data, calculations, and Type-10 errors

There is also the possibility of a Type-10 error [30]. Namely,
because the Planck team chose to use so little material in
their casings, they have enclosed only weak absorbers. In
so doing, they introduce the likelihood of generating standing
waves within the casings during testing. This would represent
a Type-10 error [30].

A careful study of Planck LFI return-loss traces provides
strong evidence that such standing waves do exist. For in-
stance, the Planck team presents Figure 26 [21], wherein the
return-loss is measured. A single such tracing, obtained from
a 30 GHz horn-target assembly, is extracted from this Fig-
ure to generate Figure 2 herein. Note that the network ana-
lyzer tracing has pronounced resonances extending as low as
−50 dB at some frequencies. These resonances should not
be present if the target is black [3]. In fact, the presence of
such resonances, by itself, provides ample evidence that the
30 GHz targets are far from being black.

As a result, it is clear that the return-loss measurements
published by the Planck team [21] far overstate the actual
performance of the reference targets, if these values are di-
rectly utilized to calculate emissivity. In fact, this is evident
by examining data provided by the Planck team. Consider, for
instance, Figure 10 in [21] which is reproduced herein as Fig-
ure 3. This represents a computational analysis of field dis-
tributions that takes place both inside and around the targets,
during testing with microwave radiation. It is evident, from
this figure, that the targets are unable to localize microwave
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Fig. 2: Schematic representation of a network analyzer tracing for a 30 GHz reference target system, as provided by the Planck LFI
team [21]. This particular tracing was extracted from Figure 26 in [21] in order to better visualize its features. Note the presence of
significant resonances on this tracing, indicating the existence of standing waves within the horn-target system. It is well known, based
on elementary considerations in electromagnetics [3], that cavities, waveguides, and enclosures, at microwave frequencies, can sustain
standing waves in a manner depending on their size and geometry (see [3] and references therein). This problem is particularly important
when the dimensions of the target approach the wavelengths of interest. In this case, 30 GHz corresponds to a wavelength of ∼1 cm in
vacuum. The target casings are 3.3 × 3.3 × (∼ 2) cm (see Table 1 and Figure 12 in [21]). The presence of such resonances in the ∼4 K
reference loads, demonstrates unambiguously that the targets are not black. In fact, the targets are still acting as resonant devices [3]. For
a blackbody to exist, all such resonances must be suppressed (i.e. as ideally seen by a constant −50 dB tracing across the spectral range).
In this case however, and when combined with the data in Figure 3, it appears that approximately −15 to −20 dB of return loss can be
accounted for by leakage from the 1.5 mm gap. Then, between −20 to −25 dB of return loss can be attributed, at certain frequencies, to
the existence of resonance features. Note that 29 GHz gives a wavelength of ∼1.03 cm in vacuum, and perhaps a little more in Eccosorb
(see [30] and references therein). As such, the resonances at 28.5–29.2 GHz correspond almost exactly to 3 wavelengths in a square 3.3 cm
enclosure. Reproduced from [21] with permission of the IOP and L.Valenziano on behalf of the authors and the Planck LFI consortium.

Fig. 3: Computational determination of the E-field distribution at 70 GHz for a horn-target assembly as reproduced from Figure 10 in
[21]. White areas represent perfect conductors, whereas regions of increased brightness depict more intense fields [21]. The left panel
corresponds to PHI = 90 while the right panel to PHI = 0. Further details are available in [21]. Note how the target is unable to localize
microwave energy. Leakage of radiation beyond the 1.5 mm gap separating the horn and the target is evident, especially in the right
panel. If leakage appears to be less intense in the left panel (examine the left edge of the casing), it is because the horn dimension in this
cut is substantially smaller than the target. Nonetheless, some restriction of radiation is visible on the left edge of the casing in the left
panel. This acts to confirm that none of the other edges are able to confine the radiation. Note also that the section of CR-117 absorber
below the pyramid is actually acting to reflect rather than absorb the radiation. This is especially evident in the left panel (note red area
beneath the central pyramid (see [21] for more detail). From these calculations, it is apparent that the Planck LFI targets at 70 GHz are not
black, enabling dissipation of energy well beyond the horn-target assembly. Unfortunately, the Planck team does not display corresponding
results at 30 and 44 GHz. Reproduced from [21] with permission of the IOP and L.Valenziano on behalf of the authors and the Planck LFI
consortium.
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energy within the casing. In fact, especially in the PHI = 0 cut
(see Figure 3, right side), microwave power is flowing freely
throughout the space in front and around the target. No local-
ization of energy is evident. This provides solid evidence that
the return-loss measurements far overstate the performance
of these devices when attempting to evaluate emissivity.

4 Discussion

Consequently, the Planck LFI group has not properly mea-
sured the emission of their reference loads. “Indeed, Valen-
ziano et al. [21] do not even provide the estimated emissivity
of their targets. By itself, this constitutes an implicit indi-
cation that these values cannot be properly determined, with
such methods, as I previously stated” [9].

Faced with Type-3, -4, -5, -6, -7 and -10 errors, the target
is unable to absorb the microwave energy from the horn and
the latter is able to leak out of the gap into the surrounding
space. This occurs even though the horn has edge structure to
prevent leakage into the gap as such a configuration neglects
the chaotic propagation of microwave energy which can oc-
cur within the target. Nonetheless, the Planck team assumes
that, in making their return-loss measurements, no leakage
into the gap takes place, even though such phenomena is ev-
ident in their own calculations (see Figure 3). They further
assume that their casing cannot support any standing waves
(see Figure 2).

As such, relative to the Planck satellite LFI, the published
return-loss values, do not properly represent the emissive
power of their reference targets. The latter is much less than
expected, both due to gap leaks, as mentioned above, and be-
cause return-loss methods overestimate the true emission in
the presence of metal casings (Type-7 errors). The presence
of the aluminum casings provides ample opportunities to set
up standing waves in front of the horn (Type-10 errors). Such
waves are present in the traces displayed by the Planck team
(see Figure 2 herein and Figure 26 in [21]). This further il-
lustrates that these reference blackbodies are not black. Ulti-
mately, the most serious concern is the presence of a Type-8
error [30]. Conduction has been allowed as the key means
of establishing thermodynamic steady state. Subsequently, it
can be said that reference blackbodies do not even exist on
the Planck satellite.

Given this information, the members of the scientific
community, independent of the Planck team, can now either
confirm or refute the existence of a monopole at L2. They
may do so by concurring with this analysis and establishing
the emissivity of the ∼4 K reference loads on the LFI. If the
loads truly act as ∼4 K references, then the monopole signal
must be present at L2. Conversely, as suggested by this work,
if the ∼4 K references are unable to emit properly as ∼4 K
blackbodies, then the excellent performance of the LFI im-
plies that there is no monopole at L2 and that this signal does
indeed arise from the Earth itself [1].

Unfortunately, it is rather difficult to establish the extent
to which a reference target is black in the microwave. How-
ever, the following approaches might be considered. At the
onset, the measurements must not occur inside an anechoic
chamber. Such chambers suppress leaked signals and thereby
overstate the emissivity of the target obtained with return-loss
measurements. Therefore, such a setting should be avoided.
Relative to a small target, like those on the Planck satel-
lite [21], it might be possible to ascertain that they are very
poor emitters in the following way. First, a duplicate horn
must be placed inside a perfectly reflecting enclosure. The
return-loss perfomance in such a case will be poor. This is
because virtually all the energy emitted by the horn becomes
trapped by the enclosure. This energy would then be able to
return to the network analyzer, provided that it is not involved
in the formation of standing waves either in the enclosure or
within the horn [3].

Once this has been accomplished, the experiment must be
repeated, but this time, the target must be placed in front of
the horn with a 1.5 mm spacing, as noted by the Planck team.
The entire assembly must be once again positioned inside a
perfectly reflecting enclosure, wherein the horn and target ge-
ometry are preserved. A single drive mechanism must enter
the enclosure. As for the target, two cases should be consid-
ered: one where a conductive path to the enclosure exists and
one where it is suppressed. Once again, the network analyzer
would be connected. But this time, any power incident on the
target which is not absorbed will be reflected by the walls.
Indeed, standing waves will be set up inside either the alu-
minum casing itself, or the enclosure [3], both of which are
acting now as microwave cavities. These standing waves will
create oscillations on the network analyzer tracing. By con-
structing a box whose dimensions can be gradually modified,
it should be possible to alter the pattern of standing waves in
the cavity. A target will be considered black only when all
modifications of the enclosure dimensions, or that of the cas-
ings, can yield no changes on the return-loss signal proving
that no standing waves exist. Ideally, in this case, the return-
loss tracing will display a constant value across the spectral
range with no trace of resonance. This can solely occur if all
radiation, incident on the target, is absorbed. In this fashion,
the blackness of a radiator can be established. Interestingly,
this test, so critical to the proper scientific evaluation of the
Planck mission, is readily accessible, and at low cost, by most
of the electromagnetic laboratories of the world.

However, given our current knowledge of the LFI refer-
ence loads [21–27], it is already evident that the Planck tar-
gets within this test setting will display strong resonances.
Indeed, from the analysis provided above, the references can-
not be operating as blackbodies relative to the frequencies of
interest. The Planck team has permitted conduction in their
system. As a result, the reference targets are envisioned to
have constant uniformity of temperature. In fact, this is as-
sured by dumping heat through conduction into the 4 K shield
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at all times during flight, in violation of Planck’s requirement
that conduction not transpire. Max Planck writes: “For the
heat of the body depends only on heat radiation, since, on ac-
count of the uniformity in temperature, no conduction of heat
takes place” [31]. To complicate matters, the Planck team
ignores the reality that good conductors make poor emitters
(see [3] and references therein). This fact has been known for
more than 100 years. Yet, the LFI consortium unknowingly
has created a situation where they believe that their reference
loads can be treated as perfect conductors. They write that:
“the 70 GHz loads are assumed to be perfect thermal con-
ductors, due to their small thickness and mass” [21]. They
have created these “perfect conductors” by enclosing a small
amount of absorber within a metallic enclosure. This issue
is discussed in greater detail in [30], but nonetheless, the de-
sign of the Planck LFI reference targets reflects a sidestep of
elementary thermodynamic principles.

In closing, for nearly 50 years, the microwave signal first
detected by Penzias and Wilson [2], has fascinated scientists.
Yet, all too quickly, its cosmological nature was embraced
[6]. In fact, the publication of the interpretation [6] preceded
the discovery itself [2]. Now, with the aid of the Planck satel-
lite, the electromagnetics laboratories of the world should be
able to confirm or refute the existence of a ∼3 K cosmic sig-
nal. The key to this puzzle rests in the understanding of the
LFI and reference targets [21–27]. Soon, scientists should
reach the definitive answer. In the end, in this age of concern
for the global climate, mankind cannot long afford to main-
tain that a signal of Earthly origin [1] is, in fact, cosmic [6].
Enough evidence is already beginning to build [1, 3, 4, 7–18]
indicating that physics, astrophysics, and geophysics stand
on the verge of a significant reformulation. In any event, the
definitive proof that the monopole of microwave background
belongs to the Earth has now been provided.
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Young’s double slit experiment performed in 1801 was a milestone in the history of
physics. The passing of light through two narrow slits creates interference patterns that
sums up the diffraction patterns from each slit when separately uncovered. The exper-
iment was later repeated by others using single photons, single electrons, atoms and
even molecules producing similar effects. The present interpretation of the results is
that photons and all other particles behave like waves and particles at the same time
(the wave-particle duality principle). Further explanations were also given, including
notions like particles can exist in more than one position at the same time and interfere
with itself, and that the classical laws of physics are not applicable in an atomic scale.
In this work we perform a numerical experiment in which a single charged particle is
fired at a wall of (fixed) charged particles containing gaps to mimic slits, and collect the
results over many events in time. Assuming only a classical inverse square relation to
hold between the particles- including those of the wall, the results show clear diffrac-
tion and interference patterns indicating that the wave behaviour of the bullet particles
arises simply from such interactions- hence providing a pure classical interpretation to
the problem. That is; particles follow classical laws and produce waves only when in-
teracting with each others. An analytical treatment of this subject is further required to
remove the effects of a finite time step inherent in a numerical solution.

1 Introduction

The double slit experiment is considered an important mile-
stone in the history of physics. It was first conducted by
Thomas Young in 1801. In Young’s experiment, light was
made to pass through two narrow slits in an opaque barrier
(wall) and collect on a photographic plate behind the bar-
rier. The picture obtained with any one slit open, was that of
diffraction in the form of one bright line in the middle of fad-
ing alternating dark and bright lines. When two slits are open,
the picture changes into an interference pattern that can be
explained by the addition of two diffraction patterns from the
two slits separately. The double slit experiment was originally
performed to settle the argument at the time of whether light-
seen to travel along straight lines and reflect like being com-
posed of particles (or corpuscles), and as suggested by New-
ton, or as waves like Huygens was advocating in his new the-
ory for waves. The interference obtained were taken to favour
the wave theory- since the effects of having particles should
be producing only positive additions and no annihilation- as
the slit experiment seemed to be suggesting [1].

As evidence from experiments in different fields and the-
oretical work started to accumulate in favour of the particle
nature of light, there was a return to the slit experiment to be
conducted this time using particles like electrons, neutrons,
atoms and molecules [2,3]. This is to establish if all particles
do exhibit a wave-like behaviour as that of the photon particle.
The results were again all positive prompting a new explana-
tion to the results, namely that: particles have a dual particle-
wave nature. Further tests were subsequently conducted us-

ing single photons, electrons and other particles fired one at a
time. The interference pattern persisted in all these cases as
well- prompting the conclusion that atomic scale particles do
not obey the laws of classical mechanics [3–5]. In all these
explanations however, the interaction between the barrier par-
ticles and those of the bullets are only taken to be of the go
no-go relation with no regard to the possibility of some in-
verse square type forces being involved. Random scatter at
the edges of the slits might have also been considered but
thought not being capable of producing such consistent wave
behaviour. The main thinking instead was concentrated on
the interference pattern as being the result of an interaction
between the bullet particles alone.

In this article we shall assume that the barrier particles
do interact with the bullet particles through a simple inverse
square relation. To do this we shoot a charged bullet parti-
cle at a wall composed of fixed and similarly or oppositely
charged particles (with gaps to mimic the presence of slits).
The path of the bullet particle is to be predicted by numeri-
cally integrating the equation of motion for a single path at a
time and collect the paths over time. An interaction between
the barrier particles and the bullet is a must of course, since
otherwise there is no meaning to the word slit at all. The type
of interaction however, is what is new in the present work.
The results seem to show that an inverse square interaction is
capable of producing the wave behaviour required to explain
the results using pure classical laws and interpretations. A
major drawback of the present numerical solution however, is
that it is discrete and hence can be affected by the size of the
time step. Further analytical treatment of the subject (in the
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light of the present results) will be needed before a concrete
conclusion can be made on this matter. Such work is not ex-
pected to contradict the vivid wave and interference patterns
observed in the numerical results.

To be able to cover two slits and to produce different wave
patterns, the axial velocity of the bullet was changed in a sys-
temic manner in the experiment and the vertical (transverse)
component of the bullet velocity was changed randomly by a
very small amount around zero. This allows the accumulating
beam to cover both slits over time.

2 Theory

For Coulomb forces, the expression for the acceleration is
given by;

a =
d2r
dt2 =

k
r2 , (1)

where a = a(t), r = r(t) are the acceleration and separation
distances between any isolated pair of particles as a func-
tion of time t, and k is the coupling constant (negative for
attractive, and positive for repulsive forces) and in which the
masses and charges of all particles are unity. The magnitude
of k is dependent on the type of interaction. For example, in
the case of a repulsive Coulomb forces k = 1/4πε0, where ε0
is the permittivity of empty space. In the case the number of
interacting particles is small; the Coulomb forces by far dom-
inate other forces as assumed here. As the interacting masses
are points, there is no need to consider angular velocity, spin,
angular momentum or any form of moments of forces on the
particle. For a group of interacting particles, the net accelera-
tion of particle j is given by;

a j =
dv j

dt
=

∑

i

ki jri j

r3
i j

; ri j = |ri j|, i, j = 1, 2, · · ·N , (2)

where a j is the resultant acceleration, v is velocity, ki j is the
total coupling constant between particles i and j, and ri j =

r j − ri is the vector from i to j positions and N is the total
number of particles. Equation (2) is a set of simultaneous
ode’s that must be integrated once in order to find v j(t) and
again to find the position r j(t) giving;

r j = r j0+(dt)v j0+(dt)2
∑

i

r j − ri

|r j − ri|3 ; j = 1 : N; i , j. (3)

If we know the initial position r j0, the initial velocity v j0,
and the time step dt, we can find the new position of the bul-
let r j. This is to be repeated for different initial velocities and
the resulting trajectories are collected over time and plotted.
The values chosen for the various parameters do not necessar-
ily correspond to particular physical values, but rather chosen
to accentuate the resulting picture and make it clearer. The
actual values used are given. A simple one step method is
chosen for the integration as in equation (3) to avoid any erro-
neous contributions from any extra terms contained in a more
refined integration procedure.

If we hope to produce results showing a wave behaviour
using only inverse square relations, we should be able to show
that this is possible in theory. In fact [6] states that the poten-
tial equation of motion becomes a spring like relation in the
case of small displacements together with a large number of
interacting particles. In the present case, we assume the wall
particles are fixed in space, which is equivalent to a presence
of a large number of particles in a small space making the
group massive and well connected to resist the effects of the
bullet particle approaching the barrier. We further confirm
this in Fig. 1, where a spring type relation results from fixing
two particles and allowing a third to experience a small dis-
placement in the middle under an inverse square force. The
algorithm needed to implement equation (3) is fairly straight
forward as shown below;

Algorithm to compute the trajectory of a charged

particle fired at a wall containing slits and composed

of similarly (or oppositely) charged fixed particles.

Total number of particles nb=10 at position r(x,y),

velocity (vx,vy), acc. (ax,ay)

and force (fx,fy)=acc.

For a fixed wall, x,y are calculated only

for the 1st particle.

ee=1e-100;X=[];Y=[];dt0=.01; v01=3.2; nb=12;

nbv=1:nb;x(nbv)=0;x=x’;y=x;vx=x;

vy=x;kb(1:nb)=2e-3;kb(5:9)=0;

for ii=1:250;

y(1)=0; vy(1)=0.08*(rand-0.5); x(1)=-1;

vx(1)=v01;x(2:nb)=-0.25;

y(2:end)=0.002*((2:nb)-nb/2 -1);

for kk=1:100; for jj=1:nb; xj=x(jj); yj=y(jj);

vxj=vx(jj);vyj=vy(jj); xb=xj-x;yb=yj-y;

rb2=ee+xb.̂ 2+yb.̂ 2; rb=sqrt(rb2);

fb=kb’./rb2; fxb=fb.*xb./rb; fyb=fb.*yb./rb;

fx=sum(fxb);fy=sum(fyb);

ax=fx;ay=fy; dt=dt0;

if jj > 1;dt=0;end;

vxj=vxj+dt*ax; vyj=vyj+dt*ay; xj=xj+dt*vxj;

yj=yj+dt*vyj;x(jj)=xj; y(jj)=yj;

vx(jj)=vxj; vy(jj)=vyj;

end;

if abs(x(1)) > 1.5 | abs(y(1)) > 1;break;end;

X=[ X;x’];Y=[Y;y’];end;end;

figure(1);plot(X,Y);

The inner loop j j adds the forces over all the particles,
then we advance in time in the kk loop to give one path (tra-
jectory). The ii loop repeats this many times to arrive at the
final picture. The rest of the algorithm is self explanatory.

3 Results

The values of the coupling constant k, (units m3/s2 as in (1)),
the horizontal and vertical velocity components, the distances
between slits and between the particles making the wall, the
time step and other constants are clearly referenced in the al-
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Fig. 2: Time collection of an electron fired (from left) against a fixed column barrier of loose electrons with a random small vel. component
in the vertical direction. Total of 50 events are collected. Wave–front plane in (a), (b) changing to circular after the barrier. At another
speed, the wave-front is completely reflected (b), (c) and also changed to circular.

Fig. 1: A spring like force relation capable of producing a wave
behavior can result from the interaction of particles under an inverse
square relation. F31 = F32 = k/r2; for small deflection x; L = r.
Fν = 2 k

r2
x
r = 2 k

r3 x = Kx; k, r, K are constants. Therefore, force on
m3 is a spring type force.

gorithm given above. It is again stressed that the different
constants are chosen so as to produce a clear picture rather
than correspond to certain physical values. The main goal
of this article is to show the wave phenomenon of diffraction
and interference happening in a purely inverse square envi-
ronment and with bullet particles that do not know of each
other and hence never have a chance to interact as they exist
in different times.

Fig. 2(a) shows a plot collecting 50 events and showing

that what was originally a plane wave-front (elements of the
front exist at different times) have been changed by the barrier
to a circular wave-front as one would expect of a true wave.
A magnified scale of the same is shown in the next figure. In
Figs. 2(c),(d) the wave front is reflected completely as what
could happen with real waves when the wavelength compared
to the sparseness of the particle of the wall is of the correct
order. In Fig. 3(a) few of the wall particles are assumed to be
inert to mimic the presence of a slits. The result as expected is
a superposition of two circular waves producing an interfer-
ence pattern. It is seen that a single bullet collected over time
is behaving like a true beam composed of many particles. The
presence of the one barrier in all the shooting events is what
unifies all the outputs and creates the observed effects.

4 Conclusions

The results shown indicate clearly that the passage of a bul-
let particle through a slit modifies its path and the wave-front
composed of many particles, which need not exist at the same
time, can change from plane to circular if the force between
the barrier and the bullet particles is that of an inverse square
type. In [6] and in Fig. 1 in this article, it is shown how a
change from an inverse square to a spring relation can result
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Fig. 3: Wall particles 5:9 (out of 11) are made neutral to mimic a slit. This causes two diffraction patterns interfering with each other. The
last two (c), (d), are plotted using the algorithm given in this article with bullet horizontal speed vx = 3.2.

in the case of large interacting particles as those of the barrier
(and mimicked here by having fixed particles). This picture is
equivalent to what happens in field theory in which a poten-
tial equation (resulting from inverse square relation) acquires
wave solutions due to the presence of a boundary. This ef-
fect occurs in the case of waves in fluids and solids which are
composed essentially of particles interacting under an inverse
square environment.

The present results upholds the fact that particles behave
like waves and particles, but differs in giving a more natu-
ral explanation that agrees with common logic and classical
laws. It is difficult to believe at the end that classical laws that
apply to planets composed of trillions of particles fail when
considering few of them. The particle picture is simple to
comprehend and can also afford to explain many of the rel-
ativistic and quantum findings in physics (see [7, 8] by this
author for more on this).

For deeper understanding of the present results, it is use-
ful to do a complementary theoretical analysis to overcome
the finite time step effects inherent in any numerical solution.
Further understanding of the problem may be achieved by us-
ing more elaborate particles where spin and moments are to
be taken into consideration.
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Brightsen Model is opposite to the Standard Model, and it was build on John Weeler’s
Resonating Group Structure Model and on Linus Pauling’s Close-Packed Spheron
Model. Among Brightsen Model’s predictions and applications we cite the fact that
it derives the average number of prompt neutrons per fission event, it provides a the-
oretical way for understanding the low temperature / low energy reactions and for ap-
proaching the artificially induced fission, it predicts that forces within nucleon clusters
are stronger than forces between such clusters within isotopes; it predicts the unmatter
entities inside nuclei that result from stable and neutral union of matter and antimat-
ter, and so on. But these predictions have to be tested in the future at the new CERN
laboratory.

According to the Brightsen Nucleon Cluster Model [1] all nu-
clides of beta stable isotopes can be described by three funda-
mental nucleon clusters (NPN, PNP, NP), with halo clusters
(NN, PP, NNN) now experimentally observed. The Bright-
sen model builds on the early cluster models of the Resonat-
ing Group Structure of John Wheeler [2] and the Linus Paul-
ing Close-Packed Spheron Model [3], which predict mathe-
matically that the wave function of a composite nucleus can
be viewed quantum mechanically as a combination of partial
wave functions that correspond to the multiple ways nucle-
ons (protons, neutrons) can be distributed into close-packed
clusters, thus rejecting the standard model Hartree-Fock for-
malism of average field interactions between independent nu-
cleons in nuclear shells. Presented in this section are a num-
ber of unsolved problems, questions, and future experimen-
tal pathways based on the Brightsen Nucleon Cluster Model
formalism–many additional applications can be gleamed
from careful study of the literature cited in the references pro-
vided:

1. The Brightsen Model derives the average number of
prompt neutrons per fission event for many radioactive iso-
topes of human importance (U-235, U-233, Pu-239, Pu-241)
as well as emission of light charged particles, suggesting that
all modes of fission derive from a four step process [4]. Fur-
ther study of these claims are warranted given the importance
of understanding the fission of radioactive isotopes for energy
production.

2. The Brightsen Model provides a theoretical pathway
for experimentalists to understand the numerous laboratory
results of low temperature transformation/low energy reac-
tions, such as the well studied 104Pd (p, alpha) 101Rh reaction
[5]. Application of the Brightsen Model to low energy fusion
reactions as a possible result of interactions between nucleon
clusters is of fundamental importance to human energy de-
mands.

3. The Brightsen Model predicts the existence of “un-
matter entities” inside nuclei [6], which result from stable

and neutral union of matter and antimatter nucleon clusters.
As a result, the Brightsen Model predicts that antimatter has
corresponding antigravity effects [7]. This prediction can be
tested in the future at CERN beginning 2008 using antihydro-
gen. Once accurate measurements can be made of the grav-
itational acceleration of antihydrogen, and the results com-
pared with matter hydrogen, if the two forms have opposite
acceleration, then a major prediction of the Brightsen Model
will be confirmed (e.g., that antimatter has both anti-gravity
effect and anti-mass). If experimentally confirmed, then pre-
dictive equations will need to be developed using the Bright-
sen Model formalism of union of matter and antimatter clus-
ters (e.g., the unsolved mathematical formation of unmatter
entities inside nuclei). The importance of this aspect of the
Brightsen Model links to the current problem in physics of
the missing matter of the universe and possible unification
of gravity at relativistic (macroscopic) and quantum (micro-
scopic) states.

4. The Brightsen Model offers a theoretical approach for
artificially induced fission of dangerous radioactive nuclei to
produce relatively stable elements [5]. In theory, if externally
produced electromagnetic radiation can be caused to resonate
with the exact magnetic moment of a specific sub-nuclear nu-
cleon cluster (e.g., NPN, PNP, NP nucleon clusters), than an
individual nucleon cluster can in theory be excited to a en-
ergy such that it is expelled from the nucleus, resulting in
transmutation of the parent isotope via fission and/or beta or
alpha decay to less radioactive daughter structures. The ap-
plications of this process for nuclear energy production are
clear and worthy of experimental test.

5. The Brightsen Model predicts that one sub-cluster iso-
dyne [5] of the very stable Helium-4 isotope consists of two
weakly stable deuteron [NP] clusters, each with their own dis-
tinct energy level, spin, magnetic moment, etc. Experimental
tests are needed to confirm this fundamental model predic-
tion. If confirmed, new physics mathematical description of
shell structure of isotopes would follow.

Florentin Smarandache. Some Unsolved Problems, Questions, and Applications of the Brightsen Nucleon Cluster Model 23



Volume 3 PROGRESS IN PHYSICS July, 2010

6. The Brightsen Model predicts that forces “within” nu-
cleon clusters (NPN,PNP,NP) are stronger that forces “be-
tween” such clusters within isotopes, a result of different
combinations of the spin doublet and triplet clusters. It is
predicted that research here would result in new measurable
macroscopic properties of atomic nuclei including new fun-
damental force interactions.

7. The Brightsen Model predicts that the next “magic
number” will be found at N = 172, Z = 106, A = 278 (Sea-
borgium-278). Experimental confirmation of this prediction
would require a revised explanation of magic numbers in iso-
topes based on nucleon clusters as the fundamental building
blocks of shell structure in atomic nuclei, as opposed to inde-
pendent nucleons in an average field.

8. The Brightsen Model predicts that the large cross sec-
tion of Boron-10 (as opposed to the small cross section of
Boron-11) results from the presence of a stable and indepen-
dent nucleon cluster structure [PNP], which coexists with two
[NP] and one [NPN] clusters that maintain very small cross
sections. Thus the vast majority of the cross section dynam-
ics of Boron-10 is predicted by the Brightsen Model to derive
from a strongly interacting [PNP] cluster. This four cluster
formalism for Boron-10 (e.g., 1PNP, 2NP, 1NPN) also cor-
rectly derives the I = 3 spin experimentally observed.
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Phenomenon of the regular variability of the fine structure of the fluctuation in the am-
plitude distributions (shapes of related histograms) for the case of Brownian motion
was investigated. We took an advantage of the dynamic light scattering method (DLS)
to get a stochastically fluctuated signal determined by Brownian motion. Shape of the
histograms is most likely to vary, synchronous, in two proximally located independent
cells containing Brownian particles. The synchronism persists in the cells distant at
2 m from each other, and positioned meridionally. With a parallel-wise positioning of
the cells, high probability of the synchronous variation in the shape of the histograms
by local time has been observed. This result meets the previous conclusion about the
dependency of histogram shapes (“fluctuation amplitudes” of the spectra of stochastic
processes) upon rotation of the Earth.

1 Introduction

The works surveyed in [1–3] revealed a determinate varia-
tion in the spectra of the fluctuation amplitudes (these are
the shapes of the related histograms in the characteristics of
the various processes under measurement, ranging from the
rates of chemical and biochemical reactions to the noises in
gravity-gradient antennae and semiconductor circuits, and to
radioactive decay). This paper represents data of a similar
study of the process of Brownian motion.

2 Subject, materials, and methods

In 2006, we studied variations in the shapes of the histograms
obtained from measurements of the fluctuations of the ve-
locity of Brownian motion in an aqueous suspension of ZnO
(average particle size: 5 µm). We obtained proofs of the syn-
chronous variations in the histograms plotted according to the
measurement data in independent “generators”, placed on a
lab bench.

In 2009, the same experiments were retried using 450-
nm polystyrene microspheres (manufactured by Polysciences
Inc.) with applying an improved measurement technique.
The known method of dynamic light scattering (DLS) [4] was
applied to measure the fluctuations of the velocity of Brown-
ian motion. The method is based on the measurement of the
fluctuations in coherent light scattering across an ensemble of
the moving particles. In practice, a collimated laser beam was
passed through a glass cell containing suspension of Brown-
ian particles.

Electromagnetic waves, diffracted on the suspended par-
ticles, give a rise to a stochastically fluctuating intensity at the
detector plane and corresponding photocurrent

i (t) ∼ 〈E (t) E (t)〉.

Here, the angle parentheses denote the average of the
rapid optical oscillations. A schematic diagram of the ex-
perimental installation is shown in Fig. 1.

We took an advantage of the “backscatter” geometry and
a multiple scattering mode in our installation. Two identical
optical cells (we refer to these as Brownian signal generators)
were used. Each cell consisted of a 1-mm-spacing glass cell
filled with a suspension, and an optoelectronic unit compris-
ing a laser diode, a photodiode, and a preamplifier. Photo cur-
rents i1 (t) and i2 (t) of the detector were converted into volt-
age by trans-impedance amplifiers, whose conversion factor
is r = 10 MOhm, then were saved on a PC hard disk follow-
ing digitization in a 42 KHz 12-digit two-channel analog-to-
digital converter. The detectors were differential pin photodi-
odes by Hamamatsu Co. Ltd. The lasers were single-mode
VCSEL structures (wavelength: λ= 850 nm; emission band-
width: ∼100 MHz; radiant energy: 1 mW) manufactured by
RayCan. Special steps were taken to exclude potential syn-
chronous interference: the sensors were placed on a vibroiso-
lated table; both lasers and the power supply circuits of the
amplifiers were separated and duly filtered. A high-pass filter
with cutoff frequency below 30 Hz was used in the amplifi-
cation path to minimize vibration-related synchronous inter-
ference.

Fig. 2 shows a segment of photocurrent time series i1 (t) in
one of the Brownian generators. The signal’s shape is typical
of persistent signals.

The above autocorrelation function of the signal, for mod-
erately large numerical values of τ, is described by an ex-
ponent C (τ) = exp (−q2Dτ) with die-away time determined
by the geometry of the scattering and diffusion coefficient
D = k T/3πηd (Stokes-Einstein formula), where k is Boltz-
mann’s constant, T is temperature, η is viscosity, and d is the
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Fig. 1: A schematic diagram of the experimental installation.

Fig. 2: A segment of time series: a result of DLS signal measurements taken from 1 “generator”: 10,000 measurements of 1/8, 000 =

1.2 × 10−4 duration each.

particle’s diameter. The numerical value of q determines the
momentum transfer of a photon in scattering on the Brown-
ian particles. The power spectrum is of Lorentzian-like shape
is S ($) ∼ $0/($2

0 + $2), where $0 = 1/T0 is the relaxation
frequency. With $�$0, the spectrum is approximated by
a power-law dependence. Similarly, in the time-domain rep-
resentation, the correlation function may be approximated by
the power-law dependence in the area of τ� T0.

In our case, the DLS signal is described by a fractional
Brownian motion model [5]. The signal is self-similar at the
high-frequency range of >100 Hz, and an asymptotic behav-
ior of the correlation function under τ′ = q2 Dτ→ 0 is of the
power-law nature: C (τ) = 1− |τ′ |α. Here α is a scaling pa-
rameter related to the fractal dimension D = 2− 1

2 α. At low
frequencies we have τ→ ∞ and C (τ) = |τ′ |−β, where β is the
scaling parameter related to the Hurst coefficient: β = 2−2H.

The following characteristics of the time series were ob-
tained for the DLS signal of the Brownian generators. They
are: α≈ 0.7, D≈ 1.65, H = 0.82± 0.1.

Fig. 3a shows the autocorrelation function of a signal for
one of the channels: g11 = 〈i1(t) i1(t + τ)〉, while Fig. 3b shows
the cross-correlation function between the channels: g12 =

= 〈i1 (t) i2(t + τ)〉.
As seen in 3b, there is no significant physical link between

the channels. This might lead to a correlation moment dif-

ferent from 0. Insignificant near-zero-line fluctuations of the
cross-correlation function g12 tend to 0 under bigger statistics
figures.

3 Histogram plotting and shape examination

Amplitude distribution of the histograms were plotted using
30 or 60-measurement series segments. For better conve-
nience of visual comparing, the said histograms were made
smooth by the moving summation technique. All the pro-
cedures of histogram plotting, smoothing, and scaling were
carried out using Histogram Manager software developed by
Edwin Pozharsky (see [1] for detail).

We consider the histograms to be similar if visual simi-
larity of their shapes can be attained by applying admissible
expansion and mirror reflection operations. In other words,
the “hystogram shape” can be articulated as an invariant of a
subgroup of affine transformations in a plane involving oper-
ations of scaling, parallel translation, and X-axis reflection.

The histogram plotting and shape examination methods
are given with requisite particularization used in the studies
published in [1].

Fig. 4 shows a chunk of a computer archives: a sequence
of the histograms based on the data obtained from the mea-
surements produced in two independent Brownian genera-
tors. The histograms were plotted according to the data of
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Fig. 3: Autocorrelation (a) and cross-correlation (b) functions for the signals of two “Brownian generators” in our experiment.

Fig. 4: A chunk of a computer archives: a sequence of the his-
tograms based on the data obtained from the measurements pro-
duced in two independent Brownian generators. X-axis in each his-
togram represents values (in relative units) of the photocurrent in the
mesurement of Brownian motion. Y-axis gives the number of sim-
ilar pairs which correspond to the specific values of the photocur-
rent. The histograms are given after a 17-fold moving-summation
smoothing.

30 measurements, and given a 17-fold smoothing. The upper
and lower rows show No. 1 and No. 2 generator’s histograms,
correspondingly. Numbers of the sequential histograms are
shown. The total of the sequential histograms amounted to
several thousands.

4 Synchronous variation of the shape of the histograms
in the measurements of Brownian motion on the inde-
pendent “generators” in the same location

Fig. 5 shows a chunk of computer archives representing the
pairs of synchronous histograms plotted on the basis of the
data obtained by independent measurements in two installa-
tions found to be similar by experts. Numbers of the his-
tograms in the time series are given. As seen in Fig. 5, the
synchronous histograms turn out to be similar in shape.

In plotting a distribution of the number of similar pairs
of the histograms, according to the values of the related sep-
arating intervals, a particularly large number of the similar
pairs corresponds to some intervals. This is in exact a core
evidence of a non-random nature of the similarity of the his-

Nos. of syn-
chronous
histograms
in two arrays

N1

(array 1)
P1 =

N1

720
N2

(array 2)
P2 =

N2

720

8 6 0.008 5 0.007
59 1 0.001 3 0.004

232 4 0.006 6 0.008
294 17 0.024 7 0.010
457 2 0.003 13 0.018

3 × 10−12 4 × 10−11

Table 1: Occurrence frequency of the histograms of the shape un-
der measurements produced in two independent Brownian genera-
tors during 24.09.2009 experiment (Fig. 8).

tograms in independent processes.
Fig. 6 shows a distribution of the number of similar pairs

of the histograms plotted according to the data obtained by
the measurements of Brownian motion in two independent
generators.

As seen in Fig. 6, the number of the synchronous pairs is
definitely above the “background”. The height of the central
log is equal to 89 pairs with 720 histograms in the rows, that is
about 12% of the maximumally possible height. In the other
intervals, the height of the logs is about 2.5% of the maximu-
mally possible height. Making the use of majorizing estima-
tion by

√
N criterion is enough to evaluate the reliability of

the inference on the synchronous variation of the histogram
shape in independent Brownian generators. The figure shows
that the central crest’s height differs from the “background”
by around 6

√
N which corresponds to a 10−11 probability for

obtaining such a result at random.
It should be noted that according to Fig. 5 the histograms,

forming the central log in Fig. 6 and evidencing the syn-
chronous nature of the shape variation of the histograms in
independent processes, do not have an apparent difference
from the histograms that would correspond to other intervals.
In other words, there is no definite shape specifically corre-
sponding to the synchronous variation of the histogram shape.
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Fig. 5: A log piece: pairs of the histograms plotted on the basis of the data obtained by independent synchronous measurements in two
independent Brownian generators found to be similar by an expert evaluation. Numbers of the histograms in the time series are given.
Coordinate axes are the same as in Fig. 4.

However, a relatively small number of rare, “exotic” shapes
can be found among the histograms that correspond to the
central log. The pairs of such histograms can be used for an
additional evaluation of the reliability of the core inferences.

At this point, we assume that realization of a complex-
shaped histogram is per se an unlikely event to occur. A
simultaneous occurrence of rare events in independent mea-
surements is even a less probable event to happen. This eval-
uation has proven to be very strong. Illustration to this eval-
uation is given in Fig. 7 and Table 1. Fig. 7 shows 5 pairs
of rare-shape histograms obtained synchronously during the
24.09.2009 experiment (there was 89 similar synchronous
pairs, all-in-all). We can see, for example, that out of these
720 possible histograms, there was 6 No. 8 histograms in row
1 of the first array, and 5 ones in row 2, thus constituting 0.008
and 0.007 fractions out of the maximal values, respectively.

These fractions do come as an evaluation of the probabil-
ity of a random occurrence of the given-shape histograms at
this particular spot. The general probability of the uncertainty
of the inference on a synchronous occurence of similarly-
shaped histograms in two independent rows of measurement
is equal to the product of these special-case probabilities.
For example, given the 5 rare-shape histograms, this general
probability constitutes P1 = 3×10−12 for the first array, and
P2 = 4×10−11 for the second one, i.e., vanishing small val-
ues. It should be noted, however, that the number of the
synchronous pairs of the rare-shape histograms is consider-
ably large. Thus, the reliability of the inference on the syn-
chronous occurrence of the similarly-shaped histograms in
the independent Brownian generators is proven by these two
types of evaluation.

Fig. 6: Shapes of the histograms in the independent Brownian gen-
erators vary synchronously. Similar pairs of the histograms are dis-
tributed according to the values of the respective separating intervals
of time. Date of the experiment: 24.09.2009. Each histogram is plot-
ted according to the data of 30 measurements. X-axis shows values
of the time intervals separating similar histograms. One interval is
equal to 3.6 × 10−3 seconds.

Fig. 7: Examples of the similarity in the rare-shape synchronous
histograms according to the occurrence frequency shown in Table 1.
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Fig. 8: Interval distribution of the number of similar pairs of the
histograms plotted according to the results of 60 measurements pro-
duced in two independent Brownian generators which were distant
at 200 cm from each other. A) Meridian (from North to South) po-
sitioning of the generators; B) Parallel-wise positioning of the gen-
erators. In the meridian positioning, the similar histograms occur in
the two generators simultaneously. In the parallel-wise positioning,
similar histograms of West generator occur 4 interval (11.6 msec)
later than they do in the East one.

5 Synchronism in different locations

Similarity of the shape of the histograms obtained during in-
dependent measurements taken in different locations at the
same local time comes as an evidence of the dependency
of the histogram shape upon rotation of the Earth. Earlier
we obtained this evidence by conducting experiments mea-
suring radioactivity at an extremely near distance between
the laboratories: at Pustchino (54◦N, 37◦E) and in Antarc-
tic (Novolazarevskaya Station, 70◦S, 11.5◦E), so the distance
is about 14,000 km. In the works [6–9], when measuring the
noise in semiconductor circuits, a “local time effect” was ob-
tained at a distance of about 1 meter. We carried out similar
measurements using the “Brownian generators”.

Figs. 8 and 9 show results of the experiments conducted at
the town of Rekhovot, Israel (31.89◦N, 34.80◦E) on October
11, 2009. Two Brownian generators were distant as ∆ L = 2
meters from each other, and were first oriented by the Merid-
ian, then by the Parallel. The signals were recorded for 4
minutes. Local time delay for the said latitude with the ba-
sic East-West orientation constitutes ∆ T = ∆ L/V sec, where
V ≈ 2π6378000 cos(31.89π/180)/86400 m/sec is the speed
of the present point of the Earth’s surface bearing the above
specified coordinates. With sampling frequency of 42 KHz,
this delay value corresponds to 3.6 histograms plotted by 60
points, and to 7.1 histograms plotted by 30 points. As seen
in the drawings below, the time intervals, where the maximal

Fig. 9: Interval distribution of the number of similar pairs of the
histograms plotted according to the results of 30 measurements pro-
duced in two independent Brownian generators at a distance of 200
cm from each other. The local-time synchronism has a more distinct
manifestation under the 30-result plotting. In the meridian position-
ing of the independent generators, similar histograms occur simulta-
neously. In the parallel-wise positioning, similar histograms of West
generator occur in West generator 7–8 intervals later than they do in
the East one.

number of the similarly-shaped histograms is found, are close
to the estimated values.

6 Discussion

Our study of Brownian motion by means of the dynamic light
scattering method showed that the fine structure of the dis-
tribution of intensity fluctuations of the light, scattered by
Brownian particles (shapes of the corresponding histograms)
varies synchronously by local time. In other words, Brown-
ian motion is specific for the same regularities as those found
previously during examination of stochastic processes of a
different nature, namely — those of chemical reactions, ther-
mal fluctuation in resistors, radioactive decay etc. Thus, the
similar regularities in the processes, where the energy chang-
ing range varies by many orders, show up the same space-
time being the only thing in common. Proceeding from this
fact, a conclusion was made according to which the observed
regularities were explained by the space-time fluctuations de-
termined by the motion of the Earth in a surrounding inho-
mogeneous gravitational field [1–3].
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Whether it may be real or an equivalent, existence of strong nuclear gravitational con-
stant GS is assumed. Its value is obtained from Fermi’s weak coupling constant as
GS = 6.9427284×1031 m3/kg sec2 and thus “nuclear planck scale” is defined. For strong
interaction existence of a new integral charged “confined fermion” of mass 105.383
MeV is assumed. Strong coupling constant is the ratio of nuclear planck energy = 11.97
MeV and assumed 105.383 MeV. 1

αs
= Xs is defined as the strong interaction mass gen-

erator. With 105.383 MeV fermion various nuclear unit radii are fitted. Fermi’s weak
coupling constant, strong interaction upper limit and Bohr radius are fitted at funda-
mental level. Considering Fermi’s weak coupling constant and nuclear planck length a
new number Xe = 294.8183 is defined for fitting the electron, muon and tau rest masses.
Using Xs, Xe and α 105.32 = 0.769 MeV as the Coulombic energy constant = Ec, en-
ergy coefficients of the semi-empirical mass formula are estimated as Ev = 16.32 MeV,
Es = 19.37 MeV, Ea = 23.86 MeV and Ep = 11.97 MeV where Coulombic energy
term contains [Z]2 . Starting from Z = 2 nuclear binding energy is fitted with two terms
along with only one energy constant = 0.769 MeV. Finally nucleon mass and its excited
levels are fitted.

1 Introduction

It can be supposed that elementary particles construction is
much more fundamental than the black hole’s construction. If
one wishes to unify electroweak, strong and gravitational in-
teractions it is a must to implement the classical gravitational
constant G in the sub atomic physics. By any reason if one
implements the planck scale in elementary particle physics
and nuclear physics automatically G comes into subatomic
physics. Then a large arbitrary number has to be considered
as a proportionality constant. After that its physical signifi-
cance has to be analyzed. Alternatively its equivalent “strong
nuclear gravitational constant GS can also be assumed. Some
attempts have been done in physics history [1–5]. Whether
it may be real or an equivalent if it is existing as a “single
constant” its physical significance can be understood. “Nu-
clear size” can be fitted with “nuclear Schwarzschild radius”.
“Nucleus” can be considered as “strong nuclear black hole”.
This idea requires a basic nuclear fermion! Nuclear binding
energy constants can be generated directly. Proton-neutron
stability can be studied. Origin of “strong coupling constant”
and “Fermi’s weak coupling constant” can be understood.
Charged lepton masses can be fitted. Authors feel that these
applications can be considered favorable for the proposed as-
sumptions and further analysis can be carried out positively
for understanding and developing this proposed “nuclear
planck scale”

2 Proposed assumptions

1. Strong nuclear gravitational constant can be given as
GS = 6.94273×1031 m3/kg sec2;

2. There exists a strongly interacting “confined” Fermion-
ic mass unit MS f c2 = 105.383 MeV.With this assump-

tion in particle physics “super symmetry in strong and
weak interactions” can be understood very easily [6];

3. Strong interaction mass generator XS = 8.8034856 and
Lepton mass generator XE = 294.8183;

4. In the semi-empirical mass formula ratio of “Coulom-
bic energy coefficient” and the proposed 105.383 MeV
is equal to α. The Coulombic energy constant EC =

0.769 MeV.

2.1 Planck scale Coulombic energy and the unified force

Let

MPc2 = planck energy =

√
~c5

G
=

√
~c

c4

G
. (1)

Multiplying this energy unit with
√
α, we get

√
αMPc2 =

√
e2

4πε0

c4

G
, (2)

where
√
αMPc2 can be termed as “Coulombic energy”, c4

G
is having the dimensions of force and can be considered as
the classical limit of any force. This classical force limit c4

G

and the classical power limit c5

G plays a very vital role in black
hole formation and planck scale generation [7]. These are two
very important observations to be noted here: c5

G plays a very
crucial role in “gravitational radiation”; using c4

G minimum
distance rmin between any two charged particles is given as

e2

4πε0r2
min

6
c4

G
, (3)

rmin >

√
e2

4πε0

G
c4 , (4)
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planck mass can be generated if it is assumed that

GMPc2

r2
min

6
c4

G
, (5)

2πrmin = λP = planck wave length, (6)

where, MP= planck mass and rmin= minimum distance be-
tween two planck particles. With these two conditions,
planck mass can be obtained as

MP = planck mass =
h

cλP
=

√
~c
G
. (7)

Aim of equations (3, 4, 5, 6 and 7) is to show that there
exists a fundamental force of the form k c4

G � 1.21027×1044

Newton, where k is a proportionality ratio and is close to
unity. This can be considered as the “unified force” of “true
grand unification”. In the foregoing sections authors show
how it changes into the “strong nuclear force”.

2.2 Strong nuclear gravitational constant GS and strong
nuclear force

Let the classical gravitational constant be represented by GC

and the assumed strong nuclear gravitational constant be rep-
resented by GS . The most important definition is that

c4

GS
= 116.3463 Newton (8)

can be called as the “nuclear strong force”. This is the begin-
ning of this “nuclear planck scale”. Authors request the sci-
ence community to analyze this equation positively. Magni-
tude of force of attraction or repulsion in between two nucle-
ons when their distance of separation is close to 1.4 Fermi is

e2

4πε0R2
0

�
c4

GS
, (9)

R0 �

√
e2

4πε0

GS

c4 . (10)

If a nucleon of mass mn revolves at a radius of R0,

potential energy = EP = − e2

4πε0R0
, (11)

kinetic energy = EK =
mnv

2

2
=

e2

8πε0R0
, (12)

total energy = ET = EP + EK =
mnv

2

2
= − e2

8πε0R0
. (13)

We know that the characteristic size of nucleus is 1.3 to
1.4 Fermi. For R0 = 1.4 Fermi total energy of revolving nu-
cleon is close to the rest “energy of electron”. This is still a
mystery. Hence

e2

8πε0R0
�

1
2

√
e2

4πε0

c4

GS
� mec2. (14)

Here mec2 is the rest energy of electron. Half the classical
radius of electron can also be considered as the unit size of
nucleus. If so with the assumed strong nuclear gravitational
constant GS it is noticed that

R0 �

√
e2

4πε0

GS

c4 �
e2

8πε0mec2 �
2GS me

c2 . (15)

This equation (15) clearly suggests that nucleus that we
are observing or studying is not a simple object. It is a strange
object and can be considered as an “electronic black hole” and
works at strong nuclear gravitational constant GS . Experi-
mentally knowing the (exact) characteristic size of nucleus
one can easily estimate the value of proposed GS . Alterna-
tively its value can be estimated form the famous Fermi weak
coupling constant FW . Considering “planck mass” and “elec-
tron mass” in view in a unified manner value of GS can be
obtained from the following 3 semi-empirical relations

FW �
1
3

[
ln

(
~c

GCm2
e

)]−2 (
e2

4πε0

)2 (GS

c4

)
. (16)

This can be obtained from eq. (42, 31, 36, 43, 44 and 28)

GS � 3
[
ln

(
~c

GCm2
e

)]2 (
4πε0

e2

)2

FWc4. (17)

Its obtained value is 6.9427284×1031 m3/kg sec2. This
value is considered in this paper

FW �
16α2

27

(
e2

4πε0

)2 (GS

c4

)
. (18)

This can be obtained from eq. (42, 31, 36, 43, 44, and 10)

GS �
(

27
16α2

) (
4πε0

e2

)2

FWc4. (19)

Its obtained value is 6.9052×1031 m3/kg sec2. This method
is independent of the classical gravitational constant GC . An-
other interesting idea is

e2

4πε0GS m2
e
� 4, (20)

GS �
1
4

(
e2

4πε0m2
e

)
� 6.9506×1031 m3/kg sec2. (21)

Here me = rest mass of electron. If this is having any
physical meaning without considering the classical gravita-
tional constant GC value of GS can be calculated from elec-
tron mass directly. Not only that in quark physics in our pa-
per [6] it is assumed that

DCT geometric ratio
USB geometric ratio

� 4. (22)
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2.3 “Strong nuclear force” and “nuclear planck scale”

Similar to the planck scale in unified nuclear physics nuclear
scale planck energy can be given as

Mnc2 =

√
~c5

GS
=

√
~c

c4

GS
� 11.9705568 MeV. (23)

These 4 energy coefficients of the semi-empirical mass
formula lies in between 11.97 MeV and 2×11.97=23.94 MeV.
Not only that using this expression in particle physics [6] it
can be shown that strongly interacting particles follows en-

ergy levels as [n (n + 1)]
1
4 and

[
n(n+1)

2

] 1
4 where, n =1, 2, 3. . .

We know that

planck length =

√
~GC

c3 = 1.616244×10−35 meter. (24)

Nuclear planck length can be given as

Ln =

√
~GS

c3 = 1.664844×10−14 meter. (25)

Nuclear scale Coulombic energy can be given as

Mec2 =

√
e2

4πε0

c4

GS
� 1.02258 MeV. (26)

These energy units directly can be implemented in nuclear
physics for understanding nuclear structure. Nuclear planck
energy Mnc2 or nuclear planck length Ln plays an interest-
ing role in understanding the origin of strong coupling con-
stant [8] and energy coefficients of the semi-empirical mass
formula. Lepton masses can also be fitted. It is also noticed
that

MS f c2E2
P �

(
Mnc2

)2
EC . (27)

where Ms f c2 = proposed new strongly interacting 105.383
MeV, EP = nucleon’s potential energy close to 1.4 Fermi =

2×0.511 MeV, Mnc2 = proposed nuclear scale planck energy
= 11.97 MeV, EC = assumed Coulombic energy coefficient
of the semi-empirical mass formula αMS f c2 = α105.383 =

0.769 MeV.

3 New strongly interacting fermion ( 105.38 MeV) and
Fermi’s weak coupling constant (FW )

It is assumed that 105.383 MeV is a strongly interacting par-
ticle. Authors request that this should not be confused with
weakly interacting muon. This particle can be called as sion.
Its charge is ±e. Just like quarks it is a confined fermion. It
plays a crucial part in understanding the nuclear size, nuclear
binding energy, magnetic moments of nucleons and weak in-
teraction. Along with the strong coupling constant it plays
a heuristic role in understanding “super symmetry” in strong
and weak interactions [6]. Considering “planck mass” and

“electron mass” in a unified manner it is empirically def-
ined as

ln
(

MPc2

mec2

)2
√

e2

4πε0

c4

GS
� 105.3826 MeV. (28)

Here MPc2 = planck energy and mec2 = rest energy of
electron. Classical radius of MS f c2 can be given as

e2

4πε0MS f c2 = 1.3664×10−17 meter. (29)

Compton length of MS f c2 can be given as

~

MS f c
= 1.87245×10−15 meter. (30)

This length can be considered as the strong interaction
upper limit.

3.1 Various nuclear unit sizes and the mystery of 1.4
Fermi

Let ~

MS f c
= 1.87245×10−15 meter = a , (31)

~

2MS f c
= 0.93624×10−15 meter = b . (32)

Here a can be considered as the upper limit of strong inter-
action range and b can be considered as lower limit of strong
interaction. Considering these two lengths as the semi-major
axis and semi-minor axis of the nucleus it is noticed that

arthematic mean of (a, b) =

[
a+b

2

]
� 1.404 Fermi, (33)

geometric mean of (a, b) =
[√

ab
]
� 1.324 Fermi, (34)

harmonic mean of (a, b) =

[
2ab
a + b

]
� 1.248 Fermi. (35)

These sizes can be compared with the experimental val-
ues of various nuclear unit or characteristic sizes. From equa-
tion (33) it is noticed that arithmetic mean of semi-major and
semi-minor axis of the assumed nuclear size = 1.404 Fermi.
From this coincidence “existence of the strongly interacting
105.383 MeV” can be justified

R0 �
3
4

~

MS f c
� 1.40436 Fermi, (36)

ET =
e2

8πε0R0
�

2
3

(
αMS f c2

)
� 0.512676 MeV. (37)

This idea suggests that a nucleon revolving at 1.404 Fermi
having a total energy of 0.51267 MeV which is close to the
electron rest energy 0.511 MeV. This small energy difference
0.51267−0.511= 0.00167 MeV may be related with origin of
massive neutrino. It is assumed that

αMS f c2 = 0.769 MeV, (38)
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ET

EC
�

0.511 MeV
0.769 MeV

� 0.66445 �
2
3
. (39)

Considering ET = mec2 and rearranging this equation
we get

MS f c2

ET
�

MS f c2

mec2 �
3

2α
, (40)

and from literature [9] it is noticed that

muon mass
electron mass

�
(

3
2α

+ 2
)
. (41)

Authors here suggest that in equation (41) it is not the
muon mass but it is the strongly interacting proposed 105.383
MeV particle.

3.2 Fermi’s weak coupling constant and estimation of
105.383 MeV

Empirically Fermi’s weak coupling constant FW [10] can be
fitted as

FW �
(
α2

2

) (
e2

8πε0R0

)
a3. (42)

Authors request the science community to consider this
equation positively. It has interesting applications. Electron’s
“total energy” in hydrogen atom can be related with the strong
interaction range! From equations (31 and 36)

FW �
(
α3

3

) (
MS f c2

)
a3 �

1
3

(
MS f c2

) ( e2

4πε0MS f c2

)3

. (43)

Experimentally FW = 1.435841179×10−62 J×meter3

∴ MS f c2 �
(

e2

4πε0

) (
e2

12πε0FW

) 1
2

� 105.38 MeV. (44)

3.3 Strong interaction mass generator XS

Based on nuclear planck scale it is assumed that strong inter-
action mass generator is

XS �
MS f c2

Mnc2 � 8.803486 �
Ln

a
, (45)

XS �

√
GS M2

S f

~c
� 8.803486 , (46)

αs (MZ) �

√
~c

GS M2
S f

� 0.11359. (47)

It is noticed that XS = 8.803486 = 1
0.11359 seems to be

the “inverse” of the strong coupling constant [8] αs (MZ) =

0.1186 ± 0.0011
(
exper

) ± 0.0050 (theor) . Considering the
lower limits of this value we get 0.1186 − 0.0050 (theor) =

0.1136.We know the importance of the “strong coupling con-
stant” in particle physics. If the proposed definition is found

to be true and meaningful one has to accept the existence of
proposed “nuclear planck scale”. In the sense one must ac-
cept the existence of “strong nuclear gravitational constant
GS and existence of 105.383 MeV”. This number XS plays a
very interesting role in correlating the energy coefficients of
the semi-empirical mass formula and proton-neutron stabil-
ity. This number plays a crucial role in understanding super
symmetry in strong and weak interactions [8].

Based on XS it is noticed that, XS MS f c2 = 927.737 MeV.
This is roughly close to proton mass. XS MS f c2 + Mnc2 =

939.7 MeV. This is close to the neutron mass = 939.57 MeV.
Some how 105.383 MeV and XS plays a vital role in “weigh-
ing” of the nucleon mass. See Section 5 for “nucleon mass
fitting” and nucleon’s basic excited levels.

3.4 Fermi’s weak coupling constant and the Bohr radius

By any reason for the nucleus if

e2

8πε0R0
� mec2, (48)

e2

4πε0R0
� 2mec2. (49)

Equation(42) takes the following interesting form as

FW �
(
α2

2

) (
e2

8πε0R0

)
a3 �

(
α2

2

) (
mec2

)
a3. (50)

At a glance equation (50) suggests that
(
α2

2

) (
mec2

)
�

FW

a3 �
(
α3

3

)
MS f c2 � 13.65 eV. (51)

In this equation (51) “left hand side” is nothing but the
“total energy of electron” in hydrogen atom. This is a very
simple and strange relation! Based on the unification of
strong and weak interactions “Bohr radius” of hydrogen atom
can be given as

a0 �
(

e2

8πε0

) (
a3

FW

)
� 5.27745×10−11 meter. (52)

This is matching with a0 = 5.29177×10−11 meter. This
idea suggests that existence of the proposed nuclear strong
interaction upper limit a=1.8725 Fermi and strongly interact-
ing MS f c2 = 105.383 MeV seems to be true and can be con-
sidered for further analysis. Their direct existence strongly
supports the hidden existence of the proposed strong nuclear
gravitational constant GS .

3.5 Lepton mass generator XE and electron, muon and
tau rest mass fitting

A new number (XE) is empirically defined [1] as

XE �
[

e2

8πε0R0

L3
n

FW

] 1
3

� XS

[
e2

8πε0R0

a3

FW

] 1
3

. (53)
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n Obtained lepton mass, MeV Exp. lepton mass, MeV

0 0.5127 0.510998922
1 105.86 105.658369
2 1775.506 1776.9
3 42206.19 Not discovered

Table 1: Fitting of charged lepton rest masses.

Its obtained value is 294.8183. Here Ln = proposed nu-
clear planck length, a = strong interaction upper limit and FW

= Fermi’s weak coupling constant.
This number can be called as “lepton mass generator”. It

has wide applications in nuclear and particle physics. It is no-
ticed that (αXE) = 2.1514 plays a very interesting role in esti-
mating the quark masses [6]. The weak coupling angle can be
considered as (αXE)−1 = sin (θW ) = 0.4648. It plays a crucial
role in estimating the charged lepton rest masses. It plays a
very interesting role in fitting energy coefficients of the semi-
empirical mass formula. It can be used for fitting the nuclear
size with “Compton wavelength of nucleon”. It is noticed that
ratio of “nuclear volume” and “A nucleons Compton volume”
is XE . It can be called as the nuclear “volume ratio” factor.

Till now no mechanism is established for the generation
of the charged lepton rest masses [11]. Considering equation
(39) an interesting empirical relation is given for fitting elec-
tron, muon and tau particle rest masses as

mlc2 �
2
3

[
E3

C +
(
n2XE

)n
E3

A

] 1
3
, (54)

where EC = Coulombic energy coefficient of the semi-empir-
ical mass formula, EA = asymmetry energy coefficient of the
semi-empirical mass formula and XE = proposed lepton mass
generator = 294.8183 and n = 0, 1, 2.

If EC = 0.769 MeV and EA= 23.86 MeV obtained charged
lepton masses are shown in the following Table 1. It is known
that these two coefficients plays a vital role in nuclear stabil-
ity. It is well known that in weak decay for getting stability
neutron in an unstable nuclide emits electron. If our study is
focused on why and how a charged lepton is coming out from
the nucleus this idea can be adapted. For any model data fit-
ting is the first successful step in its implementation in the
actual field.

3.6 Role of XE in estimating the nuclear size R0

Compton wave length of nucleon is
~

mnc
= 2.1016×10−16 meter, (55)

where mn is the average mass of nucleon = 938.92 MeV. It is
noticed that

R0 � (XE)
1
3
~

mnc
= 1.399×10−15 meter. (56)

This is very close to the estimated nuclear characteris-
tic size. With reference to Rutherford’s alpha scattering ex-
periments size of a nucleus that contains A nucleons can be

given as

RA � (AXE)
1
3
~

mnc
. (57)

Hence ratio of “nuclear volume” and “A nucleons Comp-
ton volume” = XE .

4 Relations between energy coefficients of the semi-
empirical mass formula

We know that the best energy coefficients of the semi-empir-
ical mass formula [12–14] are, Coulombic energy coefficient
EC = 0.71 MeV, volume energy coefficient EV = 15.78 MeV,
surface energy coefficient ES = 18.34 MeV, asymmetry en-
ergy coefficient EA = 23.21 MeV and pairing energy coeffi-
cient EEO = 12.0 MeV. The 4 major energy coefficients of the
semi-empirical mass formula lies in between 11.97 MeV and
2×11.97 = 23.94 MeV. Really this is a very interesting case.
If one proceeds further for analyzing this strange observation
possibly role of “strong coupling constant” or “strong interac-
tion mass generator” can be understood in the “nuclear mass
generation”. Thus unification of “gravitation” with “nuclear
physics” may be possible. Authors proposal may be given a
chance. See the following Table 2. In this context it is as-
sumed that

MS f c2

EC
�

1
α

and EC � αMS f c2 = 0.769 MeV. (58)

From equations (23, 46, 53 and 58) empirically it is no-
ticed that

EV � Mnc2 +

(
X

1
3
E − 1

)
EC � 16.32 MeV, (59)

ES � Mnc2 +

(
X

1
3
E +
√

XS

)
EC � 19.37 MeV, (60)

EA � Mnc2 +

(
X

1
3
E + XS

)
EC � 23.86 MeV � 2Mnc2, (61)

EA − ES �
(
XS −

√
XS

)
EC , (62)

EEO � Mnc2 � 11.97 MeV. (63)

It is also noticed that

XE �
ES

EC

√
MS f c2

EC
�

ES

EC

√
1
α
. (64)

This is another interesting guess. This successfully imple-
ments the new number XE . It is observed that proposed EV -
existing EV = 16.32−15.78 = 0.54 MeV ≈ ET = 0.511 MeV.
Proposed ES — existing ES = 19.37 − 18.34 = 1.03 MeV
≈ 2ET = 2×0.511 MeV. Proposed EA-existing EA = 23.86 −
23.21 = 0.65 MeV ≈ ET = 0.511 MeV.

Please note that asymmetry energy coefficient is matching
with twice of Mnc2 = 23.94 MeV. This is very interesting.
If proposed ideas has no significance here why and how it
is happening like this? This data coincidence indicates that
proposed scheme of energy coefficients can be applied in the
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Z A Obtained Be, MeV Be, MeV [13, 14]

8 16 121.6 118.13, 128.57
20 44 382.7 377.66, 382.78
28 62 543.7 538.85, 544.41
50 118 1003.4 1000.22, 1004.74
82 208 1620.6 1618.41, 1635.36

108 292 2089.6 2082.53, 2089.48

Table 2: Fitting of nuclear binding energy with proposed coeffi-
cients.

semi-empirical formula for understanding the significance of
proposed 105.383 MeV and XS = 8.803486 in the context of
strong interaction. The semi-empirical mass formula is

Be = AEV−A
2
3 ES − Z2

A
1
3

EC− (A − 2Z)2

A
EA±

√
1
A

EEO. (65)

Here EV = 16.32 MeV, ES = 19.37 MeV, EC = 0.769
MeV, EA = 23.86 MeV and EEO = 11.97 MeV can be consid-
ered as the unified energy coefficients of the semi-empirical
formula [13,14] where Coulombic energy term contains [Z]2.

If one wants to retain [Z (Z − 1)] energy coefficients can
be fine tuned in the following way

EEO � Mnc2 � 11.97 MeV, (66)

EA � 2Mnc2 � 23.94 MeV, (67)
EA

EV
�

√
αXE and EV � 16.322 MeV, (68)

EV + ES � EA + EEO � 3EEO, (69)

ES � 3EEO − EV � 35.91 − 16.322 � 19.59 MeV. (70)

Alternatively

EV �
(

3EEO

2

)
− (αXE) EC � 16.30 MeV, (71)

ES �
(

3EEO

2

)
+ (αXE) EC � 19.61 MeV, (72)

with EV = 16.30 MeV, ES = 19.61 MeV and with EV =

16.32 MeV, ES = 19.59 MeV,

• for Z = 26 and A = 56, Be = 489.87 MeV and
491.40 MeV,

• for Z = 50 and A = 118, Be = 1002.88 MeV and
1005.96 MeV,

• for Z = 79 and A = 197, Be = 1547.96 MeV and
1552.97 MeV,

• for Z = 92 and A = 238, Be = 1794.87 MeV and
1800.87 MeV.

Taking mean values of EV and ES , energy coefficients can
be given as EV = 16.31 MeV, ES = 19.60 MeV, EC = 0.769
MeV, EA = 23.94 MeV and EEO = 11.97 MeV.

4.1 Nuclear binding energy with two terms and one en-
ergy constant 0.769 MeV

An empirical method is proposed here for fitting the nuclear
binding energy. This method contains two terms. For these
two terms, Coulombic energy constant EC = 0.769 MeV is
applied. In this method the important point is at first for any
Z its stable mass number AS has to be estimated. Strong inter-
action mass generator XS plays a crucial role in this method.
For any Z error in binding energy is very small near the stable
isotope AS and increasing above and below AS . Unifying 5
terms having 5 energy constants into two terms with one en-
ergy constant which are related with strong interaction mass
generator is not a simple task. Authors proposal can be given
a chance.

This method is applicable for light atoms also. For light
atoms, when A = 2Z, obtained binding energy is very close
to the actual value. For Z = 2 and A = 4 is 28.86 MeV, Z = 4,
A = 8 is 59.57 MeV, Z = 6, A = 12 is 92.63 MeV Z = 7,
A = 14 is 114.0 MeV, Z = 8 A = 16 is 127.14 MeV, Z = 9,
A = 19 is 149.72 MeV and Z = 10, A = 20 is 155.06 MeV.
For very light odd elements error is due to estimation of their
stable mass numbers

T1 =

[
(A + 1)

(
1 +

2Z
AS

)]
ln [(A + 1) XS ] EC . (73)

Stable isotope of any Z can be estimated as

AS � 2Z +
Z2

S f
� 2Z +

Z2

155.72
. (74)

Here S f can be called as the nuclear stability factor. It can
be given as

S f �
EA

EC

√
ES

EC
� 155.72 � 2X2

S � 155.00. (75)

After rounding off for even Z values, if obtained AS is
odd consider AS + 1, for odd Z values if obtained AS is even,
consider AS − 1. For very light odd elements this seems to be
not fitting.

Term T1 indicates the factors for increase in binding en-
ergy. Another observation is [(A + 1) XS ] . This factor plays a
key role in the saturation of the binding energy. It is observed
that for any Z at its stable isotope AS

T1 � [AS + 2Z + (1 or 2)] ln [(AS + 1) XS ] EC . (76)

The basic question is that how to extrapolate from the sta-
ble isotope AS of any Z to above and below its stable and
unstable isotopes? Authors are working in this direction also

T2 �


A2 +

(
f Z2

)

X2
S

 EC , (77)

where
f � 1 +

2Z
AS

� a factor 6 2. (78)
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Z AS Obtained Be, MeV

2 4 28.9
8 16 127.1
20 44 368.4
26 56 481.6
44 100 856.2
68 166 1347.1
83 209 1623.5
92 238 1775.5

Table 3: Fitting of nuclear binding energy with two terms and one
energy constant.

Term T2 indicates the factors for decrease in binding en-
ergy. Both of these terms has to be analyzed at fundamen-
tal level. T1 and T2 indicates the importance of the number
XS = 8.8034856 in strong interaction mass generation

Be = T1 − T2. (79)

Whether this is the total binding energy that includes shell
effects or liquid drop energy has to be decided with observa-
tions and analysis. This method has to be analyzed and ex-
tended for isotopes above and below the stable mass number
AS of any Z value. With reference to AS and by considering
shell effects error in finding the first term can be eliminated.
In the second term by selecting a suitable expression for f
error can be minimized. The advantage of this method is that
number of energy constants can be minimized. See the fol-
lowing Table 3.

5 Rest mass of nucleon

Let mnc2 = rest mass of nucleon. Semi-empirically it is ob-
served that

mnc2 � ln
(
Mnc2 8πε0R0

e2

)2 √
RS

a
Mnc2. (80)

Here a is the Compton length of MS f and RS is the black
hole radius of MS f and is given by

RS =
2GS MS f

c2 = 2.9023×10−13 meter, (81)

mnc2 � ln
(

8πε0R0Mnc2

e2

)2
√

2GS M2
S f

~c
Mnc2. (82)

From equation (48)

mnc2 � ln
(

Mnc2

mec2

)2
√

2GS M2
S f

~c
Mnc2. (83)

5.1 Nucleon stability relation

If it is assumed that

AS � 2Z +
Z2

155.00
� 2Z +

Z2

2X2
S

, (84)

significance of 2X2
S can be given as

2X2
S �

2GS M2
S f

~c
�

RS

a
� 155.00 (85)

Hence

AS � 2Z +
Z2

S f
� 2Z +

(
a

RS

)
Z2 . (86)

For example, if Z = 47, AS = 108.25, Z = 82, AS =

207.38 and Z = 92, AS = 238.6. This clearly indicates the
beautiful role of 2X2

S in nuclear stability.

5.2 Excited levels of nucleon

From quantum mechanics quantized angular momentum is
given by

√
n (n + 1).~ where n = 0, 1, 2. . . Some how if ~

goes under a “square root” like the planck energy, MPc2 =√
~c5

GC
as a ground state energy level in a heuristic way its mas-

sive excited levels are given by [6]

(
MPc2

)
I

= [n (n + 1)]
1
4

√
~c5

GC
. (87)

Here n = 0, 1, 2, 3. . . and I = n (n + 1). Keeping this
idea in view it is assumed that “if m0c2 is the rest energy of a
particle then its massive excited levels are given by

mc2 = [n (n + 1)]
1
4 m0c2 (88)

and each excited state can be seen as a new massive parti-
cle”. The surprising observation is that in particle physics ex-
cited massive states are following two types of discrete levels.
They are

[n (n + 1)]
1
4 m0c2 and

[
n (n + 1)

2

] 1
4

m0c2. (89)

Presently understood “Regge trajectory” of some of the
baryons and mesons are fitted in this way. These levels can
be called as Fine rotational levels. If the proposed idea is
correct nucleon must show excited levels as

(
mnc2

)
I

= [I]
1
4 939 and

(
mnc2

)
I
2

=

[ I
2

] 1
4

939, (90)

where I = n (n + 1) and n =1, 2, 3, . . .
At I = 2, 1117 MeV, I

2 = 3, 1236 MeV, at I = I
2 = 6, 1470

MeV, at I
2 = 10, 1670 MeV, I = 12, 1748 MeV levels are

obtained. This is a great coincidence and is a true reflection
of the correctness of the proposed assumptions. Hence the
proposed ideas can be given a chance in “final grand unified
physics”.

Conclusions

Nucleus has strong nuclear gravitational mechanism. Some
how electron plays a crucial role in its structural formation.
Just like quark masses MS f c2 can be considered as a strongly
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interacting “confined” fermion. Whether GS is really exist-
ing or an equivalent value it plays a heuristic role in under-
standing the experimental things and can be considered for
further analysis. Based on the proposed data fitting results
existence of the proposed strong interaction fermion MS f c2

and the strong interaction mass generator XS = 8.8034856
can be confirmed. 0.769 MeV can be considered as the uni-
fied Coulombic energy coefficient.

Two most important and interesting observations are as
follows

αXE �

√√√
ln

√
4πε0GS M2

S f

e2 � 2.153. (91)

This expression clearly demonstrates the hidden existence
of MS f c2 and GS in nuclear and particle physics. In our pa-
per [6] it is assumed that there exists a strongly interacting
fermion 11450 MeV which plays a crucial role in estimating
quark-gluon masses. Empirically it is noticed that

(11450)
14
30 (105.38)

16
30 � 939.54 MeV. (92)

This is very close to the neutron mass. Since both are in-
tegral charged particles and giving importance to the charged
proton mass it can be written as

(
11450
105.38

) 14
30

(105.38) � 939.54 MeV, (93)

where (
11450
105.38

) 14
30

� 8.9157 � XS . (94)

This number is very close to the proposed strong interac-
tion mass generator XS . It is noticed that 14

30 � 0.4666 and
16
30 � 0.5333. Comparing

(
14
30

)
with

(
1

αXE

)
one can see the sig-

nificance of (αXE) in deciding the mass of proton.
Even though this is an unconventional paper number of

inputs are only two and they are assumed MS f c2 and strong
nuclear gravitational constant GS . The main advantage of this
paper is that there is no need to go beyond 4 dimensions. Au-
thors humbly request the world science community to kindly
look into these new and heuristic ideas for further analysis
and development.
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A combinatorial spacetime (CG | t) is a smoothly combinatorial manifold C underlying a
graph G evolving on a time vector t. As we known, Einstein’s general relativity is suit-
able for use only in one spacetime. What is its disguise in a combinatorial spacetime?
Applying combinatorial Riemannian geometry enables us to present a combinatorial
spacetime model for the Universe and suggest a generalized Einstein gravitational equa-
tion in such model. For finding its solutions, a generalized relativity principle, called
projective principle is proposed, i.e., a physics law in a combinatorial spacetime is
invariant under a projection on its a subspace and then a spherically symmetric multi-
solutions of generalized Einstein gravitational equations in vacuum or charged body are
found. We also consider the geometrical structure in such solutions with physical for-
mations, and conclude that an ultimate theory for the Universe maybe established if all
such spacetimes in R3. Otherwise, our theory is only an approximate theory and endless
forever.

1 Combinatorial spacetimes

The multi-laterality of our Universe implies the best space-
time model should be a combinatorial one. However, classi-
cal spacetimes are all in solitude. For example, the Newton
spacetime (R3|t) is a geometrical space (x1, x2, x3) ∈ R3 with
an absolute time t ∈ R+. With his deep insight in physical
laws, Einstein was aware of that all reference frames were es-
tablished by human beings, which made him realized that a
physics law is invariant in any reference frame. Whence, the
Einstein spacetime is (R3|t) � R4 with t ∈ R+, i.e., a warped
spacetime generating gravitation. In this kind of spacetime,
its line element is

ds2 =
∑

06µ,ν63

gµν(x)dxµdxν ,

where gµν, 0 6 µ, ν 6 3 are Riemannian metrics with local
flat, i.e., the Minkowskian spacetime

ds2 = −c2dt2 + dx2
1 + dx2

2 + dx2
3 ,

where c is the light speed. Wether the spacetime of Universe
is isolated? In fact, there are no justifications for Newton’s or
Einstein’s choice but only dependent on mankind’s percep-
tion with the geometry of visible, i.e., the spherical geome-
try(see [1–4] for details).

Certainly, different standpoints had unilaterally brought
about particular behaviors of the Universe such as those of
electricity, magnetism, thermal, optics. . . in physics and their
combinations, for example, the thermodynamics, electromag-
netism, . . . , etc. But the true colours of the Universe should
be hybrid, not homogeneous or unilateral. They should be
a union or a combination of all these features underlying a
combinatorial structure. That is the origin of combinatorial

spacetime established on smoothly combinatorial manifolds
following ([5–9]), a particular case of Smarandache multi-
space ([10–11]) underlying a connected graph.

Definition 1.1 Let ni, 1 6 i 6 m be positive integers. A com-
binatorial Euclidean space is a combinatorial system CG of
Euclidean spaces Rn1 , Rn2 , · · · , Rnm underlying a connected
graph G defined by

V(G) = {Rn1 ,Rn2 , · · · ,Rnm } ,
E(G) = { (Rni ,Rn j ) | Rni

⋂
Rn j , ∅, 1 6 i, j 6 m} ,

denoted by EG(n1, · · · , nm) and abbreviated to EG(r) if n1 =

· · · = nm = r.

A combinatorial fan-space R̃(n1, · · · , nm) is a combina-
torial Euclidean space EKm (n1, · · · , nm) of Rn1 , Rn2 , · · · , Rnm

such that for any integers i, j, 1 6 i , j 6 m, Rni
⋂

Rn j =
m⋂

k=1
Rnk , which is in fact a p-brane with p = dim

m⋂
k=1

Rnk in

string theory ([12]), seeing Fig. 1.1 for details.

-¾

?

6

µ

ª

p-brane

Fig. 1.1
For ∀p ∈ R̃(n1, · · · , nm) we can present it by an m × nm
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coordinate matrix [x] following with xil =
xl

m
for 1 6 i 6

m, 1 6 l 6 m̂,

[x] =



x11 · · · x1m̂ · · · x1n1 · · · 0
x21 · · · x2m̂ · · · x2n2 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
xm1 · · · xmm̂ · · · · · · · · · xmnm


.

A topological combinatorial manifold M̃ is defined in the
next.

Definition 1.2 For a given integer sequence 0 < n1 < n2 <
· · · < nm, m > 1, a topological combinatorial manifold M̃ is a
Hausdorff space such that for any point p ∈ M̃, there is a lo-
cal chart (Up, ϕp) of p, i.e., an open neighborhood Up of p in
M̃ and a homeomorphism ϕp : Up → R̃(n1(p), · · · , ns(p)(p))
with

{n1(p), · · · , ns(p)(p)} ⊆ {n1, · · · , nm} ,⋃

p∈M̃

{n1(p), · · · , ns(p)(p)} = {n1, · · · , nm} ,

denoted by M̃(n1, n2, · · · , nm) or M̃ on the context and

Ã = {(Up, ϕp)|p ∈ M̃(n1, n2, · · · , nm))}

an atlas on M̃(n1, n2, · · · , nm).
A topological combinatorial manifold M̃ is finite if it is

just combined by finite manifolds without one manifold con-
tained in the union of others.

For a finite combinatorial manifold M̃ consisting of man-
ifolds Mi, 1 6 i 6 m, we can construct a vertex-edge labeled
graph GL[M̃] defined by

V(GL[M̃]) = {M1, M2, · · · , Mm} ,
E(GL[M̃) = { (Mi, M j) | Mi

⋂
M j , ∅, 1 6 i, j 6 n}

with a labeling mapping

Θ : V(GL[M̃])
⋃

E(GL[M̃])→ Z+

determined by

Θ(Mi) = dim Mi, Θ(Mi, M j) = dim Mi

⋂
M j

for integers 1 6 i, j 6 m, which is inherent structure of com-
binatorial manifolds. A differentiable combinatorial manifold
is defined by endowing differential structure on a topological
combinatorial manifold following.

Definition 1.3 For a given integer sequence 1 6 n1 <
n2 < · · · < nm, a combinatorial Ch-differential mani-
fold (M̃(n1, n2 · · · , nm); Ã) is a finite combinatorial manifold

M̃(n1, · · · , nm), M̃(n1, · · · , nm) =
⋃
i∈I

Ui, endowed with an at-

las Ã = {(Uα;ϕα)| α ∈ I} on M̃(n1, · · · , nm) for an integer
h, h > 1 with conditions following hold.

(1) {Uα;α ∈ I} is an open covering of M̃(n1, n2, · · · , nm).

(2) For ∀α, β ∈ I, local charts (Uα;ϕα) and (Uβ;ϕβ) are
equivalent, i.e., Uα

⋂
Uβ = ∅ or Uα

⋂
Uβ , ∅ but the overlap

maps

ϕαϕ
−1
β : ϕβ(Uα

⋂
Uβ)→ ϕβ(Uβ) ,

ϕβϕ
−1
α : ϕα(Uα

⋂
Uβ)→ ϕα(Uα)

both are Ch-mappings, such as those shown in Fig. 1.2 fol-
lowing.

-

-

?

Uα

Uβ

Uα ∩ Uβ

ϕα

ϕβ

ϕβ(Uα
⋂

Uβ)
ϕβ(Uα

⋂
Uβ)

ϕβϕ
−1
α

Fig. 1.2

(3) Ã is maximal, i.e., if (U;ϕ) is a local chart of M̃(n1,
· · · , nm) equivalent with one of local charts in Ã, then (U;ϕ)
∈ Ã.

A finite combinatorial manifold M̃(n1, · · · , nm) is smooth
if it is endowed with a C∞-differential structure. Now we are
in the place introducing combinatorial spacetime.

Definition 1.4 A combinatorial spacetime (CG | t) is a smooth
combinatorial manifold C underlying a graph G evolving on
a time vector t, i.e., a geometrical space C with a time system
t such that (x| t) is a particle’s position at a time t for x ∈ C .

The existence of combinatorial spacetime in the Universe
is a wide-ranging, even if in the society science. By the ex-
plaining in the reference [13], there are four-level hierarchy
of parallel universes analyzed by knowledge of mankind al-
ready known, such as those of Hubble volumes, chaotic in-
flation, wavefunction and mathematical equations, etc. Each
level is allowed progressively greater diversity.

Question 1.5 How to deal behaviors of these different com-
binatorial spacetimes definitely with mathematics, not only
qualitatively?

Recently, many researchers work for brane-world cos-
mology, particular for the case of dimensional 6 6, such
as those researches in references [14–18] and [3] etc. This
brane-world model was also applied in [19] for explaining a
black hole model for the Universe by combination. Notice
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that the underlying combinatorial structure of brane-world
cosmological model is essentially a tree for simplicity.

Now we have established a differential geometry on com-
binatorial manifolds in references [5–9], which provides us
with a mathematical tool for determining the behavior of
combinatorial spacetimes. The main purpose of this paper
is to apply it to combinatorial gravitational fields combining
with spacetime’s characters, present a generalized relativity in
combinatorial fields and use this principle to solve the grav-
itational field equations. We also discuss the consistency of
this combinatorial model for the Universe with some observ-
ing data such as the cosmic microwave background (CMB)
radiation by WMAP in 2003.

2 Curvature tensor on combinatorial manifolds

Applying combinatorial spacetimes to that of gravitational
field needs us to introduce curvature tensor for measuring the
warping of combinatorial manifolds. In this section, we ex-
plain conceptions with results appeared in references [5–8],
which are applied in this paper.

First, the structure of tangent and cotangent spaces TpM̃,
T ∗pM̃ at any point p ∈ M̃ in a smoothly combinatorial mani-
fold M̃ is similar to that of differentiable manifold. It has been

shown in [5] that dim TpM̃(n1, · · · , nm) = ŝ (p)+
s(p)∑
i=1

(ni− ŝ (p))

and dim T ∗pM̃(n1, n2, · · · , nm) = ŝ (p) +
s(p)∑
i=1

(ni − ŝ (p)) with a

basis

{
∂

∂xi0 j |p|16 j6 ŝ (p)
}⋃

s(p)⋃

i=1

{
∂

∂xi j |p | ŝ (p) + 16 j6 ni

} ,

{
dxi0 j|p|1 6 j 6 ŝ (p)

}⋃(s(p)⋃

i=1

{
dxi j|p | ŝ (p) + 1 6 j 6 ni

})

for any integer i0, 1 6 i0 6 s(p), respectively. These mathe-
matical structures enable us to construct tensors, connections
on tensors and curvature tensors on smoothly combinatorial
manifolds.

Definition 2.1 Let M̃ be a smoothly combinatorial manifold,
p ∈ M̃. A tensor of type (r, s) at the point p on M̃ is an
(r + s)-multilinear function τ,

τ : T ∗pM̃ × · · · × T ∗pM̃︸                 ︷︷                 ︸
r

× TpM̃ × · · · × TpM̃︸                 ︷︷                 ︸
s

→ R .

Let M̃(n1, · · · , nm) be a smoothly combinatorial manifold.
Denoted by T r

s (p, M̃) all tensors of type (r, s) at a point p
of M̃(n1, · · · , nm). Then for ∀p ∈ M̃(n1, · · · , nm), we have
known that

T r
s (p, M̃) = TpM̃ ⊗ · · · ⊗ TpM̃︸                 ︷︷                 ︸

r

⊗T ∗pM̃ ⊗ · · · ⊗ T ∗pM̃︸                 ︷︷                 ︸
s

,

where
TpM̃ = TpM̃(n1, · · · , nm) ,

T ∗pM̃ = T ∗pM̃(n1, · · · , nm) ,

particularly,

dim T r
s (p, M̃) =

̂s (p) +

s(p)∑

i=1

(
ni − ŝ (p)

)


r+s

by argumentation in [5–7].
A connection on tensors of a smooth combinatorial man-

ifold is defined by

Definition 2.2 Let M̃ be a smooth combinatorial manifold. A
connection on tensors of M̃ is a mapping D̃ : X (M̃)×T r

s M̃ →
T r

s M̃ with D̃Xτ = D̃(X, τ) such that for ∀X,Y ∈ X M̃, τ, π ∈
T r

s (M̃),λ ∈ R and f ∈ C∞(M̃),

(1) D̃X+ f Yτ = D̃Xτ+ f D̃Yτ and D̃X(τ+λπ) = D̃Xτ+λD̃Xπ;

(2) D̃X(τ ⊗ π) = D̃Xτ ⊗ π + σ ⊗ D̃Xπ;
(3) for any contraction C on T r

s (M̃),

D̃X(C(τ)) = C(D̃Xτ) .

For a smooth combinatorial manifold M̃, we have shown
in [5] that there always exists a connection D̃ on M̃ with co-
efficients Γκλ(σς)(µν) determined by

D̃ ∂
∂xµν

∂

∂xσς
= Γκλ(σς)(µν)

∂

∂xσς
.

A combinatorially connection space (M̃, D̃) is a smooth
combinatorial manifold M̃ with a connection D̃.

Definition 2.3 Let M̃ be a smoothly combinatorial manifold
and g ∈ A2(M̃) =

⋃
p∈M̃

T 0
2 (p, M̃). If g is symmetrical and pos-

itive, then M̃ is called a combinatorially Riemannian mani-
fold, denoted by (M̃, g). In this case, if there is also a connec-
tion D̃ on (M̃, g) with equality following hold

Z(g(X,Y)) = g(D̃Z ,Y) + g(X, D̃ZY) ,

then M̃ is called a combinatorially Riemannian geometry, de-
noted by (M̃, g, D̃).

It has been proved in [5] and [7] that there exists a unique
connection D̃ on (M̃, g) such that (M̃, g, D̃) is a combinatori-
ally Riemannian geometry.

Definition 2.4 Let (M̃, D̃) be a combinatorially connection
space. For ∀X,Y ∈ X (M̃), a combinatorially curvature op-
erator R̃(X,Y) : X (M̃)→X (M̃) is defined by

R̃(X,Y)Z = D̃X D̃YZ − D̃Y D̃XZ − D̃[X,Y]Z

for ∀Z ∈X (M̃).
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Definition 2.5 Let (M̃, D̃) be a combinatorially connection
space. For ∀X,Y,Z ∈ X (M̃), a linear multi-mapping R̃ :
X (M̃) ×X (M̃) ×X (M̃)→X (M̃) determined by

R̃(Z, X,Y) = R̃(X,Y)Z

is said a curvature tensor of type (1, 3) on (M̃, D̃).

Calculation in [7] shows that for ∀p ∈ M̃ with a local
chart (Up; [ϕp]),

R̃ = R̃ηθ(σς)(µν)(κλ)dxσς ⊗ ∂

∂xηθ
⊗ dxµν ⊗ dxκλ

with

R̃ηθ(σς)(µν)(κλ) =

(∂Γ
ηθ
(σς)(κλ)

∂xµν
−
∂Γ

ηθ
(σς)(µν)

∂xκλ
+

+ Γϑι(σς)(κλ)Γ
ηθ
(ϑι)(µν) − Γϑι(σς)(µν)Γ

ηθ
(ϑι)(κλ)

)
∂

∂xϑι
,

where Γ
σς
(µν)(κλ) ∈ C∞(Up) is determined by

D̃ ∂
∂xµν

∂

∂xκλ
= Γ

σς
(κλ)(µν)

∂

∂xσς
.

Particularly, if (M̃, g, D̃) is a combinatorially Riemannian
geometry, we know the combinatorially Riemannian curva-
ture tensor in the following.

Definition 2.6 Let (M̃, g, D̃) be a combinatorially Rieman-
nian manifold. A combinatorially Riemannian curvature ten-
sor R̃ : X (M̃)×X (M̃)×X (M̃)×X (M̃)→ C∞(M̃) of type
(0, 4) is defined by

R̃(X,Y,Z,W) = g(R̃(Z,W)X,Y)

for ∀X,Y,Z,W ∈X (M̃).

Now let (M̃, g, D̃) be a combinatorially Riemannian man-
ifold. For ∀p ∈ M̃ with a local chart (Up; [ϕp]), we have
known that ([8])

R̃ = R̃(σς)(ηθ)(µν)(κλ)dxσς ⊗ dxηθ ⊗ dxµν ⊗ dxκλ

with

R̃(σς)(ηθ)(µν)(κλ) =
1
2

(∂2g(µν)(σς)

∂xκλ∂xηθ
+
∂2g(κλ)(ηθ)

∂xµνν∂xσς
−

− ∂2g(µν)(ηθ)

∂xκλ∂xσς
− ∂

2g(κλ)(σς)

∂xµν∂xηθ

)
+ Γϑι(µν)(σς)Γ

ξo
(κλ)(ηθ) g(ξo)(ϑι) −

− Γ
ξo
(µν)(ηθ)Γ(κλ)(σς)ϑι g(ξo)(ϑι) ,

where g(µν)(κλ) = g

(
∂

∂xµν
,
∂

∂xκλ

)
.

Application of these mechanisms in Definitions 2.1–2.6
with results obtained in references [5–9], [20–23] enables us
to find physical laws in combinatorial spacetimes by mathe-
matical equations, and then find their multi-solutions in fol-
lowing sections.

3 Combinatorial gravitational fields

3.1 Gravitational equations

The essence in Einstein’s notion on the gravitational field is
known in two principles following.

Principle 3.1 These gravitational forces and inertial forces
acting on a particle in a gravitational field are equivalent and
indistinguishable from each other.

Principle 3.2 An equation describing a law of physics should
have the same form in all reference frame.

By Principle 3.1, one can introduce inertial coordinate
system in Einstein’s spacetime which enables it flat locally,
i.e., transfer these Riemannian metrics to Minkowskian ones
and eliminate the gravitational forces locally. Principle 3.2
means that a physical equation should be a tensor equation.
But how about the combinatorial gravitational field? We as-
sume Principles 3.1 and 3.2 hold in this case, i.e., a physical
law is characterized by a tensor equation. This assumption
enables us to deduce the gravitational field equation follow-
ing.

Let LGL[M̃] be the Lagrange density of a combinatorial
spacetime (CG | t). Then we know equations of the combina-
torial gravitational field (CG | t) to be

∂µ
∂LGL[M̃]

∂∂µφM̃
−
∂LGL[M̃]

∂φM̃
= 0 , (3.1)

by the Euler-Lagrange equation, where φM̃ is the wave func-
tion of (CG | t). Choose its Lagrange density LGL[M̃] to be

LGL[M̃] = R̃ − 2κLF ,

where κ = −8πG and LF the Lagrange density for all other
fields with

R̃ = g(µν)(κλ)R̃(µν)(κλ), R̃(µν)(κλ) = R̃σς
(µν)(σς)(κλ) .

Applying the Euler-Lagrange equation we get the equa-
tion of combinatorial gravitational field following

R̃(µν)(κλ) − 1
2

R̃ g(µν)(κλ) = κE(µν)(κλ) , (3.2)

where E(µν)(κλ) is the energy-momentum tensor.
The situation for combinatorial gravitational field is a lit-

tle different from classical field by its combinatorial character
with that one can only determines unilateral or part behaviors
of the field. We generalize the Einstein notion to combina-
torial gravitational field by the following projective principle,
which is coordinated with one’s observation.

Principle 3.3 A physics law in a combinatorial field is in-
variant under a projection on its a field.

By Principles 3.1 and 3.2 with combinatorial differential
geometry shown in Section 2, Principle 3.3 can be rephrased
as follows.
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Projective principle Let (M̃, g, D̃) be a combinatorial Rie-
mannian manifold and F ∈ T r

s (M̃) with a local form

F (κ1λ1)···(κrλr)
(µ1ν1)···(µsνs)

eκ1λ1 ⊗ · · · ⊗ eκrλrω
µ1ν1 ⊗ · · · ⊗ ωµsνs

in (Up, [ϕp]). If
F (κ1λ1)···(κrλr)

(µ1ν1)···(µsνs)
= 0

for integers 1 6 µi 6 s(p), 1 6 νi 6 nµi with 1 6 i 6 s and
1 6 κ j 6 s(p), 1 6 λ j 6 nκ j with 1 6 j 6 r, then for any
integer µ, 1 6 µ 6 s(p), there must be

F (µλ1)···(µλr)
(µν1)···(µνs)

= 0

for integers νi, 1 6 νi 6 nµ with 1 6 i 6 s.

Certainly, we can only determine the behavior of space
which we live. Then what is about these other spaces in
(CG | t)? Applying the projective principle, we can simulate
each of them by that of our living space. In other words, com-
bining geometrical structures already known to a combinato-
rial one (CG | t) and then find its solution for equation (3.2).

3.2 Combinatorial metric

Let Ã be an atlas on (M̃, g, D̃). Choose a local chart (U;$)

in Ã. By definition, if ϕp : Up →
s(p)⋃
i=1

Bni(p) and ŝ (p) =

dim (
s(p)⋂
i=1

Bni(p)), then [ϕp] is an s(p) × ns(p) matrix. A combi-

natorial metric is defined by

ds2 = g(µν)(κλ)dxµνdxκλ , (3.3)

where g(µν)(κλ) is the Riemannian metric in the combinatori-
ally Riemannian manifold (M̃, g, D̃). Generally, we choose a
orthogonal basis

{e11, · · · , e1n1 , · · · , es(p)ns(p) }

for ϕp[U], p ∈ M̃(t), i.e.,
〈
eµν, eκλ

〉
= δ(κλ)

(µν). Then the formula
(3.3) turns to

ds2 = g(µν)(µν)(dxµν)2

=

s(p)∑

µ=1

ŝ (p)∑

ν=1

g(µν)(µν) (dxµν)2
+

+

s(p)∑

µ=1

ŝ (p)+1∑

ν=1

g(µν)(µν) (dxµν)2

=
1

s2(p)

ŝ (p)∑

ν=1


s(p)∑

µ=1

g(µν)(µν)

 dxν +

+

s(p)∑

µ=1

ŝ (p)+1∑

ν=1

g(µν)(µν) (dxµν)2 .

We therefore find an important relation of combinatorial
metric with that of its projections following.

Theorem 3.1 Let µds2 be the metric in a manifold φ−1
p (Bnµ(p))

for integers 1 6 µ 6 s(p). Then

ds2 = 1ds2 + 2ds2 + · · · + s(p)ds2 .

Proof Applying the projective principle, we immediately
know that

µds2 = ds2|φ−1
p (Bnµ(p)), 1 6 µ 6 s(p) .

Whence, we find that

ds2 = g(µν)(µν) (dxµν)2

=

s(p)∑

µ=1

ni(p)∑

ν=1

g(µν)(µν) (dxµν)2

=

s(p)∑

µ=1

ds2|φ−1
p (Bnµ(p)) =

s(p)∑

µ=1
µds2 .

�
This relation enables us to find the line element of combi-

natorial gravitational field (CG | t) by applying that of gravita-
tional fields.

3.3 Combinatorial Schwarzschild metric

Let (CG | t) be a gravitational field. We know its Schwarzschild
metric, i.e., a spherically symmetric solution of Einstein’s
gravitational equations in vacuum is

ds2 =

(
1 − rs

r

)
dt2 − dr2

1 − rs
r

−

−r2dθ2 − r2 sin2 θdφ2 , (3.4)

where rs = 2Gm/c2. Now we generalize it to combinatorial
gravitational fields to find the solutions of equations

R(µν)(στ) − 1
2
g(µν)(στ)R = −8πGE(µν)(στ)

in vacuum, i.e., E(µν)(στ) = 0. Notice that the underlying
graph of combinatorial field consisting of m gravitational
fields is a complete graph Km. For such a objective, we only
consider the homogeneous combinatorial Euclidean spaces
M̃ =

⋃m
i=1 Rni , i.e., for any point p ∈ M̃,

[ϕp] =



x11 · · · x1n1 · · · 0
x21 · · · x2n2 · · · 0
· · · · · · · · · · · · · · ·
xm1 · · · · · · · · · xmnm



with m̂ = dim (
m⋂

i=1
Rni ) a constant for ∀p ∈

m⋂
i=1

Rni and xil = xl

m

for 1 6 i 6 m, 1 ≤ l 6 m̂.
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Let (CG | t) be a combinatorial field of gravitational fields
M1, · · · , Mm with masses m1, · · · ,mm respectively. For usu-
ally undergoing, we consider the case of nµ = 4 for 1 6 µ 6 m
since line elements have been found concretely in classical
gravitational field in these cases. Now establish m spherical
coordinate subframe (tµ; rµ, θµ, φµ) with its originality at the
center of such a mass space. Then we have known its a spher-
ically symmetric solution by (3.4) to be

ds2
µ =

(
1 − rµs

rµ

)
dt2
µ −

(
1 − rµs

rµ

)−1

dr2
µ −

− r2
µ(dθ2

µ + sin2 θµdφ2
µ)

for 1 6 µ 6 m with rµs = 2Gmµ/c2. By Theorem 3.1, we
know that

ds2 = 1ds2 + 2ds2 + · · · + mds2 ,

where µds2 = ds2
µ by the projective principle on combina-

torial fields. Notice that 1 6 m̂ 6 4. We therefore get the
geometrical of (CG | t) dependent on m̂ following.

Case 1. m̂ = 1, i.e., tµ = t for 1 6 µ 6 m.

In this case, the combinatorial metric ds is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2rµ

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2rµ

)−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2

µ + sin2 θµdφ2
µ

)
.

Case 2. m̂ = 2, i.e., tµ = t and rµ = r, or tµ = t and θµ = θ,
or tµ = t and φµ = φ for 1 6 µ 6 m.

We consider the following subcases.

Subcase 2.1. tµ = t, rµ = r.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2 −

−


m∑

µ=1

(
1 − 2Gmµ

c2r

)−1
 dr2 −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
µ

)
,

which can only happens if these m fields are at a same point
O in a space. Particularly, if mµ = M for 1 6 µ 6 m, the

masses of M1,M2, · · · ,Mm are the same, then rµg = 2GM is
a constant, which enables us knowing that

ds2 =

(
1 − 2GM

c2r

)
mdt2 −

−
(
1 − 2GM

c2r

)−1

mdr2 −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
µ

)
.

Subcase 2.2. tµ = t, θµ = θ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2rµ

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2rµ

)−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2 + sin2 θdφ2

µ

)
.

Subcase 2.3. tµ = t, φµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2rµ

)
dt2 −

−


m∑

µ=1

(
1 − 2Gmµ

c2rµ

)−1
 dr2

µ −

−
m∑

µ=1

r2
µ

(
dθ2

µ + sin2 θµdφ2
)
.

Case 3. m̂ = 3, i.e., tµ = t, rµ = r and θµ = θ, or tµ = t, rµ = r
and φµ = φ, or tµ = t, θµ = θ and φµ = φ for 1 6 µ 6 m.

We consider three subcases following.

Subcase 3.1. tµ = t, rµ = r and θµ = θ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2r

)−1

dr2 −

− mr2dθ2 − r2 sin2 θ

m∑

µ=1

dφ2
µ .

Subcase 3.2. tµ = t, rµ = r and φµ = φ.
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In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2r

)−1

dr2 −

−r2
m∑

µ=1

(
dθ2

µ + sin2 θµdφ2
)
.

There subcases 3.1 and 3.2 can be only happen if the cen-
ters of these m fields are at a same point O in a space.

Subcase 3.3. tµ = t, θµ = θ and φµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2rµ

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2rµ

)−1

dr2
µ −

−
m∑

µ=1

rµ
(
dθ2 + sin2 θdφ2

)
.

Case 4. m̂ = 4, i.e., tµ = t, rµ = r, θµ = θ and φµ = φ for
1 6 µ 6 m.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2r

)−1

dr2 −

−mr2
(
dθ2 + sin2 θdφ2

)
.

Particularly, if mµ = M for 1 6 µ 6 m, we get that

ds2 =

(
1 − 2GM

c2r

)
mdt2 −

−
(
1 − 2GM

c2r

)−1

mdr2 −

−mr2
(
dθ2 + sin2 θdφ2

)
.

Define a coordinate transformation

(t, r, θ, φ)→ ( st, sr, sθ, sφ) = (t
√

m, r
√

m, θ, φ) .

Then the previous formula turns to

ds2 =

(
1 − 2GM

c2r

)
dst2 − dsr2

1 − 2GM
c2r

−

− sr2
(
dsθ

2 + sin2
sθdsφ

2
)

in this new coordinate system ( st, sr, sθ, sφ), whose geomet-
rical behavior likes that of the gravitational field.

3.4 Combinatorial Reissner-Nordström metric

The Schwarzschild metric is a spherically symmetric solu-
tion of the Einstein gravitational equations in conditions
E(µν)(στ) = 0. In some special cases, we can also find their
solutions for the case E(µν)(στ) , 0. The Reissner-Nordström
metric is such a case with

E(µν)(στ) =
1

4π

(
1
4
gµνFαβFαβ − FµαFα

ν

)

in the Maxwell field with total mass m and total charge e,
where Fαβ and Fαβ are given in Subsection 7.3.4. Its metrics
takes the following form:

gµν =



x11 0 0 0
0 x22 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ


,

where rs = 2Gm/c2, r2
e = 4Gπe2/c4, x11 = 1 − rs

r
+

r2
e

r2 and

x22 = −
(
1 − rs

r
+

r2
e

r2

)−1

. In this case, its line element ds is

given by

ds2 =

(
1 − rs

r
+

r2
e

r2

)
dt2 −

−
(
1 − rs

r
+

r2
e

r2

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
. (3.5)

Obviously, if e = 0, i.e., there are no charges in the grav-
itational field, then the equations (3.5) turns to that of the
Schwarzschild metric (3.4).

Now let (CG | t) be a combinatorial field of charged grav-
itational fields M1, M2, · · · , Mm with masses m1,m2, · · · ,mm

and charges e1, e2, · · · , em, respectively. Similar to the case
of Schwarzschild metric, we consider the case of nµ = 4 for
1 6 µ 6 m. We establish m spherical coordinate subframe
(tµ; rµ, θµ, φµ) with its originality at the center of such a mass
space. Then we know its a spherically symmetric solution by
(3.5) to be

ds2
µ =

1 −
rµs

rµ
+

r2
µe

r2
µ

 dt2
µ −

−
1 −

rµs

rµ
+

r2
µe

r2
µ


−1

dr2
µ −

− r2
µ

(
dθ2

µ + sin2 θµdφ2
µ

)
.

Likewise the case of Schwarzschild metric, we consider
combinatorial fields of charged gravitational fields dependent
on the intersection dimension m̂ following.
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Case 1. m̂ = 1, i.e., tµ = t for 1 6 µ 6 m.

In this case, by applying Theorem 3.1 we get the combi-
natorial metric

ds2 =

m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ

 dt2 −

−
m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ


−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2

µ + sin2 θµdφ2
µ

)
.

Case 2. m̂ = 2, i.e., tµ = t and rµ = r, or tµ = t and θµ = θ,
or tµ = t and φµ = φ for 1 6 µ 6 m.

Consider the following three subcases.

Subcase 2.1. tµ = t, rµ = r.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

−
m∑

µ=1

1 −
rµs

r
+

r2
µe

r2


−1

dr2 −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
µ

)
,

which can only happens if these m fields are at a same point O
in a space. Particularly, if mµ = M and eµ = e for 1 6 µ 6 m,
we find that

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
mdt2 −

− mdr2

1 − 2GM
c2r + 4πGe4

c4r2

−

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
µ

)
.

Subcase 2.2. tµ = t, θµ = θ.

In this subcase, by applying Theorem 3.1 we know that
the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ

 dt2 −

−
m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ


−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2 + sin2 θdφ2

µ

)
.

Subcase 2.3. tµ = t, φµ = φ.

In this subcase, we know that the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ

 dt2 −

−
m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ


−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2

µ + sin2 θµdφ2
)
.

Case 3. m̂ = 3, i.e., tµ = t, rµ = r and θµ = θ, or tµ = t, rµ = r
and φµ = φ, or or tµ = t, θµ = θ and φµ = φ for 1 6 µ 6 m.

We consider three subcases following.

Subcase 3.1. tµ = t, rµ = r and θµ = θ.

In this subcase, by applying Theorem 3.1 we obtain that
the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

−
m∑

µ=1

1 −
rµs

r
+

r2
µe

r2


−1

dr2 −

−
m∑

µ=1

r2
(
dθ2 + sin2 θdφ2

µ

)
.

Particularly, if mµ = M and eµ = e for 1 6 µ 6 m, then
we get that

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
mdt2 −

− mdr2

1 − 2GM
c2r + 4πGe4

c4r2

−

−
m∑

µ=1

r2
(
dθ2 + sin2 θdφ2

µ

)
.

Subcase 3.2. tµ = t, rµ = r and φµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

−
m∑

µ=1

1 −
rµs

r
+

r2
µe

r2


−1

dr2 −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)
.
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Particularly, if mµ = M and eµ = e for 1 6 µ 6 m, then
we get that

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
mdt2 −

− mdr2

1 − 2GM
c2r + 4πGe4

c4r2

−

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)
.

Subcase 3.3. tµ = t, θµ = θ and φµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ

 dt2 −

−
m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ


−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2 + sin2 θdφ2

)
.

Case 4. m̂ = 4, i.e., tµ = t, rµ = r, θµ = θ and φµ = φ for
1 6 µ 6 m.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

−
m∑

µ=1

1 −
rµs

r
+

r2
µe

r2


−1

dr2 −

− mr2
(
dθ2 + sin2 θdφ2

)
.

Furthermore, if mµ = M and eµ = e for 1 6 µ 6 m, we
obtain that

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
mdt2 −

− mdr2

1 − 2GM
c2r + 4πGe4

c4r2

−

− mr2
(
dθ2 + sin2 θdφ2

)
.

Similarly, we define the coordinate transformation

(t, r, θ, φ)→ ( st, sr, sθ, sφ) = (t
√

m, r
√

m, θ, φ).

Then the previous formula turns to

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
dst2 −

− dsr2

1 − 2GM
c2r + 4πGe4

c4r2

−

− sr2
(
dsθ

2 + sin2
sθdsφ

2
)

in this new coordinate system ( st, sr, sθ, sφ), whose geomet-
rical behavior likes a charged gravitational field.

4 Multi-time system

A multi-time system is such a combinatorial field (CG | t) con-
sisting of fields M1, M2, · · · , Mm on reference frames

(t1, r1, θ1, φ1), · · · , (tm, rm, θm, φm)

and there are always exist two integers κ, λ, 1 6 κ , λ 6 m
such that tκ , tλ. Notice that these combinatorial fields dis-
cussed in Section 3 are all with tµ = t for 1 6 µ 6 m, i.e.,
we can establish a time variable t for all fields in this com-
binatorial field. But if we can not determine all the behavior
of living things in the Universe implied in the weak anthropic
principle, we can not find such a time variable t for all fields.
If so, we need a multi-time system for describing the Uni-
verse.

Among these multi-time systems, an interesting case ap-
pears in m̂ = 3, rµ = r, θµ = θ, φµ = φ, i.e., beings live in the
same dimensional 3 space, but with different notions on the
time. Applying Theorem 3.1, we discuss the Schwarzschild
and Reissner-Nordström metrics following.

4.1 Schwarzschild multi-time system

In this case, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2
µ −

−
m∑

µ=1

(
1 − 2Gmµ

c2r

)−1

dr2 −

− mr2
(
dθ2 + sin2 θdφ2

)
.

Applying the projective principle to this equation, we get
metrics on gravitational fields M1, M2, · · · ,Mm following:

ds2
1 =

(
1 − 2Gm1

c2r

)
dt2

1 −

−
(
1 − 2Gm1

c2r

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

ds2
2 =

(
1 − 2Gm2

c2r

)
dt2

2 −

−
(
1 − 2Gm2

c2r

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · ,
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ds2
m =

(
1 − 2Gmm

c2r

)
dt2

m −

−
(
1 − 2Gmm

c2r

)−1

dr2 −

−r2
(
dθ2 + sin2 θdφ2

)
.

Particularly, if mµ = M for 1 6 µ 6 m, we then get that

ds2 =

(
1 − 2GM

c2r

) m∑

µ=1

dt2
µ −

−
(
1 − 2GM

c2r

)−1

mdr2 −

− mr2
(
dθ2 + sin2 θdφ2

)
.

Its projection on the gravitational field Mµ is

ds2
µ =

(
1 − 2GM

c2r

)
dt2
µ −

−
(
1 − 2GM

c2r

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

i.e., the Schwarzschild metric on Mµ, 1 6 µ 6 m.

4.2 Reissner-Nordström multi-time system

In this case, the combinatorial metric is

ds2 =

m∑

µ=1

1 −
2Gmµ

c2r
+

4πGe4
µ

c4r2

 dt2
µ −

−
m∑

µ=1

1 −
2Gmµ

c2r
+

4πGe4
µ

c4r2


−1

dr2 −

− mr2
(
dθ2 + sin2 θdφ2

)
.

Similarly, by the projective principle we obtain the met-
rics on charged gravitational fields M1, M2, · · · , Mm follow-
ing

ds2
1 =

1 − 2Gm1

c2r
+

4πGe4
1

c4r2

 dt2
1 −

−
1 − 2Gm1

c2r
+

4πGe4
1

c4r2


−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

ds2
2 =

1 − 2Gm2

c2r
+

4πGe4
2

c4r2

 dt2
2 −

−
1 − 2Gm2

c2r
+

4πGe4
2

c4r2


−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · ,

ds2
m =

(
1 − 2Gmm

c2r
+

4πGe4
m

c4r2

)
dt2

m −

−
(
1 − 2Gmm

c2r
+

4πGe4
m

c4r2

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
.

Furthermore, if mµ = M and eµ = e for 1 6 µ 6 m, we
obtain that

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

) m∑

µ=1

dt2 −

−
(
1 − 2GM

c2r
+

4πGe4

c4r2

)−1

mdr2 −

− mr2
(
dθ2 + sin2 θdφ2

)
.

Its projection on the charged gravitational field Mµ is

ds2
µ =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
dt2
µ −

−
(
1 − 2GM

c2r
+

4πGe4

c4r2

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

i.e., the Reissner-Nordström metric on Mµ, 1 6 µ 6 m.
As a by-product, these calculations and formulas mean

that these beings with time notion different from that of hu-
man beings will recognize differently the structure of our uni-
verse if these beings are intellectual enough to do so.

5 Discussions

5.1 Geometrical structure

A simple calculation shows that the dimension of the combi-
natorial gravitational field (C | t) in Section 3 is

dim (C | t) = 4m + (1 − m) m̂ . (5.1)

For example, dim (C | t) = 7, 10, 13, 16 if m̂ = 1 and
6, 8, 10 if m̂ = 1 for m = 2, 3, 4. In this subsection, we
analyze these geometrical structures with metrics appeared in
Section 3.

As we have said in Section 1, the visible geometry is the
spherical geometry of dimensional 3. That is why the sky
looks like a spherical surface. In this geometry, we can only
see the images of bodies with dim > 3 on our spherical sur-
face (see [1–2] and [4] in details). But the situation is a little
difference from that of the transferring information, which is
transferred in all possible routes. In other words, a geometry
of dimensional > 1. Therefore, not all information transfer-
ring can be seen by our eyes. But some of them can be felt by
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our six organs with the help of apparatus if needed. For exam-
ple, the magnetism or electromagnetism can be only detected
by apparatus. These notions enable us to explain the geo-
metrical structures in combinatorial gravitational fields, for
example, the Schwarzschild or Reissner-Nordström metrics.

Case 1. m̂ = 4.

In this case, by the formula (5.1) we get dim (C | t) = 4, i.e., all
fields M1, M2, · · · , Mm are in R4, which is the most enjoyed
case by human beings. We have gotten the Schwarzschild
metric

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2r

)−1

dr2 −

− mr2(dθ2 + sin2 θdφ2)

or the Reissner-Nordström metric

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

− dr2

m∑
µ=1

(
1 − rµs

r +
r2
µe

r2

) −

− mr2
(
dθ2 + sin2 θdφ2

)

for non-charged or charged combinatorial gravitational fields
in vacuum in Sections 3. If it is so, the behavior of Universe
can be realized finally by human beings. This also means that
the discover of science will be ended, i.e., we can established
the Theory of Everything finally for the Universe.

Case 2. m̂ 6 3.

If the Universe is so, then dim (C | t) > 5. In this case, we
know the combinatorial Schwarzschild metrics and combina-
torial Reissner-Nordström metrics in Section 3, for example,
if tµ = t, rµ = r and φµ = φ, the combinatorial Schwarzschild
metric is

ds2 =

m∑

µ=1

(
1 − rµs

r

)
dt2 −

m∑

µ=1

dr2
(
1 − rµs

r

) −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)

and the combinatorial Reissner-Nordström metric is

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

−
m∑

µ=1

dr2
(
1 − rµs

r +
r2
µe

r2

)−

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)
.

Particularly, if mµ = M and eµ = e for 1 6 µ 6 m, then
we get that

ds2 =

(
1 − 2GM

c2r

)
mdt2 − mdr2

(
1 − 2GM

c2r

) −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)

for combinatorial gravitational field and

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
mdt2 −

− mdr2
(
1 − 2GM

c2r + 4πGe4

c4r2

) −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)

for charged combinatorial gravitational field in vacuum. In
this case, the observed interval in the field MO where human
beings live is

dsO = a(t, r, θ, φ)dt2 − b(t, r, θ, φ)dr2 −
− c (t, r, θ, φ)dθ2 − d (t, r, θ, φ)dφ2 .

How to we explain the differences ds − dsO in physics?
Notice that we can only observe the line element dsO, a pro-
jection of ds on MO. Whence, all contributions in ds − dsO

come from the spatial direction not observable by human be-
ings. In this case, we are difficult to determine the exact be-
havior. Furthermore, if m̂ 6 3 holds, because there are infinite
combinations (CG | t) of existent fields underlying a connected
graph G, we can not find an ultimate theory for the Universe,
i.e., there are no a Theory of Everything for the Universe and
the science established by ours is approximate, holds on con-
ditions and the discover of science will be endless forever.

5.2 Physical formation

A generally accepted notion on the formation of Universe is
the Big Bang theory ([24]), i.e., the origin of Universe is from
an exploded at a singular point on its beginning. Notice that
the geometry in the Big Bang theory is just a Euclidean R3 ge-
ometry, i.e., a visible geometry by human beings. Then how
is it came into being for a combinatorial spacetime? Weather
it is contradicts to the experimental data? We will explain
these questions following.

Realization 5.1 Any combinatorial spacetime was formed by
|G| times Big Bang in an early space.

Certainly, if there is just one time Big Bang, then there
exists one spacetime observed by us, not a multiple or combi-
natorial spacetime. But there are no arguments for this claim.
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It is only an assumption on the origin of Universe. If it is not
exploded in one time, but in m > 2 times in different spatial
directions, what will happens for the structure of spacetime?

The process of Big Bang model can be applied for ex-
plaining the formation of combinatorial spacetimes. Assume
the dimension of original space is bigger enough and there
are m explosions for the origin of Universe. Then likewise the
standard process of Big Bang, each time of Big Bang brought
a spacetime. After the m Big Bangs, we finally get a multi-
spacetime underlying a combinatorial structure, i.e., a combi-
natorial spacetime (CG | t) with |G| = m, such as those shown
in Fig. 5.1 for G = C4 or K3.

E1

E4 E2

E3

(a) (b)

E1

E2 E3

Fig. 5.1

where Ei denotes ith time explosion for 1 ≤ i 6 4. In the pro-
cess of m Big Bangs, we do not assume that each explosion
Ei, 1 6 i 6 m was happened in a Euclidean space R3, but in
Rn for n > 3. Whence, the intersection Ei∩E j means the same
spatial directions in explosions Ei and E j for 1 6 i, j 6 m.
Whence, information in Ei or E j appeared along directions in
Ei ∩ E j will both be reflected in E j or Ei. As we have said in
Subsection 5.1, if dim Ei ∩ E j 6 2, then such information can
not be seen by us but only can be detected by apparatus, such
as those of the magnetism or electromagnetism.

Realization 5.2 The spacetime lived by us is an intersection
of other spacetimes.

This fact is an immediately conclusion of Realization 5.1.

Realization 5.3 Each experimental data on Universe ob-
tained by human beings is synthesized, not be in one of its
spacetimes.

Today, we have known a few datum on the Universe by
COBE or WMAP. In these data, the one well-known is the
2.7oK cosmic microwave background radiation. Generally,
this data is thought to be an evidence of Big Bang theory. If
the Universe is a combinatorial one, how to we explain it?
First, the 2.7oK is not contributed by one Big Bang in R3,
but by many times before 137 light years, i.e., it is a syn-
thesized data. Second, the 2.7oK is surveyed by WMAP, an
explorer satellite in R3. By the projective principle in Sec-
tion 3, it is only a projection of the cosmic microwave back-
ground radiation in the Universe on the space R3 lived by us.
In fact, all datum on the Universe surveyed by human beings
can be explained in such a way. So there are no contradiction

between combinatorial model and datum on the Universe al-
ready known by us, but it reflects a combinatorial behavior of
the Universe.
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The “Proton Spin Crisis” — a Quantum Query
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The “proton spin crisis” was introduced in the late 1980s, when the EMC-experiment
revealed that little or nothing of a proton’s spin seemed to be carried by its quarks.
The main objective of this paper is to point out that it is wrong to assume that the proton
spin, as measured by completely different experimental setups, should be the same in all
circumstances, an assumption explicitly made in all present theoretical treatments of the
“crisis”. As spin is a genuine quantum property, without any objective existence outside
its measuring apparatus context, proper account of quantum mechanical measurement
theory must be taken.

The “proton spin crisis” [1] essentially refers to the experi-
mental finding that very little of the spin of a proton seems
to be carried by the quarks from which it is supposedly built.
This was a very curious and unexpected experimental result
of the European Muon Collaboration, EMC [2] (later consol-
idated by other experiments), as the whole idea of the origi-
nal quark model of Gell-Mann [3] and Zweig [4] was to ac-
count for 100 percent of the hadronic spins, solely in terms of
quarks. Although “improved” parton models can just about
accomodate the experimental results, the purpose of this pa-
per is to point out that the “proton spin crisis” may be due
to a misinterpretation of the underlying, quantum mechanical
theory. As spin is a fundamentally quantum mechanical en-
tity, without any classical analog, special care must be taken
to treat it in a correct quantum mechanical manner.

According to Niels Bohr, the whole experimental setup
must be considered when we observe quantum mechanical
systems. It means that a quantal object does not “really exist”
independently of how it is observed. This notion was later
quantified by Bell [5], and verified experimentally by Clauser
and Freedman [6], Aspect, Dalibard and Roger [7] and oth-
ers. These experimentally observed violations of Bell’s the-
orem [5] are in accordance with quantum mechanics, but in-
compatible with a locally realistic world view, proving that
quantum objects do not have objective properties unless and
until they are actually measured∗. The quantum states are not
merely unknown, but completely undecided until measured.
It is important to stress that this is not merely a philosophi-
cal question, but an experimentally verified prediction based
upon the very foundations of quantum theory itself. To quote
John Wheeler: “No elementary quantum phenomenon is a
phenomenon until it is a registered (observed) phenomenon”
[8]. Unless a specific observable is actually measured, it re-
ally does not exist. This means that we should not a priori
assume that different ways of probing the system will give
the same results, as the system itself will change when we
change the method of observation.

∗To be exact, also the possibility exists of non-local “hidden variable”
theories, where objects do exist at all times. However, such theories mani-
festly break Lorentz-covariance.

To exemplify this for the spin of the proton, let us com-
pare two different experimental setups designed to measure it:

i) The Stern-Gerlach (SG) experiment, which uses an
inhomogeneous magnetic field to measure the proton
spin state;

ii) Deep inelastic scattering (DIS), which uses an elemen-
tary probe (electron or neutrino) that inelastically scat-
ters off the “proton” (actually elastically off partons).

We should at once recognize i) and ii) as different, or —
in the words of Bohr — “complementary”, physical setups.
If one measures the first, the other cannot be measured simul-
taneously, and vice versa. DIS disintegrates the proton and
produces “jets” of, often heavier, hadrons as the collision en-
ergy is much larger than the binding energy, so there is no
proton left to measure. Also, the very fact that the hard reac-
tion in DIS is describable in perturbation theory means that
we are dealing with a different quantum mechanical object
than an undisturbed proton.

In the case of using a SG apparatus to measure the spin,
the proton is intact both before and after the measurement,
potential scattering being by definition elastic. SG thus mea-
sures the total spin state of the proton, but does not resolve
any partons. It therefore seems natural to identify the spin of
an undisturbed proton with the result from a Stern-Gerlach
type of experiment.

As we have seen, i) and ii) simply do not refer to the same
physical system, but the “fundamental spin sum-rule”, always
assumed to hold in treatments of the spin crisis, explicitly
equates the spin of the proton, i), with the sum-total of the
measured partonic spins and orbital angular momenta, ii). In-
stead, it should generally read

Σ

2
+ Lq + LG + ∆G ,

1
2
, (1)

as the left hand side describes the measured spin of the par-
tons, while the right hand side describes the spin of the pro-
ton. (Remember that the left and right hand sides correspond
to different physical systems, as defined by the respective
complementary experimental setups used to measure them.)
The quantities above stand for: Σ = fraction of proton’s spin
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carried by the spin of quarks and anti-quarks, Lq = quark or-
bital angular momentum contribution, LG = gluon orbital an-
gular momentum contribution, ∆G = gluon spin contribution.

An additional complication is the following: While in
quantum electrodynamics (QED) an atomic wave function
can approximately be separated into independent parts due to
the weak interaction, and the spins of the constituents (nuclei
and electrons) can be measured separately as they can be stud-
ied in isolation∗, in quantum chromodynamics (QCD) it fails
as the interactions between fields in an undisturbed proton
are much stronger than in the QED case, making even an ap-
proximate separation impossible. Still worse, in QCD at low
momentum transfers†, like in an undisturbed proton, the par-
ticles “quarks” and “gluons” cannot even be defined [9] and
thus do not “exist” within the proton, even when disregard-
ing the quantum mechanical measurement process described
above. The simple parton model (with or without orbital an-
gular momenta) is simply not tenable in strong QCD.

However, even if we would assume, as is conventional,
that (“clothed”) partons within the proton are defined, the
proton wave function, Ψ, could not be factorized into sep-
arate valence quark spin wave functions (|χ1〉, |χ2〉, |χ3〉) as
this would not result in an eigenstate of the strongly spin-
dependent Hamiltonian, entering the energy eigenvalue equa-
tion

Hψn = Enψn. (2)

The proton wave function could as usual be written as a
superposition of energy eigenstates

Ψ =
∑

n

cnψn , (3)

but

ΨS G(x1, x2, x3, s1, s2, s3) , u (x1, x2, x3) |χ1〉| χ2〉| χ3〉, (4)

where s1, s2, s3 encodes the spin-dependence, and
u (x1, x2, x3) would be the space-part of a spin-independent
system. In reality the quarks would always be correlated
and the wave function could never be separated into product
states, except as an approximation if the interaction would be
sufficiently small, as in DIS

ΨDIS (x1, x2, x3, s1, s2, s3) ' u (x1, x2, x3) |χ1〉| χ2〉| χ3〉. (5)

Note that ΨS G ,ΨDIS as they describe different physical
systems, defined by their different modes of observation. In
SG there would be an intrinsic, unavoidable interference ef-
fect for the spin (much like in the famous double-slit experi-
ment for position) which is lost when DIS experiments mea-
sure spin structure functions of the “proton”. The DIS struc-
ture functions are proportional to cross sections, which by

∗Wigner’s classification of particles according to their mass and spin is
given by irreducible representations of the Poincaré group, i.e. noninteract-
ing fields.

†More precisely, the elementary quanta of QCD are defined only as the
momentum transfer goes to infinity.

necessity are classical quantities incapable of encoding quan-
tum interference. As each individual experimental data point
is a classical (non-quantum) result, structure functions are by
construction related to incoherent sums of individual prob-
ability distributions. Thus, even if we (wrongly) would as-
sume the parton model to be applicable in both cases i) and
ii), SG would result from adding spin amplitudes (taking full
account of quantum interference terms), while DIS would re-
sult from adding spin probabilities (absolute squares of am-
plitudes). However, we emphasize again that in the case of
SG the parton spins are not merely unknown, but actually un-
defined. An experiment like SG probes the spin state of the
proton, while an experiment like DIS probes the spin state of
the partons and the final (= observed) system is not a pro-
ton at all but “jets” of hadrons. These two experiments are
disjoint, or complementary in the words of Bohr, and do not
describe the same physical object.

In conclusion, we have explained why the “proton” tested
by different experimental setups in general cannot be consid-
ered as the same physical object. Rather, the whole experi-
mental situation must be taken into account, as quantum me-
chanical objects and observables do not have an objective ex-
istence unless measured. We should thus not enforce, by the
“spin sum-rule”, the same spin (1/2) for the “proton” when
measured by DIS as when it is directly measured on the pro-
ton as a whole, e.g. by SG. The “proton” as measured by
deep inelastic scattering is a different physical system than a
(virtually) undisturbed proton. There is no reason why spin
measurements on one should apply to the other. Especially,
there is no need for parton spins, as measured by DIS, to add
up to the polarized spin of an otherwise undisturbed proton,
just like the EMC-experiment [2] and its successors show. On
a more pessimistic note, DIS spin data can never directly un-
ravel the spin of the proton because the two are mutually in-
compatible. At best, DIS can only serve as an indirect test
of QCD by supplying asymptotic boundary conditions to be
used in future non-perturbative QCD calculations of the pro-
ton spin. If the result of those calculations does not come out
spin-1/2, QCD is not the correct theory of strong interactions.
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Frequent distributions of the databases of the numerical values obtained by resolving
algorithms, which describe physical and other processes, give a possibility for bonding
the probability of that results the algorithms get. In the frequent distribution of the
fractions of integers (rational numbers), local maxima which meet the ratios of masses
of the elementary particles have been found.

Consider a general case of an arbitrary function F(x, y, z, . . . ).
Take under consideration a region of the values of this func-
tion, split into numerous intervals. Filling up the intervals
by item-by-item examination of the possible numerical val-
ues of the parameters x, y, z, . . . , expressed with integers, will
be non-uniform.

Any algorithm has its own individual frequent distribu-
tion. The distributions can be created∗ for any formula, which
has two or more free parameters (the distributions of the pa-
rameters can sometimes have unexpected or complicate form,
containing both minima and peaks of the probability).

Frequent distributions give a possibility for bonding the
probability of the appearance of numerical values of a func-
tion in the region of its existence. This is because the number
of the numerical values of the function, hitting into a respec-
tive interval, in by item-by-item examination of the possible
numerical values of the function’s arguments, is proportional
to the probability of an average numerical value of the func-
tion in the interval. The frequent distributions manifest the
reproductivity of numerical values of the function due to the
possible variations of its arguments. A frequent distribution
itself cannot provide exact numerical solutions. However, if
the object or process under consideration is described by not
a single function but a few ones, the frequent distributions
of these functions can logically be summarized or multiplied
in order to manifest, more clear, such regions wherein the
probability is high to that in the rest regions. Form of the
distribution depends on both the form of the function and the
dependencies among the positive integers; in the distribution
obtained as above, the properties of the integers become not
limited by the plain function of their item-by-item examina-
tion, but are more complicate thus an individualization of the
integers occurs.

Once sharp manifested maxima, attractors, or regions of
zero probability appear, it is important to find what peculiar-
ities the algorithm bears. This however can be done only
through respective analysis of a large number of the calcula-
tion results. In early years, this problem was unable to be con-
sidered in serious: processing so large numerical databases,

∗There is a ready-to-use function “frequency” in MS Excel; another soft-
ware can be applied as well.

and enforced extracting the probability from chaos, require
huge time of routine job; therefore this job became accessed
only due to the computer techniques.

It should be noted that the discrete nature of experimen-
tal results was discovered in the background of normal dis-
tribution of their numerical values (fine structure of the his-
tograms) in already many years ago, by experimental stud-
ies conducted, commencing in 1951, by Simon E. Shnoll and
his experimental team (see his monograph [1] and bibliogra-
phy therein). As a result, Shnoll suggested that form of the
histograms is connected with the mathematical algorithms,
which express the respective processes we measure.

Below are specific examples, which illustrate the connex-
ion of the frequent distributions and the real physical pro-
cesses and phenomena.

There is a very interesting property of the frequent dis-
tributions: several kinds of the distributions include the ra-
tios of masses of the elementary particles. This property is
attributed to the frequent distributions of the databases of nu-
merical values of the functions, constructed on fractions. We
found these are plain exponential functions Ax/y, where A is
presented by special numbers π= 3.1416 . . . , e = 2.17183 . . . ,
and the reverse fine structure constant α= 137.036 . . . In a
few cases (hyperons), we mean A the relative mass of the
proton mp/me = 1836.

In order to be sure in it, we should do follows. Collect a
database of numerical values of such a function in the frame-
work of the complete item-by-item examination of its argu-
ments x and y presented by integers, and in the scale which
is enough large for covering the necessary scale of masses of
the elementary particles (in the units of mass of the electron).
Then we should distribute the numerical values along the axis
of abscissas, covering numerous intervals by them. Once the
distribution done, we will see that it has local maxima (peaks)
in numerous locations of the scale, which meet the numerical
values of masses of the elementary particles. Peaks of the
distributions have a delta-like form.

Distributions of fractions along the numerical axis are
self-similar. They reproduce themselves in the peaks of the
first, the second and higher orders upto most small segments
of the scale. It is possible to see that there is a fractal struc-
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Fig. 1: Mass of the proton (938.27) in distribution 0.511 πx/y. Fig. 2: Mass of the neutron (939.57) in distribution 0.511 ax/y.

Fig. 3: Mass of the Σ+ (1189) particle in distribution 0.511 ex/y. Fig. 4: Masses of the Σ+ (1189.4), Σ0 (1192.5), Σ− (1197.3) parti-
cles in distribution 0.511 ax/y.

Fig. 5: Mass of the η (548.8) particle in 0.511 (mp/me)x/y distrib-
ution.

Fig. 6: Masses of the Ω−, Σ1 (1672, 1670) particles in distribution
0.511 (mp/me)x/y.
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Fig. 7: Mass of the Ξ−- (1321) particle in 0.511 (mp/me)x/y dist-
ribution.

Fig. 8: Mass of the Λ (1115) particle in distribution 0.511 ax/y.

Fig. 9: Mass of the π0 (134.9) particle in distribution 0.511 ax/y. Fig. 10: Mass of the µ− (105.7) particle in distribution 0.511 ex/y.

Fig. 11: Mass of the K0 (498.7) particle in distribution 0.511 ax/y. Fig. 12: Mass of the Λ4 (2100) particle in 0.511 (mp/me)x/y distri-
bution.
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Fig. 13: Masses of the b0
1, ∆1 (1233, 1232) particles in distribution

0.511 ax/y.
Fig. 14: Mass of the K∗ (892.2) particle in distribution 0.511 ax/y.

Fig. 15: Mass of the B (1230) particle in distribution 0.511 πx/y. Fig. 16: Mass of the ω (782.7) particle in distribution 0.511 ex/y.

Fig. 17: Masses of the ηc (2820), χ (3556) particles in distribution
0.511 ax/y.

Fig. 18: Mass of the ψ′′′ (4414) particle in distribution 0.511 ax/y.
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Fig. 19: Mass of the Y (9460) particle in distribution 0.511 ex/y. Fig. 20: Some main peaks correspond with masses of the D0

(1863), D∗0 (2006), Σ3 (2030), N4 (2190), Λ+
c (2260) particles in

distribution 0.511 ax/y.

Fig. 21: Main peaks correspond with masses of the τ− (1782),
Λ3, Ξ1 (1820, 1820), D+ (1868), S (1940) particles in distribution
0.511 πx/y.

Fig. 22: Main peaks correspond with masses of the f′, Λ2, N2

(1516, 1518, 1520), ρ′ (1600), ∆2 (1650), N3, g (1688, 1690) par-
ticles in distribution 0.511 ax/y.

Fig. 23: Mass of the f (1270) particle in distribution 0.511 ex/y. Fig. 24: Mass of the ρ (773) particle in distribution 0.511 πx/y.
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Fig. 25: Mass of the η′ (958) particle in distribution 0.511 πx/y. Fig. 26: Mass of the h (2020) particle in distribution 0.511 πx/y.

Fig. 27: Mass of the ϕ (1020) particle in distribution 0.511 ex/y. Fig. 28: Mass of the A (1310) particle in distribution 0.511 ax/y.

Fig. 29: Mass of the J/ψ (3096) particle in distribution 0.511 ax/y. Fig. 30: Mass of the W (82000) particle in distribution 0.511 ex/y.

58 Anatoly V. Belyakov. On the Frequent Distribution and Masses of the Elementary Particles



July, 2010 PROGRESS IN PHYSICS Volume 3

ture of the distribution, when compressing the scale of the
diagram by respective changing the variations by x and y
(with the same number of the interval unchanged). There-
fore, generally speaking, any arbitrary numerical value of the
mass could meet, in the diagram, a peak of the first or higher
orders. An objective criterion can be a relative error of the
calculation, which is the ratio of the error of our calculation
by the length of the respective local interval (or the distance
between the peaks of the same order; the peak heights differ
from each other as seen in Fig. 21 and Fig. 22). I checked
about 50 numerical values of the masses; the relative error of
the calculation was under a few percents only.

Figures 1–30 show specific examples of my calculations:
these are frequent distributions, local maxima of which meet
the relative masses of very different particles. The axis of
abscissas is given in MeV. The histograms are created in the
same way; they have 1000 numerical values distributed along
350 intervals.

It is probable, all the masses meet respective peaks in the
distributions. This is not a result of my “passion” to nu-
merology. This also does not mean that the masses of the
particles are expressed just by the same functions. Mean-
while, these correspondences appear with so high precision
and so often that they cannot be random, absolutely. On the
other hand, the numerical values of some masses meet not
the peaks, whose height is proportional to the number of the
pairs x and y producing the same fraction, but empty spaces
neighbouring the peaks (the spaces are presented by most rare
appeared ratios of the prime numbers). As is obvious, the
empty space neighbouring the peaks manifest minima of the
relative density of rational numbers in their distribution along
the numerical axis. Connexion of the spaces with the most
stable states of oscillation processes was shown by Kyril I.
Dombrowski [2, 3].

Is there a spectrum of masses of the elementary particles,
if we mean it as the presence of the cross-dependency of the
masses, and a possible algorithm of their calculation? I think
that not. This is despite we can suppose that the numerical
values of the masses constitute the “fine structure” of a distri-
bution according to an unknown algorithm.

It is likely as the numerical values of the masses have
a probabilistic origin, and are connected somehow with the
properties of the prime numbers. It is probable, a rôle is
played here by the fact that the prime number fractions or
ratios are more fundamental quantities than the prime num-
bers themselves. This is because each single fraction of the
infinite row is a result of ratios of infinite number of the pairs
of arbitrary prime numbers.

At present time, many elementary particles were experi-
mentally discovered. The particles have very different lifes-
pans. This fact and also the shape of distributions constructed
on fractions lead us to a conclusion that the first order masses
“create” the second order masses, the second order masses
“create” the third order masses, and so on to infinity. Such a

Fig. 31: Distribution on the function 100 exp
(
− ax (b – y)0.5

)
, where

a = 0.00147, b = 1000.

process is specific to a continuous non-viscous medium, when
perturbations appear in it. We cannot except that physical ex-
periments can produce infinite variety of the elementary par-
ticles.

Another example is provided by frequent distribution of
the exponent (Fig. 31)

100 exp
(
− ax (b – y)0.5

)
,

modelling the well-known formula which expresses the trans-
parency of the potential barrier of the tunnelling effect, where
x and y are variables characterizing mass and energy of the
particle. Shape of the distribution is very dependent on the
numerical coefficients a and b. Moreover, several numerical
values of the function are not realized at all. This form of his-
tograms is specific to those functions, which do not contain
ratios or fractions.

In this case, in item-by-item examination of the integers
x and y along an abstract scale from 1 to 100, there is about
10,000 numerical values of the exponent. The axis of ordi-
nates means the number of the coinciding numerical values
of the function along the interval.

As we found, the distribution of the exponent has the most
number of the intervals (nonzero numerical values of the or-
dinate, whose common number is as well dependent also on
the given length of the unit interval) with several specific nu-
merical values a and b. For instance, Fig. 31. With b = 1000
and a = 0.00147, difference between the neighboring intervals
(i.e. the relative length of the interval) is 0.003 of the current
numerical value f the function, while this is in the background
of 1124 nonzero intervals (the graph has 10,000 intervals to-
tally).

With these parameters, the term under the exponent ap-
proaches numerically to −1 independent from the “size” of
the database. On the other hand, the tunnelling effect appears
with the same condition in an analogous physical formula!
I also attempted to employ frequent distributions in order to
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explain the most brighty lines of the radiation spectra for dif-
ferent kinds of radiation [4].

Thus I suggest that, aside for the known physical fields,
the field of the positive integers exists as a physical field of the
Nature. Pattern of this field has concentrations (peaks) and
rarefractions of integers, which determine special numbers
such as e, π, and, probable, the fundamental physical con-
stants (the fine structure constant, the gravitational constant,
and the others). Physical phenomena process in the inhomo-
geneous background of this field; any function using the field
of integers (database of integers) produces surfs of probabil-
ity in it (a relative analogy). We should not except that the
stable orbits of the cosmic bodies originate from the prob-
abilistic frequent distributions in the gravitational field (the
field of the gravitational potential) of the attracting masses
they orbit.

It is obvious that the discrete distributions of experimen-
tal data, and also their connexion with the aforementioned
frequent distributions, are true for the microscales in the first
row. There in the microscales, physical quantities exist in the
boundary of their decay, thus the possibility of this solution
is due to the discrete origin of physical phenomena, which is
manifested in the microscales very much. On the other hand,
our conclusion are most probable true for a general case as
well: non-prime numbers can be represented as the ratios of
primes, so the aforementioned frequent distributions are still
true for even smallest intervals.

Are we lawful to claim that the parameters of physical or
other processes, which are described as above, have not only
the quantitative expression but also the probabilistic expres-
sion as just said before?

Should we, within the given dependencies which describe
some processes or phenomena, find out a possibility for the
prediction of the regions of the most probable solutions as
those most rational to the others, or for the prediction of those
intervals of numerical values, where the considered phenom-
enon processes most intense (all these not only in the mi-
croscales)?

If so, we get a possibility for solving the reverse prob-
lems, which target re-construction of the probabilistic distri-
bution of the primary experimental results on the basis of a
respective algorithm. This is related first of all to those prob-
lems, which are based on the discrete data (primes). This is,
for instance, industry or economics: the number of working
sections, workgroups, units of equipment, produced units, the
number of working personell, and so on.

If all that has been said above is true, and the results of
solving similar algorithms (in the case where the algorithms
are expressed by the functions whose arguments are more
than two) can bear not only a numerical meaning but also
a probabilistic meaning, this fact leads to important sequels.
There are many problems where numerous parameters are un-
known, or cannot be determined in exact. This is economics,
game theory, military, meteorology, and many others. In such

a case, given a respective algorithm, we could replace the un-
known parameters in it with the numbers taken in the respec-
tive interval then create frequent distributions thus obtaining
probabilistic solutions. Experimental tests are needed in this
direction.

Finally, I would like to attract attention of physicists to
this problem surveyed here. As is probable, this problem
draws that dialectic boundary where chaos meets order, and
chance meets regularity.
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The paper presents a fractal scaling model of a chain system of quantum harmonic
oscillators, that reproduces some systematic features in the mass distribution of hadrons,
leptons and gauge bosons.

1 Introduction

The origin of particle masses is one of the most important un-
solved problems of modern physics. Also the discrete char-
acter of the distribution of particle masses is untreated. In this
paper we won ’t discuss the current situation in the standard
theory. Based on a fractal scaling model [1] of natural oscil-
lations in chain systems of harmonic quantum oscillators we
will analyze the distributions of particles in dependence on
their masses to find out systematic features.

Fractal scaling models [2] of natural oscillations are not
based on any statements about the nature of the link or in-
teraction between the elements of the oscillating chain sys-
tem. Therefore the model statements are quite generally, what
opens a wide field of possible applications. Logarithmic scal-
ing is a well known property of inclusive distributions in high
energy particle reactions [3]. The quantity of secondary parti-
cles increases in dependence on the logarithm of the collision
energy.

In the framework of the standard theory, the electron is
stable because it ’s the least massive particle with non-zero
electric charge. Its decay would violate charge conservation.
The proton is stable, because it ’s the lightest baryon and the
baryon number is conserved. Therefore the proton is the most
important baryon, while the electron is the most important
lepton and the proton-to-electron mass ratio can be under-
stood as a fundamental physical constant. In the framework
of the standard theory, the W- and Z-bosons are elementary
particles that mediate the weak force. The rest masses of all
theses particles are measured with high precision. The masses
of other elementary or stable particles (quarks, neutrinos) are
unknown.

In the framework of our model [1], particles are resonance
states in chain systems of harmonic quantum oscillators and
the masses of fundamental particles are connected by the scal-
ing exponent 3

2 . For example, the proton-to-electron mass ra-
tio is 7 1

2 , but the W-boson-to-proton mass ratio is 4 1
2 . This

means, they are connected by the equation:

ln
(

mw

mp

)
= ln

(
mp

me

)
− 3 . (1)

Therefore the W-boson-to-electron mass ratio corre-
sponds to 4 1

2 + 7 1
2 = 12:

ln
(

mw

me

)
= 12. (2)

Already within the eighties the scaling exponent 3
2 was

found in the distribution of particle masses by Valery A.
Kolombet [4]. In addition, we have shown [2] that the masses
of the most massive celestial bodies in the Solar System are
connected by the same scaling exponent 3

2 . The scaling expo-
nent 3

2 arises as consequence of natural oscillations in chain
systems of similar harmonic oscillators [1]. If the natural fre-
quency of one harmonic oscillator is known, one can calculate
the complete fractal spectrum of natural frequencies of the
chain system, in which spectral nodes arise on the distance of
1 and 1

2 logarithmic units.
Near spectral nodes the spectral density reaches local

maximum and natural frequencies are distributed maximum
densely. The energy efficiency of natural oscillations is very
high. Therefore one can expect that spectral nodes represent
states of the oscillating chain system, which have the highest
degree of effectiveness. For this reason we suspect, that stable
particles correspond to main spectral nodes.

2 Methods

Based on the continued fraction method [5] we will search
the natural frequencies of a chain system of many similar har-
monic oscillators in this form:

f jk = f00 exp
(
Sjk

)
. (3)

f jk is a set of natural frequencies of a chain system of similar
harmonic oscillators, f00 is the natural oscillation frequency
of one oscillator, S jk is a set of finite continued fractions with
integer elements:

S jk = nj0 +
1

nj1+
1

nj2 + . . . + 1
njk

= [nj0; nj1, nj2, . . . , njk] , (4)

where nj0, nj1, nj2, . . ., njk ∈ Z, j = 0 , ∞. We investigate con-
tinued fractions (4) with a finite quantity of layers k, which
generate discrete spectra, because in this case all S jk represent
rational numbers. Therefore the free links nj0 and the partial
denominators nj1, nj2, . . ., njk can be interpreted as “quantum
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Particle Rest mass m, MeV/c2 [6] ln (m/m00) S d

electron (m00) 0.510998910 ± 0.000000013 0 [0] 0.000
proton 938.27203 ± 0.00008 7.515 [7; 2] 0.015
neutron 939.565346 ± 0.000023 7.517 [7; 2] 0.017
W-boson 80398 ± 25 11, 966 [12] −0.034
Z-boson 91187.6 ± 2.1 12.092 [12] 0,092

Table 1: The rest masses of well measured stable and fundamental particles and the S-values (4) of the nearest main spectral nodes for the
electron calibrated model spectrum. The deviation d = (ln (m/m00) − S ) is indicated.

numbers”. The present paper follows the Terskich [5] defi-
nition of a chain system, where the interaction between the
elements proceeds only in their movement direction. Model
spectra (4) are not only logarithmic-invariant, but also frac-
tal, because the discrete hyperbolic distribution of natural fre-
quencies f jk repeats itself on each spectral layer. The partial
denominators run through positive and negative integer val-
ues. Ranges of relative low spectral density (spectral gaps)
and ranges of relative high spectral density (spectral nodes)
arise on each spectral layer. In addition to the first spec-
tral layer, Fig. 1 shows the second spectral layer k = 2 with
|nj1|= 2 (logarithmic representation). Maximum spectral den-
sity areas (spectral nodes) arise automatically on the distance
of integer and half logarithmic units.

Fig. 1: The spectrum (4) on the first layer k = 1, for |nj0|= 0, 1 2, . . .
and |nj1|= 2, 3, 4, . . . and, in addition, the second spectral layer
k = 2, with |nj1|= 2 and |nj2|= 2, 3, 4, . . . (logarithmic representa-
tion).

Fractal scaling models of natural oscillations are not
based on any statements about the nature of the link or inter-
action between the elements of the oscillating chain system.
For this reason we assume that our model could be useful
also for the analysis of natural oscillations in chain systems
of harmonic quantum oscillators. We assume that in the case
of natural oscillations the amplitudes are low, the oscillations
are harmonic and the oscillation energy E depends only on
the frequency (h is the Planck constant):

E = h f . (5)

In the framework of our model (3) all particles are reso-
nances, in which to the oscillation energy (5) corresponds the
particle mass m:

m = f
h
c2 . (6)

In this connection the equation (6) means that quantum
oscillations generate mass. Under consideration of (3) now
we can create a fractal scaling model of the mass spectrum of
model particles. This mass spectrum is described by the same
continued fraction (4), for m00 = f00

h
c2 :

ln
(

m jk

m00

)
= [nj0; nj1, nj2, . . . , njk] . (7)

The frequency spectrum (4) and the mass spectrum (7)
are isomorphic. The mass spectrum (7) is fractal and con-
sequently it has a clear hierarchical structure, in which con-
tinued fractions (4) of the form [nj0] and [nj0; 2] define main
spectral nodes, as Fig. 1 shows.

3 Results

In the present paper we will compare the scaling model mass
spectrum (7) in the range of 100 KeV/c2 to 100 GeV/c2 with
the mass distribution of well-known particles — hadrons, lep-
tons and gauge bosons.

The model mass spectrum (7) is logarithmically symmet-
rical and the main spectral nodes arise on the distance of 1
and 1

2 logarithmic units, as fig. 1 shows. The mass m00 in
(7) corresponds to the main spectral node S00 = [0], because
ln (m00/m00) = 0. Let’s assume that m00 is the electron rest
mass 0.510998910(13) MeV/c2 [6]. In this case (7) describes
the mass spectrum that corresponds to the natural frequency
spectrum (4) of a chain system of vibrating electrons. Further
stable or fundamental model particles correspond to further
main spectral nodes of the form [nj0] and [nj0; 2]. Actually,
near the node [12] we find the W- and Z-bosons, but near the
node [7; 2] the proton and neutron masses, as Table 1 shows.

Theoretically, a chain system of vibrating protons gener-
ates the same spectrum (7). Also in this case, stable or fun-
damental model particles correspond to main spectral nodes
of the form [nj0] and [nj0; 2], but relative to the electron cal-
ibrated spectrum, they are moved by −7 1

2 logarithmic units.
Actually, if m00 is the proton rest mass 938.27203(8) MeV/c2

[6], then the electron corresponds to the node [−7;−2], but
the W- and Z-bosons correspond to node [4; 2].

Consequently, the core claims of our model don’t depend
on the selection of the calibration mass m00, if it is the rest
mass of a fundamental resonance state that corresponds to a
main spectral node. As mentioned already, this is why the
model spectrum (7) is logarithmically symmetrical.

Because a chain system of any similar harmonic oscil-
lators generates the spectrum (7), m00 can be much more
smaller than the electron mass. Only one condition has to
be fulfilled: m00 has to correspond to a main spectral node
of the model spectrum (7). On this background all particles
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Fig. 2: This histogram was built based on Table 2 and shows the
distribution of baryons (grey bars) and leptons (white bars) over 1

4
logarithmic units wide S-intervals in the range of the electron mass
(S = 0, white bar) to the W- and Z-bosons (S = 12, black bar).

Fig. 3: This histogram was built based on Table 3 and shows the
distribution of mesons (grey bars) and leptons (white bars) over 1

4
logarithmic units wide S-intervals in the range of the electron mass
(S = 0, white bar) to the W- and Z-bosons (S = 12, black bar).

can be interpreted as resonance states in a chain system of
harmonic quantum oscillators, in which the rest mass of each
single oscillator goes to zero. In the framework of our os-
cillation model this way can be understood the transition of
massless to massive states.

In our model massive particles don’t arise because of a
symmetry violation. Massive particles arise as resonance sta-
tes and their mass distribution is logarithmically symmetric.

Further we will investigate the distribution of hadrons
(baryons and mesons) in dependence on their rest masses. For
this we will split up the mass spectrum (7) into equal in size
logarithmic intervals and build histograms. To separate clear
the main spectral nodes [nj0] and [nj0; 2], we have to split up
the spectrum (7) into S-intervals of 1

4 logarithmic units.
Table 2 shows the measured masses of baryons, the cal-

culated S-intervals of 1
4 logarithmic units width and the cor-

responding calculated mass-intervals. Based on Table 2 a
histogram was built (Fig. 2) that shows the distribution of
baryons over the 1

4 logarithmic S-intervals. Based on Table 3,

Fig. 4: This histogram was built based on tables 2, 3, 4, 5 and shows
the distribution of baryons (dark grey bars), mesons (light grey bars)
and leptons (white bars) over 1

4 logarithmic units wide S-intervals
in the range of the electron mass (S = 0, white bar) to the W- and
Z-bosons (S = 12, black bar).

Figure 3 shows the distribution of mesons, but Figure 4 shows
the distribution of baryons, mesons, leptons and gauge bosons
over the 1

4 logarithmic S-intervals in the range of 0 to 12 log-
arithmic units.

All known baryons are distributed over an interval of
2 logarithmic units, of S = [7; 2] to S = [9; 2], as Figure 2
shows. Maximum of baryons occupy the logarithmic center
S = [8; 2] of this interval. Figure 3 shows that maximum of
mesons occupy the spectral node S = [8] that split up the in-
terval of S = [0] to S = [12] between the electron and the W-
and Z-bosons proportionally of 2

3 .
The mass distribution of leptons isn’t different of the

baryon and meson mass distributions, but follows them, as
Figure 4 shows. The mass of the most massive lepton (tauon)
is near the maximum of the baryon and meson mass distribu-
tions, as Figures 2–4 show.

4 Resume

In the framework of the present model discrete scaling mass
distributions arise as result of natural oscillations in chain sys-
tems of harmonic quantum oscillators. The observable mass
distributions of baryons, mesons, leptons and gauge bosons
are connected by the model scaling exponent 2

3 . In addition,
with high precision, the masses of known fundamental and
stable particles are connected by the model scaling exponent
3
2 . Presumably, the complete mass distribution of particles is
logarithmically symmetric and, possibly, massive particles
don’t arise because of a symmetry violation, but as resonance
states in chain systems of quantum oscillators.
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Table 2. The measured masses of baryons [6], the calculated S-intervals of
1
4 logarithmic units width and the corresponding calculated mass-intervals.

baryons measured mass mass interval S-interval S
MeV/c2 MeV/c2

N-baryons, S = 0, I = 1/2
proton 938.27203 ±

0.00008
815 – 1047 7.375 – 7.625 [7; 2]

neutron 939.565346 ±
0.000023

815 – 1047 7.375 – 7.625 [7; 2]

N(1440) 1420 – 1470 1344 – 1726 7.875 – 8.125 [8]
N(1520) 1515 – 1525 1344 – 1726 7.875 – 8.125 [8]
N(1650) 1645 – 1670 1344 – 1726 7.875 – 8.125 [8]
N(1675) 1670 – 1680 1344 – 1726 7.875 – 8.125 [8]
N(1680) 1680 – 1690 1344 – 1726 7.875 – 8.125 [8]
N(1710) 1680 – 1740 1344 – 1726 7.875 – 8.125 [8]
N(1720) 1700 – 1750 1344 – 1726 7.875 – 8.125 [8]
N(2190) 2100 – 2200 1726 – 2216 8.125 – 8.375 [8; 4]
N(2220) 2200 – 2300 2216 – 2846 8.375 – 8.625 [8; 2]
N(2250) 2200 – 2350 2216 – 2846 8.375 – 8.625 [8; 2]
N(2600) 2550 – 2750 2216 – 2846 8.375 – 8.625 [8; 2]
∆-baryons, S = 0, I = 1/2
∆(1232) 1231 – 1233 1047 – 1344 7.625 – 7.875 [8;−4]
∆(1600) 1550 – 1700 1344 – 1726 7.875 – 8.125 [8]
∆(1620) 1600 – 1660 1344 – 1726 7.875 – 8.125 [8]
∆(1700) 1670 – 1750 1344 – 1726 7.875 – 8.125 [8]
∆(1905) 1865 – 1915 1726 – 2216 8.125 – 8.375 [8; 4]
∆(1910) 1870 – 1920 1726 – 2216 8.125 – 8.375 [8; 4]
∆(1920) 1900 – 1970 1726 – 2216 8.125 – 8.375 [8; 4]
∆(1930) 1900 – 2020 1726 – 2216 8.125 – 8.375 [8; 4]
∆(1950) 1915 – 1950 1726 – 2216 8.125 – 8.375 [8; 4]
∆(2420) 2300 – 2500 2216 – 2846 8.375 – 8.625 [8; 2]
Λ-baryons, S = − 1, I = 0
Λ 1115.683 ± 0.006 1047 – 1344 7.625 – 7.875 [8;−4]
Λ(1405) 1406 ± 4 1344 – 1726 7.875 – 8.125 [8]
Λ(1520) 1519.5 ± 1.0 1344 – 1726 7.875 – 8.125 [8]
Λ(1600) 1560 – 1700 1344 – 1726 7.875 – 8.125 [8]
Λ(1670) 1660 – 1680 1344 – 1726 7.875 – 8.125 [8]
Λ(1690) 1685 – 1695 1344 – 1726 7.875 – 8.125 [8]
Λ(1800) 1720 – 1850 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(1810) 1750 – 1850 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(1820) 1815 – 1825 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(1830) 1810 – 1830 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(1890) 1850 – 1910 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(2100) 2090 – 2110 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(2110) 2090 – 2140 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(2350) 2340 – 2370 2216 – 2846 8.375 – 8.625 [8; 2]
Σ-baryons, S = − 1, I = 1
Σ+ 1189.37 ± 0.07 1047 – 1344 7.625 – 7.875 [8;−4]
Σ0 1192.642 ± 0.024 1047 – 1344 7.625 – 7.875 [8;−4]
Σ− 1197.449 ± 0.030 1047 – 1344 7.625 – 7.875 [8;−4]
Σ(1385)+ 1382.8 ± 0.4 1344 – 1726 7.875 – 8.125 [8]
Σ(1385)0 1383.7 ± 1.0 1344 – 1726 7.875 – 8.125 [8]
Σ(1385)− 1387.2 ± 0.5 1344 – 1726 7.875 – 8.125 [8]
Σ(1660) 1630 – 1690 1344 – 1726 7.875 – 8.125 [8]
Σ(1670) 1665 – 1685 1344 – 1726 7.875 – 8.125 [8]
Σ(1750) 1730 – 1800 1726 – 2216 8.125 – 8.375 [8; 4]
Σ(1775) 1770 – 1780 1726 – 2216 8.125 – 8.375 [8; 4]
Σ(1915) 1900 – 1935 1726 – 2216 8.125 – 8.375 [8; 4]
Σ(1940) 1900 – 1950 1726 – 2216 8.125 – 8.375 [8; 4]
Σ(2030) 2025 – 2040 1726 – 2216 8.125 – 8.375 [8; 4]
Σ(2250) 2210 – 2280 2216 – 2846 8.375 – 8.625 [8; 2]
Ξ-baryons, S = − 2, I = 1/2
Ξ0 1314.86 ± 0.20 1047 – 1344 7.625 – 7.875 [8;−4]
Ξ− 1321.71 ± 0.07 1047 – 1344 7.625 – 7.875 [8;−4]
Ξ(1530)0 1531.80 ± 0.32 1344 – 1726 7.875 – 8.125 [8]
Ξ(1530)− 1535.0 ± 0.6 1344 – 1726 7.875 – 8.125 [8]
Ξ(1690) 1690 ± 10 1344 – 1726 7.875 – 8.125 [8]
Ξ(1820) 1823 ± 5 1726 – 2216 8.125 – 8.375 [8; 4]
Ξ(1950) 1950 ± 15 1726 – 2216 8.125 – 8.375 [8; 4]
Ξ(2030) 2025 ± 5 1726 – 2216 8.125 – 8.375 [8; 4]
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baryons measured mass mass interval S-interval S
MeV/c2 MeV/c2

Ω-baryons, S = − 3, I = 0
Ω− 1672.45 ± 0.29 1344 – 1726 7.875 – 8.125 [8]
Ω(2250)− 2252 ± 9 2216 – 2846 8.375 – 8.625 [8; 2]
charmed baryons, C = + 1
Λ+

c 2286.46 ± 0.14 2216 – 2846 7.375 – 8.625 [8; 2]
Λc(2595)+ 2595.4 ± 0.6 2216 – 2846 7.375 – 8.625 [8; 2]
Λc(2625)+ 2628.1 ± 0.6 2216 – 2846 7.375 – 8.625 [8; 2]
Λc(2880)+ 2881.53 ± 0.35 2846 – 3654 8.625 – 8.875 [9;−4]
Λc(2940)+ 2939.3 ± 1.5 2846 – 3654 8.625 – 8.875 [9;−4]

Σc(2455)++ 2454.02 ± 0.18 2216 – 2846 8.375 – 8.625 [8; 2]
Σc(2455)+ 2452.9 ± 0.4 2216 – 2846 8.375 – 8.625 [8; 2]
Σc(2455)0 2453.76 ± 0.18 2216 – 2846 8.375 – 8.625 [8; 2]

Σc(2801)++ 2801 ± 6 2216 – 2846 8.375 – 8.625 [8; 2]
Σc(2800)+ 2792 ± 14 2216 – 2846 8.375 – 8.625 [8; 2]
Σc(2800)0 2802 ± 7 2216 – 2846 8.375 – 8.625 [8; 2]

Ξ+
c 2467.8 ± 0.6 2216 – 2846 8.375 – 8.625 [8; 2]

Ξ0
c 2470.88 ± 0.8 2216 – 2846 8.375 – 8.625 [8; 2]

Ξ
′+
c 2575.6 ± 3.1 2216 – 2846 8.375 – 8.625 [8; 2]

Ξ
′0
c 2577.9 ± 2.9 2216 – 2846 8.375 – 8.625 [8; 2]

Ξc(2645)+ 2645.9 ± 0.6 2216 – 2846 8.375 – 8.625 [8; 2]
Ξc(2645)0 2645.9 ± 0.5 2216 – 2846 8.375 – 8.625 [8; 2]

Ξc(2790)+ 2789.1 ± 3.2 2216 – 2846 8.375 – 8.625 [8; 2]
Ξc(2790)0 2791.8 ± 3.3 2216 – 2846 8.375 – 8.625 [8; 2]

Ξc(2815)+ 2816.6 ± 0.9 2216 – 2846 8.375 – 8.625 [8; 2]
Ξc(2815)0 2819.6 ± 1.2 2216 – 2846 8.375 – 8.625 [8; 2]

Ξc(2980)+ 2971.4 ± 3.3 2846 – 3654 8.625 – 8.875 [9;−4]
Ξc(2880)0 2968.0 ± 2.6 2846 – 3654 8.625 – 8.875 [9;−4]

Ξc(3080)+ 3077.0 ± 0.4 2846 – 3654 8.625 – 8.875 [9;−4]
Ξc(3080)0 3079.9 ± 1.4 2846 – 3654 8.625 – 8.875 [9;−4]

Ω0
c 2695.2 ± 1.7 2216 – 2846 8.375 – 8.625 [8; 2]

Ωc(2770)0 2765.9 ± 2.0 2216 – 2846 8.375 – 8.625 [8; 2]
bottom baryons, B = − 1
Λ0

b 5620.2 ± 1.6 4692 – 6025 9.125 – 9.375 [9; 4]

Σ+
b 5807.8 ± 2.7 4692 – 6025 9.125 – 9.375 [9; 4]

Σ−b 5815.2 ± 2.0 4692 – 6025 9.125 – 9.375 [9; 4]

Σ∗+b 5829.0 ± 3.4 4692 – 6025 9.125 – 9.375 [9; 4]
Σ∗−b 5836.4 ± 2.8 4692 – 6025 9.125 – 9.375 [9; 4]

Ξb 5792.4 ± 3.0 4692 – 6025 9.125 – 9.375 [9; 4]
Σ−b 6165 ± 16 6025 – 7736 9.375 – 9.625 [9; 2]

Table 3. The measured masses of mesons [6], the calculated S-intervals of
1
4 logarithmic units width and the corresponding calculated mass-intervals.

mesons measured mass mass interval S-interval S
MeV/c2 MeV/c2

light unflavored mesons S = C = B = 0
π± 139.57018 ±

0.00035
110 – 142 5.375 – 5.625 [5; 2]

π0 134.9766±0.0006 110 – 142 5.375 – 5.625 [5; 2]
η 547.853 ± 0.024 495 – 635 6.875 – 7.125 [7]
ρ(770) 775.49 ± 0.34 635 – 815 7.125 – 7.375 [7; 4]
ω(782) 782.65 ± 0.12 635 – 815 7.125 – 7.375 [7; 4]
ρ′(958) 957.78 ± 0.06 815 – 1047 7.375 – 7.626 [7; 2]
f0(980) 980 ± 10 815 – 1047 7.375 – 7.626 [7; 2]
a0(980) 980 ± 20 815 – 1047 7.375 – 7.626 [7; 2]

mesons measured mass mass interval S-interval S
MeV/c2 MeV/c2

φ(1020) 1019.455 ± 0.020 815 – 1047 7.375 – 7.626 [7; 2]
a0(980) 980 ± 20 815 – 1047 7.375 – 7.626 [7; 2]
φ(1020) 1019.455 ± 0.020 815 – 1047 7.375 – 7.626 [7; 2]
h1(1170) 1170 ± 20 1047 – 1344 7.626 – 7.875 [8;−4]
b1(1235) 1229.5 ± 3.2 1047 – 1344 7.626 – 7.875 [8;−4]
a1(1260) 1230 ± 40 1047 – 1344 7.626 – 7.875 [8;−4]
f2(1270) 1275.1 ± 1.2 1047 – 1344 7.626 – 7.875 [8;−4]
f1(1285) 1281.8 ± 0.6 1047 – 1344 7.626 – 7.875 [8;−4]
η(1295) 1294 ± 4 1047 – 1344 7.626 – 7.875 [8;−4]
h1(1170) 1170 ± 20 1047 – 1344 7.626 – 7.875 [8;−4]
b1(1235) 1229.5 ± 3.2 1047 – 1344 7.626 – 7.875 [8;−4]
a1(1260) 1230 ± 40 1047 – 1344 7.626 – 7.875 [8;−4]
f2(1270) 1275.1 ± 1.2 1047 – 1344 7.626 – 7.875 [8;−4]
f1(1285) 1281.8 ± 0.6 1047 – 1344 7.626 – 7.875 [8;−4]
η(1295) 1294 ± 4 1047 – 1344 7.626 – 7.875 [8;−4]
π(1300) 1300 ± 100 1047 – 1344 7.626 – 7.875 [8;−4]
a2(1320) 1318.3 ± 0.6 1047 – 1344 7.626 – 7.875 [8;−4]
f0(1370) 1200 – 1500 1344 – 1726 7.875 – 8.125 [8]
π1(1400) 1351 ± 30 1344 – 1726 7.875 – 8.125 [8]
η(1450) 1409.8 ± 2.5 1344 – 1726 7.875 – 8.125 [8]
f1(1420) 1426.4 ± 0.9 1344 – 1726 7.875 – 8.125 [8]
ω(1400) 1400 – 1450 1344 – 1726 7.875 – 8.125 [8]
a0(1450) 1474 ± 19 1344 – 1726 7.875 – 8.125 [8]
ρ(1450) 1465 ± 25 1344 – 1726 7.875 – 8.125 [8]
η(1475) 1476 ± 4 1344 – 1726 7.875 – 8.125 [8]
f0(1500) 1505 ± 6 1344 – 1726 7.875 – 8.125 [8]
f2(1525) 1525 ± 5 1344 – 1726 7.875 – 8.125 [8]
π1(1600) 1662 ± 15 1344 – 1726 7.875 – 8.125 [8]
η2(1645) 1617 ± 5 1344 – 1726 7.875 – 8.125 [8]
ω(1650) 1670 ± 30 1344 – 1726 7.875 – 8.125 [8]
ω3(1670) 1667 ± 4 1344 – 1726 7.875 – 8.125 [8]
π2(1670) 1672.4 ± 3.2 1344 – 1726 7.875 – 8.125 [8]
φ(1680) 1680 ± 20 1344 – 1726 7.875 – 8.125 [8]
ρ3(1690) 1688.8 ± 2.1 1344 – 1726 7.875 – 8.125 [8]
ρ(1700) 1720 ± 20 1344 – 1726 7.875 – 8.125 [8]
f0(1710) 1720 ± 6 1344 – 1726 7.875 – 8.125 [8]
π(1800) 1816 ± 14 1726 – 2216 8.125 – 8.375 [8; 4]
φ3(1850) 1854 ± 7 1726 – 2216 8.125 – 8.375 [8; 4]
π2(1880) 1895 ± 16 1726 – 2216 8.125 – 8.375 [8; 4]
f2(1950) 1944 ± 12 1726 – 2216 8.125 – 8.375 [8; 4]
f2(2100) 2011 ± 80 1726 – 2216 8.125 – 8.375 [8; 4]
a4(2040) 2001 ± 10 1726 – 2216 8.125 – 8.375 [8; 4]
f4(2050) 2018 ± 11 1726 – 2216 8.125 – 8.375 [8; 4]
f2(2300) 2297 ± 28 2216 – 2846 8.375 – 8.625 [8; 2]
f2(2340) 2339 ± 60 2216 – 2846 8.375 – 8.625 [8; 2]
strange mesons S = ± 1C = B = 0
K± 493.677 ± 0.016 385 – 495 6.625 – 6.875 [7;−4]
K0 497.614 ± 0.024 385 – 495 6.625 – 6.875 [7;−4]
K∗(892)± 891.66 ± 0.26 815 – 1047 7.375 – 7.625 [7; 2]
K∗(892)0 896.00 ± 0.25 815 – 1047 7.375 – 7.625 [7; 2]
K1(1270) 1272 ± 7 1047 – 1344 7.625 – 7.875 [8;−4]
K1(1400) 1403 ± 7 1344 – 1726 7.875 – 8.125 [8]
K∗(1410) 1414 ± 15 1344 – 1726 7.875 – 8.125 [8]
K∗0 (1430) 1425 ± 50 1344 – 1726 7.875 – 8.125 [8]
K∗2 (1430)± 1425.6 ± 1.5 1344 – 1726 7.875 – 8.125 [8]
K∗2 (1430)0 1432.4 ± 1.3 1344 – 1726 7.875 – 8.125 [8]
K∗(1680) 1717 ± 27 1344 – 1726 7.875 – 8.125 [8]
K2(1770)± 1773 ± 8 1726 – 2216 8.125 – 8.375 [8; 4]
K∗3 (1780) 1776 ± 7 1726 – 2216 8.125 – 8.375 [8; 4]
K2(1820) 1816 ± 13 1726 – 2216 8.125 – 8.375 [8; 4]
K∗4 (2045) 2045 ± 9 1726 – 2216 8.125 – 8.375 [8; 4]
charmed mesons S = ± 1
D± 1869.62 ± 0.20 1726 – 2216 8.125 – 8.375 [8; 4]
D0 1864.84 ± 0.17 1726 – 2216 8.125 – 8.375 [8; 4]
D∗(2007)0 2006.97 ± 0.19 1726 – 2216 8.125 – 8.375 [8; 4]
D∗(2010)± 2010.27 ± 0.17 1726 – 2216 8.125 – 8.375 [8; 4]
D1(2420)0 2423.3 ± 1.3 2216 – 2846 8.375 – 8.625 [8; 2]
D8

2(2460)0 2461.1 ± 1.6 2216 – 2846 8.375 – 8.625 [8; 2]
D8

2(2460)± 2460.1 ± 3.5 2216 – 2846 8.375 – 8.625 [8; 2]
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mesons measured mass mass interval S-interval S
MeV/c2 MeV/c2

charmed, strange mesons C = S = ± 1
D±S 1968.49 ± 0.34 1726 – 2216 8.125 – 8.375 [8; 4]
D∗±S 2112.3 ± 0.5 1726 – 2216 8.125 – 8.375 [8; 4]
D∗S 0(2317)± 2317.8 ± 0.6 2216 – 2846 8.375 – 8.625 [8; 2]
DS 1(2460)± 2459.6 ± 0.6 2216 – 2846 8.375 – 8.625 [8; 2]
DS 1(2536)± 2535.35 ± 0.34 2216 – 2846 8.375 – 8.625 [8; 2]
DS 2(2573)± 2572.6 ± 0.9 2216 – 2846 8.375 – 8.625 [8; 2]
bottom mesons B = ± 1
B± 5279.17 ± 0.29 4692 – 6025 9.125 – 9.375 [9; 4]
B0 5279.50 ± 0.3 4692 – 6025 9.125 – 9.375 [9; 4]
B∗ 5325.1 ± 0.5 4692 – 6025 9.125 – 9.375 [9; 4]
B1(5721)0 5723.4 ± 2.0 4692 – 6025 9.125 – 9.375 [9; 4]
B∗2(5747)0 5743 ± 5 4692 – 6025 9.125 – 9.375 [9; 4]
bottom, strange mesons B = ± 1, S = ± 1
B0

S 5366.3 ± 0.6 4692 – 6025 9.125 – 9.375 [9; 4]
B∗S 5415.4 ± 1.4 4692 – 6025 9.125 – 9.375 [9; 4]
bottom, charmed mesons B = S = ± 1
B±c 6277 ± 6 6025 – 7736 9.375 – 9.625 [9; 2]
cc-mesons B = S = ± 1
ηc(1S ) 2980.5 ± 1.2 2846 – 3654 8.625 – 8.875 [9;−4]
J/psi(1S ) 3096.916 ±

0.011
2846 – 3654 8.625 – 8.875 [9;−4]

Xc0(1P) 3414.75 ± 0.31 2846 – 3654 8.625 – 8.875 [9;−4]
Xc1(1P) 3510.66 ± 0.07 2846 – 3654 8.625 – 8.875 [9;−4]
hc(1P) 3525.67 ± 0.32 2846 – 3654 8.625 – 8.875 [9;−4]
Xc2(1P) 3556.20 ± 0.09 2846 – 3654 8.625 – 8.875 [9;−4]
ηc(2S ) 3637 ± 4 2846 – 3654 8.625 – 8.875 [9;−4]
ψ(2S ) 3686.09 ± 0.04 3654 – 4692 8.875 – 9.125 [9]
ψ(3770) 3772.92 ± 0.35 3654 – 4692 8.875 – 9.125 [9]
X(3872) 3872.3 ± 0.8 3654 – 4692 8.875 – 9.125 [9]
X(3945) 3916 ± 6 3654 – 4692 8.875 – 9.125 [9]
ψ(4400) 4039 ± 1 3654 – 4692 8.875 – 9.125 [9]
ψ(4160) 4153 ± 3 3654 – 4692 8.875 – 9.125 [9]
ψ(4260) 4263 ± 9 3654 – 4692 8.875 – 9.125 [9]
ψ(4415) 4421 ± 4 3654 – 4692 8.875 – 9.125 [9]
bb-mesons
Y(1S ) 9460.30 ± 0.26 7736 – 9933 9.625 – 9.875 [10;−4]
χb0(1P) 9859.44 ± 0.42 7736 – 9933 9.625 – 9.875 [10;−4]
χb1(1P) 9892.78 ± 0.26 7736 – 9933 9.625 – 9.875 [10;−4]
χb2(1P) 9912.21 ± 0.26 7736 – 9933 9.625 – 9.875 [10;−4]
Y(2S ) 10023.26 ±

0.31
9933 – 12754 9.875 – 10.125 [10]

χb0(2P) 10232.5 ± 0.4 9933 – 12754 9.875 – 10.125 [10]
χb1(2P) 10255.46 ±

0.22
9933 – 12754 9.875 – 10.125 [10]

χb2(2P) 10268.65 ±
0.22

9933 – 12754 9.875 – 10.125 [10]

Y(3S ) 10355.2 ± 0.5 9933 – 12754 9.875 – 10.125 [10]
Y(4S ) 10579.4 ± 1.2 9933 – 12754 9.875 – 10.125 [10]
Y(10860) 10865 ± 8 9933 – 12754 9.875 – 10.125 [10]
Y(11020) 11019 ± 8 9933 – 12754 9.875 – 10.125 [10]

Table 4. The measured masses of leptons [6], the calculated S-intervals of 1
4

logarithmic units width and the corresponding calculated mass-intervals.

leptons measured mass mass interval S-interval S
MeV/c2 MeV/c2

electron 0.510998910 ± 0.000000013 0 0 [0]
µ 105.658367 ± 0.000004 86 – 110 5.125 – 5.375 [5; 4]
τ 1776.84 ± 0.17 1726 – 2216 8.125 – 8.375 [8; 4]

Table 5. The measured masses of gauge bosons [6], the calculated S-
intervals of 1

4 logarithmic units width and the corresponding calculated
mass-intervals.

gauge bosons measured mass mass interval S-interval S
MeV/c2 MeV/c2

W 80398 ± 25 73395 – 94241 11.875 – 12.125 [12]
Z 91187, 6 ± 2.1 73395 – 94241 11.875 – 12.125 [12]
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In this article, we find out some analytical and numerical solutions to the problem of
barrier tunneling for cluster deuterium, in particular using Langevin method to solve the
time-independent Schrödinger equation.

1 Introduction

One of the most reported problem related to the CMNS (con-
densed matter nuclear science, or LENR), is the low probabil-
ity of Coulomb barrier tunneling. It is supposed by standard
physics that tunneling is only possible at high enough energy
(by solving Gamow function).

However, a recent study by Takahashi (2008, 2009) and
experiment by Arata etc. (2008) seem to suggest that it is
not impossible to achieve a working experiment to create the
CMNS process.

In accordance with Takahashi’s EQPET/TSC model
[1–3], the proposed study will find out some analytical and
numerical solutions to the problem of barrier tunneling for
cluster deuterium, in particular using Langevin method to
solve the time-independent Schrödinger equation. It is hoped
that the result can answer some of these mysteries.

One of the results of recent experiments is the lack of
signature of D-D reaction as in standard fusion process; this
is part of the reason to suggest that D-D fusion doesn’t take
place [1]. However, Takahashi suggests new possible reaction
in the context of cluster deuterium, called 4D fusion [1–3],
this mechanism seems to enable reaction at low temperature
(CMNS). His result (2009) can be summarized as follows:

“The ultimate condensation is possible only when the
double Platonic symmetry of 4D/TSC is kept in its dy-
namic motion. The sufficient increase (super screen-
ing) of barrier factor is also only possible as far as the
Platonic symmetric 4D/TSC system is kept. Therefore,
there should be always 4 deuterons in barrier penetra-
tion and fusion process, so that 4d simultaneous fusion
should take place predominantly. The portion of 2D
(usual) fusion rate is considered to be negligible”.

In this respect it can be noted that there are recent reports
suggesting that hydrogen cluster can get reaction at very low
temperature, forming the condition of superfluidity [4]. This
seems to happen too in the context of Takahashi TSC conden-
sate dynamics. Other study worth mentioning here is one that
discussed molecular chessboard dynamics of deuterium [5].

The difference between this proposed study and recent
work of Takahashi based on Langevin equation for clus-
ter deuterium is that we focus on solution of Schrödinger-

Langevin equation [6, 7] with PT-Symmetric periodic poten-
tial as we discussed in the preceding paper and its Gamow
integral. The particular implications of this study to deuteron
cluster will be discussed later.

Another differing part from the previous study is that in
this study we will also seek clues on possibility to consider
this low probability problem as an example of self-organized
criticality phenomena. In other words, the time required
before CMNS process can be observed is actually the time
required to trigger the critical phenomena. To our present
knowledge, this kind of approach has never been studied be-
fore, although self-organized criticality related to Schrödin-
ger equation approximation to Burger’s turbulence has been
discussed in Boldyrev [8]. Nonetheless there is recent study
suggesting link between diffusion process and the self-orga-
nized criticality phenomena.

The result of this study will be useful to better understand-
ing of anomalous phenomena behind Condensed matter nu-
clear science.

2 Schrödinger-Langevin equation

The Langevin equation is considered as equivalent and there-
fore has often been used to solve the time-independent Schrö-
dinger, in particular to study molecular dynamics.

Here we only cite the known Langevin equation [3, p. 29]

dXt = pt dt , (1)

dp = −∂xλ0(Xt)dt + K ptdt + dWt
√

2T K . (2)

Takahashi and Yabuuchi also used quite similar form of
the stochastic non-linear Langevin equation [7] in order to
study the dynamics of TSC condensate motion.

3 Schrödinger equation with PT-symmetric periodic po-
tential

Consider a PT-Symmetric potential of the form [9, 10]

V = K1 sin(br) , (3)

where

b =
|m|√−i − 1

. (4)
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Hence, the respective Schrödinger equation with this po-
tential can be written as follows

Ψ′′(r) = −k2(r) Ψ(r) , (5)

where

k(r) =
2m
~2 [E − V(r)] =

2m
~2

[
E − k1 sin(br)

]
. (6)

For the purpose of finding Gamow function, in area near
x=a we can choose linear approximation for Coulomb poten-
tial, such that

V(x) − E = −α(x − a) . (7)

Substitution to Schrödinger equation yields

Ψ′′ +
2mα
~2 (x − a) Ψ = 0 , (8)

which can be solved by virtue of Airy function.

4 Gamow integral

In principle, the Gamow function can be derived as foll-
ows [11]

d2y

dx2 + P(x)y = 0 . (9)

Separating the variables and integrating, yields
∫

d2y

y
=

∫
−P(x) dx (10)

or

ydy = exp
(
−

∫
P(x) dx + C

)
. (11)

To find solution of Gamow function, therefore the integral
below must be evaluated:

γ =

√
2m
~2 [V(x) − E] . (12)

For the purpose of analysis we use the same data from
Takahashi’s EQPET model [3,12], i.e. b = 5.6 fm, and r0 = 5
fm. Here we assume that E = Vb = 0.257 MeV. Therefore
the integral becomes

Γ = 0.218
√

m
∫ b

r0

√
k1 sin(br) − 0.257 dr . (13)

By setting boundary condition (either one or more of
these conditions)

(a) at r = 0 then V0 = −Vb − 0.257MeV;

(b) at r = 5.6 f m then V1 = k1 sin(br)−0.257 = 0.257MeV,
therefore, one can find estimate of m;

(c) Using this procedure solution of the equation (11) can
be found.

The interpretation of this Gamow function is the tunnel-
ing rate of the fusion reaction of cluster of deuterium (for the
given data) corresponding to Takahashi data [12], with the
difference that here we consider a PT-symmetric periodic po-
tential.

The numerical study will be performed with standard
package like Maxima etc. Some plausible implications in
cosmology modeling should also be discussed in the future.
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In this note, we present a proof of Smarandache’s cevian triangle hyperbolic theorem in
the Einstein relativistic velocity model of hyperbolic geometry.

1 Introduction

Hyperbolic geometry appeared in the first half of the 19th cen-
tury as an attempt to understand Euclid’s axiomatic basis for
geometry. It is also known as a type of non-Euclidean geom-
etry, being in many respects similar to Euclidean geometry.
Hyperbolic geometry includes such concepts as: distance, an-
gle and both of them have many theorems in common.There
are known many main models for hyperbolic geometry, such
as: Poincaré disc model, Poincaré half-plane, Klein model,
Einstein relativistic velocity model, etc. The hyperbolic ge-
ometry is a non-Euclidian geometry. Here, in this study, we
present a proof of Smarandache’s cevian triangle hyperbolic
theorem in the Einstein relativistic velocity model of hyper-
bolic geometry. Smarandache’s cevian triangle theorem states
that if A1B1C1 is the cevian triangle of point P with respect to
the triangle ABC, then PA

PA1
· PB

PB1
· PC

PC1
= AB·BC·CA

A1 B·B1C·C1A [1].
Let D denote the complex unit disc in complex z - plane,

i.e.
D = {z ∈ C : |z| < 1}.

The most general Möbius transformation of D is

z→ eiθ z0 + z
1 + z0z

= eiθ(z0 ⊕ z) ,

which induces the Möbius addition ⊕ in D, allowing the Mö-
bius transformation of the disc to be viewed as a Möbius left
gyrotranslation

z→ z0 ⊕ z =
z0 + z
1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D,
and z0 is the complex conjugate of z0. Let Aut(D,⊕) be the
automorphism group of the grupoid (D,⊕). If we define

gyr : D × D→ Aut(D,⊕) , gyr[a, b] =
a ⊕ b
b ⊕ a

=
1 + ab
1 + ab

,

then is true gyrocommutative law

a ⊕ b = gyr[a, b](b ⊕ a) .

A gyrovector space (G,⊕,⊗) is a gyrocommutative gy-
rogroup (G,⊕) that obeys the following axioms:

(1) gyr[u, v]a·gyr[u, v]b = a·b for all points a,b,u, v ∈ G;

(2) G admits a scalar multiplication, ⊗, possessing the fol-
lowing properties. For all real numbers r, r1, r2 ∈ R and
all points a ∈ G:

G1 1 ⊗ a = a,

G2 (r1 + r2) ⊗ a = r1 ⊗ a ⊕ r2 ⊗ a,

G3 (r1r2) ⊗ a = r1 ⊗ (r2 ⊗ a),

G4 |r|⊗a
‖r⊗a‖ = a

‖a‖ ,

G5 gyr[u, v](r ⊗ a) = r ⊗ gyr[u, v]a,

G6 gyr[r1 ⊗ v, r1 ⊗ v] = 1;

(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖
of onedimensional “vectors”

‖G‖ = {± ‖a‖ : a ∈ G} ⊂ R
with vector addition ⊕ and scalar multiplication ⊗, such
that for all r ∈ R and a,b ∈ G:

G7 ‖r ⊗ a‖ = |r| ⊗ ‖a‖,
G8 ‖a ⊕ b‖ 6 ‖a‖ ⊕ ‖b‖.

Theorem 1 The Hyperbolic Theorem of Ceva in Einstein
Gyrovector Space Let a1, a2, and a3 be three non-gyrocolli-
near points in an Einstein gyrovector space (Vs,⊕,⊗). Fur-
thermore, let a123 be a point in their gyroplane, which is off

the gyrolines a1a2, a2a3, and a3a1. If a1a123 meets a2a3 at a23,
etc., then

γ	a1⊕a12 ‖	a1 ⊕ a12‖
γ	a2⊕a12 ‖	a2 ⊕ a12‖ ·

γ	a2⊕a23 ‖	a2 ⊕ a23‖
γ	a3⊕a23 ‖	a3 ⊕ a23‖ ×

× γ	a3⊕a13 ‖	a3 ⊕ a13‖
γ	a1⊕a13 ‖	a1 ⊕ a13‖ = 1,

(here γv = 1√
1− ‖v‖2

s2

is the gamma factor). (See [2, pp. 461].)

Theorem 2 The Hyperbolic Theorem of Menelaus in Ein-
stein Gyrovector Space Let a1, a2, and a3 be three non-gyro-
collinear points in an Einstein gyrovector space (Vs,⊕,⊗). If
a gyroline meets the sides of gyrotriangle a1a2a3 at points
a12, a13, a23, then

γ	a1⊕a12 ‖	a1 ⊕ a12‖
γ	a2⊕a12 ‖	a2 ⊕ a12‖ ·

γ	a2⊕a23 ‖	a2 ⊕ a23‖
γ	a3⊕a23 ‖	a3 ⊕ a23‖ ×

× γ	a3⊕a13 ‖	a3 ⊕ a13‖
γ	a1⊕a13 ‖	a1 ⊕ a13‖ = 1.
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(See [2, pp. 463].) For further details we refer to A. Ungar’s
recent book [2].

2 Main result

In this section, we present a proof of Smarandache’s cevian
triangle hyperbolic theorem in the Einstein relativistic veloc-
ity model of hyperbolic geometry.

Theorem 3 If A1B1C1 is the cevian gyrotriangle of gyropoint
P with respect to the gyrotriangle ABC, then

γ|PA| |PA|
γ|PA1 | |PA1 |

· γ|PB| |PB|
γ|PB1 | |PB1 |

· γ|PC| |PC|
γ|PC1 | |PC1 |

=
γ|AB| |AB| · γ|BC| |BC| · γ|CA| |CA|

γ|AB1 | |AB1 | · γ|BC1 | |BC1 | · γ|CA1 | |CA1 |
.

Proof If we use a theorem 2 in the gyrotriangle ABC (see
Figure), we have

γ|AC1 | |AC1 |·γ|BA1 | |BA1 |·γ|CB1 | |CB1 |=γ|AB1 | |AB1 |·γ|BC1 | |BC1 |·γ|CA1 | |CA1 |. (1)

If we use a theorem 1 in the gyrotriangle AA1B, cut by the
gyroline CC1, we get

γ|AC1 | |AC1 | ·γ|BC| |BC| ·γ|A1P| |A1P| = γ|AP| |AP| ·γ|A1C| |A1C| ·γ|BC1 | |BC1 |. (2)

If we use a theorem 1 in the gyrotriangle BB1C, cut by the
gyroline AA1, we get

γ|BA1 | |BA1 | ·γ|CA| |CA| ·γ|B1P| |B1P| = γ|BP| |BP| ·γ|B1A| |B1A| ·γ|CA1 | |CA1 |. (3)

If we use a theorem 1 in the gyrotriangle CC1A, cut by the
gyroline BB1, we get

γ|CB1 | |CB1 | ·γ|AB| |AB| ·γ|C1 P| |C1P| = γ|CP| |CP| ·γ|C1 B| |C1B| ·γ|AB1 | |AB1 |. (4)

We divide each relation (2), (3), and (4) by relation (1),
and we obtain

γ|PA| |PA|
γ|PA1 | |PA1 |

=
γ|BC| |BC|
γ|BA1 | |BA1 |

·
γ|B1A| |B1A|
γ|B1C| |B1C|

, (5)

γ|PB| |PB|
γ|PB1 | |PB1 |

=
γ|CA| |CA|
γ|CB1 | |CB1 |

·
γ|C1 B| |C1B|
γ|C1A| |C1A|

, (6)

γ|PC| |PC|
γ|PC1 | |PC1 |

=
γ|AB| |AB|
γ|AC1 | |AC1 |

·
γ|A1C| |A1C|
γ|A1 B| |A1B|

. (7)

Multiplying (5) by (6) and by (7), we have

γ|PA| |PA|
γ|PA1| |PA1 |

· γ|PB| |PB|
γ|PB1| |PB1 |

· γ|PC| |PC|
γ|PC1| |PC1 |

=

=
γ|AB| |AB| ·γ|BC| |BC| ·γ|CA| |CA|

γ|A1 B| |A1 B| ·γ|B1C| |B1C| ·γ|C1 A| |C1A|
·
γ|B1A| |B1A| ·γ|C1 B| |C1 B| ·γ|A1C| |A1C|

γ|A1 B| |A1 B| ·γ|B1C| |B1C| ·γ|C1A| |C1A|
.

(8)

From the relation (1) we have

γ|B1 A| |B1A| · γ|C1 B| |C1B| · γ|A1C| |A1C|
γ|A1 B| |A1B| · γ|B1C| |B1C| · γ|C1A| |C1A|

= 1, (9)

so

γ|PA| |PA|
γ|PA1 | |PA1 |

· γ|PB| |PB|
γ|PB1 | |PB1 |

· γ|PC| |PC|
γ|PC1 | |PC1 |

=
γ|AB| |AB| · γ|BC| |BC| · γ|CA| |CA|

γ|AB1 | |AB1 | · γ|BC1 | |BC1 | · γ|CA1 | |CA1 |
.
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