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Astrobiological Aspects of Global Scaling

Hartmut Müller
E-mail: hm@interscalar.com

In this paper we apply chain systems of harmonic quantum oscillators as a fractal model
of matter to the analysis of astrophysical and biological metric data. Astrobiological
aspects of global scaling are discussed.

Introduction

Already in [1] we have shown that scale invariance is a fun-
damental characteristic of chain systems of harmonic oscilla-
tors. In [2] we applied this model on chain systems of har-
monic quantum oscillators and could show that particle rest
masses coincide with the eigenstates of the system. This is
valid not only for hadrons, but for mesons and leptons as well.
On this background we proposed scaling as model of mass
emergency [3] and introduced our fractal model of matter as
a chain system of oscillating protons and electrons. Andreas
Ries [4] demonstrated that this model allows for the predic-
tion of the most abundant isotope of a given chemical ele-
ment.

Our fractal model of matter as a chain system of oscillat-
ing protons and electrons provides also a good description of
the mass distribution of large celestial bodies in the Solar Sys-
tem [5]. Physical properties of celestial bodies such as mass,
size, rotation and orbital period can be understood as macro-
scopic quantized eigenstates in chain systems of oscillating
protons and electrons [6]. This allows to see a connection
between the stability of the Solar system and the stability of
electron and proton and consider scale invariance as a form-
ing factor of the Solar system.

In [7] we have calculated the model masses of unknown
planets in the Solar system which correspond well with the
hypothesis of Batygin and Brown [8] about a new gas giant
called “planet 9” and with the hypothesis of Volk and Mal-
hotra [9] about an unknown Mars-to-Earth mass “planet 10”
beyond Pluto.

In [6] we have proposed a new interpretation of the cos-
mic microwave background as a stable eigenstate in a chain
system of oscillating protons. Therefore, our model may be
of cosmological significance as well.

In [10] we applied our model to the domain of biophysics
and have demonstrated that the frequency ranges of electrical
brain activity and of other cyclical biological processes corre-
spond with eigenstates in chain systems of oscillating protons
and electrons. This would indicate that biological cycles may
have a subatomic origin.

Scale invariance as a property of the metric characteristics
of biological organisms is well studied [11, 12] and it is not
an exclusive characteristic of adult physiology. Furthermore,
many metric characteristics of human physiology, for exam-
ple, the frequency ranges of electrical brain activity [13, 14],

are common to most mammalian species.
In this paper we demonstrate how the scale invariance of

our fractal model of matter as a chain system of oscillating
protons and electrons allows us to see a connection between
the metric characteristics of biological organisms and those
of the celestial bodies. This connection could be of astrobio-
logical significance.

Methods

In [1] we have shown that the set of natural frequencies of a
chain system of similar harmonic oscillators coincides with
a set of finite continued fractions F , which are natural loga-
rithms:

ln (ω jk/ω00)= n j0 +
z

n j1 +
z

n j2 + . . .
+

z
n jk

=

= [z, n j0; n j1, n j2, . . . , n jk]=F ,

(1)

where ω jk is the set of angular frequencies and ω00 is the fun-
damental frequency of the set. The denominators are integer:
n j0, n j1, n j2, . . . , n jk ∈Z, the cardinality j ∈N of the set and the
number k ∈N of layers are finite. In the canonical form, the
numerator z equals 1.

For finite continued fractions F (1), ranges of high dis-
tribution density (nodes) arise near reciprocal integers 1, 1/2,
1/3, 1/4, . . . which are the attractor points of the distribution.

Any finite continued fraction represents a rational num-
ber [15]. Therefore, all natural frequencies ω jk in (1) are irra-
tional, because for rational exponents the natural exponential
function is transcendental [16]. It is probable that this cir-
cumstance provides for high stability of an oscillating chain
system because it prevents resonance interaction between the
elements of the system [17]. Already in 1987 we have applied
continued fractions of the type F (1) as criterion of stability
in engineering [18, 19].

In the case of harmonic quantum oscillators, the contin-
ued fractions F (1) not only define fractal sets of natural
angular frequencies ω jk , oscillation periods τ jk = 1/ω jk and
wavelengths λ jk = c/ω jk of the chain system, but also fractal
sets of energies E jk = ℏ ·ω jk and masses m jk =E jk/c2 which
correspond with the eigenstates of the system. For this rea-
son, we call the continued fraction F (1) the “fundamental

Hartmut Müller. Astrobiological Aspects of Global Scaling 3
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Fig. 1: The canonical projection of F (natural logarithmic representation).

fractal” of eigenstates in chain systems of harmonic quantum
oscillators.

Normal matter is formed by nucleons and electrons be-
cause they are exceptionally stable. Furthermore, protons
and neutrons have similar rest masses (the difference being
only 0.14 percent). This allows us to interpret the proton and
the neutron as similar quantum oscillators with regard to their
rest masses. Therefore, in [3, 6] we have introduced a fractal
model of matter as a chain system of oscillating protons and
electrons.

Table 1 shows the basic set of electron and proton units
that can be considered as a fundamental metrology (c is the
speed of light in vacuum, ℏ is the reduced Planck constant).

We hypothesize that scale invariance based on the funda-
mental fractal F (1), calibrated on the metric properties of the
proton and electron, is a universal characteristic of organized
matter. This hypothesis we have called ‘global scaling’ [6].

Results

Let’s start with the metric characteristics large celestial bod-
ies. The current amount of the Solar mass supports our hy-
pothesis of global scaling, because it corresponds to a main
attractor node of the F (1) calibrated on the electron. In
fact, the natural logarithm of the Sun-to-electron mass ratio
is close to an integer number:

ln
(

MSun

melectron

)
= ln

(
1.9884 · 1030 kg

9.10938356 · 10−31 kg

)
= 138.936

The electron rest mass is me = 9.10938356 · 10−31 kg [20].
In the canonical form of the fundamental fractal F (1),

shorter continued fractions correspond with more stable
eigenstates of a chain system of harmonic oscillators. There-

Table 1: The basic set of physical properties of the electron and
proton. Data taken from Particle Data Group [20]. Frequencies,
oscillation periods and the proton wavelength are calculated.

property electron proton

rest mass m 9.10938356(11) · 10−31 kg 1.672621898(21) · 10−27 kg
energy E=mc2 0.5109989461(31) MeV 938.2720813(58) MeV
angular frequency
ω=E/ℏ

7.76344071 · 1020 Hz 1.42548624 · 1024 Hz

oscillation period
τ= 1/ω

1.28808867 · 10−21s 7.01515 · 10−25 s

wavelength
λ= c/ω

3.8615926764(18) · 10−13 m 2.1030891 · 10−16 m

fore, integer logarithms represent the most stable eigenstates
(main attractor nodes).

In the framework of our model of matter, the correspon-
dence of the Sun-to-electron mass ratio with a main attractor
node of the fundamental fractal F (1) is a criterion of high
stability of the chain system of quantum oscillators that ap-
pears as the star we call ‘Sun’. Therefore, the current body
mass of the Sun is not casual, but an essential aspect of its
stability.

Also the correspondence of the current radius of the Sun
with a main attractor node (integer logarithm) now we can
understand as criterion of its stability:

ln
(

RSun

λelectron

)
= ln

(
6.96407 · 108 m

3.8615926764 · 10−13 m

)
= 48.945

The angular Compton wavelength of the electron is λe =

= 3.8615926764 · 10−13 m [20].
The natural logarithm of the proton-to-electron mass ra-

tio is approximately 7.5 and consequently, the fundamental
fractal F calibrated on the proton will be shifted by 7.5 log-
arithmic units relative to the F calibrated on the electron:

ln
(

1.672621898 · 10−27 kg
9.10938356 · 10−31 kg

)
≈ 7.5

Consequently, integer logarithms of the proton F correspond
to half logarithms of the electronF and vice versa. Therefore,
all the most stable eigenstates are connected through division
of the integer logarithms by 2.

As we have seen above, the Solar mass coincides with the
main attractor and stability node [139;∞] of the F calibrated
on the electron. Dividing the logarithm 139/2= 69.5 we re-
ceive the logarithm of the node [69; 2] that is the main node
[62;∞] of the F calibrated on the proton, because 69.5−
− 7.5= 62.

This main node corresponds to the mass: mp · exp (62)=
= 1.4 Kg, where mp = 1.672621 · 10−27 kg is the proton rest
mass [20]. Probably, the mass range around 1.4 kg isn’t no-
ticeable in astrophysics, but in biophysics it is. This mass
range is typical for the adult human brain [21] represented
by 7 billion samples (current terrestrial population of homo
sapiens).

At the same time, the Solar mass is near the node [131; 2]
of the F calibrated on the proton, because 139− 7.5= 131.5.
Dividing the logarithm 131.5/2= 65.75 we receive a loga-
rithm that corresponds to the significant subnode [66;−4] in
the range of the world statistical average adult human body
mass: mp · exp (65.75)= 60 kg [20].

4 Hartmut Müller. Astrobiological Aspects of Global Scaling
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Jupiter’s body mass coincides with the main attractor
node [132;∞] of the electron-calibrated F (1):

ln
(

MJupiter

melectron

)
= ln

(
1.8986 · 1027 kg

9.10938356 · 10−31 kg

)
= 131.98

Dividing the logarithm 132/2= 66 we receive the logarithm
of the main node [66;∞] that corresponds to the mass:
me · exp (66)= 42 g. This mass range coincides with the av-
erage mass of the human spinal cord [23].

At the same time, Jupiter’s body mass is near the node
[124; 5] of the proton-calibrated F (1):

ln
(

MJupiter

mproton

)
= ln

(
1.8986 · 1027 kg

1.672621 · 10−27 kg

)
= 124.47

The half value of this logarithm 124.47/2= 62.24 corresponds
to the mass: mp · exp (62.24)= 1.78 kg that is the range of the
adult human liver [21]. It is remarkable that the most massive
planet of the Solar System corresponds with the most massive
organ of the human organism – the liver.

Saturn’s body mass is near the subnode [123; 4] of the
proton-calibrated F (1):

ln
(

MSaturn

mproton

)
= ln

(
5.6836 · 1023 kg

1.672621 · 10−27 kg

)
= 123.26

The half value of this logarithm 123.26/2= 61.63 corresponds
to the mass: mp · exp (61.63)= 0.975 kg that is the range of
the adult human lungs [21]. It is remarkable that the second
massive planet of the Solar System corresponds with the sec-
ond massive organ of the human organism – the lungs.

The radius of Saturn is near the main node [54;∞] of the
F calibrated on the proton:

ln
(

RSaturn

λproton

)
= ln

(
6.0268 · 107 m

2.1030891 · 10−16 m

)
= 54.01

Dividing the logarithm 54/2= 27 we receive the logarithm
of the main node [27;∞] that corresponds to the wavelength
λp · exp (27)= 0.11 mm that coincides with the size of the hu-
man fertile oocyte (zygote) [24].

As shown above, the Solar radius coincides with the main
node [49;∞] of the F calibrated on the electron. Dividing the
logarithm 49/2= 24.5 we receive the logarithm of the node
[24; 2] that is the main node [32;∞] of the F calibrated on
the proton, because 24.5+ 7.5= 32. This logarithm corre-
sponds to the wavelength λe · exp (24.5)= 16.6 mm that co-
incides with the object focal length of the human eye [25]
that is also the length of the newborn eyeball.

At the same time, the Solar radius is near the node [56; 2]
of the F calibrated on the proton:

ln
(

RSun

λproton

)
= ln

(
6.96407 · 108 m

2.103089 · 10−16 m

)
= 56.46

The angular Compton wavelength of the proton is λp =

= 2.103089 · 10−16 m [20].
Dividing the logarithm 56.5/2= 28.25 we receive the log-

arithm of the significant subnode [28; 4] that corresponds to
the wavelength λp· exp (28.25)= 0.39 mm that coincides with
the second focal length [26] behind the retina of the human
eye.

Already in 1981 Leonid Chislenko [27] did demonstrate
that ranges of body masses and sizes preferred by the most
quantity of biological species show an equidistant distribu-
tion on a logarithmic scale with a scaling factor close to 3.
Probably, this is a consequence of global scaling, if we con-
sider that the scaling factor e= 2.718 . . . connects the main
attractor nodes of stability in the fundamental fractal F .

Conclusion

Applying our fractal model of matter as chain system of os-
cillating protons and electrons to the analysis of astrophysi-
cal and biophysical metric data we can assume that the metric
characteristics of biological organisms and those of the Solar
system have a common subatomic origin. However, there is
a huge field of research where various discoveries are still to
be expected.
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E-mail: f.a.y.abdelmohssin@gmail.com

The standard Einstein’s field equations have been modified by introducing a general
function that depends on Ricci’s scalar without a prior assumption of the mathemat-
ical form of the function. By demanding that the covariant derivative of the energy-
momentum tensor should vanish and with application of Bianchi’s identity a first order
ordinary differential equation in the Ricci scalar has emerged. A constant resulting
from integrating the differential equation is interpreted as the cosmological constant
introduced by Einstein. The form of the function on Ricci’s scalar and the cosmologi-
cal constant corresponds to the form of Einstein-Hilbert’s Lagrangian appearing in the
gravitational action. On the other hand, when energy-momentum is not conserved, a
new modified field equations emerged, one type of these field equations are Rastall’s
gravity equations.

1 Introduction

In the early development of the general theory of relativity,
Einstein proposed a tensor equation to mathematically de-
scribe the mutual interaction between matter-energy and
spacetime as [13]

Rab = κTab (1.1)

where κ is the Einstein constant, Tab is the energy-momen-
tum, and Rab is the Ricci curvature tensor which represents
geometry of the spacetime in presence of energy-momentum.

Einstein demanded that conservation of energy-momen-
tum should be valid in the general theory of relativity since
energy-momentum is a tensor quantity. This was represented
as

Tab;b = 0 (1.2)

where semicolon (;) represents covariant derivatives. But
equation (1.2) requires

Rab;b = 0 (1.3)

too which is not always true.
Finally, Einstein presented his standard field equations

(EFEs) describing gravity in the tensor equations form,
namely, [2–5, 8–12]

Gab = κTab (1.4)

where Gab is the Einstein tensor given by

Gab = Rab −
1
2
gabR (1.5)

where, R, is the Ricci scalar curvature, and gab is the funda-
mental metric tensor.

In his search for analytical solution to his field equations
he turned to cosmology and proposed a model of static and
homogenous universe filled with matter. Because he believed
of the static model for the Universe, he introduced a constant

term in his standard field equations to represent a kind of “anti
gravity” to balance the effect of gravitational attractions of
matter in it.

Einstein modified his standard equations by introducing
a term to his standard field equations including a constant
which is called the cosmological constant Λ, [7] to become

Rab −
1
2
gabR + gabΛ = κTab (1.6)

whereΛ is the cosmological constant (assumed to have a very
small value). Equation (1.6) may be written as

Rab −
1
2

(R − 2Λ) gab = κTab (1.7)

Einstein rejected the cosmological constant for two rea-
sons:

• The universe described by this theory was unstable.

• Observations by Edwin Hubble confirmed that the uni-
verse is expanding.

Recently, it has been believed that this cosmological con-
stant might be one of the causes of the accelerated expansion
of the Universe [15].

Einstein has never justified mathematically introduction
of his cosmological constant in his field equations.

Based on that fact I have mathematically done that using
simple mathematics.

2 Modified standard Einstein’s field equations

I modified the (EFEs) by introducing a general function L(R)
of Ricci’s scalar into the standard (EFEs). I do not assume
a concrete form of the function. The modified (EFEs), then
becomes

Rab − gabL(R) = κTab (2.1)

Faisal A.Y. Abdelmohssin. Modified Standard Einstein’s Field Equations 7
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Taking covariant derivative denoted by semicolon (; ) of
both sides of equation (2.1) yields

Rab;b − [gabL(R)];b = κTab;b (2.2)

Since covariant divergence of the metric tensor vanishes,
equation (2.2) may be written as

Rab;b − gab

(
dL
dR

)
R;b = κTab;b (2.3)

Substituting the Bianchi identity

R;c = 2gabRac;b (2.4)

in equation (2.3) and requiring the covariant divergence of the
energy-momentum tensor to vanish (i.e. energy-momentum
is conserved), namely, equation (1.2), we arrive at

Rab;b − gab

(
dL
dR

) (
2gacRab;c

)
= 0 (2.5)

Rearranging equation (2.5) we get

Rab;b − 2
(

dL
dR

)
(gabg

ac) Rab;c = 0 (2.6)

Substituting the following identity equation

gabg
ac = δcb (2.7)

in equation (2.6), we get

Rab;b − 2
(

dL
dR

) (
δcb

)
Rab;c = 0 (2.8)

By changing the dummy indices, we arrive at

Rab;b

(
1 − 2

dL
dR

)
= 0 (2.9)

We have either,
Rab;b = 0, (2.10)

or

1 − 2
(

dL
dR

)
= 0 (2.11)

Equation (2.10) is not always satisfied as mentioned be-
fore. Whilst, equation (2.11) yields

dL
dR
=

1
2

(2.12)

This has a solution

L(R) =
1
2

R −C (2.13)

where C is a constant.
Interpreting the constant of integration C, as the cosmo-

logical constant Λ, the functional dependence of L(R) on
Ricci scalar may be written as

L(R) =
1
2

(R − 2Λ) (2.14)

Equation (2.14) is the well known Lagrangian functional
of the Einstein-Hilbert action with the cosmological constant.

3 The Modified Equations and the Einstein Spaces

In absence of energy-momentum i.e. in a region of spacetime
where is there no energy, a state which is different from vac-
uum state everywhere in spacetime, equation (2.1) becomes

Rab − gabL(R) = 0 (3.1)

Contacting equation (3.1) with gab, we get

R − NL(R) = 0 (3.2)

where N is the dimension of the spacetime. Equation (3.2)
yields

L(R) =
1
N

R (3.3)

Substituting equation (3.3) in equation (3.1), we get

Rab =
1
N
gabR (3.4)

Equation (3.4) is the Einstein equation for Einstein spaces in
differential geometry [1, 2];

Rab = I gab (3.5)

where I is an invariant. This implies that the function I pro-
posed, L(R), is exactly the same as the invariant I in Einstein
spaces equation when contacted with gab.

A 2D sections of the 4D spacetime of Einstein spaces
are geometrically one of the geometries of spacetime which
satisfies the standard Einstein’s field equations in absence of
energy-momentum.

A naive substitution of N = 4 into equation (3.4) would
lead to an identity from which Ricci scalar could not be cal-
culated, because it becomes a non-useful equation, it gives
R = R.

4 The modified equations and gravity equations with
non-conserved energy-momentum

Because in general relativity spactime itself is changing, the
energy is not conserved, because it can give energy to the
particles and absorb it from them [2].

In cosmology the notion of dark energy – represented by
term introduced by Einstein – and dark matter is a sort of
sources of energy of unknown origin.

It is possible to incorporate the possibility of non-con-
served energy-momentum tensor in the modified equations.
In this case equation (2.9) should become

Rab;b

(
1 − 2

dL
dR

)
= κTab;b (4.1)

where Tab;b , 0. Since Rab;b is not always equals to zero, this
implies that the bracket in the LHS of equation (4.1) is not
zero in any case.
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Let us assume it is equal to D , where D is a dimensionless
constant, i.e.

1 − 2
dL
dR
= D (4.2)

Then, equation (4.2) becomes

dL
dR
=

1
2

(1 − D) (4.3)

Now, integrating equation (4.3) yields

L(R,D) =
1
2

(1 − D) R − E (4.4)

where E is a constant. When D = 0, equation (4.4) should
reduce to equation (2.13), the equation in case of conserved
energy-momentum, for which E = Λ. So, equation (4.4) be-
comes

L(R,D) =
1
2

(1 − D) R − Λ (4.5)

Finally, the modified equations (equation (2.1)) in case of
non-conserved energy-momentum become

Rab −
1
2

(1 − D) gabR + Λgab = κTab (4.6)

5 The modified equations and the Rastall gravity
equations

Rastall [14] introduced a modification to the Einstein field
equations, in which the covariant conservation condition
Rab;b = 0 is no longer valid.

In his theory he introduced a modification to the Einstein
field equations without the cosmological constant which read

Rab −
1
2

(1 − 2λκ) gabR = κTab (5.1)

where λ is a free parameter. When λ = 0, we recover the stan-
dard Einstein’s field equations. Comparing Rastall’s equa-
tions in equation (5.1) with equation (4.6) without the cos-
mological constant, we deduce

D = 2λκ (5.2)
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Bosons and Fermions as Dislocations and Disclinations
in the Spacetime Continuum

Pierre A. Millette
PierreAMillette@alumni.uottawa.ca, Ottawa, Canada

We investigate the case for dislocations (translational displacements) and disclinations
(rotational displacements) in the Spacetime Continuum corresponding to bosons and
fermions respectively. The massless, spin-1 screw dislocation is identified with the pho-
ton, while edge dislocations correspond to bosons of spin-0, spin-1 and spin-2. Wedge
disclinations are identified with quarks. We find that the twist disclination depends both
on the space volume ℓ3 of the disclination and on the length ℓ of the disclination. We
identify the ℓ3 twist disclination terms with the leptons, while the ℓ twist disclination
which does not have a longitudinal (massive) component, is identified with the massless
neutrino. We perform numerical calculations that show that the dominance of the ℓ and
ℓ3 twist disclination terms depend on the extent ℓ of the disclination: at low values of
ℓ, the “weak interaction” term ℓ predominates up to about 10−18 m, which is the gener-
ally accepted range of the weak force, while at larger values of ℓ, the “electromagnetic
interaction” term ℓ3 predominates. The value of ℓ at which the two interactions in the
total strain energy are equal is given by ℓ = 2.0 × 10−18 m.

1 Introduction

Elementary quantum particles are classified into bosons and
fermions based on integral and half-integral multiples of ℏ
respectively, where ℏ is Planck’s reduced constant. Bosons
obey Bose-Einstein statistics while fermions obey Fermi-Di-
rac statistics and the Pauli Exclusion Principle. These deter-
mine the number of non-interacting indistinguishable parti-
cles that can occupy a given quantum state: there can only be
one fermion per quantum state while there is no such restric-
tion on bosons.

This is explained in quantum mechanics using the com-
bined wavefunction of two indistinguishable particles when
they are interchanged:

Bosons : Ψ(1, 2) = Ψ(2, 1)

Fermions : Ψ(1, 2) = −Ψ(2, 1) .
(1)

Bosons commute and as seen from (1) above, only the sym-
metric part contributes, while fermions anticommute and only
the antisymmetric part contributes. There have been attempts
at a formal explanation of this phenomemon, the spin-statis-
tics theorem, with Pauli’s being one of the first [1]. Jabs [2]
provides an overview of these and also offers his own attempt
at an explanation.

However, as Feynman comments candidly [3, see p. 4-3],
We apologize for the fact that we cannot give you an
elementary explanation. An explanation has been wor-
ked out by Pauli from complicated arguments of quan-
tum field theory and relativity. He has shown that the
two must necessarily go together, but we have not been
able to find a way of reproducing his arguments on an
elementary level. It appears to be one of the few places
in physics where there is a rule which can be stated

very simply, but for which no one has found a simple
and easy explanation. The explanation is deep down in
relativistic quantum mechanics. This probably means
that we do not have a complete understanding of the
fundamental principle involved. For the moment, you
will just have to take it as one of the rules of the world.

The question of a simple and easy explanation is still out-
standing. Eq. (1) is still the easily understood explanation,
even though it is based on the exchange properties of parti-
cles, rather than on how the statistics of the particles are re-
lated to their spin properties. At this point in time, it is an
empirical description of the phenomenon.

2 Quantum particles from STC defects

Ideally, the simple and easy explanation should be a physi-
cal explanation to provide a complete understanding of the
fundamental principles involved. The Elastodynamics of the
Spacetime Continuum (STCED) [6,7] provides such an expla-
nation, based on dislocations and disclinations in the space-
time continuum. Part of the current problem is that there is no
understandable physical picture of the quantum level. STCED
provides such a picture.

The first point to note is that based on their properties,
bosons obey the superposition principle in a quantum state.
In STCED, the location of quantum particles is given by their
deformation displacement uµ. Dislocations [7, see chapter 9]
are translational displacements that commute, satisfy the su-
perposition principle and behave as bosons. As shown in sec-
tion §3-6 of [7], particles with spin-0, 1 and 2 are described
by

uµ;ν = εµν(0) + ε
µν
(2) + ω

µν
(1) , (2)

i.e. a combination of spin-0 εµν(0) (mass as deformation par-
ticle aspect), spin-1 ωµν(1) (electromagnetism) and spin-2 εµν(2)
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(deformation wave aspect), where

εµν = 1
2 (uµ;ν + uν;µ) = u(µ;ν) (3)

and
ωµν = 1

2 (uµ;ν − uν;µ) = u[µ;ν] (4)

which are solutions of wave equations in terms of derivatives
of the displacements uµ;ν as given in chapter 3 of [7].

Disclinations [7, see chapter 10], on the other hand, are
rotational displacements that do not commute and that do not
obey the superposition principle. You cannot have two rota-
tional displacements in a given quantum state. Hence their
number is restricted to one per quantum state. They behave
as fermions.

Spinors represent spin one-half fermions. Dirac spinor
fields represent electrons. Weyl spinors, derived from Dirac’s
four complex components spinor fields, are a pair of fields
that have two complex components. Interestingly enough,
“[u]sing just one element of the pair, one gets a theory of
massless spin-one-half particles that is asymmetric under mir-
ror reflection and ... found ... to describe the neutrino and its
weak interactions” [4, p. 63].

“From the point of view of representation theory, Weyl
spinors are the fundamental representations that occur when
one studies the representations of rotations in four-dimensio-
nal space-time... spin-one-half particles are representation
of the group SU(2) of transformations on two complex vari-
ables.” [4, p. 63]. To clarify this statement, each rotation in
three dimensions (an element of SO(3)) corresponds to two
distinct elements of SU(2). Consequently, the SU(2) trans-
formation properties of a particle are known as the particle’s
spin.

Hence, the unavoidable conclusion is that bosons are dis-
locations in the spacetime continuum, while fermions are dis-
clinations in the spacetime continuum. Dislocations are trans-
lational displacements that commute, satisfy the superposi-
tion principle and behave as bosons. Disclinations, on the
other hand, are rotational displacements that do not commute,
do not obey the superposition principle and behave as ferm-
ions.

The equations in the following sections of this paper are
derived in Millette [7]. The constants λ̄0 and µ̄0 are the Lamé
elastic constants of the spacetime continuum, where µ̄0 is the
shear modulus (the resistance of the continuum to distortions)
and λ̄0 is expressed in terms of κ̄0, the bulk modulus (the re-
sistance of the continuum to dilatations) according to

λ̄0 = κ̄0 − µ̄0/2 (5)

in a four-dimensional continuum.

3 Dislocations (bosons)

Two types of dislocations are considered in this paper: screw
dislocations (see Fig. 1) and edge dislocations (see Fig. 2).

Fig. 1: A stationary screw dislocation in cartesian (x, y, z) and cylin-
drical polar (r, θ, z) coordinates.

Fig. 2: A stationary edge dislocation in cartesian (x, y, z) and cylin-
drical polar (r, θ, z) coordinates.

Dislocations, due to their translational nature, are defects that
are easier to analyze than disclinations.

3.1 Screw dislocation

The screw dislocation is analyzed in sections §9-2 and §15-1
of [7]. It is the first defect that we identified with the photon
due to its being massless and of spin-1. Consequently, its
longitudinal strain energy is zero

WS
∥ = 0. (6)
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Its transverse strain energy is given by [7, eq. (16.5)]

WS
⊥ =
µ̄0

4π
b2 ℓ ln

Λ

bc
, (7)

where b is the spacetime Burgers dislocation vector [9], ℓ is
the length of the dislocation, bc is the size of the core of the
dislocation, of order b0, the smallest spacetime Burgers dislo-
cation vector [10], andΛ is a cut-off parameter corresponding
to the radial extent of the dislocation, limited by the average
distance to its nearest neighbours.

3.2 Edge dislocation

The edge dislocation is analyzed in sections §9-3, §9-5 and
§15-2 of [7]. The longitudinal strain energy of the edge dis-
location is given by [7, eq. (16.29)]

WE
∥ =

κ̄0
2π
ᾱ2

0

(
b2

x + b2
y

)
ℓ ln
Λ

bc
(8)

where
ᾱ0 =

µ̄0

2µ̄0 + λ̄0
, (9)

ℓ is the length of the dislocation and as before, Λ is a cut-off
parameter corresponding to the radial extent of the disloca-
tion, limited by the average distance to its nearest neighbours.
The edge dislocations are along the z-axis with Burgers vec-
tor bx for the edge dislocation proper represented in Fig. 2,
and a different edge dislocation with Burgers vector by which
we call the gap dislocation. The transverse strain energy is
given by [7, eq. (16.54)]

WE
⊥ =
µ̄0

4π

(
ᾱ2

0 + 2β̄2
0

) (
b2

x + b2
y

)
ℓ ln
Λ

bc
(10)

where

β̄0 =
µ̄0 + λ̄0

2µ̄0 + λ̄0
. (11)

The total longitudinal (massive) dislocation strain energy
WD
∥ is given by (8)

WD
∥ = WS

∥ +WE
∥ = WE

∥ , (12)

given that the screw dislocation longitudinal strain energy is
zero, while the total transverse (massless) dislocation strain
energy is given by the sum of the screw (along the z axis) and
edge (in the x−y plane) dislocation transverse strain energies

WD
⊥ = WS

⊥ +WE
⊥ (13)

to give

WD
⊥ =

µ̄0

4π

[
b2

z +
(
ᾱ2

0 + 2β̄2
0

) (
b2

x + b2
y

)]
ℓ ln
Λ

bc
. (14)

It should be noted that as expected, the total longitudinal
(massive) dislocation strain energy WD

∥ involves the space-
time bulk modulus κ̄0, while the total transverse (massless)

Fig. 3: Three types of disclinations: wedge (top), splay (middle),
twist (bottom) [5, 7].

dislocation strain energy WD
⊥ involves the spacetime shear

modulus µ̄0.
The total strain energy of dislocations

WD = WD
∥ +WD

⊥ (15)

provides the total energy of massive and massless bosons,
with WD

∥ corresponding to the longitudinal particle aspect of
the bosons and WD

⊥ corresponding to the wave aspect of the
bosons. As seen in [11], the latter is associated with the wave-
function of the boson. The spin characteristics of these was
considered previously in section 2, where they were seen to
correspond to spin-0, spin-1 and spin-2 solutions.

4 Disclinations (fermions)

The different types of disclinations considered in this paper
are given in Fig. 3. Disclinations are defects that are more
difficult to analyze than dislocations, due to their rotational
nature. This mirrors the case of fermions, which are more
difficult to analyze than bosons.

4.1 Wedge disclination

The wedge disclination is analyzed in sections §10-6 and §15-
3 of [7]. The longitudinal strain energy of the wedge discli-
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nation is given by [7, eq. (16.62)]

WW
∥ =

κ̄0
4π
Ω2

z ℓ
[
ᾱ2

0

(
2Λ2 ln2Λ − 2b2

c ln2 bc

)
+

+ ᾱ0γ̄0

(
2Λ2 lnΛ − 2b2

c ln bc

)
+

+ 1
2 (ᾱ2

0 + γ̄
2
0)

(
Λ2 − b2

c

) ] (16)

where Ωµ is the spacetime Frank vector,

γ̄0 =
λ̄0

2µ̄0 + λ̄0
(17)

and the other constants are as defined previously. In most
cases Λ ≫ bc, and (16) reduces to

WW
∥ ≃

κ̄0
2π
Ω2

z ℓΛ
2
[
ᾱ2

0 ln2 Λ+ ᾱ0γ̄0 lnΛ+ 1
4 (ᾱ2

0 + γ̄
2
0)
]

(18)

which is rearranged as

WW
∥ ≃

κ̄0
2π
ᾱ2

0Ω
2
z ℓΛ

2
[

ln2 Λ+
γ̄0

ᾱ0
lnΛ+

1
4

1 + γ̄2
0

ᾱ2
0

 ] . (19)

The transverse strain energy of the wedge disclination is
given by [7, eq. (16.70)]

WW
⊥ =

µ̄0

4π
Ω2

z ℓ
[
ᾱ2

0

(
Λ2 ln2Λ − b2

c ln2 bc

)
−

−
(
ᾱ2

0 − 3ᾱ0β̄0

) (
Λ2 lnΛ − b2

c ln bc

)
+

+
1
2

(
ᾱ2

0 − 3ᾱ0β̄0 +
3
2
β̄2

0

) (
Λ2 − b2

c

) ]
.

(20)

In most cases Λ ≫ bc, and (20) reduces to

WW
⊥ ≃

µ̄0

4π
Ω2

z ℓ
[
ᾱ2

0Λ
2 ln2 Λ−

−
(
ᾱ2

0 − 3ᾱ0β̄0

)
Λ2 lnΛ+

+
1
2

(
ᾱ2

0 − 3ᾱ0β̄0 +
3
2
β̄2

0

)
Λ2

] (21)

which is rearranged as

WW
⊥ ≃

µ̄0

4π
ᾱ2

0Ω
2
z ℓΛ

2
[

ln2 Λ −
(
1 − 3

β̄0

ᾱ0

)
lnΛ+

+
1
2

1 − 3
β̄0

ᾱ0
+

3
2
β̄2

0

ᾱ2
0

 ] . (22)

We first note that both the longitudinal strain energy WW
∥

and the transverse strain energy WW
⊥ are proportional to Λ2 in

the limit Λ ≫ bc. The parameter Λ is equivalent to the extent
of the wedge disclination, and we find that as it becomes more
extended, its strain energy is increasing parabolically. This

behaviour is similar to that of quarks (confinement) which
are fermions. In addition, as Λ → bc, the strain energy de-
creases and tends to 0, again in agreement with the behaviour
of quarks (asymptotic freedom).

We thus identify wedge disclinations with quarks. The
total strain energy of wedge disclinations

WW = WW
∥ +WW

⊥ (23)

provides the total energy of the quarks, with WW
∥ correspond-

ing to the longitudinal particle aspect of the quarks and WW
⊥

corresponding to the wave aspect of the quarks. We note that
the current classification of quarks include both ground and
excited states – the current analysis needs to be extended to
excited higher energy states.

We note also that the rest-mass energy density ρWc2 of
the wedge disclination (see [7, eq. (10.102)]) is proportional
to ln r which also increases with increasing r, while the rest-
mass energy density ρEc2 of the edge dislocation and ρT c2

of the twist disclination (see [7, eqs. (9.134) and (10.123)]
respectively) are both proportional to 1/r2 which decreases
with increasing r as expected of bosons and leptons.

4.2 Twist disclination

The twist disclination is analyzed in sections §10-7 and §15-4
of [7]. Note that as mentioned in that section, we do not dif-
ferentiate between twist and splay disclinations in this sub-
section as twist disclination expressions include both splay
disclinations and twist disclinations proper. Note also that the
Frank vector (Ωx,Ωy,Ωz) corresponds to the three axes (Ωr,
Ωn,Ωz) used in Fig. 3 for the splay, twist and wedge disclina-
tions respectively.

The longitudinal strain energy of the twist disclination is
given by [7, eq. (16.80)]

WT
∥ =

κ̄0
6π
ᾱ2

0

(
Ω2

x + Ω
2
y

)
ℓ3 ln

Λ

bc
. (24)

One interesting aspect of this equation is that the twist discli-
nation longitudinal strain energy WT

∥ is proportional to the
cube of the length of the disclination (ℓ3), and we can’t dis-
pose of it by considering the strain energy per unit length
of the disclination as done previously. We can say that the
twist disclination longitudinal strain energy WT

∥ is thus pro-
portional to the space volume of the disclination, which is
reasonable considering that disclinations are rotational defor-
mations. It is also interesting to note that WT

∥ has the familiar
dependence lnΛ/bc of dislocations, different from the func-
tional dependence obtained for wedge disclinations in sec-
tion 4.1. The form of this equation is similar to that of the
longitudinal strain energy for the stationary edge dislocation
(see [7, eq. (16.15)]) except for the factor ℓ3/3.

The transverse strain energy of the twist disclination is
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given by [8]

WT
⊥ =
µ̄0

2π
ℓ3

3

[ (
Ω2

x + Ω
2
y

) (
ᾱ2

0 +
1
2 β̄

2
0

)
+

+ 2ΩxΩy
(
ᾱ2

0 − 2β̄2
0

) ]
ln
Λ

bc
+

+
µ̄0

2π
ℓ
[ (
Ω2

x + Ω
2
y

) (
ᾱ2

0

(
Λ2 ln2Λ − b2

c ln2 bc

)
+

+ ᾱ0γ̄0

(
Λ2 lnΛ − b2

c ln bc

)
− 1

2
ᾱ0γ̄0

(
Λ2 − b2

c

)
+

+ 2 β̄2
0 ln
Λ

bc

)
− 2ΩxΩy

(
ᾱ0β̄0

(
Λ2 lnΛ − b2

c ln bc

)
+

+
1
2
β̄0γ̄0

(
Λ2 − b2

c

) )]
.

(25)

In most cases Λ ≫ bc, and (25) reduces to

WT
⊥ ≃
µ̄0

2π
ℓ3

3

[ (
Ω2

x + Ω
2
y

) (
ᾱ2

0 +
1
2 β̄

2
0

)
+

+ 2ΩxΩy
(
ᾱ2

0 − 2β̄2
0

) ]
ln
Λ

bc
+

+
µ̄0

2π
ℓΛ2

[ (
Ω2

x + Ω
2
y

) (
ᾱ2

0 ln2 Λ + ᾱ0γ̄0 lnΛ−

− 1
2
ᾱ0γ̄0

)
− 2ΩxΩy

(
ᾱ0β̄0 lnΛ +

1
2
β̄0γ̄0

)]
(26)

which can be rearranged to give

WT
⊥ ≃
µ̄0

2π
ᾱ2

0
ℓ3

3

[ (
Ω2

x + Ω
2
y

) 1 + 1
2
β̄2

0

ᾱ2
0

+
+ 2ΩxΩy

1 − 2
β̄2

0

ᾱ2
0

 ] ln
Λ

bc
+

+
µ̄0

2π
ᾱ2

0 ℓΛ
2
[ (
Ω2

x + Ω
2
y

) (
ln2 Λ +

γ̄0

ᾱ0
lnΛ−

− 1
2
γ̄0

ᾱ0

)
− 2ΩxΩy

( β̄0

ᾱ0
lnΛ +

1
2
β̄0γ̄0

ᾱ2
0

)]
.

(27)

As noted previously, WT
∥ depends on the space volume ℓ3

of the disclination and has a functional dependence of lnΛ/bc

as do the dislocations. The transverse strain energy WT
⊥ de-

pends on the space volume ℓ3 of the disclination with a func-
tional dependence of lnΛ/bc, but it also includes terms that
have a dependence on the length ℓ of the disclination with a
functional dependence similar to that of the wedge disclina-
tion including Λ2 in the limit Λ ≫ bc. The difference in the
case of the twist disclination is that its transverse strain en-
ergy WT

⊥ combines ℓ3 terms with the functional dependence
lnΛ/bc of dislocations, associated with the “electromagnetic
interaction”, and ℓ terms with the Λ2 ln2 Λ functional depen-
dence of wedge disclinations, associated with the “strong in-
teraction”. This, as we will see in later sections, seems to be

the peculiar nature of the weak interaction, and uniquely po-
sitions twist disclinations to represent leptons and neutrinos
as participants in the weak interaction.

This leads us to thus separate the longitudinal strain en-
ergy of the twist disclination as

WT
∥ = Wℓ

3

∥ +Wℓ∥ = Wℓ
3

∥ (28)

given that Wℓ∥ = 0, and the transverse strain energy of the
twist disclination as

WT
⊥ = Wℓ

3

⊥ +Wℓ⊥ . (29)

We consider both ℓ3 twist disclination and ℓ twist disclination
terms in the next subsections.

4.2.1 ℓ3 twist disclination

The longitudinal strain energy of the ℓ3 twist disclination is
thus given by the ℓ3 terms of (24)

Wℓ
3

∥ =
κ̄0
6π
ᾱ2

0

(
Ω2

x + Ω
2
y

)
ℓ3 ln

Λ

bc
. (30)

The transverse strain energy of the ℓ3 twist disclination is
given by the ℓ3 terms of (25)

Wℓ
3

⊥ =
µ̄0

2π
ℓ3

3

[ (
Ω2

x + Ω
2
y

) (
ᾱ2

0 +
1
2 β̄

2
0

)
+

+ 2ΩxΩy
(
ᾱ2

0 − 2β̄2
0

) ]
ln
Λ

bc
.

(31)

In most cases Λ ≫ bc, and (31) is left unchanged due to its
functional dependence on lnΛ/bc.

The total strain energy of the ℓ3 twist disclination terms is
given by

Wℓ
3
= Wℓ

3

∥ +Wℓ
3

⊥ . (32)

It is interesting to note that Wℓ
3

∥ of (30) and Wℓ
3

⊥ of (31) are
proportional to lnΛ/bc, as are the screw dislocation (photon)
and edge dislocation (bosons). This, and the results of the
next subsection, leads us to identify the ℓ3 twist disclination
terms with the leptons (electron, muon, tau) fermions, where
the heavier muon and tau are expected to be excited states of
the electron.

4.2.2 ℓ twist disclination

The longitudinal strain energy of the ℓ twist disclination terms
in this case is zero as mentioned previously

Wℓ∥ = 0 . (33)
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The transverse strain energy of the ℓ twist disclination is
thus also given by the ℓ terms of (25):

Wℓ⊥ =
µ̄0

2π
ℓ
[ (
Ω2

x + Ω
2
y

) (
ᾱ2

0

(
Λ2 ln2 Λ − b2

c ln2 bc

)
+

+ ᾱ0γ̄0

(
Λ2 lnΛ − b2

c ln bc

)
− 1

2
ᾱ0γ̄0

(
Λ2 − b2

c

)
+

+ 2 β̄2
0 ln
Λ

bc

)
− 2ΩxΩy

(
ᾱ0β̄0

(
Λ2 lnΛ − b2

c ln bc

)
+

+
1
2
β̄0γ̄0

(
Λ2 − b2

c

) )]
.

(34)

In most cases Λ ≫ bc, and (34) reduces to

Wℓ⊥ =
µ̄0

2π
ℓΛ2

[ (
Ω2

x + Ω
2
y

) (
ᾱ2

0 ln2Λ + ᾱ0γ̄0 lnΛ−

− 1
2
ᾱ0γ̄0

)
− 2ΩxΩy

(
ᾱ0β̄0 lnΛ +

1
2
β̄0γ̄0

)] (35)

which can be rearranged to give

Wℓ⊥ =
µ̄0

2π
ᾱ2

0 ℓΛ
2
[ (
Ω2

x + Ω
2
y

) (
ln2Λ +

γ̄0

ᾱ0
lnΛ−

− 1
2
γ̄0

ᾱ0

)
− 2ΩxΩy

( β̄0

ᾱ0
lnΛ +

1
2
β̄0γ̄0

ᾱ2
0

)]
.

(36)

The total strain energy of the ℓ twist disclination is given
by

Wℓ = Wℓ∥ +Wℓ⊥ = Wℓ⊥ (37)

given that the ℓ twist disclination does not have a longitudinal
(massive) component. Since the ℓ twist disclination is a mass-
less fermion, this leads us to identify the ℓ twist disclination
with the neutrino.

There is another aspect to the strain energy WT
⊥ given by

(25) that is important to note. As we have discussed, the
ℓ3 twist disclination terms and the lnΛ/bc functional depen-
dence as observed for the screw dislocation (photon) and edge
dislocation (bosons) has led us to identify the ℓ3 portion with
the leptons (electron, muon, tau) fermions, where the heavier
muon and tau are expected to be excited states of the electron.
These are coupled with transverse ℓ twist disclination terms
which are massless and which have a functional dependence
similar to that of the wedge disclination, which has led us to
identify the ℓ portion with the weakly interacting neutrino.
If the muon and tau leptons are excited states of the electron
derivable from (25), this would imply that the neutrino por-
tion would also be specific to the muon and tau lepton excited
states, thus leading to muon and tau neutrinos.

We will perform numerical calculations in the next sec-
tion which will show that the dominance of the ℓ and ℓ3 twist
disclination terms depend on the extent ℓ of the disclination,
with the ℓ “weak interaction” terms dominating for small val-
ues of ℓ and the ℓ3 “electromagnetic interaction” terms dom-
inating for larger values of ℓ. The ℓ twist disclination terms

would correspond to weak interaction terms while the ℓ3 twist
disclination terms would correspond to electromagnetic inter-
action terms. The twist disclination represents the unification
of both interactions under a single “electroweak interaction”.

This analysis also shows why leptons (twist disclinations)
are participants in the weak interaction but not the strong in-
teraction, while quarks (wedge disclinations) are participants
in the strong interaction but not the weak interaction.

It should be noted that even though the mass of the neu-
trino is currently estimated to be on the order of 10’s of eV,
this estimate is based on assuming neutrino oscillation be-
tween the currently known three lepton generations, to ex-
plain the anomalous solar neutrino problem. This is a weak
explanation for that problem, which more than likely indi-
cates that we do not yet fully understand solar astrophysics.
One can only hope that a fourth generation of leptons will not
be discovered! Until the anomaly is fully understood, we can
consider the twist disclination physical model where the mass
of the neutrino is zero to be at least a first approximation of
the neutrino STC defect model.

4.3 Twist disclination sample numerical calculation

In this section, we give a sample numerical calculation that
shows the lepton-neutrino connection for the twist disclina-
tion. We start by isolating the common strain energy elements
that don’t need to be calculated in the example. Starting from
the longitudinal strain energy of the twist disclination (24)
and making use of the relation κ̄0 = 32µ̄0 [7, eq. (5.53)], (24)
can be simplified to

WT
∥ =
µ̄0

2π
ᾱ2

0 2Ω2
[
32
ℓ3

3
ln
Λ

bc

]
(38)

where an average Ω is used instead of Ωx and Ωy. Defining K
as

K =
µ̄0

2π
ᾱ2

0 2Ω2 , (39)

then (38) is written as

WT
∥

K
= 32

ℓ3

3
ln
Λ

bc
. (40)

Similarly for the transverse strain energy of the twist dis-
clination, starting from (27), the equation can be simplified
to

WT
⊥ ≃
µ̄0

2π
ᾱ2

0 2Ω2
{[
ℓ3

3

1 + 1
2
β̄2

0

ᾱ2
0

+ 1 − 2
β̄2

0

ᾱ2
0

 ln
Λ

bc

]
+

+

[
ℓΛ2

(
ln2Λ +

γ̄0

ᾱ0
lnΛ − 1

2
γ̄0

ᾱ0
−

− β̄0

ᾱ0
lnΛ − 1

2
β̄0γ̄0

ᾱ2
0

)]}
.

(41)
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Using the definition of K from (39), this equation becomes

WT
⊥

K
≃ ℓ

3

3

2 − 3
2
β̄2

0

ᾱ2
0

 ln
Λ

bc
+

+ ℓΛ2
(
ln2Λ +

γ̄0 − β̄0

ᾱ0
lnΛ − 1

2
γ̄0

ᾱ0

(
1 + β̄0

))
.

(42)

Using the numerical values of the constants ᾱ0, β̄0 and γ̄0
from [7, eqs. (19.14) and (19.35)], (42) becomes

WT
⊥

K
≃ ℓ

3

3
(1.565) ln

Λ

bc
+

+ ℓΛ2
(
ln2 Λ − lnΛ − 0.62

)
.

(43)

For this sample numerical calculation, we use bc∼10−35m
of the order of the spacetime Burgers dislocation constant b0,
and the extent of the disclination Λ ∼ 10−18 m of the order of
the range of the weak force. Then

WT
∥

K
=

32
3

(39.1) ℓ3 = 417 ℓ3 . (44)

and
WT
⊥

K
≃ 0.522 (39.1) ℓ3+

+Λ2 (1714 + 41.4 − 0.62) ℓ

(45)

which becomes

WT
⊥

K
≃ 20.4 ℓ3 + 1755Λ2 ℓ (46)

and finally

WT
⊥

K
≃ 20.4 ℓ3 + 1.76 × 10−33 ℓ . (47)

We consider various values of ℓ to analyze its effect on
the strain energy. For ℓ = 10−21 m,

WT
∥

K
= 4.2 × 10−61 (ℓ3 term) (48)

WT
⊥

K
= 2.0 × 10−62 + 1.8 × 10−54 (ℓ3 term + ℓ term). (49)

For ℓ = 10−18 m,

WT
∥

K
= 4.2 × 10−52 (ℓ3 term) (50)

WT
⊥

K
= 2.0 × 10−53 + 1.8 × 10−51 (ℓ3 term + ℓ term). (51)

For ℓ = 10−15 m,

WT
∥

K
= 4.2 × 10−43 (ℓ3 term) (52)

WT
⊥

K
= 2.0 × 10−44 + 1.8 × 10−48 (ℓ3 term + ℓ term). (53)

For ℓ = 10−12 m,

WT
∥

K
= 4.2 × 10−34 (ℓ3 term) (54)

WT
⊥

K
= 2.0 × 10−35 + 1.8 × 10−45 (ℓ3 term + ℓ term). (55)

In the sums of WT
⊥/K above, the first term ℓ3 represents

the electromagnetic interaction, while the second term ℓ rep-
resents the weak interaction. Thus we find that at low val-
ues of ℓ, the weak force predominates up to about 10−18 m,
which is the generally accepted range of the weak force. At
larger values of ℓ, the electromagnetic force predominates.
The value of ℓ at which the two interactions in the transverse
strain energy are equal is given by

20.4 ℓ3 = 1.76 × 10−33 ℓ , (56)

from which we obtain

ℓ = 0.9 × 10−17 m ∼ 10−17 m . (57)

At that value of ℓ, the strain energies are given by

WT
∥

K
= 3.0 × 10−49 (58)

WT
⊥

K
= 3.1 × 10−50 . (59)

The longitudinal (massive) strain energy predominates over
the transverse strain energy by a factor of 10.

Alternatively, including the longitudinal ℓ3 strain energy
in the calculation, the value of ℓ at which the two interactions
in the total strain energy are equal is given by

417 ℓ3 + 20.4 ℓ3 = 1.76 × 10−33 ℓ , (60)

from which we obtain

ℓ = 2.0 × 10−18 m . (61)

At that value of ℓ, the strain energies are given by

WT
∥

K
= 3.3 × 10−51 (62)

WT
⊥

K
= 3.7 × 10−51 . (63)

The longitudinal (massive) strain energy and the transverse
strain energy are then of the same order of magnitude.

5 Quantum particles and their associated spacetime
defects

Table 1 provides a summary of the identification of quantum
particles and their associated spacetime defects as shown in
this paper.
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STC defect Type of particle Particles

Screw dislocation Massless boson Photon
Edge dislocation Massive boson Spin-0 particle

Spin-1 Proca eqn
Spin-2 graviton

Wedge disclination Massive fermion Quarks
ℓ3 Twist disclination Massive fermion Leptons
ℓ Twist disclination Massless fermion Neutrinos

Table 1: Identification of quantum particles and their associated defects.

6 Discussion and conclusion

In this paper, we have investigated the case for dislocations
and disclinations in the Spacetime Continuum corresponding
to bosons and fermions respectively. Dislocations are transla-
tional displacements that commute, satisfy the superposition
principle and behave as bosons. Disclinations, on the other
hand, are rotational displacements that do not commute, do
not obey the superposition principle and behave as fermions,
including having their number restricted to one per quantum
state as it is not possible to have two rotational displacements
in a given quantum state.

We have considered screw and edge dislocations. The
massless, spin-1 screw dislocation is identified with the pho-
ton. The total strain energy of dislocations WD corresponds
to the total energy of massive and massless bosons, with WD

∥
corresponding to the longitudinal particle aspect of the bosons
and WD

⊥ corresponding to the wave aspect of the bosons, with
the latter being associated with the wavefunction of the bo-
son. Their spin characteristics correspond to spin-0, spin-1
and spin-2 solutions.

We have considered wedge and twist disclinations, of
which the splay disclination is a special case. Wedge disclina-
tions are identified with quarks. The strain energy of wedge
disclinations is proportional to Λ2 in the limit Λ ≫ bc. The
parameter Λ is equivalent to the extent of the wedge disclina-
tion, and we find that as it becomes more extended, its strain
energy is increasing parabolically. This behaviour is similar
to that of quarks (confinement) which are fermions. In addi-
tion, as Λ → bc, the strain energy decreases and tends to 0,
again in agreement with the behaviour of quarks (asymptotic
freedom). The total strain energy of wedge disclinations WW

thus corresponds to the total energy of the quarks, with WW
∥

corresponding to the longitudinal particle aspect of the quarks
and WW

⊥ corresponding to the wave aspect of the quarks.
The twist disclination longitudinal strain energy WT

∥ is
found to be proportional to the cube of the length of the discli-
nation (ℓ3), and hence depends on the space volume ℓ3 of the
disclination with a functional dependence of lnΛ/bc as do the
dislocations. The transverse strain energy WT

⊥ also depends

on the space volume ℓ3 of the disclination with a functional
dependence of lnΛ/bc, but it also includes terms that have a
dependence on the length ℓ of the disclination with a func-
tional dependence similar to that of the wedge disclination
including Λ2 in the limit Λ ≫ bc.

We have considered both ℓ3 twist disclination and ℓ twist
disclination terms. We note that Wℓ

3

∥ and Wℓ
3

⊥ are propor-
tional to lnΛ/bc, as are the screw dislocation (photon) and
edge dislocation (bosons), which leads us to identify the ℓ3

twist disclination terms with the leptons (electron, muon, tau)
fermions, where the heavier muon and tau are expected to be
excited states of the electron. Given that the ℓ twist disclina-
tion does not have a longitudinal (massive) component, it is
a massless fermion and this leads us to identify the ℓ twist
disclination with the neutrino. Thus the twist disclination
transverse strain energy WT

⊥ combines ℓ3 terms with the func-
tional dependence lnΛ/bc of dislocations and ℓ terms with
the functional dependence Λ2 of wedge disclinations.

We have performed numerical calculations that show that
the dominance of the ℓ and ℓ3 twist disclination terms depend
on the length ℓ of the disclination. We find that at low val-
ues of ℓ, the “weak interaction” term ℓ predominates up to
about 10−18 m, which is the generally accepted range of the
weak force. At larger values of ℓ, the “electromagnetic in-
teraction” term ℓ3 predominates. The value of ℓ at which the
two interactions in the total strain energy are equal is given
by ℓ = 2.0 × 10−18 m. We conclude that in WT

⊥ , the ℓ twist
disclination terms represent the weak interaction terms while
the ℓ3 twist disclination terms represent the electromagnetic
interaction terms. The twist disclination hence represents the
unification of both interactions under a single “electroweak
interaction”.

This analysis also shows why leptons (twist disclinations)
are participants in the weak interaction but not the strong in-
teraction (wedge disclinations). In addition, if the muon and
tau leptons are excited states of the electron derivable from
(25), this would imply that the neutrino portion would also be
specific to the muon and tau lepton excited states, thus leading
to muon and tau neutrinos. A summary of the identification
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of quantum particles and their associated spacetime defects
as shown in this paper is provided in Table 1.
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Gravity as Attractor Effect of Stability Nodes in
Chain Systems of Harmonic Quantum Oscillators
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In this paper we apply our fractal model of matter as chain systems of harmonic quan-
tum oscillators to the analysis of gravimetric characteristics of the Solar system and in-
troduce a model of gravity as macroscopic cumulative attractor effect of stability nodes
in chain systems of oscillating protons and electrons.

Introduction

Gravity has still a special place in physics as it is the only
interaction that is not described by a quantum theory. Never-
theless, the big G is considered to be a fundamental constant
of nature, involved in the calculation of gravitational effects
in Newton’s law of universal gravitation and in Einstein’s
general theory of relativity. The currently recommended [1]
value is G = 6.67408(31) · 10−11 m3kg−1s−2 and it seems that
we know G only to three significant figures.

For several objects in the Solar System, the value of the
standard gravitational parameter µ is known to greater accu-
racy than G. The value µ for the Sun is the heliocentric grav-
itational constant and equals 1.32712440042(1) · 1020 m3s−2.
The geocentric gravitational constant equals 3.986004418(8)·
· 1014 m3s−2 [2]. The precision is 10−8 because this quantity is
derived from the movement of artificial satellites, which basi-
cally involves observations of the distances from the satellite
to earth stations at different times, which can be obtained to
high accuracy using radar or laser ranging.

However, not the µ is directly measured, but the orbital
elements of a natural or artificial satellite. For instance, the
orbital elements of the Earth can be used to estimate the he-
liocentric gravitational constant. Already the basic solution
for a circular orbit gives a good approximation:

µ=
4π2R3

T 2 =
4π2(149597870700 m)3

(31558149.54 s)2 =

= 1.327128 · 1020 m3s−2

where R is the semi-major axis and T is the orbital period
of the Earth. These orbital elements are directly measured,
although µ=GM is an interpretation that provides mass as
source of gravity and the universality of G. Within the princi-
ple of equivalence, gravity is a universal property like inertia
and does not depend on the type or scale of matter.

Though, the big G is known only from laboratory mea-
surements of the attraction force between two known masses.
The precision of those measures is only 10−3, because grav-
ity appears too weak on the scale of laboratory-sized masses
for to be measurable with the desired precision. However, as
mentioned Quinn and Speake [3], the discrepant results may

demonstrate that we do not understand the metrology of mea-
suring weak forces or they may signify some new physics.

On the other hand, the measured G values seem to os-
cillate over time [4]. It’s not G itself that is varying, Ander-
son and coauthors proposed, but more likely something else
is affecting the measurements, because the 5.9-year oscilla-
tory period of the measured G values seems to correlate with
the 5.9-year oscillatory period of Earth’s rotation rate, as de-
termined by recent Length of Day (LOD) measurements [5].
However, this hypothesis is still under discussion [6].

In 1981, Stacey, Tuck, Holding, Maher and Morris [7]
reported anomalous measures of the gravity acceleration in
mines. They proposed an explanation of this anomaly by in-
troducing a short-range potential, of the Yukawa type, that
overlaps the Newtonian potential and describes the intensity
and the action range of a hypothetical fifth interaction. In
2005, Reginald T. Cahill [8] introduced an additional dimen-
sionless constant that coincides with the fine structure con-
stant and determines the strength of a new 3-space self-inter-
action that can explain various gravitational anomalies, such
as the ‘borehole anomaly’ and the ‘dark matter anomaly’ in
the rotation speeds of spiral galaxies.

Obviously, the origin of gravity and the nature of particle
mass generation are key topics in modern physics and they
seem to have a common future. In [9] we have introduced a
fractal model of matter as a chain system of harmonic quan-
tum oscillators and have shown that particle rest masses coin-
cide with the eigenstates of the system. This is valid not only
for hadrons, but for mesons and leptons as well. Andreas
Ries [10] demonstrated that this model allows for the predic-
tion of the most abundant isotope of a given chemical ele-
ment. Already in [11] we could show that scale invariance is
a fundamental property of this model. On this background we
proposed quantum scaling as model of mass generation [12].

Our model of matter also provides a good approximation
of the mass distribution of large celestial bodies in the So-
lar system [13]. Metric characteristics of celestial bodies can
be understood as macroscopic quantized eigenstates in chain
systems of oscillating protons and electrons [14].

In [15] we have calculated the model masses of new plan-
ets in the Solar system and in [16, 17] were estimated the or-
bital elements of these hypothetical bodies. Our calculations
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Fig. 1: The canonical projection of F (natural logarithmic representation).

correspond well with the hypothesis of Batygin and Brown
[18] about a new gas giant called “planet 9” and with the
hypothesis of Volk and Malhotra [19] about a Mars-to-Earth
mass “planet 10” beyond Pluto.

Our model allows us to see a connection between the sta-
bility of the Solar system and the stability of the electron and
proton and consider global scaling as a forming factor of the
Solar system. This may be of cosmological significance.

In this paper we apply our model of matter to the analysis
of gravimetric characteristics of large bodies of the Solar sys-
tem and propose an interpretation of gravity as macroscopic
cumulative attractor effect of stability nodes in chain systems
of oscillating protons and electrons.

Methods

In [11] we have shown that the set of natural frequencies of
a chain system of similar harmonic oscillators coincides with
a set of finite continued fractions F , which are natural loga-
rithms:

ln (ω jk/ω00)= n j0 +
z

n j1 +
z

n j2 + . . .
+

z
n jk

=

= [z, n j0; n j1, n j2, . . . , n jk]=F ,

(1)

where ω jk is the set of angular frequencies and ω00 is the fun-
damental frequency of the set. The denominators are integer:
n j0, n j1, n j2, . . . , n jk ∈Z, the cardinality j ∈N of the set and the
number k ∈N of layers are finite. In the canonical form, the
numerator z equals 1.

For finite continued fractions F (1), ranges of high dis-
tribution density (nodes) arise near reciprocal integers 1, 1/2,
1/3, 1/4, . . . which are the attractor points of the distribution.

Any finite continued fraction represents a rational num-
ber [20]. Therefore, all natural frequencies ω jk in (1) are ir-
rational, because for rational exponents the natural exponen-
tial function is transcendental [21]. It is probable that this cir-
cumstance provides for high stability of an oscillating chain
system because it prevents resonance interaction between the
elements of the system [22]. Already in 1987 we have applied
continued fractions of the type F (1) as criterion of stability
in engineering [23, 24].

In the case of harmonic quantum oscillators, the contin-
ued fractions F (1) not only define fractal sets of natural an-
gular frequencies ω jk, angular accelerations a jk = c ·ω jk, os-
cillation periods τ jk = 1/ω jk and wavelengths λ jk = c/ω jk of

the chain system, but also fractal sets of energies E jk = ℏ ·ω jk

and masses m jk =E jk/c2 which correspond with the eigen-
states of the system. For this reason, we call the continued
fraction F (1) the “fundamental fractal” of eigenstates in
chain systems of harmonic quantum oscillators.

In the canonical form (z= 1) of the fundamental fractal
F (1), shorter continued fractions correspond with more sta-
ble eigenstates of a chain system of harmonic oscillators.
Therefore, integer logarithms represent the most stable eigen-
states (main attractor nodes).

Normal matter is formed by nucleons and electrons be-
cause they are exceptionally stable. Furthermore, protons and
neutrons have similar rest masses (the difference being only
0.14 percent). This allows us to interpret the proton and the
neutron as similar quantum oscillators with regard to their rest
masses. Therefore, in [12, 14] we have introduced a fractal
model of matter as a chain system of oscillating protons and
electrons.

Table 1 shows the basic set of electron and proton units
that can be considered as a fundamental metrology (c is the
speed of light in vacuum, ℏ is the reduced Planck constant).

Table 1: The basic set of physical properties of the electron and pro-
ton. Data taken from Particle Data Group [25]. Frequencies, oscilla-
tion periods, accelerations and the proton wavelength are calculated.

property electron proton

rest mass m 9.10938356(11) · 10−31 kg 1.672621898(21) · 10−27 kg
energy E=mc2 0.5109989461(31) MeV 938.2720813(58) MeV
angular frequency
ω=E/ℏ

7.76344071 · 1020 Hz 1.42548624 · 1024 Hz

angular oscillation
period τ= 1/ω

1.28808867 · 10−21 s 7.01515 · 10−25 s

wavelength
λ= c/ω

3.8615926764(18) · 10−13 m 2.1030891 · 10−16 m

angular accelera-
tion a= cω

2.327421 · 1029 ms−2 4.2735 · 1032 ms−2

The natural logarithm of the proton-to-electron mass ra-
tio is approximately 7.5 and consequently, the fundamental
fractal F calibrated on the proton will be shifted by 7.5 loga-
rithmic units relative to the F calibrated on the electron:

ln
1.672621898 · 10−27kg
9.10938356 · 10−31kg

≈ 7.5

We hypothesize that scale invariance based on the funda-
mental fractal F (1), calibrated on the metric properties of
the proton and electron, is a universal characteristic of or-
ganized matter. This hypothesis we have called ‘global scal-
ing’ [14, 26].
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Results

In [12] we have shown that the Planck mass coincides with
the main attractor node [44;∞] of the F (1) calibrated on the
proton:

ln
mPlanck

mproton
= ln

2.17647 · 10−8

1.6726219 · 10−27 = 44.01

This circumstance allows us to calculate the big G from the
proton rest mass:

G =
ℏc
m2

p
exp (−88)= 6.8420676 · 10−11 m3kg−1s−2

The calculated G value is larger than the currently recom-
mended by CODATA [1], although the published [27,28] val-
ues of G show immense variations and some recent measure-
ments of high precision deliver, in fact, larger values than the
recommended.

Applying our model (1), we can see that the Solar equato-
rial surface gravity acceleration gSun = 274 m/s2 corresponds
with a main attractor node of theF (1) calibrated on the angu-
lar acceleration of the electron aelectron = 2.327421 · 1029 ms−2

(see table 1). In fact, the logarithm of the electron-to-Solar
gravity acceleration ratio is close to an integer:

ln
aelectron

gSun
= ln

2.327421 · 1029 ms−2

274 ms−2 = 62.00

This coincidence supports our hypothesis of global scaling
and allows us to understand that the current amount of the
surface gravity acceleration of the Sun is not casual, but an
essential aspect of stability of the chain system of quantum
oscillators that appears as the star we call ’Sun’.

Also the current amount of the Solar mass we recognise as
criterion of stability, because it corresponds to a main attrac-
tor node of the F (1) calibrated on the electron. In fact, the
natural logarithm of the Sun-to-electron mass ratio is close to
an integer number:

ln
MSun

melectron
= ln

1.9884 · 1030 kg
9.10938356 · 10−31 kg

= 138.94

Furthermore, the main attractor node [62;∞] of the F (1) cal-
ibrated on the electron corresponds with the node [69; 2] cali-
brated on the proton that is half of the logarithm of the Solar-
to-electron mass ratio: 69.5= 139/2. This allows us to write
down an equation that connects the Sun-to-electron mass ra-
tio with the proton-to-Solar surface gravity acceleration ratio:

MSun

melectron
=

(
aproton

gSun

)2

As well, the correspondence of the current radius of the Sun
with a main attractor node (integer logarithm) of the F (1)

calibrated on the electron now we can understand as addi-
tional criterion of stability of the Sun:

ln
RSun

λelectron
= ln

6.96407 · 108 m
3.8615926764 · 10−13 m

= 48.95

The logarithm of the proton-to-Jupiter surface gravity accel-
eration ratio is also close to an integer:

ln
aproton

gJupiter
= ln

4.2735 · 1032 ms−2

24.79 ms−2 = 71.92

Jupiter’s body mass coincides with the main attractor
node [132;∞] of the electron-calibrated F (1):

ln
MJupiter

melectron
= ln

1.8986 · 1027 kg
9.10938356 · 10−31 kg

= 131.98

The surface gravity accelerations of Saturn (10.4 m/s,2),
Uranus (8.7 m/s 2), Neptune (11.1 m/s 2), Earth (9.81 m/s 2)
and Venus (8.87 m/s2) approximate the main attractor node
[73;∞] of the F (1) calibrated on the proton:

ln
aproton

gVenus
= ln

4.2735 · 1032 ms−2

8.87 ms−2 = 72.95

The mass of Venus corresponds to the main attractor node
[126;∞] of the electron-calibrated F (1):

ln
MVenus

melectron
= ln

4.8675 · 1024 kg
9.10938356 · 10−31 kg

= 126.01

Finally, the surface gravity accelerations of Mercury and
Mars (3.71 m/s2) approximate the main attractor node [74;
∞] of the F (1) calibrated on the proton:

ln
aproton

gMars
= ln

4.2735 · 1032 ms−2

3.71 ms−2 = 73.83

The body mass of Mars corresponds to the main attractor
node [124;∞] of the F (1) calibrated on the electron:

ln
MMars

melectron
= ln

6.4171 · 1023 kg
9.10938356 · 10−31 kg

= 123.99

In [14] we have shown that the body masses, the rotation and
orbital periods of the planets and the Sun are quantized. They
follow the sequence of attractor nodes of stability of the fun-
damental fractal F (1). Now we can affirm that the surface
gravity accelerations of the planets and the Sun are quan-
tized as well. The surface gravity accelerations of the planets
correspond with the main attractor nodes [72; ∞], [73; ∞],
[74;∞] of the F (1) calibrated on the proton while the surface
gravity acceleration of the Sun corresponds with the main at-
tractor node [62;∞] of the F (1) calibrated on the electron.

Considering that the angular acceleration of the electron
is aelectron = cωelectron, we can express the Solar surface gravity
acceleration in terms of the speed of light

gSun = cωSun
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and receive the angular oscillation period 1/ωSun = 12.7 side-
real days that is the first harmonic of the equatorial rotation
period 25.4 days of the Sun. This coincidence suggests to
analyse also the gravity accelerations of the planets in terms
of the speed of light.

If we express the Earth surface gravity acceleration
g= 9.8 ms−2 in terms of the speed of light, we receive an os-
cillation period of c/g= 355 sidereal days that is in the range
of the Earth orbital period and coincides perfectly with the
attractor node [63; 2] of the F (1) calibrated on the electron
oscillation period 2πτelectron = 8.0933 · 10−21 s:

2πτelectron exp (63.5) = 355 days

The period of 355 days coincides with 12 synodic lunar
months, the lunar year. The surface gravity accelerations of
Saturn (10.4 m/s2), Uranus (8.7 m/s2), Neptune (11.1 m/s2)
and Venus (8.87 m/s2) are of the same range and consequent-
ly, they approximate the same attractor node [63; 2].

The surface gravity acceleration of Saturn gSaturn =

= 10.4 m/s2 corresponds with an oscillation period of
c/gSaturn = 334 sidereal days that is in the range of the du-
ration of lightning storms on Saturn which appear once every
30 Earth years. The lightning storm of 2009 on Saturn in the
planet’s southern hemisphere lasted over 334 days [29].

Mars and Mercury have similar surface gravity accelera-
tions of about 3.7 ms−2 that corresponds to an oscillation pe-
riod of c/3.7 ms−2 = 938 sidereal days near the attractor node
[64; 2] of the F (1) calibrated on the electron:

2πτelectron exp (64.5)= 966 days

The sidereal rotation period of Mars is 24.62278 hours and
coincides perfectly to the main node [67; ∞] of the proton-
calibrated F (1):

ln
τMars

τproton
= ln

24.62278 · 3600 s
7.01515 · 10−25s

= 67.00

In addition, the orbital period of Mars 686.971 days meets
precisely the condition of global scaling:

ln
TMars

τelectron
= ln

686.971 · 86164 s
1.28808867 · 10−21s

= 66.00

The surface gravity acceleration of Jupiter gJupiter =

= 24.79 ms−2 corresponds to an oscillation period of
c/gJupiter = 140 sidereal days near the main attractor node
of the F calibrated on the electron:

2πτelectron exp (62.5) = 131 days

The sidereal rotation period of Jupiter is 9.925 hours and cor-
responds with the main attractor node [66; ∞] of the proton
F (1):

ln
τJupiter

τproton
= ln

9.9251 · 3600 s
7.01515 · 10−25s

= 66.10

Jupiter’s orbital period of 4332.59 days fulfils the conditions
of global scaling very precisely:

ln
TJupiter

2πτelectron
= ln

4332.59 · 86164 s
2π 1.28808867 · 10−21s

= 66.00

When the logarithm of the sidereal rotation period of
Jupiter slows down to [66; ∞], the orbital-to-rotation period
ratio of Jupiter can be described by the equation:

TJupiter

τJupiter
=

2πτelectron

τproton

We can see that both the orbital periods of Jupiter and Mars
correspond with the main attractor node [66; ∞] of stability,
but in the case of Jupiter with the electron oscillation period
as fundamental and in the case of Mars with the electron an-
gular oscillation period as fundamental. Therefore, both or-
bital periods are simply connected by 2π:

TJupiter = 2πTMars

Also these circumstances support our model of matter as
chain system of harmonic quantum oscillators and our hy-
pothesis of global scaling.

Conclusion

Applying our fractal model of matter as chain system of har-
monic quantum oscillators to the analysis of gravimetric char-
acteristics of large bodies of the Solar system we did show
that the surface gravity accelerations of the planets and the
Sun are quantized and correspond to nodes of stability in
chain systems of oscillating protons and electrons and there-
fore, they can be estimated without any information about the
masses or sizes of the celestial bodies.

Furthermore, the quantized surface gravity accelerations
of the planets and the Sun seem to be connected with their
quantized orbital and rotation periods.

We presume that the accretion of gravitational mass is a
macroscopic cumulative attractor effect of stability nodes in
chain systems of oscillating protons and electrons. From this
point of view, Newton’s constant of gravitation defines the
corresponding amount of gravitational mass a given attractor
node can accumulate.
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On the Ultimate Energy of Cosmic Rays
Analtoly V. Belyakov
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It is established that the upper limit of cosmic-ray energy due to the Greisen-Zatsepin-
Kuzmin effect is local. On the basis of the mechanistic interpretation of J. Wheeler’s
geometrodynamic concept, a more fundamental limitation on this limit was established,
which, in the final analysis, depends on Planck’s size (~γ/c3)1/2 and for protons the
limit is 4.51× 1018 eV. The inflection in the spectrum curve, the “knee”, corresponds to
the mass-energy of the vortex tube of the limiting proton-electron contour, 1.46 × 1015

eV. For other nuclei these energies increase in proportion to the atomic number of the
element.

Cosmic rays are a flow of nuclei of chemical elements — hy-
drogen (∼ 90%), helium (∼ 8%), and the nuclei of the heavier
elements (∼ 2%). The energy spectrum of cosmic rays or the
dependence of the cosmic ray flux on energy extends from
103 to 1020 eV. The main sources of primary cosmic rays are
supernova explosions (galactic cosmic rays) and the Sun, as
well as extragalactic sources — radio galaxies and quasars.
The protons and heavier nuclei emitted during supernova ex-
plosions are further accelerated in specific astrophysical pro-
cesses. Falling into the earth’s atmosphere, cosmic ray par-
ticles transmit their energy to a multitude of secondary par-
ticles. Thus, the particles cascade is formed; it is called an
extensive air shower (EAS) and covers a large area.

Nature ultrahigh energy cosmic rays (more than 1017 eV)
has not yet been unambiguously interpreted, their sources
have not yet been identified, and there is no complete under-
standing of the mechanisms of their acceleration and even the
nature of the accelerated particles [1]. There are reasons to
assume that they are of extragalactic origin. It is believed that
the upper limit of cosmic-ray energy is limited by a threshold
of 5× 1019 eV, because cosmic ray particles interact energeti-
cally with relic radiation, which leads to their absorption and
reduction of their energy to a threshold value at distances of
the order of several tens of megaparsecs (Greisen-Zatsepin-
Kuzmin effect) [2,3]. The presence of particles with energies
exceeding this threshold does not yet find a satisfactory expla-
nation, since within range of up to one hundred megaparsec
powerful radiation sources are absent.

The question arises: what energy could be cosmic rays, if
the distance between the source and the Earth would be much
less than the Greisen-Zatsepin-Kuzmin limit, and could not
microparticle produce a huge macroscopic effect? Here we
see a paradox, since theoretically relativistic mass and en-
ergy of the particle can approach infinity. It seems that the
Greisen-Zatsepin-Kuzmin effect is of local importance, and
there are more fundamental causes that limit the energy of
cosmic rays.

A fundamental limitation can be derived by considering a
charged microparticle from the point of view of John Wheel-

er’s geometrodynamic concept. Wheeler’s concept assumes
that charged microparticles are singular points on a topolog-
ically non-unitary coherent two-dimensional surface of our
world, connected by a “wormhole”, a vortex tube or a current
line of the input-output kind in an additional dimension, gen-
erally forming a closed counter. According to the mechanistic
interpretation of Wheeler’s idea when the contour (proton-
electronic, for example) is opened individual charged parti-
cles retain part of the contour vortex tube (boson mass) whose
momentum is numerically equal to the charge [4, 5]. In these
works formulas are derived for the vortex tube parameters: its
boson mass my, the circulation velocity of the medium along
the contour v, the radius r, and the length ly:

my = (an)2 me , (1)

v =
c1/3

0

(an)2 c , (2)

r =
c2/3

0

(an)4 re , (3)

ly = (an)2re , (4)

where n is the principal quantum number of the contour, a is
the inverse of the fine structure constant, me and re are the
mass and classical radius of the electron, c0 is the dimen-
sionless speed of light equal to c/[m/sec]. Depending on the
size of the contour, i.e. from its quantum number, its param-
eters vary, but the momentum (charge equivalent) in a closed
counter remains constant. At the same time, both the contour
size and the parameters of the vortex tube have their ultimate
values.

In [6], in determining the neutrino mass, it was shown that
the Planck size rh = (~γ/c3)1/2 has a physical meaning and is
the limiting size inherent in the neutrino, and, obviously, in
general for the microcosm, i.e. rmin = rh = 1.62 × 10−35 m
or 5.74 × 10−21 re. Then from (1) and (3) we get other ul-
timate values: n = 21700 and my = 8.83 × 1012 me. The
boson mass is compared with that of mass-energy in units of
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mec2, provided that v → c (here the boson mass can be con-
sidered as the mass of the excited or “associated” vacuum). It
is this condition that is satisfied for cosmic rays whose parti-
cles relative to their source move with velocities close to the
speed of light. Thus, the energy equivalent of the mass my is
E = 8.83 × 1012 × 511000 = 4.51 × 1018 eV.

This quantity is the ultimate energy for cosmic-ray pro-
tons. Obviously, for heavier nuclei, the energy increases in
proportion to the atomic number A. This conclusion agrees
with the fact of “weight increasing” the primary cosmic ray
component with increasing energy, and the heavy nuclei flux
(most likely iron) in the region of ∼ 1018 eV is much larger
than that of protons [7–9]. Consequently, the largest energy
value for the heaviest nuclei can not exceed E ∼ 3.7 × 1020

eV and even higher values, apparently, can not be. Indeed,
during the entire time of observation on Earth, only a few
dozen events with energies above 1020 eV were recorded in
various installations (the maximum energy of the cosmic par-
ticle 3×1020 eV was registered in October 1991 on the “Fly’s
Eye” device [10]).

The figure adopted from [11] shows the observed spec-
trum of cosmic radiation, on which the energy limits for pro-
tons (II) and heavy nuclei (III) are noted (the values along
the ordinate are reduced to the energy in GeV). The region
of the graph is marked, where the intensity of cosmic rays is
about 1 particle per square meter per year. A narrow scatter of
the experimental data over the entire length of the spectrum,
with the exception of the region of ultrahigh energies, gives
grounds to assume that the intensity of cosmic rays depends
slightly on the nature of their sources and the mechanism for
their acceleration, and this can be shown.

Fig. 1: The observed spectrum of cosmic radiation in the energy
range 108–1020 eV.

Let us assume that the particle velocity increases propor-
tionally to the distance from the source, and the number of

particles falling per unit area of the receiver is inversely pro-
portional to the cube of the distance from the source. This is
true in the case of unimpeded particle propagation. Then, by
simple computations, we obtain a relation that is independent
of the distance:

I = (Em/E)1.5 Im , (5)

where Em and Im are the coordinates of some reference point
on the I(E) dependence in units of [eV] and [flux × m−2 ×

sr−1 × sec−1]. When the ordinates are divided by energy in
GeV, formula (5) becomes:

I = 109 (E1.5
m /E2.5) Im (6)

and shown in the figure with a dashed line. The actual de-
pendence is somewhat more steeply and approximated by the
relation dI/dE ∼ E−2.7, which is explained by the presence of
magnetic fields and other cosmogenic factors affecting charg-
ed particles. Nevertheless, it turns out that the shape of the
energy spectrum is largely determined by the increase in the
particles energy and the decrease in their number as radiation
sources are removed from the Earth.

In the energy range 1015–1016 eV, the dependence I(E)
undergoes an inflection increasing index at E, the so-called
“knee”. The energy value at the inflection point matches with
the mass-energy of the contour corresponding to the ultimate
size of the hydrogen atom. For this atom, the ultimate value of
the quantum number n = 390 [5]. In general, detailed formula
for the inflection point energy, given the results of [5], and
assuming that the energy increases in proportion to the atomic
number of nuclei can be represented as:

Eknee = 5.11 × 105

2πγρemp × [sec2]

c1/3
0 cos qw

2 A =

= 1.46 × 1015 × A eV, (7)

where γ is the gravitational constant, ρe = me/r3
e is the elec-

tron density equal to 4.07×1013 kg/m3, mp is the relative mass
of the proton, and qw is the Weinberg angle of 28.7◦.

For protons, this energy value is indicated in the figure by
the vertical (I), which matches with the beginning of the in-
flection of the energy spectrum. The removal of the inflection
point towards higher energies for heavier nuclei is confirmed
in [12].

One can propose the following explanation for the in-
crease in the energy spectrum incline. At energies up to 1.46×
1015 eV (n < 390), protons and electrons in cosmic rays can
be in a bound state — either as atoms having a neutral charge
or in some associations that have a total positive charge less
than the protons total charge. It may reduce their interaction
with magnetic fields.

At higher energies, protons are not accompanied by elec-
trons, their total positive charge remains, and they are fully
exposed to magnetic fields. Perhaps this is the reason for the
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abrupt decrease in the number of electrons in the EAS when
primary particles have energies about 1015–1016 eV [13].

As for the neutrinos, then, bearing in mind their inherent
size limit of rh, their maximum energy, possible, can reach the
same value as that of the proton, 4.51 × 1018 eV. At the mo-
ment, the highest recorded neutrino energy is 2×1015 eV [14].

Conclusion

The ultimate energy of cosmic rays is limited by the maxi-
mum mass-energy of the proton vortex tube, which in turn
is determined by the fundamental parameter — the Planck
size inherent in a neutrino. The reason for the inflection of
the spectrum of cosmic rays (the “knee”) is the obtaining by
the proton of the energy at which a proton-electronic counter,
having ultimate quantum number, opens. For other nuclei
these energies increase in proportion to the atomic number
of the element.

It is shown that, for all on a variety of radiation sources
and the mechanism of acceleration of cosmic particles, the
shape of the spectrum of cosmic rays, provided that they
spread without interference, is largely determined by the most
common factors — the increase in their particle energy and
the decrease in their number — as the distance between the
sources and the Earth is increasing.

Submitted on June 24, 2017
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Here we focus on our previous studies, wherein we deduced the redshift formula in the
de Sitter metric space. The non-Newtonian gravitational forces of repulsion, acting in
the de Sitter universe, increase with distance. Thus these forces produce the redshift
effect on photons coming from distant objects. The redshift in the de Sitter universe
increases with distance from the observed objects, and is hyperbolic that matches with
the non-linear redshift recently registered by astronomers. As a result, we no longer
need the expanding model of the Friedmann metric to correctly explain the redshift in
the spectra of galaxies and quasars. The observed “cosmological” redshift is as well
good explained in the de Sitter universe which is stationary as is well known.

Earlier, we studied the metric of the inner space of a liquid
sphere — the sperical space filled with an ideal incompress-
ible liquid (the so-called Schwarzschild 2nd metric). The ob-
tained results were published in all necessary detail in [1–3].
In particular, in our book Inside Stars [2] we considered stars
as liquid spheres. Our computations made by the mathemat-
ical methods of the General Theory of Relativity showed a
good coincidence with the observational data known in as-
tronomy. We also showed, in the journal papers [1, 2] and
in §1.2 of the book Inside Stars [2], that the liquid sphere
metric transforms into the de Sitter metric (the metric of a
spherical space fulled with physical vacuum) under the fol-
lowing two common conditions. First, under the gravitational
collapse condition, when the radius of the liquid sphere be-
comes equal to its gravitational radius (i.e. when the liquid
sphere becomes gravitational collapsar). And second, when
the space-time breaking matches with the radius of the liq-
uid sphere. We also showed that the observed Universe is
equivalent to a sphere in the state, which is very close to
gravitational collapse (See Chapter 6 in [2] for detail). Thus
the space of our Universe can be described by the metric
of the de Sitter vacuum sphere. This means, in particular,
that the non-Newtonian gravitational forces acting in the de
Sitter metric space must manifest themselves in some astro-
nomical phenomena observed in our Universe (read about
the non-Newtonian forces of gravitational attraction and re-
pulsion in §5.5 of our book Fields, Vacuum and the Mirror
Universe [4]). For example, the non-Newtonian gravitational
forces may also be the source of the observed redshift in the
spectra of galaxies and quazars.

Now, this observed phenomenon is known as the “cos-
mological redshift” due to Lemaı̂tre who in 1927 showed [5]
that such redshift may be originated due the Doppler effect on
photons in an expanding universe (the universe of the Fried-
mann metric). On the other hand, proceeding from the afore-
mentioned theoretical results [1–3] we can now state that the
observed redshift in the spectra of galaxies and quazars has
no relation to cosmology but is the “effect of distance” in the

stationary universe of the de Sitter metric. Such a redshift
formula was derived in our publications [1–3]. But because
those publications were focused on the internal constitution
of stars, the redshift effect in the de Sitter space was not em-
phasized and analysed properly.

We now aim to emphasize it for better understanding of
the obtained result.

The redshift formula is derived by integration of the scalar
geodesic equation for photons. There are the scalar geodesic
equation and the vectorial geodesic equation. They are the
respective projections of the four-dimensional geodesic equa-
tion (the equation of motion along the shortest/geodesic lines)
onto the time line and the three-dimensional spatial section
of the observer. The scalar geodesic equation, the projection
onto the time line, is the equation of energy. The vectorial
geodesic equation is the equation of three-dimensional mo-
tion. So, integrating the scalar geodesic equation of a photon
along its path, we obtain how its energy and, hence, its fre-
quency changes during its travel. As a result, we obtain the
redshift formula. As a matter of fact that the geodesic equa-
tions and, hence, their integration, depends on the metric of
the particular space wherein the photons travel.

The three-dimensional sub-space of the de Sitter space
(space-time) does not rotate and deform. But there is the grav-
itational inertial force. This force acting inside a sphere filled
with physical vacuum, i.e. in the de Sitter space, in the radial
coordinates takes the form (5.74) [4, §5.5]

F =
λc2

3
r =

c2

a2 r ,

where λ = κρ0 is the Einstein cosmological constant, κ is the
Einstein gravitational constant, while ρ0 is the density of the
physical vacuum that fills the de Sitter space (see §5.3 [4]).

The Hubble constant H = (2.3± 0.3) × 10−18 sec−1 is ex-
pressed through the radius of the Universe a = 1.3 × 1028 cm
as H = c/a. Thus, we obtain (6.11) [1]

F = H2r ,
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where the Hubble constant plays the rôle of a fundamental
frequency

H =
2π
T

expessed through the time T of the existence of the Universe.
So, the gravitational inertial force F acting in the de Sitter
space depends the Hubble constant H.

Because F > 0 in the de Sitter space, this is a force of
repulsion. This force is proportional to the radial distance r
to the observer: each system of reference is connected with
its own observer and his reference body, which is the “centre”
of his own universe.

Consider the scalar and vectorial geodesic equations for a
photon. This is the system of equations (6.22) [2]. Because
the de Sitter space does not rotate and deform, the equations
take the simplified form (6.23), where the photon is affected
by only the gravitational inertial force and the space non-
uniformity (expressed with the Christoffel symbols). Integrat-
ing the scalar geodesic equation (the equation of energy) for
the photon travelling along the radial coordinate r in the de
Sitter space, with taking the vectorial geodesic equation, we
obtain the formula of the photon’s frequency ω (6.27) [2]

ω =
ω0√

1 − r2/a2
,

where ω0 =ω(r= 0) is the photon’s frequency in the coordi-
nate origin r= 0 (where the observer is located). We see that
the photon’s frequency is asymptotically increasing when the
photon’s source approaches to the event horizon (radius) of
the Universe (r= a).

At distances much shorter than the Universe’s radius i.e.
much shorter than the event horizon of the Universe (r ≪ a),
the formula for the photon’s frequency becomes (6.28)

ω ≃ ω0

(
1 +

r2

2a2

)
.

That is we get the quadratic additive to the initially frequency
of the photon or, in another word, the redshift effect z of
parabolic type (6.29–6.31)

z =
ω − ω0

ω0
=

1√
1 − r2/a2

− 1 ≃
r2

2a2 > 0 ,

which, in terms of the Hubble constant H = c/a, is

z ≃
H2r2

2c2 .

As is seen, the photon frequency shift is positive in this case:
z > 0 (otherwise it would be blueshift). This means that the
redshift effect takes place in the de Sitter universe. The space
of the de Sitter metric is stationary: it neither expands nor
compresses. The redshift effect in the de Sitter universe is
due to the non-Newtonian gravitational force of repulsion.

In the last decades, astronomical observations of the most
distant galaxies showed an increase of the redshift effect in
the spectra of the most distant galaxies, which are located
close to the event horizon. The astronomers supposed there-
fore, on the basis of the Friedmann metric of an expanding
universe, that the space of our Universe expands with accel-
eration. On the other hand, the non-linear redshift at large
distances is easily explained in the framework of the de Sitter
static universe: see formula for z that above. This non-linear
effect is due to only the non-linearity of the non-Newtonian
gravitational force of repulsion acting on the photon. From
the viewpoint of an earthy observer this effect looks as the in-
creasing redshift with the increasing distance from the Earth
to the observed object (the source of the photon).*

The observed high redshift in the spectra of quazars is
as well explained due to the powerful inner non-Newtonian
forces of repulsion (not the far intergalactic distances in the
Friedmann expanding universe). As we conclude on the ba-
sis of our book Inside Stars [2], the ratio of the gravitational
radius and the space breaking radius to the physical radius a
(i.e. the ratio rg/a and rbr/a) is close to 1 for neutron stars
and quazars. If a star is in the state of gravitational collapse,
the space breaking matches with both the gravitational radius
of the star rg and the star’s surface a, i.e. a = rg = rbr. If the
space breaking matches with only the star’s surface (rbr = a),
gravitational collapse occurs at the radius

rc =

√
9a2 – 8a3/rg

(2.7) in [1]. The physical radius a of such a star is

rg < a < 1.125 rg

see (2.8 – 2.9) in [1]. In other words, neutron stars and qua-
zars are objects in the state, which is very close to collapse.
The latter means that the inner non-Newtonian gravitational
force of repulsion is so strong near the surface of a neutron
star or a quazar that photons emitted from its surface into the
cosmos bear a high redshift independent on the distance from
the observer. For this reason, quazars may be located not
somewhere near the event horizon of our Universe, but some-
where much much closer to us.

In the end, a few words about our Universe as a whole.
According to the contemporary astronomical data, its average
density is ∼ 10−29 g/cm3, while the ultimate large observed
distance (the radius of the Universe, or the event horizon) is
∼ 1.3 × 1028 cm. With such characteristics, the collapse ra-
dius is ∼ 1.2 × 1028 cm (a little lesser than the event horizon,

*This conclusion on the unnecessity of the Friedmann metric meets
another study [6–8] showing that the observed redshift, including its non-
linearity, may be caused by the light-speed rotation of the isotropic space (the
partially degenerate space, wherein light-like particles e.g. photons travel).
The found basic redshift effect in a flat space has the form of exponent, while
the paticular space metrics make only an additional goal to it.
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while the space breaking radius is the same as the event hori-
zon ∼ 1.3 × 1028 cm. These observed facts mean that we live
in the inner space of an object which is either collapsar or is
in the state which is very close to the state of collapse. The
description of such an object anyhow excludes the expanding
model. That is the Friedmann metric of an expanding uni-
verse is non-applicable to the observed Universe.

Finally, the observed non-linear redshift in the spectra of
galaxies and quazars is well explained in the de Sitter station-
ary space, wherein it is merely a “distant effect” due to the
non-Newtonian forces of repulsion which increase with dis-
tance from the observer. The de Sitter universe is stationary
— it is a bubble that has closed space and time on itself, and
is floating in the surrounding outer space (because we have
no reason to assert that our Universe exists in isolation as an
exceptional object).

Submitted on December 5, 2017
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The Interacting Boson Approximation model, IBA-1, has been used in studying the nu-
clear structure of 154,156Dy. The excited positive and negative parity states, potential
energy surfaces, V(β, γ), electromagnetic transition probabilities, B(E1), B(E2), back
bending, staggering effect, ∆I = 1, and electric monopole strength, X(E0/E2), were
calculated successfully. The calculated values are compared to the available experi-
mental data and show reasonable agreement. The energy and electromagnetic transition
probabilities ratios as well as the contour plot of the potential energy surfaces show that
the 156Dy nucleus is an X(5) candidate.

1 Introduction

The nuclear shape and shape phase transitions in the rare
earth dysprosium isotopes have been investigated by many
authors theoretically and experimentally. Theoretically, an-
alytical solution of the Bohr Hamiltonian derived with the
Titz-Hua potential [1] as well as Bohr-Mottelson Hamilto-
nian [2,3] were used in calculating energy levels, spin, parity
and electromagnetic ratios. The effect of the nuclear struc-
ture on the α-decay are investigated by many authors [4-6]
and found that the shape and deformation has an effect on
the branching ratio as well as the change in the half-life of
α-emission. Experimentally, the low-lying positive and nega-
tive parity states were produced in the 148Nd (12C,4n), 155Gd
(3He,4n), E= 37.5 MeV, 122Sn (36S,4n), E= 165 MeV and
114Cd (48Ca,6n), E= 215 MeV [7-9] reactions. The levels’
energy, spin, parity, γ-bands, branching ratios, level energy
differences between the positive and negative parity bands,
octupole deformation, γ-γ coincidences and angular distribu-
tion were measured. Conversion electrons were detected by
mini-orange spectrometer, E0 transitions were observed and
the strength of the electric monopole transitions were calcu-
lated [10].

X(5) is the critical point symmetry of phase transition be-
tween U(5) and SU(3) nuclei. The aim of the present work is
to:

1. Calculate the potential energy surfaces, V(β, γ);

2. Calculate the levels’ energy and electromagnetic tran-
sition rates B(E1) and B(E2);

3. Show X(5) symmetry to 156Dy;

4. Calculate the back bending;

5. Calculate the staggering effect, and

6. Calculate the electric monopole strength,
X(E0/E2).

2 Interacting Boson Approximation model IBA-1

2.1 Levels’ energy

The IBA-1 Hamiltonian [11] employed on 154,156Dy, in the
present calculation, is:

H = EPS · nd + PAIR · (P · P)

+
1
2

ELL · (L · L) +
1
2

QQ · (Q · Q)

+ 5 OCT · (T3 · T3) + 5 HEX · (T4 · T4) ,

(1)

where

P · P = 1
2


{
(s†s†)(0)

0 −
√

5(d†d†)(0)
0

}
x{

(ss)(0)
0 −

√
5(d̃d̃)(0)

0

}


(0)

0

, (2)

L · L = −10
√

3
[
(d†d̃)(1)x (d†d̃)(1)

](0)

0
, (3)

Q · Q =
√

5


{
(S †d̃ + d†s)(2) −

√
7

2
(d†d̃)(2)

}
x{

(s†d̃ + +d̃s)(2) −
√

7
2

(d†d̃)(2)
}


(0)

0

, (4)

T3 · T3 = −
√

7
[
(d†d̃)(2)x (d†d̃)(2)

](0)

0
, (5)

T4 · T4 = 3
[
(d†d̃)(4)x (d†d̃)(4)

](0)

0
. (6)

and nd is the number of d bosons; P · P, L · L, Q · Q, T3 · T3
and T4 ·T4 represent pairing, angular momentum, quadrupole,
octupole and hexadecupole interactions respectively between
the bosons; EPS is the boson energy; and PAIR, ELL, QQ,
OCT , HEX are the strengths of the pairing, angular momen-
tum, quadrupole, octupole and hexadecupole interactions re-
spectively, Table 1.
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nucleus EPS PAIR ELL QQ OCT HEX E2SD(eb) E2DD(eb)
154Dy 0.6240 0.000 0.0084 −0.0244 0.0000 0.0000 0.1510 −0.4467
156Dy 0.4450 0.000 0.0084 −0.0244 0.0000 0.0000 0.1274 −0.3769

Table 1: Parameters used in IBA-1 Hamiltonian (all in MeV).

nucleus E4+1
/E2+1

E6+1
/E2+1

E8+1
/E2+1

E0+2
/E2+1

E6+1
/E0+2

E0+3
/E2+1

BE2(4+1 − 2+1 )/BE2(2+1 − 0+1 )
154Dy 2.09 3.12 4.86 2.12 1.46 2.95 1.91
156Dy 2.86 5.36 8.43 6.15 0.87 8.78 1.56

X(5) 3.02 5.83 9.29 5.65 1.53 6.03 1.58

Table 2: Energy and transition probability ratios.

2.2 Transition rates

The electric quadrupole transition operator employed is:

T (E2) = E2SD · (s†d̃ + d†s)(2) +

+
1
√

5
E2DD · (d†d̃)(2) .

(7)

E2SD and E2DD are adjustable parameters.
The reduced electric quadrupole transition rates between

Ii → I f states are given by:

B (E2, Ii − I f ) =
[< I f ∥ T (E2) ∥ Ii >]2

2Ii + 1
. (8)

3 Results and discussion

3.1 The potential energy surfaces

The potential energy surfaces [12], V(β, γ), as a function of
the deformation parameters β and γ are calculated using:

ENΠNν (β, γ) = <NπNν; βγ |Hπν|NπNν; βγ> =

= ζd(NνNπ)β2(1 + β2) + β2(1 + β2)−2×

×
{
kNνNπ[4 − (X̄πX̄ν)β cos 3γ]

}
+

+

{
[X̄πX̄νβ2] + Nν(Nν − 1)

(
1
10

c0 +
1
7

c2

)
β2

}
,

(9)

where

X̄ρ =
(

2
7

)0.5
Xρ , ρ = π (proton) or υ (neutron) , (10)

and ζd : the energy of d bosons.
The calculated potential energy surfaces, V(β, γ), are pre-

sented in Figs. 1, 2. Fig. 1 shows that 154Dy is a vibration-
al-like nucleus, U(5), while 156Dy nucleus is deviated from
vibrational-like to rotational-like with slight prolate deforma-
tion, SU(3), Fig. 2. The levels’ energy, transition probability
ratios presented in Table 2, as well as the potential energy sur-
faces, are in favour to consider 156Dy as an X(5) candidate.

I+i I+f B (E2) I−i I+f B (E1)

21 01 0.4744 11 01 0.0282
22 01 0.0100 11 02 0.1336
22 02 0.3040 31 21 0.1683
31 21 0.0198 31 22 0.0658
41 21 0.9074 32 21 0.0069
31 22 0.2666 32 22 0.0235
42 41 0.1409 32 23 0.1520
42 21 0.0017 51 41 0.3035
42 22 0.5520 51 42 0.0698
61 41 1.1581 71 61 0.4380
62 41 0.0005 71 62 0.0665
62 42 0.8200 91 81 0.5734
81 61 1.2916 91 82 0.0610
81 62 0.0700 92 81 0.1750
81 63 0.0641 92 82 0.3501
82 62 0.9584 92 83 0.2144
101 81 1.3384 111 101 0.7103
101 82 0.0579 111 102 0.0543

Table 3: Calculated B(E2) and B(E1) in 154Dy.

3.2 Energy spectra and electric transition rates

The energy of the positive and negative parity states of iso-
topes 154,156Dy are calculated using computer code PHINT
[11]. A comparison between the experimental spectra [13,14]
and our calculations, using values of the model parameters
given in Table 1 for the ground state, β1, β2, γ1 and γ2 bands
are illustrated in Figs. 3, 4. The agreement between the cal-
culated levels’ energy and their corresponding experimental
values are fair, but they are slightly higher especially for the
higher excited states. We believe this is due to the change of
the projection of the angular momentum which is due mainly
to band crossing. Fig. 5 shows the position of X(5) and E(5)
between the other types of nuclei.
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Fig. 1: Potential energy surfaces for 154Dy.

Fig. 2: Potential energy surfaces for 156Dy.

I+i I+f B (E2) I−i I+f B (E1)

21 01 0.7444 11 01 0.1309
22 01 0.0023 11 02 0.0696
22 02 0.4652 31 21 0.2353
31 21 0.0169 31 22 0.0854
41 21 1.1073 32 21 0.0481
31 22 0.0026 32 22 0.0092
42 41 0.0356 32 23 0.0110
42 21 0.0016 51 41 0.3934
42 22 0.0041 51 42 0.0778
61 41 1.2446 71 61 0.5149
62 41 0.0007 71 62 0.0675
62 42 0.9083 91 81 0.6377
81 61 1.3003 91 82 0.0585
81 62 0.0410 92 81 0.0129
81 63 0.0162 92 82 0.3474
82 62 0.9817 92 83 0.2687
101 81 1.3025 111 101 0.7631
101 82 0.0332 111 102 0.0507

Table 4: Calculated B(E1) and B(E2) in 156Dy.

Fig. 3: Experimental[13] and calculated levels’ energy.

Fig. 4: Experimental[14] and calculated levels’ energy.

Unfortunately there is no available measurements of elec-
tromagnetic transition rates B (E2) for 154,156Dy nuclei. The
only measured values of B (E2, 2+1 → 0+1 ) for 154,156Dy [15]
are used in normalizing our calculated values presented in
Tables 3, 4. Also, there is no experimental data available
for B (E1, I−→ I+) for normalization. Parameters E2SD and
E2DD displayed in Table 1 are used in the computer code
FBEM [11] for calculating the electromagnetic transition ra-
tes. No new parameters are introduced for calculating elec-
tromagnetic transition rates B (E1) and B (E2) of intraband
and interband.

3.3 Staggering effect

The presence of positive and negative parity states has en-
couraged us to study the staggering effect [16] for 154,156Dy
isotopes using staggering functions (11) and (12) with the
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Fig. 5: Triangle showing the position of X(5) and E(5).

Fig. 6: Staggering effect on 154Dy and 154Dy.

help of the available experimental data [13,14].

S t (I) = 6∆E (I)− 4∆E (I − 1)− 4∆E (I + 1)+

+∆E (I + 2) + ∆E (I − 2) ,
(11)

with
∆E (I) = E (I + 1) − E (I) . (12)

The calculated staggering patterns are illustrated in Fig. 6
and show an interaction between the positive and negative
parity states for the ground state band of 154,156Dy.

3.4 Back bending

The moment of inertia J and energy parameters ℏω are calcu-
lated using (13) and (14):

2J
ℏ2 =

4I − 2
∆E(I → I − 2)

, (13)

(ℏω)2 = (I2 − I + 1)
[
∆E(I → I − 2)

(2I − 1)

]2

. (14)

The plots in Fig. 7 show forward bending for 154Dy at
I+ = 18 and upper bending at I+ = 22 for 156Dy. Bending in
higher states may be explained as due to band crossing.

Fig. 7: Back bending 154Dy and 156Dy.

I+i I+f I+′ f
154Dy 156Dy

02 01 21 0.0778 0.3526
03 02 22 0.2455 0.0285
03 01 22 0.0108 6.9000
04 03 23 0.1403 0.0000
04 02 23 0.0363 1.7686
04 01 23 0.0247 0.1903
22 21 02 2.4500 1.3870
23 21 02 0.2679 0.0454
23 22 02 0.1114 2.2727
43 41 23 0.0434 0.0785
43 42 23 0.0193 1.4117
44 41 23 0.0303 0.3177
44 42 23 5.3636 0.254
42 41 22 0.2384 0.0027
62 61 42 0.2422 0.1347
82 81 62 0.0609 0.0173
102 101 82 0.0337 0.0134

Table 5: Xi f ′ f (E0/E2) ratios in 154,156Dy.

3.5 Electric monopole transitions

The electric monopole transitions, E0, are normally occurring
between two states of the same spin and parity by transferring
energy and zero unit of angular momentum. The strength of
the electric monopole transition, Xi f ′ f (E0/E2) [17] can be
calculated using (15) and (16) and are presented in Table 5

Xi f ′ f (E0/E2) =
B (E0, Ii − I f )
B (E2, Ii − I′ f )

, (15)

where Ii = I f=0, I′ f=2 and Ii= I f,0, I f = I′ f .

Xi f ′ f (E0/E2) = (2.54 × 109) A3/4
E5
γ(MeV)

ΩKL
×

×α(E2)
Te(E0, Ii − I f )
Te(E2, Ii − I′ f )

,

(16)

Salah A. Eid and Sohair M. Diab. Nuclear Structure of 154,156Dy Isotopes 33



Volume 14 (2018) PROGRESS IN PHYSICS Issue 1 (January)

A : mass number;
Ii : spin of the initial state where E0 and E2 transitions are
depopulating it;
I f : spin of the final state of E0 transition;
I′ f : spin of the final state of E2 transition;
Eγ : gamma ray energy;
ΩKL : electronic factor for K, L shells [18];
α(E2) : conversion coefficient of the E2 transition;
Te(E0, Ii − I f ) : absolute transition probability of the E0 tran-
sition between Ii and I f states; and
Te(E2, Ii − I′ f ) : absolute transition probability of the E2 tran-
sition between Ii and I′ f states.

Unfortunately, there is no experimental data available for
comparison with the calculated values.

3.6 Conclusions

The IBA-1 model has been applied successfully to 154,156Dy
isotopes and:

1. Levels’ energy are successfully reproduced;

2. Potential energy surfaces are calculated and show vib-
rational-like characteristics to 154Dy and slight prolate
deformation to 156Dy;

3. Electromagnetic transition rates B (E1) and B (E2) are
calculated;

4. Bending has been observed at I+= 18 for 154Dy and at
I+= 22 for 156Dy ;

5. Staggering effect has been calculated and beat patterns
observed which show an interaction between the posi-
tive and negative parity states;

6. Strength of electric monopole transitions Xi f ′ f (E0/E2)
are calculated; and

7. The potential energy surfaces, transition probability ra-
tes and energy show that 156Dy has the X(5) symmetry.
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Our numerical studies demonstrate a spectral analogue of soliton-effect self-
compression for different initial pulses. The evolution of transform-limited pulses dur-
ing the propagation in a single-mode fiber with anomalous dispersion is studied. It is
shown that the spectral analogue of soliton-effect self-compression is realized in the
case of different initial pulses: periodicity of the spectral compression and stretching
is different for different initial pulses. The approximation of curves introducing the
frequency of the spectral compression and stretching dependence on nonlinearity pa-
rameter is implemented.

1 Introduction

The spectral compression (SC) process has numerous inter-
esting applications in ultrafast optics and laser technology [1–
5], such as the spectrotemporal imaging of ultrashort pulses
by means of Fourier transformation [1]. In [5], the authors
offer to apply SC in a fiber laser instead of strong spectral
filtering. This allows to obtain transform-limited pulses and
benefits the laser’s power efficiency. As another practical ap-
plication of SC, it is important to mention the transfer of fem-
tosecond pulses without distortion at a relatively large dis-
tance [6]. Diverse applications of SC remain urgent in rela-
tion to the development and analysis of new effective com-
pression systems. For example, in [7] the compression effi-
ciency is improved by means of amplitude modulation.

The traditional spectral compressor consists of prism as a
dispersive delay line, where the pulse is stretched and nega-
tively chirped, and single-mode fiber (SMF) with the normal
group-velocity dispersion, where nonlinear self-phase modu-
lation leads to the chirp compensation and spectral narrow-
ing. At the wavelength range of <1.3 µm, the group-velocity
dispersion is positive for standard silica fibers. The role of
the normal dispersion in SC of subpicosecond laser pulses
is analyzed in [8]. As it is known, the combined impact
of negative dispersion and the nonlinear self-phase modula-
tion leads to the formation of solitons in SMF [9, 10], when
the impact of dispersion and nonlinear self-phase modula-
tion balance each other out. The pulse self-compression phe-
nomenon is also known [11], which is obtained when the im-
pact of the nonlinear self-phase modulation exceeds the dis-
persion. Under the opposite condition, i.e. when the impact
of dispersion exceeds the nonlinearity, we can expect spec-
tral self-compression (self-SC) by the analogy of the pulse
self-compression. Recently, the self-SC implementation di-
rectly in a fiber with negative group-velocity dispersion (at
the wavelength range ≥1.3 µm for standard silica fibers) was
proposed [12] and studied [13]. In this work, we carried
out detailed numerical studies on the process of soliton-effect
self-SC for different initial pulses. Simulations were carried
out for initial Gaussian and secant-hyperbolic pulses. We

have shown the soliton-effect self-SC in the fiber “directly”,
without dispersive delay line, in the fiber with anomalous dis-
persion for different initial pulses. It is shown that there is
an analogy between the processes of soliton self-compression
and soliton-effect self-SC for different initial pulses: the pe-
riodicity of the process changes in the case of different initial
pulses. The studies show that the periodicity of the process
decreases when the nonlinearity parameter reduces. Our de-
tailed study has shown that the frequency of compression has
polynomial and exponential approximations.

2 Numerical studies and results

In the SMF, the pulse propagation is described by the nonlin-
ear Schrödinger equation for normalized complex amplitude
of field, considering only the influence of group-velocity dis-
persion and Kerr nonlinearity [14]:

i
∂ψ

∂ζ
=

1
2
∂2ψ

∂η2 + R |ψ2|ψ (1)

Fig. 1: The 3D map of the propagation of Gaussian (a, b) and secant-
hyperbolic (c, d) pulses and its spectra. Ω = (ω − ω0)/∆ω0.
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Fig. 2: The peak values of spectra (1) and pulses (2) vs fiber length for initial Gaussian (a) and secant-hyperbolic (b) pulses.

where ζ = z/LD is the dimensionless propagation distance,
η = (t − z/u)/τ0 is the running time, which are normalized
to the dispersive length LD = τ2

0/|k2| (k2 is the coefficient
of second-order dispersion), and initial pulse duration τ0, re-
spectively. The nonlinearity parameter R is given by the ex-
pression R = LD/LNL, where LNL = (k0n2I0)−1 is the non-
linearity length, n2 is the Kerr index of silica, I0 is the peak
intensity. The first and second terms of the right side of (1) de-
scribe the impact of group-velocity dispersion and nonlinear-
ity, respectively. We use the split-step Fourier method during
the numerical solution of the equation, with the Fast Fourier
Transform algorithm on the dispersive step [15, 16].

The objective of our numerical studies is the soliton-effect
self-SC, which takes place when the dispersive length in the
fiber is shorter than the nonlinear length (LD < LNL, i.e.
R < 1). Therefore, at first, the group-velocity dispersion
stretches the pulse by acquiring a chirp. Afterwards, the ac-
cumulated impact of nonlinear self-phase modulation leads
to the compensation of the chirp. As a result, the spectrum
is compressed. The process has periodic character. We study
the pulse behavior in a fiber with negative group-velocity dis-
persion for different initial pulses and different values of the
nonlinearity parameter and fiber length.

Fig. 1 illustrates the process of propagation of Gaussian
(a, b, R = 0.6) and secant-hyperbolic (c, d, R = 0.4) pulses
and their spectra. In this case, we study the process for short
fiber lengths where the efficiency of the process is high for
the nonlinearity parameter values of R = 0.6 (Gaussian pulse)
and R = 0.4 (secant-hyperbolic pulse). It can be observed that
the pulse is stretched and the spectrum is compressed in the
initial propagation step. Afterwards, the width of central peak
of the spectrum decreases and the main part of the pulse en-
ergy goes to the spectral satellites. At the certain fiber length,
the reverse process starts the pulse self-compression.

The process can be explained in the following way: in the
initial propagation step the spectrum is compressed, which
leads to the decreasing of dispersion impact. As a result, the
dispersive length increases, therefore, the nonlinearity param-
eter also increases. When the condition R > 1 is satisfied
(LD > LNL), the pulse is compressed. Then, the spectrum is

Fig. 3: The K (1) and self-SC (∆Ω0/∆Ω) (2), Imax(Ω)/I0(Ω) (3) vs
fiber length for initial Gaussian pulse.

stretched, which leads to the increasing of dispersion impact
(the decreasing of LD and R). When the condition R < 1 is
satisfied (LD < LNL), the spectrum is compressed.

The process, which is described above has periodic char-
acter, but in the case of every next cycle, the quality of the
SC is worse than in the case of the previous SC as spectral
satellites increase within propagation.

Fig. 2 shows the peak value of spectra (1) and pulses
(2) for initial Gaussian (a) and secant-hyperbolic (b) pulses,
which shows that the process has a periodic character not only
for Gaussian pulses but also for secant-hyperbolic pulses. The
difference between Gaussian and secant-hyperbolic pulses is
the speed of the process: as we see in Fig. 2, every next
spectrum compression occurs in the short distance in the case
of Gaussian pulses in comparison with the case of secant-
hyperbolic pulses.

As we see in Fig. 2, the peak value decreases within the
distance which is conditioned by the fact that the energy of
spectral satellites increases. This fact is proved by the coeffi-
cient of SC quality, K, (the ratio of the energy in the central
part of pulse to the whole energy). As we see in Fig. 3, the
coefficient of SC quality decreases within the fiber length.

In the process of propagation, the behavior of the spec-
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Fig. 4: The frequency vs nonlinearity parameter for initial secant-
hyperbolic (a) and Gaussian (b) pulses. The points correspond to the
numerical investigations, solid lines introduce the approximation of
results (Eqs. 2, 3) by all points, while the dotted lines correspond to
the approximation by last 3 points (Eqs. 4, 5).

trum is similar to the pulse behavior in the case of the soliton
compression. As it is known, the propagation of the high-
order solitons have periodic character with a (π/2)LD period-
icity. On the distance equal to the periodicity, at first pulse
is compressed, then it is stretched taking initial shape. In
our case, the spectrum has similar behavior. However, due
to the incomplete cancellation of the chirp, the changing of
the spectrum does not have the strict periodic character. The
process is different from soliton compression due to the fact
that spectrum changes depend on a nonlinear phase, which
depends on the shape of the pulse. In the case of soliton
propagation, the changes of the pulse depend on a dispersive
phase, which depends on neither spectral nor temporal shape
of the pulse.

The study shows that the periodicity of the SC and stretch-
ing decreases with the reduction of nonlinearity parameter
(Fig. 4). It is shown that there are polynomial (Eqs. 2, 3)
and exponential (Eqs. 4, 5) approximations of the curve intro-
ducing nonlinearity parameter dependent frequency (Fig. 4),
which is the frequency of the SC and stretching.

1/T = 1/
(
1.6 × 107 × 10−30R + 7821 × 10−4.79R

)
(2)

1/T = 1/
(
5.09 × 106 × 10−19.8R + 731.3 × 10−3.83R

)
(3)

1/T = 1/
(
0.004 × e3.08R

)
(4)

1/T = 1/
(
0.001 × e3.73R

)
(5)

3 Conclusion

Through the detailed study, we study the soliton-effect self-
SC for initial Gaussian and secant-hyperbolic pulses. The
process is realized in the fiber with a negative group-velocity
dispersion. The study shows that there is an analogy between
soliton self-compression and soliton-effect self-SC processes.
We show that the periodicity of the process decreases when
the nonlinearity parameter reduces. It is shown that the fre-
quency dependence on the nonlinearity parameter has poly-
nomial and exponential approximations.
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In this paper, we use the Lie algebra of the dual Poincaré dynamical group which when
acted upon by its coadjoint, displays energy momentum and spin as pure geometrical
quantities. When extended to the full group, one obtains negative mass species in ac-
cordance with our Janus Cosmological Model and the twin universe model conjectured
by A. Sakharov. Within a 5D Kaluza space, the theory leads to a new matter/antimatter
duality implying negative energy photons emitted on the negative domain of this twin
Universe. This accounts for the dark matter and dark energy which are thereof impos-
sibe to detect in our domain. Finally, we show that shifting to a Hermitean space-time
with an associated complex dynamic group yields imaginary energy, imaginary energy
and imaginary charges all embedded in a symplectic (complex) framework which re-
mains open to wide investigations.

Notations

Space time indices: m, n = 0, 1, 2, 3.
Space-time signature: −2.
Einstein’s constant: κ.

Introduction

Symplectic geometry relies on symplectic manifolds. Those
are said symplectic when they are endowed with a so-called
symplectic form that allows for the measurement of sizes of 2-
dimensional objects. In Riemannian geometry, the metric ten-
sor probes lengths and angles, whereas the symplectic form
measures areas.

The term symplectic was first coined by H. Weyl in 1939
as a substitute to rather confusing (line) complex groups and/

or Abelian linear groups. The relativistic symplectic mechan-
ics [1] was primarly developed by the french mathematician
J. M. Souriau from dynamic groups theory. It provides a new
description of energy, momentum and spin only in terms of
pure geometrical quantities. This arises from two objects: n-
dimensional space and its isometry group.

In what follows, we briefly describe its properties which
we apply to a particular cosmological model featuring two
types of masses and energies comparable to the twin Universe
originally conjectured by A. Zakharov.

1 The Janus Cosmological Model (JCM)

The main mathematical tool used here is the so-called “mo-
mentum map” which is inferred from the co-adjoint action of
the group on the dual of its Lie algebra. (The coadjoint of the
Lie group is the dual of the adjoint representation.) Applying
the technique of this coadjoint action leads to the appearance
of generalized linear and angular momenta: {energy E, 3-
momentum p, spin s}. The action of the group corresponds
to

M′ = L M TM + N TP TL − L P TN, (1)

P′ = L P, (2)

where P is the generalized energy-momentum 4-vector
E
p1
p2
p3

 , (3)

L is here the element of the Lorentz group and N is the boost
4-vector. In the classical treatment, one merely considers the
restricted Poincaré Group which is formed with orthochron-
ous components L0. Hence, the full Poincaré Group can be
written as (

λ L0 N
0 1

)
(4)

with λ = ±1.
We then obtain two kinds of matters an two kinds of pho-

tons with each an opposite mass and energy. This copes with
the Janus Cosmological Model (JCM) we developed earlier
[2–4]. Such a model involves particles with opposite masses
and energy. However, as shown by H. Bondi [5], the field
equations cannot sustain this duality due to the subsequent
and unmanageable “run away” effect. In short, General Rel-
ativity deals with positive masses that are attractive, while
negative masses would exhibit repelling forces. Therefore, if
one considers a couple (+m, −m), the negative mass escapes
and is “chased” by the positive one while at the same time
experiencing a uniform acceleration.

This issue can be evaded by considering a bi-metric (our
JCModel) within a single manifold M4 equipped with two
metric tensors (+)gµν and (−)gµν, which define two field equa-
tions [5]:

(+)Rµν −
1
2

(+)gµν
(+)R = κ

 (+)Tµν +

( (−)g
(+)g

)1/2
(−)Tµν

 , (5)

(−)Rµν −
1
2

(−)gµν
(−)R = κ

 (−)Tµν +

( (+)g
(+)g

)1/2
(+)Tµν

 . (6)
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Those time dependent and time independent solutions fit
the observational data.

2 Extension to a wider geometrical framework

We now turn consider an extension of the group to a five di-
mensional scheme so as to obtain an isometry group which
acts on the basic Kaluza space-time λ µ 0 φ

0 λ L0 N
0 0 1

 (7)

with µ = ±1 and λ = ±1.
By extending to the fifth dimension, the Noether theorem

induces an additional conserved scalar quantity which is read-
ily identified with the electric charge q.

The µ = −1 implies both the inversion of this charge and
the inversion of the fifth dimension, which is just the geomet-
rical expression of the matter-antimatter duality as primarly
shown by J. M. Souriau [6]. Therefore the physics ruled by
the dynamical group (7) exhibits straightforwardly the matter-
antimatter symmetry in the two domains with opposed mass
and energy. If we now add p-Kaluza-like dimensions, we ob-
tain the metric under the form:

ds2 = dx2
0 − dx2

1 − dx2
2 − dx2

3 − dξ2
1 − dξ2

2 − . . . − dξ2
p . (8)

This can be coupled to an isometry group

λ µ 0 . . . 0 0 φ1
0 λ µ . . . 0 0 φ2
. . . . . . . . . . . . . . . . . .
0 0 . . . λ µ 0 φp

0 0 . . . 0 λ µ N
0 0 . . . 0 0 1


(9)

with µ = ±1 and λ = ±1.
The electric charge is just one of the quantum charges.

Here again, the (µ = −1) terms reflect the C-symmetry: they
account for the classical matter-antimatter representation.
The (µ = −1; λ = −1) correspond to the PT -symmetry clas-
sically associated with the “Feynman antimatter” which is no
longer indentified with the “C-antimatter”. This is due to the
presence of the time reversal T inducing both the mass and
energy inversion. In other words, the group representation
(9) which is the basis of the JC Model, provides two distinct
types of antimatters:

— The C-type corresponding to Dirac’s antimatter.

— The PT -type corresponding to Feynman’s antimatter.

3 Remark about Andrei Sakharov’ scheme

In classical cosmology a severe problem remains, due to the
absence of observation of primordial antimatter. In 1967,

Sakharov suggested that the Universe comprises two dom-
ains: the actual Universe and its twin Universe, each con-
nected through a singularity [8–10]. Both are CPT -symmet-
rical. Since the mass inversion goes with T -symmetry, our
JC Model [3,4] corresponds to such CPT -symmetry. The so-
called twin matter becomes nothing but a copy of ordinary
particles with opposite masses and charges. If, as suggested
by Sakharov, positive masses are synthetized by positive en-
ergy quarks faster than the synthesis of negative masses from
positive energy antiquarks, then in the positive energy domain
we find:

— Remnant positive masses matter.

— The equivalent (ratio 3/1) of positive energy antiquarks.

— Positive energy photons.

In analogy to Sakharov’s ideas, the negative energy do-
main would be thus composed of:

— Remnant negative masses matter.

— The equivalent (ratio 3/1) of negative energy quarks.

— Negative energy photons.

As shown in [3,4], the negative material suitably replaces
both dark matter and so-called dark energy. Accordingly,
by emitting negative energy photons, the remnant negative
masses matter are genuinely invisible.

4 Remark about the Quantum Theory of Fields (QFT)

In QFT the time reversal operator is a complex operator which
can be linear and unitary, as well as antilinear and anti-unita-
ry. If chosen linear and unitary, this operator implies the exis-
tence of negative energy states, which are à priori banned by
QFT. In Weinberg [7], we quote: “In order to avoid this dis-
astrous conclusion, we are forced to conclude that T is anti-
linear and anti-unitary”. On page 104, Weinberg also writes:
“no examples are known of particles that furnish unconven-
tional representation of inversions, so these possibilities will
not be pursued further here”. Actually, this was true until
the discovery of the acceleration of the expanding universe
which implies the action of a negative pressure. As a pres-
sure is likened to an energy density, this new phenomenon
implies in turn the existence of negative energy states and as
a result, it questions QFT by itself. In the same manner, it also
raises some questions as to the validity of the so-called CPT
theorem and the vacuum instability. Indeed, classically, one
considers that a particle may loose energy through the emis-
sion of a photon, so that such a process would lead to negative
energy states. But if we consider that a negative mass parti-
cle emits negative energy photons, this process would lead to
stable zero energy state.

5 Extension of the method to a complex field

If one replaces the Minkowski coordinates {x0, x1, x2, x3}with
complex coordinates we may form the Hermitean Riemann
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metric:

ds2 = dx0
∗dx0 − dx1

∗dx1 − dx2
∗dx2 − dx3

∗dx3 . (10)

This metric is defined on a Hermitean manifold.
Lest us now consider the real matrix G

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (11)

and the complex Lorentz group defined as

∗LGL = G , (12)

∗L stands for the adjoint of L.
One can then easily show that the complex Poincaré group(

L N
0 1

)
(13)

is an isometry group of such a Hermitean space and can be
considered as a dynamic group. Surprizingly, all classical
(matrix) calculations can be extended to such complex frame-
work, by simply substituting the matrices ∗A to the transpose
matrices TA.

As a result, the complex momentum obeys the law:

M′ = L M ∗L + N ∗P ∗L − L P ∗N, (14)

P′ = L P, (15)

where ∗P is the complex energy momentum 4-vector. This ex-
tended physics grants the mass a complex nature implying the
possible existence of purely real masses ±m and purely imag-
inary masses: ±(−1)1/2 m. At the same time, such masses can
exchange imaginary photons whose energies are: ±(−1)1/2 E.

Conclusion

J. M. Souriau gave the first purely geometrical interpretation
of all classsical physics features, namely — energy, momenta,
and spin. When extended to higher dimensions it provides a
geometrical interpretation of the matter-antimatter duality. In
addition, one can notice that the complex approach of space
definition yields complex physical quantities. The physical
meaning of these complex quantities should demand further
scrutiny and as such remains a new open field of investiga-
tions.

Submitted on December 25, 2017
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In this paper we derive a profile of the Earth’s interior from our fractal model of matter
as chain system of harmonic quantum oscillators. Model claims are verified by geo-
physical data. Global scaling as model of quantum gravity is discussed.

Introduction

The origin of gravity is a key topic in modern physics. The
universality of free fall means that the gravity acceleration of
a test body at a given location does not depend on its mass,
physical state or chemical composition. This discovery, made
four centuries ago by Galilei, is confirmed by modern em-
pirical research with an accuracy of 10−11 - 10−12 [1–3]. A
century ago Einstein supposed that gravity is indistinguish-
able from, and in fact the same thing as, acceleration. In fact,
Earth’s surface gravity acceleration can be derived from the
orbital elements of any satellite, also from Moon’s orbit:

g =
4π2R3

(T · r)2 =
4π2(384399000 m)3

(2360591 s · 6371000 m)2 = 9.83 m s−2,

where R is the semi-major axis of Moon’s orbit, T is the or-
bital period of the Moon and r is the average radius of the
Earth. No data about the mass or chemical composition of
the Earth or the Moon is needed.

The 3rd law of Johannes Kepler describes the ratio R3/T 2

as constant for a given orbital system. Kepler’s discovery is
confirmed by high accuracy radar and laser ranging of the
movement of artificial satellites. The geocentric gravitational
constant [4] equals:

µ= 4π2R3/T 2 = 3.986004418(8) · 1014 m3s−2.

Kepler’s 3rd law is of geometric origin and can be derived
from Gauss’s flux theorem in 3D-space within basic scale
considerations. It applies to all conservative fields which de-
crease with the square of the distance and does not require the
presence of mass.

The orbital elements R and T are directly measured, while
µ= GM is an interpretation that provides mass as a source
of gravity and the universality of the big G. Both postulates
are essential in Newton’s law of universal gravitation and in
Einstein’s general theory of relativity.

Nevertheless, coincidence and causality is not the same
thing and Newton’s hypothesis about mass as source of grav-
ity could turn out to be a dispensable assumption.

In the case of mass as source of gravity, in accordance
with Newton’s shell theorem, a solid body with a spherically
symmetric mass distribution should attract particles outside it
as if its total mass were concentrated at its center. In contrast,

the attraction exerted on a particle should decrease as the par-
ticle goes deeper into the body and it should become zero at
the body’s center.

A boat at the latitude 86.71 and longitude 61.29 on the
surface of the Arctic Ocean would be at the location that is
regarded as having the highest gravitational acceleration of
9.8337 m/s2 on Earth. At higher or lower position to the cen-
ter of the Earth, gravity should be of less intensity. This con-
clusion seems correct, if only mass is a source of gravity ac-
celeration and if the big G is universal under any conditions
and in all scales.

The Preliminary Reference Earth Model [5] affirms the
decrease of the gravity acceleration with the depth. However,
this hypothesis is still under discussion [6–8].

In 1981, Stacey, Tuck, Holding, Maher and Morris [9,10]
reported anomalous measures (larger values than expected) of
the gravity acceleration in deep mines and boreholes. In [11]
Frank Stacey writes: “Modern geophysical measurements in-
dicate a 1% difference between values at 10 cm and 1 km
(depth). If confirmed, this observation will open up a new
range of physics”. In fact, gravity is the only interaction that
is not described yet by a quantum theory.

In [12] we have introduced a fractal model of matter as
a chain system of harmonic quantum oscillators. The model
statements are quite general, that opens a wide field of possi-
ble applications.

Already in [13] we could show that scale invariance is a
fundamental characteristic of this model. On this background
we proposed quantum scaling as model of particle mass gen-
eration [14] and we could show that particle rest masses co-
incide with the eigenstates of the system. This is valid not
only for hadrons, but for mesons and leptons as well. An-
dreas Ries [15] demonstrated that this model allows for the
prediction of the most abundant isotope of a given chemical
element.

In the framework of our model, physical characteristics of
celestial bodies can be understood as macroscopic quantized
eigenstates in chain systems of oscillating protons and elec-
trons [16]. This is also valid for accelerations. In [17] was
shown that the surface gravity accelerations of the planets in
the solar system correspond with attractor nodes of stability
in chain systems of protons and electrons.

Our model allows us to see a connection between the sta-
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bility of the solar system and the stability of electron and pro-
ton and consider global scaling as a forming factor of the solar
system. This may be of cosmological significance.

In this paper we derive a profile of the Earth’s interior
from our fractal model of matter as chain system of harmonic
quantum oscillators. Model claims are verified by geophysi-
cal data. Global scaling as model of quantum gravity is dis-
cussed.

Methods

In [13] we have shown that the set of natural frequencies of a
chain system of similar harmonic oscillators can be described
as set of finite continued fractions F , which are natural loga-
rithms:

ln (ω jk/ω00) = n j0 + z

n j1 +
z

n j2 + . . .
+

z
n jk

=

= [z, n j0; n j1, n j2, . . . , n jk] =F

(1)

where ω jk is the set of angular frequencies and ω00 is the fun-
damental frequency of the set. The denominators are integer:
n j0, n j1, n j2, . . . , n jk ∈Z, the cardinality j ∈N of the set and the
number k ∈N of layers are finite. In the canonical form, the
numerator z equals 1.

In the canonical form, for finite continued fractions, the
distribution density of the eigenvalues reaches maxima near
reciprocal integers 1, 1/2, 1/3, 1/4, . . . which are the attractor
points of the fractal set F of natural logarithms (fig. 1).

Fig. 1: The canonical form of F for k = 1 (above) and for k = 2
(below) in the range -16F 6 1.

Any finite continued fraction represents a rational num-
ber [18]. Therefore, all natural frequencies ω jk in (1) are irra-
tional, because for rational exponents the natural exponential
function is transcendental [19]. This circumstance provides
for high stability of eigenstates in a chain system of harmonic
oscillators because it prevents resonance interaction between
the elements of the system [20]. Already in 1987 we have ap-
plied continued fractions of the type F as criterion of stability
in engineering [21, 22].

In the case of harmonic quantum oscillators, the contin-
ued fractions F define not only fractal sets of natural angu-
lar frequencies ω jk, angular accelerations a jk = c ·ω jk, oscil-
lation periods τ jk = 1/ω jk and wavelengths λ jk = c/ω jk of the
chain system, but also fractal sets of energies E jk = ~ ·ω jk and
masses m jk = E jk/c2 which correspond with the eigenstates of

the system. For this reason, we call the continued fraction F
the “fundamental fractal” of eigenstates in chain systems of
harmonic quantum oscillators.

In the canonical form (z = 1) of the fundamental fractal
F , shorter continued fractions correspond with more stable
eigenstates of a chain system of harmonic oscillators. There-
fore, integer logarithms represent the most stable eigenstates
(main attractor nodes).

As the cardinality and number of layers of the continued
fractions F are finite but not limited, in each point of the
space-time occupied by the chain system of harmonic quan-
tum oscillators the scalar F is defined. Consequently, any
chain system of harmonic quantum oscillators can be seen as
source of the scalar field F , the fundamental field of the sys-
tem. Figure 2 shows the linear 2D-projection of the first layer
(k = 1) of the fundamental field F in the canonical form (z =

1) in the interval −16F6 1.

Fig. 2: The first layer (k = 1) of the linear 2D-projection of the funda-
mental field F in the canonical form (z = 1) in the range -16F 6 1.

The scalar potential difference ∆F of sequent equipoten-
tial surfaces at a given layer k is defined by the difference of
continued fractions (1). In the canonical form (z = 1):

∆F=F (j,k)−F (j+1,k) =

= [n j0; n j1, n j2, . . . , n jk]− [n j0; n j1, n j2, . . . , n j+1,k]

Normal matter is formed by nucleons and electrons because
they are exceptionally stable quantum oscillators. In the con-
cept of isospin, proton and neutron are viewed as two states
of the same quantum oscillator. Furthermore, they have sim-
ilar rest masses. However, a free neutron decays into a pro-
ton, an electron and antineutrino within 15 minutes while the
life-spans of the proton and electron top everything that is
measurable, exceeding 1029 years [23].

These unique properties of the electron and proton pre-
destinate their physical characteristics as fundamental units.
Table 1 shows the basic set of electron and proton units that
can be considered as a fundamental metrology (c is the speed
of light in a vacuum, ~ is the Planck constant, kB is the Boltz-
mann constant).
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Property Electron Proton

rest mass m 9.10938356(11) · 10−31 kg 1.672621898(21) · 10−27 kg

energy E = mc2 0.5109989461(31) MeV 938.2720813(58) MeV

angular frequency ω= E/~ 7.76344071 · 1020 Hz 1.42548624 · 1024 Hz

angular oscillation period τ= 1/ω 1.28808867 · 10−21 s 7.01515 · 10−25 s

angular wavelength λ= c/ω 3.8615926764(18) · 10−13 m 2.1030891 · 10−16 m

angular acceleration a = cω 2.327421 · 1029 ms−2 4.2735 · 1032 ms−2

Table 1: The basic set of physical properties of the electron and proton. Data taken from Particle Data Group [23]. Frequencies, oscillation
periods, accelerations and the proton wavelength are calculated.

In [16] was shown that the fundamental metrology (tab. 1)
is completely compatible with Planck units [24]. Originally
proposed in 1899 by Max Planck, these units are also known
as natural units, because the origin of their definition comes
only from properties of nature and not from any human con-
struct. Max Planck wrote [27] that these units, “regardless of
any particular bodies or substances, retain their importance
for all times and for all cultures, including alien and non-
human, and can therefore be called natural units of measure-
ment”. Planck units reflect the characteristics of space-time.

In [12, 14] we have introduced a fractal model of matter
as a chain system of oscillating protons and electrons. We hy-
pothesize that scale invariance of the fundamental field F cal-
ibrated on the physical properties of the proton and electron
(tab. 1) is a universal characteristic of organized matter and
criterion of stability. This hypothesis we have called ‘global
scaling’ [16, 26, 27].

Results

The proton-to-electron mass ratio is approximately 1836, so
that the mass contribution of the proton to normal matter is
very high, for example in the hydrogen atom (protium) it is
1 – 1/1836 = 99.95 percent. Consequently, the mass contri-
bution of the electron is only 0.05 percent. In heavier atoms
which contain neutrons, the electron contribution to atomic
mass is even smaller. Therefore, in this paper we investigate
a fractal model of matter as chain system of oscillating pro-
tons and derive a profile of the Earth’s interior from it.

As figure 1 shows, in an attractor node of the layer k = 0,
the potential difference on the layer k = 1 changes its signa-
ture and compression of the equipotential density is changed
to decompression. The same is valid in attractor nodes of
the layer k = 1. There the potential difference on the layer
k = 2 changes its signature. Therefore, we expect that near
the attractor nodes of F the dramatic increase of the field
strength and the change of compression to decompression of
the equipotential density in the attractor nodes should lead to
measurable consequences. This should be valid at least for
the main attractor nodes on the layer k = 0.

Figure 3 shows the F calibrated on the angular Comp-
ton wavelength of the proton in the canonical (z = 1) linear
2D-projection for k = 1 in the interval [49;∞]6F 6 [52; -4].
At the graphic’s left side the corresponding radii in km are
indicated. The radial distribution of equipotential nodes rep-
resents the expected 2D-profile of the Earth’s interior.

Fig. 3: The fundamental field F calibrated on the proton in the
canonical (z = 1) linear 2D-projection for k = 1 in the interval
[49;∞]6F 6 [52; -4]. Radius in km (left side). The dotted line at
the top indicates the Earth surface that coincides with the significant
subnode [44; 4] = 6372 km of the F calibrated on the electron.

The propagation speed of a seismic compression wave de-
pends on the density and elasticity of the medium and should
therefore correspond with zones of compression and decom-
pression near the main nodes of the fundamental field F .

In accordance with both empirical models of the Earth
interior PREM [5] and IASP91 [28], the crust-mantle bound-
ary (Mohorovicic discontinuity, ‘Moho’) is in between 35 and
90 km depth from the Earth surface, where seismic P-waves
jump in speed abruptly from 6 to 8 km/s. In our model, the
Moho corresponds with the compression zone before the sig-
nificant subnode [52; -4] = 6275 km of the F calibrated on
the proton.
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Detailed seismic studies have shown that the speed of P-
waves (longitudinal pressure waves) in the mantle increases
rather rapidly from about 9 to 11 km/s at depths between 400
and 700 km, marking a layer called the transition zone. This
zone separates the upper mantle from the lower mantle. In our
model, the transition zone corresponds with the compression
zone before the significant subnode [52; -3] = 5770 km of the
F calibrated on the proton.

As they travel more deeply into the mantle, P-waves in-
crease their speed from 8 km/s at the Moho to about 13 km/s
at a depth of 2900 km. Though, once P-waves penetrate be-
low 2900 km, their velocity suddenly drops from 13 km/s
back down to about 8 km/s. This dramatic reduction in speed
after a depth of 2900 km defnes the boundary between the
Earth’s mantle and the core. The outer core seems liquid, be-
cause seismic S-waves (transversal shear waves) do not pass
this boundary. In contrast, the innermost part of the core
within a radius of 1210 km seems solid. Reaching the inner
core, P-waves again jump to a velocity of 11 km/s.

Both models PREM and IASP91 identify these bound-
aries with the radius of the liquid core (3480 km) and the
radius of the inner solid core (1210 km). These estimations
correspond with the compression zones before the main at-
tractors [51; ∞] and [50; ∞] of the proton F and confirm
that P-waves increase their velocity in the compression zone
before the attractor. Then in the decompression zone after
the attractor, they decrease the velocity. This coincidence is
a strong confirmation of global scaling and demonstrates that
the current dimension and structure of the Earth interior is not
casual, but an essential criterion of its stability.

It is a notable circumstance that P-waves reach cosmic
velocities. In fact, at the Moho, P-waves jump to velocities
near 8 km/s that is in the range of the first cosmic velocity a
rocket must have to reach a circular orbit around the Earth. In
the transition zone that separates the upper mantle from the
lower mantle, P-waves jump to 11 km/s that is in the range of
the second cosmic velocity a rocket must have to escape the
Earth gravity acceleration. Through the lower mantle, the P-
wave reach 13 km/s at the core-mantle boundary that is in the
range of velocities a rocket launched from Earth must have to
escape the solar system.

This similarity seems not by case: cosmic escape veloc-
ities do not depend on the mass of the object escaping the
Earth. The velocity a rocket must have to reach a circular or-
bit around the Earth depends only on the gravity acceleration
g and the radius r of the departure orbit. It is notable that
no data about the mass of the Earth is needed. In the case of
departure from the Earth surface:

vcircular =
√

(gr) =

√
9.8 m/s2 · 6371000 m = 7.9 km/s.

The second cosmic velocity a rocket must have to escape
the Earth gravity acceleration is

√
2 times higher:

vescape =
√

2 · vcircular = 11.2 km/s.

Conversely, an object that falls under the attraction of
the Earth surface gravity acceleration g from infinity, starting
with zero velocity, will strike the Earth surface with a velocity
equal to its escape velocity.

In accordance with our model (fig. 3), the inner core of the
Earth should have a substructure that origins from the attrac-
tor node [49; ∞] = 400 km of the F calibrated on the proton
(fig. 4). In fact, the seismological exploration of the Earth’s
inner core has revealed unexpected structural complexities.
There is a clear hemispherical dichotomy in anisotropy and
also evidence of a subcore with a radius 300–600 km [29].
Considering that the radius of the Sun coincides with the main
attractor node [49;∞] of the F calibrated on the electron:

ln
(

rSun

λelectron

)
= ln

(
6.96407 · 108 m

3.8615926764 · 10−13 m

)
= 48.945

we can write down the equation for the ratio of the radii:
rSun

rEarth subcore
=
λelectron

λproton
.

Already in [16] we have shown that the minimum and maxi-
mum values of the Earth’s radius approximate the significant
node [44; 4] of the F calibrated on the electron:

ln
(

r Earth max

λelectron

)
= ln

(
6.384 · 103 m

3.8615926764 · 10−13 m

)
= 44.252,

ln
(

r Earth min

λelectron

)
= ln

(
6.353 · 103 m

3.8615926764 · 10−13 m

)
= 44.247.

Figure 3 shows the node [44; 4] of the electron F as dotted
line in the top of the graphic.

Conclusion

In the framework of our model of matter as chain system of
harmonic quantum oscillators, the fractal fundamental field
F affects any type of physical interaction, including the grav-
itational. Fundamental particles like electron and proton are
not the ultimate sources, but stability nodes of the fundamen-
tal field of any chain system of harmonic quantum oscillators.
The spatial and temporal distribution of these stability nodes
is determined by the ratio of fundamental constants. Already
Paul Dirac [30] mentioned that “... whether a thing is con-
stant or not does not have any absolute meaning unless that
quantity is dimensionless”.

Applying our fractal model of matter to the analysis of
gravimetric and seismic characteristics of the Earth we did
show that it corresponds well with established empirical mod-
els of the Earth interior. We interpret this correspondence as
evidence of the fractality, scale invariance and macroscopic
quantization of Earth’s gravity field.

We presume that gravity is a scale-invariant attractor ef-
fect of stability nodes in chain systems of oscillating protons
and electrons. May be this hypothesis could become a bridge
that connects the island of gravity research with the continent
of quantum physics.
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The relativistic models for radiating spherical collapse is important for to explain the
emission process on very high energy in Supernova burst and Quasars. A general
method is reviewed, to obtain models which describe non static radiating spheres, with-
out having to make any hypothesis about the emission of radiation during the collapse.
It is concluded that the field equations together with the conservation laws (Bianchi’s
Identity) form a complete set of integrable equations that do not require additional the
emissivation hypothesis of a Gaussian pulse on at an arbitrary instant to trigger the col-
lapse. The emissivation hypothesis of a Gaussian pulse is not only unnecessary, but
also leads to qualitatively and quantitatively different solutions. Calculations were per-
formed using the computer algebra package GRTensorII, running on Maple 13, along
with several Maple routines that we have used specifically for this type of problems.
The Schwarzschild and Tolman VI models are shown as examples where it’s empha-
sizes the importance of using conservation equations properly, for describe the collapse
for the self-gravitating sphere.

1 Introduction

The last phases of stellar evolution of massive stars are dom-
inated by the contribution of stellar radiation due to changes
of the inner or outer distribution of matter, in the gravitational
potential of the radiating fluid spheres and, therefore, general
relativity provides a description of the collapse of the compact
objects (Neutron Stars, Black Holes). This description can
be extended to explain the radiation process of very high en-
ergy in astrophysical scenarios, such as Supernova bursts and
Quasars. A number of studies have been reported describing
a gravitational collapse: Oppenheimer and Snyder [1], Tol-
man [2] and furthermore the study of the collapsing radiating
fluid [3–6].

This scheme has recently been used for various scenar-
ios of relativistic hydrodynamics. We can highlight some ex-
amples: charged fluids [7–9], isotropic [10] or anisotropic
fluid [11, 12], shock waves [13, 14], in free space [15, 16]
or diffusion process [17, 18]. It is necessary to contrast its
quantitative results with other calculation schemes. Barreto
et al. [19] have extended the semi-numerical scheme to the
Schwarzschild coordinates, simulating some scenarios of the
gravitational collapse.

Herrera and collaborators [6, 19–21] developed a general
algorithm for modeling self gravitating spheres out of equilib-
rium, beginning from the known static solutions of Einstein’s
equations. This method divides the space-time in two spatial
regions. The outer region is described by the Vaidya solu-
tion and the space-time metric in the interior is obtained by
solving the Einstein field equations. Further, proper boundary
conditions are imposed in order to guarantee a smooth match-
ing of the solutions in the surface of the junction. This semi
numerical technique has been used extensively to study high

energy in astrophysical scenarios [19, 21–27].
However in these numerical simulations a Gaussian pulse

is introduced ad hoc to represent the emission of radiation that
initiates the disequilibrium during the collapse of the radiat-
ing fluid ball [6, 20, 21, 23–25, 28]. These assumptions could
be unnecessary and generate spurious solutions, since this
loss of mass is prescribed by one of the conservation equa-
tions when applying the Bianchi Identity [29, 30]. Parts of
the calculation of the Bianchi identities that were performed
in this work were possible and verified using the GRTensorII
package.

The purpose of this paper is to show the general method
to obtain models which describe radiating non-static spheres
without having to make any hypothesis about the emission of
radiation during the collapse. This paper follows as much as
possible the notation and physical description prescribed by
Herrera et al. [6]. For this, the field equations and conserva-
tion laws are shown in Section 2; then section 3 establishes
the procedure for the static solutions and obtaining the sur-
face equations. The models Schwarzschild-like and Tolman
VI-like are discussed in section 4 and 5 respectively, and in
the last section are shown the concluding remarks.

2 The Field equations and conservation relationships

Let us consider a non static radiating spheres. The metric
takes the form [4]

ds2 = e2βV
r

du2 + 2e2βdu dr − r2dθ2 − r2 sin2 θ dϕ2, (1)

where u and r are time like and radial-like coordinates re-
spectively; β and V are functions of u and r; θ, ϕ are the usual
angle coordinates. In these coordinates the gravitational field
equations are:
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−8πT00 = −V,0 − 2Vβ,0
r2 −V

r3

(
e2β−V,1 + 2β,1V

)
−8πT01 = − 1

r2

(
e2β − V,1 + 2β,1V

)
−8πT11 = −4β,1

r

−8πT 2
2 = −8πT 3

3 = −e2β
(
2β01 −

1
2r2

[
rV,11+

−2β,1V + 2r
(
β,11V + β,1V,1

)] )
.

As usual, note that we used the subscript ,0 and ,1 for the
derivative for u and r, respectively; and the semicolon (;) for
covariant differentiation. Then transformation relations be-
tween local Minkowskian and radiative coordinates are:

dt =
(
∂t
∂u

)
du +

(
∂t
∂r

)
dr

= eβ
(V

r

) 1
2

du + eβ
( r
V

) 1
2

dr (2)

dx =

(
∂x
∂r

)
dr = eβ

( r
V

) 1
2

dr (3)

dy =
(
∂y

∂θ

)
dθ = r dθ (4)

dz =

(
∂z
∂ϕ

)
dϕ = r · sin θ dϕ . (5)

We assumed the stellar material as perfect fluid, with energy
density ρ̂, radial pressure P̂, without heat conduction neither
viscosity, then

T̂αβ =
(
ρ̂ + P̂

)
· UαUβ − P̂ · ηαβ, (6)

where Uα = (1, 0, 0, 0), 3σ̂ is the isotropic radiation of the
energy density, and ε̂ no-polarized component of the energy
density in radial direction. Now consider an observer in local
Minskowskian system with radial velocity ω, in the Lorent-
zian system we can write:

T̄µν = ΛαµΛ
β
νT̂αβ, (7)

where the Lorentz matrix is

Λαµ =


1√

1−ω2
− ω√

1−ω2
0 0

− ω√
1−ω2

1√
1−ω2

0 0
0 0 1 0
0 0 0 1

 . (8)

We define

ρ̄ = ρ̂ + 3σ̂, P̄ = P̂ + σ̂, ε̄ = ε̂
1 + ω
1 − ω.

Note also that from (2-3) the velocity of matter in the radiative
coordinates is given by

dr
du
=

V
r
· ω

1 − ω, (9)

so forth the energy-impulse tensor in the Lorentz system is

T̄00 = ε̄ +
ρ̄ + ω2P̄
1 − ω2

T̄01 = T̄10 = −ε̄ − ω

1 − ω2

(
ρ̄ + P̄

)
T̄11 =

P̄ + ω2ρ̄

1 − ω2 + ε̄

T̄22 = T̄33 = P̄.

Using (2) - (5) we obtain the energy-impulse tensor in radia-
tive coordinates as:

T00 = e2β
(V

r

) (
ρ̄ + ω2P̄
1 − ω2 + ε

)
T01 = T10 = e2β

(
ρ̄ − ωP̄
1 + ω

)
T11 = e2β

( r
V

) (1 − ω
1 + ω

) (
ρ̄ + P̄

)
T22 =

T33

sin2 θ
= r2P̄.

Remember that a bar indicates that the quantity is measured in
the Lorentzian system, and the effective variables are written
without bar. Now

ρ ≡ ρ̄ − ωP̄
1 + ω

, P ≡ P̄ − ωρ̄
1 + ω

, ε ≡ ε̄. (10)

It can be seen at once that ρ = ρ̄ and P = P̄ in r = 0, also, in
the static case ω = 0. As before then:

T00 = e2β
(V

r

) [
ω (ρ + P)
(1 − ω)2 + ρ + ε

]
T01 = T10 = e2βρ

T11 = e2β
( r
V

)
(ρ + P)

T22 =
T33

sin2 θ
= r2P̄,

thus the field equations are:

−V
r2

[(
2β,0 −

V,0
V

)
− 1

r

(
2Vβ,1 − V,1 + e2β

)]
=

= 8π e2β
(V

r

) [
ε + ρ +

ω (ρ + P)
(ω − 1)2

] (11)

2Vβ,1 − V,1 + e2β = 8πr2e2βρ (12)

4β,1
r
= 8π

r
V

e2β (ρ + P) (13)
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−2β,01 +
1

2r2

[
rV,11−2β,1V+2r

(
V,1β,1+Vβ,11

)]
=

= 8πe2βP̄.
(14)

Using the conservation equations (Bianchi Identity) T µν;µ = 0,
we obtain only three no-trivial relations:

T µ1;µ =
e−2β

2πr
β,10 −

∂P
∂r
+

−1
2

(
2β,1 +

V,1
V
− 1

r

)
(ρ + P) −

2
(
P − P̄

)
r

= 0,
(15)

T λ0;λ =
V
r

{(
2β1 +

V,1
V
+

1
r

) [
ε +
ω (ρ + P)
(1 − ω)2

]
+

+
ω

(1 − ω)2

∂ (ρ + P)
∂r

}
+

1
2

(
2β,0 −

V,0
V

)
(ρ + P)+

+
∂ρ

∂u
+

V
r

[
∂ε

∂r
+

1 + ω
(1 − ω)3 (ρ + P)

∂ω

∂r

]
= 0,

(16)

e2βT λ1;λ=
V
r

{(
2β,1+

V,1
V
+

1
r

) [
ε+

1+ω2

2 (1−ω)2 (ρ+P)
]

+
ω (ρ + P),1
(1 − ω)2 +

∂P
∂r
+

1
r

[
ρ + P̄ −

(
P − P̄

)]}
+

−1
2

(
2β,0 −

V,0
V

)
(ρ + P) +

∂P
∂u
+

+
V
r

[
∂ε

∂r
+

1 + ω
(1 − ω)3 (ρ + P)

∂ω

∂r

]
= 0.

(17)

It is remarkable that only two Bianchi equations (15-17)
are independent, then

e2βT µ1;µ − T µ0;µ =

(V
r

)
T µ1;µ = 0. (18)

If we use the Bondi mass aspect V ≡ e2β (r − 2m), af-
ter some elementary algebra, the equation system becomes
equivalent to:

m,1 = 4πr2ρ (19)

β,1 = 2πr
(ρ + P)
1 − 2m

r

(20)

m,0 = −4πr2e2β
(
1 − 2m

r

) [
ε +
ω (ρ + P)
(1 − ω)2

]
(21)

8πP̄ = −2β,01e−2β +

(
1 − 2m

r

) (
2β,11 + 4β 2

,1 −
β,1

r

)
+

+
1
r
[
3β,1

(
1 − 2m,1

) − m,11
]
. (22)

Also, for two independent Bianchi equations (15) and (16),
we obtain:

−e−2β

2πr
β,10 +

∂P
∂r
+

+

(
4πr2P +

m
r

) (ρ + P)

r
(
1 − 2m

r

) + 2
r

(
P − P̄

)
= 0,

(23)

e2β

r

[
1+

(
1−2m

r

)
+ 4πr2 (P−ρ)

] [
ε+
ω (ρ+P)
(1−ω)2

]
+

+
V
r

ω

(1 − ω)2

∂

∂r
(ρ + P)+

+
V
r

[
∂ε

∂r
+

(1 + ω) (ρ + P)
(1 − ω)3

∂ω

∂r

]
+
∂ρ

∂u
= 0.

(24)

The expression (23) is the generalization of the Tolman -
Oppenheimer - Volkoff (TOV) equation of hydrostatic equi-
librium (see, for example [31]). It can be shown that the con-
servation equation (24) can also be obtained from the field
equations (19) and (21), remembering that the second mixed
derivatives commute, that is, m,01 = m,10. Now, combining
(21) with (24) we obtain:

2m,0e−2β

4πr3
(
1 − 2m

r

) [
1 − m

r
+ 2πr2 (P − ρ)

]
=

ω

(1 − ω)2

(
1 − 2m

r

)
(ρ + P),1 +

+
∂ε

∂r
+

(1 + ω) (ρ + P)
(1 − ω)3

∂ω

∂r
+

e−2β

4πr2 m,10.

If we assume that radiation profiles ε and the variable ω,
vary little, so we can write an expression very similar to the
Euler equation

2m,0
[
1 − m

r
+ 2πr2 (P − ρ)

]
=

ω · e2β

(1 − ω)2

4πr2
(
1 − 2m

r

)2

r (ρ + P),1

+
+r

(
1 − 2m

r

)
m,10.

(25)

Equation (25) is omitted in previous works on the evolu-
tion of radiating fluid sphere [6,20,21,23,28]. This omission
prevents the closing of the system of equations, and moti-
vates the spurious inclusion of a luminosity Gaussian pulse
[21, 23–25, 28]. Equation (25) allows us relate the mass ex-
change with the time like and radial derivatives of the effec-
tive variables, and together with eq. (21), the radiation flux ε
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Fig. 1: The radius A as a function of the normalized time-like co-
ordinate u

m(0) for the initial values A = 5.0; M = 1.0 in the model
Schwarzschild-like. Dashed line: Ω = 1 static equilibrium, Ω = 1.1
expansion; Ω = 0.91 collapse. Solid line: solutions according to
Herrera et al. [6].
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Fig. 2: The radius A as a function of the normalized time like co-
ordinate u

m(0) in the Schwarzschild-like model. Initial values for the
surface variables A = 5; M = 1.0; Ω = 0.833. Dashed line: calcula-
tions present. Solid line: solutions according to Herrera et al. [6].

is calculated. With the field equations (19) to (22) we can cal-
culate the expressions of the physical variables ω, P̄, ρ̄, if we
know the expressions m (u, r) and β (u, r) in each layer of the
material under study. As a consequence, the state equations
P (u, r) , ρ (u, r) play an important role in determining the be-
havior of the physical variables present in the field equations
and establishing their posterior evolution.

3 The models and surface equations

From the field equations (19) and (20) we can see

m =

∫ r

0
4πr2ρ dr, (26)

β = 2π
∫ r

a

ρ + P
1 − 2m

r

r · dr. (27)

These expressions for m and β are very similar to those
obtained in the static case. This suggests a procedure to ob-
tain dynamic solutions, following the same method of Herrera
et al. [6], starting from a static solution:

1. Select a static solution of the gravitational field equa-
tions for a perfect fluid with spherical symmetry that
explicitly shows its radial dependence

ρstatic = ρ (r) Pstatic = P (r) ,

2. Suppose that the effective variables P and ρ (eq. 10)
have the same radial dependence as in the static solu-
tion, but taking into account that now the edge condi-
tion P̄a = 0 is now expressed as

Pa = −ωaρa. (28)

Note that the subscript ∆a indicates that the quantity ∆
is evaluated at the edge of the distribution.

3. With this radial dependence for the effective variables,
and together with (26) and (27), the values of m and
β are calculable, except for three unknown functions
(surface variables) that we are going to determine:

(a) Equation (9) evaluated at r = a.

(b) Equation (25) evaluated at r = a.

(c) Equation (15) evaluated at r = a, or equation (22)
evaluated at r = a.

4. Integrating numerically the ordinary differential equa-
tions obtained in (3), for a set of initial data, we com-
pletely determine the functions m and β.

5. With the field equations (19) to (22) we can calculate
the expressions of the physical variables for the model
considered.

As outlined in the previous methods (subsection 3), it is
necessary to establish the surface variables and the equations
that control its evolution.

• As mentioned in (subsection 3a), one of the surface
equations is (9) evaluated at r = a, which takes the
form

å =
da
du
= Ȧ = F (Ω − 1) , (29)

where here it is very convenient to standardize the vari-
ables in terms of the initial mass m(0) = m(u = 0, r =
a) and define as surface variables:

A ≡ a
m (0)

M ≡ ma

m (0)
Ω ≡ 1

1 − ωa
, (30)

as well as the variable

F =
[
e2β

(
1 − 2m

r

)]
r=a
=

(V
r

)
a
, (31)
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for the model of Schwarzschild, for r
a = 0.00, 0.40 and 1.00.

Instead of using as surface variable F (31) – the grav-
itational potential at the surface – , as used in the ref-
erences [6, 20, 21, 28]; we will use mass M, that is, the
equation for radial evolution is

Ȧ =
(
1 − 2M

A

)
(Ω − 1) , (32)

This equation is valid for all models.

• The second equation (25) is dependent on the model
and it becomes necessary to calculate the first deriva-
tives of the effective density and pressure, as can be
seen.

2m,0
∣∣∣
a

{
1 − m

r
+ rβ,1

(
1 − 2m

r

)
− m,1

}
a
+

− r
(
1 − 2m

r

)
∂

∂u

(
4πr2ρ

)∣∣∣∣∣∣
a
=

= Ω (Ω − 1)

4πr2
(
1 − 2m

r

)2

r
∂

∂r
(ρ + P)


a

(33)

• The last equation (23) is the Tolman - Oppenheimer
- Volkoff conservation equation evaluated at r = a,
which we can write

β,10
∣∣∣
a = 2πr

(
∂P
∂r

)∣∣∣∣∣∣
a
+

+


4πr2 (ρ + P)

2r2

(
1 − 2m

r

)


a

(
4πr2P +

m
r

)
a
+

+ 4π (P − Pt)|a ≡ G.

(34)
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Fig. 4: Normalized pressure values 8πm (0)2 P̄ in function of the
time variable u

m(0) for the model of Schwarzschild, for r
a = 0.4 and

1.00

Both equations (33) and (34) have a similar structure, in
terms of the surface variables:

ΥM Ȧ + ΞM Ṁ + ΛM Ω̇ = ∆M (35)
ΥΩ Ȧ + ΞΩ Ṁ + ΛΩ Ω̇ = ∆Ω, (36)

where

Υξ ≡ Υξ (A,M,Ω) , Ξξ ≡ Ξξ (A,M,Ω) ,
Λξ ≡ Λξ (A,M,Ω) , ∆ξ ≡ ∆ξ (A,M,Ω) , ∀ξ ∈ {M,Ω}

are functions of (A,M,Ω). These three equations (32), (33)
and (34) allow us to establish a system of three ordinary dif-
ferential equations for the surface variables; which together
with the initials data set, determine m and β, as set forth in
subsection 4. Below are two examples for the interior dis-
tribution Schwarzschild-like and Tolman VI-like in section 4
and 5, respectively.

4 The Schwarzschild-like model

We will get as the first test example Schwarzschild’s well-
known internal and static constant density solution. For this,
we are going to assume that the density depends only on the
time-type variable, as explained in [6, 32] we can write the
state equation for the Schwarzschild type model as

ρ =
3m

4πr3 (37)

P = ρ


1 − 1

g

[
1− 2M

A ( r
a )2

1− 2M
A

] 1
2

1
g

[
1− 2M

A ( r
a )2

1− 2M
A

] 1
2

− 3

 , (38)

where the value of g is determinated from the boundary con-
dition

(
P̄a = 0

)
then the effective pressure satisfies the rela-

tionship (28); and consequently g = 1
3−2Ω . Evaluating equa-

tion (9), for r = a, we get (32) and with (23) and (24) for
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dr
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Fig. 5: Temporal velocity evolution in coordinates radiative dr
du , for

the model of Schwarzschild, for r
a = 0.00, 0.40 and 1.00.
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Fig. 6: Radiation profiles 8πm (0)2 ε. for the model of
Schwarzschild. All layers emit radiation but decrease until reach-
ing a state of equilibrium for Ω = 1.

r = a we obtain then

Ṁ = 3
( M

A

)2 (
1 − 2M

A

)
(Ω − 1) (2Ω-3)

3M
A −Ω

(
1 + 2M

A

)
Ω̇ =

2Ω (1 −Ω)
A

(
1 − 2M

A

)
− 1

A

( M
A

) 3 − 2Ω
1 − 2M

A

 Ȧ +

−Ω
M

1(
1 − 2M

A

) Ṁ,

and from (20) and (19) we obtain, then after the immediate
integration

m (r) = m (0) · M
( r
a

)3

β =
1
2

log

1 + 3
2Ω


√√√ 1 − 2M

A

1 − 2M
A

(
r
a

)2 − 1


 .

Figures 1 and 2 show the evolution of the radius A. No-
tice that Ω = 1 represents a condition of static equilibrium,

Ω > 1 represents expansion, Ω < 1 the collapse. In both
cases the system returns to equilibrium very quickly. In or-
der to make some comparison, we took the initial data very
close to those chosen in the reference [6]. We did not use the
value for Ω = 1, since with this approximation the system
does not have static behavior. The figures 3, 4, 5, 6 represent
the profiles of physical variables versus the time like coordi-
nates for different pieces of material and for initials data. We
obtain monotonous variations in the physical quantities, as
a consequence of the non-assumption of the Gaussian pulse.
In particular it is shown in figure 6, how all the layers emit
monotonously, unlike the figure 7 in Herrera et al. [6]

5 The Tolman VI-like model

Following [2] we can assume as static solution

4πa2ρ = 3h
(a

r

)2

4πa2P = h
(a

r

)2
1 − 9 · z

(
r
a

)
1 − z

(
r
a

)  ,
as before the value of z is determinated from the boundary
condition

(
P̄a = 0

)
then Pa = −ωaρa; and consequently z =

4Ω−3
3(4Ω−1) ; and h = m

3r . Evaluating the equations (9), (23) and
(24) at r = a we obtain

Ṁ = −

(
1 − 2M

A

)2 (
16Ω2 + 3

) (
M
A

)
8
[
Ω

(
1 − 2M

A

)
+ M

A

] Ȧ

Ω̇ = − 1
A

[
M
A
− (4Ω − 3) (4Ω − 1)

8

(
1 − 2M

A

)]
+ (4Ω − 1) (4Ω − 3)

Ȧ
8A
+

Ω(
1 − 2M

A

) Ṁ
M
,

and the corresponding values of β and m are

β =
2M
3A

1(
1 − 2M

A

)
log

( r
a

)
+ 2 log

3 −
(

4Ω−3
4Ω−1

) (
r
a

)
3 −

(
4Ω−3
4Ω−1

) 


m = m (0) M
( r
a

)
.

Figure 7 shows the temporal variation of the radius of a
radiant sphere, for different values of Ω. There is a critical
value Ω0 for A = 6.66 and M = 1 and slight increase in
Ω causes a permanent expansion or the contraction rises to
the critical value. In the following figures 8,9,10 we show
the variations of pressure density and radiation of some inte-
rior layers in case of surface expansion (explosion-like). We
noted in the example in the figure 10 that all layers absorbed
energy during the initial collapse, an then a radiative pulse is
emitted, before returning to the equilibrium configuration.
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and the critical value Ω = 0.860723

π
2

x 1
02

 8
   

 m
(0

) 
  P

  0.20   0.40   0.60   0.80   1.00

−1

 0

2

4

6

8

u/m(0)
 50 45 40 35 30 25 20 15 10 5 0

Fig. 8: Values of the normalized pressure 8πm (0)2 P̄ as function of
the time-like variable u

m(0) in a TolmannVI-like model. For the layers
in contraction (Ω = 0.87) with r

a = 0, 0.4, 0.6, 0.8 and 1.

6 Conclusions

We have reviewed the relativistic description of the collapse
of self-gravitating radiant spheres, following the usual pro-
cedure [6, 19–21, 23, 25, 28, 33] and find that it is an effec-
tive method for such a purpose, since the field equations to-
gether with the conservation laws (Bianchi’s Identity) form
a complete set of integrable equations that do not require an
additional hypothesis about the emission of radiated energy.
That is, the emission hypothesis of a Gaussian pulse at an
arbitrary instant to trigger the collapse; it is not only unneces-
sary, but also leads to qualitatively and quantitatively different
solutions, as we have shown in figures 1-9. We emphasize
the importance of using conservation equations properly, as
was done in Section 2; We formally reobtain the generalized
TOV equation of the hydrostatic equilibrium (equation 23)
and a relativistic version of the Euler equation for the self-
gravitating sphere (equation 25).

We have seen that the Schwarzschild-like description is an

ρ2
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Fig. 9: Density 8πm (0)2 ρ̄ as function of the time-like variable u
m(0)

in a TolmannVI-like model. For the layers in contraction (Ω = 0.87)
with r

a = 0.2, 0.4, 0.6, 0.8 and 1.
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Fig. 10: Radiation profiles emitted 8πm (0)2 ε as function of the
time-like variable u

m(0) in a TolmannVI-like model. For the layers
in contraction (Ω = 0.87) with r

a = 0.2, 0.4, 0.6, 0.8 and 1.

ideal case that does not represent the phenomenology of the
high energy events observed in the stellar collapse of massive
stars such as supernovas and quasars. The measurable magni-
tudes of density, pressure and emission evolve smoothly, re-
turning to the equilibrium condition very rapidly (Figures 3-
6). On the other hand, the Tolman VI description involves two
possible qualitatively different scenarios, such as the implo-
sion or the explosion of the outer layers of the self-gravitating
sphere, depending on the initial values of the mass, radius and
velocity observables, as we have shown in figure 7.

We have shown that, in the case of contraction, the den-
sity and pressure variables similarly evolve (Figures 8 and 9)
as might be expected if a polytrope state equation is used.
In addition, Figures 8 and 9, show a dependence of the evolu-
tion of such magnitudes according to the radius of the consid-
ered layer, with much higher values of density and pressure
in the innermost layers, in agreement with the description of
the stellar collapse of massive stars.

Finally figure 10 shows that during the collapse of the
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self-gravitating radiating spheres a pulse of radiation emis-
sion is generated before reaching equilibrium again; which
arises naturally from the complete solution of the evolution
equations, and maybe is important to explain the emission
process in very high energy in Supernova bursts and Quasars.

Submitted on January 12, 2018
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