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The Exact Gödel Metric

Patrick Marquet
Calais, France. E-mail: patrick.marquet6@wanadoo.fr

We demonstrate that Gödel’s metric does not represent a model of universe as it is usually
accepted in the standard literature. In fact, a close inspection shows that this metric
as it stands is a very special case of a broader metric. Introducing a simple conformal
transformation readily induces a pressure term on the right hand side of the Einstein’s
field equations which actually describe a peculiar perfect fluid. This term was wrongly
interpreted by Gödel as the ad hoc cosmological constant required to sustain his model.
Gödel’s space-time can be thus regarded as a real physical system with no cosmological
implication and it is relegated to the class of ordinary metrics. The emergence of the
related closed time-like curves is not bound to a rotating universe as stated in all classical
treatments and this fact naturally sheds new light on time travel feasibility considerations.

Notations

Space-time greek indices run from: α,β: 0, 1, 2, 3.
Space-time signature: -2.
κ is the Einstein constant.
We adopt here: c = 1.

1 The Gödel universe

1.1 General

In his original paper [1], Kurt Gödel has derived an exact
solution to Einstein’s field equations in which the matter takes
the form of a shear/pressure free fluid (dust solution).

This universe is homogeneous but non-isotropic and it
exhibits a specific rotational symmetry which allows for the
existence of close timelike curves (CTCs). The Gödel space-
time has a five dimensional group of isometries (G5) which is
transitive. (An action of a group is transitive on a manifold
(M,g), if it can map any point of the manifold into any other
points of M).

It admits a five dimensional Lie algebra of Killing vector
fields generated by a time translation ∂x0 , two spatial transla-
tions ∂x1 , ∂x2 , plus two further Killing vector fields:

∂x3 − x2∂x2 and 2ex1∂x0 + x2∂x3 +

(
e2x1 −

1
2

x2
2∂x2

)
.

The Weyl tensor of the standard Gödel solution has Petrov
type D:

Cαβ
µν = Rαβ

µν +
R
3
δα δ

β
[µ ν] + 2δ R[α β]

[µ ν] .

The presence of the non-vanishing Weyl tensor prevents the
Gödel metric from being Euclidean whatever the coordinates
transformations.

This is in contrast to the Friedmann-Lemaı̂tre-Robertson-
Walker metric which can be shown to reduce to a conformal
Euclidean metric, implying that its Weyl tensor is zero [2].

The Gödel universe is often dismissed because it implies a
non zero cosmological term and also since its rotation would
conflict with observational data.

In what follows, we are able to relax our demand that the
Gödel metric be a description of an actual universe. This is
achieved through a specific transformation which makes Gödel
space-time an “ordinary” metric just as any other metrics
currently derived in physics.

1.2 The basic theory

The classical Gödel line element is generically given by the
interval

ds2 = a2
[
dx0

2 − dx1
2 + dx2

2 1
2

e2x1 − dx3
2 + 2ex1 (dx0 dx2)

]
, (1.1)

or equivalently:

ds2 = a2
[
−dx1

2 − dx3
2 − dx2

2 1
2

e2x1 + (ex1 dx2 + dx0)2
]
. (1.2)

a > 0 is a constant.
The components of the metric tensor are:

(gµν)G =


a2 0 a2ex1 0
0 −a2 0 0

a2ex1 0 a2 1
2 e2x1 0

0 0 0 −a2

,

(gµν)G =


−a2 0 −a−22e−x1 0

0 −a2 0 0
−a−22e−x1 0 −a−22e−2x1 0

0 0 0 −a2

.
In this particular case, since only ∂1(g22)G,0 and ∂1(g02)G

, 0, the non-zero connection components are:

Γ0
01 = 1 Γ0

12 = Γ1
02 =

1
2

ex1

Γ1
22 =

1
2

e2x1 Γ2
01 = −e−x1

Those greatly simplify the Ricci tensor: Rβγ = ∂1Γ
1
βγ +

Γ1
βγ − Γ

δ
αβΓ

α
δγ whose components reduce to:

R00 = 1, R22 = e2x1

R02 = R20 = ex1

Patrick Marquet. The Exact Gödel Metric 133
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The Gödel unit vector u of matter in the direction of the x0
lines has the following components:

(uµ)G = (a−1, 0, 0, 0), (1.3)(
uµ

)
G

= (a, 0, aex1 , 0), (1.4)

hence:
Rµν =

(
uµuν

)
G

a−2, (1.5)

R =
(
uµuµ

)
G

= a−2. (1.6)

In order to make his metric a compatible solution to Ein-
stein’s field equations, Gödel is led to introduce a cosmological
constant Λ as:

Rµν −
1
2
gµνR = κρuµuν + gµνΛ. (1.7)

To achieve this compatibility, he then further sets:

a−2 = κρ, (1.8)

Λ = −
1
2

R = −
1

2a2 = −
1
2
κρ. (1.9)

As primarily claimed by Gödel, its stationary space-time is
homogeneous.

For every point A of the manifold (M,gG), there exists a
one-parameter group of transformations of M carrying A into
itself.

This means that (M,gG) has a rotational symmetry and
matter rotates everywhere with a constant rotation velocity
magnitude ωG orthogonal to uG.

Using the contravariant components:

(ωα)G =

0, 0, 0,

√
2

a2

, (1.10)

one finds:
ωG = (gαµωαωµ)G

1/2
=

a
√

2
. (1.11)

With (1.8) this magnitude is:

ωG =

(
1
2
κρ

)1/2

. (1.12)

A first glance at these constraints, readily reveals a fairly
high degree of arbitrariness in the theory.

Finetuning the hypothetical constant Λ with the density
of the universe (and the Ricci scalar) appears indeed as a
somewhat dubious physical argument.

We shall see that those ill-defined assumptions are not
required in order for the basic model to satisfy the field equa-
tions.

2 Gödel’s model defined as a homogenous perfect fluid

2.1 Reformulation of Gödel’s metric

We now make the assumption that a is slightly space-time
variable and we set:

a2 = e2U . (2.1)

The positive scalar U(xµ) > 0 will be explicited below.
The Gödel metric tensor components (1.2) are related to

the fundamental metric tensor g by:

(gµν)G = e2Ugµν, (2.2)

(gµν)G = e−2Ugµν, (2.2 bis)

This means that the Gödel metric is now conformal:

ds2 = e2U

[
dx0

2 − dx1
2 + dx2

2 1
2

e2x1 − dx3
2 + 2ex1 (dx0 dx2)

]
. (2.3)

We are now going to see how the substitution (2.1) drasti-
cally changes the meaning of Gödel’s limited theory.

2.2 Relativistic analysis of a neutral homogeneous perfect
fluid

2.2.1 The geodesic differential system

Let us consider the manifold (M,g), on which is defined a
vector tangent to the curve C in local coordinates:

ẋα =
dxα

dζ
, where ζ is an affine parameter.

In these coordinates we consider the scalar valued function
f (xα, ẋα) which is homogeneous and of first degree with respect
to ẋα.

To the curve C joining the point x1 to x2, one can always
associate the integralA such that

A =

∫ ζ2

ζ1

f (xα, ẋα)dζ =

∫ x2

x1

f (xα, ẋα)dxα. (2.4)

We now want to evaluate the variation ofA with respect to
the points ζ1 and ζ2:

δA = f δζ2 − f δζ1 −

∫ ζ2

ζ1

δ f dζ.

Classically we know that:∫ ζ2

ζ1

δ f dζ =

[
∂ f
∂ẋα

δxα
]
−

∫ ζ2

ζ1

Eαδxαdζ,

where Eα is the first member of the Euler equations associated
with the function f .

With Eα as the components of E, we infer the expression

δA = [w(δ)]x2
− [w(δ)]x1

−

∫ ζ2

ζ1

Eδxdζ, (2.5)
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where [w(δ)] has the form:

[w(δ)] =

(
∂ f
∂ẋα

)
δxα −

(
xα

∂ f
∂ẋα
− f

)
δζ.

Due to the homogeneity of f , it reduces to:

w(δ) =

(
∂ f
∂ẋα

)
δxα.

Let us apply the above results to the function

f = eU ds
dζ

= eU
(
gαβ ẋα ẋβ

)1/2
,

where eU is defined everywhere on (M,g).
Between two points x1 and x2, of (M,g) connected by a

time-like curve we have the correspondence:

s′ =

∫ x2

x1

eU ds =

∫ x2

x1

eU
(
gαβ ẋα ẋβ

)1/2
. (2.6)

We first differentiate f 2 = e2U
(
gαβ ẋα ẋβ

)
with respect to ẋα

and xα:
f
∂ f
∂ẋα

= e2Ugαβ ẋβ, (2.7)

f
∂ f
∂xα

= eU
(
gβµ ẋβ ẋµ

)1/2

×

[
∂αeU

(
gβµ ẋβ ẋµ

)1/2
+

1
2

eU∂α
(
gβµ ẋβ ẋµ

)]
. (2.8)

We now choose s as the affine parameter ζ of the curve C,
so the vector ẋβ is here regarded as the unit vector uβ tangent
to C.

Equations (2.7) and (2.8) then reduce to the following:

d f
dẋβ

= eUuβ, (2.9)

d f
dxβ

= ∂βeU +
1
2

eU∂β(gαµ)uαuµ,

d f
dxβ

= ∂βeU + eUΓαβ,µuαuµ. (2.10)

The Γαβ,µ are here the Christoffel symbols of the first kind.
Expliciting the Euler equations f (xα,duα):

Eβ =
d
ds

∂ f
∂uβ
−
∂ f
∂xβ

, (2.11)

we get:

Eβ =
d
ds

(
eUuβ

)
− eU

(
Γαβ,µuαuµ

)
− ∂βeU ,

Eβ = eU
(
uµ∂µuβ − Γαβ,µuαuµ

)
− ∂αeU

(
δ α
β − uαuβ

)
,

Eβ = eU
[(

uµ∇µuβ
)
− ∂βU − ∂αU

(
δ α
β − uαuβ

)]
. (2.12)

Equation (2.5) becomes:

δA = [w(δ)]x2
− [w(δ)]x1

−

∫ x2

x1

〈Eδx〉ds, (2.13)

where locally: w(δ) = eUuαdxα.
When the curve C varies between two fixed points x1 and

x2 the local variations [w(δ)]x2 and [w(δ)]x1 vanish. Therefore
applying the variational principle to (2.13) simply leads to:

δA = −

∫ x2

x1

〈Eδx〉ds = 0, (2.14)

from which we infer E = 0, i.e., from (2.12):

uµ∇µuβ − ∂αU
(
δ α
β − uαuβ

)
= 0 (since eU , 0). (2.15)

The equation (2.15) is formally identical to the differential
system obeyed by the flow lines of a perfect fluid of density ρ
with an equation of state ρ = f (P) (see Appendix):

Tµβ = (ρ + P)uµuβ − Pgµβ. (2.16)

These flow lines are thus timelike geodesics of the confor-
mal metric to (M,g) according to (2.6):

s′ =

∫ s2

s1

eU ds, (2.17)

with

U =

∫ P2

P1

dP
ρ + P

. (2.18)

All along the curve segment (s′), the pressure is varying
between two endpoints s1 and s2 which correspond to the
values P1 and P2.

One can find similar conclusions in [3, 4].
The positive scalar eU accounts for the relativistic fluid

index [5].

2.2.2 The Gödel interpretation

The tensor (2.16) can be equivalently written:

Tµβ = ρuµuβ − Phµβ, (2.19)

with the projection tensor:

hµβ = gµβ − uµuβ. (2.20)

The cosmological term can then be re-introduced by setting

P = −
Λ

κ
, (2.21)

yielding the model which Gödel simply focused on.
Finally, by letting a be a conformal factor, we see that

Gödel’s metric (2.3) is simply the solution of the field equations
with a variable pressure term as per:

Rµν −
1
2
gµνR = κ

(
ρuµuβ − Phµβ

)
. (2.21bis)

The cosmological “constant” Λ is thus no longer this
arbitrary ingredient required to sustain the Gödel model and so
are the constraints (1.8) and (1.9).
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2.3 The Gödel rotation

2.3.1 Vorticity of the fluid

We just showed that Gödel space-time should be likened to a
perfect fluid.

The time-like 4-vector uα is everywhere tangent to the flow
lines of this fluid.

The covariant derivative uα;µ may be expressed in a in-
variant manner in terms of tensor fields which describe the
kinematics of the congruence of curves generated by uα.

In Gödel’s case, the shear tensor σαµ vanishes:

σαµ = u(α;µ) −
1
3
θhαµ + ů u(α µ) = 0, (2.22)

where θ is the expansion scalar:

θ = uα;α. (2.22bis)

ůα is the acceleration vector of the flow lines:

ůα = uα;µuµ. (2.22ter)

For a perfect fluid, this acceleration is shown to be (see
Appendix):

ůα = ∂αU. (2.23)

Besides ůα and θ, the shearless fluid is characterized by the
vorticity tensor:

ωαµ = h σ
α h ν

µ u[σ;ν] = u[α;µ] + ů u[α µ], (2.24)

from which is derived the vorticity 4-vector ω of the flow lines
of the fluid.

The ω-components are known to be: [6]

ωβ =
1
2
ηβγσρuγωσρ , (2.25)

with the Levi-Civita tensor: ηβγσρ = −g−1/2 · εβγσρ.
The kinematic quantities ωαµ and ωα are completely or-

thogonal to uµ , i.e.,

ωαµuµ = 0, ůαuµ = ωαuµ = 0.

(Shear free flows of a perfect fluid associated with the Weyl ten-
sor have been extensively investigated by A. Barnes, Classical
General Relativity. proc. Cambridge, 1984).

2.3.2 Conformal transformations

All above results can be easily extended to the conformal
manifold (M,g′) by applying the covariant derivative (∇µ)′

formed with the conformal connection coefficients:(
Γ
γ
αβ

)′
= Γ

γ
αβ + 2δγ U(α ,β) − gαβU

,γ. (2.26)

One also defines the unit 4-vector w of the fluid on the
conformal metric (ds2)′ as:

wµ = eUuµ , (2.27)

wβ = e−Uuβ . (2.28)

In this case, the differential system of the flow lines wµ

admits the relative integral invariant in the sense of Poincaré
[7]: ∫

Ω =

∫
wβδxβ. (2.29)

Denoting by dΩ the exterior differential of the form Ω, we
have in local coordinates:

dΩ = dwβ ∧ dxβ =
1
2

[
∂βwα − ∂αwβ

]
dxβ ∧ dxα. (2.30)

To the form dΩ is associated the antisymmetric tensor of
components:

ωβα = ∂βwα − ∂αwβ . (2.31)

It is easy to verify that these components coincide with
the vorticity tensor components defined by (2.24). Unlike the
vorticity tensor ωβα, the vorticity vector ωβ does not remains
the same upon the conformal transformations (2.27)–(2.28).

2.3.3 Application to the Gödel model

On the modified Gödel manifold (M,gG), the components of
the unit 4-vector wG tangent to world lines of matter (1.3) (1.4)
are here:

(wµ)G = eU(uµ)G = eU(1,0,0,0), (2.32)(
wβ

)
G

= eU
(
uβ

)
G

= e−U(1,0,ex1 ,0). (2.33)

Notice that the contravariant components (uµ)G are all
constant.

In this particular case, according to (2.23), one has

(ůα)G = ∂αU = 0, i.e., U is constant.

By concatenation, the conformal factor expU reduces to a
constant and coincides with Gödel’s choice a = const .

So the vorticity magnitude of the fluid’s matter remains as
in the initial theory:

ωG =
(
gαµω

αωµ
)

G

1/2
=

a
√

2
. (2.34)

On the other hand, we note that the covariant components
of the velocity (uβ)G are not all constant.

This means that the conformal geodesics principle holds
within our theory.

In other words, we clearly see that Gödel’s proposed solu-
tion is only a (very limited) special case (contravariant velocity
components) which therefore reveals a patent lack of general-
ity.
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Therefore, Gödel’s theory ought to be embedded in a
broader scheme implying a conformal metric

(
ds2

)′
as we

inferred above.
Note: one of the Kretschmann scalar is an invariant only

for ωG : RαβγδTαβγδ = 12ωG
4.

2.4 Chronal horizon

With Gödel one defines new (cylindrical) coordinates (t,r,φ,y)
by setting:

ex1 = cosh2r + cosφsinh2r, (2.35)

x2ex1 =
√

2sinφsinh2r, (2.36)

tan
1
2

[
φ +

x − 2t
√

2

]
= e−2r tan

φ

2
, (2.37)

2z = x3. (2.38)

Within the framework of our theory, these coordinates lead
to the line element:

ds2 = 4e2U(x)
[
dt2 − dr2 − dz2+

+
(
sinh4r − sinh2r

)
dφ2 + 2

√
2sinh2r dφdt

]
. (2.39)

This metric still exhibits the rotational symmetry of the
solution about the axis r = 0, since we clearly see that the
components of the metric tensor do not depend on φ.

For r > 0, we have: 0 6 φ 6 2π. If a curve rG is defined
by: sinh4r = 1, that is

rG = ln
(
1 +
√

2
)
, (2.40)

then any curve r > ln(1 +
√

2), i.e. (sinh4r − sinh2r) > 0
materialized in the “plane” t = const. (or zero t), is a closed
timelike curve.

The radius rG referred to as the Gödel radius induces a
light-like curve or closed null curve, where the light cones are
tangential to the plane of constant (or zero) t.

The photons trajectories reaching this radius are closing
up, therefore rG constitutes a chronal horizon beyond which
an observer located at the origin (r = 0) cannot detect them.

With increasing r > rG the light cones continue to keel
over and their opening angles widen until their future parts
reach the negative values of t.

In this achronal domain, any trajectory is a closed time-like
curve and s′ is extended over a full cycle.

As a result, the integral U performed over the closed path
has no endpoints and is thus expressed in the form:

U =

∫ [
dP
ρ + P

]
+ const. (2.41)

However, the pressure P which is fluctuating along the
closed path remains at the same averaged value for the whole
cycle and may be then regarded as globally constant.

In this case, the first term in the r.h.s. of (2.35) vanishes
implies U = const., and the conformal factor (expU) may
coincide again with Gödel’s choice a = const.

Therefore, for r > rG, the acceleration of flow lines of
matter is always zero whatever the components of wG. Because
of this, all closed timelike curves can no longer be derived
from the geodesic principle calculation developed above.

By introducing the pressure in the Gödel model, we clearly
put in evidence the difference between the geodesics and the
closed time-like curves.

This was mathematically outlined in [8] but no explanation
was provided as why this difference arises.

Conclusion

When Gödel wrote down his metric he was led to introduce a
distinctive constant factor a in order to re-transcript the field
equations with a cosmological constant along with additional
constraints.

Our theory is free of all these constraints and moreover
it provides a physical meaning to the a term. Inspection
shows that by substituting a conformal factor to the constant a
induces the field equations with a pressure like term which was
wrongly interpreted by Gödel as the cosmological constant of
the universe.

In fact, he empirically assembled the pieces of the constant
matter density and curvature scalar in order to conveniently
cope with the field equations precisely written with the cosmo-
logical constant.

In contrast, the reconstructed Gödel metric is here a straight-
forward solution to these equations and as such it can be
reproduced like any other metric without referring to any
cosmological model whatsoever.

The metric still exhibits a rotation which allows for the
existence of close timelike curves (CTCs) since the light cone
opens up and tips over, as the Gödel’s circular coordinate radius
increases within the cylindrical coordinates representation.

It seems that the first model exhibiting this property was
pioneered by the German mathematician C. Lanczos in 1924
[9], and later rediscovered in a new form by the dutch physicist
W. J. Van Stockum in 1937 [10].

However, the existence of CTCs satisfying the Einstein’s
equations remained so far a stumbling block for most of physi-
cists because it should imply the possibility to travel back and
forth in time.

The time travel possibility, was quoted as a pure mathe-
matical “exercise” unrealistic in nature because it was deemed
to describe a hypothetical universe contradicting the standard
model in expansion as we observe it. Moreover, defining an
absolute time is not readily applicable in Gödel space-time.

In here, the cards are now somewhat reshuffled: the Gödel
model does not describe any sort of universe and the relevant
metric can be applied as any other metrics like for example the
Schwarzschild, the Kerr or the Alcubierre’s ones.
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Under these circumstances, why not considering the Gödel
model as a potential time machine?

A typical example of such possible time machine is given
by the cylinder system elaborated by the American physicist
F. J. Tipler in 1974 [11].

It describes an infinitely long massive cylinder spinning
along its longitudinal axis which gives rise to the “frame
dragging” effect. If the rotation rate is fast enough the light
cones of objects in cylinder’s vicinity become tilted. Tipler
suggested that a finite cylinder might also produce CTCs
which was objected by Hawking who argued that any finite
region containing CTCs would require negative energy density
produced by a so-called “exotic matter” which violates all
energy conditions [12].

The same kind of negative energy is needed to sustain a
coupled system of Lorentzian wormholes designed to create a
time machine as suggested in [13].

In all cases, feasibility and related causality paradoxes
seemed to have been killed once for good by Hawking through
a specific vacuum fluctuations mechanism that impedes any
attempt to travel in the past [14].

Several authors have however recently challenged if not
rejected this statement [15, 16].

These constraints do not apply in the present theory.
For a thorough study covering CTCs questions one can

refer to [17, 18].

Submitted on May 24, 2021
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Appendix

In a holonomic frame defined on (M,g), the unit vectors are
normalized so that:

gµνuµuν = gµνuµuν = 1. (A.1)

By differentiating we get:

uµ∇νuµ = 0. (A.2)

Let us consider the following tensor which describes a
homogeneous perfect fluid with density ρ and with pressure P:

Tµν = (ρ + P)uµuν − Pgµν . (A.3)

The conservation equations are written:

∇µ
[
(ρ + P)uµuν

]
= ∇µ

(
Pδ µ

ν

)
. (A.4)

Setting the vector Kν such that

(ρ − P)Kν = ∇µ
(
Pδ µ

ν

)
, (A.5)

∇µ
[
(ρ − P)uµuν

]
= (ρ + P)Kν , (A.6)

∇µ
[
(ρ + P)uµ

]
uν + (ρ + P)uµ∇µuν = (ρ + P)Kν . (A.7)

Multiplying through with uν, and taking into account (A.2),
we obtain after dividing by (ρ + P):

uµ∇µuν =
(
gµν − uµuν

)
Kµ = hµνKµ . (A.8)

The flowlines everywhere tangent to the vector uµ are
determined by the differential equations (A.8).

Kµ only depends on xµ and since: hµνKµ = Kν = ∂ν
P

ρ − P
,

we set
Kν = ∂νU , (A.9)

with
U =

∫
dP
ρ + P

. (A.10)

When the fluid pressure is function of the density, the
4-vector ∂νU is regarded as the 4-acceleration vector ůν of the
flow lines given by the pressure gradient orthogonal to those
lines [19, p.70].
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A Statistical Approach to Two-particle Bell Tests
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Extensive experimental tests of the Bell inequality have been conducted over time and
the test results are viewed as a testimony to quantum mechanics. In considering the
close tie between quantum mechanics and statistical theory, this paper identifies the
mistake in previous statistical explanation and uses an elegant statistical approach to
derive general formulas for two-particle Bell tests, without invoking any wavefunctions.
The results show that, for the special case where the spins/polarizations are in the same,
opposite, or perpendicular directions, the general formulas derived in this paper convert
to quantum predictions, which are confirmed by numerous experiments. The paper also
investigates the linkages between the statistical and quantum predictions and finds that
vector decomposition and probability law are at the heart of both approaches. Based on
this finding, the paper explains statistically why the local hidden variable theory fails
the Bell tests. The paper has important implications for quantum computing, quantum
theory in general, and the role of randomness and realism in physics.

1 Introduction

The extensive study on Bell tests originated from the 1935 pa-
per by Einstein et al [1], which claimed that physical reality
can be predicted with certainty and that the uncertain nature
of quantum prediction is due to incomplete information or the
act of local hidden variables. Bohm [2] proposed a thought
experiment to test the local hidden variable (LHV) theory and
quantum mechanism, but this thought experiment was im-
practical to implement. In 1964, John Bell [3] developed the
Bell inequality from the LHV theory as a testing tool: if the
inequality is violated, the LHV theory is disproved. In 1969
Clauser et al [4] extended the Bell inequality to an experi-
mentally testable version. Freedman and Clauser [38], As-
pect [5, 6] and many others used this version to test the in-
equality and convincingly rejected it. Numerous experiments
on Bell tests [7–21] have been conducted to close the “loop-
holes” in testing. Since almost all testing results are consis-
tent with the quantum mechanical prediction, they are viewed
as a testimony to quantum mechanism.

It is well known that quantum mechanics has a close tie
with probability theory. The author suspects that both quan-
tum mechanics and statistics mechanics may essentially be
the same in the case of the Bell tests, and therefore identified
the mistakes in previous statistical explanation and derived a
statistical prediction for two-particle Bell tests. It is revealed
that the quantum prediction of the Bell test results is a spe-
cial case of the statistical prediction. By comparing the sta-
tistical and quantum derivations, the author further demon-
strates that the essence of quantum prediction is probability
law, and that quantum entanglement in two-particle Bell tests
is nothing mysterious but an alternative expression for statis-
tical correlation (i.e. there is no difference between statistical
and quantum correlations). When the correlated particles are
separated and facing different conditions (e.g. polarizers of
different orientations), probability law can still maintain their

correlation.
The paper is organized as follows: Section 2 demonstrates

the deterministic or uncorrelated nature of the Bell inequality
and reveals the mistakes in the previous statistical approach.
Based on a general case of spin or polarization, Section 3
derives a statistical prediction for Bell tests for all possible
uncorrelated and correlated particle pairs. Section 4 explores
the linkage between the quantum and statistical predictions,
while Section 5 uses the statistical approach to explain the re-
sults of representative two-particle Bell tests. Section 6 con-
cludes the paper.

2 Deterministic or uncorrelated nature of the Bell in-
equality

Realism and localism play a key role in deriving the Bell in-
equality. The usual assumption for derivation is that at loca-
tion A, a setting a (e.g. the direction of the spin/polarization
analyser) leads to an experimental outcome A(a), while set-
ting b at location B leads to outcome B(b), with the joint out-
come being E(a, b) = A(a) B(b). Since a setting leads to an
outcome with certainty, the outcome is predetermined by the
settings. This fits with the idea of determinism or realism.
Moreover, the outcome at a location is determined only by
the setting at that location, e.g. A(a) is determined by local
setting a at location A, not by setting b at location B. This is
localism.

If settings a and b can be changed to a′ and b′, respec-
tively, we can have joint outcomes:

E(a, b′) = A(a) B(b′)

E(a′, b) = A(a′) B(b)

E(a′, b′) = A(a′) B(b′) .

We further assume that the detected outcome at any set-
ting is between -1 and +1, namely |A| ≤ 1, |B| ≤ 1. With these
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assumptions, we can have:

E(a, b) − E(a, b′) = A(a) B(b) − A(a) B(b′)
= A(a) B(b) − A(a) B(b′) + [A(a) B(b)][A(a′) B(b′)]
− [A(a) B(b)][A(a′) B(b′)]

or

E(a, b) − E(a, b′) = A(a) B(b) [1 + A(a′) B(b′)] −

− A(a) B(b′) [1 + A(a′) B(b)] .
(1)

In absolute value, we can write:∣∣∣E(a, b) − E(a, b′)
∣∣∣ ≤ |A(a) B(b)| ∗ |1 + A(a′) B(b′)| +

+ |A(a) B(b′)| ∗ |1 + A(a′) B(b)| .
(2)

We have changed the negative sign on the right-hand side
of (1) to a positive sign in (2) because A(a) B(b′) can be neg-
ative. Since the values of A(a), B(b), A(a′), and B(b′) are all
between -1 and 1, we have:

|A(a) B(b)| ≤ 1 and
∣∣∣A(a) B(b′)

∣∣∣ ≤ 1 .

As such, the inequality can be written as:∣∣∣E(a, b) − E(a, b′)
∣∣∣ ≤ ∣∣∣1 + A(a′) B(b′)

∣∣∣ +
∣∣∣1 + A(a′) B(b)

∣∣∣
= 2 ±

∣∣∣A(a′) B(b′) + A(a′) B(b)
∣∣∣

or ∣∣∣E(a, b) − E(a, b′)
∣∣∣ ≤ 2 ±

∣∣∣E(a′, b′) + E(a′, b)
∣∣∣ . (3)

On the right-hand side of (3), we used the “±” sign be-
cause both A(a′) B(b′) and A(a′) B(b) can be negative (lead-
ing to negative sign) or positive (leading to positive sign).
There are two boundaries in the above inequality. If the lower
boundary is satisfied, the inequality holds, so we have arrived
at the Bell inequality:∣∣∣E(a, b) + E(a′, b′) + E(a′b) − E(a, b′)

∣∣∣ ≤ 2 . (4)

To incorporate a hidden variable into the inequality, most
researchers introduced a random variable. For example, Bell
[3,22] and Clauser et al [4] added to the experiments a hidden
variable λ, which has a normalized probability distribution:∫ ∞

−∞

p(λ) dλ = 1 .

With the added hidden variable, Bell [3,22] expressed the
expected values of coincidence at the different settings a, a′,
b and b′ as follows:

E(a, b) =

∫ ∞

−∞

A(a, λ) B(b, λ) p(λ) dλ (5)

E(a, b′) =

∫ ∞

−∞

A(a, λ) B(b′, λ) p(λ) dλ (6)

E(a′, b) =

∫ ∞

−∞

A(a′, λ) B(b, λ) p(λ) dλ (7)

E(a′, b′) =

∫ ∞

−∞

A(a′, λ) B(b′, λ) p(λ) dλ . (8)

Using the same procedure that was used to derive the Bell
inequality for (3) – the deterministic case, Bell ( [22, pp. 178–
179]) derived (the notations are slightly changed for contem-
porary readers):

E(a, b) − E(a, b′) =

=
∫ ∞
−∞

A(a, λ) B(b, λ) p(λ) dλ −

−
∫ ∞
−∞

A(a, λ) B(b′, λ) p(λ) dλ

=
∫ ∞
−∞

[A(a, λ) B(b, λ) − A(a, λ) B(b′, λ) +

+ A(a, λ) B(b, λ) A(a′, λ) B(b′, λ) −

− A(a, λ) B(b, λ) A(a′, λ) B(b′, λ)] p(λ) dλ

=
∫ ∞
−∞

A(a, λ) B(b, λ) [1 + A(a′, λ) B(b′, λ)] p(λ) dλ −

−
∫ ∞
−∞

A(a, λ) B(b′, λ) [1 + A(a′, λ) B(b, λ)] p(λ) dλ .

(9)

In terms of absolute value, we have:

|E(a, b) − E(a, b′)|

≤ |

∫ ∞

−∞

A(a, λ) B(b, λ) [1 + A(a′, λ) B(b′, λ)] p(λ) dλ |

+ |

∫ ∞

−∞

A(a, λ) B(b′, λ) [1 + A(a′, λ) B(b, λ)] p(λ) dλ |

≤ |

∫ ∞

−∞

[1 + A(a′, λ) B(b′, λ)] p(λ) dλ |

+ |

∫ ∞

−∞

[1 + A(a′, λ) B(b, λ)] p(λ) dλ |

= 2 ± |E(a′, b′) + E(a′, b)| .

Rearranging the above inequality as before, we can obtain the
same inequality as (4).

From the above derivation, one may notice that the same
term

∫ ∞
−∞

p(λ) dλ is added to outcomes of the different settings
and then this term is filtered out in the end by the definition
of expected values in (7) and (8). As such, the added hidden
variable and probability are only additional statistical noise,
which does not change the deterministic nature of the result-
ing inequality.

Later, Bell and others [28–30] moved on to a version of
the Bell inequality based on joint and conditional probabili-
ties. However, they used the same assumption that the distri-
bution of hidden variable λ is UNRELATED to local settings.
This assumption apparently contradicts the concept of a local
variable. Ironically, the assumption is often regarded as a fea-
ture of a local variable. Myrvold et al [23] used a different
approach. Instead of concerning the probability distributions
of λ conditioned on settings, they conditioned the experimen-
tal outcomes on hidden variable λ. Since they assigned no
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statistical property to λ, its behaviour is unknown, so its role
in their derivation is negligible, or not essential at least.

To present a genuine statistical event, one should allow
the probability density λ to vary with the local settings. In
other words, the probability of value λmust be conditioned on
the settings, i.e. for settings a and b, we have the probability
p(λ | a) and p(λ | b), respectively. The probability of the joint
outcome of settings a and b should be p(λ | a, b). Similarly,
we have p(λ | a, b′), p(λ | a′, b), p(λ | a′, b′) for other joint set-
tings. As such, the expected joint detection should be:

E(a, b) =

∫ ∞

−∞

A(a, λ) B(b, λ) p(λ | a, b) dλ

E(a, b′) =

∫ ∞

−∞

A(a, λ) B(b′, λ) p(λ | a, b′) dλ

E(a′, b) =

∫ ∞

−∞

A(a′, λ) B(b, λ) p(λ | a′, b) dλ

E(a′, b′) =

∫ ∞

−∞

A(a′, λ) B(b′, λ) p(λ | a′, b′) dλ .

Using this new definition of expected values, the terms
for the probability of λ are different for each joint setting and
thus cannot be filtered out. As a result, the Bell inequality
cannot be derived.

However, one may further assume that the joint probabil-
ity of outcome at joint setting a and b is the multiplication of
probabilities of outcomes at each setting, namely:

p(λ | a, b) = p(λ | a) p(λ | b) (10)

where 0 ≤ p(λ | a) < 1; 0 ≤ p(λ | b) < 1;
∫ ∞
−∞

p(λ | a) dλ = 1;
and

∫ ∞
−∞

p(λ | b) dλ = 1.
Applying the same method for joint settings a and b′, a′

and b, and a′ and b′, we have:

p(λ | a, b′) = p(λ | a) p(λ | b′)

p(λ | a′, b) = p(λ | a′) p(λ | b)

p(λ | a′, b′) = p(λ | a′) p(λ | b′) .

Based on the above joint probabilities, we can calculate
E(a, b), E(a, b′), E(a′, b) and E(a′, b′). Following the same
procedure as in deriving (9), we can derive the Bell inequality
(4).

As we see, (10) is crucial for deriving the Bell inequality
from a statistical point of view. However, the expression of
joint probability as a product of the probability of outcome of
two experiments is not without a condition. The well-known
but often neglected condition is that the two experiments in-
volved in the joint probability calculation in (10) must be to-
tally unrelated, i.e. independent random experiments. Apply-
ing this condition to the Bell tests, the requirement is that the
probabilities of outcomes at different locations/settings are
independent of each other, so “local” means “uncorrelated”.

This interpretation gives the alternative condition for the Bell
inequality. That is, if the outcomes are not deterministic, the
outcomes at two different settings should not be correlated.

The common wisdom is that, during a Bell test, the exper-
iments at different locations A and B are apparently indepen-
dent because the orientations of the polarizers at A and B are
changed independently and randomly. However, the indepen-
dence of settings are not the full condition for independent
experiments because local settings are only one element of
the polarization experiments. The other element is the light
source. In fact, correlated source particles are used in all Bell
tests conducted so far, so the experiments conducted at dif-
ferent locations are not independent. Since the experiments
based on different settings are correlated by source particles,
the joint probability in a Bell test should be calculated based
on conditional probability:

pa,b = pa ∗ pb|a

or
pa,b = pb ∗ pa|b .

Similar mistakes are also commonly made in treating the
expected value of joint events as being the multiplication of
the expected values of separate events. Due to the statistical
nature of the polarization experiments, we need to allow one
setting to generate different results, e.g. experiments based
on setting a can have results A1(a), A2(a), . . .An(a), so the ex-
pected value for results of setting a can be expressed as:

E(a) =
1
n

∑
i

Ai(a) . (11)

We can also write the expected value for results of setting
b as:

E(b) =
1
n

∑
i

Bi(b) . (12)

Indeed, Bell [22, p. 178] realized the importance of in-
troducing (11) and (12) for E(a) and E(b). However, with no
precondition being specified, he assumed the following equal-
ity as the base for deriving the Bell inequality:

E(a, b) = E(a) ∗ E(b) . (13)

The above equation is used by numerous researchers on Bell
tests, but the equation is not unconditional. Statistically, we
can expand the expected values as:

E(a, b) =
1
n

∑
i

Ai(a) Bi(b) (14)

E(a) ∗ E(b) =
1
n2

∑
i

Ai(a)
∑

i

Bi(b) . (15)

Apparently, E(a, b) , E(a) ∗ E(b) in general cases. A
special statistical case where E(a, b) = E(a) ∗ E(b) holds is
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when the outcomes of Ai(a) are independent of (or not corre-
lated to) the outcomes of Bi(b). In this special case, the Bell
inequality will hold. If E(a) and E(b) are correlated, we must
use the conditional expected values that reflect the correla-
tions between two experiments.

From the above discussion, we can conclude that the Bell
inequality does not allow for a probabilistic nature (or cor-
relation, to be exact) because it is based on determinism or
realism. To allow for the Bell inequality in a statistical exper-
iment, one must satisfy the condition for (13), which in turn
requires that there is no correlation between Ai(a) and Bi(b).
In terms of quantum mechanics terminology, if particles 1 and
2 are in separable (uncorrelated) states, the Bell inequality is
valid, otherwise (if particles 1 and 2 are in entangled states),
the Bell inequality will be violated.

3 A statistical interpretation of spin/polarization corre-
lation

A statistical presentation of Bell tests seems to be compli-
cated because it involves many random settings, such as ran-
dom directions of polarizers and random polarization of light
or spins of particles. Moreover, spins and polarizations have
different features. After trying a number of methods, the au-
thor has arrived at a remarkably simple and elegant approach
for deriving the statistical prediction.

The difference between polarization and spin is that spins
in opposite directions have different values while polariza-
tions in the opposite directions are viewed as being the same.
In other words, the spin direction in a plane can have a 360◦

variation while the polarization direction varies only within
180◦, so the case of polarization is a reduced case of spin. For
generality, this section focuses on deriving the results for the
case of spin, and then shows how the results can be applied to
the case of polarization.

There are various types of spin analyzer/detector [24–27],
but all spin detectors rely on a differing scattering cross sec-
tion for spin polarized particles. During spin detection, the
travel direction of the particle and the detector orientation
form a plane, in which the particles are reflected and de-
tected [25]. The spin polarized particles will cause asymmet-
ric reflection, and the asymmetric results indicate the detected
spin direction. Essentially, a spin analyser works similarly to
a polarizer for light, but the analyser can identify the spin di-
rection along the given detection orientation. Consequently,
we use a polarizer with an arrow (a vector) to represent a spin
analyzer.

Fig. 1 shows a general case where the particles of the dif-
ferent spin directions are measured by the two spin analyzers
in a Bell test experiment. Two spins, s1 and s2, and two spin
analyzers, A and B, are positioned in different directions. The
spin directions of particles 1 and 2 form an angle of θ1 and θ2,
respectively, with the x-axis. For simplicity, we assume that
s1 and s2 are unit vectors, and that spin analyzer A is placed

Fig. 1: Measuring spin directions

in the direction of the x-axis while spin analyzer B forms an
angle of β with the x-axis. Given this setting, the component
of s1 detected by A is E(A) = cos θ1. Similarly, the angle be-
tween s2 and the spin analyzer B is θ2 − β, so the component
of s2 detected by B is E(B) = cos(θ2 − β).

There are two types of correlation measurement in the
Bell tests. One is the joint detection counts normalized on
the separate detection counts at each setting. The other is the
joint detection rate normalized on the emission rate at the par-
ticle source. We address them in turn.

3.1 Correlation normalized on outcomes at each setting

This measurement fits with the standard definition of corre-
lation, so we can calculate the expected value, variance and
covariance and then obtain correlation. Since the source emits
particles of random spin directions, the expected values and
variances can be obtained by integrating E(A) and E(B) over
the spin angles θ1 and θ2 in the range of 0 – 2π for particles 1
and 2.

〈E(A)〉 =

∫ 2π
0 E(A) dθ1∫ 2π

0 dθ1

=

∫ 2π
0 cos θ1 dθ1∫ 2π

0 dθ1

=
sin θ1

θ1

∣∣∣∣∣2π
0

= 0

var(A) =

∫ 2π
0 [cos θ1 − 〈E(A)〉]2 dθ1∫ 2π

0 dθ1

=
1

2π

∫ 2π

0
cos2 θ1 dθ1

=
1

2π

∫ 2π

0
0.5 (cos 2θ1 + 1) dθ1 = 0.5

〈E(B)〉 =

∫ 2π
0 E(B) dθ2∫ 2π

0 dθ2

=

∫ 2π
0 cos(θ2 − β) dθ2∫ 2π

0 dθ2

= 0
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var(B) =

∫ 2π
0 [cos(θ2 − β) − 〈E(B)〉]2 dθ2∫ 2π

0 dθ2

=
1

2π

∫ 2π

0
cos2(θ2 − β) dθ2

=
1

2π

∫ 2π

0
0.5 [cos 2(θ2 − β) + 1] dθ2 = 0.5 .

If the two particles are uncorrelated, θ1 and θ2 can vary
independently, so the covariance can be calculated through a
double integral:

cov(A, B) =

=

! 2π
0 [cos θ1 − 〈E(A)〉][cos(θ2 − β) − 〈E(B)〉] dθ1 dθ2! 2π

0 dθ1 dθ2

=
1

(2π)2

∫ 2π

0
cos θ1 dθ1

∫ 2π

0
cos(θ2 − β) dθ2 = 0 .

The zero covariance is expected because of the uncorre-
lated nature of s1 and s2 — the positive and negative joint de-
tection counts will be largely cancelled out. If the two spins
are correlated, θ1 and θ2 can still change randomly, but these
two angles must keep the same difference, i.e. θ2 = θ1 + θ0,
where θ0 is the fixed relative angle between two spin direc-
tions. In this case, the covariance can be calculated by an
integration over θ1 (or θ2):

cov(A, B) =

=

∫ 2π
0 [cos θ1 − 〈E(A)〉][cos(θ1 + θ0 − β) − 〈E(B)〉] dθ1∫ 2π

0 dθ1

=
1

2π

∫ 2π

0
0.5 [cos(2θ1 + θ0 − β) + cos(β − θ0)] dθ1

= 0.5 cos(β − θ0) .

As such, we have the following spin correlation:

E(A, B) =
cov(A, B)

[var(A)]1/2[var(B)]1/2

=
0.5 cos(β − θ0)
0.50.5 ∗ 0.50.5 = cos(β − θ0) . (16)

Eq. (16) is a general result for joint detection for any given
orientations of spin detectors. The application of this equa-
tion for special occasions can produce quantum predictions.
For example, if two particles have the same spin, i.e. entan-
gled particles of the same phase, we have θ0 = 0, E(A, B) =

cos β. If two particles have the opposite spin, i.e., negatively
correlated particles, we have θ0 = π, E(A, B) = − cos β. If
the two spin vectors are perpendicular, θ0 = π/2, E(A, B) =

cos(π/2 − β) = sin β.
It is worth mentioning that some researchers used light

intensity correlation instead of the expected-value correlation

for polarization Bell test. For example, Ou and Mandel [31]
and Rarity and Tapster [35] regarded the joint detection prob-
ability of photons as being proportional to the intensity corre-
lation of light. This approach is misplaced. For polarization
experiments, one or more photons (assuming perfect detec-
tion for the simplicity of an argument) pass through the po-
larizer, a positive detection will be recorded, so the intensity
is not an appropriate measurement. One may argue that inten-
sity is the square of amplitude so intensity can be used as the
proxy of probability of photons passing through the polarizer,
based on which the joint probability can be calculated. How-
ever, as explained in Section 2, the joint probability cannot be
calculated through the multiplication of probabilities of sep-
arate detections because of the correlated particles in a Bell
test. Since probability measures the average of the squared
detection values, the intensity (or probability) correlation ap-
proach will produce totally different result from that in this
paper. This can be shown in the following expression:

pAB = pA pB = 〈E(A)2〉 〈E(B)2〉,〈E(A) E(B)〉2 = E(A, B)2 .

3.2 Correlation normalized on emissions at the source

For a Bell test, one needs to measure many pairs of particles
of different spin directions with varied detector orientations.
In this case, the joint detection rate is generally normalized
on the emission rate at the source and the correlation is cal-
culated based on the fixed axes.

Referring to Fig. 1, if the correlation is calculated based
on x and y axes, the component detected by analyzer A and B
needs to be further decomposed on the x-axis and y-axis:

EAx = E(A) = cos θ1 and EAy = 0

EBx = E(B) cos β = cos(θ2 − β) cos β

EBy = E(B) sin β = cos(θ2 − β) sin β .

Since no component on the y-axis is detected by analyzer
A, the correlation (joint detection) on the y-axis is zero. On
the other hand, both analyzers detect values on the x-axis, so
the joint detection value is:

EAB = EAx EBx = cos θ1 cos(θ2 − β) cos β .

Since the correlation is based on the emissions at source,
which are 100% detected (assuming all particles come to and
are detected by either detector A or B), the variances are one
and thus the correlation is equivalent to co-variance. If parti-
cles 1 and 2 are uncorrelated, the joint detection rate will be
the value of EAB integrated over both θ1 and θ2:

pAB =

! 2π
0 EAB dθ1 dθ2! 2π

0 dθ1 dθ2
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=

! 2π
0 cos θ1 cos(θ2 − β) cos β dθ1 dθ2! 2π

0 dθ1 dθ2

=
cos β
(2π)2

∫ 2π

0
cos θ1 dθ1

∫ 2π

0
cos(θ2 − β) dθ2 = 0 .

The above result indicates that for uncorrelated particles,
the joint detection rate is zero. This makes sense. Due to
the uncorrelated random nature, the different detection counts
will be washed out by the independent random changes in θ1
and θ2.

If two particles are correlated, i.e. θ2 = θ1 + θ0, we can
obtain correlation by integrating EAB over θ1 (or θ2) in range
0 – 2π:

pAB =

∫ 2π
0 EAB dθ1∫ 2π

0 dθ1

=

∫ 2π
0 cos θ1 cos(θ1 + θ0 − β) cos β dθ1∫ 2π

0 dθ1

=
cos β
2π

∫ 2π

0
0.5 [cos(2θ1 + θ0 − β) + cos(β − θ0)] dθ1

= 0.5 cos(β − θ0) cos β .

(17)

The above result shows that when the two spin vectors are
correlated, i.e., the value of θ0 is fixed, the joint detection rate
is determined only by correlation phase θ0 and the angle β
formed by the orientations of two spin detectors.

Eqs. (16) and (17) can also be applied to light polariza-
tion experiments. In the case of polarized light, it is tricky
to derive the joint detection because the detected values have
to be non-negative and thus are not consistent with the cosine
functions for E(A) and E(B). The common approach (e.g. As-
pect et al [4, 5]) is to define the result of no-detection as -1,
instead of 0. In other words, when the light polarization is
perpendicular to the orientation of detector, most likely no
photon will be detected and thus a result of -1 with a 90◦ will
be recorded. With this definition, all angles in (16) and (17)
should be halved, and then the equation is equally applicable
to the Bell tests with polarized light.

Where the two spin vectors are in the same directions
(i.e. θ0 = 0 ), (17) becomes:

pAB = 0.5 cos2 β = 0.25 (cos 2β + 1) . (18)

In this special case, the joint detection rate can also be derived
without integration, as shown in Fig. 2.

To present three random directions (i.e. the same direc-
tion of spin of the two particles, and the directions of the two
spin analyzers A and B), we can fix one of them because only
the relative angles between them matter. For convenience of
presentation, we assume the spin vector

−−→
OV to be a unit vec-

tor pointing to V(ax/
√

2, ay/
√

2), where ax and ay are unit
vectors at x and y directions, respectively.

Fig. 2: Measuring the correlation of a particle pair of the same spin

The projection of the spin vector
−−→
OV onto the B axis in

Fig. 2 is:

−−−→
OB2 =

−−−−→
B1B2 +

−−−→
OB1 =

[
−→ax cos(θ − θb) + −→ay sin(θ − θb)

]
/
√

2 .

This projection can be further projected onto the x-axis
and y-axis and thus decomposed to two components

−−−→
OBx and

−−−→
OBy, respectively (

−−−→
OBy is not shown in Fig. 2 so as not to

complicate the graph):

−−−→
OBx = cos(θ−θb)

[
−→ax cos(θ − θb) + −→ay sin(θ − θb)

]
/
√

2 (19)

−−−→
OBy = sin(θ−θb)

[
−→ax cos(θ − θb) + −→ay sin(θ − θb)

]
/
√

2 . (20)

Similarly, the projection of
−−→
OV onto the A-axis can be

decomposed into the x and y components of
−−−→
OAx and

−−−→
OAy

respectively (not shown in Fig. 2):

−−−→
OAx = cos(θ − θa)

[
−→ax cos(θ − θa) + −→ay sin(θ − θa)

]
/
√

2

−−−→
OAy = sin(θ − θa)

[
−→ax cos(θ − θa) + −→ay sin(θ − θa)

]
/
√

2 .

As such, the joint detection rate can be calculated as:

pAB =
−−−→
OAx
−−−→
OBx +

−−−→
OAy
−−−→
OBy

= cos(θ − θb)
[
−→ax cos(θ − θb) + −→ay sin(θ − θb)

]
/
√

2

× cos(θ − θa)
[
−→ax cos(θ − θa) + −→ay sin(θ − θa)

]
/
√

2

+ sin(θ − θb)
[
−→ax cos(θ − θb) + −→ay sin(θ − θb)

]
/
√

2

× sin(θ − θa)
[
−→ax cos(θ − θa) + −→ay sin(θ − θa)

]
/
√

2

= 0.5
[
−→ax cos(θ − θb) + −→ay sin(θ − θb)

]
×

[
−→ax cos(θ − θa) + −→ay sin(θ − θa)

]
cos(θa − θb)

= 0.5 cos2(θa − θb)
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or

pAB = 0.25 [cos 2(θa − θb) + 1] . (21)

Noting that (θa − θb) is the angle formed by the orientations
of two detectors A and B, we find that the above result is the
same as (18). This joint probability of detection is exactly the
same as the coincidence rate derived from quantum mechan-
ics. The experiment by Aspect [5] confirmed this result.

The correlation function (16) and the joint detection rate
(17) derived in this section are general results that are appli-
cable to both uncorrelated or correlated polarization/spin of
any phase differences. The results can be tested experimen-
tally using the current Bell test techniques. The only change
needed is to add a randomly controlled source polarizer for
each of the two beams after the collimation lenses, but before
the traditional Bell test polarizers. If the pair of source polar-
izers are randomly and separately controlled, i.e. their relative
angle of polarization θ0 varies randomly, the source particles
are uncorrelated, so the joint detection rate will be zero for
a large sample size. If the pair of source polarizers are con-
trolled randomly but jointly, i.e. the relative polarization angle
of the pair is fixed at any given value, the joint detection rate
should be determined by the relative angle (θ0) of the first pair
of (source) polarizers and that (β) of the second pair, with the
quantitative relations determined by (16) and (17).

4 Linkage between the statistical approach and quan-
tum mechanics

From the previous section, we see that the simple statistical
approach gives equivalent but more general results when they
are compared with the predictions from quantum mechanics
(QM). This is not a coincidence. This section shows that the
statistical approach is at the heart of quantum mechanical pre-
diction on Bell tests.

QM uses wavefunctions to represent the different states.
For example, a wavefunction of a spin-up (or +1) state can be
written in Dirac notation as | 0〉, while spin-down (or -1) can
be written as |1〉. The spin states can be projected to (or mea-
sured on) different axes and may result in different results. If
Alice measures a spin state of | 0〉 on the A-axis while Bob
measures |1〉 on the B-axis, we can express this spin state as
| 0〉 ⊗ |1〉, or simply | 01〉. A wavefunction | 01〉+ |10〉 indicates
that the measurement on the A-axis is always opposite to the
measured results on the B-axis, i.e. the measured results are
negatively correlated. Similarly, the states in wavefunction
| 00〉+ |11〉 are positively correlated. The states in this type of
wavefunctions are called entangled states. On the other hand,
a wavefunction of | 01〉 + | 00〉 shows that while Alice’s mea-
surement is always | 0〉, Bob’s measurement can be either | 0〉
or |1〉, so there is no correlation between the two measurement
results. The states in this wavefunction are called separable
states. In short, the entangled states are the QM expression
for correlation.

Now we consider a normalized wavefunction of the pos-
itively entangled states: ψ = (| 00〉 + |11〉)/

√
2. If the states

are measured by Alice on the A or x axis (both axes coincide,
shown in Fig. 3), the possible outcome will be 〈0 |σA| 0〉 = +1
or 〈1|σA|1〉 = −1. Similarly, if the state is measured by Bob
on the B-axis, the possible outcome will be 〈0 |σB| 0〉 = +1
or 〈1|σB|1〉 = −1. Since this is a wavefunction of positively
entangled states, Alice and Bob will always obtain the same
(positive or negative) measurement outcome. Bob’s measure-
ment can be decomposed to two components on the x-axis
and y-axis: σB = σB

x cos β + σB
y sin β. Alternatively, we can

write: 〈0 |σB
x | 0〉 = cos β, 〈1|σB

x |1〉 = − cos β, 〈0 |σB
y | 0〉 =

sin β, 〈1|σB
y |1〉 = − sin β. Since Alice’s measurement is on

the x-axis, we have σA = σA
x .

Fig. 3: Spin measurement for positively entangled particles

The correlation between the measurements of Alice and
Bob can be calculated by the expected value of joint mea-
surements: 〈σAσB〉. The QM calculation result is as follows:

〈σAσB〉 = 〈ψ |σA ⊗ σB |ψ〉

= 0.5 (〈00 | + 〈11 | )σA ⊗ σB( | 00〉 + | 11〉)

= 0.5 (〈00 |σA ⊗ σB | 00〉 + 〈11 |σA ⊗ σB | 00〉)

+ 〈00 |σA ⊗ σB | 11〉 + 〈11 |σA ⊗ σB | 11〉)

= 0.5 (〈0 |σA | 0〉〈0 |σB | 0〉 + 〈1 |σA | 0〉〈1 |σB | 0〉)

+ 〈0 |σA | 1〉〈0 |σB | 1〉 + 〈1 |σA | 1〉〈1 |σB | 1〉)

= 0.5 (〈0 |σA | 0〉〈0 |σB | 0〉 + 〈1 |σA | 1〉〈1 |σB | 1〉)

= 0.5 (〈0 |σA
x | 0〉〈0 |σ

B
x | 0〉 + 〈1 |σ

A
x | 1〉〈1 |σ

B
x | 1〉) = cos β .

The above result is exactly the same as (16) with θ0 =

0, which was obtained from the much simpler statistical ap-
proach. A number of statistical features in the QM approach
contribute to this same result. First, the calculation of the
expected value in QM (i.e. 〈σAσB〉 = 〈ψ |σA ⊗ σB |ψ〉) is
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based on a probability-weighted average. Second, the rule
of tensor product (〈11 |σA ⊗ σB | 00〉 = 〈1 |σA | 0〉〈1 |σB | 0〉)
makes an operator (e.g. σA or σB) work on the wavefunc-
tion on its space only. This is exactly the case of measure-
ment (or vector component decomposition) on different axes.
Third, the orthogonal condition of basis wavefunctions mim-
ics the measurement of the projection onto the orthogonal
axes, e.g. 〈0 |σA | 0〉 = +1, 〈1 |σB | 1〉 = −1, and 〈1 |σA | 0〉 =

0. Fourth, the space (or axis) separation is consistent with the
concept of correlation. For example, since Alice measures on
the x-axis, only the x-component of the measurement by Bob
is relevant to the correlation calculations. This is manifested
by 〈0 |σA | 0〉〈0 |σB | 0〉 = 〈0 |σA

x | 0〉〈0 |σ
B
x | 0〉. Finally, the

normalized wavefunction automatically normalizes the cal-
culated expected value so that it fits the requirement of corre-
lation.

If we use other entangled wavefunctions to perform sim-
ilar calculations, we would arrive at essentially the same re-
sults but with a negative sign for some wavefunctions. For
example, with φ = ( | 01〉 + |10〉)/

√
2, we find:

〈σAσB〉 = 〈φ |σA ⊗ σB | φ〉 = − cos β .

The above result is equivalent to (16) with θ0 = π. This is
not surprising as this wavefunction indicates a negative corre-
lation. If we use a wavefunction of separable states to calcu-
late the expected joint measurement, we would find a value of
zero. This is expected because there is no correlation between
separable states.

If the measurement axes change randomly, we cannot put
a vector on either the A or B axis. In this case, the QM deriva-
tion of the joint detection rate involves a projection process
similar to that used in Fig. 2. Using a matrix presentation, we
can express the projection of a vector pointing to (x1, y1) onto
a specified axis of angle θ as follows:(

cos θ
sin θ

) (
cos θ sin θ

) (x1
y1

)
=

=

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

) (
x1
y1

)
.

(22)

In the above equation, if we let θ be the angle of the B
axis with respect to the x-axis, i.e. θ − θb in Fig. 2, and let
x1 = −→ax/

√
2 and y1 = −→ay/

√
2, we can obtain the same result

as in (19) and (20).
The matrix in (22) is called a projection matrix [28], as it

projects a vector onto the axis of angle θ and gives the com-
ponents of the projection:

Q(θ) =

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
.

Using the above projection matrix and an entangled wave-
function (e.g. φ = ( | 01〉 + |10〉)/

√
2), we can calculate the

probability of joint measurement as:

pAB = 〈ψ |QA⊗QB |ψ〉 = 0.5 cos2(θA − θB)
= 0.25 [cos 2(θA − θB) + 1] .

Since (θA − θB) is the angle of the orientations of detec-
tors, the above result is exactly the same as (18) or (21) that
we derived in the statistical approach. The identical result is
apparently because the same projection process works in both
approaches.

5 Statistical explanation of two-particle Bell tests

Many Bell test experiments are based on the coincidence rate
of particle pairs, but a handful of researchers (e.g. [9, 16, 20,
32, 39, 40] have conducted experiments on correlations of 3
or more particles. Multi-particle correlation can be achieved
by special designs of experimental setup to obtain specific
quantum states (e.g. [9, 32]) or by exploiting the coherent
states of Bose-Einstein condensate (e.g. [16, 20]). The sta-
tistical foundation of multi-particle correlation is the same as
that for particle pairs, so this paper focus on two-particle cor-
relation. Even though we confine our scope to two-particle
Bell tests, there still are copious experiments. This section
selects only some representative experiments and puts them
into two groups: the polarization experiments of entangled
photon pairs and non-polarization experiments based on light
phase correlation.

5.1 Polarization experiments

Among numerous Bell test using polarization of photon pairs,
we consider only two influential papers by Aspect et al [5,6].
Like most experiments on the Bell tests, Aspect et al [5,6] uti-
lized the derivation of Clauser et al [4] for an experimentally
applicable quantum mechanical prediction for the counting
rates of coincidence. The starting point of their derivation is
a probability formula:

P(a, b) = w[A(a)+, B(b)+] − w[A(a)+, B(b)−]
− w[A(a)−, B(b)+] + w[A(a)−, B(b)−]

where w means the probability weighting of each outcome in
total emission counts R0, with:

R0 = [A(a)+, B(b)+] + [A(a)+, B(b)−]
+ [A(a)−, B(b)+] + [A(a)−, B(b)−]

w[A(a)+, B(b)+] = [A(a)+, B(b)+]/R0, etc.

The above equation is a manifest that the net correlation (pos-
itive correlation [A(a)+, B(b)+] + [A(a)−, B(b)−] minus nega-
tive correlation [A(a)+, B(b)−] + [A(a)−, B(b)+] ) in terms of
total counts R0. This equation is consistent with our deriva-
tion of joint detection rate presented in Section 3: the net cor-
relation in (17) is calculated by integrating EAB over the angle
0−2πwhile the total counts is obtained by integrating the unit
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spin vector over the same range. Due to the same foundation
for derivation, the resulting (18) is unsurprisingly the same
as that obtained by Clauser et al [4] and used by Aspect et
al [5, 6]. Since the joint detection rate derived from both sta-
tistical and quantum approaches is identical, the explanation
on the results of Aspect et al [5, 6] will be very similar, so
we omit this explanation but examine the maximum violation
angle derived from quantum mechanics and confirmed by ex-
periments.

Using the coplanar vectors (shown in Fig. 4) introduced
by Clauser and Shimony [28] and Aspect et al [5] to present
the settings of the Bell test experiments, we can derive the
same results as the quantum prediction of the Bell test, but
without invoking any wavefunctions.

Fig. 4: Coplanar vectors presentation of Bell test settings

In Fig. 4, vectors a, a′, b, and b′ represent the direction of
the spin detectors, and the angles between them are displayed
on the graph. For simplicity of presentation, we assume all
vectors are of unit modulus and angles γ1, γ2, and γ3 are pos-
itive and less than π (for any angle θ greater than π, we can
rewrite it as 2π − θ). Applying the spin correlation results in
(16) derived in Section 3 to a case of positively entangled par-
ticles (i.e. θ0 = 0), we can obtain the experimental results as
follows:

E(a, b) = cos γ1

E(a, b′) = cos (γ1 + γ2 + γ3)
E(a′, b) = cos γ2

E(a′, b′) = cos γ3 .

The theoretical results for the Bell tests should be:

EBT = E(a, b) − E(a, b′) + E(a′, b) + E(a′, b′)
= cos γ1 − cos(γ1 + γ2 + γ3) + cos γ2 + cos γ3 .

Applying the first and second order conditions of max-
imization (minimization) for the above equation, we know
that EBT reaches the maximum or minimum when:

sin γ1 = sin γ2 = sin γ3 = sin(γ1 + γ2 + γ3) .

If γ1, γ2 and γ3 are less than π/2, the condition of maxi-
mum/minimum value necessitates that γ1 = γ2 = γ3 = γ and
sin γ=sin 3γ. With some trigonometric manipulations, from
sin γ=sin 3γ we can have sin γ (4 cos 2γ-1)=sin γ, or γ=π/4.

Similarly, if γ1, γ2 and γ3 are greater than π/2 (they are
less than π as we assumed before for simplicity), we can ob-
tain γ=3π/4.

If some angles are less than π/2, but some are greater
than π/2, we obtain no satisfying solution. For example, if
γ1 and γ2 are less than π/2, but γ3 is greater than π/2, from
sin γ1=sin γ2=sin γ3, we can infer that γ1 = γ2 and γ3 =

π− γ2, so sin γ1 = sin (γ1 + γ2 + γ3) = sin (γ1 + π) = − sin γ1,
or γ1 = γ2 = γ3 = 0. This contradicts our assumption of
positive angles and presents a trivial case where all 4 settings
coincide.

To sum up, from the first and second order condition we
reveal that the maximum and minimum value of EBT occurs
at γ=π/4 and γ=3π/4, respectively. If γ=π/4, we have:

Emax = cos π/4 − cos 3π/4 + cos π/4 + cos π/4 = 2
√

2 .

If γ = 3π/4, we have:

Emin = cos 3π/4 − cos 9π/4 + cos 3π/4 + cos 3π/4 = −2
√

2 .

As a result, we obtain the same results as the quantum predic-
tion: ∣∣∣E(a, b) − E(a, b′) + E(a′, b) + E(a′, b′)

∣∣∣ ≤ 2
√

2 .

It is worth mentioning that the above derivation shows
that the maximum violation of the Bell inequality occurs at
the setting γ = π/4 or γ=3π/4, E = ±2

√
2. This seems in

conflict with the results of Aspect et al [5,6], where the max-
imum violation of the Bell inequality occurred at θ=π/8, or θ
=3π/8.

In fact, this difference highlights the different cases of
spin and polarization. Our derivation is based on spin detec-
tion. As we discussed in Section 3, the angle must be adjusted
when applying (16) and (17) to polarization experiments. In
most Bell test experiments using light, including Aspect et
al [5, 6], a count of photon detection is recorded as +1 and
no detection is recorded as -1. As such, if the angle between
the polarizer and the polarization of light is θ = π/2, the most
likely outcome is no detection or -1. We can express the re-
sult as cos 2θ = cos π = −1. It is apparent that one needs
to double the angle in the experiment to obtain a result that
is consistent with experimental record. On the other hand,
our derivation based on spin assumes that a count of photon
detection is recorded as +1 and no detection is recorded as
0. If the angle between the polarizer and the polarization of
light is γ = π/2, the most likely outcome is no detection or
0. We can express the result as cos γ = cos π/2 = 0. This
recorded value is equivalent to the case of θ = π/4 in Aspect
et al [5, 6]. From this we can infer that the angle γ used for
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spin examples in the present paper is equivalent to twice the
angle θ used in Aspect et al [5, 6], i.e. γ = 2θ. As a result,
the angles for maximum violation of the Bell inequality in
Aspect et al [5, 6] will be half the value as in our derivation.

5.2 Interferometry Bell tests

There are Bell tests that examine the correlations between
variables other than polarization. One type of research fo-
cuses on the phase correlation (e.g. [19,34–36]). This type of
experiment creates a pair of photons of the same phase and
lets them pass through phase shifters and a distance of differ-
ent lengths, then detects the phase difference at a Michelson
interferometer. The experiments are based on the theoretical
prediction of Franson [37] which, based on the phase differ-
ence of wavefunctions caused by time difference, developed
a similar prediction as (18) in the present paper. Using a clas-
sical wave theory of light and joint intensity, one can also
obtain an equivalent result.

For simplicity, we combine the electrical and magnetic
components of a light field, so the normalized light field of a
photon pair of the same initial phase at position x and time t
can be expressed as:

E = cos(θ + kx − ωt)

where θ is the initial phase of the photon pair at the source, k
is wave vector, ω is angular frequency.

Assume that photon A will be added a phase θa by a phase
shifter (we use only one phase shifter for simplicity) and,
meanwhile, photon B will be added a phase θb = ω∆t due
to the different time or distance travelled. The light fields of
the pair become:

EA = cos(θ + kx − ωt + θa)

EB = cos(θ + kx − ωt + θb) .

Although this type of experiments use the joint intensity
as measurement, as we discussed in Section 3, we cannot cal-
culate the correlation of light intensity by directly multiplying
the intensities of light field because the changes in intensity
are not independent. Since the light phases and thus the light
fields are correlated, the joint intensity needs to be calculated
from light field correlation:

EAB = EAEB

= cos (θ + kx − ωt + θa) cos (θ + kx − ωt + θb)
= 0.5 [cos (2θ + 2kx − 2ωt + θa + θb) + cos (θa − θb)] .

The initial phase of photon pair θ can change randomly,
so the item related to θ in the above equation will net out to
zero (by integrating EAB over θ in the range of 0 − 2π). As a
result, the above equation becomes:

EAB = 0.5 cos(θa − θb) .

As such, the joint intensity can be calculated as:

IAB = E2
AB = 0.25 cos2(θa − θb) = 0.125 [cos 2(θa − θb) + 1] .

This result is equivalent to the quantum prediction inFran-
son [37, Eq. (16)] or Brendel et al [34, Eq. (4)]. From the
above derivation we can conclude that the light intensity dif-
ference stems from the phase difference caused byphase shift-
er and by different travel time. Probability law also works in
this case because it ensures that the initial random phase of
photon pairs have no impact on the interferometry results.

By examining representative experiments, we can con-
clude that the violation of the Bell inequality is caused by the
correlation in source particles as well as the physical relation-
ship between the spin/polarization angle and its component
on detection axes, or between the phase of electromagnetic
wave and the light field correlation. With varying detection
conditions (i.e. random changes in detection angles or adding
arbitrary phases), probability law can still maintain the cor-
relation of source particles. This leads to the violation of the
Bell inequality and the correct statistical predictions, which
are consistent with experimental outcomes.

6 Conclusions

The paper presents statistical predictions of two-particle Bell
tests, which are equivalent to, but more general than, the QM
predictions. By comparing the statistical and QM approaches,
the paper shows that probability law is at the heart of both
approaches. The statistical presentation of two-particle Bell
tests in this paper has far-reaching implications.

First, it can improve our understanding of quantum me-
chanics and help to demystify it. Although the concepts of
superposition and entanglement are widely accepted among
physicists, the explanation of these concepts is difficult and
thus causes significant misunderstanding. The statistical in-
terpretation of the Bell tests shows that the superposition of
entangled states in the two-particle Bell test is nothing more
than statistical correlation between states. For the correlated
particles at the polarizer or spin detector, probability law can
maintain the correlation through the expected value, so there
is no need for communication (let alone faster-than-light or
instantaneous communication) between different locations in
the Bell experiments. As quantum entanglement is explained
by probability law, the Bell test results and quantum mechan-
ics are no longer mysterious.

Second, it has significant implications for quantum com-
puting, which relies on quantum entanglement. Since the
quantum entanglement phenomenon results from probability
law, statistical noise is a natural and unavoidable part of quan-
tum computing. Understanding the nature of this noise may
shed light on how to improve the signal-to-noise ratio and
thus is crucial to the success of quantum computing.

Third, the paper pinpoints the cause for the violation of
the Bell inequality and thus explains why the local hidden
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variable theory is wrong. Although numerous Bell tests re-
ject the local hidden variable theory and support quantum
mechanics, they have not shed any light on why the former
is wrong and the latter is right. This paper shows that the key
lies in probability law, which underpins the Bell test results.
Because probability law is universal, if we regard the statisti-
cal mechanism (which causes statistical variation around the
mean) as a “hidden variable”, it is not a local one but a global
one. The local hidden variable theory misrepresents this na-
ture and thus fails. It is also this global law that leads to the
correct prediction from quantum mechanics.

Last but not least, the paper may stimulate a reassessment
of the role of determinism and realism. Broadly, the experi-
mental results on the Bell inequality are interpreted as being
a rejection of determinism or local realism, and an embracing
of randomness. While this paper highlights the importance
of randomness and probability law, it does not totally reject
determinism and realism. In the Bell tests, probability law
works only when the particles arrive at and interact with the
detector (polarizer or spin analyzer) – it plays no role before
and after. When probability law is not in action, it is deter-
minism, realism and logic that describe the behaviour of the
particles. In other words, both randomness and realism play
important roles in our understanding of physics.
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Zárate L., Reid M. D. Testing macroscopic local realism using local
nonlinear dynamics and time settings. Physical Review A, 2020, v. 102,
022202.

22. Bell J. Introduction to the hidden variable question. In: d’Espagnat B.,
ed. Foundations of Quantum Mechanics. 1971, pp. 171–181.

23. Myrvold W., Genovese M., Shimony A. Bell’s Theorem. In: Edward
N. Zalta, ed. The Stanford Encyclopedia of Philosophy. Metaphysics
Research Lab, Stanford University, 2019.

24. Pierce D. T., Celotta R. J., Kelley M. H., Unguris J. Electron spin po-
larization analyzers for use with synchrotron radiation. Nuclear Instru-
ments and Methods in Physics Research A, 1988, v. 266, 550–559.

25. Getzlaff M., Heidemann B., Basmann J., Westphal C., Schonhense G.
A variable-angle electron spin polarization detection system. Review of
scientific instruments, 1998, v. 69 (11), 3913–3923.

26. Yu D., Math C., Meier M., Escher M., Rangelov G., Donath M. Char-
acterisation and application of a SPLEED-based spin polarisation anal-
yser. Surface Science, 2007, v. 601, 5803–5808.

27. Winkelmann A., Hartung D., Engelhard H., Chiang C.-T., Kirschner J.
High efficiency electron spin polarization analyser based on exchange
scattering at Fe/W(001). Review of Science Instruments, 2008, v. 79,
083303.

Xianming Meng. A Statistical Approach to Two-particle Bell Tests 149



Volume 17 (2021) PROGRESS IN PHYSICS Issue 2 (October)

28. Clauser J. F., Shimony A. Bell’s theorem: experimental tests and im-
plications. Reports on Progress in Physics, 1978, v. 41, 1881.

29. Bell J. Bertlmann’s socks and the nature of reality. Journal De
Physique, 1981, v. C2, 41–62.

30. Fine A. Hidden variables, joint probability, and the Bell inequalities.
Physical Review Letters, 1982, v. 48 (5), 291–295.

31. Ou Z. Y., Mandel L. Violation of Bell’s inequality and classical proba-
bility in a two-photon correlation experiment. Physical Review Letters,
1988, v. 61 (1), 50–53.

32. Bouwmeester D., Pan J. W., Daniell M., Weinfurter H., Zeilinger A.
Observation of three-photon Greenberger-Horne-Zeilinger entangle-
ment. Physical Review Letters, 1999, v. 82 (7), 1345–1349.

33. Greenberger D. M., Horne M. A., Zeilinger A. Going beyond Bell’s
theorem. In: Kafatos M., ed. Bell’s Theorem, Quantum Theory
and Conceptions of the Universe. Kluwer Academics Dordrecht, The
Netherlands, 1989, pp. 69–72.

34. Brendel J., Mohler E., Martienssen W. Time-resolved dual-beam two-
photon interferences with high visibility. Physical Review Letters,
1991, v. 66 (9), 1142–1145.

35. Rarity J. G., Tapster P. R. Experimental violation of Bell’s inequal-
ity based on phase and momentum. Physical Review Letters, 1990,
v. 64 (21), 2495–2498.

36. Tittel W., Brendel J., Zbinden H., Gisin N. Violation of Bell inequali-
ties by photons more than 10km apart. Physical Review Letters, 1998,
v. 81 (17), 3563–3566.

37. Franson J. D. Bell inequality for position and time. Physical Review
Letters, 1989, v. 62 (19), 2205–2208.

38. Freedman S. J., Clauser J. F. Experimental test of local hidden-variable
theories. Physical Review Letters, 1972, v. 28, 938–941.

39. Lanyon B. P., Zwerger M., Jurcevic P., Hempel C., Dür W., Briegel
H. J., Blatt R., Roos C. F. Experimental violation of multipartite
Bell inequalities with trapped ions. Physical Review Letters, 2014,
v. 112 (10), 100403.

40. Eibl M., Gaertner S., Bourennane M., Kurtsiefer C., Żukowski M.,
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at Equilibrium Surface Temperature
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An analytical theory is proposed for the earth-atmosphere system at its equilibrium sur-
face temperature, 289.16 K. A non-linear relation is formulated between atmospheric
absorption and atmospheric radiation by modifying Kirchhoff’s law on thermal radi-
ation. For the first time, the Global Energy Balance can be realized in a wide range
of atmospheric absorptivity, transmittance, and surface emissivity. It is revealed that
atmospheric radiation becomes negative once the atmospheric absorptivity is below its
threshold value. It is proven that the upward cumulative long-wave atmospheric radi-
ation spontaneously increases from 3.8 W m−2 to 199.4 W m−2 as the long-wave atmo-
spheric absorptivity increases from 0.4 to 1.0 whilst the long-wave atmospheric trans-
mittance decreases from 0.6 to 0.1.

1 Introduction

For over a century, many attempts have been made to balance
the global energy budget, both at the top of the atmosphere
(TOA) and at the Earth’s surface [1]. It is known that the lack
of precise knowledge of the surface energy fluxes profoundly
affects the ability to study climate change [2]. In fact, the
power equation at the surface remains unbalanced as the un-
certainty in the net energy flux between the surface and the
atmosphere is over 17 W m−2 [3]. To date, many static ex-
planations for the global energy balance have been confined
to using one set of fixed parameters to describe atmospheric
absorption and radiation [2], whereas the taken-for-granted
Kirchhoff’s law at the core of the radiative transfer descrip-
tion of atmospheric absorption and radiation seems theoreti-
cally invalid [4].

In this paper, several thermodynamic variables of theo-
retical importance are redefined to formulate the basic equa-
tions, including those previously treated as constants. By con-
tinuously mapping the surface emissivity and longwave (LW)
atmospheric absorptivity, several coupled quadratic equations
are derived and simultaneously solved, which are in quantita-
tive agreement with the latest experimental observations. In
light of these new findings, implications for some fundamen-
tal issues in climate studies are briefly discussed.

2 Theory

In general, the thermodynamic variables in the atmosphere-
surface system are dependent and should be described in cou-
pled equations.

2.1 Outgoing longwave radiation and surface radiance

It is known that the total power balance at the TOA can be
written as

πR2S (1 − r) = 4πR2I↑LW (1)

where S is the solar constant, R the radius of the Earth, r the
effective reflectivity of the Earth at the TOA, including the

SW solar radiation reflected at the surface and then transmit-
ted upward to the TOA, and I↑LW denotes the outgoing LW
radiation (OLR) into outer space. From (1),

I↑LW =
S (1 − r)

4
. (2)

Notice that OLR is merely determined by the albedo and the
solar constant.

By treating the Earth as a graybody, the surface radiation
can be obtained from the Stefan-Boltzmann law,

IE = εEσT 4 , (3)

where εE is defined as the Earth’s mean surface emissivity,
and T is the equilibrium mean surface temperature. In gen-
eral, εE is to be treated as a thermodynamic variable in this
study, although it has been often approximated as unity so far.

2.2 Modification of Kirchhoff’s Law

In theory, the upward cumulative atmospheric absorption at
any altitude can be calculated using the line-by-line method
provided all of the relevant lineshape functions are known.
At the TOA, the total LW atmospheric absorption can be ex-
pressed as

ALW =

" ∞

0
αλ (TA) ρ (z) IE (λ, z) dλ dz , (4)

where αλ is the spectral absorptivity of the atmosphere, pre-
dominately determined by water vapor, TA is the atmospheric
temperature at at a given altitude, ρ is the air density, IE (λ, z)
represents the attenuated surface LW emission spectra at dif-
ferent altitudes. Naturally, αλ represents both the resonant
and continuum absorption by air molecules detected under
continuous excitation [5,7]. Note that αλ is scaled by the
Planck function B (λ,T ) with its maximum at the center of
the atmospheric window near 10 µm.
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To proceed further, an effective LW cumulative atmosphe-
ric absorptivity, aLW , at the TOA can be introduced

ALW = aLW IE . (5)

Obviously, the maximum LW atmospheric absorption is IE

when aLW = 1.
Similarly, SW atmospheric absorption can be written as

AS W = aS W [1 + rS E (1 − aS W )] I↓S W (TOA) . (6)

where I↓S W (TOA) in the actual downward SW solar radiation
at the TOA by subtracting the reflected SW solar radiation at
the TOA, rS E is defined the SW surface reflectivity. In this
study, the SW atmospheric absorption is fixed.

Using Kirchhoff’s law, it would appear that α = ε, where
α and ε are the spectral absorptivity and the emissivity of a
non-scattering medium, respectively. Nevertheless, it seems
unrealistic to expect that atmospheric radiation is equal to
atmospheric absorption. So far, many attempts have been
made at ab initio calculation of atmospheric radiation based
on Schwarzschild’s equation with the Planck function and an
effective emissivity, but the results seem over-simplified. Be-
sides, it has been revealed that Kirchhoff’s law is problematic
and should not be considered as a basic law [4].

In this paper, it is postulated that the fraction, denoted by
β, of upward cumulative atmospheric radiation (UCAR), is
proportional to the LW atmospheric absorptivity

aLW = γ β (7)

where γ denotes the proportionality factor that is used to pa-
rameterize the rest of the unclear dependence during radiative
transfer in the atmosphere. In effect, (7) can be considered as
a modified Kirchhoff’s law for atmospheric radiation. In the
absence of internal reflection, it would appear the sum of the
LW atmospheric absorptivity and the LW atmospheric trans-
mittance, τLW , is unity.

τLW = 1 − aLW . (8)

Substituting (7) into (8) yields

τLW = 1 − γ β . (9)

It is shown in this study, however, that (8) and (9) are
invalid in the presence of atmospheric radiation which is em-
powered by atmospheric absorption and other non-radiative
energy fluxes.

2.3 Formulation for power balance conditions

To derive the power balance equation at the surface, that en-
sures the net energy flux at surface is exactly zero at ther-
mal equilibrium, the net downward energy flux (NDEF) is
denoted as N0. Thus the power balance equation at the sur-
face can be simply written as

N0 = IE . (10)

As the downward SW solar radiation into the surface I↓S W (0)
is known, it can be taken away from N0 and explicitly ex-
pressed in the power balance condition,

N + I↓S W (0) = IE , (11)

where N represents the NDEF when I↓S W (0) is excluded from
N0, viz.

N = N0 − I↓S W (0) . (12)

Note that (11) and (12) are equivalent irrespective of the value
of I↓S W (0).

At the TOA, the power balance equation for OLR can be
expressed as,

I↑LW = τLW IE + I↑A (13)

where τLW is the LW atmospheric transmittance, I↑A is the
UCAR that can escape from the atmosphere into space. It
is to be shown that the upward LW radiation at the TOA is a
constant.

2.4 Formulation for atmospheric radiation

In the absence of the physical surface underneath the atmo-
sphere while the LW radiation were still available, the upward
LW atmospheric radiation at the TOA can be obtained by as-
suming it is proportional to the total atmospheric absorption
without invoking Stefan-Boltzmann law.

I↑A = β (ALW + AS W ) . (14)

The two absorption terms in (14) belong to, respectively, the
one-way cumulative LW atmospheric absorption from thesur-
face radiation ALW , and the two-way cumulative SW atmo-
spheric absorption from the solar radiation AS W . In this hypo-
thetical case, those non-radiative energy exchange processes
are absent.

Similarly, the downward cumulative atmospheric radia-
tion (DCAR) at the bottom of the atmosphere, can be derived

I↓A = (1 − β) (ALW + AS W ) . (15)

Adding (14) and (15) yields,

I↑A + I↓A = aLW IE + AS W , (16)

which is simply an energy conservation statement.
In reality, however, the bottom of the atmosphere is phys-

ically in contact with the Earth’s surface, hence the thermal
energy exchange, in addition to radiation, is inevitable. As
a result, (14)–(16) should be modified accordingly. Specifi-
cally, a portion of the total energy absorbed by the atmosphere
must be used to achieve and maintain the thermal equilibrium
in the atmosphere-surface system, as required by (11), which
is exactly equal to N. Thus we have,

I↑A = β (ALW + AS W − N) , (17)
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I↓A = (1 − β) (ALW + AS W − N) , (18)

I↑A + I↓A = aLW IE + AS W − N . (19)

Note that (19) predicts that the total atmospheric radiation
can either be zero or negative if the total atmospheric absorp-
tion is equal to or less than N, respectively. Here, (19) is to
be used as the criterion to quantitatively determine the even-
tuating total atmospheric radiation, I↑A + I↓A, which, in turn,
allows calculation for other climate variables, such as LW at-
mospheric transmittance and the net downward energy flux
(NDEF).

2.5 Corollary

Substituting (5), (7), and (17) into (13), the power balance
condition at the TOA can be rewritten as a quadratic function
of the UCAR fraction β,

τLW = −γ β2 −

AS W − IE + I↓S W (0)
IE

 β +
I↑LW

IE
, (20)

with its y-intercept close to 0.6, which is determined by the
ratio of OLR to the surface radiation. Note that (20) indicates
that LW atmospheric transmittance is not unity in the absence
of UCAR, as derived from (9) and shown in Fig. 1, due to the
contribution of SW absorption by the atmosphere.

Substituting (7) into (20), we obtain the dependence of
LW atmospheric transmittance on the LW atmospheric ab-
sorptivity,

τLW = −
a2

LW

γ
−

AS W − IE + I↓S W (0)
γIE

 aLW +
I↑LW

IE
, (21)

which indicates that the relation between LW transmittance
and LW absorptivity is not linear, but quadratic, as shown in
Fig. 2. As a result, the well-known linear relation between
τLW and aLW , (9), should be replaced by (21). To obtain
the analytical formula for the atmospheric radiation that sat-
isfies energy conservation law, substituting (5) and (7) into
(17) yields a quadratic equation for UCAR,

I↑A = γIEβ
2 +

(
AS W − IE + I↓S W (0)

)
β . (22)

Dividing (17) by (18) and then substituting the result into (22)
yields,

I↓A = (1 − β)
(
γIEβ + AS W − IE + I↓S W (0)

)
. (23)

3 Calculated results

Based on the latest experimental data used in [7] and [8],
as shown in Table 1, all of the numerical calculations are
based on solving the coupled quadratic equations, (20) to

Fig. 1: Dependence of LW atmospheric transmittance τLW on the
fraction of UCAR at the TOA, calculated from (20) assuming the
surface emissivity is 1.0 (solid curve) and 0.92 (dashed curve). The
coordinate (0.83, 0.1) represents the maximum β at τLW = 0.1, used
in this study.

Fig. 2: Dependence of LW atmospheric transmittance on LW atmo-
spheric absorptivity at the TOA, obtained from (21) in this study
(solid curve) and from (8) (dashed line).

surface mean temperature 289.16 K
albedo 0.2985
solar constant 1365.2 W m−2

reflected solar radiation at TOA 101.9 W m−2

SW atmospheric absorption 78 W m−2

surface solar SW radiation 161 W m−2

Table 1: The observed data used in [7] and this study.
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Fig. 3: Dependence of the total LW atmospheric radiation (solid
line) and LW UCAR (dashed curve) on the fraction of UCAR the at
the TOA, calculated from (19) and (22), respectively.

(24). A wide range of different values for surface emissiv-
ity and LW atmospheric absorptivity are considered. Specif-
ically, the proportionality γ-factor in (7) is first determined
by using the LW atmospheric transmittance τLW = 0.1009 at
the surface emissivity εE = 1 and then by maximizing the
LW atmospheric absorptivity to aLW = 100%. This operation
is equivalent to first assuming the atmospheric transmittance
becomes its minimum whilst the LW atmospheric absorption
reaches to its maximum, ALW → IE .

Based on (16), the proportionality γ-factor in (7) is cal-
culated, γ = 1.196235. Meanwhile, the β-factor for UCAR,
0.8354, is obtained simultaneously, which is also the maxi-
mum value for the β-factor, as shown in Fig. 3. Furthermore,
the calculations are made for the surface emissivity εE <1.
Note that the proportionality γ-factor is kept as a constant
once it is determined in the first place, whilst neither addi-
tional parameters nor approximation are applied.

4 Discussion

4.1 Connecting radiation to cumulative absorption

In line with Kirchhoff’s law, absorptivity and emissivity is
often considered as identical in a non-scattering optical med-
ium. In the case of the atmosphere, this implies that the ab-
sorbed radiation energy in each thin layer of an atmospheric
model is completely emitted in the form of photons with-
out being transformed into internal thermal energy in the at-
mosphere. Nevertheless, such an radiative transfer descrip-
tion seems invalid for the real atmospheric radiation where
photon-particle scattering and radiation heating cannot be de-
scribed by using Schwarzschild’s equation. Hence, Kirch-

hoff’s law is modified in this study with quantitative agree-
ment with the latest observations.

In history, atmospheric radiation detected near the surface
was described by using Stefan-Boltzmann law, such as the
empirical equation used by Ångström [6],

I↓A = εAσT 4
A , (24)

where εA is the atmospheric emissivity, TA is the air tempera-
ture near the surface. As the atmosphere can hardly be treated
as a single isothermic layer, εA is in fact a random variable.
Hence (24) is unfit for formulating atmospheric radiation. It
has been recently shown that the atmospheric emissivity εA be
equal to LW absorptivity aLW only in the absence of clouds,
see (78) in [7], but the fundamental link between atmospheric
radiation and atmospheric absorption seems obscure. In gen-
eral, it would appear that the distinction between the sponta-
neous resonant emission from the water vapor and other LW-
radiation absorbers, such as CO2, and the continuum thermal
radiation governed by Planck’s law remains to be further ex-
plored.

To circumvent such theoretical uncertainties, the fraction
of upward cumulative atmospheric radiation (UCAR) at TOA,
β, is introduced as a new variable in (7). In effect, the pro-
portionality γ-factor is phenomenologically used to link the
thermal radiation by the atmosphere to the cumulative LW
atmospheric absorption based on (7). In this way, LW atmo-
spheric radiation can be formulated. Further, the γ-factor in
(7) is theoretically determined as one of the simultaneous so-
lutions, γ = 1.196235, which appears an intrinsic invariant
for the surface-atmosphere system.

4.2 Realization of the global energy balance

Because numerous energy fluxes exist between the Earth’s
surface and the atmosphere, it seems unlikely to identify and
account all of them with absolute uncertainty. In fact, in-
consistencies often arise when these different components are
brought together to the power balance equation [3]. Specifi-
cally, efforts have been made to determine the net LW surface
radiation, defined as the difference between the upward and
downward radiation intensities,

I(LW)
N = I↓A − IE . (25)

Using the optimal estimates for IE = 398 W m−2 and I↓A =

342 W m−2, (25) gives I(LW)
N = −56 W m−2, whereas a wide

range for the net LW surface radiation , −49 > I(LW)
N > −65

W m−2, was predicted by individual CMIP5 models [2]. Us-
ing the net SW downward radiation, I↓S W (0) = 161 W m−2,
the global mean surface net radiation,

IN = I(LW)
N + I↓S W (0) , (26)

is used to obtain IN = 105 W m−2, which happens to be about
half way between two uncompromising values, 113 W m−2
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τLW aLW β var.(W m−2) Zhong [7] [8]
0.1 0.899 OLR – 239.4 239
0.1 1.0 aLW/γ OLR 239.4
0.1 0.899 0.39 I(N)

LW – 64.4
any any aLW/γ I(N)

LW 0
0.1 0.899 ALW + AS W – 521
0.1 0.899 0.38 ALW + AS W – 521.8
0.1 1.0 1/γ Amax 474.4
0.1 1.0 0.83 ALW + AS W 474.4
0.24 0.899 0.744 ALW + AS W 430.8
0.33 0.8 0.67 ALW + AS W 395.1
0.51 0.6 0.49 ALW + AS W 315.8
0.6 0.4 0.34 ALW + AS W 236.6
0.63 0.2 0.24 ALW + AS W 157
0.1 0.899 – UCAR I↑A – 199
0.1 0.899 0.39 UCAR I↑A – 199.4
0.1 1.0 0.38 UCAR I↑A 199.4
0.33 0.8 0.67 UCAR I↑A 106.8
0.51 0.6 0.49 UCAR I↑A 40.3
0.6 0.4 0.34 UCAR I↑A 3.8
0.63 0.2 0.24 UCAR I↑A -13

1 − β
0.1 1.0 0.17 DCAR I↓A 39.3
0.1 0.899 – DCAR I↓A – 333
0.1 0.826 0.62 DCAR I↓A – 332
0.23 0.899 0.35 DCAR I↓A 49.4
0.33 0.8 0.33 DCAR I↓A 52.9
0.51 0.6 0.51 DCAR I↓A 40.1
0.6 0.4 0.66 DCAR I↓A 0.77

Table 2: Calculated thermodynamic variables (var.).

and 98 W m−2, estimated by Stephens et al [3] and Trenberth
et al [8], respectively. To explain the remaining imbalance,
both the global mean sensible heat flux and the latent heat flux
were considered, knowing the lack of adequate information
from direct observations. Thus, it was recommended that the
surface budget estimates not be used as references [2, 8].

By introducing the net downward energy flux (NDEH) at
the surface, nevertheless, such statistical estimates become
unnecessary. Moreover, a number of climate scenarios pre-
viously unconsidered have been quantitatively predicted, un-
der the same Global Energy Balance condition with zero net
surface energy flux, as shown in the fourth row in Table 3.
In essence, any actual thermal energy transfer between the
surface and the atmosphere that appears either undefined or
difficult to be measured can be implicitly treated as part of
N. Note that (10) implies the net downward energy flux N0
should be solely determined by the mean surface tempera-
ture and the surface emissivity as IE = εEσT 4

E , rather than
by LW DCAR as previously taken for granted in other stud-
ies [2,3], although LW DCAR may well be part of N0. In
passing, NDEH at the surface is conceptually different from
the net downward heat flux introduced by Gregory et al [11]

to describe a hypothetical vertical radiative transfer process
initiated at the TOA.

4.3 The stable range of atmospheric absorption

It is shown that the total atmospheric absorption be limited
by the maximum external radiation, both from the Sun and
the Earth’s surface. To remain at the current equilibrium sur-
face temperature, 289.16 K, it is theoretically predicted that
the minimum of the total atmospheric absorption is close to
236 W m−2, being significantly lower than the value that has
been assumed so far. In a recent study [7], for example,
the total absorption by the atmosphere 521.8 W m−2 was as-
sumed. This seems unlikely because the value is 46.6 W m−2

higher than the maximum atmospheric absorption, IE +AS W =

396.4 + 78 = 474.4 W m−2. In another report [2], it was
claimed that LW DCAR I↓A = 342 W m−2 which requires at-
mospheric absorption even higher than 521 W m−2.

It could be argued that such an unrealistically high atmo-
spheric absorption is merely fabricated for invoking an imagi-
nary greenhouse effect, bearing in mind that the average solar
radiation at the TOA is 342 W m−2. Moreover, it is revealed
that (8) and (9) are incorrect in studying the earth-atmosphere
system due to the limitation associated with Kirchhoff’s law
in formulating thermal radiation. From those radiation and
energy budget diagrams, e.g. [7–9], it is clear that (8) was
used to obtain the LW atmospheric absorption, 356 W m−2,
based on that the assumed transmitted surface radiation at the
TOA is 40 W m−2, which yields the LW atmospheric absorp-
tivity and the LW atmospheric transmittance equal to 89.91%
and 10.01%, respectively.

By using (19), by way of contrast, the predicted LW at-
mospheric transmittance is close to 0.24 given the LW atmo-
spheric absorptivity is 89.91%, as shown in Table 2, in order
to satisfy the power balance condition, determined by (11).
As a result, the sum of the LW and SW atmospheric absorp-
tion is 430.4 W m−2, instead of 521.8 W m−2 as previously as-
sumed in [7,8].

Further, it is shown that the proposed theory is self-consis-
tent as the calculated OLR at TOA from (13) is indeed a
constant, independent of the LW atmospheric absorption, as
indicated in (2). This implies that a previous calculation of
radiation forcing by assuming a change in OLR due to CO2-
doubling [7] appears inconsistent with the definition of OLR
in (1). In essence, any increase in LW atmospheric absorption
will spontaneously increase in UCAR to exactly keep OLR a
constant, as shown in Fig. 4, consistent with Le Chatelier’s
principle of thermodynamics.

4.4 Characterization of atmospheric radiation

It is found that the fraction for UCAR, β, is always larger
than the portion for DCAR whenever the LW atmospheric ab-
sorptivity aLW > 60%. This can be explained as the fact that
UCAR can easily reach outer space whereas DCAR would
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be increasingly attenuated towards the Earth’s surface. Since
DCAR is treated as part of NDEF, the difference N − I↓A actu-
ally represents the contribution to NDEF from other thermal
energy transfer processes, both radiative or non-radiative. In
fact, it is found that the cumulative downward atmospheric ra-
diation at the surface I↓A is about one-fourth of NDEF, which
implies that DCAR would be more effectively converted into
the thermal energy towards the lower-altitude atmospheric
layers as it approaches towards the surface where both the
air density and the air temperature are the highest, whilst the
collisions are the most frequent. Hence, the relatively low
range of DCAR found in this study seems consistent with the
observed stable surface temperature.

It is noted that whenever LW atmospheric absorptivity de-
creases to a critical value, ∼40%, the total atmospheric radia-
tion, the sum of UCAR and DCAR, becomes zero, as shown
in Fig. 4, which implies that no cumulative atmospheric radi-
ation can be detected at the TOA and the surface under this
condition. This can be explained in terms of total internal
absorption in the atmosphere when its internal thermal en-
ergy is insufficient to maintain its equilibrium with the sur-
face. Under this critical condition, the atmospheric radia-
tion is completely absorbed by the atmosphere itself. This
explanation is consistent with the definitions of UCAR and
DCAR whose sum become negative whenever the total atmo-
spheric absorption is less than the net downward energy flux
N in (19), required for preventing the radiation cooling at the
surface. Note that once the atmosphere reaches its thermal
equilibrium with the surface, the surplus LW atmospheric ra-
diation is primarily utilized by the atmosphere to cool down
itself and hence increase its entropy, rather than to warm up
the surface.

4.5 The role of surface emissivity

The Earth’s surface emissivity is explicitly treated as a ther-
modynamic variable in this study, whilst in the previous stud-
ies the surface emissivity was larger than 0.99 [10]. Note that
the surface radiation decreases noticeably from 396.4 W m−2

to 364.69 W m−2 as the surface emissivity changes from 1.0
to 0.92 and the so-called best estimate for the surface radi-
ance [2], 398 W m−2, is 1.6 W m−2 higher than the calculated
value at εE = 1 in this study. It is of interest to find that atmo-
spheric radiation, both UCAR and DCAR, is independent of
the surface emissivity at the maximum LW atmospheric ab-
sorptivity aLW =1, although atmospheric radiation decreases
non-linearly with the decrease of aLW . This implies that the
β-factor in (7) belongs to the intrinsic compositional proper-
ties of the atmosphere and hence independent of the inten-
sity of the surface radiation. It is also found that LW atmo-
spheric transmittance increases noticeably as surface emissiv-
ity changes from 1.0 to 0.92, as shown in Fig. 1, correspond-
ing to the equilibrium NDEF decreases from 235.4 W m−2 to
203.69 W m−2, as shown in Table 3. This indicates the atmo-

Fig. 4: Dependence of total atmospheric radiation on LW atmo-
spheric absorptivity. Notice that the net atmospheric radiation is
negative if LW atmospheric absorptivity aLW is less than 0.4. The
coordinate (1, 239) represents the maximum total cumulative atmo-
spheric radiation at the TOA and the surface, 239 W m−2, at the max-
imum LW atmospheric absorptivity aLW = 100%.

εE 1.0 0.99 0.95 0.92 unit
IE 396.4 392.44 376.58 364.69 W m−2

I↑LW 239.41 239.43 239.44 239.43 W m−2

I(N)
LW 0.0 0.0 0.0 0.0 W m−2

N 235.4 231.44 215.58 203.69 W m−2

ath
LW 0.3971 0.391 0.3653 0.3446
β 0.8357 0.8359 0.8354 0.8354

Table 3: Calculated dependence on the surface emissivity.

sphere can spontaneously adjust its LW transmittance in re-
sponse to the change in the surface radiance. However, such
an spontaneous capability seems incapable of fully maintain-
ing the transmitted surface radiation in the range aLW < 0.4
unless atmospheric radiation completely ceases below each
threshold value of aLW for a given surface emissivity. Such
detailed effects seem unexpected because the surface emis-
sivity was often assumed as unity after Houghton [12]. Thus,
the LW surface reflectivity, rLW = 1 − εE , can be treated as
a key variable in climate modeling. Further studies in this
direction are certainly worthwhile.

5 Conclusion

In conclusion, it is shown that Kirchhoff’s law on thermal
radiation is oversimplified and must be modified in connect-
ing atmospheric radiation with atmospheric absorption. Due
to complicated thermal mixing processes associated with at-
mospheric absorption and emission, the equation for atmo-
spheric transmittance and the atmospheric absorptivity is far
from linear. Further, it is revealed that the long-wave atmo-
spheric radiation can be completely absorbed by the atmo-
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sphere itself before it reaches to a thermal equilibrium be-
tween the surface. For the first time, both the upward cu-
mulative atmospheric radiation and the downward cumulative
atmospheric radiation can be theoretically calculated without
uncertainty. It is also shown that upward cumulative atmo-
spheric radiation at the top of the atmosphere is in general
stronger than downward cumulative atmospheric radiation at
the Earth’s surface. It is explained that the atmospheric ab-
sorption only plays a passive role in achieving its thermal
equilibrium with the Earth’s surface whilst atmospheric radia-
tion plays a proactive role in enabling the atmosphere to adapt
to a wide range of variation in the atmospheric absorptivity
values. In essence, only a small fraction of the atmospheric
radiation, less than 55 W m−2, can be absorbed by the surface,
whereas the larger portion of the atmospheric radiation, up to
199 W m−2, can spontaneously escape into the outer space,
providing a unique mechanism for radiation cooling to max-
imize the entropy of the atmosphere. It is shown that the
Global Energy Balance can be realized in a number of cli-
mate scenarios without any estimates. It is expected that the
proposed theory can be applied in elucidating commonly con-
cerned climate issues without invoking Kirchhoff’s law and
the greenhouse effect.
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Explicit Values for Gravitational and Hubble Constants from
Cosmological Entropy Bound and Alpha-Quantization of Particle Masses

Alexander Kritov
E-mail: alex@kritov.ru, Moscow, Russian Federation.

In this study, we propose a method to derive expressions and numerical values for the
gravitational and Hubble constants employing the “reverse engineering” path approach.
Using the explicit form of Bekenstein bound for the cosmological horizon, we show
that Nambu’s mass-formula (the empirical alpha-quantization of elementary particle
masses) is related to the proposed 3-D analogy of the holographic principle. The ob-
tained form in the “median case” leads to the expression for the Hubble constant with
the value of H0 = 71.995 km/s/Mpc. The accuracy of obtained H0 allows precise numer-
ical calculation of the cosmological entropy bound, which coincides with the number of(
216 × 2128

)3
bits. Conversely, the number leads to the expression for the gravitational

constant resulting in G = 6.67437305×10−11, which exactly fits into the CODATA2018
value and the AAFII(2018) measurement [32]. As a coincidence, the proposed approach
combined with the previous formulation of the LNNC (Large Numerical Number Co-
incidences) [10] allows obtaining the numerical value for the proton-to-electron mass
ratio µ with an accuracy of 10−6.

Note: SI units are deployed.

1 Introduction

Dimensionless numbers, including the mass ratios of the el-
ementary particles and large numbers introduced by Dirac
[45], remain unresolved puzzles in physics. To understand
the significance of large number relations, the constant H0
and G must be precisely measured, and their deviations in
time and space must be constrained. However, at present, we
know the value of the Hubble constant with a precision of
< 10% [35]. Today, those using Planck and cosmic back-
ground data to measure a value for the Hubble constant arrive
at a figure of 67.4 ± 0.5. However, the local approach pro-
vides a figure of 73.5 ± 2 [41, 43]. In contrast, the gravita-
tional constant G is known to have better precision; however,
its value has a relative accuracy of 2 × 10−5 depending on the
measurement methods performed.

This paper presents an attempt to connect the Bekenstein
cosmological entropy bound with the alpha-quantization of
elementary particle masses. As a result, the Dirac large num-
bers appear as an intrinsic property of the cosmological en-
tropy bound, which allows us to obtain the numerical value
and to express G and H0.

In 1952, Nambu proposed an empirical formula for the
mass spectrum of elementary particles, known as “alpha qua-
ntization” [1]

mn ≈
n
2
α−1 me (1)

where n is a natural number, α is the fine structure constant,
and me is the electron mass. The mass interval is predicted as
a half-integral multiple of approximately 70 MeV. It provides
the muon mass with n = 3, the pion mass for n = 4, and the

proton mass for n = 27 etc. Currently, at least 21 fundamen-
tal particles with lifetimes >10−24 s are covered by this rule,
with deviations of less than 1% [9]. The alpha quantization
of elementary particle masses is extensively reviewed in the
modern literature [16–28]. In particular, it is valid, for exam-
ple, for the heaviest known particle, the top quark for which
n = 137 × 36 [20]. The Nambu formula was derived empiri-
cally and did not have any theoretical background. However,
along with the new approaches to elaborate it in the frame of
modern models, there were a few almost forgotten attempts to
refine the formula, for example, by Nambu in 1966 [2], Her-
mann [3], and later [36–39] extending the quantum oscillator
model, which led to clarifications and more accurate results
for the mass ratios of elementary particles.

2 Bekenstein entropy bound for cosmological horizon

The cosmological (Hubble or de Sitter) horizon corresponds
to the radius and volume.

RH =
c

H0
, VH =

4π
3

(
c

H0

)3

, (2)

where H0 denotes the Hubble constant. Because we are look-
ing for the upper limit of entropy, we shall consider the entire
mass-energy content of the universe with ΩTot = 1. There-
fore, the critical density ρcr = 3H2

0/8πG within the Hubble
volume provides the mass-energy

E = VH ρcr c2 =
c5

2GH0
. (3)

It is easy to see that in such a case (i.e. ΩTot = 1), the cosmo-
logical horizon also coincides with the Schwarzschild black
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hole radius*. The Bekenstein entropy bound for the black
hole is

S =
λRE
~c

=
4πRE
~c

. (4)

The original Bekenstein formula [30] was derived based on
the general considerations for “an arbitrary system of effec-
tive radius R” and contains factor λ = 2π. Recently the factor
was clarified [31]; it was explicitly shown that particularly in
the application to the Schwarzschild black hole case the fac-
tor is λ = 4π, which is strictly derived based on the entropy
associated with the Hartle-Hawking state. Since the cosmo-
logical horizon coincides with the Schwarzschild black hole
radius, as shown, the expression (4) has λ = 4π. The substitu-
tion of R and E from (3) leads to the value of the upper bound
for the entropy of the universe

S = 2π
c5

~GH2
0

. (5)

The number (measured as the number of bits†) is known by
its order and is also referred to as the computational capacity
of the universe [44]. Notably, the critical mass of the universe
can be written in terms of the obtained expression for the total
entropy:

MU =
c3

2 GH0
= S × m0 , m0 B

~H0

4πc2 . (6)

Hence, the mass m0 can be interpreted as the minimal possible
quanta of the mass-energy carrying one bit of information.

Note on Oldershaw-Fedosin scaling of the Planck constant

Using (5), one may consider the “scaled” Planck constant ~∗

such that‡

~∗ =
S

2π
~ , h∗ = S ~ . (7)

The constant ~∗ plays the role of the reduced Planck constant
in a multiverse, where our universe represents an elementary
particle or a quantum oscillation [4,5]. The Heisenberg uncer-
tainty relation, which is hypothetically valid in a multiverse,
is then given as

∆E ∆

(
1

H0

)
≥
~∗

2
. (8)

On the other hand, the substitution of (7) into the expression
leads to the Bekenstein law, which bounds the entropy by cor-
responding the total energy and time 1/H0 (or radius c/H0)
for the universe. Such notable correspondence to the Heisen-
berg uncertainty relation for the cosmological case is possible

*Since RS = (2G/c2)(c3/2GH0).
†The entropy S is the number of states, the exact number of the Plank

areas in covering area when using the holographic principle (9). Hence, fac-
tor ln(2) in the Bekenstein expression to obtain the number of bits, which
appears in many textbooks is highly arguable and shall not be used.

‡Here it would be natural to introduce the “reduced” S̄ = S/2π such that
(7) takes the simpler form ~∗ = S̄ ~, h∗ = S̄ h.

when using the above-mentioned factor λ = 4π for the cos-
mological case.

3 3-D analogue of Holographic Principle with the “cell
of space volume”

The Bekenstein bound implies the holographic principle [29].
Applying it to the cosmological horizon, the Hubble area can
be represented as

AH = 4π
(

c
H0

)2

= S × APl , (9)

where APl is the Planck area§ and S is the Bekenstein cosmo-
logical bound (5). As the Plank area plays the role of a 1-bit
unit of the area, analogous to that we may also introduce “the
cell of space volume” V0 such that the total Hubble volume is

VH =
4π
3

(
c

H0

)3

= S × V0 . (10)

Thus, the introduced V0 shall play a similar role for 3-D being
a 1-bit unit for the volume, as the Planck area does for 2-D.
The substitution of (5) leads to the explicit form

V0 =
VH

S
=

2
3

G~
H0 c2 . (11)

This parameter V0 was introduced in the author’s previous
work [12, 13]. The new parameter of the space volume cell
V0 may imply a different sense than the grain of space used
in the loop quantum gravity (LQG) approach [46, 47], where
the grain of space is considered to be of the order of Planck
length l3Pl. In contrast, the volume cell V0 is of the order of the
cube of the reduced Compton wavelength of an elementary
particle. Simultaneously, similar constraints are given for the
V0-dependent uncertainty relation in the LQG approach [47].

4 The Nambu formula for alpha-quantization of particle
masses

The V0-dependent uncertainty relation is:(
1
2
~

mc

)3

≥ V0 . (12)

Based on that, one may consider the quantization of elemen-
tary particle masses (1) as a classic quantum harmonic oscil-
lator [40]. The particles’ rest masses correspond to the oscil-
lator eigenstates

En = mnc2 =
n
2
~ω , ω =

c
L
,

where L = V1/3
0 is the characteristic length of the oscillator,

and n is a natural number for both parity cases with non-zero
§In such a way, the Plank area acquires a prefactor of two as APl =

2G~/c3.
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ground state (n = 1). Therefore, for elementary particles with
mass mn, the following condition holds:

n
2
~

mnc
= V1/3

0 . (13)

The substitution of (11) for V0 leads to particle masses that
satisfy the above requirement

mn =
n
2

(
3
2
~2H0

Gc

)1/3

. (14)

By direct calculation, it can be noted that(
3
2
~2H0

Gc

)1/3

≈ 137 me ,

where me is the mass of an electron. Thus, the obtained ex-
pression (14) represents Nambu’s original mass formula (1),
which is now related to the Bekenstein cosmological bound.
The exact match to the factor to α−1 is achieved when the
Hubble constant is H0 = 71.9949 km/s/Mpc, as reviewed in
the next section.

5 The Hubble constant, the Universe entropy number
and G in the “median” case

Considering the “median case” or the “ideal” case when the
exact equality in (14) holds as(

3
2
~2H0

Gc

)1/3

= α−1 me , (15)

it becomes possible to express the Hubble constant via better
known G as

H0 =
2
3

G cα−3 m3
e

~2 =
2

3α
Gme

r2
e c

, where re =
ke2

mec2 , (16)

which results in 71.9949 km/s/Mpc or 2.333×10−18 s−1 when
using CODATA2018 for G. Substituting H0 into (11) yields

V0 =

(
ke2

mec2

)3

= r3
e . (17)

Furthermore, the substitution of the obtained H0 (16) into (5)
yields an explicit value for the universe total entropy bound:

S =
4π
3

(
ke2

Gm2
e

3α
2

)3

. (18)

The obtained expression allows the accurate calculation of the
value as 3.9711× 10122 till the 5th digit (corresponding to the
accuracy of G). Moreover, because we expect the entropy S
to be a natural number (number of bits of information), and
as binary, it most probably should contain powers of 2. The

search leads to the number that represents the cosmological
entropy bound as a factor of two first primes

S = 39 × 2393 =
(
216 × 2128

)3
. (19)

Remarkably, the found number appears to be the cube of a
natural number. The number provides a sufficient relative ac-
curacy of 3× 10−5 with (18) corresponding to the accuracy of
G (see Section 8 for a more detailed discussion on this num-
ber). Furthermore, the reverse substitution of the number to
(18) allows us to express the gravitational constant:

G =
ke2

m2
e

(
3α
2

) (
4π
3S

)1/3

=

(
4π
3

)1/3
α

144
ke2

m2
e

2−128 (20)

resulting in G = 6.67437305×10−11. This value perfectly fits
the value of CODATA2018 for G. The obtained value also co-
incides with the AAFII(2018) measurement of 6.674375(82)
performed with very high precision [32]. Moreover, the use
of the obtained G in (16) results in the expression for the Hub-
ble constant

H0 =
c
re

(4π
3

)1/3 1
216

 2−128 , (21)

where re is the classical electron radius (16). Notably, to sat-
isfy the equality to α in (15), the expressions acquire the fac-
tor given in square brackets. Denoting this factor as αs =

1/133.995.. (or “alpha-substitute”), both expressions can be
written in the simpler form

H0 = αs
c
re

2−128 , G = αs α
3
2

ke2

m2
e

2−128 , (22)

where

αs B

(
4π
3

)1/3 1
216

.

The significance of this parameter is reviewed further.

6 Proton to electron mass ratio from deviated G and H0

We have considered the “median” or ideal case of exact equal-
ity to α in the extended Nambu’s mass formula (14). In a
real-life scenario, the masses of the elementary particles de-
viate from the median values by ±1%. There are two alterna-
tive ways to refine the Nambu mass formula to obtain more
accurate masses for elementary particles. The first approach,
as mentioned in Section 1, clarifies the quantum oscillator
model. This leads to the appearance of eigenvalues or ze-
ros of some functions instead of the natural number n in (1).
The second alternative is to introduce the deviation of G and
H0 in the mass formula (14), which would also lead to non-
constancy of V0 and deviated states of the entropy from S
depending on the nature of the particle. The first method ap-
pears to be preferable and requires further studies using QM.
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However, in this section, we evaluate the second “heuristic”
alternative.

One may recall the previously proposed expressions for G
and the Hubble constants (LNNC) [10]. Denoting them with
a prime (′) to distinguish them from the obtained “median”
values, they are

H′0 =
mec2

~
2−128 , G′ =

3
20

ke2

memp
2−128 , (23)

where mp is the proton mass. The value for H′0 = 70.39882
km/s/Mpc differs by 2%* from the “median” case of H0 (16).
It is evident that the formula for H′0 can be treated as derived
from the expression for H0 (22), wherein the latter, αs is sim-
ply substituted by α.

The value of the gravitational constant is G′ = 6.6746305
×10−11, which deviates from the median G (22) by 3 × 10−5,
and is closer to the AAF-I and AAF-III measurements [32].
It is evident that these values (23) do not provide the equality
to “alpha” in mass-formula (15); however remarkably H′0 and
G′ being substituted into (14) with n = 27 provide a good
approximation of the proton mass, thus the ratio becomes

µ =
mp

me
=

(
5
4

39 α−1
)1/2

. (24)

Moreover, it can be seen that both suggested formulas for the
gravitational constant have relative deviations of 3 × 10−5,
equating G from (23) and (22) gives

α−1 =

(
4π
3

)1/3 5µ
108

, (25)

where we expect the same relative error of 10−5. The substi-
tution of µ from (24) leads to

α−1 =

(
4π
3

)2/3 (
15
4

)3

= 137.0312258 , (26)

and substituting it again to (24) results in

µ =

(
4π
3

)1/3 (
135

4

)2

= 1836.15959 , (27)

which has a relative accuracy with the experimental value of
the proton-to-electron ratio of 3×10−6. The remarkable prop-
erty of both expressions is their simple forms that involve
powers of the first three primes as 15 = 5×3 and 135 = 33×5.
The expression for µ can be assumed to be the best in terms
of the precision-simplicity ratio (see [11] to see the complica-
tion level of formulae with comparable accuracy for µ). The
expressions can also be rewritten in the following forms:

µ =
27
2

(135 φ) , α−1 = 135 φ2 , (28)

*The ratio for the deviation is (α−2/10µ) = (4π/3)((5/8)3), as can be
seen later.

where

φ B
5
8

(
4π
3

)1/3

,

and the “alpha-substitute” is explicitly α−1
s = 135 φ−1. Thus,

the formula for µ restores the original form of Nambu’s mass
formula with n = 27. Hence, the factor φ ≈ 1.0075 plays
the role of a small deviation and exhibits a deviation of α in
Nambu’s mass formula. Simultaneously, φ2 shows how α de-
viates from an integer of 135. The deviation φ3 ≈ 1.02 also
provides the explicit ratios of the two values for the Hubble
constants given by the expressions (21) and (23) as this devi-
ation is given by the ratio of “alpha-substitute” in (21) to the
exact “alpha” in (23).

7 Quantum number of the Universe and Eddington’s
number of particles

The paper would not be complete without reviewing the Ed-
dington number of particles (pairs of protons and electrons),
which he assumed to be N = 2 × 136 × 2256 [6]. In Section
5, we review the number for the Bekenstein entropy S , which
is also expressed by the power of 2 (19). Prior to the calcu-
lation of the Eddington number of particles, we calculate the
n-number using the obtained mass formula (14) applied to the
entire universe mass with Ω = 1

Mu =
c3

2GH0
=

nu

2

(
3
2
~2H0

Gc

)1/3

. (29)

Because we are applying it to “the median” case, it is clear
that Mu = (nu/2)(α−1me). Using the obtained values for G
and H0 (22) after a few manipulations, the number becomes

nu =
2
3

(
3

4π
S
)2/3

=
2
3
α−2

s 2256 . (30)

Using this number, it is evident that the Eddington number of
protons can be expressed as

N =
MuΩMp

mp
= ΩMp

nu

2
α−1

µ
, (31)

where ΩMp is the proton content of the universe. The obtained
good approximations for α and µ of (28) provide the ratio

α−1

µ
=

2
27
φ ,

and substituting n from (30) results in the number of protons
in the universe

N = ΩMp

10
3
α−1

s 2256 , (32)

where the second power of α−1
s decreases with φ. This expres-

sion is fairly close to the famous Eddington number. How-
ever, the difference is that it contains the prefactor, and “al-
pha-substitute” (≈ 134) instead of 136 in Eddington’s expres-
sion.
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8 Discussion

In Section 5, we proposed the numerical value for the “me-
dian” cosmological entropy bound as the number of bits,
which explicitly equals (216 × 2128)3. The number limits the
upper bound of the informational capacity of the universe ac-
cording to the Bekenstein law. When searching for the num-
bers of order 10122 with a relative accuracy of 10−5, one must
observe that there exist 10117 alternative natural numbers to
choose between. Another good fit, for example, can be given
by

137 ×
81!
2
≈ 3.971031 × 10122 bits .

Notably, the number represents the order of the alternating
group A(81) with prefactor 137, which can be considered as
a coincidence. However, the key advantage of (19) com-
pared to other alternatives is that it is the simplest number
composed of the product of only the first two primes. Sec-
ond, it represents the cube of another natural number, which
reveals its significance during the calculations. Moreover,
the number (19) can also be represented by the Mersenne
prime M127 = 2127 − 1, where M127 has the unique prop-
erty of being the double Mersenne prime and fourth Catalan-
Mersenne number* discovered by Catalan [34]. Hence, S =

(432 × M127)3, which possibly connects the median entropy
to the cyclic group† ZM127 .

Despite the presence of a power of two, the proposed
number differs from the Eddington E-numbers [7, 8]. How-
ever, further study is required for a possible connection of the
proposed number to the Clifford algebras and the finite groups
of Lie type [48].

9 Conclusions

In 1935, Heisenberg [42] suggested using the number 432 to
calculate the fine structure constant as α−1 = 432/π. The
paper has demonstrated that number 432 and its derivatives
(108, 216) appear in the “median” or symmetric case of uni-
verse entropy bound, and further in the calculation for the di-
mensionless numbers (25), (19). An intriguing numerical ex-
pression for the total universe entropy for the Bekenstein cos-
mological bound is proposed (19), which contains only pow-
ers of 2 and 3. This allowed to construct an expression for the
gravitational constant that gives a value of G = 6.67437294×
10−11 m3 kg−1 s−2, which fits the range of CODATA2018 to
the latest measurements. Along with the previous formula-
tion for the Hubble constant, the approach provides a new al-
ternative form (greater by 2% from the previous) as given by
expressions (21), (16), resulting in H0 = 71.994 km/s/Mpc,
which corresponds to the “median” case of the universe en-
tropy bound (19). The current accuracy of measurements of

*Since 127 = 27 − 1, 7 = 23 − 1, and 3 = 22 − 1.
†Interestingly; this number also nearly coincides with the order of sym-

plectic group Sp(n, q) with q = 243, n = 1 with prefactor 108, and the same
for the Chevalley group An(q) (PSL(n, q)).

the Hubble constant H0 limits the study. Further improve-
ments in the measurements of the Hubble constant are re-
quired, as it will clarify the concordance of the value of the
cosmological entropy bound S to the proposed number.

The paper proposes a path, using the explicit value for
Bekenstein bound, to connect the maximum of the observ-
able values such as the Hubble volume, the total mass of the
universe with minimal measurable values (V0 and m0), which
supposedly have to play a role in quantum mechanics. The
approach can be extended towards a broader range of physi-
cal parameters, such as maximal and minimal force, maximal
and minimal acceleration. The introduction of such parame-
ters may lead to new approaches in quantum mechanics and
cosmology. Further research is required in the frame of quan-
tum mechanics, the LQG, which would utilize the introduced
space volume V0 parameter in connection to Clifford algebra
Cl3,0 (APS), where it has the correspondence to volume coor-
dinate x123 [14]. Such a study may further refine the quantum
oscillator model of elementary particle masses using the in-
troduced parameters.

Received on July 9, 2021
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Physics of Transcendental Numbers Determines Star Distribution
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Transcendental ratios of physical quantities can provide stability in complex dynamic
systems because they inhibit the occurrence of destabilizing resonance between the el-
ements of the system. This approach leads to a fractal scalar field that affects any type
of physical interaction. In this paper we verify the model claims on the frequency dis-
tribution of interstellar distances in the solar neighborhood.

Introduction

Since the beginning of the past century astronomers began to
routinely measure stellar parallaxes. In 1957 this effort was
formalized with the publication [1] of 915 stars within 20 pc.
Various updates and extensions to larger distances produced
what became the Catalogue of Nearby Stars (CNS), including
3803 stars within 25 pc [2] released in 1991. Hipparcos [3] in-
creased the quantity and quality of the CNS content. In 1998
the CNS dataset went online and currently has 5835 entries,
but it is no longer updated. The most recent update [4] of
the CNS was to provide accurate coordinates taken from the
Two Micron Sky Survey (2MASS) [5]. Finally, the Gaia Cat-
alogue of Nearby Stars (GCNS) attempts to make a census of
all stars in the solar neighborhood using the Gaia results [6].
In the GCNS, the solar neighborhood is defined as a sphere
with a radius of 100 pc centered on the Sun.

In this paper, we will analyze the distribution of the num-
ber of stars in the solar neighborhood as function of their mu-
tual distances. This approach is not heliocentric and does not
deal with fixed reference points at all.

Conventional models expect an exponential increase of
the cumulative number of stars with the distance from a fixed
reference point, such as the Sun. As shown in [6], this actu-
ally appears to be the case.

We will show that the consideration of all possible pairs of
stars within a given range of interstellar distances leads to the
appearance of a stable scale-invariant pattern in the frequency
distribution of the number of stars as function of the distance
between them. This means that there are interstellar distances
preferred by the majority of stars in the solar neighborhood.
Furthermore, we will derive this scale-invariant pattern from
a number theoretic approach.

Methods

In [7] we have shown that the difference between rational,
irrational algebraic and transcendental numbers is not only a
mathematical task, but it is also an essential aspect of stability
in complex dynamic systems. For instance, integer frequency
ratios provide resonance interaction that can destabilize a sys-
tem [8]. Actually, it is transcendental numbers that define the
preferred ratios of quantities which avoid destabilizing res-

onance interaction [9]. In this way, transcendental ratios of
quantities sustain the lasting stability of periodic processes in
complex dynamic systems. With reference to the evolution
of a planetary system and its stability, we may therefore ex-
pect that the ratio of any two orbital periods should finally
approximate a transcendental number.

Among all transcendental numbers, Euler’s number e =

2.71828. . . is unique, because its real power function ex co-
incides with its own derivatives. In the consequence, Euler’s
number allows inhibiting resonance interaction regarding any
interacting periodic processes and their derivatives. Because
of this unique property of Euler’s number, complex dynamic
systems tend to establish relations of quantities that coincide
with values of the natural exponential function ex for integer
and rational exponents x.

Therefore, we expect that periodic processes in real sys-
tems prefer frequency ratios close to Euler’s number and its
rational powers. Consequently, the logarithms of their fre-
quency ratios should be close to integer 0,±1,±2, . . . or ratio-
nal values ±1/2,±1/3,±1/4, . . . In [10] we exemplified our
hypothesis in particle physics, astrophysics, cosmology, geo-
physics, biophysics and engineering.

Based on this hypothesis, we introduced a fractal model
of matter [11] as a chain system of harmonic quantum oscilla-
tors and could show the evidence of this model for all known
hadrons, mesons, leptons and bosons as well. In [12] we have
shown that the set of stable eigenstates in such systems is
fractal and can be described by finite continued fractions:

Fjk = ln (ω jk/ω00) = 〈n j0; n j1, n j2, . . . , n jk〉 (1)

where ω jk is the set of angular eigenfrequencies and ω00 is
the fundamental frequency of the set. The denominators are
integer: n j0, n j1, n j2, . . . , n jk ∈Z. The cardinality j ∈N of the
set and the number k ∈N of layers are finite. In the canoni-
cal form, all numerators equal 1. We use angle brackets for
continued fractions.

Any finite continued fraction represents a rational num-
ber [13]. Therefore, the ratios ω jk/ω00 of eigenfrequencies
are always irrational, because for rational exponents the natu-
ral exponential function is transcendental [14]. This circum-
stance provides for lasting stability of those eigenstates of a
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chain system of harmonic oscillators because it prevents res-
onance interaction [15] between the elements of the system.

The distribution density of stable eigenstates reaches local
maxima near reciprocal integers ±1/2,±1/3,±1/4, . . . that
are attractor points (fig. 1) in the fractal set Fjk of natural log-
arithms. Integer logarithms 0,±1,±2, . . . represent the most
stable eigenstates (main attractors).

In the case of harmonic quantum oscillators, the contin-
ued fractions Fjk define not only fractal sets of natural angu-
lar frequencies ω jk, angular accelerations a jk = c ·ω jk, oscil-
lation periods τ jk = 1/ω jk and wavelengths λ jk = c/ω jk of the
chain system, but also fractal sets of energies E jk = ~ ·ω jk and
masses m jk = E jk/c2 which correspond with the eigenstates of
the system. For this reason, we call the continued fraction Fjk

the Fundamental Fractal of stable eigenstates in chain sys-
tems of harmonic quantum oscillators.

Fig. 1: The distribution of stable eigenvalues of Fjk for k = 1 (above)
and for k = 2 (below) in the range -16Fjk 6 1.

The spatio-temporal projection of the Fundamental Frac-
tal Fjk of stable eigenstates is a fractal scalar field of tran-
scendental attractors, the Fundamental Field [16].

The connection between the spatial and temporal projec-
tions of the Fundamental Fractal is given by the speed of light
c = 299792458 m/s. The constancy of c makes both projec-
tions isomorphic, so that there is no arithmetic or geometric
difference. Only the units of measurement are different.

Figure 2 shows the linear 2D-projection exp (Fjk) of the
first layer of the Fundamental Field

Fj1 = 〈n j0; n j1〉 = n j0 +
1

n j1

in the interval −1 < Fj1 < 1. The upper part of figure 1 shows
the same interval in the logarithmic representation. The Fun-
damental Field is topologically 3-dimensional, a fractal set
of embedded spheric equipotential surfaces. The logarithmic
potential difference defines a gradient directed to the center
of the field that causes a central force of attraction. Because
of the fractal logarithmic hyperbolic metric of the field, every
equipotential surface is an attractor.

The Fundamental Field is of pure arithmetical origin, and
there is no particular physical mechanism required as field
source. It is all about transcendental ratios of frequencies [9]
that inhibit destabilizing resonance. Therefore, we postulate
the universality of the Fundamental Field that affects any type
of physical interaction, regardless of its complexity.

In fact, scale relations in particle physics [11] and astro-
physics [17] obey the same Fundamental Fractal (1), without
any additional or particular settings. The proton-to-electron
rest energy ratio approximates the first layer of the Funda-
mental Fractal that could explain their exceptional stability.

Fig. 2: The equipotential surfaces of the Fundamental Field in the
linear 2D-projection for k = 1.

In fact, the life-spans of the proton and electron top every-
thing that is measurable, exceeding 1029 years [18].

Property Electron Proton

E = mc2 0.5109989461(31) MeV 938.2720813(58) MeV

ω= E/~ 7.76344 · 1020 Hz 1.42549 · 1024 Hz

τ= 1/ω 1.28809 · 10−21 s 7.01515 · 10−25 s

λ= c/ω 3.86159 · 10−13 m 2.10309 · 10−16 m

Table 1: The basic set of the physical properties of the electron and
proton. Data from Particle Data Group [18]. Frequencies, oscillation
periods and wavelengths are calculated.

The proton-to-electron ratio (tab. 1) approximates the seventh
power of Euler’s number and its square root:

ln
(
λe

λp

)
= ln

(
3.86159 · 10−13 m
2.10309 · 10−16 m

)
' 7 +

1
2

= 〈7; 2〉

In the consequence of this potential difference of the proton
relative to the electron, the scaling factor

√
e = 1.64872. . .

connects attractors of proton stability with similar attractors
of electron stability in alternating sequence. The following
Diophantine equation describes the correspondence of proton
calibrated attractors np with electron calibrated attractors ne.
Non considering the signature, only three pairs (np, ne) of in-
tegers are solutions to this equation: (3, 6), (4, 4), (6, 3).

1
np

+
1
ne

=
1
2

Figure 3 demonstrates this situation on the first layer of the
Fundamental Fractal (1). Both, the attractors of proton and
electron stability are represented at the first layer, so we can
see clearly that among the integer or half, only the attractors
±1/3, ±1/4 and ±1/6 are common. In these attractors, proton
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stability is supported by electron stability and vice versa, so
we expect that they are preferred in real systems.

Fig. 3: The distribution of the attractors of proton (bottom) stability
in the range −1 < F < 1 of the attractors of electron (top) stability.
Natural logarithmic representation.

These unique properties of the electron and proton pre-
destinate their physical characteristics as fundamental units.
Table 1 shows the basic set of electron and proton units that
can be considered as a fundamental metrology (c is the speed
of light in a vacuum, ~ is the Planck constant). In [12] was
shown that the fundamental metrology (tab. 1) is completely
compatible with Planck units [19]. Originally proposed in
1899 by Max Planck, these units are also known as natural
units, because the origin of their definition comes only from
properties of nature and not from any human construct. Max
Planck wrote [20] that these units, “regardless of any particu-
lar bodies or substances, retain their importance for all times
and for all cultures, including alien and non-human, and can
therefore be called natural units of measurement”. Planck
units reflect the characteristics of space-time.

We assume that scale invariance according to the Funda-
mental Fractal (1), which is calibrated to the physical proper-
ties of the proton and the electron, is a universal characteristic
of organized matter and criterion of stability. This hypothesis
we have called Global Scaling [10].

In this paper we will show that the distribution of inter-
stellar distances in the solar neighborhood corresponds with
the distribution of attractors in the Fundamental Field.

Results

In [21] we applied the Fundamental Fractal (1) to macro-
scopic scales interpreting gravity as attractor effect of its sta-
ble eigenstates. Indeed, the orbital and rotational periods of
planets, planetoids and large moons of the solar system cor-
respond with attractors of electron and proton stability [12].
This is valid also for the planets [10] of the systems Trappist
1 and Kepler 20. Planetary and lunar orbits [17] correspond
with equipotential surfaces of the Fundamental Field.

Figure 4 shows the distribution of the number of exoplan-
ets with orbital periods in the range 5 d < T < 24 d that
corresponds with logarithms 59.2 < ln (T/2πτe) < 60.8 on
the horizontal axis. According with table 1, τe is the elec-
tron angular oscillation period. The histogram contains data
of 1430 exoplanets and shows clearly the maximum corre-
sponding with the main attractor F 〈60〉. Other maxima cor-
respond with the attractors F 〈59; 2〉 and F 〈60; 2〉; even the
subattractors F 〈60;−4〉 and F 〈60; 4〉 can be distinguished.

The histogram evidences that the majority of the 1430 ex-
oplanets [22] prefer orbital periods close to 10–11 days cor-

Fig. 4: The histogram shows the distribution of the number of ex-
oplanets with orbital periods in the range 5 d < T < 24 d. The
logarithms ln (T/2πτe) are on the horizontal axis. Corresponding
with table 1, τe is the electron angular oscillation period. Data of
1430 exoplanets are taken from [22].

responding with the main attractor F 〈60〉, as well as peri-
ods close to 6–7 days or close to 17–18 days corresponding
with the attractors F 〈59; 2〉 and F 〈60; 2〉. Because of the
logarithm 7+1/2 of the proton-to-electron ratio, the attractors
F 〈59; 2〉 and F 〈60; 2〉 of electron stability are actually the
main attractors F 〈67〉 and F 〈68〉 of proton stability.

Figure 5a shows the distribution of the number of stars as
function of their distances R from the Sun up to 25 light-years
that correspond with the logarithms ln (R/λe) < 68.6 on the
horizontal axis. According with table 1, λe is the Compton
wavelength of the electron. The histogram contains 192 dis-
tances and shows clearly the maxima corresponding with the
attractors F 〈67〉, F 〈67; 2〉, F 〈68〉 and F 〈68; 2〉.

Knowing the right ascension, declination and distances of
two stars from the Sun, it is not difficult to calculate the dis-
tance between them. In preparation of this paper, the mutual
distances between the 192 best measured stars including Vega
within a radius of 25 light-years around the Sun were calcu-
lated. The number of pairs of stars is given by the formula:

P = N(N − 1)/2

where N is the number of stars; P is the number of pairs. For
192 stars, we calculated P = 18, 336 interstellar distances.

Figure 5b shows the distribution of the number of stars as
function of their distances R from Sirius up to 33 light-years.
Also this histogram shows clearly the maxima correspond-
ing with the attractors F 〈67〉, F 〈67; 2〉, F 〈68〉 and F 〈68; 2〉.
The same F -pattern appears in the histograms of interstel-
lar distances measured from Barnard’s star (fig. 5b), Tau Ceti
(fig. 5d) and other stars in the 25-light-years solar neighbor-
hood. Only the expression of theF -pattern differs in strength.

Conclusion

Standard models expecting an exponential increase of the cu-
mulative number of stars with the distance from a fixed ref-
erence point, perhaps could interpret the local maxima in the
histograms as anomalies evidencing that the solar neighbor-
hood is still in transformation. Within our approach, on the
contrary, the coincidence of the maxima with attractors of the
Fundamental Field evidences that the solar neighborhood has
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Fig. 5: The histogram shows the distribution of the number of stars in the solar neighborhood as function of their distances R from the Sun
(a), Sirius (b), Barnard’s star (c) and Tau Ceti (d). The logarithms ln (R/λe) are on the horizontal axis. Corresponding with table 1, λe is the
Compton wavelength of the electron. Data of 192 stars are taken from [23].

already reached a certain level of stability. Moreover, we ex-
pect a continuous amplification of F -patterns in histograms
as trend of interstellar distances. Most likely, the appearance
of patterns corresponding with the Fundamental Fractal (1) is
a universal criterion of stability.

Since the Fundamental Fractal is of number theoretic ori-
gin, it determines the frequency distributions of interstellar
distances as well as the wavelengths of elementary particles.
Interscalar cosmology [10] bases on this approach.
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NASA’s reported Pioneer 10 and 11 anomalous annual and diurnal Doppler residuals
remain largely unexplained. We show they are due to the use of an invariant value of
the speed of light c in the Doppler formula. The addition of the orbital speed of the
Earth (∼ 30 km/s) and the Earth’s tangential rotational speed (∼ 0.4 km/s) to the speed
of light in the Doppler formula, as [18] has shown to be the velocity addition to be
used, adequately fit the measured annual and diurnal Pioneer residuals. This experi-
mentally confirms that the galilean addition of relative velocities to the speed of light
satisfactorily explains the measured residuals. The newly reported values from inde-
pendent analyses of the data, of the reputably constant anomalous Pioneer acceleration
as a function of time, or distance from the Sun, are calculated. The values obtained,
without any adjustable parameters, coincide within a percent with the experimentally
measured values and are consistent with the change of the speed of light due to a de-
crease in the gravitational energy density with distance from the Sun as postulated by
the Céspedes-Curé hypothesis. This result implies reassessment of all astronomical ve-
locity measurements based on the Doppler Effect that have led to current cosmological
theories: the Hubble constant, the expansion of the universe, the flat rotation curve of
galaxies and the extreme values of the redshifts of very far away galaxies.

1 Introduction

Most of the physics related to astronomy and cosmology had
been in the past based on passive astronomical observation of
the measurements used to derive the theories. This is the case
for Isaac Newton who derived his universal theory of gravi-
tation from Johannes Kepler, who in turn used his own and
the detailed observations of Tycho Brahe to develop his laws
of planetary motion. Likewise, observations of the total Sun
eclipse of 1919 by the team led by Arthur Stanley Eddington
provided the first evidence in support of Einstein’s General
Theory of Relativity

In recent times, observational instruments have become
increasingly powerful expanding visual telescopes to other
ranges of the electromagnetic spectrum such as to the lower
region, and to the higher regions with the radio telescopes and
the x-ray and gamma ray observational satellites. These in-
struments have expanded our vision to ever further regions of
the past history of the Universe. Moreover, with the advent of
space exploration with Earth satellites and the launch of deep
space probes, astronomy and cosmology now routinely uti-
lize experimental probes to examine, refine, support or create
physical theories of the cosmos. With the introduction of dig-
ital processing, computing power, extremely precise timing
and the development of very high frequency electronics, ac-
curate observations have increased to previously unforeseen
ranges.

One such case is the measurement by the space agencies
of extremely small phenomena that have shown minute but

significant deviations from the values predicted by accepted
physical theories and that have defied for lengths of time sat-
isfactory explanation. Two examples are deviations from the
predicted hyperbolic movement of space probes: the Flyby
Anomaly [1, 2] and the Pioneer Anomaly [3–5]. In the Flyby
Anomaly, the energy assist maneuver about the planets has
been shown in several probes to deviate from the expected
energy conservation prediction. In this case, speed deviations
of mm/s reported are detected with errors of 10−2 mm/s on
probes moving at speeds of several km/s.

The Pioneer Anomaly measurements of the hyperbolic
movement of Pioneer 10 and 11 as well as Ulysses and Gali-
leo have shown a minute acceleration in excess of the ex-
pected slowing towards the Sun due to its gravitational attrac-
tion. The deviations are of the order of 10−8. The realization
of these measurements is an extraordinary accomplishment
considering that the probes are located far away in the so-
lar system, moving at velocities in the range of several km/s.
The anomalous measurements are reported with an accuracy
of σat = 0.32 × 10−10 m/s2 [5].

In addition to the assumed constant anomalous acceler-
ation, Pioneer’s Doppler residual measurements have shown
annual and diurnal oscillations about the average acceleration
with amplitude of about 0.8 × 10−9 m/s2 (see Fig. 4). The
magnitudes of the diurnal terms are reported to be compara-
ble to those of the annual term. These results have been the
subject of considerable discussion in the published literature:
Anderson et al in 2002 [3, p. 40–43] concluded that they are
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not spacecraft-related phenomena nor artifacts of the measur-
ing system but that they are Earth-related phenomena. In par-
ticular, the diurnal Doppler residuals exhibit a period that is
close to the Earth’s sidereal period.

Nieto and Anderson in 2005 [6] reported, in a very clear
review, sinusoidal fits to the annual residuals showing similar
values for Pioneer 10 and 11 and a phase difference of 173.2
degrees, similar to the angular separation of the two space-
crafts in ecliptic longitude.

There have been other attempts to explain the periodic
anomalies. O. Olsen in 2007 [7] stated that unmodeled short-
term effects are claimed to be consistent with expected values
of radio plasma delay and the electron content of the Sun’s
Coronal Mass Ejections. Small annual and diurnal terms are
considered to be artifacts of the maneuver estimation algo-
rithm and unmodeled effects.

A. Ghosh in 2007 [8] attempted to explain these fluctuat-
ing components as due to the motions of the Earth and excess
redshifts of the signal caused by velocity dependent inertial
induction. He appears to be able to explain the annual and
diurnal fluctuations in the anomalous acceleration of Pioneer
10.

Levi et al in 2009 [9] performed a data analysis indepen-
dent of that of Anderson et al (2002), using the same data and
confirming the existence of a secular anomaly. This anomaly
has amplitude of about 0.8×10−9 m/s2 that is compatible with
that reported by Anderson et al. Their fit to the diurnal resid-
uals showed the presence of significant periodic terms with
the periods measured with respect to a day of 86 400 s. They
reported, very accurately, periodic terms consistent with vari-
ations of one sidereal day, half a sidereal day, and half a year.

A later report on the Pioneer Anomaly by Turyshev and
Toth in 2010 [5, Sec. 5.5.4, p. 86] acknowledged the presence
of these oscillatory Doppler residuals ascribing them to “a
mismodeling of the orbital inclination of the spacecraft to the
ecliptic plane”. However, in Section “7.2 Unresolved ques-
tions”, it is mentioned that “Even after a best fit analysis is
completed, the resulting residual is not completely random:
both annual and diurnal variations are clearly visible. Is it
possible to pinpoint the source of these variations?”.

The current opinion (2021) that the Pioneer Anomaly was
resolved as a thermal effect rests on a paper by S. G. Turyshev
et al (2012) [10] which does a complex parametrized model
for the thermal recoil force of the Pioneer spacecraft with sev-
eral adjustable parameters. In particular the two adjustable
parameters of Eq. (1) on page 2 predict the anomaly. How-
ever, any other parameters would negate the thermal origin of
the anomaly.

Other reports that also support the thermal origin are: Rie-
vers and Lammerzahl (2011) [12] and Francisco et al (2012)
[13]. However, the detailed paper about the Pioneer Anomaly
(55 pages of Phys. Rev. by J. D. Anderson et al (2002) [3])
clearly argues (see Sections VIII.B, C and D, pp. 32–35) that
thermal recoil cannot account for the anomaly. Addition-

ally, an anomaly similar to the Pioneer spacecraft was de-
tected in Galileo spacecraft (see Section V C, p. 21) [3] and
in the Ulysses spacecraft (see Section V D, p. 21) [3]. Both
spacecrafts have completely different geometries and the ther-
mal recoil theory is not applicable to them. Furthermore,
the anomalous acceleration is reported to change value, de-
creasing rapidly and then increasing, (see discussions below,
Sections 2.2 and 5.3 and references therein) during the space-
crafts’ Jupiter and Saturn encounters. These reported changes
of the anomaly as well as the harmonic annual and diurnal
variations clearly cannot be explained by a thermal recoil the-
ory.

More recently, L. Bilbao in 2016 [11], making use of the
Vibrating Rays Theory [14], claims that relating the velocity
of light and the corresponding Doppler effect with the veloc-
ity of the source at the time of detection, instead of the time
of emission, it is possible to explain quantitatively and qual-
itatively the spacecraft anomalies. Values calculated for the
annual residual approximately coincide with reported mea-
surements for Pioneer 10 at 40 AU, ∆ f ≈ 14 mHz and for
Pioneer 11 at 69 AU, ∆ f ≈ 4.8 mHz [11, p 310]. However,
on the same arguments, the theory would predict values 5 or
6 orders of magnitude smaller than reported for the diurnal
Doppler residuals measurements.

In this paper, an explanation of the constant term of the
Pioneer Anomaly by Greaves in 2008 [4,15] is reviewed with
updated results and a new explanation of the oscillatory na-
ture of the annual and diurnal Doppler residuals is presented.
Both explanations are in agreement with the galilean veloc-
ity addition. The harmonic fluctuations make use of the re-
sults of analysis by Gift in 2010 of the Doppler Effect [16],
in 2014 [17] and in 2017 of the Global Positioning System
(GPS) [18].

2 Pioneer anomaly reported values

In order to compare the theoretical predictions with the re-
ported values, in this section we review the literature with
special emphasis on the particular phenomena pertinent to the
theory presented about the anomalous acceleration values. In
the light of the results below that imply different values de-
pending on distances from the Sun and hence at the various
measurement times, we do not find it surprising that a variety
of values are reported.

The Pioneer Anomaly is the result of a complicated mod-
eling procedure involving the gravitational physics predict-
ing the probe trajectory, newtonian and relativistic, as well
as a cornucopia of other phenomena such as solar radiation
pressure and electromagnetic line of sight effects. The re-
sult of the modeling is compared to the measured Doppler
signals received and processed by the Deep Space Network
(DSN) by means of mathematical least squares fitting proce-
dures. While there may be several possible onboard causes
of anomalous results such as gas leaks or the now popular
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effect of asymmetric thermal radiation pressure, the different
programs that have been developed generally agree on the ex-
istence of an anomaly.

We start by citing the anomalous measurements of the
Galileo and Ulysses spacecrafts given by Anderson et al
(2002) [3, p. 22, Eq. (18)]. Unfortunately, not many details
are given for these anomalous measurements.

2.1 Galileo

The reported JPL values of Aerospace’s analysis for the dates
2 December 1992 to 24 March 1993 give an anomalous ac-
celeration of aP(G) = (8 ± 3) × 10−8 cm/s2.

Galileo performed a second flyby of Earth at 303.1 km
height at 15:09:25 UTC on 8 December 1992, adding 13,320
km/h to its cumulative speed on the way to Jupiter. Hence
the reported Galileo aP(G) is just on or after the Earth flyby at
approx. 1 AU distance from the Sun, and under full Earth and
Sun gravitational acceleration field [19].

2.2 Ulysses

The JPL analysis gives aP(U) = (12 ± 3) × 10−8 cm/s2. The
data is from 30 March 1992 to 11 August 1994. Ulysses
arrived at Jupiter on 8 February 1992 for a flyby maneu-
ver that increased its inclination to the ecliptic by 80.2 de-
grees southward, away from the ecliptic plane entering an or-
bit around the Sun. The orbital period is approximately six
years. The Sun’s gravitational acceleration at the Jupiter or-
bit is gS = 2.1 × 10−4 m/s2, four orders of magnitude smaller
than Jupiter’s g j = 0.227 m/s2 gravitational acceleration at
the nearest point in the flyby (4.09 × 108 m). The flyby was
engineered to bring Ulysses into a Sun elliptical orbit, so that
after the flyby Ulysses began movement towards the Sun with
the resulting gravitational acceleration ~gU = ~gS + ~g j point-
ing generally towards Jupiter for some time until the distance
to the Sun was ≈ 5 AU. Thereafter Ulysses acceleration ~gU

points generally towards the Sun. Aerospace’s analysis us-
ing CHASMP reports no numerical value due to measurement
difficulties. However, it is stated: “The measured anomalies
randomly changes sign and magnitude. The values go up to
about an order of magnitude larger than aP” [3, p 22]. This
measurement and remark of Ulysses’ anomalous acceleration
is when the spacecraft was under Jupiter gravitational attrac-
tion just after the flyby and hence with net gravitational accel-
eration towards Jupiter and sometime later towards the Sun.

2.3 Pioneer 10 and 11

Table 1 of Anderson et al (2002) [3, p 23] reproduced below,
with its original caption, gives an indication of the variabil-
ity of reported values. The original data analyzed is for the
following periods:

Pioneer 10: 11 years time interval (3 January 1987 to 22
July 1998), covers a heliocentric distance interval from 40 AU
to 70.5 AU.

Table 1: Determinations of aP in units of 10−8cm/s2 from the three
time intervals of Pioneer 10 data and from Pioneer 11. As de-
scribed in the text, [our Ref. 3] results from various ODP-Sigma and
CHASMP calculations are listed. For ODP-Sigma, “WLS” signi-
fies a weighted least-squares calculation, which was used with i) no
solar corona model and ii) the ‘Cassini’ solar corona model. Also
for ODP/Sigma, “BSF” signifies a batch-sequential filter calcula-
tion, which was done with iii) the ‘Cassini’ solar corona model.
Further (see Section IX C), a 1-day batch-sequential estimation for
the entire data interval of 11.5 years for Pioneer 10 yielded a re-
sult aP = (7.77 ± 0.16) × 10−8 cm/s2. The CHASMP calculations
were all WLS. These calculations were done with i) no solar corona
model, ii) the ‘Cassini’ solar corona model, iii) the ‘Cassini’ solar
corona model with corona data weighting and F10.7 time variation
calibration. Note that the errors given are only formal calculational
errors. The much larger deviations of the results from each other in-
dicate the sizes of the systematics that are involved. (Acronyms are:
ODP - JPL’s Orbit Determination Program; CHASMP - Aerospace
Corporation’s Compact High Accuracy Satellite Motion Program.)

Pioneer 11: data of 3 years (5 January 1987 to 1 October
1990), covers a heliocentric distance interval much closer to
the Sun, from 22.42 to 31.7 AU.

Additionally, Anderson et al (2002) [3, on p. 27] quote:
“For Pioneer 10, two different analysis programs: Sigma and
CHASMP (measurements) are similar, 7.82×10−8 cm/s2 and
7.89× 10−8 cm/s2, the weighted average of these two to yield
aPio10 = (7.84 ± 0.01) × 10−8 cm/s2 (experimental).

“For Pioneer 11, we only have the one 3 3/4 year data arc.
The weighted average of the two programs’ no corona results
is (8.62 ± 0.02) × 10−8 cm/s2.”

2.3.1 Information of planetary encounters

The Pioneer 10 original data spans heliocentric distance in-
terval from 40 AU to 70.5 AU, as mentioned above. Hence it
does not include the Jupiter flyby at 5.2027 AU on 1974.

Pioneer 11’s original data covers a heliocentric distance
interval from 5.80 to 29.50 AU. It includes just after the Jup-
iter flyby at 5.2027 AU and the Saturn encounter at 9.546 AU
on 1979. Also near encounter with Uranus at 19.2 AU on ap-
prox. 1986 and with Neptune at 30.09 AU on approx. 1990.
Moreover, a report in 2005 of Nieto and Anderson [6] pro-
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Fig. 1: “A plot of Pioneer 11’s distance from the Sun (in AU) vs time
(in days starting with 1 Jan. 1979) near Saturn encounter (on Sept.
1, 1979)” [6, p 14]. Captions of axes added.

vides additional insight to the planetary encounters and the
harmonic residuals. They report that the initial two points in
the Pioneer 11 anomalous acceleration shown in their Figures
4 and 5 (our Fig. 2) were near the distances of Jupiter and Sat-
urn encounters. They provide a figure showing the distance
(AU) as a function of time (in days) around the Saturn flyby
of Pioneer 11. See Fig. 1 with its original caption.

We find this figure very illuminating as at these times the
spacecraft was under the gravitational attraction of Saturn and
perhaps also under the influence of its higher space energy
density as discussed below.

Regarding the annual residuals, Nieto et al [6] mention on
p. 14:

Plots of the anomaly versus time were also made from
these data points. These showed, as might be sus-
pected from Figures 4 and 5, [our Fig. 2] a possible
annual variation. This observation would be a fore-
runner of the discussion in Section IX-C of [12], [our
Ref. [3]]. Doing fits to the data points, the best esti-
mate of the amplitude of the Pioneer 10 sine wave is
(0.525±0.155)×10−8 cm/s2 and that of the Pioneer 11
wave is (0.498±0.176)×10−8 cm/s2 (here with the first
three points omitted). The sine waves seem real, with,
e.g. a 95 percent probability that the Pioneer 10 ampli-
tude lies between 0.199 and 0.834 × 10−8 cm/s2. The
difference in phase between the Pioneer 10 and Pio-
neer 11 waves is 173.2 degrees, similar to the angular
separation of the two spacecrafts in ecliptic longitude.
[This is 204.28 degrees at the present time.]

Useful information is provided in Table II which con-
tains the numerical data for each spacecraft containing the
distance, dates, reported anomalous acceleration aP and the
error ∆P. Using this information, we find it helpful to plot
the reported dates and distances (see Fig. 3) as this informa-
tion allows the determination of the distance or dates of re-
ported aP when the information is not given.

Table 2: Pioneer 11 and 10 early data points (Distance in AU, Date
year/days-of-year, anomaly aP and error σP in units of 10−8 cm/s2

from [6].

Toth and Turyshev in 2007 [20, p. 15] comment results
found during the Jupiter–Saturn cruise phase: “Right at the
time of the Saturn encounter, however, when the spacecraft
passed into an hyperbolic escape orbit, there was a rapid in-
crease in the anomaly, whereafter it settled into the canonical
value” [our emphasis].

2.3.2 Independent analysis of Pioneer data

There have been several further independent analyses of the
original data which were made available since 2002 and are
reviewed below.

C. Markwardt (2002) [21] performed an independent ana-
lysis of radio Doppler tracking data from the Pioneer 10 spa-
cecraft for the time period 1987–1994. His best-fit value for
the acceleration, including corrections for systematic biases
and uncertainties, is (8.60 ± 1.34) × 10−8 cm/s2, directed to-
wards the Sun.

O. Olsen (2007) [7] does an independent analysis of the
Pioneer 10 and 11 data using the HELIOSAT program devel-
oped by one of the authors at the University of Oslo. The data
used spans the three periods defined by Anderson et al (2002)
for Pioneer 10: Interval I spans 1 January 1987 to 17 July 17
1990, Interval II spans 17 July 1990 to 12 July 12 1992 and
Interval III continues up to 21 July 1998. The anomalous ac-
celerations (×10−8 cm/s2) obtained are given in his Table I
from which we extract: Pioneer 10: Interval I = 7.85 ± 0.02;
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Fig. 2: Left: Accelerations on the Pioneer spacecraft. Right: Anomalous acceleration as a function of distance [3, p. 19].

Fig. 3: Heliocentric distance (AU) as a function of dates (year) for
Pioneer 10 and 11 positions. Lines are linear fits. For Pioneer 11 pre
and post Jupiter flyby. (Data from Table II.)

Interval II = 8.78 ± 0.01; Interval III = 7.75 ± 0.01; Pioneer
11 = 8.10 ± 0.01. From the paper’s conclusions: “The un-
modeled short term effects are claimed to be consistent with
expected values of radio plasma delay and the electron con-
tent of Coronal Mass Ejections. Small annual and diurnal
terms are ascribed as artifacts of the maneuver estimation al-
gorithm and unmodeled effects acting on the spacecraft or on
the radio transmissions.”

V. T. Toth does an independent analysis of the orbit of the
Pioneer spacecrafts reporting in 2009 [22, p. 18] for Pioneer

10* aP10 = (9.03 ± 0.86) × 10−8 cm/s2 (period 1987 to 1998)
and for Pioneer 11 aP11 = (8.21 ± 1.07) × 10−8 cm/s2 (period
1986 to August 1990). Toth also attempted in his analysis to
test the extent to which the anomalous acceleration is constant
in time. To this end, he implemented the ability to estimate a
secondary acceleration, i.e. “jerk” term in the orbital solution.

The results obtained were: for Pioneer 10, aP10 = (10.96±
0.89)×10−8 cm/s2 [3, p. 20], with a variation rate of daP10/dt
= −(0.21 ± 0.04) × 10−6 cm/s2/year and for Pioneer 11, the
result was aP11 = (9.40± 1.12)× 10−8 cm/s2, with a variation
rate of daP11/dt = −(0.34 ± 0.12) × 10−8 cm/s2/year. Toth
goes on to state: “an anomalous acceleration that is a slowly
changing function of time (decreasing) cannot be excluded at
present” [our italics].

Levi et al in 2009 [23] performed a data analysis indepen-
dent from that of Anderson et al (2002) using the same Pio-
neer 10 data confirming the existence of a secular anomaly
with an amplitude of about 8 × 10−8 cm/s2 compatible with
that reported by Anderson et al (2002) and providing addi-
tional insight into the phenomenon.

2.4 Annual and diurnal Doppler residuals

The first indication of the oscillatory nature of the Pioneer
Anomaly came from an examination of the data in Fig. 2. The
observations are addressed in detail in Anderson et al (2002)
[3, pp. 40-41]. From that report, we show Figs. 4, 5 and 6.

Levi et al in 2009 [9], performed an important and illumi-
nating independent analysis of the diurnal periodic terms dur-
ing a short time span of (we quote): “23 November 1996 to

*Toth and Levi et al express all values in SI units. We have converted
accelerations to cm/s2 as used in most Pioneer reports.
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Fig. 4: Diurnal residuals. “CHASMP acceleration residuals from 23
November 1996 to 23 December 1996” [3, Fig. 18, p. 41].

Fig. 5: Annual residuals. “ODP 1-day batch-sequential acceleration
residuals using the entire Pioneer 10 data set. Maneuver times are
indicated by the vertical dashed lines”. [3, Fig. 17, p. 40].

23 December 1996 when Pioneer 10 was on opposition (Sun,
Earth and Pioneer 10 aligned in this order). This data set is
thus less affected by solar plasma and it shows daily varia-
tions of the residuals”. The analysis of residuals shows the
presence of significant diurnal periodic terms with the peri-
ods measured with respect to a day = 86 400 s. Their spectral
analysis of the periodic terms yields the following measured
periods: T1 = 0.9974 ± 0.0004 day, T2 = (1/2)(0.9972 ±
0.0004) day and T3 = 189 ± 32 days. “As T = 0.997 day =

1.0 sidereal day, these periods are consistent, (within 0.02 per-
cent), with variations of one sidereal day, half a sidereal day,
and half a year.” (Year/2 = 182.5 days) [Our italics]. These
results clearly indicate that the periodic terms in the Doppler
residuals are not produced by on-board phenomena or due
to solar corona affecting transmission signals, but rather that

Fig. 6: “ODP Doppler residuals in Hz for the entire Pioneer 10 data
span. The two solid vertical lines in the upper part of the plot in-
dicate the boundaries between data Intervals I/II and II/III, respec-
tively. Maneuver times are indicated by the vertical dashed lines in
the lower part of the plot.” [3, Fig. 13, p. 25].

they are intimately related to Earth movement relative to the
Pioneer position in the sky. To illustrate their results we re-
produce below (Fig. 7) a section of Figure 3 in that report.

Fig. 7: Fitted residuals of the Doppler tracking data of Pioneer 10,
for a 10-day period near opposition. Different symbols or colors
refer to different couples of receiving stations [6, expanded section
of Figure 3, p. 6]

All of the reports shown above use the original data and
do not include the early stage of the Pioneer missions. It has
been stated in several reports [6, 20, 24] the convenience to
recover and analyze the data from the beginning of the mis-
sions. A very commendable effort has been made to recover
the earlier data, which after considerable effort, has been se-
cured in modern digital media. A detailed report of this con-
tribution is found in [22, p. 4]. However, to our knowledge,
the required detailed analysis of the earlier stages has not been

E. D. Greaves, C. Bracho, S. Gift and A. M. Rodriguez. A Solution to the Pioneer Anomalous Annual and Diurnal Residuals 173



Volume 17 (2021) PROGRESS IN PHYSICS Issue 2 (October)

reported.
At the present times, Pioneer 10 is in the constellation of

Taurus. The current Right Ascension of Pioneer 10 is 05h
16m 17s and the Declination is +26o02′40′′. Pioneer 11 is
currently in the constellation of Scutum. The current Right
Ascension of Pioneer 11 is 18h 53m 32s and the Declination
is −08o42′43′′ [25].

3 Pioneer anomaly “constant” term

In this section, we review the theory of the calculation of the
Pioneer 10 and 11 anomalous “constant” term. We start with
the statement of the Céspedes-Curé Hypothesis [26, p. 279],
[4, 27–29] Eq. (1): The speed of light on Earth’s surface at
1 AU (S Sun, E Earth) is given by

c =
k
√
ρ

=
k

√
ρ∗ + ρS + ρE

(1)

where k is a proportionality constant and ρ the energy density
in J/m3 on the surface of the Earth which is a sum of the
contribution of the constant energy density due to far away
stars and galaxies ρ∗ and the constant values due to the Sun
ρS and Earth ρE given by (2) below. Calculation shows that
the contribution of the Moon and other planets are negligible.

The energy density of a mass [26, p. 163], [2, Eq. (2),
p. 50], [4] is given by

ρ =
GM2

8πr4 (2)

where G is Newton’s gravitational constant, M is the mass
and r is the distance from the mass center. Eq. (2) shows the
energy density of a mass decreases very rapidly due to the r
exponent of 4 in the denominator.

The speed of light far away from Earth and the Sun, at
Pioneer’s position, is given by

c
′

=
k√
ρ
′

f ar

. (3)

Here ρ
′

f ar is the energy density at the site of Pioneer. In (3),
ρ
′

f ar contains a sum of the gravitational energy density of the
far away stars and galaxies ρ∗, the Sun’s and the energy den-
sity of other planets, which are relatively near in the space-
craft’s trajectory towards outer space. These include the Earth
in the very early stage of the mission and any planets during
flyby or relative close approach, which includes the Jupiter
flyby, the Saturn flyby and possibly near encounters to other
planets. Hence

ρ′f ar = ρ∗ +
G
8π

n∑
i=1

M2
i

r4
i

. (4)

Figs. 8 and 9 shown below give an indication of these en-
counters. A close look at these figures clearly shows that

the gravitational energy density and gravitational accelera-
tion along the trajectory of Pioneer 10 and 11 are different
predicting different values of the anomalous acceleration as
is reported.

The index of refraction of space, relative to the vacuum
index on Earth, at Pioneer’s position is obtained using (1) and
(3):

n′ =
c
c′

=

√
ρ′f ar
√
ρ

, (5)

so that the speed of light far away is:

c′ = c
√
ρ√
ρ′f ar

. (6)

Eq. (6) implies that c′ is greater than c and increases with
distance as ρ′f ar decreases with distance. However, c′ be-
comes almost constant when Pioneer goes past the planets
and their energy density becomes negligible. The Sun’s con-
tribution continues to decrease leaving ρ∗, the constant energy
density of far away stars and galaxies

Spacecraft velocity and accelerations are measured basi-
cally with the Doppler formula ∆ f = f (v/c) where f would
be a spacecraft-generated signal. However, Pioneer space-
craft did not have an accurate oscillator onboard. Commu-
nication uplink from Earth is at ∼ 2.11GHz. The space-
craft’s coherently received signal is accurately multiplied by
the (240/221) ratio and signals beamed at approximate down-
link frequency 2.295 GHz. The signals are sent and received
by the Deep Space Network (DSN) and processed in the man-
ner described in detail by Anderson et al [3, pp. 7–12]. In this
manner, the observable is a very precise Doppler shifted fre-
quency ∆ f = ( f /c)(dl/dt) [3, p. 9, Eq. (1)], where l is the
overall optical distance. In our notation v = (dl/dt) so that
the spacecraft speed is obtained with:

~v =
c∆ f

f
~r
|r|
. (7a)

Differentiating (7a) with respect to time, the measured
spacecraft acceleration is

~aJPL =
d∆ f
dt

c
f
~r
|r|
. (7b)

Here ∆ f is the shift of the frequency f and
d∆ f
dt

the mea-
sured drift of the frequency due to the Pioneer acceleration
produced by gravitation at the spacecraft site, mainly due to
the Sun. ~aJPL is a derived acceleration vector in the direction
of the gravitational force causing it. Examination of (7a) and
(7b) shows that, if the velocity of light c is not invariant but
rather given by (6) as proposed in this work, measurement
of velocity and acceleration in locations of space with lower
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Fig. 8: “Ecliptic pole view of Pioneer 10, Pioneer 11, and Voyager trajectories. Pioneer 11 is traveling approximately in the direction of the
Sun’s orbital motion about the galactic center. The galactic center is approximately in the direction of the top of the figure.” [3, p. 5].

Fig. 9: Detail of early trajectories [6, p. 3].

gravitational energy density than on Earth’s surface, both re-
sult in overestimation of these quantities. This leads to the
belief that an anomalous acceleration towards the sun is act-
ing.

At this point it is instructive to mention that c′ differs very
little from c and the magnitudes of n′, the index of refraction
of space, that are predicted with (5) are very nearly equal to 1.
The values of n′ on the surface of planets differ from Earth’s
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Table 3: Values of the vacuum index of refraction n′ on the surface
of the planets and the Moon. The value of ρ∗ = 1.09429× 1015 J/m3

calculated by Céspedes-Curé [26, p. 279] was used in evaluating n′

with (5).

by very little. Table III from [4] shows the results of calculat-
ing n′ with the use of (5). The values of the planets are close
to 1.0 being caused by the local gravitational energy density
being not too different from the surface of the Earth.

The correct value of Pioneer’s acceleration is obtained
with Newton’s gravitational force:

~aN = G
n∑

i=1

Mi

r2
i

~r
|r|
. (8)

Here the acceleration of gravity (i = Sun and planets) is main-
ly from the Sun, but in the early stages of the mission it will
be affected by other planets which are relatively near during
energy assist maneuvers (flyby) or near encounter in its tra-
jectory towards outer space.

The Pioneer acceleration is measured with the Doppler
formula (7b) with the accepted value c of the speed of light
and the uplink f = 2.113 GHz frequency. If instead of c
we use the speed of light c′ given by (6), we get a corrected
Doppler-derived acceleration:

~a′ =
d∆ f
dt

c
f

√
ρ√
ρ′f ar

~r
|r|
. (9)

The difference between the acceleration ~a
′

as proposed
here in (9) and ~aJPL calculated with (7b) gives the predicted
anomalous acceleration:

~aP =
d∆ f
dt

c
f


√
ρ√
ρ′f ar

− 1

 ~r|r| . (10)

4 Pioneer annual and diurnal residuals

Here, we present the theory to calculate the harmonic Doppler
residuals of the Pioneer 10 and 11 spacecraft. Due to Earth’s
rotation and translation, the measured acceleration aJPL, has
superimposed Doppler shifts due to the components of these
movements in the direction of the spacecraft. They are in-
corporated in the models used to predict the spacecraft move-
ment by the standard galilean addition of velocities, to the
predictions of gravitational theory.

We treat first the effect of Earth’s rotation. Let VER be the
equatorial tangential velocity ('0.4 km/s). At the latitude λ
of the DSN antennas, the tangential velocity in the direction
of Pioneer changes by cos λ. As the day progresses, the com-
ponent decreases by the factor cos(ωR t + φR), where ωR is
the Earth’s sidereal angular rotation velocity and φR an Earth
rotational phase angle. Hence the rotational Earth’s velocity
in the direction of Pioneer is

vE = vER cos λ cos(ωRt + φR) . (11)

For argument’s sake, we take (ωRt + φR) to be equal to
0 degrees when Pioneer is just in the East of the DSN sta-
tion. Then cos(ωR t + φR) = 1 and the velocity predicted is
maximum when Pioneer is in the East horizon of the DSN an-
tenna. The component reaches a null value when Pioneer is in
the zenith of the DSN station (ωR t + φR) = 90o, and becomes
negative, reaching a maximum negative value when it is ex-
actly in the West sky of the DSN station. This component has
to be added to the speed of light in (10).

In regards to Earth’s translation about the Sun, let vET

be Earth’s translation velocity (approx. 30 km/s). The com-
ponent of the translation velocity in the direction of Pioneer
is

vE = vET cos λ cos(ωT t + φT ) (12)

with ωT the Earth’s sidereal angular translational velocity ab-
out the Sun and φT an Earth translational phase angle.

This component is a maximum when Pioneer is in quadra-
ture and becomes null when it is in opposition (Sun, Earth, Pi-
oneer alignment) or in conjunction with the Sun (Earth, Sun,
Pioneer alignment). See Fig. 10.

Fig. 10: The Earth translation under the position of Pioneer.

To calculate the annual and diurnal Doppler residuals, we
use the galilean velocity addition as demonstrated by Gift
[18] adding to the speed of light in (10) the Earth’s orbital
translation and rotational velocity

~aP =
d∆ f
dt

1
f

(
c + vET cos λ cos(ωT t + φT ) +

+ vER cos λ cos(ωR t + φR)
) 
√
ρ√
ρ′f ar

− 1

 ~r|r| .
(13)
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In order to calculate ~a
′

P with (13) as a function of distance,
it is necessary to know the frequency drift d∆ f /dt. The value
of the frequency drift for different distances is not available. It
has been measured and considered to be constant for the later
part of the trajectories. Nevertheless, its value is important for
calculating the earlier part of the trajectories. We see that it is
possible to calculate values by equating the correct newtonian
acceleration given by (8) to the measured acceleration given
by (7b). Solving for the frequency drift we obtain:

d∆ f
dt

=
f
c

G
n∑

i=1

Mi

r2
i

. (14)

Here we have to use an invariant c as used by JPL.
On page 16 of Anderson et al (2002), it is stated that the

measured frequency in Hz is converted to Doppler velocity
by the use of their Eq. (13), namely v = c ∆ f /2 f in our no-
tation. This indicates that the values reported are obtained
using a double Doppler (uplink–downlink) velocity. Hence
our formulation for the frequency shift has to be multiplied
by a factor of 2:

d∆ f
dt

=
2 f
c

G
n∑

i=1

Mi

r2
i

. (15)

With (15) in (13) we get:

~a
′

P = 2
[
1 +

vET

c
cos λ cos(ωT t + φT ) +

+
vER

c
cos λ cos(ωR t + φR)

]
+

+ G
n∑

i=1

Mi

r2
i


√
ρ√
ρ′f ar

− 1

 .
(16)

Eq. (16) predicts both the constant term of the Pioneer
anomalous acceleration towards the Sun and the smaller har-
monic Doppler residuals in units of acceleration (m/s2). It
predicts different values for Pioneer 10 and 11 with the differ-
ences notably contained in the gravitational acceleration act-
ing on the spacecraft (particularly during planetary encoun-
ters in the early phase of the missions). This difference is
also due to the distances contained in the ρ

′

f ar factor, and the
different phase angles φT for the two spacecrafts.

Since they are going in different directions in the ecliptic
plane, the difference ∆φ = φT Pio10 - φT Pio11 should be equal
to the difference of their Right Ascensions. This is a variable
quantity during the early phase of the mission. However, at
the present time, it is nearly constant and equal to (Pioneer 10:
05h 16m 17s) – (Pioneer 11: 18h 53m 32s) = 204.3 degrees.

The much higher translational velocity vET of Earth with
an annual period dominates over the smaller diurnal varia-
tions of ~a′P . However the annual variations are slow and the
Earth–Pioneer component of vET is very small during con-
junction and opposition.

Figure 4 from Anderson et al (2002) [3] clearly shows
the harmonic Doppler residuals after subtracting the constant
term. These figures are made up of very many different mea-
surements without any established periodicity. Measurements
were made when the probe was in the sky of one of the DSN
station antennas at arbitrary times of the rotational and trans-
lational positions of Earth, which means for (16), different
values of the rotational and translational phase angles φR and
φT .

There are 3 DSN Stations located approximately 120 de-
grees apart (Madrid, Spain, Goldstone, California and Cam-
berra, Australia). This means that measurements from each
station differ in phase angle φR by about 120 degrees so that
in general, it is not expected that Doppler residuals exhibit an
oscillatory continuity for any length of time. Nevertheless, as
mentioned and reviewed in Section 2 above, previous work-
ers have made detailed analyses of these harmonic Doppler
residuals taking into account the phase differences.

We may also derive the Pioneer annual and diurnal Dop-
pler residuals in units of velocity or alternatively in units of
frequency as has been reported [3, 9, 22].

The Doppler formula is

∆ f =
vP

c
f (17)

with vp the speed of the Pioneer spacecraft, f the transmitting
frequency, ∆ f the frequency change and c the speed of light
considered a constant. In the case of the Pioneer spacecraft,
it is a “Double” Doppler effect as mentioned above, hence:

∆ f = 2
vP

c
f . (18)

If, instead of c, we use c plus the Earth speed following the
results of Gift (2017) [18], then we write

∆ f
′′

= 2
vP

c + vE
f . (19)

NASA expects (18) and gets ∆ f plus or minus a “resid-
ual” which we think is due to not using (19). Hence the resid-
ual must be (18) minus (19):

∆ f
′′

= ∆ f − ∆ f
′

= 2vP f
(

1
c
−

1
c + vE

)
. (20)

Or

∆ f
′′

= 2vP f
(

vE

(c2 + cvE)

)
.

This approximates to

∆ f
′′

≈ 2vP f
(
vE

c2

)
. (21)

This relation gives the maximum values. To calculate the
diurnal Doppler residuals as a function of time, we substitute
(11) in (21):

∆ f
′′

D ≈ 2 f
vP vER

c2 cos λ cos(ωR t + φR) . (22a)
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The equivalent relation for annual residuals is obtained by
substituting (12) in (21)

∆ f
′′

A ≈ 2 f
vPvET

c2 cos λ cos(ωT t + φT ) . (22b)

The result (22) gives the annual and diurnal residuals ∆ f
′′

in units of frequency (Hz). We want to compare with results
in velocity units such as (mm/s) as shown in Fig. 4. To convert
from Hz to m/s Anderson et al (2002) [3, p. 16] uses

∆v
′′

=
∆ f

′′

c
2 f

. (23)

Then substituting (22) in (23) we get for the diurnal Dop-
pler residuals in [m/s]:

∆v
′′

D =
vP vER

c
cos λ cos(ωR t + φR) . (24a)

The equivalent relation for annual residuals is

∆v
′′

D =
vP vET

c
cos λ cos(ωT t + φT ) . (24b)

5 Results

In this section we use the theory developed above to predict
qualitatively and quantitatively the reported Pioneer Anomaly
“constant” and harmonic Doppler residuals.

5.1 Pioneer 10 anomaly at 20 AU

At 20 AU we calculate the anomalous acceleration with (16).
For this “constant” term, we omit the terms dealing with the
harmonic Doppler residuals and consider only the gravita-
tional acceleration and energy density (in ρ

′

f ar ) due to the
Sun and Earth:

~aP = 2G
 MS

r2
S

+
ME

r2
E



√
ρ√
ρ′f ar

− 1

 ~r
|r|
. (25)

This expression predicts:

aP = 7.754 × 10−8 cm/s2 . (26)

This calculated value differs by just 1.2 percent from the
value aP = 7.85 ± 0.02 × 10−8 cm/s2 reported by O. Olsen
(2007) [7] in an independent analysis of the Pioneer 10 data
for Interval I. The value calculated in (26) also coincides,
within the error estimation, with the result quoted by Ander-
son et al (2002) [3, p. 24]: “1-day batch-sequential estima-
tion for the entire data interval of 11.5 years for Pioneer 10
(which) yielded a result aP = (7.77 ± 0.16) × 10−8 cm/s2.” In
this case our calculation differs by just −0.2 percent.

Fig. 11: Anomalous acceleration × 10−8 in units of (cm/s2) as a
function of distance from the Sun. Values of anomalous accelera-
tion reported and reviewed above are plotted with the theoretical line
according to (25) (A Anderson, M Markwardt, O Olsen, T Toth).

5.2 Pioneer anomaly as a function of distance from the
Sun

To present the anomalous acceleration predicted as a function
of distance, we show below results of a simple model with the
influence of the Sun and Earth ignoring the other planets.

The theoretical curve in Fig. 11 shows a variable slope
decreasing with distance. V. Toth (2009) reports in his inde-
pendent analysis, as quoted above, values for aP variation
rates for Pioneer 10 and 11. However, it is not stated for what
distances or dates are these quantities deduced. The value
reported for Pioneer 10 [22, p 20] is daP10/dt = −(0.21 ±
0.04) × 10−6 cm/s2/year. We find that the theoretical curve
in Fig. 11 exhibits that slope exactly, within the uncertainty
shown, at a distance between 42 and 48 AU.

For Pioneer 11, the Toth reported variation rate is
daP11/dt = −(0.34±0.12)×10−8 cm/s2/year. We find that the
theoretical curve in Fig. 11 exhibits that slope exactly, within
the uncertainty shown, at distances between 29 and 38 AU.
Hence, we fully agree with Toth’s comment: “an anomalous
acceleration that is a slowly changing function of time (de-
creasing ) cannot be excluded at present” [our italics].

5.3 Pioneer anomaly during Jupiter flyby

Ulysses, Pioneer 10 and 11 had close encounters with Jupiter
as part of mission exploration objectives and for orbit modi-
fications or energy assistance maneuvers. We show now how
the theory developed here can explain some of the observa-
tions reported during Jupiter flyby by these spacecrafts. The
effects of the gravitational energy density due to the planets
are very short range according to (2) and even for the Sun [4].
Likewise the gravitational acceleration produced by the plan-
ets is relatively short range compared to the large distances
traversed by these spacecrafts. To put the values in perspec-
tive, we show in Fig. 12 the gravitational acceleration of the
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Sun and the planets each centered about their orbital distance
to the Sun.

Fig. 12: Gravitational acceleration of the Sun, Earth and planets cen-
tered about the position of their orbits about the Sun. (Values are
calculated to within 0.2 AU of each planet, and centered at nominal
orbital distance).

Fig. 12, top line, shows that compared to the gravitational
acceleration of the Sun the planet’s acceleration affects only
their immediate vicinity. If we rewrite (16) considering just
the Sun and Jupiter and emphasizing the vectorial character
of ~aP, we get

~aP = 2G


√
ρ√
ρ′f ar

− 1


 MS

r2
S

~r
|rS |

+
MJ

r2
J

~r
|rJ |

 . (27)

Figs. 13 and 14 show the Jupiter flybys of the Pioneer
spacecraft. Judging from the incoming and outgoing trajecto-
ries towards Jupiter in the polar view of the Pioneer 11 flyby,
we deduce that the resulting vectorial gravitational accelera-
tion due to Jupiter and the Sun was mainly in the direction of
the Sun, but with the gravitational attraction of Jupiter in the
opposite direction. Hence the initial two points in the Pioneer
11 anomalous acceleration (see Fig. 2) which, as reported by
Nieto and Anderson (2005) [6], correspond to a time when
the spacecraft was under the gravitational attraction of Jup-
iter and Saturn, are expected to be of a smaller magnitude
and additionally, exhibit a large error due to the measurement
of a fast changing quantity as they cross the gravitational field
of the planets.

In regards to the Pioneer 11 Saturn flyby, we can rewrite
(27) in terms of the planet’s gravitational field:

~aP = 2G


√
ρ√
ρ′f ar

− 1


 MS

r2
S

~r
|rS |

+
MS at

r2
S at

~r
|rS at |

 . (28)

Toth and Turyshev (2007) [20, p. 15] comment about the Pio-
neer 11’s Saturn encounter:

...for Pioneer 11, a small value for the anomaly was
found during the Jupiter–Saturn cruise phase. Right
at the time of the Saturn encounter, however, when
the spacecraft passed into a hyperbolic escape orbit,
there was a rapid increase in the anomaly, whereafter
it settled into the canonical value.

Unfortunately, no numerical values are quoted. However,
in the light of Fig. 15 and (28) this text can be explained:
When the spacecraft was in the incoming Saturn flyby, it went
from an area of gravitational acceleration towards the Sun to
an area of stronger gravitational acceleration towards Saturn.
This has the effect of decreasing aP until closest encounter.

Furthermore, as the spacecraft nears the planet it goes
from the interstellar gravitational energy density (relatively
low) and enters the area of Saturn’s energy density with the
highest value just at nearest encounter. In this area, n′ =
√
ρ /

√
ρ′f ar increases towards a value similar to Earth’s (see

the value of n′ for Saturn in Table I). Hence, the first term
in brackets in (28) decreases rapidly until the nearest point to
Jupiter and then increases rapidly settling in the interstellar n′

value. This is precisely as reported by Toth and Turyshev.

Fig. 13: The Jupiter Flyby of the Pioneer spacecraft, equatorial view
[6, Fig. 2, p. 3].

5.4 Pioneer diurnal and annual Doppler residuals

In (16), the diurnal and annual residuals are essentially con-
tained in the first bracket, namely(

1 +
vER

c
cos λ cos(ωR t + φR) +

vET

c
cos λ cos(ωT t + φT )

)
which multiplies the “constant” term.

The term cos λ is the cosine of the DSN latitude. The lati-
tude of the three stations are Goldstone = 35.4267◦ N, Madrid
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Fig. 14: The Jupiter Flyby of the Pioneer spacecraft. Polar view.
From [6, Fig. 2, p. 3].

Fig. 15: Pioneer 11 Saturn flyby on the 1st of September 1979. From
[6, Fig.3̇, p. 6].

= 40.4314◦ N, and Canberra = 35.4013◦ S. We take the aver-
age 37.0864 so that the term cos λ = 0.79772. If we substi-
tute the Earth’s equatorial rotational velocity vER = 465.1 m/s
[30] and Earth’s translational velocity vET = 2.978 ×104 m/s
and multiply by cos λ, we get the following expression:(

1 + 1.22402 × 10−6 cos (ωR t + φR)+

+ 7.92424386 × 10−5 cos (ωT t + φT )
)
.

(29)

The “cos” term on the left describes the diurnal Doppler
residuals with ωR = 7.292 × 10−5 rad/s, the Earth’s sidereal
angular rotation, and the “cos” term on the right describes the
annual Doppler residuals with ωT = 2.020 x 10−7 rad/s, the
Earth’s sidereal angular rotation around the Sun. The sum of
the three terms in (29) is very nearly equal to unity. For exam-
ple, for the maximum amplitude of both oscillatory terms we
get (29) to be: 1.00008046. On the other hand at opposition
(Sun, Earth and Pioneer in that order) the third translational
term is null and the maximum oscillatory term is due to Earth
rotation and equal to 1.000001224.

The actual amplitude of the oscillations is obtained by
multiplying (29) by the “constant” term in (16). As we have
shown above, this is a variable value that depends on the dis-
tance to the Sun and also to the planets during encounters or
flyby maneuvers. Hence to compare accurately with reported
values, it is required to know at what distance or on what date
were the measurements made.

5.4.1 Annual residuals

To compare with the Pioneer 10 sine wave reported, Fig. 4, we
consider that for Pioneer 10 the data spans a distance from
approximately 25 to 45 AU (as reported in Fig. 3). The re-
sult of multiplying the maximum amplitude of the oscillatory
terms due to Earth’s translation velocity, 1.00007924, by the
calculated anomaly in this distance range, results in 5.1 to
1.6× 10−8 cm/s2. These values compare favorably to the am-
plitude of the annual oscillatory term reported by Anderson
et al (2002) [3, p. 40] of “about 1.6 × 10−8 cm/s2”. However,
they are larger than the estimate given by the same authors
on [3, p. 14]: “the best estimate of the amplitude of the Pio-
neer 10 sine wave is (0.525± 0.155)× 10−8 cm/s2 and that of
the Pioneer 11 wave is (0.498 ± 0.176) × 10−8 cm/s2. These
values have a systematic error of σat = 0.32 × 10−8 cm/s2”
as reported for the entire Pioneer data span by Turyshev and
Toth (2009) [24, p. 86].

The reported angular velocity of the annual Doppler resid-
uals is approximately 2 × 10−7 rad/s. This value coincides
with the Earth’s sidereal translational rotation velocity which
is 2.0200 × 10−7 rad/s as proposed in this work.

Figs. 5 and 6 show clearly the measured annual residuals.
We wish to compare the results of the theory above to the
undulating information contained in Fig. 5. To that end, we
write the last term in (29) that deals with the annual Doppler
residuals as a function of time for Pioneer 10 as:

(1 + 7.92424 × 10−5 cos (2.020 × 10−7 t + φR)) (30)

where ωT = 2.020× 10−7 rad/s is the Earth’s angular rotation
around the Sun.

Eq. (30) has to be multiplied by the calculated anomalous
acceleration aP. This value changes with distance as shown
in Fig. 11. From 42 to 63 AU, the predicted anomaly calcu-
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lated with (25) ranges from (1.84 to 0.837) ×10−8 cm/s2 re-
spectively. Hence we chose to select the middle of the three
distance intervals as shown in Table IV (distance values de-
rived using data in Fig. 3).

Table 4: Predicted aP for the mid-distance of Pioneer 10 intervals.
Values that were chosen to calculate the annual residuals.

Fig. 16 shows the agreement between the calculated an-
nual Doppler residuals and the published results. The ampli-
tude of the predicted oscillations are larger in interval I and
decrease in intervals II and III as is reported by Anderson et
al (2002): “At early times the annual term is largest. During
Interval II, the interval of the large spinrate change anomaly,
coherent oscillation is lost. During Interval III the oscillation
is smaller and begins to die out.” [3, p 40].

Fig. 16: Comparison of reported annual residual undulations with
the predicted Doppler residuals. For uniformity, the original scale
in units of [km/s2] [3, Fig. 17, p. 40], is shown in units of [cm/s2 ×

10−7]. Inlays plots were drawn to approximately the same X–Y scale
as the original data and show the predicted decreased calculated am-
plitudes corresponding to the center of each of the three intervals.

5.4.2 Diurnal residuals

Levi et al (2009), in their spectral analysis of the periodic
terms yields the following measured periods: T1 = 0.9974 ±
0.0004 day, T2 = (1/2)(0.9972±0.0004) day and T3 = 189±
32 days. As T = 0.9972 day = 1.0 sidereal day, these peri-
ods are consistent, within 0.02 percent, with variations of one
sidereal day, half a sidereal day, and half a year.

Fig. 17: Diurnal Doppler residuals calculated with (22).

The diurnal oscillations reported by Levi et al (2009) [9]
between 23 November 1996 to 23 December 1996, reviewed
above in Fig. 7 were at an estimated distance of 66.73 to 66.96
AU from the Sun (determined by the use of Fig. 3). Also, they
were done at opposition, so that the annual rotational term is
almost null and solar coronal influence is minimized.

The diurnal Doppler residuals in frequency units (Hz)
may be calculated with (22a) namely:

∆ f
′′

D ≈ 2 f
vP vER

c2 cos λ cos (ωR t + φR) .

In this relation the speed of Pioneer vP at a distance of 66.8
AU was estimated at 12 500 m/s and with the Earth’s equa-
torial rotation velocity of 465.1 m/s, (22) leads to the oscil-
lations shown in Fig. 17 next to the oscillations reported by
Levi et al [9] in Fig. 18.

Fig. 18: Diurnal Doppler residuals reported by Levi et al [9].

We see that the frequency of diurnal oscillations reported by
Levi et al (2009) [9] coincides with our predicted frequency
ωR = 2π fE , of Earth rotation, to within 0.02 percent.

A further conclusion of Levi et al (2009) [9, p. 10] is:
“The main new result of the paper is that a large part of these
diurnal and seasonal anomalies may be explained by a simple

E. D. Greaves, C. Bracho, S. Gift and A. M. Rodriguez. A Solution to the Pioneer Anomalous Annual and Diurnal Residuals 181



Volume 17 (2021) PROGRESS IN PHYSICS Issue 2 (October)

geometrical model where the light line on the tracking path
is modified in a manner depending on the azimuthal angle φ
between the Sun-Earth and Sun-probe lines.”

We reflect about this conclusion that the azimuthal angle
φ between the Sun-Earth and Sun-probe lines will show di-
urnal variations superimposed on annual variations which are
wholly compatible with the first bracket of (16) and expres-
sion (29) above. With the use of (24a), namely:

∆ v
′′

D =
vP vER

c
cos λ cos(ωR t + φR) ,

we can calculate the diurnal Doppler residuals in velocity
units as reported by Anderson et al (2002) [3] and shown in
Fig. 4, using the rotational velocity of Earth 465,1 m/s, and
the estimated speed of Pioneer 10 in 1995 of 12 500 m/s. A
comparison of the results is shown in Fig. 19 and Fig. 20.

Fig. 19: Diurnal Doppler residuals in velocity units from [3, Fig. 18,
p. 41].

5.5 On the energy density due to far away stars and
galaxies

In this work, we have used the value of ρ∗ = 1.094291 × 1015

J/m3, the energy density of space due to far away stars and
galaxies, a value calculated by J. Céspedes-Curé [26, p 279],
obtained using starlight deflection measurements during total
sun eclipses. With this value in the equations, in this work,
it has been possible to calculate numerically the anomalous
Pioneer acceleration.

It is possible to work in the inverse order and use the em-
pirically determined values of the anomaly to calculate in an
independent way the value of this physical magnitude. When
this is done, using the accurately reported Pioneer Anomaly at
20 AU, the result gives for the energy density of space due to
far away stars and galaxies the value ρ∗ = 1.0838×1015 J/m3.

Fig. 20: Diurnal Doppler residuals in velocity units calculated with
the use of (24a).

This value differs by less than 1 percent from the value de-
termined by J. Céspedes-Curé on the basis of a completely
different phenomenon, the bending of light rays during solar
eclipses.

We would like to briefly review the procedure that was
published to make this determination. For details please con-
sult [4]. The calculation uses the following formulas: Eq. (19)
in [4]:

n′ = 1 −
ED c

2 fe G
(

MS

r2
S

+ ME

r2
E

) , (31)

and Eq. (8) in [4]:

ρ∗ =
ρSfar + ρEfar − n′2

(
ρS 1AU + ρE

)
n′2 − 1

(32)

where (numerical values in SI units)

• n′ = index of refraction of space at 20 AU (comes out
to 0.999973567943846).

• ρ∗ = energy density of space due to far away stars and
galaxies.

• ED = a steady frequency drift of 5.99 × 10−9 Hz/s from
the Pioneer 10 spacecraft [3, p. 20].

• fe = 2 295 MHz, the frequency used in the transmission
to the pioneer spacecraft [3, p. 15].

• c = 299792458.0 m/s. Speed of light on Earth at the
surface.

• G = 6.67300 × 10−11 m3 kg−1 s−2, Newton’s universal
constant of gravitation.

• MS = 1.98892 × 1030 kg, mass of the Sun.

• ME = 5.976 × 1024 kg, mass of the Earth.

• The distances rS and rE are the distances from the spa-
cecraft at 20 AU (20 AU from the Sun, 19 AU from the
Earth) to the center of the Sun and Earth respectively.
To calculate them use was made of:
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• 1 Astronomical Unit (AU) = 149 598 000 000 meters.

To calculate Eq. (8) in [4], use is made of the energy den-
sity given by our Eq. (2), namely

ρ =
GM2

8π r4

where r is the distance from the centre of the Sun or Earth
to the point where the energy density is being calculated as
follows:

• for the Earth surface: rE = 6 378 140 m, radius of the
Earth.

• for the Sun at 1 AU: rS = 149 598 000 000 meters.

• for the Sun at 20 AU: twenty times the previous value
used to calculate ρS f ar.

• for the Earth at 20 AU: radius of the Earth + 19 times
149 598 000 000 meters used to calculate ρE f ar.

Values were calculated with Microsoft Office Excel 2003
which uses 15 significant digits.

6 Discussion

The theoretically calculated Pioneer Anomalous acceleration
shown in Fig. 11 has a decreasing value as a function of dis-
tance contrary to the generally accepted opinion that it is a
“constant” value. However, the numerical evidence supplied
by V. Toth (2009) [22] in his independent analysis, gives con-
firmation that the anomaly is a decreasing function which co-
incides exactly with the theoretical slope for Pioneer 11 at a
distance between 29 and 38 AU and also with the theoretical
slope for Pioneer 10 at a distance from the Sun between 42
and 48 AU.

At a distance from the Sun of 20 AU, the theoretical curve
predicts aP = 7.754×10−8 cm/s2 which differs by just 1.2 per-
cent from the value aP = 7.85 ± 0.02 × 10−8 cm/s2 reported
by O. Olsen (2007) [7] in his independent analysis of the Pio-
neer 10 data for Interval I. Furthermore, the theoretical value
differs by just −0.2 percent from the 1-day batch-sequential
estimation for the entire data interval of 11.5 years for Pioneer
10 reported by Anderson et al (2002) [3, p. 24] .

The theory predicts that the anomalous acceleration has a
vectorial character ~aP in the direction of the resultant gravita-
tional acceleration field at the position of the spacecraft. This
fact allows satisfactory explanation of the reported anomalous
behavior of Ulysses, Pioneer 10 and 11 during Jupiter flyby.
The observations of the peculiar values reported for the first
3 values of Pioneer 11 (see Fig. 11) are adequately explained
with consideration that they correspond to the spacecraft be-
ing affected by the Jupiter gravitational acceleration which at
close distances exceeds the Sun’s gravitational acceleration
(see Fig. 12). The prediction that the anomalous acceleration
is in the direction of the resultant gravitational acceleration
field at the position of the spacecraft gives an answer to this

question, which is posed by several publications on the Pio-
neer Anomaly.

With regard to the harmonic behavior of the Doppler resi-
duals, relaxing the assumption that the value of the speed of
light c in the Doppler formula is invariant and adopting the
galilean addition of the Earth rotational and translational ve-
locity to the speed of light, results in an almost exact agree-
ment with the measured frequencies for the annual (within 1
percent) and diurnal (within 0.02 percent) residuals as shown
in Sections 5.4.1 and 5.4.2 above. However, the values for the
magnitudes of the oscillations do not all agree as well.

In the case of the annual residuals, we do a visual com-
parison in Fig. 16 which agrees quite well. Particularly if
we take into account that the reported values have signifi-
cant errors: A systematic error of σat = 0.32 × 10−8 cm/s2

(σat = 3.2× 10−7 cm/s2 in the scale of Fig. 16) is reported for
the entire Pioneer data span by Turyshev and Toth (2009) [24,
p. 86]. Considering the scatter of the measured values, the
predicted magnitude adequately fits the data in this case.

In the case of the diurnal residuals, expressed in frequency
units (Hz) as shown in Fig. 13, there is a discrepancy in the
amplitude of the order of a factor of about 70 smaller in the
calculated value of the oscillations in comparison with the
amplitude of the oscillations reported by Levi et al [9]. With
the calculated oscillations in velocity units (mm/s) the reverse
is obtained. As shown in Fig. 19 the calculated amplitude is
a factor of about 50 larger than the values in Fig. 4 by Ander-
son et al [3]. In view of these differences it is instructive to
compare the amplitudes of the different reported values which
also show significant differences.

The amplitude of the diurnal residuals in frequency units
(Hz) reported by Levi et al [9, p. 6], shown in Fig. 7 are a
factor of about 250 times greater than the amplitude of diurnal
residuals in frequency units (Hz) reported by Anderson et al
(2002), our Fig. 4 [3, Fig. 18, p. 41]. Both reports are for the
same interval of time (23 November to 23 December 1996).

Regarding the annual residuals there is also a discrepancy
in the amplitudes expressed in acceleration units (cm/s2) re-
ported by Anderson et al in the 2002 paper. The amplitude
of the annual oscillations shown in Fig. 4 are about 10 times
greater than those reported in the same paper in Fig. 12 [3,
p. 26]. In view of the good agreement in the prediction of the
frequencies of the harmonic Doppler residuals, it is not clear
what are the sources of the discrepancies between reported
amplitudes, or the differences between reported and the cal-
culated amplitudes.

7 Conclusions

As summarized in the Discussion above, the theory presented
in this work is capable of explaining qualitatively and quanti-
tatively the phenomena associated with the Pioneer Anomaly,
both, the secular and the harmonic terms that up to now had
no plausible explanation. These precise calculations of the
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Pioneer Anomaly, without any adjustable parameters, pro-
vide additional confirmation of the Céspedes-Curé hypoth-
esis, that c the speed of light depends on the gravitational
energy density of space as defined by (1) namely: c = k /

√
ρ.

The highly accurate calculation of the observed frequencies
of the annual and diurnal Doppler residuals and some of the
amplitudes of the annual oscillations supply additional evi-
dence that the speed of Earth adds to c, the speed of light,
according to the galilean addition of velocity, thereby con-
firming this conclusion put forth by the analysis of S. Gift
using the Global Positioning System [16–18].

The extremely accurate measurements provided by
NASA as empirical data and the theoretical explanation,
agreeing within 1 percent, presented in this work for the Cés-
pedes-Curé hypothesis, have profound consequences in the
current cosmology theories. The dependence of the speed of
light on the gravitational energy density of space implies a re-
vision of all astronomical measurements of velocity based on
the Doppler, blue and red shifts, of stars and galaxies. These
have importance in the determination of matters such as the
Hubble constant, the expansion of the universe, the flat ro-
tation curve of galaxies (which gave birth to the theory of
dark matter) and the extreme values of the redshifts of very
far away galaxies (so called inflation) which gave birth to the
theory of dark energy.
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Transmission and decay of unbound diprotons have been investigated in accordance
with the Gamow theory for the quantum tunneling and radioactive decays. It is shown
that a diproton, once formed, will be quickly decayed with two typical decay modes: (1)
the proton decay, which causes the diproton to be separated into two separate protons
and (2) the β+ decay, which causes the diproton to be changed and fused into a deuteron
after emitting a positron and a neutrino. For both of the decay modes, the transmission
probabilities rapidly increase with the energy of the emitted particle. The β+ decay
from a diproton is much rarer (< 10−4 times less) in general than the proton decay.
The lifetimes for both of the two decay modes slowly decrease with the energy of the
emitted particle and are extremely short to about 10−21 s. In addition, we have also
modeled the diproton decay of a typical proton-rich radioactive heavy nucleus such as
15Ne and obtained result of lifetimes consistent with measurements

1 Introduction

Helium-2 or 2He is an isotope of helium. Its nucleus consists
of only two protons and is usually called a diproton. It is ex-
tremely unstable and believed to be in an unbound state with
a negative binding energy due to the spins of the two protons
to be anti-aligned according to the Pauli Exclusion Princi-
ple [1, 2]. A diproton can be formed in two ways: (1) by
combination of two separate protons or (2) by decay from ra-
dioactive heavy nuclei. Two separate protons, when they col-
lide with enough energy to tunnel through the Coulomb bar-
rier between them, form a diproton, 1H+1H+Energy −→ 2He.
On the other hand, some proton-rich (or neutron-rare) heavy
nuclei have been experimentally found to emit diprotons. For
instances, the radioactive nuclei 15Ne and 11O can decay, re-
spectively, to 13O and 9C after emitting a diproton [3,4]. This
type of event for a diproton to be emitted from a radioactive
nucleus is usually called the diproton decay.

A diproton, once formed via either one of the two ways
as described above, will quickly decay through either one
of the two different modes [5]. It most likely undergoes a
proton decay to change immediately back to two separated
protons, 2He −→ 1H + 1H, with a probability greater than
99.99%. In this case, both of the emitted particle and the
leftover nucleus are protons. The formed diproton can also
very rarely undergo a positron (or β+) decay and get fused to
form a deuteron, 2He −→ 2H + e+ + νe, with a probability
less than 0.01%. In this case, one of the two protons in the
formed diproton decays to a neutron after emitting a positron
and a neutrino. Meanwhile, the neutron immediately fuses
with the other proton to form a deuteron and release nuclear
energy. It can be seen that the β+ decay of diprotons is much
rarer (about ten thousand or more times rarer) than the proton
decay of diprotons. The lifetime of a diproton is extremely
short and believed to be much much less than 10−9 s. Up to
now, scientists have only provided these upper bound values

for both of the rareness of β+ decay and the lifetime of dipro-
tons. The actual rareness of the β+ decay and the lifetime of
diprotons are still uncertain.

The Sun is a giant natural fusion reactor with an emission
power of 3.85 × 1026 W from the nuclear fusion of its core’s
1.2×1056 protons at a rate of about 3.6×1038 protons per sec-
ond to produce helium nuclei or α-particles [6]. A diproton
is an intermediate in the first step of the proton-proton chain
nuclear reaction that is occurring in the cores of stars includ-
ing our Sun. Therefore, the instability of diprotons critically
affects the rate of nuclear fusion reactions in the core of the
Sun. From classical physics, no proton should be able to over-
come the 820 keV Coulomb barrier between protons to form
a diproton and then get fused in the Sun’s core, where the
temperature is about 1.5 keV. According to Gamow’s theory
or model for the quantum tunneling probability [7], however,
one part per million of the core’s protons can penetrate or
tunnel through the Coulomb barrier to form diprotons. Con-
sidering the high ion-collision frequency (over about 20 ter-
ahertz), one can find approximately 1063 sufficient collisions
for diprotons to be formed in one second in the core of the
Sun. Even though as mentioned above less than 0.01% of
diprotons are fused to deuterons via the β+ decay, the fusion
reaction rate in the core of the Sun is still around 1021 times
higher in magnitude than the actually observed fusion reac-
tion (or power emission) rate. This extremely high fusion rate
would lead the Sun to have an intensive explosion, if there
does not exist any other fusion inhibitors.

Recently, the author proposed that the plasma waves, glo-
bally destabilized in the core of the Sun, can significantly re-
duce the nuclear fusion reaction rate to the observed power
emission rate or luminosity and thus effectively prevent the
Sun from an instantaneous explosion [8]. Through signifi-
cantly reducing the electric permittivity of the core plasma,
plasma waves can extremely raise the Coulomb barrier and
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shift the Gamow peak to a higher energy of particles to ex-
tremely inhibit the fusion reaction. It has been shown that, if
the frequency of plasma waves that are globally generated in
the core plasma of turbulences is about 1.28 times the plasma
frequency, the Sun can have the actual fusion rate or shine
on at the currently observed luminosity. This implies that,
in addition to the quantum tunneling effect and rareness of
β+ decay, plasma waves are also playing the essential role in
solar nuclear fusion and power emission.

In this paper, we study the transmission and lifetime for
the proton and β+ decays of unbound diprotons according to
the Gamow theory for the quantum tunneling. We obtain that
the transmission probability and lifetime of unbound dipro-
tons depend on the energy of the emitted or decayed parti-
cles. When the energy of emitted protons is about 800 keV or
higher, more than 99.99% of diprotons will decay into sepa-
rate protons. When the energy of emitted positrons is about
10 eV or lower, less than 0.01% of diprotons will decay and
fuse to deuterons. The lifetimes of a diproton via both of the
two decay modes decrease with the energy of emitted parti-
cles and are about 10−21 s or shorter. The speeds of a proton
with hundreds of keV and an electrons with several eV are
typically valued at about 106 m/s.

2 Gamow theory for transmission and decay of
diprotons

In 1928, George Gamow proposed a theory for α-decay of
radioactive heavy nuclei [7]. Since the α particle, i.e. the
helium nucleus, is a positively charged particle (with charge
Z1e, where Z1 = 2 for the α particle), it will be electrically re-
pelled by and further escape from the leftover nucleus (with
charge Z2e). Here Z1 and Z2 are the atomic numbers of the
nuclear elements or the proton number in the nucleus of the
emitted particle and the leftover nucleus, ε0 = 8.85 × 10−12

C2/(J m) is the permittivity of free space, and e = 1.6 × 10−19

C is the charge of the proton. Gamow’s theory approximately
modeled the potential energy by a finite potential square well
to represent the attractive nuclear force and joined with a
Coulomb repulsive potential tail [9],

V(r) =

 −V0 for 0 < r < r1
1

4πε0

Z1Z2e2

r for r1 < r < ∞
. (1)

Fig. 1 sketches the potential energy V(r) given by (1) as a
function of radial distance r in all the classical and quantum
regions. The width of the potential square well is noted by
r1, which is determined by the radius of the nucleus or by the
sum of the radii of both the emitted particle and the leftover
nucleus. The depth of the potential square well is noted by
V0, which is much greater than the maximum height of the
Coulomb barrier, Uc. The outer turning point (i.e. r2) can be
determined, in terms of the energy E of the emitted α particle
to be equal to the potential energy at r2, by

r2 =
4πε0E
Z1Z2e2 . (2)

Fig. 1: Gamow’s modeling of the potential energy for an electrically
charged particle to decay or be emitted from a radioactive nucleus. It
consists of the potential energy square well for the attractive nuclear
force and the Coulomb potential energy tail for the repulsive electric
force between the emitted particle and the leftover nucleus of the
decay.

In the central potential V(r), the radial Schrödinger equa-
tion is,

d2u(r)
dr2 =

2µ
~2 [V(r) − E]u(r) +

l(l + 1)
r2 u(r) , (3)

where u(r) is the radial wave function, µ is the reduced mass,
µ = m1m2/(m1 + m2) with m1 the mass of the emitted par-
ticle and m2 the mass of the leftover nucleus. The integer l
is the quantum number for the magnitude of angular momen-
tum and ~ is defined by ~ = h/2π with h = 6.62 × 10−34 J s,
the Planck constant. A two-body system with a central force
or potential can be treated as a system of one body with the
reduced mass.

Applying the WKB approximation and considering the
case of l = 0, one can approximately solve the radial Schrö-
dinger equation and find the radial wave functions to be

u(r) =
C√
|p(r)|

exp
[
±

1
~

∫
|p(r)|dr

]
, (4)

where p(r) is defined by

p(r) =
√

E − V(r) . (5)

Here it should be pointed out that the general solution of
the radial Schrödinger equation should be the combination
of these two.

Then, from the solved wave function, the transmission (or
tunneling) probability is obtained as

T = e−2γ , (6)
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where γ is determined by

γ =
1
~

∫ r2

r1

dr
√

E − V(r)

=

√
2µE
~

[
r2

(
π

2
− arcsin

√
r1

r2

)
−

√
r1(r2 − r1)

]
.

(7)

And the lifetime of the parent nucleus is given by

τ =
2r1

v
e2γ (8)

where v =
√

2E/m1 is the speed of the emitted (or α) particle.
It should be noted that, although being proposed for explain-
ing the α decay of radioactive nuclei, the Gamow model is
applicable in general for the decay or emission of any type
of charged particles from a radioactive nucleus such as the
proton decay from a diproton, β+ decay from a diproton, and
emission of a diproton from a radioactive heavy nucleus (e.g.
diproton decays of 15Ne and 11O), and so on.

For the proton decay mode of a diproton, the emitted par-
ticle is a proton and the leftover nucleus is also a proton.
In this case, we have Z1 = Z2 = 1, m1 = m2 = mp, and
µ = mp/2, where mp = 1.67 × 10−27 kg is the proton mass.
The width of the potential square well or the radius of the
diproton can be chosen as r1 = 1.75 × 10−15 m. With the val-
ues of these parameters and (6)–(8), we can plot, in Fig. 2, the
transmission probability for the proton decay of the diproton
(solid line) and the lifetime of the diproton via the proton de-
cay mode (dashed line) as a function of the energy of the pro-
ton. It is seen that the transmission probability increases with
the energy. Most diprotons undergo this decay mode when
the energy of the emitted particle is greater than about some
hundred keV. In other words, diprotons rarely decay into pro-
tons with energy much below about the Coulomb barrier such
as one hundred keV or less. The lifetime of unbound dipro-
tons via this decay mode is very short and slowly decreases
with the energy of the emitted particle. When the energy of
the emitted particle is greater than about some hundred keV,
the lifetime of diprotons is as short as about 10−21 s.

For the β+ decay mode of a diproton, the emitted particle
is a positron and the leftover nucleus is a deuteron. In this
case, we have Z1 = Z2 = 1, m1 = me, m2 = 2mp, µ = me,
where me = 9.1 × 10−31 kg is the electron mass. The width
of the potential square well or the radius of the diproton can
be chosen again as r1 = 1.75 × 10−15 m. With the values
of these parameters and (6)–(8), we can plot, in Fig. 3, the
transmission probability for the β+ decay of a diproton (solid
line) and the lifetime of diproton via this decay mode (dashed
line) as a function of the energy of the positron. It is seen
that the transmission probability increases with the energy.
Diprotons rarely undergo this decay mode when the energy
of the positron is less than about some hundred eV. The rea-
son for the β+ decay of the diproton to be extremely rare is

Fig. 2: Proton decay and lifetime of an unbound diproton. The solid
line plots the transmission probability of a proton from the unbound
diproton in the potential energy well to tunnel through the Coulomb
barrier as a function of the energy of the proton. The dashed line
plots the lifetime of the diproton.

because the energy of the emitted positron is far below the
820 keV Coulomb barrier. For the transmission probability
to be about 10−21, the energy of the emitted positron must be
less than an eV, which may not be reasonable. Therefore, the
result obtained here supports the existence of other physics
effects such as plasma oscillations or waves that the author
recently proposed to significantly inhibit the nuclear fusion
reaction in the core of the Sun [8]. The lifetime of unbound
diprotons via this β+ decay mode is also very short and slowly
decreases with the energy of the emitted positron. When the
energy of the emitted positron is as high as about some hun-
dred eV, the lifetime of diprotons is also as short as about
10−21 s.

For the diproton decay of radioactive heavy nuclei such
as 15Ne, the emitted particle is a diproton and the leftover nu-
cleus is 13O. In this case, we have Z1 = 2, Z2 = 8, m1 = 2mp,
m2 = 13mp, µ = 1.73 mp, Here we have considered approxi-
mately both proton and neutron having about the same mass.
The width of the potential square well or the radius of 15Ne
nucleus can be chosen as r1 = 4×10−15 m. With the values of
these parameters and (6–8), we can plot, in Fig. 4, the trans-
mission probability for the diproton decay from a radioactive
nucleus 15Ne (solid line) and the lifetime of the nucleus 15Ne
via this diproton decay mode (dashed line) as a function of the
energy of the diproton. It is seen that the transmission prob-
ability increases with the energy. Most 15Ne nuclei undergo
the diproton decay when the energy of the emitted particle
is greater than about some MeV. The lifetime of the radioac-
tive nucleus 15Ne via the diproton decay mode is very short
and slowly decreases with the energy of the emitted diproton.
When the energy of the emitted diproton is as high as about
some MeV, the lifetime of the radioactive nucleus 15Ne is
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Fig. 3: Positron (or β+) decay and lifetime of an unbound diproton.
The solid line plots the transmission probability of a positron from
the unbound diproton in the potential energy well to tunnel through
the Coulomb barrier as a function of the energy of the positron. The
dashed line plots the lifetime of the diproton.

as short as about 10−21 s, consistent with measurements [10].
The diproton decay was also detected from other nuclei such
as 18Ne nucleus [11, 12].

3 Discussions and Conclusions

If diprotons are bound, stars would burn about a billion bil-
lion times brighter in luminosity or faster in nuclear reaction,
resulting in a universe to fail the life support [13, 14]. This
diproton disaster can be overcome by plasma oscillations or
waves, which have been shown recently to be able to be ex-
tremely efficient in inhibiting the nuclear reaction [8], to have
the observed luminosity without need to adjust the stars’ cen-
tral temperature, density, and initial number of deuterons. In
future study, we will study in more detail the transmission
probability of bound diprotons for the fusion reaction.

As a consequence of this study, we have investigated the
transmission and decay of unbound diprotons according to
the Gamow theory. An unbound diproton is extremely unsta-
ble and quickly decays through two types of decay modes
with lifetime to be extremely short down to about 10−21 s
and transmission probability to be significantly energy depen-
dent. A diproton mostly undergoes a proton decay to be two
separate protons with a transmission probability higher than
99.99%, and rarely undergoes a β+ decay to form a deuteron
with a transmission probability lower than 0.01%. In the rea-
sonable energy range, the β+ decay of diproton is not rare
enough for the Sun to have the observed reaction rate, which
supports the author’s recently proposed other inhibition effect
such as plasma oscillation in solar nuclear fusion. The result
obtained for the diproton decay from a radioactive nucleus
can also be consistent with measurements.

Fig. 4: Diproton decay and lifetime of 15Ne nucleus. The solid line
plots the transmission probability of a diproton from the radioac-
tive 15Ne nucleus in the potential energy well to tunnel through the
Coulomb barrier as a function of the energy of the diproton. The
dashed line plots the lifetime of 15Ne nucleus.
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The paper introduces entropy analysis of bioelectrical activity based on harmonic signal
distortion. Over a period of one year, the ultradian dynamics of the electrical activity of
higher plants and the response on low frequency electromagnetic fields and modulated
light were recorded. Biological active frequencies increasing or decreasing the entropy
of bioelectrical activity were identified.

Introduction

Bioelectricity are electric potentials and currents produced
by or occurring within living organisms. The experiments
of Luigi Galvani and Alessandro Volta in the 18th century
proved the connection between electricity and muscle con-
traction in frogs and other animals. Today, electrical effects
originating in active cells of the heart and the brain are com-
monly monitored and analyzed for diagnostic purposes.

In 1873, John Burdon-Sanderson [1] discovered bioelec-
trical activity in the leaf of the Venus flytrap due to stimu-
lation. Recent studies evidence that intracellular electrical
signals serve for information transmission in plant cells [2].
Electrical signals have been shown to accompany many pro-
cesses in plant life, including respiration [3], water uptake
and transport [4], leaf movement [5] and stress response [6].
Electrical signals also play an important role in physiologi-
cal activities e.g. gas exchange, pollination, fertilization and
gene expression [7].

Plant tissue is a good conductor of electricity, so that elec-
trical resistivity is used for quantification of root structures
and functioning. Studies of the spatiotemporal characteristics
of the electrical network activity of the root apex evidence the
existence of excitable traveling waves in plants [8], similar to
those observed in non-nerve electrogenic tissues of animals.
Electrical activity is mostly observed in the transition zone of
the root apex, and points to a possible physiological role of
synchronized electrical activity in this region.

Stefano Mancuso [9] has found rising evidence that the
root apex is the key to the intelligence of higher plants. He
argues that plants use the root system as a complex network
instead of a single powerful brain. The plant-neurobiological
paradigm of Mancuso assumes that plants have electrical ac-
tivity similar to neurological ones. Recent research evidences
that plants are endowed with feeling [10], complex social re-
lations and can communicate with themselves and with ani-
mals, show behaviors similar to sleeping and playing.

Obviously, not only higher plants show intelligent behav-
ior, but also unicellular organisms. For example, the plasmod-
ium of the slime mould physarum polycephalum has the abil-

ity to find the minimum-length solution between two points
in a labyrinth – a kind of tasks we used to think only ani-
mals could perform. Physarum polycephalum shows cogni-
tion without a brain, but also without neurons at all [11].

It is well known that the boundary frequencies of the elec-
trical activity of the human brain are common to other mam-
mals [12]. Furthermore, the frequencies of electrical brain
activity and the natural frequencies of the electromagnetic ac-
tivity of the Earth’s atmosphere [13] are of the same range.
This coincidence suggests that the frequencies of electrical
brain activity could be of more fundamental concern and not
limited to mammalian neurophysiology and, perhaps, higher
plants, being embedded in the electromagnetic environment
of the Earth, operate with the same frequencies of electrical
activity.

Mammals including human have electrical brain activ-
ity [14] of the Theta type in the frequency range between 3
and 7 Hz, of Alpha type between 8 and 13 Hz and Beta type
between 14 and 37 Hz. Below 3 Hz the brain activity is of
the Delta type, and above 37 Hz the brain activity changes
to Gamma. It is the physical separation of different states of
brain activity that is essential for its stability. The violation of
this separation can cause neurological disorders. In the case
of human neurophysiology, Theta-Alpha or Alpha-Beta vio-
lation can cause speech and comprehension difficulties [15],
depression and anxiety disorders [16].

Hence, the stability of the frequency boundaries separat-
ing Theta activity from Delta, and Beta activity from Alpha
and Gamma is essential for neurophysiological health. The
frequencies 3.0 Hz, 8.2 Hz, 13.5 Hz and 36.7 Hz define the
boundaries. What is so special about these frequencies?

In [17] we have shown that the ratios of the boundary fre-
quencies of the brain waves approximate Euler’s number and
its square root. Being attractors of transcendental numbers,
they allow avoiding any resonance between the brain wave
boundaries and thus stabilize the central nervous system. In-
deed, the natural logarithms of the ratios of the boundary fre-
quencies are close to integer and half values:

ln
(

8.2
3.0

)
= 1.00 ln

(
13.5
8.2

)
= 0.50 ln

(
36.7
13.5

)
= 1.00
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Furthermore, in [18] we have shown that these boundary fre-
quencies approximate integer powers of Euler’s number rela-
tive to the natural frequencies of the proton and the electron:

ln
(

8.2 Hz
ωe

)
= −46 ln

(
13.5 Hz
ωp

)
= −53

where ωe = 7.76344 ·1020 Hz and ωp = 1.42549 ·1024 Hz are
the angular frequencies of the electron and the proton:

ωp =
Ep

~
ωe =

Ee

~

where Ep = 938.272 MeV and Ee = 0.511 MeV are the rest
energies of the proton and the electron [19], and ~ is the re-
duced Planck constant.

The fact that the brain wave boundary frequencies fit with
integer powers of Euler’s number relative to the natural fre-
quencies of the proton and the electron indicates that quantum
physical stability of the frequency boundaries is essential for
brain activity.

Similar frequencies we find also in the Earth’s electro-
magnetic spectrum, for example the Schumann resonances.
Solar X-ray bursts can cause their variations [20]. In this
case, the fundamental 7.8 Hz increases up to 8.2 Hz reaching
exactly the stable Theta-Alpha boundary. The second Schu-
mann mode 13.5 Hz coincides precisely with the Alpha-Beta
boundary. It is remarkable that solar activity affects this mode
much less or does not affect it at all because of its Euler sta-
bility. The third Schumann mode currently has a frequency
of 20.3 Hz and must increase to 22.2 Hz in order to reach the
next island of electron stability. By the way, such an increase
is observed recently.

The coincidence of the boundary frequencies of brain ac-
tivity with Schumann resonances demonstrates how precisely
the electrical activity of biological systems is embedded in
the electromagnetic activity of the Earth. Important to know
that Euler’s number and its roots make possible this embed-
ding, because they are attractors of transcendental numbers
and form islands of stability. They allow for exchanging in-
formation between systems of very different scales – the bio-
physical and the geophysical. Considering the universality
of this embedding, it is very likely that it includes also the
bioelectrical activity of plants.

In 1892, Otto Haake [21] showed that light can trigger
the bioelectrical activity of plants. Changes in the light con-
ditions may trigger variation in the potential of the guard cell
membrane. In 1923, Alexander Gurwich discovered the phe-
nomenon of mitogenetic radiation of biophotons – ultraweak
biophysical photon emissions – detected in the UV-range of
the spectrum [22]. He observed that these emissions can ac-
celerate cell proliferation. In 1979, Vlail Kaznacheev [23]
demonstrated experimentally that IR-A and UV-A biopho-
tons are carriers of intercellular communication. In 1994,
Fritz Popp [24, 25] discovered the regulatory significance of

coherent biophotonic emissions and of non-random lognor-
mal distributions of physiological parameters. Therefore, we
recorded not only the ultradian dynamics of the electrical ac-
tivity of the plants, but also their bioelectrical response on
modulated red and infrared light.

Due to the potential use of bioelectrical phenomena for in-
dicating the physiological condition of plants in agricultural
fields, there have been several attempts to analyze these sig-
nals and extract their features using statistical and signal pro-
cessing methods [26].

In his book ‘What is Life?’, Erwin Schrödinger stated that
life feeds on negative entropy, or negentropy [27]. Biosys-
tems are indeed fare from thermodynamic equilibrium, and
the second law of classic thermodynamics does not apply to
them. Within the thermodynamics of open systems developed
by Ilya Prigogine [28], entropy can only be exchanged and,
like energy, can neither be generated nor eliminated. From
this point of view, Schrödinger’s negentropy is a local de-
crease of entropy that appears as a consequence of entropy
exchange of the biosystem with the environment. The ability
of lower the own entropy through entropy exchange with the
environment seems to be a universal criterion of vitality.

Therefore, for bioelectric signal processing, we applied
entropy analysis based on harmonic signal distortion. Over a
period of one year, we recorded the ultradian dynamics of the
electrical activity in leafs of Orchidaceae phalaenopsis, Aloe
vera, Ocimum basilicum and Panax ginseng, including the
response on low frequency electromagnetic fields and modu-
lated light.

Methods

Approaches to the study of electrical activities in plants in-
clude intracellular and extracellular measurements. The latter
can detect the electrical signals produced by the tissue, and is
applicable to the monitoring of an individual plant. The bio-
electric resting potential across a cell membrane is typically
about 50 millivolts. As electrical signals in plants are weak,
they usually must be amplified and the recording device must
have a high input impedance [29]. Therefore, for recording
the bioelectrical signals in plant tissues we used a digital os-
cilloscope and attached the measuring electrode to a leaf.

For the purpose of shielding against uncontrolled external
electromagnetic sources during the measurement, we placed
the plant or the leaf in a container made of 1/16 aluminum
sheet, similar to the described in [30] polyhedrons. Inside the
container we placed also a coil generating a low frequency
electromagnetic field. Figure 1 illustrates the experimental
setup. Modulated red LED-light we applied as well. For
light and field modulation, we chose the brain activity bound-
ary frequencies and further frequencies of electron and proton
stability in the range from 3 Hz to 15 kHz.

In [31] we have shown that destabilizing parametric reso-
nance in oscillating systems of any complexity can be avoided
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Fig. 1: The experimental setup: The plant or the leaf (1) was placed
on a wooden platform (2) in a polyhedral container made of 1/16
aluminum sheet. Inside the container we placed also a coil (3) ali-
mented by a frequency generator device (4). The bioelectrical sig-
nals were recorded by a digital oscilloscope (5).

if all frequency ratios correspond to integer powers of Euler’s
number. Essential for lasting stability in real systems is the
prevention of proton and electron resonance. Therefore, also
biosystems prefer frequencies corresponding to the electron
or proton natural frequency divided by integer powers of Eu-
ler’s number:

fp =
ωp

en fe =
ωe

em

where fp and fe are frequencies of proton respectively elec-
tron stability. The exponents n,m are integer.

As we already mentioned, the brain wave boundary fre-
quencies are of electron and proton stability. However, it may
be that some frequencies of bioelectrical processes in plants
surpass the range of brain waves. Therefore, we applied also
higher frequencies of electron and proton stability for field
and light modulation (table 1).

n fp = ωp/en m fe = ωe/em

46 15,011 39 8,965

47 5,522 40 3,298

48 2,032 41 1,213

49 747 42 446

50 275 43 164

51 101 44 60

52 37 45 22

53 14 46 8

54 5 47 3

Table 1: Frequencies (rounded) of proton fp and electron fe stability,
which we applied for field and light modulation, and the correspond-
ing integer exponents n,m of Euler’s number.

For the purpose of control, we recorded the bioelectrical ac-
tivity of the same plant or leaf alternately inside and outside
the container. In a dark room, we applied also red and in-
frared light emitted by LEDs having 660 nm and 850 nm peak
wavelengths, which was modulated by the same frequencies
of electron and proton stability (table 1).

The measuring electrode of the oscilloscope picked up the
bioelectrical signal directly from the leaf (fig. 1). The in-
ternal FFT-processor of the oscilloscope automatically stored
the frequencies and amplitudes (voltages) of the harmonics to
built-in memory. Based on the frequencies and amplitudes of
the first 8 – 16 harmonics (depending on the field and light
modulation frequency), the harmonic distortion HD of the
bioelectrical signal was calculated:

HD =

√
(V2

2 + V2
3 + · · · + V2

n )/n

V1

where Vn is the nth harmonic voltage and V1 is the funda-
mental component. For example, a pure symmetrical triangle
wave has HD of 12%, a square wave has 48%, and a sawtooth
signal possesses 80%.

In this way, the distortion of a waveform relative to a pure
sinewave can be measured by splitting the output wave into
its constituent harmonics and noting the amplitude of each
relative to the fundamental. The HD indicates the degree of
order – disorder associated with the frequency spectrum of a
signal. Therefore, we interpret the HD in terms of Shannon’s
information entropy [32].

Shannon’s idea of information is that the value of a com-
municated message depends on the degree to which the con-
tent of the message is surprising. If an event is very probable,
it is no surprise; hence the transmission of such a message
carries very little information. From this point of view, HD is
surprising, because it violates the expected 1/n2 decrease of
the amplitudes of higher harmonics.

In order to process the HD-calculation automatically, we
wrote a software that reads the FFT-datafile directly from the
oscilloscope and stores the calculated HD values on SSD.

Results

We started recording the ultradian dynamics of the HD of bio-
electrical signals in leafs of Orchidaceae phalaenopsis, Aloe
vera, Ocimum basilicum and Panax ginseng in May 2020. To
date we made a total of 1014 measurements of the bioelec-
trical response on low frequency electromagnetic fields and
modulated light of these plants alternately inside and outside
the shielding container (fig. 1).

The HD of the bioelectrical signals we measured varied
between 67 and 88%. Figure 2 shows the ultradian dynamics
of the HD measured on leafs in laboratory outside the con-
tainer under conditions of natural illumination. The ultradian
dynamics of HD measured on a leaf of the Orchidaceae pha-
laenopsis shows the typical increase in HD around noon and
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the decrease at sunset (fig. 2a) under otherwise constant en-
vironmental conditions. Fig. 2b shows clearly the continu-
ous decrease of HD immediately after the weekly watering of
Panax ginseng at 10 am. Even if it rained, but the plant in the
laboratory did not get any water, the HD declined slightly.
The increase of HD after 10 am in fig. 2c coincides with a
powerful thunderstorm. All investigated plants showed simi-
lar reactions of HD on thunderstorm.

exponent frequency, Hz HD Basil, % HD Aloe, %

E46 15,011 83 77

P39 8,965 75 81

E47 5,522 81 76

P40 3,298 74 83

E48 2,032 79 69

P41 1,213 77 80

E49 747 76 71

P42 446 68 74

E50 275 85 81

P43 164 76 84

E51 101 79 67

P44 60 78 83

E52 37 83 81

P45 22 77 82

E53 14 84 75

P46 8 68 82

E54 5 78 69

P47 3 72 81

Table 2: Frequencies applied for field modulation inside the con-
tainer (fig. 1) and the corresponding daily HD minima for Ocimum
basilicum and Aloe vera. In accordance with tab. 1, P-exponents
indicate frequencies of proton stability while E-exponents indicate
frequencies of electron stability.

Fig. 2d illustrates how the HD dynamics of Orchidaceae pha-
laenopsis follows the weather conditions. The decrease in HD
during the first 2 hours coincides with increasing cloudiness
and the minimum HD with 1 hour of rain. As the cloudi-
ness decreases after the rain, the HD will increase until the
plant has been watered. Immediately afterwards the HD falls
to the daily minimum. This reaction of the HD to weather
conditions confirms that Orchidaceae phalaenopsis as well
as Panax ginseng like a humid atmosphere but do not like
intense sunlight. Fig. 2e shows the HD dynamics of Oci-

mum basilicum at the same day. In contrast to Orchidaceae
phalaenopsis, increasing cloudiness provokes a significant in-
crease of the HD in the electrical activity of O. basilicum. As
the cloudiness decreases after the rain, the HD decreases as
well, and the watering causes only a 1% fluctuation of HD.
During and after the sunset the HD continuously increases.
Obviously, Ocimum basilicum and Aloe vera are light-loving
plants and show a significant decrease in HD with moderate
sunlight and an increase in HD with a lack of light. All these
conformities evidence the suitability of HD measurements for
estimating trends in bioelectrical activity of plants.

In addition to these measurements, we studied the ultra-
dian dynamics of HD on the same plants inside the shielding
container (fig. 1), where we installed a coil for generating
weak electromagnetic fields modulated by brain wave bound-
ary frequencies and other frequencies of electron and proton
stability (tab. 1). Inside the container, the plants did show
very simple ultradian dynamics of HD with only one mini-
mum and no usual reaction on weather conditions. Fig. 2f
shows the HD minimum of Ocimum basilicum at noon. The
frequency 453 Hz was applied for field modulation. The sig-
nal was sinus.

It is remarkable that the plants showed stable changes in
the daily HD minimum as a function of the modulation fre-
quency. Table 2 shows the frequencies of proton (P) and elec-
tron (E) stability applied for field modulation inside the con-
tainer and the corresponding daily HD minima for Ocimum
basilicum and Aloe vera. Apparently, O. basilicum prefers
P-frequencies, and A. vera E-frequencies. The application of
modulated light lead to similar results.

Conclusion

In this paper we introduced HD analysis of bioelectric signals
as method of entropy variation measurement that could be ap-
plied as an efficient alternative agronomic tool at the service
of producers for decision support and as tool of food quality
control. Our study evidences that HD analysis of bioelectri-
cal signals is a reliable method for evaluating the vitality of
higher plants.

It is very likely that the HD of a bioelectrical signal is
not just a measure of its entropy, but a way of bioelectrical
intercellular communication. In this case, the relatively high
HD values we measured could turn out to be an indicator of
information density. Perhaps, the relative amplitude of each
harmonic encodes some biologically significant information.
This possibility and the ability of plants to communicate with
other organisms could be the subject of further research.
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Fig. 2: Some examples of the ultradian dynamics of HD (vertical axes in %) measured on leafs in laboratory under conditions of natural
illumination (a - e) and inside the aluminum container (f) in intervals of 2 hours starting at 6 am until 10 pm (horizontal axes). For detailed
description, please read the main text.
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Ocean Currents and Tidal Movements: The Real Causes
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This article lists a pretty simple, radically different from other hypotheses, proved by
measurement data, universal to any place at planet mechanism of causing currents and
tides.

1 Introduction

Currents are classified on the basis of:

1. The causing forces (genetic classifications);
2. Stability;
3. Depth of location in the water column;
4. The nature of movement;
5. Physical and chemical properties.

There are three groups of currents:

• Gradient currents caused by horizontal gradients of hy-
drostatic pressure, arising when the isobaric surfaces
are tilted relative to isopotential (level) surfaces

– Density caused by horizontal density gradient

– Compensatory caused by wind-induced sea level
tilt

– Barogradient caused by uneven atmospheric pres-
sure over the sea surface

– Seiche, resulting from seiche fluctuations in sea
level

– Stock, or wastewater, resulting from the emer-
gence of excess water in any area of the sea (as
a result of the influx of continental waters, pre-
cipitation, melting ice)

• Currents caused by wind

– Drift caused only by the enticing action of the
wind

– Wind induced by both the pulling action of the
wind and the inclination of sea level and changes
in the density of the water caused by the wind

• Tidal currents caused by tides

– Rebound current

All these types of currents do not explain the main per-
manent global current near the equator, directed from East to
West, which, in the absence of continents, would be closed
in round-like dust rings as in the atmosphere of Jupiter. (The
nature of the equatorial countercurrent is not considered here.
You can learn about it in the book Equatorial countercurrents
in the oceans by V. B. Shtokman Leningrad 1948 [2].) .

2 A modern view of the causes of currents and tides

Sometimes the formation of currents is attributed to the Cori-
olis forces, while not taking into account that these forces are
not real but conditional, used to describe different linear ve-
locities of motion for points at different distances from the
center on the radius, when the body rotates. In the case of the
Earth’s rotation, there is no movement of water along the ra-
dius, which can cause the appearance of such forces and such
a constant movement of water around the circle.

Oceanic tides in modern scientific literature are consid-
ered as the rise of water due to the attraction from the Sun
and the Moon, and at the same time they constantly try, us-
ing correction factors and various models, to lead to some
kind of mathematics [1], considering that the Earth is, as it
were, a body with its own vibration frequency. At the same
time, forgetting that any oscillations have a decay time, and
the processes under consideration last for many years. In fact,
without identifying the main causes of the tides, this method
is no better, and even worse, due to its complexity, a simple
statistical table, that is, a method that has long been success-
fully used in the practice of navigation.

And the difference in the forces of gravity on an interval
even of several kilometers (let’s say that this is the depth of
the ocean) at a distance of 380 000 km from the Moon, and
150 000 000 km from the Sun, cannot be so great as to cause
the rise and movement of water. And this despite the fact that
the entire mass of the Earth is nearby, which is much larger
than the Moon.

The emphasis on tidal forces caused by the influence of
the Sun and the Moon during the rotation of the Earth is made,
for example, in the article [3], where a moving “hump” of
the mantle allegedly causes the movement of water (discrete-
wave motion). But it is not taken into account that the hump
moves at a depth, and the main flows of the current do not fall
below 200 meters [2], thus such a mechanism cannot work.

The action of tidal forces directly on the body of the ocean
also cannot cause such a flow, for the reason that these forces
act on masses of water, first from the East, and then in the
same way from the West. Even if, which is not possible, they
will first shift the mass of water in one direction, then they
will return it back by the same amount.

Fig. 1 shows the current map and a conventional draw-
ing [3] showing the similarity of the structures of large-scale
currents of the Pacific, Atlantic and Indian oceans.
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Fig. 1: Current map (1a) and a conventional drawing (1b) [3] showing the similarity of the structures of large-scale currents of the Pacific,
Atlantic and Indian oceans.

3 The real reasons causing currents and tides

But there are currents and quite significant – the speed of
movement is measured from 30 to 150 cm/s [2], which means
there is a force that causes it. Moreover, this force is cen-
turies old, constant direction. There are no external, observ-
able forces. So there are internal ones.

Let’s imagine the Earth as a kind of ball with a rather thin,
relative to the total volume, shell, which can deform from the
movement of the internal mass, if it is attracted to the exter-
nal mass (Sun, Moon). Roughly it can be compared with an
inflated air ball into which water has also been poured. Wa-
ter, due to the force of gravity, will cause deformation of the
shell, and when the ball rotates, this deformation will move
in a circle. This is an analogue of the tide of a solid part of
the Earth. But this is not an ocean tide! The high tide near the

coast on the water will be caused by the ebb from the point
of maximum rise of the mainland to the shores. If, for exam-
ple, you pour water into a plastic plate and press from below,
then the water will overflow to the edges. This fact is clearly
visible when overlaying the graphs of the measured behavior
of gravitational forces, the graph of the water level and the
positions of the Sun and Moon at one measurement point.

In Fig. 2 (and also in Fig. 3), the maximum rise of water
at high tides is clearly visible near the shores of the oceans.
Fig. 2 shows measurement data at station “Posiet” of the Pa-
cific coast, where

• On the horizontal axis Universal Time.

• Black is the measured force of gravity in µgal.

• Red is the Sun position.
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Fig. 2: Measurement data. Station ”Posiet” of the Pacific coast.

• Blue is the position of the Moon in degrees above the
horizon (time of sunrise, maximum position, sunset).

• Green is the ocean water level in cm.

The time interval is specially selected when the Sun and the
Moon are close to the sky and at the same time affect the core
of the Earth.

Measurement data of grav: the forces were provided by
the staff of the laboratory of gravimetry of the POI FEB RAS.
Station coordinates:

• ELLIPSOIDAL LATITUDE (DEGREE) 42.583

• ELLIPSOIDAL LONGITUDE (DEG. EAST) 131.158

Ocean level data: measurements taken at Posiet station, cour-
tesy of the staff.

The data of the times of rise, maximum position, set and
angle of ascent of the Sun and Moon were taken from the
StarCalc program with reference to the station location.

It can be seen that a couple of hours before the passage
of the Sun and the Moon to the zenith point, there is an ebb
and flow of water and at the same time a decrease in the force
of gravity, i.e. tide of the solid part of the planet. The ebb
of water is also visible at night, when the tide of the mantle
occurs from the departure of the planet’s core to the opposite
part of the Earth.

The time interval was specially selected when the Sun and
the Moon are close and simultaneously affect the core of the

Earth.
It is this fact that explains not the coincidence of the tides,

but the coincidence of the ebb on the water with the positions
of the Sun and the Moon at the zenith.

The “hump” on the mantle will change its position and
size depending on:

• season (tilt of the axis of rotation);

• remoteness of the Moon and the Sun from the Earth;

• “dephasing”, i.e. different positions between the Moon
and the Sun;

then the tide near the coast will not be constant, but depend
on these factors.

Now about the rise (tide) of the mantle on the opposite
side of the globe. Unfortunately, it is difficult to demonstrate
clearly, as in the first case, but even here everything is quite
simple. The mass of the planet’s core displaced towards the
Sun and Moon will weaken the force of attraction on the op-
posite side of the ball in proportion to the square of the dis-
placement distance. In the above graph, these will be the dips
of the gravitational forces (black) during periods when there
is neither the Sun nor the Moon above the measurement point.
There is no other way to explain such a decrease in the forces
of attraction, since the gravimeter reacts only to the force of
attraction (mass).

In this way, multidirectional forces act on the gravimeter
sensor:
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Fig. 3: Codial lines.

• attraction from the bulk of the Earth – constant force;
• attraction from the sun – variable force;
• attraction from the moon – variable force;
• attraction from the moving mass of the Earth’s core –

variable force, depending on the position of the Sun,
Moon, season.

Based on the fact that there are many variables, mutually
related quantities, calculating the mass of the moving part of
the Earth’s core is difficult (at least for me). When the Earth
rotates, the “hump” will describe cyclic circular trajectories
– this is the only observed movement in one direction, coin-
ciding with the direction of movement of the main oceanic
current [3]. The force of attraction of the mass of the mov-
ing inner core of the planet close to the water will force the
mass of water to move in the same direction, but with a dif-
ferent force depending on the season. This is the reason for
the main ocean current.

Since the bulk of the core moves in the equatorial region,
the waters near the equator are also set in motion. Meeting
the continents on its way, this current diverges to the sides of
the equator and, since the basins of the oceans are practically
closed, the water for the most part moves in a closed loop (see
Fig. 1).

The change in the water level of the seas and oceans is
only a demonstration of the change in the level of the solid
surface of the planet. Water, due to the properties of fluidity,
changes its level depending on the topography of the bottom
and the coast. At the same time, the values of changes in the

solid shell of the Earth depend on its structure and thickness.
Mountain and continental massifs with large deep parts will
naturally be less affected than lower, thinner, underwater ar-
eas. That is why the waters of the lakes practically do not
change their level, since they are located on the body of mas-
sive continents and at the same time the level of the bottom
of the entire reservoir changes slightly. On the plain of the
oceans, amphidermal points (where there are no tides) and
codial lines (lines connecting all points on the map where the
crest of a tidal wave appears simultaneously, that is, points
in which full water occurs simultaneously). If the tide would
arise only from exposure to water, this could not be.

4 Conclusion

In addition to the processes under consideration, the move-
ment of the planet’s core leads to such consequences as the
formation of the Earth’s magnetic field, mountain building,
continental drift, earthquakes, an astronomical shift relative
to the reference time, etc [4].
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The calculation of the electron g-factor was carried out in 1950 by Karplus and Kroll.
Seven years later, Petermann detected and corrected a serious error in the calculation of
a Feynman diagram. Although it’s hard to believe, neither the original calculation nor
the subsequent correction was ever published. Therefore, the entire prestige of QED
and the Standard Model depend on the calculation of a single Feynman diagram (IIc)
that has never been published and cannot be independently verified. In this article, we
begin the search for any published recalculation of this Feynman diagram IIc that allows
us to independently validate the theoretical calculation.

1 The big problem

1.1 Renormalization

The Standard Model of Particle Physics brings together two
different physical theories: Electroweak Theory (EWT) and
Quantum Chromodynamics (QCD). For decades, a “Grand
Unification Theory (GUT)” has been unsuccessfully sought
to integrate both theories into one unified theory.

Both QCD and EWT are mainly mathematical theories.
The aim is to identify a set of gauge symmetries for each the-
ory that allows a concrete mathematical formulation to be ob-
tained. EWT forms a SU(2)×U(1) symmetry gauge group
while QCD forms a SU(3) symmetry gauge group. The the-
ory is considered correct if the theoretical values obtained
with these mathematical formulas coincide with the experi-
mental values obtained with particle colliders.

Both QCD and EWT are based on and completely de-
pendent on the validity of quantum electrodynamics (QED),
developed by Feynman, Schwinger, and Dyson. QED in turn
is a quantum field theory (QFT). QFT emerged in the 1930s
in an attempt to quantify the electromagnetic field itself. But
QFT has a serious problem. All calculations give the same
result: Infinity.

In the 1940s, QED developers managed to solve the in-
finities problem using a technique called “Renormalization”.
Many methods can be used to eliminate these infinities, but
the main ones are:

• Substitution: replacing a divergent series with a spe-
cific finite value that has been arbitrarily chosen (for
example, the energy of an electron).

• Separation: separating an infinite series into two com-
ponents, one that diverges to infinity and another that
converges to a finite value. Eventually, the infinite com-
ponent is ignored and only the finite part remains.

• Cut-off: focusing on an arbitrary term in the evolution
of a series that diverges to infinity and ignoring the rest
of the terms of the series.

As an example of the use of these Renormalization tech-

Fig. 1: Layers of logical dependencies.

niques we can look at the calculation of the Casimir effect [4].
The equation of the Casimir effect depends on the Riemann
function. However, the Riemann function is defined only for
positive values, since for negative values the Riemann func-
tion diverges to infinity.
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In particular the Riemann function of −1, ζ(−1), corre-
sponds to the value of the sum of all positive integers. Apply-
ing a Renormalization technique, the Indian mathematician
Ramanujan came to the conclusion that the sum of all posi-
tive integers is not infinity but −1/12 [3]. And this is precisely
the value that is used in the equation of the Casimir effect.
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Despite being one of the main creators of QED, Feynman
was not very convinced about Renormalization:

The shell game that we play is technically called ‘re-
normalization’. But no matter how clever the word,
it is still what I would call a dippy process! Having
to resort to such hocus-pocus has prevented us from
proving that the theory of quantum electrodynamics is
mathematically self-consistent. It’s surprising that the
theory still hasn’t been proved self-consistent one way
or the other by now; I suspect that renormalization is
not mathematically legitimate. [1]

For his part, Dirac was always clearly against these tech-
niques:

I must say that I am very dissatisfied with the situa-
tion because this so-called ‘good theory’ does involve
neglecting infinities which appear in its equations, ig-
noring them in an arbitrary way. This is just not sensi-
ble mathematics. Sensible mathematics involves dis-
regarding a quantity when it is small – not neglecting
it just because it is infinitely great and you do not want
it! [2]

Today, the scientific community accepts these renormal-
ization techniques as fully legitimate. But if Dirac was right
and renormalization is not a legitimate mathematical tech-
nique, then the Standard Model, EWT, QCD, QED and all
theories based on QFT would be incorrect and worthless.

1.2 QED precision

The entire credibility of the renormalization techniques is ba-
sed on its level of precision of the theoretical value with re-
spect to the experimental value. As an example, the electron
g-factor offers an impressive level of precision of 12 decimal
places:

• Experimental value [12]: 1.001 159 652 180 73 (28),

• Theoretical value [13]: 1.001 159 652 182 032 (720).

In 1970, Brodsky and Drell summarised the situation in
their paper The present status of the Quantum Electrodynam-
ics as follows:

The renormalization constants are infinite so that each
calculation of a physical quantity has an infinity buried
in it. Whether this infinity is a disease of the mathe-
matical techniques of perturbation expansions, orwhe-
ther it is symptomatic of the ills accompanying the ide-
alization of a continuum theory, we don’t know. Per-
haps there is a “fundamental length” at small distances
that regularizes these divergences (...). Quantum elec-
trodynamics has never been more successful in its con-
frontation with experiment than it is now. There is re-
ally no outstanding discrepancy despite our pursuing
the limits of the theory to higher accuracy and smaller
(...) however, and despite its phenomenal success, the
fundamental problems of renormalization in local field
theory and the nature of the exact solutions of quantum
electrodynamics are still to be resolved. [14]

It seems inconceivable that using an incorrect theory, we
can obtain the correct results with an unprecedented level of
precision. And it is extremely unlikely that this finite theo-
retical value coincides with the experimental value by pure
chance. Therefore, the only reasonable explanation is that
renormalization techniques must be mathematically legitima-
te even though we cannot prove it at the moment.

Fig. 2: Layers of logical dependencies.

1.3 Dyson series

Quantum Electrodynamics (QED) is considered the most ac-
curate theory in the history of science. However, this impres-
sive precision is limited to a single experimental value: the
anomalous magnetic moment of the electron (g-factor).

According to Quantum Electrodynamics (QED), the the-
oretical value of the electron g-factor is obtained by calculat-
ing the coefficients of a number series called the Dyson series
[4]. Each coefficient in the series requires the calculation of
an increasing number of Feynman diagrams.
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The first coefficient in the Dyson series is the Schwinger
factor and has an exact value of 0.5. The second coefficient
was initially calculated in 1950 by Karplus and Kroll [5], and
it was corrected in 1957 by Petermann [6], who obtained a
result of -0.328. The rest of the coefficients in the Dyson
series were calculated many decades later with the help of
supercomputers.
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This result of the C2 coefficient (fourth-order coefficient)
of the Dyson series was decisive for the acceptance of the
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renormalization techniques proposed by Feynman, Schwing-
er, and Tomonaga, who received the Nobel Prize in 1965 for
the development of QED. It can therefore be considered the
most relevant theoretical calculation in modern physics.

1.4 Feynman diagram IIc

The error in the calculation of C2 discovered by Petermann
was found in the calculation of the Feynman diagram IIc.

Fig. 3: Feynman diagram IIc.

According to the Karplus and Kroll original calculation,
the value of diagram IIc was -3.178 while in the Petermann
correction the value of diagram IIc was -0.564.
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However, hard to believe, neither the original calculation
carried out in 1950 by Karplus and Kroll nor the subsequent
correction of Petermann were ever published. Therefore, the
entire legitimacy of the Standard Model and QED depends
on the calculation of a single Feynman diagram (IIc) that has
never been published and cannot be independently verified
[11].

2 Searching for the missing calculation

2.1 Barbieri & Remiddi

At this point, we set out on a mission to find the missing cal-
culation of the Feynman diagram IIc. We assume that given
the seriousness of the situation, someone must have recalcu-
lated previously this Feynman diagram and published it years
ago.

After a long search, we believe we found the paper we
were looking for. It is a paper published in 1972 and written
by Remiddi among other authors [8]. Remiddi is one of the
most prestigious researchers in the calculation of the electron
g-factor because in 1996 he published the definitive analytical
value of the C3 coefficient (sixth-order coefficient).

The paper is a long 93-page document entitled Electron
form factors up to fourth order. It was published in 1972 by
Barbieri and Remiddi. According to the authors:

This paper is devoted to the analytic evaluation of the
two form factors of the electromagnetic vertex of the
electron in quantum electrodynamics, up to fourth or-
der of the perturbative expansion (...) [Calculation] of
the fourth-order form factors can also be found in the
literature. They are the famous fourth-order anoma-
lous magnetic moment evaluated by Petermann and
Sommerfield (...). Such values are obviously repro-
duced in this paper. (...) Calculations are done in the
framework of the usual Feynman-graph expansion of
the S-matrix in the interaction representation, using
the Feynman gauge for the photon propagator. The
relevant graphs for second-order and fourth-order ra-
diative corrections are shown (..). The approach is dis-
persive, and the discontinuities of the various Feyn-
man graphs are obtained by means of the Cutkosky
rules. [8]

From this introduction we understand that Barbieri and
Remiddi performed a recalculation of the Feynman diagrams
corresponding to the fourth-order coefficient (C2) and they
confirmed the results obtained by Petermann.

Fig. 4: C2 Feynman diagrams.

The authors identify the Feynman IIc diagram as the “c”
diagram in Fig. 4, divide it into two symmetrical diagrams
and give it the descriptive name of “Corner Graphs”. The
result shown in the paper is identical to that published by Pe-
termann in 1957.

In the 93 pages of the paper, the authors describe sev-
eral of the techniques they have used to renormalize the di-
vergences that appear in the calculations and how they have
overcome the problems they have encountered. On the spe-
cific calculations, the authors state the following:

Once these problems are mastered, a very long and
complicated algebra is also needed to do in practice
the calculation. Fortunately, the major part of it, like
traces, straightforward algebraic manipulations, book-
keeping of analytic formulae, integrations by parts,
differentiations and so on, was done by computer, us-
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ing the program SCHOONSCHIP of VELTMAN,
without whose continuous and determinant help the
present work could hardly have been accomplished.
[8]

That is, they used a computer program to perform the
mathematical calculations, but they did not publish the code
of the programs used, so again, it is not possible to replicate
the calculations.

Considering the date of the paper (1972) it is quite plausi-
ble to assume that there are no more calculations, since it was
considered unnecessary to carry out more checks of the C2
coefficient. Fortunately, in the paper itself, the authors iden-
tify two other independent calculations of the C2 coefficient.
One published in 1960 by Smrz and Uleha and the other pub-
lished in 1962 by Terentiev.

2.2 Smrz & Uleha

We obtained the paper published in 1960 by these two Czech
researchers [9]. It is a short paper of two pages where the
situation generated in 1957 by Petermann’s correction is ex-
plained. The paper indicates that the difference between the
original Feynman IIc diagram calculation of Karplus and
Kroll with respect to the one performed by Petermann is ex-
cessive. The authors state that they performed an independent
calculation of the Feynman IIc diagram and obtained exactly
the same result as Petermann.

Since the considerable difference between the original
value of the magnetic moment (Karplus & Kroll [5])
and the values calculated later (Petermann [6]) orig-
inates in the calculation of the contribution from the
third diagram, only the value of this contribution was
determined by the standard technique and the above
regularization in the infra-red region. The contribution
from the third diagram (-0.564) is in complete agree-
ment with Petermann’s value. [9]

Unfortunately, when searching for the reference of the
work we note that it has not been published either: Smrz P.,
Diploma thesis, Faculty of Tech. and Nucl. Physics, Prague
1960, unpublished.

Just another unpublished paper claiming to have calcu-
lated the Feynman IIc diagram but with no one to review it.

2.3 Terentiev

We obtained a copy of the paper published by Terentiev in
1962. The paper contains about 50 pages [10]. The paper is
only in Russian and there is no English translation. We iden-
tify the equation “60” of the paper as the C2 coefficient of the
Dyson series, with the same expression and value obtained by
Petermann and Sommerfield.
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Analyzing the document, we interpret that this equation
is the result of the sum of nine other equations identified as

equations 22, 24, 27, 31, 33, 47, 51, 58 and 59. There are nine
equations instead of the five Feynman diagrams of Karplus
and Kroll and none of the these equations correspond to the
Feynman Diagram IIc.

However, it is not necessary to carry out a more in-depth
analysis of the paper. On the first page of the Barbieri-Remid-
di paper we can read a reference to Terentiev’s paper:

Actually, dispersion relations are used in the Terentiev
work only to write down suitable multiple integral rep-
resentations, which are in general manipulated to get
the final result, without explicitly evaluating the dis-
continuities. The problem of infra-red divergences has
been further overlooked, and many of the intermediate
results are wrong, even if somewhat ad hoc compen-
sations make the final result correct.

Year Author Status
1950 Karplus & Kroll Wrong and unpublished
1957 Petermann Right but unpublished
1957 Sommerfield Right but using Green Func-

tions instead of Feynman
diagrams

1960 Smrz & Uleha Right but unpublished
1962 Terentiev Wrong intermediate results

with ad hoc compensations
to make the final result cor-
rect

1972 Remiddi Right but unpublished com-
puter calculation

Table 1: Fourth-order coefficient calculations.

3 Summary

Incredible as it may seem to believe, the most important cal-
culation in the history of modern physics was published in
1950 by Karplus and Kroll and turned out to be completely
incorrect. The error was not detected until seven years later
by Petermann and Sommerfield. Neither the original calcula-
tion nor the subsequent correction was ever published. There-
fore, the entire legitimacy of the Standard Model and QED
depends on the calculation of a single Feynman diagram (IIc)
that has never been published and cannot be independently
verified.

In this paper we have detected three other published recal-
culations of the fourth-order coefficient of the g-factor. The
detailed calculations of two of them were also not published
(Barbieri-Remiddi and Smrz-Uleha). In the third calculation
performed by Terentiev, serious errors were detected ten years
after the original publication. Erroneous intermediate results
manipulated with ad hoc compensations to obtain the correct
final result.

Our search has been extensive, so we believe that there
are no other published calculations of the Feynman IIc dia-
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gram. The only line of investigation that remains open would
be to find the source code of the computer programs that are
currently used to carry out this type of calculation.

Submitted on August 27, 2021
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The curse of dimensionality is a well-discussed issue in mathematics. Physicists also
require n-dimensional space but because of the phase space choice, there is no need to
worry about its consequences. This issue connected with dimensionality and related
problems are discussed in this paper.

1 Introduction

We live in a 3-dimensional world and any dimension beyond
this is called hyper-dimension. In the early decades of the
19th century, many articles were published listing works on
“hyper-volume and surface” n-dimensional geometry. Swiss
mathematician Ludwig Schlafli wrote a treatise on the subject
in the early 1850’s [1]. In 1858, a short description of this
was translated into English by Arthur Cayley which gives the
volume formula for an n-ball, commenting that it was deter-
mined long ago. In this paper, there were footnotes citing pa-
pers published in 1839 and 1841 [2] by the mathematician Eu-
gene Catalan regarding descriptive geometry, number theory,
etc. Though the earliest works encountered problems in com-
putations, it was William Kingdon Clifford who published a
solution in 1866 [3]. In the 1897 thesis, Heyl derived formu-
las for both volume and surface area and gives a clear idea
of multidimensional geometry [4]. In 1911, Duncan Som-
merville published a bibliography of non-Euclidean and n-
dimensional geometry [5] giving the details on the works on
hyper-sphere volumes. A book An Introduction to the Ge-
ometry of N Dimensions [6], by Duncan Sommerville, was
published in 1929 which explains the n-ball formula and has
a table of values for dimensions 1 to 7. In this paper, in
the first section, we will give the formula for hyper-volume
whose derivation is available in many statistical mechanics
textbooks [7, 8]. In the other sections, we will discuss the so
called “curse of dimensionality” and its consequences.

2 Hyper-volume

The n-dimensional volume of an Euclidean ball of radius R in
n-dimensional Euclidean space [9] is

Vn(R) =
π

n
2

Γ
(

n
2 + 1

) Rn , (1)

where Γ is Euler’s gamma function. The gamma function ex-
tends the factorial function to non-integer arguments. The
volume of an n-dimensional sphere depends on the radius of
the sphere (if we are considering the momentum space, the
radius will be momentum) and the number of degrees of free-
dom. Now we want to know how the variation in n and R

affects volume. For that, in the next section, we will numer-
ically evaluate the variation of hyper-volume with increasing
n for different radius.

3 The curse of dimensionality

We are all accustomed to live in low dimension spaces, mostly
up to three dimensions. But relativity says we live in four
dimensions [10] where the fourth dimension is time. String
theory uses about ten dimensions [11,12]. Our intuition about
space can be misleading in high dimensions, rather more sur-
prises awaits us there. Consider the case of an n dimensional
sphere, and let us evaluate the volume for different dimen-
sions for radius R = 1 and R = 1.5 which are given in Table
1. Initially an increase in volume is observed but later, vol-
ume decreases dramatically and almost approaches to zero at
higher and higher dimensions. This effect is called the “curse
of dimensionality” [13], often described as a phenomenon
that arises when studying and using high-dimensional spaces.
For R = 1, we can see that after reaching 5.26 the volume
decreases, whereas for R = 1.5, after reaching 177.22, the
volume decreases. These numbers depend on how the ratio
π

n
2 /Γ( n

2 + 1) changes with n. Richard Bellman was the one
who coined the term in 1957 [14,15] when considering prob-
lems in dynamic programming.

In Fig. 1, we plot a graph with n along the x-axis and vol-
ume along the y-axis for (R = 1, 1.05, 1.10, 1.15, 1.20). In
the graph, we can see that the volume first increases with n,
reaches a maximum value for a particular value of n, called
nmax. If we increase n further, the volume decreases. We can
see that nmax shifts towards the right when R increases. All
plots show that the volume of the n-ball vanishes to nothing
as n approaches infinity.

4 What is really happening to the volume for large n?

First, we will check how the dimension will be influenced by
the radius R. Taking the logarithm of the expression for the
n-dimensional volume and applying Stirling’s approximation
in (1), we get

ln Vn(R) '
n
2

ln π + n ln R −
n
2

ln
n
2

+
n
2
. (2)
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Dimension n Vn for R = 1 Vn for R = 1.5
0 1 1
1 2 3
2 3.14 7.06
3 4.19 14.13
4 4.94 24.98
5 5.26 39.97
6 5.17 58.86
7 4.73 80.72
8 4.06 104.02
9 3.30 126.80

10 2.55 147.05
11 1.88 162, 97
12 1.33 173.24
13 0.91 177.22
14 0.59 174.94
15 0.38 167.03

Table 1: Values of hyper-volumes for R = 1 and R = 1.5.

Fig. 1: A graph between n and volume for R = 1, 1.05, 1.10, 1.15,
1.20.

To find when the volume will decrease for different R, we take
the derivative with respect to n of the above equation which
gives

1
Vn(R)

dVn(R)
dn

'
1
2

ln π + ln R −
1
2

ln
n
2
. (3)

In order for the volume to be a maximum, dVn(R)
dn must be zero

for a particular n. Hence we obtain

nmax ' 2πR2 . (4)

This relation of nmax for various R has a parabolic-type de-
pendence which means the radius has no role in the decrease

of volume. Next, we will find out what is happening to the
volume for large n. There are arguments to show that data
confined in the volume will be spreading to an outer shell for
large n [16, 17]. Let us check whether this is true or not. For
a sphere with radius ∆R less than R, the volume will be

Vn(R) =
π

n
2

Γ
(

n
2 + 1

) (R − ∆R)n . (5)

The volume of the shell will be given by subtracting (1)−(5).
We calculated the volumes of n-dimensional spheres and
shells for different n which is given in Table 2. A graph is also
plotted with n along the x-axis and volumes of n-dimensional
sphere and shell along the y-axis as in Fig. 2.

Dimension n Vn(R) Vn(∆R)
4 4.93 1.69
5 5.26 2.15

10 2.55 1.66
15 0.38 0.30
20 0.02 0.02
99 9.47 ×10−40 9.47 ×10−40

100 2.36 ×10−40 2.36 ×10−40

Table 2: Values of volumes of n-dimensional sphere and shell for
different n.

Fig. 2: A graph between n and volumes of n-dimensional sphere and
shell.

Initially the volume of the shell is much less than the vol-
ume of the sphere. As n increases, both volumes decrease and
become equal. We also found the percentage change in vol-
ume of the sphere to shell. The fraction of volume contained
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in the shell with thickness ∆R will be equal to

Fractional volume =

π
n
2

Γ( n
2 +1)Rn − π

n
2

Γ( n
2 +1) (R − ∆R)n

π
n
2

Γ( n
2 +1)Rn

.

On simplification,

Fractional volume = 1 −
(
1 −

∆R
R

)n

. (6)

For R = 1,∆R = 0.1 and R = 2,∆R = 0.1, the fractional
volumes in percentage are given in Table 3. All these show
that the popular concept that the volume content is spread-
ing into the surface area is not correct. Hence the curse of
dimensionality remains unchanged.

Dimension R = 1 R = 2
1 10 5
5 40.95 22.62

10 65.13 40.12
15 79.41 53.67
20 87.84 64.15
299 100 99.99
300 100 99.99

Table 3: Values of percentage of fractional volume for different n.

5 How Physicists overcome the curse using Statistical
Mechanics

Statistical Mechanics (SM) provides the basis for many im-
portant branches of physics, including atomic and molecular
physics, solid state physics, biophysics, astrophysics, envi-
ronmental and socioeconomic physics. In statistical mechan-
ics, we are interested in finding the thermodynamic properties
of a system using n-dimensional space [18, 19]. It involves
number of particles of the order of 1023 which are in continu-
ous movement and hence have a continuous transformation in
their position and momenta. So in order to predict the prop-
erties, we need to have information about all the possible val-
ues of position and momentum. For this, we construct a new
space called a “phase space” which is a fusion of momen-
tum and position spaces which is a six-dimensional space for
N particles. In this space, the bridging equation to find the
properties was given by Boltzmann [20, 21] as

S = k ln Ω (7)

where S is the entropy, k is the Boltzmann constant and Ω is
the number of available states in phase space which is given
by [7, 22]

Ω =
V

n
3 π

n
2

hn Γ
(

n
2 + 1

) Rn, (8)

where V is the spatial volume and h is Planck’s constant. Mo-
mentum volume of 3N-dimension is [7, 22]

Vn = V3N =
π

3N
2 R3N

Γ
(

3N
2 + 1

) =
π

n
2 Rn

Γ
(

n
2 + 1

) . (9)

In SM, we never have V3N alone. We have both spatial vol-
ume V and momentum volume V3N such that the total volume

VTotal = VNV3N . (10)

But SM requires only Ω, the number of micro-states. Substi-
tuting for VTotal, we find the number of micro-states as

Ω =
VTotal

h3N N!
=

VNV3N

h3N N!
=

VNπ
3N
2 R3N

h3N N!Γ
(

3N
2 + 1

) (11)

where N! is used to avoid Gibbs paradox [7]. Simple cal-
culations show that the number of micro-states (Ω) goes to
infinity even for N just above 3 (Ω is of the order of 101000

for N = 100). But because of the bridging equation, we re-
quire only ln Ω and for that we carry out the following steps.
Let us consider non-relativistic classical particles with energy
E = p2/2m. Then we have the radius of the momentum
sphere R = p =

√
2mE and we get

Ω =

(
V
h3

)N
(2πmE)

3N
2

N! Γ
(

3N
2 + 1

) . (12)

Applying Stirling’s approximation and carrying out suitable
simplifications we arrive at

ln Ω ' N ln
V
λ3 − N ln N +

5
2

N (13)

where λ is the de Broglie wavelength. So we plot a graph
between ln Ω and N as in Fig. 3. The first graph shows a
nonlinear variation because our choice of V/λ3 is not realistic.
In practice V/λ3 will be always greater than 1025 and hence
ln Ω will be always proportional to N. This shows that in SM
there is no need to worry about the decrease in volume of the
n-dimensional space and we are not affected by the curse of
dimensionality.

6 Conclusion

In statistical mechanics, in micro-canonical ensembles, we
use the hyper-dimensional space to find the thermodynamic
properties of a system. There are much literature [16, 17, 23,
24] showing that hyper-dimensional volume vanishes at large
dimension or for large N. But this does not affect the prop-
erties of a system, which remains a paradox for physicists.
This paradox is resolved in this paper. In SM, the classical
particles are always in motion and hence to specify them we
require both position and momentum simultaneously, which
results in the phase space. We showed that because of the
choice of the phase space, the curse of hyper-dimension is
not affecting the properties and calculations in SM.
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Fig. 3: A graph between ln Ω and N for different V/λ3.
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Anomalous Magnetic Moment in Discrete Time

Young Joo Noh

E-mail: yjnoh777@gmail.com, Seongnam, Korea

The concept of causal delay in discrete time provides a correction for minimal coupling
in electromagnetic interactions. This correction gives energy scale-dependent changes
to the charge and mass of the elementary particles. As an application example of these
results, this paper attempts to explain the anomaly of the g-factor. In particular, for the
muon, a = 0.001166 is obtained from the approximation of its energy.

1 Introduction

In my last paper [1], I analyzed the effect of causal delay on
the description of a dynamic system from a discrete time per-
spective. As a result, the dynamics system was divided into
two worlds to which fundamentally different dynamical prin-
ciples were applied, namely, type 1 and type 2. In the case of
free particles, type 1 corresponds to ordinary matter that sat-
isfies the existing relativistic quantum mechanics, and type 2
has properties similar to dark matter.

In this paper, I will discuss the interactions of type 1 parti-
cles, especially electromagnetic interactions. To do this, first,
it is necessary to know the meaning of the result of type 1
in the case of free particles. In the case of free particles, the
spinor state of type 1 satisfies the following equation

(xµ + ∆xµ) Ψ (x) − xµΨ (x + ∆x) = ∆xµe−i∆xαPαΨ (x) . (1)

The left side of (1) means the sum of contributions from
x − ∆x and x + ∆x at x if the second term is translated by
−∆x. The right-hand side means that the spinor change is
only in phase, that is, the spinor forms a plane wave. There-
fore, the above equation means that the sum of contributions
from x−∆x and x + ∆x forms a plane wave, that is, harmonic
oscillation.

These facts require a new perspective on the matter field.
In the existing field theory, especially quantum field theory,
the field is based on the ontological basis of the statistical-
mechanical analogy of the gathering of harmonic oscillators.
From this point of view, harmonic oscillation is a property in-
herently immanent in the field. On the other hand, the matter
field implied by (1) does not assume the property of harmonic
oscillation inherent in nature. That is, harmonic oscillations
are simply “formed” by the sum of contributions from the
past and future of ∆td. If we look at harmonic oscillations
from this point of view, it can be said that interactions “de-
form” harmonic oscillations.

In the next section, I will discuss interactions in relativis-
tic quantum mechanics with this new perspective on the mat-
ter field.

2 Modified Dirac equation

First, I will try to find the evolution operator equation for in-
teracting particles corresponding to the evolution operator (1)

for free particles. If the momentum at x and x + ∆x is p and
p+∆p, and the spinor state is Ψ (x, p) and Ψ (x + ∆x, p + ∆p),
respectively, the difference of cause-effect vector is as follows

(xµ + ∆xµ) Ψ (x, p) − xµΨ (x + ∆x, p + ∆p)

= (xµ + ∆xµ) Ψ (x, p)−

−xµ
∞∑

m,n=0

1
m!

(
∆Pα ∂

∂Pα

)m 1
n!

(
∆xα

∂

∂xα

)n

Ψ (x, p)

= (xµ + ∆xµ) Ψ (x, p)−

−e∆P ∂
∂P xµ

1 + ∆xα
∂

∂xα
+

∞∑
n=2

1
n!

(
∆xα

∂

∂xα

)n Ψ (x, p)

=

(
∆xµ − xµ∆x

∂

∂x

)
Ψ −

(
e∆P ∂

∂P − 1
) (

xµ + xµ∆x
∂

∂x

)
Ψ−

−e∆P ∂
∂P xµ

∞∑
n=2

1
n!

(
∆x

∂

∂x

)n

Ψ

=

{
∆xµ − e∆P ∂

∂P

(
xµ + xµ∆x

∂

∂x

)
+ xµ

}
Ψ−

−e∆P ∂
∂P xµ

∞∑
n=2

1
n!

(
∆x

∂

∂x

)n

Ψ

=

{
xµ + ∆xµ − e∆P ∂

∂P (xµ + ∆xµ) − e∆P ∂
∂P

[
xµ,∆x

∂

∂x

]}
Ψ−

−e∆P ∂
∂P

xµ,
∞∑

n=2

1
n!

(
∆x

∂

∂x

)n Ψ

=
{
(xµ + ∆xµ)

(
1 − e∆P ∂

∂P

)
− e∆P ∂

∂P

[
xµ, e∆x ∂

∂x

]}
Ψ (x, p)

=
{
(xµ + ∆xµ)

(
1 − e∆P ∂

∂P

)
+ e∆P ∂

∂P ∆xµe−i∆x·P
}
Ψ (x, p) . (2)

The right-hand side of (2) is the evolution operator of in-
teracting particles. If we apply operator e−∆P ∂

∂P to both sides
of (2) to get a simpler expression, it is as follows

(xµ + ∆xµ) Ψ (x, p − ∆p) − xµΨ (x + ∆x, p)

=
{
∆xµe−i∆x·P + (xµ + ∆xµ)

(
e−∆P ∂

∂P − 1
)}

Ψ (x, p) .
(3)

In (3), the first term on the right side is the evolution op-
erator of a free particle and the second term is the interaction
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term. Since interaction is a local phenomenon, x in the inter-
action term can be set to ∆x. And if

e−∆P ∂
∂P ei∆x·P = e−i∆p·∆xei∆x·P (4)

is used, the final evolution operator O becomes

OΨ (x, p) =
{
e−i∆x·P + 2

(
e−i∆x·∆p − 1

)}
Ψ (x, p) . (5)

A little trick is needed here. Although not in practice, it
is assumed that Ψ is analytic in order to maintain the conven-
tional dynamics view. Then evolution operator O also needs
to be defined as a locally continuous variable. What we need
here is ∆x = x. Therefore, the evolution operator O is equal
to

O = e−ix·P + 2
(
e−ix·∆p − 1

)
. (6)

The evolution operator of free particles satisfies the Dirac
equation. Therefore, the modified Dirac equation that the in-
teraction evolution operator (6) must satisfy can be put as(

iγµ∂µ − m + A
) {

e−ix·P + 2
(
e−ix·∆p − 1

)}
Ψ (x, p) = 0 .

(7)
By finding A in (7), the following modified Dirac equation

can be obtained

DmΨ =
(
iγµ∂µ − f1rγ

µpµ − f2rγ
µ∆pµ

)
Ψ = 0 (8)

where

f1r = Re f1 =
1
3

Re
e−ix·p

e−ix·p + 2
(
e−ix·∆p − 1

)
f2r = Re f2 =

1
3

Re
2e−ix·∆p

e−ix·p + 2
(
e−ix·∆p − 1

) . (9)

In (9), the 1/3 factor is introduced under the condition that
the sum of the coefficients in (8) is 0, that is f1r + f2r = 1. Now
let’s find the Hamiltonian using γµpµ = m. From (8),

HΨ = i∂0Ψ

=
(
−i~α · ~O + f1rβm + f2rβγ

µ∆pµ
)
Ψ

=
{
ᾱ · ~p + f1rβm + f2r

(
∆p0 − ~α · ∆~p

)}
Ψ

=
{
~α ·

(
~p − f2r∆~p

)
+ f1rβm + f2r∆p0

}
Ψ .

(10)

Comparing the meaning of (10) with Hamiltonian H0 =

~α · ~p + βm of free particles, it means that when there is a
change in momentum and energy due to interactions, correc-
tion by − f2r∆~p and − f2r∆E is required, respectively. Accord-
ing to the existing minimal coupling theory, when a charge
q interacts with an electromagnetic field, the momentum and
energy become ~p − q~A and E − qφ. Here, it can be inferred
that the momentum change ∆~p and the energy change ∆E are
−q~A and −qφ. Therefore, the combined momentum and en-
ergy of minimal coupling and causal delay are ~p−q~A + f2rq~A
and E − qφ + f2rqφ. Rewriting, the resulting Hamiltonian is

H − (1 − f2r) qφ = ~α ·
{
~p − (1 − f2r) q~A

}
+ β f1rm . (11)

Comparing (11) with the existing minimal coupling Ha-
miltonian, mass and charge can be newly defined as shown in
(12) below. That is, the causal delay gives a modified mass
and charge concept dependent on the energy scale:

m′ = f1rm

q′ = (1 − f2r) q .
(12)

3 Anomalous magnetic moment

The discovery of the Dirac equation made it possible to un-
derstand the property of spin of elementary particles, and pre-
dicted that the g-factor was 2. But, as a result of the measure-
ment, anomaly exists, which was explained by a completely
different paradigm of quantum field theory. However, accord-
ing to the discussion in the previous section, considering the
change in charge and mass due to the effect of causal delay,
there is a possibility that the anomaly can be explained from
the perspective of modified relativistic quantum mechanics.

When a particle with mass m′ and charge q′ is placed in
an external field Aµ =

(
φ, ~A

)
, the equation for calculating the

magnetic moment is as follows

(H − q′φ)2 =
(
~p − q′ ~A

)2
+ m′2 − q′~Σ · ~B. (13)

where

Σ j =

(
σ j 0
0 σ j

)
.

If q′ = −e′ = − (1 − f2r) e, the nonrelativistic limit of (13)
is obtained as follows

H � m′ +

(
~p + e′ ~A

)2

2m′
− e′φ +

e′

2m′
~Σ · ~B (14)

where

e′

2m′
~Σ · ~B =

e
2m

(1 − f2r)
f1r

2~S · ~B ≡ g
e

2m
~S · ~B . (15)

Then, under the condition of p � ∆p, the g-factor and the
anomalous magnetic moment are as follows

g

2
=

1 − f2r

f1r
= 3 − 2cos (x · p)

a =
g

2
− 1 = 2 − 2cos (x · p) .

(16)

Previously local variable x = ∆x. Then the phase value is

∆x · p = E ∆t − ~p · ∆~x = ∆t
(
E −

~p2

m

)
. (17)

In (17), ∆t is the causal delay time. If ∆t = 0, i.e. contin-
uous time, there is no anomaly. Now let’s define the physical
meaning of ∆t as follows.
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Assumption: For a particle, the causal delay is the time it
takes for light to pass through the particle’s reduced Compton
wavelength

∆t ≡
oc

c
=
~

mc2 . (18)

The Compton wavelength of a particle is a certain “re-
gion” of that particle. Therefore, the time it takes for light
to pass through the region is the difference in time between
cause and effect in the interaction between the particle and
light.

Equation (18) is related to the “Penrose clock” [5]. Ac-
cording to him, any individual stable massive particle plays
a role as a virtually perfect clock. And since E = mc2 = hν,
the frequency becomes ν = m

(
c2/h

)
. This can be said to be

the same as (18). Since ∆t = 1/ν, the frequency becomes
ν/2π = m

(
c2/h

)
. Therefore, it can be said that the causal de-

lay time of massive particles plays the role of a fundamental
clock that exists in nature.∗

By the definition of ∆t, the phase value of (17) can be cal-
culated, and consequently the anomalous magnetic moment
can be determined. An easy way to do this is the anomalous
magnetic moment of the muon. In the case of the muon, at
the so-called “magic momentum” p0 = 3.094 GeV/c, the ef-
fect of the applied electric field for confinement of the muon
is negligible. This means that the potential term in the energy
value of (17) can be neglected. Therefore, the phase value of
(17) is as follows

~p2

m
=

E2 − m2
µ

m
=

m2
µ

(
γ2 − 1

)
mµγ

= β2E

thus E −
~p2

m
=

E
γ2 =

mµ

γ

and ∴ ∆t
(
E −

~p2

m

)
=

1
γ
.

(19)

Therefore, the anomalous magnetic moment of the muon
is

aµ = 2 − 2 cos
1
γ
. (20)

Using (20) to find aµ, γ corresponding to E = 3.094 GeV
is 29.28, so

aµ = 0.001166 . (21)

Meanwhile, the value of aµ recently announced by Fermi-
lab is as follows.

aµ (FNAL) = 0.00116592040 (54) . (22)

The value of (21) is only calculated as an approximation
of the muon energy. Thus, how accurately (20) predicts aµ
depends on the determination of γ, which is possible as an
independent measurement of the cyclotron frequency ωc =

eB/mγ.
∗Except for (18) and this paragraph, the rest use natural units.

4 Conclusions

Type 1 has a different view from the existing ones on the con-
cept of field. It is that the harmonic oscillation of the field is
formed by the sum of contributions from the past and future
by ∆t, not inherent in nature. And the interactions deform
these harmonic oscillations. The result of analyzing the in-
teraction from this point of view shows that it is more than
the description of the interaction of the existing relativistic
quantum mechanics.

The causal delay effect in discrete time corrects the ex-
isting minimal coupling theory, which leads to the result that
the charge and mass of elementary particles change depend-
ing on the energy scale. As an example of such a result, it is
partially shown that the anomalous magnetic moment of the
muon can also be explained from this new perspective.

Received on September 8, 2021
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In this paper, we briefly review half a century of research by various authors in
the axiom-preserving completion of quantum mechanics into hadronic mechanics ac-
cording to the 1935 Einstein-Podolsky-Rosen argument that “quantum mechanics is
not a complete theory” (EPR argument). Said completion is intended to represent
extended-particles in conditions of deep EPR entanglement with ensuing potential as
well as contact non-Hamiltonian interactions represented by the new operator T̂ in the
associativity-preserving products A ? B = AT̂ B of hadronic mechanics. We recall that
muons are unstable and decay spontaneously with a mean live τ = 2.19703×10−6 s, thus
suggesting that they are composite, and therefore extended particles with constituents
capable of triggering their decay. We then assume that the physical constituents of the
muons are the ordinary electrons released in the spontaneous decay with low mode
µ− → e−, e+, e−, resulting in the structure model according to hadronic mechanics
(hm) µ− = (ê−

↓
, ê+
↑
, ê−
↓
)hm where the “hat” characterizes iso-renormalizations due to non-

Hamiltonian interactions. We show that the indicated hadronic structure model achieves
an exact representation of all characteristics of muons, including rest energy, charge ra-
dius, mean life, spin, charge, spontaneous decays and anomalous magnetic moment.

1 Introduction

Recent, very accurate measurements [1] have established the
following difference between the experimental value muon g-
factor gEXP

µ and its prediction via quantum electrodynamics
gQED
µ

gEXP
µ − gQED

µ =

= 2.00233184122 − 2.00233183620

= 0.00000000502 > 0 .

(1)

Additional accurate measurements [2] have shown devia-
tions from quantum mechanical predictions for atoms in con-
densed matter, and measurements [3] have indicated bigger
deviations from the predictions of quantum mechanics for
heavy ion.

The above experiments support:
1) The validity of the historical 1935 argument by A. Ein-

stein, B. Podolsky and N. Rosen that “quantum mechanics is
not a complete theory” (EPR argument) [4];

2) The significance of historical completions of quantum
mechanics, such as the non-linear completion by W. Heisen-
berg [5], the non-local completion by L. de Broglie and D.
Bohm [6], and the completion via hidden variables by D.
Bohm [7];

3) The validity of the recent verifications of the EPR ar-
gument by R. M. Santilli [8, 9] based on the completion of
quantum mechanics (qm) into hadronic mechanics (hm) ac-
cording to the EPR argument for the time-invariant represen-
tation of extended particles/wavepackets under potential as
well as non-linear, non-local and non-potential interactions

(see [10–12] for an outline of the basic methods, [13, 14] for
recent overviews and [15–17] for detailed presentations).

2 Isotopic branch of hadronic mechanics

As it is well known, 20th century applied mathematics is char-
acterized by a universal enveloping associative algebra ξ with
conventional associative product AB = A × B between arbi-
trary quantities A, B, such as numbers, functions, operators,
etc.

Lie algebras L with bracket between Hermitean operators
[A, B] = AB − BA, then follow as the antisymmetric alge-
bra attached to L ≈ ξ−, resulting in a unique characterization
of Heisenberg’s time evolution idA/dt = [A,H] for point-
particles under action-at-a-distance, potential interactions.

The EPR completion of quantum mechanics into hadronic
mechanics has been studied to represent extended particles in
conditions of mutual penetration, as occurring in the nuclear
structure, with expected, additional, contact interactions of
non-linear, non-local and non-potential type, hereon referred
to as non-Hamiltonian interactions.

The axiom-preserving, thus isotopic branch of hadronic
mechanics, known as iso-mechanics, and its underlying math-
ematics, known as iso-mathematics, represent the extended
character of particles and their non-Hamiltonian interactions
via the completion of the enveloping associative algebra ξ
into the universal enveloping iso-associative iso-algebra ξ̂
characterized by the iso-product (first introduced in Eq. (5),
page 71 of [16] and treated in detail in [17])

A ? B = AT̂ B, T̂ > 0 , (2)
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Fig. 1: In this figure, we illustrate the quantum entanglement of par-
ticles with instantaneous mutual actions at a distance, and recall the
argument by A. Einstein, B. Podolsky and N. Rosen on the need for
superluminal communications to represent said entanglement due to
the local character of differentials, potentials and wavefunctions of
the Schrödinger equation of quantum mechanics which solely allows
a point-like characterization of particles [4].

where the quantity T̂ , called the isotopic element, is positive-
definite but possesses otherwise an unrestricted dependence
on all needed local variables (herein tacitly assumed).

The isotopic element has realizations of the type [12]

T̂ = Πα=1,2 Diag

 1
n2

1,α

,
1

n2
2,α

,
1

n2
3,α

,
1

n2
4,α

 e−Γ ,

nµ,α > 0, Γ > 0, µ = 1, 2, 3, 4, α = 1, 2, ...,N ,

(3)

by charaterizing:
1) The dimension and shape of particles via semi-axes

n2
k,α, k = 1, 2, 3 (with n3 parallel to the spin) and the den-

sity n2
4,α, all n-characteristic quantities being normalized to

the value n2
µ,α = 1 for the vacuum.

2) Non-Hamiltonian interactions via the term eΓ, where Γ

is a positive-definite quantity with an unrestricted functional
dependence on the wavefunctions as well as the characteris-
tics of the medium in which the particles are immersed.

Iso-product (2) with realization (3) provides an explicit
and concrete realization of Bohm’s hidden variables [7], by
therefore supporting the view that quantum mechanics does
indeed admit hidden degrees of freedom, provided that quan-
tum axions are realized in a way more general than that of the
Copenhagen school.

It should also be noted that iso-product (2) and realiza-
tions (3) provide a quantitative representation of the comple-
tion of the conventional quantum entanglement of point-like
particles under Hamiltonian interactions, into the covering
Einstein-Podolsky-Rosen entanglement [13] which is appli-
cable to extended particles with non-Hamiltonian interactions
due to the deep overlapping of their wavepackets (see Figs. 1
and 2 and references quoted therein).

Despite its simplicity, iso-product (2) requires, for consis-
tency, a compatible isotopy of the entire 20th century applied
mathematics, with no exception known to the author [10].
In fact, iso-product (2) requires the following completions of

Fig. 2: In this figure, we illustrate the new Einstein-Podolsky-Rosen
entanglement of particles introduced in [13], which is characterized
by contact, therefore instantaneous and non-Hamiltonian interac-
tions originating in the overlapping of the wavepackets of particles
represented via isotopic elements of type (3). As such, the EPR
entanglement prevents the applicability of Bell’s inequality [18],
allows an explicit and concrete realization of Bohm’s hidden vari-
ables [7], and permits a progressive recovering of Einstein’s deter-
minism in the interior of hyperdense particles, with its full recover-
ing at the limit of gravitational collapse [8, 9].

20th century applied mathematics (see Vol. I of [17] for a gen-
eral treatment):

A) The compatible, completion of the basic unit ~ = 1 of
quantum mechanics into the integro-differential iso-unit

Î = 1/T̂ > 0, Î ? A = A ? Î = A , (4)

with ensuing completion of the conventional numeric field
F(n,×, 1) of real R, complex C and quaternionic Q numbers
n into the iso-fields F̂(n̂, ?, Î) of iso-real R̂, iso-complex Ĉ and
iso-quaternionic Q̂ iso-numbers n̂ = nÎ and related isotopic
operations [19] (see [20] for an independent study).

B) The completion of conventional functions f (r) of a lo-
cal variable r into iso-functions that, to have value on an iso-
field, must have the structure [21] (see [22] for an independent
study)

f̂ (r̂) = [ f (rÎ)] Î, (5)

and related iso-differential iso-calculus [21] (see [23] for in-
dependent studies).

C) The completion of conventional spaces S over F into
iso-spaces Ŝ over iso-fields F̂ [21]. In particular, the con-
ventional Minkowski space M(x, η, I) over R with spacetime
coordinates x ∈ R, x4 = ct, metric η = Diag(1, 1, 1,−1) and
unit I = Diag(1, 1, 1, 1), is mapped into the iso-Minkowski
iso-space M̂(x̂, Ω̂, Î) over the iso-real iso-numbers R̂ [24] (see
[25] for an independent study) with iso-coordinates x̂ = xÎ ∈
R̂, iso-metric Ω̂ = (η̂)Î = (T̂η)Î, and iso-interval

(x̂ρ − ŷρ)2̂ = (x̂ρ − ŷρ) ? Ω̂ρν ? (x̂ν − ŷν) =

=

 (x1 − y1)2

n2
1

+
(x2 − y2)2

n2
2

+
(x3 − y3)2

n2
3

−
(tx − ty)2c2

n2
4

 Î ,

(6)
where the exponential term exp{−Γ} is imbedded into the n-
characteristic quantities.
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D) The compatible completion of all branches of Lie’s
theory first studied in [16] (see Vol. II of [17] for a general
treatment and [26] for an independent study). For instance,
an N-dimensional Lie algebra L with Hermitean generators
Xk, k = 1, 2, ...N is completed into the infinite family of Lie-
Santilli iso-algebras L̂ with iso-commutation rules

[Xi ,̂X j] = Xi ? X j − X j ? Xi = Ck
i jXk , (7)

which iso-algebras are called regular or irregular depending
on whether the structure quantities Ck

i j are constant or func-
tions of local variables, respectively.

E) The completion of well-known space-time symmetries
into the iso-symmetries of iso-space-time (6), including the
completion of Lorentz’s symmetry SO(3.1) into the Lorentz-
Santilli iso-symmetry ŜO(3.1) [24] with iso-transformations

x1′ = x1, x2′ = x2,

x3′ = γ̂(x3 − β̂ n3
n4

x4), x4′ = γ̂(x4 − β̂ n4
n3

x3) ,
(8)

where

β̂k =
vk/nk

co/n4
, γ̂k =

1√
1 − β̂2

k

, (9)

which provide the invariance of the local speed of light

C =
c
n4
, (10)

with consequential iso-renormalization of the energy (that is,
renormalization caused by non-Hamiltonian interactions)

E = mc2 → Ē = mC2 =
E
n2

4

. (11)

Additionally, the isotopic representation of the anoma-
lous magnetic moment of the muons requires the completion
of the Lorentz-Poincaré symmetry P(3.1) into the Lorentz-
Poincaré-Santilli iso-symmetry P̂(3.1) [27], and the comple-
tion of the spinorial covering of the Lorentz-Poincaré sym-
metry P(3.1) into the iso-spinorial covering of the Lorentz-
Poincaré-Santilli iso-symmetry P̂(3.1) (in view of the spin
1/2 of the muons) [28] (see [11] for a recent review and [25]
for independent studies).

We should also recall that all aspects of regular iso-mathe-
matics and iso-mechanics can be constructed via the simple
non-unitary transform

UU† = Î , I , (12)

of all conventional mathematical or physical aspects, under
which the unit of quantum mechanics is mapped into the iso-
unit of iso-mechanics

~ = 1→ U1U† = Î , (13)

the conventional associative product AB is mapped into the
iso-product

AB→ U(AB)U† = (UAU†)(UU†)−1(UBU†) = ÂT̂ B̂ , (14)

and the same holds for the construction of all remaining reg-
ular iso-theories.

Finally, we recall that the isotopic element T̂ represents
physical characteristics of particles. Hence, the invariance of
its numeric value is important for the consistency and experi-
mental verification of any iso-theory. Such an invariance does
indeed occur under the infinite class of iso-equivalence of iso-
topic methods which is given by the isotopic reformulation of
non-unitary transforms called iso-unitary iso-transforms

UU† = Î , I, U = ÛT̂ 1/2, Û ? Û† = Û† ? Û = Î , (15)

under which we have the numeric invariance of the iso-unit
[29]

Î → Û ? Î ? Û† = Î′ ≡ Î , (16)

and of the isotopic element

Â ? B̂→ Û ? (Â ? B̂) ? Û† = Â′T̂ ′B̂′, T̂ ′ ≡ T̂ . (17)

3 The structure of muons

As it is well known, the standard model assumes that muons
µ± are elementary particles, under which assumption, the sole
known possibility of representing deviation (1) is the search
for new particles and/or new interactions.

In this paper, we study the view presented on page 849 of
the 1978 paper [30] (see also Section 2.5.5, page 163 of [12]
for a recent update) according to which muons are naturally
unstable, and therefore they are composite, with a structure
suitable to trigger their decay.

Muons were then represented in [12] as a hadronic bound
state of particles produced free in the spontaneous decays
with the lowest mode µ− → e−, e±, e− (tunnel effect of phys-
ical constituents), resulting in the three-body hadronic struc-
ture model with ordinary electrons

µ− = (ê−↓ , ê
+
↑ , ê

−
↓ )hm, (18)

in which the presence of positrons was instrumental for the
representation of the muon spontaneous decays and its mean
life.

Note that the constituents of model (18) are iso-electrons
ê±, rather than ordinary electrons e±, due to their contact,
non-Hamiltonian interactions due to their deep EPR entan-
glement (Fig. 3), which requires their characterization via an
iso-irreducible iso-unitary iso-representation of P̂(3.1) [28].

Note also that, since all constituents have point-like char-
ges, the charge radius of the model is given by the radius of
the orbit of the peripheral iso-electrons.
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Fig. 3: In this figure, we illustrate structure model (18) of muons in
its ground state with L − 0, first derived in the 1978 paper [30] (see
page 849 on and Section 2.5.5, page 163 of the recent update [12])
as a three-body hadronic bound state of ordinary electrons produced
free in the spontaneous decay with the lowest mode. The dashed
lines represent the 1 fm wavepackets of the electrons and their over-
lap represents their deep EPR entanglement. Note the stability of
model (18) due to the singlet couplings of the pairs of constituents,
and the presence of a positron representing the muon spontaneous
decay and its mean life via electron-positron annihilation.

The iso-Schrödinger equation of iso-mechanics,
Eq. (5.2.4) of [30] (see also Eqs. (54), page 165, [12]) allowed
the non-relativistic representation (here omitted for brevity)
of the mass E = 105.658 MeV, charge radius of about R =

d/2 = 10−13 cm, mean life τ = 2.19703×10−6 s, spin S = 1/2,
charge Q = ±e, and parity.

The 1978 paper [30] provided a representation of themag-
netic moment of the muons known at that time, namely, that
equal to the magnetic moment of the central electrons. This is
due to the lack of contribution to the total magnetic moment
from the electron-positron pair in the model which has a null
charge and magnetic moment.

4 Anomalous magnetic moment of the muons

By keeping in mind that electrons have a point-like charge
structure (but they have an extended wavepacket with radius
of about 1 fm), it appears that the EPR entanglement of the
constituents of model (18) (Fig. 3) causes a very small de-
formation (called mutation [30]) of the electrons such as to
produce deviation (1). Its quantitative representation can be
preliminarily achieved via the following isotopic procedure.

The relationship under isotopies between the magnetic
moment and the spin of charged particles has been identified
in Eq. (6.5), page 190 of [28], with ensuing relation for the

g-factors (here reproduced for brevity without its derivation)

ĝEXP
µ =

n4

n3
gQED
µ . (19)

From value (1), we can then write

n4

n3
= 1.00000000502 . (20)

Model (18) for the structure of the muons has been indi-
cated because it is necessary to identify the individual values
of the characteristic quantities n2

k , k = 1, 2, 3, representing
the dimension and shape of the muons, and n2

4, representing
its density, with normalization n2

µ = 1, µ = 1, 2, 3, 4 for con-
ventional electrons and positrons.

Under the assumption of model (18), the total rest en-
ergy of the constituents is Econs = 3Ee = 1.533 MeV, while
the muon rest energy is given by the familiar value Eµ =

105.7 MeV. This implies the excess energy

∆E = 105.7 MeV − 1.533 MeV = 104.167 MeV , (21)

under which the Schrödinger equation no longer admits phys-
ically meaningful solutions [12, 30].

Isotopic methods provide a mathematical representation
of excess energy (21) via iso-renormalization (11) with nu-
meric value of the density

n2
4 =

3Ee

Eµ
=

1.533
105.7

= 0.0149 , (22)

under which the consistency of the Schrödinger equation is
restored at the isotopic level [12].

Excess energy (21) can be physically represented e.g. via
the kinetic energy of the peripheral constituents. It should be
indicated that missing energy (21) also occurs in the synthesis
of the neutron from the hydrogen in the core of stars [31],
as well as, more generally, in the synthesis of hadrons from
lighter particles [12].

The use of normalization

n2
1 + n2

2 + n2
3 = 1 , (23)

then provides the desired first approximation of the charge
distribution and shape of muons

n2
1 = n2

2 ≈ 0.4926, n2
3 ≈ 0.0149 . (24)

The above data confirm the expected very prolate charac-
ter of structure model (18) due to the point-like character of
the constituents.

5 Concluding remarks

In the author’s view, the most important notion emergingfrom
the preceding study is that of the Einstein-Podolsky-Rosen
entanglement representing the instantaneous and continuous
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communications between extended particles due to the over-
lapping of their wavepackets, with ensuing non-Hamiltonian
interactions represented by (2) and (3), whose consistenttreat-
ment required the construction of iso-mathematics and iso-
mechanics [17].

In fact, the EPR entanglement has the following important
implications:

1. It prevents the applicability of Bell’s inequality [18]
due to the presence of non-Hamiltonian interactions
first studied in [8];

2. It provides an explicit and concrete realization of
Bohm’s hidden variables [7] in terms of the isotopic
element first achieved in [9]; and

3. It permits a preliminary, yet numerically exact and time
invariant representation of all characteristics of muons,
including their anomalous magnetic moment [1].

In closing, there seems to be grounds for a new physics,
with expected corresponding advances in chemistry and bi-
ology, via the axiom-preserving completion of the Copen-
hagen simplest possible realization of quantum axioms into
their broadest possible realization suggested by hadronic me-
chanics [13].

Received on September 14, 2021
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LETTERS TO PROGRESS IN PHYSICS

On Eddington’s Temperature of Interstellar Space
and the Cosmic Microwave Background Radiation

Pierre A. Millette
E-mail: pierre.millette@uottawa.ca, Ottawa, Canada

We point out that there were several non-cosmological estimates of the blackbody tem-
perature of interstellar space that predated and that were more accurate than the Cosmic
Microwave Background (CMB) Big Bang estimates. They are disregarded and consid-
ered coincidental as they are not based on the cosmological Big Bang model. We note
the importance of this question, as the energy requirements of the two different expla-
nations (galactic vs cosmological) are substantially different. We also point out that the
actual correct explanation can’t be determined from the measurements done in our local
neighbourhood inside the Milky Way.

The great tragedy of Science – the slaying of a beau-
tiful hypothesis by an ugly fact. Thomas Henry Huxley
(1825–1895)∗.

1 Introduction

Penzias and Wilson [1], while working at Bell Labs, mea-
sured an isotropic Microwave Background Radiation (MBR)
of approximately 3 K, while using a sensitive antenna/recei-
ver system under development. Initially, they thought the ra-
dio noise resulted from their equipment, but eventually they
concluded that the background radiation was real.

Physicist Robert Dicke suggested that the background ra-
diation was the Cosmic Microwave Background (CMB) ra-
diation, believed to result from the Big Bang cosmological
model. This interpretation was published in side-by-side let-
ters by Penzias and Dicke in Astrophysical Journal Letters
[2]. Penzias and Wilson measured an isotropic Microwave
Background Radiation which became the Cosmic Microwave
Background (CMB) radiation in the serendipitous communi-
cation with Dicke, nowadays the only accepted explanation
for the measurement.

However, there were other earlier blackbody† tempera-
ture predictions, that were much closer to the initial measure-
ment of Penzias and Wilson, than those from the Big Bang,
but they were simply ignored as they did not originate from
the Big Bang cosmological model. Interestingly enough, the
very fact that the remarkably close blackbody temperature
predictions do not originate in the Big Bang model is used
against the validity of the other models in predicting a black-
body temperature in agreement with the Penzias and Wilson
measurement!

At stake is whether the Microwave Background Radia-
tion is universal and cosmic (i.e. CMB) or galactic in nature
(i.e. MBR), with possibly every galaxy having slightly differ-

∗Wikiquote. Thomas Henry Huxley. In his Presidential Address at the
British Association in 1870, last modified 07:40 4 May 2019.

†The estimates are described as blackbody temperatures as the Stefan-
Boltzmann blackbody radiation law was used to determine the temperature.

ent local blackbody temperatures. The energy requirements
of the two different explanations are substantially different.
The reality is that this can’t be determined from the measure-
ments done in our local neighbourhood (at about 27 000 light-
years from the galactic centre) within our Milky Way which is
about 100 000 light-years across and about 2 000 light-years
thick at the thin stellar disk that we are located in.

2 Eddington’s “Temperature of interstellar space”

Assis and Neves in their 1995 paper History of the 2.7 K Tem-
perature Prior to Penzias and Wilson [3] provide a review
of earlier blackbody temperature determinations, prior to the
Big Bang cosmological model temperature estimates of the
late 1940s, 1950s and early 1960s which varied between 5 K
and 50 K. Their conclusion that “the models based on a Uni-
verse in dynamical equilibrium without expansion predicted
the 2.7 K temperature prior to and better than models based
on the Big Bang” is, understandably so, not very popular.

The best-known earlier blackbody temperature prediction
is that of T = 3.2 K proposed by Arthur Stanley Eddington
in 1926 [5], known as the temperature of interstellar space
to clearly communicate that it is not related to the CMB, es-
pecially since Eddington’s estimate was derived before the
development of the Big Bang cosmological model. Modern
commentators constantly remind us that it is coincidental and
that it does not derive from the Big Bang model. We don’t
want people to see it as an explanation of the MBR that would
be an alternative to the CMB Big Bang explanation!

Eddington, in his 1926 book The Internal Constitution
of the Stars [6], further covered the topic in Chapter XIII,
Diffuse Matter in Space. He computes an effective black-
body temperature of 3.18 K, but again, this has nothing to
do with the 2.725 K blackbody spectrum of the Microwave
Background Radiation (MBR), which we know is the Cos-
mic Microwave Background (CMB). Eddington states:

The total light received by us from the stars is es-
timated to be equivalent to about 1000 stars of the
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first magnitude. ... We shall first calculate the en-
ergy density of this radiation. ... Accordingly the
total radiation of the stars has an energy-density ...
E = 7.67 · 10−13 erg/cm3. By the formula E = aT 4

the effective temperature corresponding to this density
is 3.18o absolute. [6, p. 371]

Eddington thus uses the Stefan-Boltzmann blackbody radia-
tion law to determine the temperature of the blackbody equiv-
alent to the estimated energy density of stellar radiation.

Eddington then attempts to specify a model for the spec-
trum of his estimated interstellar radiation field, based on his
hypothesis of the statistical properties of stellar radiation:

Radiation in interstellar space is about as far from ther-
modynamical equilibrium as it is possible to imag-
ine, and although its density corresponds to 3.18o it is
much richer in high-frequency constituents than equi-
librium radiation of that temperature. [6, p. 371]

On this count, Eddington strayed from the data and that part
of his analysis missed the mark.

The near-equality of Eddington’s blackbody temperature
of space and the CMB is considered a coincidence as “[t]he
starlight radiation field is concentrated in galaxies like the
Milky Way, which only occupy one part per million of the
volume of the Universe, while the CMB fills the entire Uni-
verse” [7]. This comment demonstrates exactly the point rai-
sed in this Letter, and as we have been pointing out, it is hard
for cosmologists to think outside of the CMB paradigm.

We also note several other non-cosmological estimates
of the temperature of interstellar space that predate and that
were more accurate than the Cosmic Microwave Background
(CMB) Big Bang estimates [4]. Regener [8] predicted a value
of 2.8 K in 1933 based on an analysis of the energy of cosmic
rays arriving on Earth. This is remarkably close to the current
best estimate of the value of a thermal blackbody spectrum at
a temperature of 2.72548±0.00057 K [9]. Mackellar, follow-
ing his identification of interstellar molecules [10], obtained
the value 2.3 K in 1941, using the levels of excitation of the
cyanogen molecule (CN) in intergalactic space [11].

3 Cosmic Microwave Background anisotropy

The CMB (or MBR) is highly isotropic, to roughly one part
in 100 000. The spectral radiance contains small anisotropies
which vary with the size of the region under examination.
This anisotropy requires its own analysis separate from this
Letter [12–14].

Suffice to say that advanced digital signal processing is
performed on the data (e.g. [15]). A dipole anisotropy caused
by the velocity of the Sun of about 370 km/s towards the
constellation Leo, as determined from the MBR, is first sub-
tracted from the Doppler shift of the background radiation.
The root mean square (RMS) variations of the remainder are
only 18 µK [7]. This anisotropy is a characteristic of the
Microwave Background Radiation, whether it is of galactic

or cosmological origin. Occam’s razor favours a galactic ori-
gin.

4 Discussion and conclusion

In this Letter, we have pointed out that there were several non-
cosmological estimates of the blackbody temperature of inter-
stellar space that predated and that were more accurate than
the Cosmic Microwave Background (CMB) Big Bang esti-
mates. They are disregarded and considered coincidental as
they are not based on the cosmological Big Bang model. We
note the importance of this question, as the energy require-
ments of the two different explanations (galactic vs cosmo-
logical) are substantially different. We also point out that the
actual correct explanation can’t be determined from the mea-
surements done in our local neighbourhood inside the Milky
Way.

Received on September 25, 2021
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In Memoriam of Simon Shnoll (1930–2021)

Dmitri Rabounski
Puschino, Moscow Region, Russia. E-mail: rabounski@yahoo.com

Simon Shnoll passed away on September 11, 2021 being 91 years old. He was born on
the vernal equinox, March 21, 1930, and was one of the few greatest biophysicists of the
20th century, as well as a very good open hearth person. I have known him closely for
many years. Here I want to pay tribute to his memory and his outstanding achievements
in science.

Simon Shnoll was born on March 21, 1930, the day of vernal
equinox, in Moscow, the USSR. His father Eli Shnoll was
a religious philosopher belonging to the Russian Orthodox
Church (as well as a polyglot who was fluent in more than
twenty languages). In 1933 his father was imprisoned for his
faith, together with many hierarchs of the Orthodox Church,
to the prisoner camp on the Solovki Islands, but after three
years of jail, in 1936, he was released as hopeless ill then died
shortly before World War II. His mother Faina was a school
teacher. His parents were religious; they had four sons. On
the contrary, Simon Shnoll grew up an atheist; he told me
many times: “My father was a religious philosopher and was
fluent in twenty languages, while I know only one language
and do not believe in God, but I believe in the Saints who
lived in the past and those who live among us.”

Simon Shnoll spent his childhood in Kaluga, a city on the
Oka River, 160 km south-west of Moscow, where his family
lived in exile. Due to job restrictions, his mother was largely
unemployed: his family survived on odd jobs. Simon started
to work commencing his 6 years as a herdsman in the summer
season. His family experienced hunger; his youngest brother
died in baby age of hunger in Autumn, 1941, because his
mother lost milk due to hunger. Simon Shnoll always told me
that only a person who has survived many years of hunger
and watched how people have no power to bury the bodies
of their relatives can understand the divine aroma of a freshly
cooked loaf of bread.

Simon Shnoll first visited the Puschino area being an 11-
year-old boy, in the summer of 1941 in search of casual work
in the fields on the northern (low) bank of the Oka River op-
posite Puschino (located on the southern bank, at an altitude
of 190 meters). There was a rest house for the officers’ school
cadets and a beach. Simon decided to freshen up in the river
with the cadets who were sunbathing on the beach, but got
into a whirlpool that sucked him weakened by hunger, and
he began to drown, screaming for help. The cadets, these
athletic young men, pulled him out of the river by the hair
and, looking at his very skinny body, fed him as best they
could. All these cadets were killed in action three months
later, in October, 1941, on the fields near Moscow, when,
armed only with rifles and grenades, they tried to stop the

Simon Shnoll. Puschino, about 2005.

German tank columns moving towards Moscow (but they did
it). The bridge near Puschino across the Oka River connect-
ing Moscow and Tula is named after them.

The battleline very quickly approached Moscow, and at
the end of August 1941, when 11-year-old Simon was graz-
ing cattle in the fields on the northern (low) bank of the Oka
River, he suddenly saw a chain of small fountains of dust ris-
ing from the ground and quickly approaching him, and then
he heard pops shots from above: it was a German fighter pilot
who decided to “hunt” a boy among a herd of cows. . . Simon
first ran in a zigzag among the cows, then stumbled, fell and
waited for death, but the German pilot used up all his ammu-
nition and flew away.

When Simon returned back to Kaluga, there was chaos
due to approaching the battleline. In the early morning of
October 12, 1941, a military commissar knocked the door
of Shnoll’s room. The commissar went around all the civil-
ian residents in their borough and told them: “Go away, to-
day the Germans will come and kill you all.” He was kind
enough to help Shnoll’s mom and all her four children get
to the train station and then put them on the last train head-
ing towards Moscow. His prediction was prophetic: within
2.5 months from October 12 to December 30, 1941, when
Kaluga (50,000 inhabitants) was under occupation, the Ger-
mans killed more than 20,000 people in the ghetto and POW
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camp, including the captured soldiers and officers of the Ka-
luga garrison. A few years later, Shnoll’s former neighbour,
who moved to Moscow after the liberation, told him and his
mother that, on their street, German soldiers often shot pedes-
trians just for fun, using them as targets for shooting training.
Those were grey-dressed soldiers of Wehrmacht, and not SS.
It was a bloody bacchanalia of war. . .

The refugees, including Shnoll’s family were dropped off

a train in a rural area far from Moscow, then Shnoll’s mother
and four her sons wandered around the villages of the Mos-
cow region for a month in the cold autumn, begging for alms
from the peasants. His younger brother, a baby, starved to
death during this time. When Shnoll’s mother with her three
surviving children reached Moscow, they were allowed to
stay there, because her husband, an “enemy of the people”,
had already died, so the restrictions on his family were lifted.
Only 2.5 years later, in 1944, she found a permanent job as
a teacher in an orphanage, where she and her sons could live
and dine with orphans — “children of war”.

The wartime in Moscow was accompanied by a surf of
street crime. Even the immediate executions at the crime
scene by police patrols could not stop the street robberies and
murder. Once criminal teenagers who were older than Simon
beat him to a pulp; they knocked out all of his front teeth. Af-
ter this incident, Simon decided to take his fate into his own
hands: he took a basic self-defence course from one of sports
teachers. This saved his life many years later, in 1956, when
the security officer who controlled Shnoll’s work at that time,
being completely drunk, tried to shoot him due to personal
animosity. This happened in the forest on a river bank, during
one of the trips of the laboratory employees to wild nature,
near the campfire, where they all drank medical alcohol di-
luted half-to-half with water (they had much medical alcohol
in the laboratory for biological purposes, while the laboratory
rabbits were a good addition to the dinner table in the condi-
tions of a total deficit of food products in the stores of the
USSR). When the others were legless from the alcohol they
drank, Simon Shnoll refused to continue drinking with the se-
curity officer, which sparked an outburst of his aggression. He
told Shnoll: “I will kill you, and then all the Jews”. Then he
pulled his pistol out of the holster, sent a bullet into the pistol
chamber and tried to shoot Simon. However, Simon turned
him over with a judo technique, turned his hand with the pis-
tol under his chin and. . . did not fire. Simon explained to me
that this self-defence technique against an armed person nec-
essarily ends with a shot to head: the fighter does not think,
but automatically performs all these sequential movements,
including the final headshot, which is achieved by long term
training. But — said Simon — something stopped him at the
last moment and he did not take the mortal sin of murder upon
his soul. Simon stunned the security officer with a blow and
then, having unloaded his pistol, threw all the bullets into the
river. The security officer had a lot of respect for Simon after
this incident.

Prior 1944, Simon Shnoll had never visited school. In
Moscow, in 1942–1944 he worked as an electrician’s assistant
boy. In the meantime, he was educated at home by his mother,
who was a very educated person. As a result, in 1944, being
a 14-year-old boy, Simon Shnoll passed the 9th grade exam
and graduated from school in 2 seasons in 1946.

In the summer of 1946, being 16 years old, Simon Shnoll
entered the Department of Biology of Moscow University.
It was the first peaceful summer after World War II, when
hundreds of thousands of demobilized young soldiers tried
to enter in universities. The number of applications per one
student seat reached several hundreds. To enter, you had to
pass all the entrance exams fine. At one of the entrance ex-
ams, 16-year-old Simon Shnoll met the love of his life, Maria
Kondrashova, who was then 18 years old. She told me how
this happened. She and Simon got up from their desks in
the exam room at the same time and gave their exam papers
to the examiner. The examiner began to check their papers at
the same time, while they stood next to his desk. She watched
at Simon. He looked like a small, skinny chick. She told me
that she immediately felt a strong desire to warm and feed
Simon like a child. . . After checking their exam papers, the
examiner looked at them and said: “Both of your exam papers
are good enough, but his paper is much better!” She immedi-
ately said a reply, looking towards Simon: “What a buster!”
Very soon after that day, they realized that they could not live
without each other and remained together for 74 years un-
til she passed away on June 11, 2020. They had a son and
daughter, as well as many grandchildren.

Maria Kondrashova was a biochemist. She and Simon
were graduated from the same Department of Biology, where
they had the same teacher, Prof. Sergey Severin, who intro-
duced them into science. Maria and Simon lived in a small
room in a shared apartment with neighbours in Moscow until
1963, when they were invited to live and work in Puschino, to
a new research institute called the Institute of Theoretical and
Experimental Biophysics (a.k.a. the Institute of Biophysics),
where each of them headed his own research laboratory. Like
Simon Shnoll, she first got a degree of Candidate of Sciences
(which is analogous to the PhD degree), then — a degree of
Doctor of Sciences. She was also a Professor of Moscow Uni-
versity. In addition to many of her other scientific works, her
last major work, which she conducted since the 1990s, was a
method of total diagnosis of the whole body using the analy-
sis of just one drop of blood. Her outstanding scientific dis-
coveries and ideas are scattered across many of her scientific
articles in Russian, often in a very succinct concise form and,
therefore, little known to the scientific community. These re-
sults and the technologies she developed are still awaiting re-
discovery.

As for her personality, I would call her a “commander”
in spite of the fact that she was a very nice and intelligent
woman in everyday communication, in particular with me.
She quickly recognized the identity of people and then be-
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haved with them according to their personality. I discussed
this issue with her. She explained to me that in science there
is always only one leader who created an idea and developed
it, and all the others are only assistants. Otherwise, without
a “strong hand” any business, even a very good scientific de-
velopment, would quickly collapse. Therefore, she always
considered those who helped her in her laboratory to be mer-
cenaries. In particular, therefore, she did not have followers
in science. Science is moving forward by the forces of bright
individuals, of whom there are very few, and not by scien-
tific teams, as many mistakenly think, — she explained. Any
scientific team shines with the reflected light emitted by its
leader, and as soon as this leader ceases to exist, his or her
team “goes out”, ceasing to do something new, because only
an individual, due to the strength of his of her will, is able to
generate ideas and do scientific developments.

As for Simon, her husband, she told me that he is not re-
ally the “nice grey-haired old man” I have known for the past
three decades. In fact, he is a very determined and risk-taking
person, capable of, for example, surviving alone in a wild for-
est or repelling a gang of armed robbers. His psychology —
she said — is rather similar to the psychology of a 14-year-
old teenager, since only teenagers are not afraid of death and
do everything without thinking about the consequences. The
advantage of such a psychology is that Simon Shnoll had his
own, completely independent point of view on many familiar
things both in everyday life and in science.

Let us go back to Simon Shnoll and his story. After gradu-
ating from the Department of Biology in 1951, Simon Shnoll
was under risk to be sent as a private for 5 years of military
service (like his elder brother, a mathematician, who served
5 years in Red Army after the graduation). It was possible
to be free from military service if he was hired by an institu-
tion where positions were equated to military service. After
two months of nervous searches, Simon Shnoll took a job
in a research laboratory of the Department of Radiology of
the Institute for the Professional Development of Physicians.
The laboratory was directly subordinated to the Soviet atomic
project and included both military and civilian doctors; they
studied how high doses of radiation exposure affect animals.

Despite the high level of secrecy in the laboratory, there
was a complete mess and irresponsibility with safety mea-
sures for the staff during the radiation exposure of test ani-
mals. As a result, one day Simon Shnoll got a lethal dose
of radiation. The female doctor who examined him said he
would definitely die from radiation sickness within one month
and all she could do for him is to give him as much pain re-
liever as needed. It was a very sad month in his life. He was
ready to die, but his body had overcame the sickness in some
incredible way. Moreover, he told me that his body had fully
recovered without any repercussions, including the reproduc-
tive function. He explained that radiation exposure may not
always be fatal, while radiation poisoning is always fatal due
to the small radioactive particles penetrated into the body and

permanently exposing it with their radiation.
Following this incident, Simon Shnoll became unfit for

military service, but he continued to work in the Department
of Radiology of the Institute for the Professional Develop-
ment of Physicians. Then, since 1959, he began to lecture
on biochemistry at the Physics Department of Moscow Uni-
versity, where he began as an associate professor, and then a
professor until his death.

In 1963, Prof. Gleb Frank, a biophysicist, a member of
the USSR Academy of Sciences, as well as a very influential
organizer of science in the USSR, invited Simon and Maria
to continue their scientific research in Puschino, a new “aca-
demic” town just erected 100 km south of Moscow on the
southern (high) bank of the Oka River near the radio astro-
nomical observatory of the Academy of Sciences. There were
no “outsiders” in the new “academic” town: the peasants of
the small village, Puschino, which had been located on the
site for the past 600 or 800 years, were deported (except only
a few persons who escaped the deportation) just before the
construction of the town began in 1959. The absence of “out-
siders” in the town created a unique social environment con-
sisting only of scientists (and a small number of builders).
Gleb Frank provided Simon and Maria with personal labora-
tories at a new research institute called the Institute of Bio-
physics, where he was Director. He also conversated with the
town administration about providing them with a 4-bedroom
apartment on the 9th (upper) floor of a just erected residen-
tial tower, which was luxurious living conditions compared to
the small room in the shared apartment, where they huddled
in Moscow. These were the first two “settlers” that Frank in-
vited to live and work in Puschino. Simon always told me
that Maria was the “settler number 1”, and he was “number
2”. On the contrary, Maria told me that he was the “settler
number 1”, and she was only “number 2”.

For Simon Shnoll, it was a return to the areas of his child-
hood on the Oka riverbanks. Simon and Maria moved to
Puschino with Maria’s mother, who volunteered to took care
of their son and daughter, while Simon and Maria spent all
their time in their laboratories at the Institute. These were the
times of the USSR, when workers received salary regardless
of the results of their labour. Therefore, the quality of build-
ing work was low. The very first rain revealed many cracks
in the waterproofing layer of the roof above the apartment,
where Simon and Maria lived. Since there was nowhere to
wait for help, Simon made a fire in front of the house, on
which he melted down more than a dozen buckets of bitu-
men, and then going upstairs to the roof with the buckets
of molten bitumen (the elevator in their house had not yet
worked), filled all the cracks in the waterproofing layer. Also,
the common heating system in the town sometimes malfunc-
tioned during the winter seasons so that their slippers and
tights of their little children froze to the floor. Nevertheless,
life improved year after year. Fresh air (as opposed to the air
in Moscow), a view of the endless Russian expanses and of a
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natural reserve on the opposite northern (low) bank of the Oka
River (the bison natural reserve), as well as weekly picnics in
the near forest neutralized all troubles of their first years in
Puschino. A few years later, Simon and Maria hired workers
who built a house for them in a cottage village of biophysi-
cists near Puschino. Simon got carried away with the cultiva-
tion of an orchard and growing potatoes, but soon abandoned
this “agricultural hobby”, when realized that it takes away al-
most all of his time and is incompatible with his scientific
research.

Simon travelled to Moscow twice a week, where he lec-
tured at the Physics Department of Moscow University. Then
there was no rapid express bus connecting Moscow and Pu-
schino and private cab services (as now), and, therefore, such
a trip took many hours. Also, in Puschino, as almost else-
where in the USSR, there was a shortage of food products
in stores; even with enough money, people could not freely
buy what they wanted. In Puschino, this situation was solved
by the fact that each Institute had its own restaurant, where
employees had breakfasts and dinners with all their family
members. However, the supply in the Moscow stores was
good. Therefore, Simon usually travelled to Moscow on the
eve of his lecture day. Arriving in Moscow in the evening, he
usually purchased two full carry bags and a full backpack of
food, then spent the night at the Facility of Biophysics of the
Physics Department. Then, in the morning and in the day-
time, he gave lectures, after which, already in the evening, he
returned by bus to Puschino.

The life and all scientific achievements of Simon Shnoll
and Maria Kondrashova after 1963 and until the last years
of their lives were associated with Puschino and the Institute
of Biophysics, which they considered their home. Shnoll’s
laboratory was one of the largest at the Institute: he told me
that at the years of rise, he had 67 employees who did what he
said. Since 1963, the staff of his laboratory were bestowed 26
Doctor of Sciences degrees and more than 120 Candidate of
Sciences (PhD) degrees. In addition, many other laboratories
of the Institute were founded by his employees, who decided
to start their own research in another field of biophysics.

However, the years often change people or, most likely, as
Jack London noticed, we often do not see the hidden charac-
ter traits of some persons, which then become apparent over
the years. In the beginning, Shnoll’s laboratory staff and their
families usually went out on a joint picnic at a weekend in
the nearby forest. Then this picnic “decayed” into several
smaller picnics, the participants of which tried to ignore oth-
ers. Then, 10 years after the founding of the Institute, some of
his former employees stopped greeting him, meeting him in
the town or in the Institute. . . Maria told him that these were
not true scientists, but those who simply wanted to “get well”
in life; they got everything they wanted from him — scien-
tific degrees and individual laboratories — and now they no
longer need him. Simon Shnoll told me that this poor fact
deeply hurt his heart, as he considered all his former employ-

Simon Shnoll at the dinner table in his laboratory.
Puschino, 2005.

ees to be his friends. During the mass “exodus” of scien-
tists from Puschino in 1989–1991, just after the Iron Cur-
tain that separated the USSR from the rest of the world has
rushed down, many scientists left Puschino for the USA and
Germany. According to Maria, after those two years some
Institutes had become 75% empty. Their daughter had al-
ready lived in Moscow. Their son left for the USA with his
wife and their children (they lived with Simon and Maria
in the same 4-bedroom apartment): Simon and Maria were
left alone in their apartment. . . Their circle of close friends
narrowed even more; among them were remaining Eugeny
Maevski and Heindrich Ivanitski, who held heading positions
at their Institute and always supported Simon and Maria.

However, it was in the early 1990s that Simon Shnoll’s
research got the most rise (from the use of personal comput-
ers). To understand this, it is necessary to go back to 1951,
when he first drew attention to a phenomenon that much later,
in 2005, I called the Shnoll effect.

In 1951, Simon Shnoll, who had just graduated from uni-
versity, began working in a research radiological laboratory
subordinated to the Soviet atomic project (see above). Among
other things, he conducted experiments to study the interac-
tion of radioactive amino acids with muscle proteins (this was
the topic of his PhD thesis). He discovered that the rate of this
(very stable) chemical reaction, measured in hundreds of con-
secutive very accurate measurements taken during one work-
ing day through the same short time intervals, has systematic
deviations from the average numerical value, which are not
dependent of the experimental conditions, but only on the lo-
cal time of measurement. It looked as if some very fine noise,
with its repeated minima and maxima, was superimposed on
the measurements of the very stable rate of this chemical re-
action. The study of this systematic noise, its fine structure
and origin became the main scientific task of Simon Shnoll
throughout his life.
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Continuing these studies in the 1950s in Moscow and then
in the 1960–1970s in Puschino, Shnoll found that this specific
noise is present not only in measurements of the rate of chem-
ical reactions in muscle proteins, but also in any proteins in
general. Moreover, in the 1970s, he found this noise in any
biochemical reactions that he tested. Even more, in 1970–
1980s, he found this noise, with its specific minima and max-
ima, in any consecutive physical measurement that he tested
or analysed, unnecessary biochemical reactions. For exam-
ple, he found it by measuring the rate of alpha-decay and
beta-decay of atomic nuclei. In general, he found the fol-
lowing: the more stable the signal was, the better this noise
manifested itself.

When I first met Simon Shnoll in 1991, I asked him:
“What should be measured to detect this noise and its fine
structure?” He adjusted his glasses with his hand and an-
swered me: “It does not matter what!”

It should be noted that registering the systematic noise in
an experiment is only a small percentage of the whole prob-
lem. The main trouble is the processing of the measurement
results, which allows you to “see” this noise and its fine struc-
ture. In the pre-computer era, when performing these exper-
iments based on a sequence of measurements of a signal for
one day, month, or year, you had to do the following. First,
you had to manually create on paper a histogram of the mea-
sured numerical values of the signal for each measurement
interval, say, for each interval of 15 or 30 seconds. This
would result in about 2,880 hand-drawn histograms per day,
about 86,400 hand-drawn histograms per month, and over 1
million hand-drawn histograms per year for 30-second mea-
surement intervals (double the number of histograms for 15-
second intervals). Then you had to visually compare all these
histograms with each other to find the ones that match each
other in their shape. And finally, you had to create a graph that
shows when the found similar histograms appear according
on the local time. In the pre-computer era, Shnoll was forced
to limit himself to only analysing the results of measurements
obtained within one or two days. Even so, he had to cre-
ate over 3,000 hand-drawn histograms for each experiment
and then visually compare all those hand-drawn histograms
to each other. This is clearly an overwhelming task for one
person. Dozens of his employees, mostly young women who
graduated from Moscow University, drew these thousands of
histograms by hand every day and then compared them with
each other. It was a titanic work!

Things got much easier in 1997, when Edwin Pozharski,
a young man from Poland, who, just graduated from Physical
Technical Institute that is to north of Moscow (he was en-
gaged in X-ray analysis of proteins), created a computer pro-
gram allowing to create and analyse dozens and hundreds of
thousands of histograms. In particular, the use of his program
allowed to create and analyse histograms for measurements
performed over a week, month and even a year. He created
this program not for fame or money (he did it on a volunteer

basis), but simply out of great respect for Shnoll and his re-
search. His program has gone through many updates and is
still the main working tool in the study of the Shnoll effect.
Thanks to him!

The next 10 years of Shnoll’s research after 1997 were
the most fruitful. Using the computer program to create his-
tograms and analyse them, he found that the discovered fine
structure is manifested in any random noise, and not only in
the random noises registered in biological and physical pro-
cesses. In particular, he found the same fine structure in the
random noise generated by a random number generator on a
computer.

To summarize briefly the Schnoll effect, it is best to give
a quote from my 2014 article*, where I already did it:

“The principal error in understanding the Shnoll ef-
fect is that some people think it is a periodical fluc-
tuation of the magnitude of the signal that is measured.
This is incorrect, since the magnitude of the signal and
the average noise remain the same during the long-
term measurements done by Shnoll and his workgroup.
Further, such processes are specifically chosen for the
study that are very stable in time. Simply put, nothing
allegedly changes in the experiments which continue
during days, months, and even years. The subject of
the measurement is the fine structure of the noise regis-
tered in stable processes.

Every process contains noise. The noise originates
due to the influence of random factors and satisfies the
Gaussian distribution (i.e., the Gauss continuous dis-
tribution function of the probability of the measured
value between any two moments of time). Gaussian
distribution is attributed to any random process, such
as noise, and is based on the averaging and smooth-
ing of the noise fluctuation measured during a long
enough interval of time. Nevertheless, if considering
very small intervals of time, the real noise has a bizarre
structure of the probability distribution function, which
differs for each interval of time. Each of these real
functions being considered “per se” cannot be averaged
to a Gaussian curve. This is what Shnoll called the fine
structure of noise and is the object of research studies
originally conducted by Simon Shnoll, commencing in
1951–1954 to this day.

So, the magnitude of noise is measured in a very
stable process during a long enough duration of time
(days, months, and even years). Then the full row of
the measured data is taken under study. The full dura-
tion of time is split into small intervals. A histogram of
the probability distribution function is then created for
each of the small intervals. Each interval of time has

*Rabounski D. and Borissova L. General relativity theory explains the
Shnoll effect and makes possible forecasting earthquakes and weather cata-
clysms. Progress in Physics, 2014, v. 10, issue 2, p. 63–70.
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its own bizarre distribution function (form of the his-
togram) that differs from Gaussian function. Neverthe-
less, Shnoll found that “paired histograms,” which have
a very similar (almost identical) form, exist along the
row of the measured data. That is, the histogram cre-
ated for each interval of time has its own “twin” which
has a similar form. The similar form was found in the
histograms which were registered with the following
periods of repetition connected with stars, the Sun, and
the Moon:
• 24 hours = 1440 min (solar day);
• 23 hours, 56 min = 1436 min (stellar day);
• 24 hours, 50 min = 1490 min (lunar day);
• 27 days, 7 hours, 43 min = 39 343 min (lunar

month);
• 31 days, 19 hours, 29 min = 45 809 min (period

of the lunar evection);
• 365 days = 525 600 min (calendar year);
• 365 days, 6 hours, 9 min = 525 969 min (stellar

year).
Also, aside as the similar forms of histograms, ap-

pearance the mirrored forms of histograms was regis-
tered by Shnoll with periods of:
• 720 min (half of the calendar/solar day);
• 182 days, 12 hours = 262 800 min (half of the

calendar/solar year).
Shnoll called this phenomenon the “palindrome effect”.
It is one of Shnoll’s newest findings: despite his hav-
ing started the research studies in 1951, the possibility
of the appearance of the mirrored forms of histograms
only came to his attention in 2004. The “palindrome
effect” was first registered in December 2007. Aside
from these two periods of the “palindromes”, a number
of other palindrome cycles were found. However, cer-
tain circumstances have not allowed a continuation of
these studies in full force yet.

As was shown by Shnoll after many experiments
done synchronously at different locations from South
Pole to North Pole, an appearance of the similar form
(or the mirrored form) of the histograms does not de-
pend on the geographical latitude, but depends only on
the geographical longitude, i.e., the same local time at
the point of observation. In other words, the Shnoll ef-
fect is manifested equally at any location on the Earth’s
surface, according to the local time, meaning the same
locations of the celestial objects in the sky with respect
to the visible horizon.

It is significant that the process producing the noise
that we measure can be absolutely anything. Initially,
in 1951, Shnoll started his research studies from mea-
surements of the speed of chemical reactions in the
aqueous solutions of proteins. Then many other bio-
chemical processes attracted his attention. After deca-
des of successful findings, he focused on such purely

physical processes as alpha-decay and beta-decay of
the atomic nuclei. It was shown that not only all the
random natural processes of different origins, but even
artificial processes as random-number generation by
computer software manifest the Shnoll effect. In other
words, this is a fundamental effect.”

Shnoll told me that neither signal level nor noise level is
actually measured in his experiments: their numerical val-
ues remain very stable during measurement. Only standard
time intervals between adjacent measurements change with
the periods that he registered. That is, signal level and noise
level remain unchanged, while the “unit time interval” be-
tween adjacent measurements is not “unit” but changes ac-
cording to the fine inhomogeneous structure of space-time,
through which the observer, together with his laboratory and
the Earth itself, travels in the cosmos. The observer’s labora-
tory is located somewhere on the surface of the Earth, while
the Earth’s body revolves around its axis, the Earth revolves
around the Sun, the planets revolve around the Sun, and the
entire Solar System travels along its specific trajectory in the
Galaxy. . . As a result, the observer together with his labo-
ratory travels in the cosmos through the fine structured grid
of the standard “unit time intervals”, which is caused by the
fields of the aforementioned rotating cosmic bodies. This mo-
tion of the observer leads to the fact that his measurements of
everything are affected by the corresponding periodic changes
in the duration of the standard “unit time interval” between
consecutive measurements. The more stable the quantity that
he measures, the more obvious the fine structure of the grid
of time intervals through which he moves in the cosmos.

In other words, Shnoll believed that the fine structure of
random noise discovered by him (a.k.a. the Shnoll effect) ma-
nifests the fine inhomogeneous structure of time itself*.

In 2007–2008, I was honoured to be the editor of Shnoll’s
book, in which he explained the entire story of his discovery,
starting in 1951, as well as all the details of his experiments
and experimental results obtained up to those years. Prior
that time, his experimental results were scattered over many
dozens of his fragmentary papers. He asked me to help him
with the structure of the book: he drafted many chapters on
different topics that needed to be somehow connected with
each other and combined into a whole book. We spent many
hours together discussing every detail of the book. The book
was published in Russian in 2009, and its English translation
in 2012.† To be honest, I was should translate his book myself,
because I knew the subject of the book like no one else. But
then I was so physically exhausted that Maria Kondrashova
took pity on me and invited two women for translation. Now,
I have a great regret about this missed opportunity.

*Shnoll S.E. Changes in the fine structure of stochastic distributions as
a consequence of space-time fluctuations. Progress in Physics, 2006, v. 2,
issue 2, p. 39–45.

†Shnoll S. E. Cosmophysical Factors in Stochastic Processes. American
Research Press, Rehoboth (NM), 2012, 388 pages.
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This obituary turned out to be very personal, far from of-
ficialdom. . .

I, like most residents of Puschino, often walk along the
Green Zone, the main street of the town, which is a 1,700-
meter forested boulevard that runs through the town and sep-
arates the Institutes from the residential area. This boulevard
is framed by the Avenue of Science from the side of the resi-
dential buildings and by the Institute Avenue from the side of
the Institutes. At the entrance of each of the Institutes, I see
memorial plaques on the wall dedicated to the influential sci-
entists of the Soviet period, members of the USSR Academy
of Sciences, who worked in Puschino. In addition, several
streets of the town are named after some of them. These in-
fluential people of the Soviet period were successful orga-
nizers of science, rather than outstanding researchers. Their
scientific achievements were particular and had not changed
biophysics or biochemistry as a whole, while the technolo-
gies they have developed (like any technologies in general)
are rather the subject of industrial corporations than science:
the task of scientists is to discover fundamental laws, which
industrial corporations, if they deem necessary, can then use
then to develop some technologies.

On the contrary, the Shnoll effect is a fundamental discov-
ery. Understanding this fine structure of the pattern of time
through which we, together with the planet Earth, travel in
the cosmos, will undoubtedly change not only biophysics as
a science and physics in general, but our entire understand-
ing of the world. In this sense, Simon Shnoll is similar to
Copernicus, who also once changed the entire understanding
of the world. I therefore have no doubt that once the scien-
tific community has evolved enough to understand the signif-
icance of the Shnoll effect, then the Green Zone, the main
boulevard that runs through the entire town, will be renamed
Shnoll Boulevard. This will be not only fair, because Simon
Shnol will forever remain the most outstanding research sci-
entist who lived and worked in Puschino, but also symbolic
— Shnoll Boulevard, running as a narrow through the entire
town of scientists.

Let his memory live for ever!

Received on September 28, 2021
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Transcendental ratios of physical quantities can provide stability in complex dynamic
systems because they inhibit the occurrence of destabilizing resonance between the el-
ements of the system. In this paper we analyze recently discovered astrophysical and
geophysical cycles in order to verify this numeric-physical paradigm.

Introduction

The Solar system behaves like a precise chronometer. Indeed,
the orbital and rotational periods of the planets, planetoids
and large moons are exceptionally stable. In view of the huge
number (more than 800.000) of orbiting and rotating celestial
bodies, perturbation models based on conventional theories
of gravitation predict long-term highly unstable states [1, 2]
and have a problem with the real stability of the Solar system.
Moreover, they do not explain basic facts, for instance, why
the Solar system has established the orbital periods 90560
days (Pluto), 60182 (Neptune), 30689 (Uranus), 10759 (Sat-
urn), 4333 (Jupiter), 1682 (Ceres), 687 (Mars), 365 (Earth),
225 (Venus) and 88 days (Mercury). The current distribution
of the planetary and lunar orbital and rotational periods ap-
pears to them to be completely coincidental.

Recently discovered astrophysical and geophysical cycles
of galactic origin suggest that despite the huge number of
stars (more than 200 billion), our Galaxy behaves like a pre-
cise chronometer as well. Disappointingly, there is no theory
of gravitation that derives the correct movement of stars in
galaxies or explains at least the existence of galaxies with-
out introducing a huge amount (corrently 68%) of dark en-
ergy [3]. In spiral galaxies, the orbiting of stars seems to
strongly disobey both Newton’s law of universal gravitation
and general relativity. Recently, an 85% dark matter [4] uni-
verse is required for saving the conventional paradigm.

Perhaps the concept of gravitation itself requires a revi-
sion. Obviously, it is not about details, but an important part
of the hole is missing.

In this paper we introduce a basic numeric-physical ap-
proach that could be the missing link as it allows resolving
stability tasks in dynamic systems of any level of complexity.

Methods

In [5] we have shown that the difference between rational,
irrational algebraic and transcendental numbers is not only a
mathematical task, but it is also an essential aspect of stability
in complex dynamic systems. For instance, integer frequency
ratios provide resonance interaction that can destabilize a sys-
tem [6]. Actually, it is transcendental numbers that define the
preferred ratios of quantities which avoid destabilizing res-
onance interaction [7]. In this way, transcendental ratios of

quantities sustain the lasting stability of periodic processes in
complex dynamic systems. With reference to the evolution
of a planetary system and its stability, we may therefore ex-
pect that the ratio of any two orbital periods should finally
approximate a transcendental number [8].

Among all transcendental numbers, Euler’s number e =

2.71828. . . is unique, because its real power function ex co-
incides with its own derivatives. In the consequence, Euler’s
number allows inhibiting resonance interaction regarding any
interacting periodic processes and their derivatives. Because
of this unique property of Euler’s number, complex dynamic
systems tend to establish relations of quantities that coincide
with values of the natural exponential function ex for integer
and rational exponents x.

Therefore, we expect that periodic processes in real sys-
tems prefer frequency ratios close to Euler’s number and its
rational powers. Consequently, the logarithms of their fre-
quency ratios should be close to integer 0,±1,±2, . . . or ra-
tional values ±1/2,±1/3,±1/4, . . . In [9] we exemplified our
hypothesis in particle physics, astrophysics, cosmology, geo-
physics, biophysics and engineering.

Based on this hypothesis, we introduced a fractal model
of matter [10] as a chain system of harmonic quantum oscilla-
tors and could show the evidence of this model for all known
hadrons, mesons, leptons and bosons as well. In [11] we have
shown that the set of stable eigenstates in such systems is
fractal and can be described by finite continued fractions:

Fjk = ln (ω jk/ω00) = 〈n j0; n j1, n j2, . . . , n jk〉 (1)

where ω jk is the set of angular eigenfrequencies and ω00 is
the fundamental frequency of the set. The denominators are
integer: n j0, n j1, n j2, . . . , n jk ∈Z. The cardinality j ∈N of the
set and the number k ∈N of layers are finite. The numeric
occupancy of one layer does not influence the numeric occu-
pancy of other layers, so that each layer can be considered as
an independent dimension of a k-dimensional manifold. In
the canonical form, all numerators equal 1. We use angle
brackets for continued fractions.

Any finite continued fraction represents a rational num-
ber [12]. Therefore, the ratios ω jk/ω00 of eigenfrequencies
are always irrational, because for rational exponents the natu-
ral exponential function is transcendental [13]. This circum-
stance provides for lasting stability of those eigenstates of a
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chain system of harmonic oscillators because it prevents res-
onance interaction [14] between the elements of the system.
The distribution density of stable eigenstates reaches local
maxima near reciprocal integers ±1/2,±1/3,±1/4, . . . that
are attractor points (fig. 1) in the fractal set Fjk of natural log-
arithms. Integer logarithms 0,±1,±2, . . . represent the most
stable eigenstates (main attractors).

In the case of harmonic quantum oscillators, the contin-
ued fractions Fjk define not only fractal sets of natural angu-
lar frequencies ω jk, angular accelerations a jk = c ·ω jk, oscil-
lation periods τ jk = 1/ω jk and wavelengths λ jk = c/ω jk of the
chain system, but also fractal sets of energies E jk = ~ ·ω jk and
masses m jk = E jk/c2 which correspond with the eigenstates of
the system. For this reason, we call the continued fraction Fjk

the Fundamental Fractal of stable eigenstates in chain sys-
tems of harmonic quantum oscillators.

Fig. 1: The distribution of stable eigenvalues of Fjk for k = 1 (above)
and for k = 2 (below) in the range -16Fjk 6 1.

In fact, scale relations in particle- [10] and astrophysics [15]
obey the same Fundamental Fractal (1), without any addi-
tional or particular settings. The proton-to-electron rest en-
ergy ratio approximates the first layer of the Fundamental
Fractal that could explain their exceptional stability. In fact,
the life-spans of the proton and electron top everything that is
measurable, exceeding 1029 years [16].

Property Electron Proton

E = mc2 0.5109989461(31) MeV 938.2720813(58) MeV

ω= E/~ 7.76344 · 1020 Hz 1.42549 · 1024 Hz

τ= 1/ω 1.28809 · 10−21 s 7.01515 · 10−25 s

λ= c/ω 3.86159 · 10−13 m 2.10309 · 10−16 m

Table 1: The basic set of the physical properties of the electron and
proton. Data from Particle Data Group [16]. Frequencies, oscillation
periods and wavelengths are calculated.

The proton-to-electron ratio (tab. 1) approximates the seventh
power of Euler’s number and its square root:

ln
(
ωp

ωe

)
= ln

(
1.42549 · 1024 Hz
7.76344 · 1020 Hz

)
' 7 +

1
2

= 〈7; 2〉

In the consequence of this potential difference of the proton
relative to the electron, the scaling factor

√
e = 1.64872. . .

connects attractors of proton stability with similar attractors
of electron stability in alternating sequence.

These unique properties of the electron and proton pre-
destinate their physical characteristics as fundamental units.

Table 1 shows the basic set of electron and proton units that
can be considered as a fundamental metrology (c is the speed
of light in a vacuum, ~ is the Planck constant). In [11] was
shown that the fundamental metrology (tab. 1) is completely
compatible with Planck units [17]. Originally proposed in
1899 by Max Planck, these units are also known as natural
units, because the origin of their definition comes only from
properties of nature and not from any human construct. Max
Planck wrote [18] that these units, “regardless of any particu-
lar bodies or substances, retain their importance for all times
and for all cultures, including alien and non-human, and can
therefore be called natural units of measurement”. Planck
units reflect the characteristics of space-time.

We assume that scale invariance according to the Funda-
mental Fractal (1), which is calibrated to the physical proper-
ties of the proton and the electron, is a universal characteristic
of organized matter and criterion of stability. This hypothesis
we have called Global Scaling [9].

In [19] we applied the Fundamental Fractal (1) to macro-
scopic scales interpreting gravity as quantum attractor effect
of its stable eigenstates. We have shown that the orbital and
rotational periods of planets, planetoids and large moons of
the solar system correspond with attractors of electron and
proton stability [11]. This is valid also for exoplanets [15] of
the systems Trappist 1 and Kepler 20. In [8] we have shown
that the maxima in the frequency distribution of the orbital
periods of 1430 exoplanets listed in [20] correspond with at-
tractors of the Fundamental Fractal. In [21] we have shown
that the maxima in the frequency distribution of the number
of stars in the solar neighborhood as function of the distance
between them correspond well with attractors of the Funda-
mental Fractal.

In this paper we will show that the Fundamental Frac-
tal (1) determines also the Earth axial precession cycle, the
obliquity variation cycle as well as the apsidal precession cy-
cle and the orbital eccentricity cycle. In addition, we will
show that recently discovered geological cycles, as well as
the periodic variations in the movement of the Solar system
through the Galaxy, substantiate their determination by the
Fundamental Fractal.

Results

Since its birth the Sun has made about 20 cycles around the
Galaxy, and during this time the Solar system has made many
passages through the spiral arms of the disk. The Sun’s or-
bit in the Galaxy is not circular. There are temporal varia-
tions in the distance from the Galactic center with a period of
TS = 170 million years [22] that corresponds precisely with
the main attractor 〈90〉 of proton stability of the Fundamental
Fractal (1):

ln
(

TS

2π · τp

)
= 90
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2π · τp is the oscillation period of the proton (tab. 1). The
recently [23] discovered geological cycle with a period of
TG = 27 million years corresponds well with the same at-
tractor 〈90〉, but relative to the angular oscillation period of
the proton:

ln
(

TG

τp

)
= 90

The connection TS = 2π · TG suggests that the 27 million
years’ geological cycle could be caused by angular compo-
nents of the periodical variations of the distance of the So-
lar system (and the Earth) from the Galactic center. In addi-
tion, [23] reports a geological cycle of 8.9 Ma that approxi-
mates the main attractor 〈87〉 of proton stability:

ln
(

8.9 Ma
2π · τp

)
= 87

The Sun’s path oscillates above and below the Galactic plane
with a period of approximately 63 million years [22] that co-
incides with the main attractor 〈89〉 of proton stability:

ln
(

63 Ma
2π · τp

)
= 89

Earth’s axial precession cycle (25,770 years) fits the attractor
〈83〉 of proton stability:

ln
(

25, 770 a
τp

)
= 83

By the way, 25,770 years is also the time it takes for a signal
to travel from the Galactic center to Earth at the speed of light.

The Fundamental Fractal (1) is of pure numeric origin,
and there is no particular physical mechanism that creates
it. It is all about transcendental ratios of frequencies [8] that
inhibit destabilizing resonance interaction. In this way, the
Fundamental Fractal concerns all repetitive processes, inde-
pendently on their temporal or spatial scales.

For instance, Earth’s apsidal precession cycle and orbital
eccentricity cycle (both of 112,000 years) correspond with the
attractor 〈77〉 of electron stability:

ln
(

112, 000 a
τe

)
= 77

τe is the angular oscillation period of the electron (tab. 1).
Earth’s obliquity variation cycle (41,000 years) corresponds
with the attractor 〈76〉 of electron stability:

ln
(

41, 000 a
τe

)
= 76

Naturally, we expect the existence of further galactic cycles
that correspond with other main attractors of the Fundamental
Fractal. Table 2 gives an overview of expected main attractor
cycles in the scale of millions of years.

n Tp(n), Ma tp(n), Ma n Te(n), Ma te(n), Ma

91 463.35 73.75 83 285.41 45.42

90 170.46 27.13 82 105.00 16.71

89 62.71 9.98 81 38.62 6.15

88 23.07 3.67 80 14.21 2.26

87 8.49 1.35 79 5.23 0.83

86 3.12 0.50 78 1.92 0.31

Table 2: Cycles corresponding with main attractors of proton and
electron stability in the range of millions of years (Ma).

Every attractor of proton or electron stability defines the pe-
riod of a stable cycle and its angular period. As main attrac-
tors correspond with integer exponents n of the Fundamental
Fractal (1), it is easy to calculate main attractor cycles:

te(n) = τe · en Te(n) = 2π · te(n)

tp(n) = τp · en Tp(n) = 2π · tp(n)

In general, the identification of the predicted galactic cycles
requires a significant increase in current data precision.

Conclusion

Within our approach, numeric attractors of stability determine
the distribution of matter in space and time. Since the distri-
bution of the attractors is fractal, the distribution of matter
is also fractal. Numerical attractors cause effects known as
gravity, electricity, magnetism, and nuclear forces. Numerical
relationships are primary, physical effects are secondary. Nu-
merical attractors cause the formation of matter in all scales –
from the electron and proton up to planets, stars and galaxies.
Interscalar cosmology [9] bases on this approach.

In particular, for maintaining stability of motion, the Sun
does not have to avoid parametric resonance with every sin-
gle other star on its path through the Galaxy. As this task
cannot be resolved in general, the application of transcenden-
tal frequency ratios appears to be a significant alternative. As
we have shown, not only stars [21], but also planets [8] make
extensive use of it.
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