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The Kruskal-Szekeres “Extension”: Counter-Examples

Stephen J. Crothers

Queensland, Australia
thenarmis@gmail.com

The Kruskal-Szekeres “coordinates” are said to “extend” the so-called “Schwarzschild
solution”, to remove an alleged “coordinate singularity” at the event horizon of a black
hole at r = 2m, leaving an infinitely dense point-mass singularity at “the origin” r = 0.
However, the assumption that the point at the centre of spherical symmetry of the
“Schwarzschild solution” is at “the origin” r = 0 is erroneous, and so the Kruskal-
Szekeres “extension” is invalid; demonstrated herein by simple counter-examples.

1 Introduction

According to the astrophysical scientists the solution for Ein-
stein’s static vacuum gravitational field must satisfy the fol-
lowing conditions [1–11]:

(a) It must be static; i.e. all the components of the metric
tensor must be independent of time and the geometry
must be unchanged under time reversal;

(b) It must be spherically symmetric;
(c) It must satisfy the equations Rµν = 0; no matter present;
(d) It must be asymptotically Minkowski spacetime.

The so-called “Schwarzschild solution” (which is not in
fact Schwarzschild’s solution at all) is (using c = 1 and G = 1),

ds2 =

(
1 − 2m

r

)
dt2 −

(
1 − 2m

r

)−1

dr2−

− r2
(
dθ2 + sin2 θ dϕ2

)
.

(1)

The astrophysical scientists merely inspect this line-
element and thereby assert that there are singularities at
r = 2m and at r = 0 [3, 4, 7, 9]; the former they claim to be
a “coordinate” or “removable” singularity which denotes the
“radius” of an event horizon of a black hole of mass m lo-
cated at the “real” or “physical” singularity at r = 0. They call
r = 2m the “Schwarzschild radius” and r = 0 “the origin”.

It is plainly evident that metric (1) changes its signa-
ture from (+,−,−,−) to (−,+,−,−) when 0< r< 2m, despite
the fact that metric (1) is supposed to be a generalisation of
Minkowski spacetime, described by (using c = 1),

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 θ dϕ2

)
(2)

0 6 r < ∞,
which has fixed signature (+,−,−,−); and so there is in fact
no possibility for Minkowski spacetime to change signature
from (+,−,−,−) to (−,+,−,−) [5]. Consequently, 06 r< 2m
on Eq. (1) has no counterpart in Minkowski spacetime.
Nonetheless, although the astrophysical scientists
deliberately fix the signature to (+,−,−,−) at the very

outset of their derivation of Eq. (1) [1–9, 11, 12], in or-
der to maintain the signature of Minkowski spacetime,
they nonetheless allow a change of signature to occur
in Eq. (1) to (−,+,−,−) [3, 4, 7, 9, 10, 13, 14] accord-
ing to their assumption that 06 r<∞ applies to Eq. (1);
in direct violation of their initial construction. They
then invoke a complicated “change of coordinates” to
make the singularity at r = 2m disappear; the Kruskal-
Szekeres coordinates [3, 4, 9, 13, 14]. The astrophysical sci-
entists merely assume that the point at the centre of spherical
symmetry of the manifold described by Eq. (1) is located
at “the origin”, r = 0. To justify their assumptions on the
variable r, which they evidently conceive of as radial distance
in “Schwarzschild” spacetime (e.g. “Schwarzschild radius”),
they also claim that because the Riemann tensor scalar
curvature invariant (the “Kretschmann scalar”), given by
f = RαβγδR

αβγδ, is finite at r = 2m and unbounded at r = 0,
there must be a “real” singularity only at r = 0. This argu-
ment they apply post hoc, without any proof that General
Relativity requires such a condition on the Kretschmann
scalar.

The assumption that “the origin” r = 0 marks the point
at the centre of spherical symmetry of the manifold described
by (1) is demonstrably false. Furthermore, a geometry is fully
determined by its line-element [5,15], not by arbitrary values
assigned to any curvature invariant which is calculated from
the line-element itself in the first place. Given a line-element
of the form of Eq. (1) the admissible values of its associated
curvature invariants and the location of its centre of spherical
symmetry are fully fixed by it, and so they cannot be arbitrar-
ily determined by simple inspection and ad hoc assumptions.

To illustrate the inadmissibility of the methods applied by
the astrophysical scientists in their analysis of Eq. (1), I shall
adduce counter-examples that satisfy all the required condi-
tions (a)–(d) and their additional assumptions concerning r
and the Kretschmann scalar, but nevertheless clearly contra-
dict the claims made by the astrophysical scientists in relation
to Eq. (1). By these counter-examples I will demonstrate, by
application of the very same methods the astrophysical scien-
tists apply to Eq. (1), that there are “spacetimes” in which the
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singularity of a “black hole” is encountered before the event
horizon, and that this event horizon can be “removed” by ap-
plication of the Kruskal-Szekeres method. I will also give an
example that not only inverts the locations of the event hori-
zon and the singularity, relative to Eq. (1), but also locates
them both at places other than the “origin” r = 0 at which the
metric is well-defined. It is in fact rather easy to generate
an infinite number of such counter-examples (but just one is
sufficient to invalidate the Kruskal-Szekeres “extension”).

These counter-examples amplify the fact that the usual
assumption on Eq. (1) that “the origin” r = 0, simply by in-
spection, marks the point at the centre of spherical symme-
try of the manifold it describes, is entirely false, and that the
additional assumption that the Kretschmann scalar must be
unbounded at a “real” or “physical” singularity is also false.
This should not really be all that surprising, bearing in mind
that the usual assumptions are just that, for which no proofs
have ever been produced. It follows that there is no black
hole associated with Eq. (1), and that the Kruskal-Szekeres
“extension” is fallacious.

It is easily proven that r in Eq. (1) is the inverse square
root of the Gaussian curvature of the spherically symmetric
geodesic surface in the spatial section [16, 17, 19]. Being di-
rectly related to a curvature invariant, its values are fixed by
the intrinsic geometry, fixed by the form of the line-element
itself, as are all other related curvature invariants.

It must also be remarked that the transition from
Minkowski spacetime to Schwarzschild spacetime involves
no matter whatsoever. Therefore Schwarzschild spacetime is
not in fact a generalisation of the laws of Special Relativity;
only a generalisation of the geometry of Minkowski space-
time. The speed of light in vacuum, c, which appears in the
Minkowski line-element is not a photon; it is a speed, the
maximum speed with which a point is permitted to move in
Minkowski spacetime. Similarly, the appearance of the con-
stant c in Schwarzschild spacetime does not imply the pres-
ence of a photon there either. A photon must be present a pri-
ori to assign the speed c to the photon. Neither photons nor
masses are present, by construction, in the generalisation of
Minkowski spacetime to Schwarzschild spacetime, owing to
the equations Rµν = 0 according to condition (c). Minkowski
spacetime is not Special Relativity — the latter requires the a
priori presence of matter, the former does not. Schwarzschild
spacetime is a spacetime that by construction contains no
matter, and hence no sources.

2 Counter-examples

Consider the metric

ds2 =

(
1 − 2m

2m − r

)
dt2 −

(
1 − 2m

2m − r

)−1

dr2−

− (r − 2m)2
(
dθ2 + sin2 θ dϕ2

)
.

(3)

First, it is clear that Eq. (3) satisfies all the conditions (a)–

(d), and so metric (3) is as good as metric (1). I now apply to
Eq. (3) the very same methods that the astrophysical scientists
apply to Eq. (1) and so assume that 06 r<∞ on Eq. (3), and
that “the origin” r = 0 marks the point at the centre of spher-
ical symmetry of the manifold. By inspection there are two
“singularities”; at r = 2m and at r = 0, just as in the case of
Eq. (1). When r> 2m the signature of (3) is (+,−,−,−), just
as in Eq. (1). When 0< r< 2m the signature is (−,+,−,−),
again just as in Eq. (1). Now when r = 2m, the coefficient of
dt2 in Eq. (1) is zero, but in Eq. (3) it is undefined. Similarly,
when r = 0, the coefficient of dt2 in Eq. (1) is undefined but in
Eq. (3) it is zero. Furthermore, when r = 2m, the Kretschmann
scalar is f = 3/4m4 in Eq. (1) but is undefined in Eq. (3), and
when r = 0, the Kretschmann scalar is f = 3/4m4 in Eq. (3)
but is undefined in Eq. (1). Therefore, according to the meth-
ods of the astrophysical scientists there is an infinitely dense
point-mass singularity at r = 2m and an event horizon at r = 0
in Eq. (3) (or alternatively a singularity of finite density and
radius r = 2m so that the event horizon is within the singu-
larity). Thus the singularity is encountered before the event
horizon, and the “Schwarzschild radius” of the black hole in
Eq. (3) is r = 0. Again, following the very same methods
that the astrophysical scientists apply to Eq. (1), apply the
Kruskal-Szekeres method to remove the “coordinate singu-
larity” at r = 0 in Eq. (3) by setting

u =

(
1 − 2m − r

2m

) 1
2

e
2m−r

4m sinh
t

4m
,

v =

(
1 − 2m − r

2m

) 1
2

e
2m−r

4m cosh
t

4m
.

Then metric (3) becomes,

ds2 =
32m3

r − 2m
e

r−2m
2m

(
du2 − dv2

)
+

+ (r − 2m)2
(
dθ2 + sin2 θ dϕ2

)
,

(4)

where r is a function of u and v, by means of
( r
2m

)
e

2m−r
2m = v2 − u2.

It is now apparent that Eq. (4) is not singular at r = 0. The
singularity at the event horizon with its “Schwarzschild ra-
dius” r = 0 has been removed. The metric is singular only at
r = 2m where according to the astrophysical scientists there
must be an infinitely dense point-mass singularity (or alterna-
tively a singularity of finite density and radius r = 2m so that
the event horizon is within the singularity).

In obtaining Eq. (4) I have done nothing more than that
which the astrophysical scientists do to Eq. (1), and since (1)
and (3) satisfy conditions (a)–(d), the one is as good as the
other, and so Eq. (3) is as valid as Eq. (1) insofar as the meth-
ods of the astrophysical scientists apply. Thus, the methods
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employed by the astrophysical scientists are flawed. To am-
plify this even further, consider the metric,

ds2 =

(
1 − 2m

4m − r

)
dt2 −

(
1 − 2m

4m − r

)−1

dr2−

−(r − 4m)2
(
dθ2 + sin2 θ dϕ2

)
.

(5)

It is clear that this metric also satisfies conditions (a)–(d),
and so Eq. (5) is as good as eqs. (1) and (3). Once again, ap-
plying the very same methods of the astrophysical scientists,
assume that 06 r<∞ and that r = 0 is the “origin”. Then by
inspection there are singularities at r = 4m and at r = 2m. For
r> 4m the signature of (5) is (+,−,−,−); for 2m< r< 4m it is
(−,+,−,−) and for 06 r< 2m it is (+,−,−,−). Now at r = 4m
the coefficient of dt2 is unbounded and at r = 2m it is zero.
But at r = 0 it is neither zero nor unbounded — the metric is
well-defined there. Furthermore, at r = 4m the Kretschmann
scalar is unbounded and at r = 2m it is f = 3/4m4, but at r = 0
it is f = 3/256m4. Thus, according to the methods of the as-
trophysical scientists there is an event horizon at r = 2m with
“Schwarzschild radius” r = 2m, and an infinitely dense point-
mass singularity at r = 4m (or alternatively a singularity of
finite density and radius r = 4m so that the event horizon is
within the singularity). So the singularity is encountered be-
fore the event horizon. The “coordinate” event horizon sin-
gularity at “Schwarzschild radius” r = 2m can be removed by
again applying the Kruskal-Szekeres method, by setting

u =

(
4m − r

2m
− 1

) 1
2

e
4m−r

4m cosh
t

4m

v =

(
4m − r

2m
− 1

) 1
2

e
4m−r

4m sinh
t

4m

for r< 2m, and

u =

(
1 − 4m − r

2m

) 1
2

e
4m−r

4m sinh
t

4m

v =

(
1 − 4m − r

2m

) 1
2

e
4m−r

4m cosh
t

4m

for r> 2m.
Metric (5) then becomes

ds2 =
32m3

r − 4m
e

r−4m
2m

(
du2 − dv2

)
+

(r − 4m)2
(
dθ2 + sin2 θ dϕ2

)
,

(6)

where r is a function of u and v, by means of
(

2m − r
2m

)
e

4m−r
2m = u2 − v2.

It is apparent that Eq. (6) is singular only at r = 4m, where,
according to the astrophysical scientists, there is an infinitely

dense point-mass singularity (or alternatively a singularity
of finite density and radius r = 4m so that the event hori-
zon is within the singularity). At the event horizon with
“Schwarzschild radius” r = 2m, the metric is not singular. At
the “origin”, r = 0 the metric is well-defined, and since Eq.’s
(1), (3) and (5) satisfy conditions (a)–(d), any one is as good
as any other, and so Eq. (5) is as valid as Eq. (1) insofar as
the methods of the astrophysical scientists apply. Since met-
rics (1), (3) and (5) all satisfy conditions (a)-(d) there is no a
priori reason to favour one over the other. Moreover, all the
faults associated with metrics (3) and (5) are shared by metric
(1), insofar as the methods of the astrophysical scientists are
concerned, despite them all satisfying the required conditions
(a)–(d). Those faults lie in the assumptions of the astrophys-
ical scientists, as applied to all the Schwarzschild spacetime
metrics above.

It is of utmost importance to note that Eq. (1) is not in
fact Schwarzschild’s solution. Here is Schwarzschild’s actual
solution.

ds2 =

(
1 − α

R

)
dt2 −

(
1 − α

R

)−1
dR2 − R2

(
dθ2 + sin2 θ dϕ2

)
,

R =
(
r3 + α3

) 1
3 , 0 < r < ∞, α = const.

Here r is not a distance of any kind in the manifold; and it
is not the inverse square root of the Gaussian curvature of the
spherically symmetric geodesic surface in the spatial section
of Schwarzschild’s solution — it is a parameter (and so it is
also in Eq. (1)). Schwarzschild’s solution contains only one
singularity, when r = 0, and so it precludes the black hole.
The so-called “Schwarzschild solution” is a corruption, due
to David Hilbert [22, 23], of Schwarzschild’s solution, and
the solution obtained independently by Johannes Droste [24].

The correct generalised treatment of Schwarzschild ge-
ometry is given in [16–21].

3 The usual derivation of the “Schwarzschild solution”

The astrophysical scientists begin with Eq. (2) and propose a
generalisation of the form (or equivalent thereof),

ds2 = e2λdt2 − e2βdr2 − r2
(
dθ2 + sin2 θ dϕ2

)
, (7)

the exponential functions being introduced to maintain the
signature of Minkowski spacetime, (+,−,−,−), thereby en-
suring that the coordinates r, θ, ϕ remain space-like quantities
and t remains a time-like quantity [1–9, 11, 12]. Both λ and
β are real-valued analytic functions of only the real variable
r. Eq. (1) is then obtained in accordance with conditions
(a)–(d). Despite the fixed signature of Eq. (7), the astrophys-
ical scientists permit a change of signature in their resultant
Eq. (1), in violation of their construction of Eq. (7), by which
they produce a black hole by the Kruskal-Szekeres method.
Note that the change of signature in Eq. (1) to (−,+,−,−),
in violation of the construction of Eq. (7), causes the rôles
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of the quantities t and r to be exchanged, i.e. t becomes a
space-like quantity and r becomes a time-like quantity. This
means that all the components of the metric tensor of Eq. (1)
become functions of the time-like quantity r: but this is then
a non-static metric, in violation of condition (a).

There is no matter present in the derivation of Eq. (1)
from Eq. (7), since all matter, including sources, is eliminated
by construction, according to condition (c), i.e. Rµν = 0, and
since there is no matter present in Eq. (2) either. It is however
claimed by the astrophysical scientists that matter is nonethe-
less present as a source of the alleged gravitational field “out-
side a body”, and that the field caused by this source, perme-
ating the spacetime “outside” it, in the spacetime of Rµν = 0,
is Schwarzschild spacetime, obtained from Eq. (7). The con-
stant appearing in the line-element for the “Schwarzschild so-
lution” the astrophysical scientists arbitrarily assign as mass,
post hoc, by simply inserting Newton’s expression for escape
velocity: a two-body relation into an alleged one-body prob-
lem (their “outside a body”). But it is obviously impossi-
ble for Schwarzschild spacetime, which is alleged by the as-
trophysical scientists by construction to contain one mass in
an otherwise totally empty Universe, to reduce to or other-
wise contain a relation that is defined in terms of the a priori
interaction of two masses. Their invalid resort to Newtonian
theory is amplified by writing Eq. (1) in terms of c and G
explicitly,

ds2 =

(
c2 − 2Gm

r

)
dt2 − c2

(
c2 − 2Gm

r

)−1

dr2−

− r2
(
dθ2 + sin2 θdϕ2

)
.

The term 2Gm/r is now immediately recognised as the
square of the Newtonian escape velocity from a mass m at
radius r. And so the astrophysical scientists assert that for a
black hole the “escape velocity” is that of light in vacuum at
an event horizon (“Schwarzschild radius”) rs = 2Gm/c2. But
escape velocity is a concept that involves two bodies - one
body escapes from another body. Even though one mass ap-
pears in the expression for Newton’s escape velocity, it can-
not be determined without recourse to a fundamental two-
body gravitational interaction by means of Newton’s theory
of gravitation. The post hoc introduction of mass into the
“Schwarzschild solution” is thus, inadmissible. Furthermore,
the quantity r appearing in Newton’s expression for escape
velocity is a radial distance, but it is not radial distance in
Schwarzschild spacetime because it is not even a distance in
Schwarzschild spacetime.

4 Conclusions

The foregoing counter-examples show that the methods used
by the astrophysical scientists in analysing Eq. (1), by which
they construct the black hole, are invalid. Instead of using the
line-element to determine all the intrinsic geometric proper-
ties of the manifold, as they should, they instead make false

assumptions, by mere inspection, as to the “origin”, the geo-
metric identity of the quantity r, the values of the Riemann
tensor scalar curvature invariant (the Kretschmann scalar),
and the presence of matter. The fact is that the quantity
r appearing in all the line-elements discussed herein is not
even a distance, let alone a radial one, in any of the line-
elements. Moreover, in Eq. (1), r = 0 certainly does not mark
the “origin” or point at the centre of spherical symmetry of the
“Schwarzschild” solution, contrary to the arbitrary assertions
of the astrophysical scientists. The identity of the point at
the centre of spherical symmetry is also determined from
the line-element, by calculation. The astrophysical scientists
have never correctly identified the geometric identity of r in
Eq. (1). Without knowing the true identity of r, and by mak-
ing their concomitant additional false assumptions, they have
violated the intrinsic geometry of the line-element. It is from
these violations that the black hole has been constructed by
the astrophysical scientists. There is in truth no solution to
Einstein’s field equations that predicts the black hole.

Minkowski spacetime is not Special Relativity: there is no
matter involved in the transition from Minkowski spacetime
to Schwarzschild spacetime, and so Schwarzschild spacetime
does not generalise the laws of Special Relativity, and so does
not describe Einstein’s gravitational field.
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Is Fundamental Particle Mass 4π Quantized?
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The Standard Model lacks an explanation for the specific mass values of the fundamen-
tal particles. This is to report that a single spin quantized mass formula can produce the
masses of the proton, the W, and the three electron generations. The 4π mass quanti-
zation pattern limits the electron generations to three, while the particle’s generational
property is one of the components of the proposed intra-particle quantization process.
Although the developed relationships are presently phenomenological, so was Bohr’s
atomic quantization proposal that lead to quantum mechanics.

1 Introduction

In an attempt to understand the reason for particle mass
values, several authors have looked for mass relationships
among the known particles.

Nambu [1] suggested that quark composite particle mass
may be quantized, showing a 70 MeV quantization pattern.

Palazzi [2] (2007) revisits this hypothesis for mesons
showing that this quantization pattern is statistically real.

Ne’eman and Sijacki [3] use the SL(4,R) group and spin
(1/2,3/2,5/2, etc.) to produce the Regge trajectory like behav-
ior of quark particle masses suggesting the possibility that
mass may be spin quantized.

What has not been seen is that given the experimen-
tal and theoretical uncertainty, the measured W± mass of
80398 ± 25 MeV [4] is exactly 2mp/me (3672.30534) times
the mass value symmetrically between the electron and the
proton (√mp me = 21.89648319 MeV), i.e. 80410.57 MeV.

2 Fundamental particle mass, a spin quantized process?

Taking a mass symmetric approach to fundamental particle
mass leads to an eloquently simple spin quantized mass rela-
tionship between the stable spin 1/2 electron and proton mass
and the unstable spin 1 W± particle mass given by

mx = Msp
(
2S mp/me

)(S CM)
, (1)

where x is {p,e,W}, the mass symmetry point Msp is
21.89648319 MeV, S is the spin quantum number { 12 ,1}, C
is the charge quantum number {±1}, and M is the matter type
quantum number {matter = +, anti-matter = −}.

Thus equation (1) is both mass and charge up/down sym-
metric, spin quantized and indicates Nature may be funda-
mentally mass symmetric.

As indicated in §9, this mass up/down symmetry is in
keeping with the measured cosmological constant.

3 Nature’s constants, as functions of 4π

Proposing natures coupling constants are a function of 4π and
the fine structure coupling constant and the weak (angle) cou-
pling constant are connected to mass, yields the following 4π
definitions.

The fine structure constant αcs = πς(4π%)−2/(2
√

2), the
charged weak angle αsg = 2

√
2(4π%)−1 (∼.2344 vs .2312

[5]), where “g” is the other force that couples to produce
the weak coupling constant. The relationship to mass is
πme/mp = αcsαsg = αcg = πς(4π%)−3 and thus mp/me =

(4π%)3/ς. The uncharged (neutrino) weak angle αsg(1) =

2
√

2(4π1)−1 (∼.2251 vs .2277 [6]). The new constant % =

αcs αsg(1) mp/(me π) = 0.959973785 and ς = (4π%)3 me/mp =

0.956090324.

4 Fundamental particle mass, a 4π quantized process?

Equation (1) rewritten with the 4π definition of mp/me re-
sults in

mx = Msp
(
2S (4π%)3/ς

)(S CM)
. (2)

In addition to being spin quantized, equation (2) indicates that
the fundamental particle mass quantization process is a func-
tion of (4π)x. For example, the pure theory mp(1,1)/me(1,1) ratio
(% = 1, ς = 1) is exactly (4π)3 where the deviation from the
pure theory 4π quantization process is given by %.

5 Three electron generations, a 4π quantized process?

The electron generational mass ratios also appear to be a func-
tion of (4π%x)x or more precisely (4π%x)(3−x).

The first (x = 1) mass ratio µ to e (i.e me1/me0 ) is√
2(4π%1)(3−1) where %1 = .962220482 while the second (x =

2) mass ratio me2/me1 is
√

2(4π%2)(3−2) with %2 = .946279794.
Note that % and %x are believed to be the deviation from

pure theory for two separate frequency components of the
quantization processes.

Thus the form of the first and second (x=1,2) genera-
tion mass ratios (me(x)/me(x−1)) is

√
2(4π%x)3−x. The deviation

from the generational pure theory 4π quantization process in-
creases (smaller %x) with higher generations.

This
√

2(4π)3−x pattern also results in the x = 3 mass ratio
(me3/me2 ) of (4π)(3−3), i.e. no higher (4π)x quantized mass
states and thus no higher generations.

The similarity of 4π quantization allows the fundamental
particle equation (1) to be combined with the generational re-
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lationship into a single phenomenological equation given by,

mx = Msp(n)
(
2S (4π%)3/ς

)(S CM)
, (3)

where Msp(n) = Msp S −n/2(4π%n)(6S n−S n(n+1)) and %n = 1 −
log(1 + 64.75639 n/S )/(112S ) are used and generation n is
{0,1,2}.

From (3), the me1 (µ) mass is 105.6583668 MeV (µ =

105.6583668 ± .0000038 MeV [4]) and the me2 (τ) mass is
1776.83 MeV (τ = 1776.84 ± .17 MeV [4]).

Remember that even though both %n, and % represent devi-
ations from the pure theory (4π)x quantization nature of these
particles’ masses, their cause is understood to be related to
two separate quantization process components.

6 The Standard Model and quantization

First, the quantization proposition is not in conflict with the
existence of quarks. Rather quantization is an additional
constraint. The quantization proposition is that if there is a
(pseudo-) stable frequency quantized state, then there is an
observed (persistent) massed particle resulting in;

1) a specific stable quantization state energy/mass or
2) a pseudo-stable quantized decay mass value.
Thus the quantization process constrains the stable parti-

cle base mass or unstable particle decay point mass while the
types and symmetries of quarks construct the particle varia-
tions seen in the “particle zoo”.

That quark composite particle masses are quantized was
first suggested by Nambu [1] and recently statistically vali-
dated by Palazzi [2]. The quantization increments cited are
70 (n=integer) and 35 MeV (n=odd or n=even) which are ap-
proximately Msp π and Msp π/2. Thus for example η (547)
has n=16 [2] and using Msp nπ/2 gives mη = Msp 8π ' 550.

A Regge trajectory like spin quantum number based
quantization pattern is given by Ne’eman and Sijacki [3]
where the particle’s measured mass vary about the predicted
points. For the (3/2,1) group the points are approximately
(20, 22, 24) π Msp, for the (5/2,2) group they are approxi-
mately (24, 26, 28, 30, 32) π Msp, and for the (7/2,3) group
they are approximately (28, 30, 32, 34, 36, 38, 40) π Msp.

Second, a quantizing mechanism as fundamental to the
nature of massed particles is a natural explanation given QM’s
quantized nature.

Third, an intra-particle quantization process minimally
needs two intra-particle frequency components. Equation (3)
suggests one component is related to the particle’s “invari-
ant” mass/energy and a second component is related to the
generational mass symmetry point. A generational compo-
nent could be the source for and thus explain the genera-
tional exchange seen in the muon neutrino nucleon interac-
tion νµ + N → P+ + µ−. The generational component’s effect
on the charged particle mass symmetry point is Msp(n).

Is the massed particle a “quantized photon”?

Is the first photonic component of the quantization pro-
cess the underlying reason for the universality of Maxwell’s
equations for both photons and charged particles?

Is the second quantizing component responsible for the
intra-particle mass and charge quantization, for the genera-
tional property, as well as the (inter-particle?) quantization of
QM?

7 Equation 1 and new particles

If quantization is the source of (1) then, quark structure per-
mitting, there may be a second generation proton. From the
phenomenological equation (3), mp2 ' 194 GeV. This second
generation proton is within LHC’s capabilities.

Note that equation (3) is phenomenological and another
option exists for merging the electron generations.

Equation (1) also indicates the possibility of a new “lep-
ton like” (mass down charge down) spin 1 light W± parti-
cle with a mass of ∼ 5.96 KeV (mlW). If such low fre-
quency/energy quantization is possible, the lW±’s decay, like
the W±’s decay, would be instantaneous. At KeV energy,
attempted quantization may only result in enhanced photon
production. At MeV energies, lW± pair production with in-
stantaneous decay would look like an electron positron pair
production but would actually be lW− → e− + ν and lW+ →
e+ + ν decays.

Finally, the super-symmetric (charge and mass symmet-
ric) view that results from equation (1) can make some fun-
damental Standard Model problems go away.

8 The matter only universe problem

The present SM has only a matter anti-matter mass creation
process, yet we appear to have a matter only universe. This
aspect is presently unaccounted for.

The super-symmetric view indicated by the charge and
mass up/down symmetry of (1) and (2) enables the possibility
of an alternate mechanism for fundamental particle creation.

This alternate process symmetrically breaks the electron
and proton of the same mass (for eq. (2), at % = (4π)−1, ς = 1,
me = mp) into a proton of higher mass (up) and an electron of
lower mass (down), yielding a matter only universe.

9 The cosmological constant problem

Given the symmetric mass up/down symmetry breaking of (2)
that produces a matter only universe, the symmetry break-
ing contribution to the cosmological constant can be zero
and thus consistent with the observed cosmological constant
value. Based on the Standard Model’s view, QCD’s contribu-
tion to the cosmological constant produces a value that is off

by 1046, i.e 46 orders of magnitude wrong [7], with no sub-
stantive resolution. Using the Standard Model view for the
electroweak contribution results in an even greater error.

The preciseness of the predicted W± particle mass of
equation (1) and the pattern of quantization shown via (2)
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and (3) call into question many of the Standard Model views
and assumptions about the causality of the observed “invari-
ant mass” values.

However, it is precisely the Standard Model view and
the Standard Model symmetry breaking approach that results
in these fundamental Standard Model problems. Maybe we
should listen to these fundamental problems with more care.

10 Summary

The Standard Model is highly successful in many areas, espe-
cially QM and QED. One of the open questions for the Stan-
dard Model is the cause of the specific invariant mass values
of fundamental particles.

The accepted Standard Model view hides the fact that the
measured W± mass of 80398 ± 25 MeV [4] is exactly 2mp/me
(3672.30534) times the mass value symmetrically between
the electron and the proton (Msp = (mp me)1/2) and the Stan-
dard Model gives no reason for the electron generations nor
their masses.

A mass and charge symmetric, 4π quantized and spin
quantized mass formula is given that produces the exact W±

particle mass. The electron generation mass ratios can be
produced using a 4π related magnitude, i.e me(x)/me(x−1) =√

2(4π%x)3−x for x=(1,2).
The common 4π formulation allows the single mass for-

mula (3) to produce the masses of the proton, the W, and the
three electron generations.

Equations (1), (2) and (3) strongly suggest several new
aspects.

First, in addition to the atomic orbital quantization of QM,
there is an intra-particle quantization mechanism which gives
the fundamental particles and generations their invariant mass
values.

Second, the fundamental particle quantization process is
spin { 12 ,1} and 4π quantized.

Third, equation (1) indicates that nature is actually highly
symmetric, being charge and mass up/down symmetric.

This symmetry allows for the possibility of an alternate
matter creation process for the early universe which results in
creating only matter.

In addition the mass and charge super-symmetric view of
equation (1) should yield a near zero cosmological constant
in keeping with the observed value.

A quantization proposition is not in conflict with the ex-
istence of quarks.

A dual approach is required to explain the 4π and spin
mass pattern of equation (1), the 4π electron generation mass
pattern, and Palazzi’s [2] results.

This dual approach involves a quantizing mechanism as
the source of the stability and mass value of the spin 1/2 par-
ticles, the mass values of the fundamental W± particles, and
the decay point mass of quark composites, while the types

and symmetries of quarks construct the variations seen in the
“particle zoo”.

The quantized view of equation (3) indicates that one of
the intra-particle quantization components can be the source
for the generational identity and a foundation for the gen-
erational exchange seen in the muon neutrino interaction
νµ + N → P+ + µ−.

Is “A quantized form of energy.” the answer to the ques-
tion “What is mass?”.

If relationship (1) and the quantization interpretation of
(1), (2) and (3) are fundamental, then the recognition of an
intra-particle quantization process is required to move the
Standard Model to a massed particle model.

Submitted on August 16, 2009 / Accepted on August 25, 2009

References
1. Nambu Y. An empirical mass spectrum of elementary particles. Prog.

Theor. Phys., 1952, v. 7, 595.

2. Palazzi P. The meson mass system. Int. J. of Mod. Phys., 2007,
v. A22 (2/3), 546–549.

3. Ne’eman Y., Sijacki Dj. SL(4,R) Classification for hadrons. Phys. Lett.,
1985, v. B157 (4), 267–274.

4. Amsler C. et al. Phys. Lett., 2008, v. B667, 1; Updated Par-
ticle Data Group, Particle Listings 2009 http://pdg.lbl.gov/2009/

listings/rpp2009-list-electron.pdf, rpp2009-list-muon.pdf, rpp2009-
list-tau.pdf, rpp2009-list-p.pdf, rpp2009-list-w-boson.pdf.

5. Particle Data Group, Physical Constants 2009:
http://pdg.lbl.gov/2009/constants/rpp2009-phys-constants.pdf

6. Zeller G.P. et al. (NuTeV collaboration) Precise determination of elec-
troweak parameters in neutrino-nucleon scattering. Phys. Rev. Lett.,
2002, v. 88, 091802.

7. Carroll S.M. The cosmological constant. Living Rev. Relativity, 2001,
v. 4, 1; arXiv: astro-ph/0004075.

10 Robert A. Stone Jr. Is Fundamental Particle Mass 4π Quantized?



January, 2010 PROGRESS IN PHYSICS Volume 1

From Inspired Guess to Physical Theory: Finding a Theory of Gravitation

Pieter Wagener

Department of Physics, NMMU South Campus, Port Elizabeth, South Africa
E-mail: Pieter.Wagener@nmmu.ac.za

A theory of gravitation satisfying all experimental results was previously proposed in
this journal. The dynamics was determined by a proposed Lagrangian. In this paper it
is shown how this Lagrangian can be derived heuristically. A Newtonian approach is
used, as well as other methods.

1 Introduction

A theory proposed in previous articles in this journal [1–4]
relied on two postulates, one of which is that the dynamics of
a system is determined by a Lagrangian,

L = −m0

(
c2 + v2

)
exp

R
r
, (1)

where m0 is the gravitational rest mass of a test body moving
at velocity v in the vicinity of a massive, central body of mass
M, γ = 1/

√
1 − v2/c2 and R = 2GM/c2 is the Schwarzschild

radius of the central body.
This Lagrangian leads to equations of motion that satisfy

all experimental observation of gravitational effects. It also
leads to expressions for electromagnetic and nuclear interac-
tions. In this regard it gives the fine spectrum of the hydrogen
atom and the Yukawa potential for the nuclear force.

No explanation was given of how this Lagrangian had
been determined, but only that its validity is confirmed by the
consistency of its resultant equations of motion and agree-
ment with experiment.

It is informative to show how such a Lagrangian can be
derived. The procedure leads to an understanding of the cre-
ation and development of physical theories.

When a Lagrangian embodies the fundamentals of a phys-
ical model it cannot be derived from first principles. What
is needed is an inspired guess to start with. The equations
of motion derived from the initial Lagrangian are compared
with observation. If they do not fit satisfactorily with the first
try, then one adjusts the Lagrangian to conform closer to ex-
perimental results. This modelling cycle is repeated until a
satisfactory agreement is found with observation.

In the case of the above Lagrangian various approaches
are possible. We consider some of them.

2 Newton’s approach

We follow a Gedanken speculation of how Isaac Newton
would have derived a law of gravitation if he had been aware
of the modern classical tests for a theory of gravitation.

The development of theories of gravitation at the begin-
ning of the previous century is well documented [5, 6]. The
essential test for a theory of gravitation at that time was

whether it explained the anomalous perihelion precession of
the orbit of Mercury, first calculated by Leverrier in 1859.
This was satisfactorily explained by Einstein’s theory of gen-
eral relativity. Further predictions of this theory, i.e. the bend-
ing of light by a massive body and of gravitational redshift,
have subsequently become part of the three benchmark tests
for a model of gravitation.

2.1 Modern Newton

It is not generally known that Newton first derived his inverse
square law of gravitation by first considering circular orbits
[7, 8]. He applied Huygens’s law for the acceleration in a
circular orbit,

a =
v2

r
, (2)

and Kepler’s third law to arrive at the inverse-square relation.
He then proceeded to show in his Philosophiae Naturalis
Principia Mathematica (there is some doubt about this [9])
that elliptical motion follows in general from this relation.

We follow a similar procedure by assuming a scenario
along which Newton could have reasoned today to arrive at
a refinement of his law of gravitation.

He would have been aware of the three classical tests for
a theory of gravitation and that particles traveling near the
speed of light obey relativistic mechanics. Following an iter-
ative procedure he would have started with the simple model
of circular orbits, derived the appropriate law of gravity, but
modified to accommodate relativistic effects and then gener-
alised it to include the other conical sections. It would finally
be compared with other experimental results.

2.2 Finding a Lagrangian

For motion in a circular orbit under the gravitational attraction
of a mass M one must have:

v2

r
=

GM
r2 . (3)

Because of relativistic considerations, the ratio v2/c2 must
be compared relative to unity, i.e.

1 − v
2

c2 = 1 − GM
r c2 . (4)

Pieter Wagener. From Inspired Guess to Physical Theory: Finding a Theory of Gravitation 11



Volume 1 PROGRESS IN PHYSICS January, 2010

Note that (4) is not an approximation of (2) for v � c.
If we surmise that the inverse square law is only valid for
r � R, one could incorporate higher order gravitational ef-
fects by generalising the right-hand side of (4) to a polyno-
mial. Furthermore, to allow other motion besides circles, we
multiply the right-hand side by an arbitrary constant K:

1 − v
2

c2 =

(
1 +

a′R
r

+
b′R2

r2 + . . .

)
K ,

= KP′(r) ,
(5)

or (
1 − v

2

c2

)
P(r) = K , (6)

where

P(r) = 1 +
aR
r

+
bR2

r2 . . . , (7)

is the inverse of P′(r).
In order to compare (6) with experiment, we have to con-

vert it to some standard form in physics. To do this we first
rewrite (6) as:

(1 − K)
c2

2
=
v2

2
− GMa

r
− av2R

2r
+ . . . (8)

If we multiply this equation by a constant, m0, with the
dimension of mass, we obtain a conservation equation with
the dimensions of energy:

(1 − K)
m0 c2

2
=

m0 v
2

2
− GMm0a

r
− m0 av2R

2r
+ . . . (9)

For r � R, this equation must approach the Newtonian
limit:

m0 v
2

2
− m0MGa

r
= EN , (10)

where EN is the total Newtonian energy. Comparison of (10)
with the Newtonian expression gives a = 1.

To simplify the notation, we define a constant E with di-
mensions of energy, such that

K =
E

m0c2 . (11)

From (6),

E = m0c2
(
1 − v

2

c2

)
P(r) . (12)

If we consider (12) as the total energy of the system, we
can find a corresponding Lagrangian by separating the poten-
tial and kinetic energies:

T = −m0 v
2P(r) ,

V = m0 c2P (r) .

The corresponding Lagrangian is therefore:

L = T − V = −m0

(
c2 + v2

)
P(r) . (13)

Applying the Euler-Lagrange equations to this Lagran-
gian one can find the equations of motion of the system. The
conservation of energy (12) follows again, while for the con-
servation of angular momentum we find

P (r)r2 θ̇ = constant = h. (14)

The equations of motion for the system can then be de-
rived from (12) and (14) as a generalised Kepler problem.
From these equations one finds a differential equation of mo-
tion of the form

dθ
du

= Au2 + Bu + C , (15)

where

u =
1
r
,

A = bR2 4 − E
2h

− 1 , (16)

B =
R (2 − E)

h2 , (17)

C =
1 − E

h2 . (18)

The convention m0 = c = 1 was used, and terms higher
than R2/r2 were ignored.

2.3 Perihelion precession

In the case of an ellipse, the presence of the coefficient A gives
rise to a precession of the perihelion. For one revolution this
can be calculated as:

6bπcR
ā (1 − e2)

, (19)

where ā is the semi-major axis and e is the eccentricity of
the ellipse. Comparison with the observed value for Mercury
gives b = 1/2. With this result the polynomial of (7) be-
comes:

P (r) = 1 +
R
r

+
R2

2r2 + . . . (20)

Equation (20) could be regarded as simply a fit to experi-
mental data. The theoretical physicist, however, will look for
a pattern or a generalisation of some underlying physical law.
The form of the equation leads one to propose that the above
terms are the first three terms in the Taylor expansion of

P(r) = exp
R
r
. (21)

Confirmation of this form, which is aesthetically more ac-
ceptable, must come from other experimental results, such as
the bending of light by a massive object. This is shown in the
first article referred to above [1].

The Lagrangian of (13) can now be rewritten in the form
of (1):

L = −m0

(
c2 + v2

)
exp

R
r
, (22)
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or in terms of the potential Φ as

L = −m0

(
c2 + v2

)
exp

2Φ

c2 . (23)

The conservation of energy equation (12) can be writ-
ten as

E = m0 c2 eR/r

γ2 . (24)

We define a variable gravitational mass as

m =
m0

γ2 , (25)

so that (24) can also be written as

E = mc2 eR/r. (26)

3 A gravitational redshift approach

We continue with the hypothetical Newton, but starting from
another experimental observation. In the presence of a body
of mass M a photon undergoes a frequency shift relative to its
frequency ν0 in the absence of the body:

ν = ν0

(
1 − R

2r

)
,

where ν0 is an invariant.
In line with our inspired guess approach, we surmise that

the right-hand side of this equation is a first order approxima-
tion to

ν = ν0 e−R/2r, (27)

or
ν0 = νeR/2r. (28)

Substituting time for the frequency, ν = 1/t and rearrang-
ing:

dt = B eR/2rdτ , (29)

where dτ is an invariant time interval, or proper time, and B is
a proportionality constant. Substituting the special relativity
relation dt = γdτ in (29),

1
B

=
eR/2r

γ
. (30)

This is a conservation equation involving the variables r, v
and M. In order to relate this equation to the classical conser-
vation of energy equation and its Newtonian limit, the equa-
tion must be squared and multiplied by m0 c2:

m0 c2

B2 = m0 c2 eR/r

γ2 . (31)

This is the same equation as (24) for E = m0c2/B2.
From (11) we note that B2 = 1/K. Separating the ki-

netic and potential energy terms we again find the Lagrangian
of (1).

4 An Einstein approach

It is understandable that the large corpus of publications on
general relativity (GR) over the past few decades tend to un-
derrate the heuristic approach, or inspired guesses, which are
used to derive the field equations of GR. The classic texts do
not. On page 152 of Weinberg’s Gravitation and Cosmol-
ogy [10] the author emphasises the guesswork that leads to
the field equations. Eddington [11, p.82] mentions that “This
preliminary argument need not be rigorous; the final test is
whether the formulae suggested by it satisfy the equations to
be solved”. This is a classical heuristic argument.

One can therefore wonder why the heuristic derivation
was not continued to generalise the metric of GR,

ds2 =

(
1 − R

r

)
dt2 −

− 1

1 − R
r

dr2 − r2dθ2 − r2 sin2θ dφ2, (32)

to an exponential form:

ds2 = e−R/rdt2 − eR/r(dr2 + r2dθ2 + r2 sin2θ dφ2) . (33)

The equations of motion derived from this metric are the
same as those derived from the Lagrangian of (1), but are con-
ceptually and mathematically simpler [1]. From the resulting
conservation equations one can, similarly to the procedures
above, derive our Lagrangian.

5 Nordström’s first theory

Although not an example of a heuristic derivation, Gunnar
Nordström’s first theory [12, 13] is an intriguing example of
how theories of gravitation could have taken a different direc-
tion in 1912.

Nordström’s theory, a noncovariant one, is based on a La-
grangian,

L = exp
R
2r
. (34)

In the case of a static, spherically symmetrical field the
Lagrangian gives a conservation equation,

γ exp
(
− R

2r

)
= AN . (35)

Comparison with (30) shows that AN = B. Nordström’s
first theory therefore gives the same conservation of energy
equation as our theory.

The absence of the
(
c2 + v2

)
term in Nordström’s Lagran-

gian accounts for its difference from our theory and Nord-
ström’s wrong predictions. This shows up in his conservation
of angular momentum,

r2 dθ
dt

= h , (36)

where h = constant.
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Nordström’s theory [14] also gives a variation of mass,

m = m0 e−R/2r. (37)

From (11) and (26) our theory gives

m = Km0 e−R/r. (38)

The close correlation between our theory and that of
Nordström raises the possibility of Nordström, or anyone else
reading his paper of 1912, deriving the Lagrangian of (1).
If this had happened, and the resultant agreement with Mer-
cury’s perihelion precession were found, then the study of
gravitation could have followed a different direction.

Submitted on September 12, 2009 / Accepted on September 18, 2009
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Modern quantum theory is based on de Broglie’s relation between momentum and
wave-length. In this article we investigate certain inconsistencies in its formulation
and propose a reformulation to resolve them.

1 Inconsistencies in de Broglie’s relation

Edward MacKinnon made a critical analysis [1–3] of Louis
de Broglie’s doctoral thesis of 1924 [4]. With this thesis de
Broglie is credited with deriving the first relationship between
the momentum of a particle and its associated quantum wave-
length. MacKinnon’s discussion draws some remarkable con-
clusions. He points out that the most paradoxical feature of
de Broglie’s thesis is the fact that, although his fundamental
argument is essentially relativistic, the only successful appli-
cations of his ideas were essentially nonrelativistic. It is well
known that his relationship λ = h/mv was applied to the Bohr
atom and later to the derivation of Schrödinger’s equation,
both of which are strictly nonrelativistic models. What is not
so well known is that the arguments leading to λ = h/mv are
very much relativistic. De Broglie’s problem was to find the
relativistic transformation of

hν0 = m̃0 c2, (1)

where the relativistic rest mass m̃0 and the frequency ν0 are
invariant.

His considerations led him to assign three different fre-
quencies to the same particle:

ν0 =
m̃0 c2

h
,

the internal frequency in the rest system;

ν1 = ν0

√
1 − v2/c2 ,

the internal frequency as measured by an external observer
who sees the system moving with velocity v;

ν=
ν0√

1 − v2/c2
,

the frequency this observer would associate with the particle’s
total energy.

MacKinnon further points out that de Broglie emphasized
the frequency associated with an electron, rather than the
wavelength. His wavelength-momentum relationship occurs
only once in the thesis, and then only as an approximate ex-
pression for the length of the stationary phase waves char-
acterizing a gas in equilibrium. Most of MacKinnon’s ar-
ticle is devoted to analyzing the reasons why de Broglie’s

formula proved successful, despite the underlying conceptual
confusion. He finally expresses amazement that this confu-
sion could apparently have gone unnoticed for fifty years.

In addition to MacKinnon’s criticism, one can also have
doubts about some of the applications of de Broglie’s formula
in quantum mechanics, particularly to electron diffraction. In
standard physics texts [5, p. 567], in order to apply the de
Broglie relation, the following assumption is made

Ẽ2 = |p|2c2 + m̃2
0c4 ' |p|2c2. (2)

The notation is in accordance with previous articles by the
author in this journal [6, 8].

From this equation the momentum of the electron is cal-
culated as |p| = Ẽ/c, and from the de Broglie relation it fol-
lows that λ = hc/Ẽ.

Various explanations are given to support the approxi-
mation of (2). The most common is to assume that it is
allowed for Ẽ � m̃0 c2. Although this assumption satisfies
experiment, it is not mathematically or conceptually accept-
able. Electron diffraction becomes measurable at high en-
ergies and velocities, where relativistic equations are appli-
cable. For these equations to be mathematically consistent
all terms must be retained, particularly those in the conser-
vation of energy equation. Another approach is to ignore
(2) and to apply a semi-nonrelativistic result, Ẽ = p2/2m̃ or
T = p2/2m̃ [5, p.147], where m̃ = γm̃0 is the relativistic mass
of a particle and T is its kinetic energy. This is clearly unten-
able because of the high velocities.

Another justification for the approximation is that it works
for “experimental purposes” [9]. These assumptions might
not be serious to verify predictions expeerimentally, but in
the spirit of present attempts to formulate a quantum theory
of gravity, these assumptions warrants closer scrutiny.

The use of the above approximation is sometimes sub-
tle and not so apparent. In a popular textbook [10, Problem
12.10] the following equation is given for the conservation of
energy in Compton scattering:

hc
λ

+ m0 c2 =
hc
λ′

+ mc2, (3)

where m0 and m are respectively the rest and final mass of the
electron.
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The equation is inconsistent since wave and corpuscular
expressions are combined in one equation. The expression

hc/λ is simply a shortcut for
√

p2c2 + m2
ν0

c4, where the rest
mass of the photon mν0 is set to zero and de Broglie’s relation
is then applied to p. In general, the assumption of m̃0 = 0 for
a photon has had an uneasy niche in theoretical physics [1].

In a previous paper [6] we presented a unified theory of
gravitation and electromagnetism. We show below that the
model of that theory resolves the inconsistencies discussed
above.

2 A scalar momentum

In the aforementioned paper the following conservation of en-
ergy equation, derived in an earlier paper [7], was given for
the gravitational model:

E = m0 c2 e2Φ/c2

γ2 = total energy , (4)

where

Φ = gravitational potential,
m0 = gravitational rest mass of a test body

moving about a central mass M.


(5)

We have generalized the exponential term in this paper to
a general potential Φ = Rc2/2r, where R = 2GM/c2 is the
Schwarzschild radius of the central body.

We now define a scalar momentum appropriate to our
model.

A constant P0 with dimensions of linear momentum can
be defined in terms of the energy E as

P2
0 = m0E. (6)

Eq. (4) can then be written as

P0 =
m0 c
γ

exp
Φ

c2 , (7)

or, if the mass constant m0 is not required in the energy equa-
tion, as

E =
P0 c
γ

exp
Φ

c2 , (8)

= Pc exp
Φ

c2 , (9)

where
P =

P0

γ
. (10)

In reference [6] we found the following relationship be-
tween the gravitational and electromagnetic energies:

E = Ẽ eΦ/c2
, (11)

where Ẽ = m̃c2 is the energy function of Special Relativity.
Comparing (9) and (11) we get

Ẽ = Pc . (12)

3 Derivation of de Broglie’s relation

3.1 Preliminaries

Using the relationship between frequency ν and wave-
length λ,

c = λν = σω , (13)

where
σ =

λ

2π
=

c
2πν

=
c
ω
, (14)

we rewrite (12) as
Ẽ = Pσω. (15)

Since time does not appear explicitly in the above equa-
tion for Ẽ, we can write down an equivalent Hamiltonian as

H̃ = Pσω. (16)

This form of the Hamiltonian resembles that of the sim-
ple harmonic oscillator, after a canonical transformation with
generating function F = (m̃0/2) q2 cot Q, where q and Q are
the appropriate canonical variables. The significance of this
transformation was first pointed out by Max Born [11, §7].

Briefly, it states that the Hamiltonian of a simple har-
monic oscillator, given by

H̃ =
p2

2m̃0
+

m̃0ω
2q2

2
, (17)

can, by a canonical transformation with the above generating
function, be expressed as

H̃ = Λω, (18)

where Λ = constant.
If our system behaves as an oscillator it follows from (16)

and (18) that
Pσ = constant. (19)

This result prompts us to provisionally write the constant
in (19) as ~, Planck’s constant divided by 2π. This step is
taken a priori, and its validity will depend on the overall con-
sistency of the subsequent results. Keeping this supposition
in mind, we rewrite (19) as

Pσ = ~, (20)

and (15) as
Ẽ = ~ω = hν. (21)

3.2 The photo-electric effect

Eq. (21), combined with Ẽ = m̃c2, gives the photo-electric
effect, m̃c2 = ~ω = hν. Eq. (21) also confirms the use of the
constant h in the expression for gravitational redshift,

E = Ẽ exp
R
2r

= hν exp
R
2r
. (22)
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Eq. (22) is significant in that it contains both h and G in
one relation.

The results of (21) and (22) further confirm the consis-
tency of the derivation of (20).

We emphasize that the ω0, or ω, used above is an inter-
nal property of the test particle; it is not its angular velocity
about a central body. We cannot say with certainty what the
internal physical structure of the test particle should be; only
that if some periodic mechanism exists with respect to the test
particle the frequency of that mechanism is controlled by the
above equations. This, for example, determines the gravita-
tional redshift. As a model for such a type of test particle we
shall simply refer to it as a virtual oscillator.

3.3 Derivation

From (14) and (20),

P =
h
λ
. (23)

Although (23) is similar to the de Broglie relationship be-
tween momentum and wavelength, the momentum P is not
equal to the classical momentum,

p = m̃v . (24)

Nevertheless, we shall see that (23) is consistent with the
application of the de Broglie relation, and actually resolves
some ambiguities in quantum mechanics [1].

3.4 The relationship between p and P

From (12) and Ẽ = m̃c2 we obtain

P = m̃c. (25)

From this we can see that P = Ẽ/c can be regarded as the
fourth component of the relativistic four-vector, pi:

pi =

 p ,
Ẽ
c

 , i = 1, 2, 3, 4, (26)

or
pi = (p , P) , i = 1, 2, 3, 4. (27)

To find a direct relation between p and P we note from
(24) and (25) that

p =
Pv
c

or pc = Pv . (28)

The well-known expression of Special Relativity,

Ẽ2 = p2c2 + m̃2
0c4, (29)

can be rewritten, using (28), as

Ẽ2 = P2v2 + m̃2
0c4. (30)

Initially Finally

-

R

µ

φ
θ

Ẽ0

p0

m̃0 c2

electron

Ẽ1

p1

Ẽ

p

Fig. 1: Compton scattering

4 Applications of de Broglie’s relation

The relation of (23), P = h/λ, is clearly different from the
conventional de Broglie relationship. This form is, however,
not in conflict with either theory or experiment, but actually
simplifies the various formulations.

4.1 Compton scattering

For a photon, v = c, and it follows from (23) and (28) that

P = |p| = h
λ
. (31)

An advantage of (31) is that, when applied to Compton
scattering, it is not necessary to make the assumption m̃0 = 0
in (29). It must also be noted that the assumption m̃0 = 0 for a
photon is not required in our theory; only v = c. The paradox
of the photon rest mass is resolved in reference [6].

The Compton effect is described schematically in Fig. 1.
The equations below follow from this diagram.

Conservation of momentum:

p0 = p1 cos θ + p cos φ , (32)
p1 sin θ = p sin φ . (33)

From (32) and (33),

p2 = p2
0 + p2

1 − 2 p0 p1 cos θ, (34)

and applying (31) gives

p2 =
h2

λ2
0

+
h2

λ2
1

− 2h2 cos θ
λ0λ1

. (35)

Since
Ẽ2 = p2c2 + m̃2

0c4,

it follows that

Ẽ2

c2 − m̃2
0c2 =

h2

λ2
0

+
h2

λ2
1

− 2h2 cos θ
λ0λ1

. (36)

Conservation of energy:

Ẽ0 + m̃0 c2 = Ẽ1 + Ẽ , (37)
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therefore

(Ẽ − m̃0 c2)2 = Ẽ2
0 + Ẽ2

1 − 2 Ẽ0 Ẽ1 .

From (31) and rearranging,

Ẽ2

c2 + m̃2
0 c2 − 2 Ẽ m̃0 =

h2

λ2
0

+
h2

λ2
1

− 2h2

λ0λ1
. (38)

Eq. (38) minus (36), and rearranging:

m̃0 c2 − Ẽ = −h2 (1 − cos θ)
m̃0λ0λ1

. (39)

Subsituting (12) and (31) in (39) gives

λ1 − λ0 =
h(1 − cos θ)

m̃0 c
, (40)

the standard formulation for Compton scattering.

4.2 Electron diffraction

Another advantage of our formulation applies to electron dif-
fraction. From the results P = h/λ and Ẽ = ~ω it follows
directly that Ẽ = Pc. This obviates the approximation used in
standard texts on electron diffraction, i.e. Ẽ2 � p2c2.

5 Conclusion

The above derivation and formulation of de Broglie’s relation
resolves the inconsistencies in de Broglie’s original deriva-
tion. It also obviates the questionable approximations made
in Compton scattering and electron diffraction.
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Events in nature can be described using fields and their associated partial differential
equations, or equivalently, the mechanics of interaction of point particles described by
ordinary differential equations. The field approach can be looked at as the statistical
average of the particle approach and in this sense is more economical for computing.
The particle approach, on the other hand, is more fundamental but requires enormous
computing power as the model has to follow the movements of every individual particle
in the interaction. The present work aims at reducing such computing task by solving
the problem of many particle interactions (under a central force environment) in an
analytical form for one pair of particles using a Kepler type formula- giving the position
of the particle as a function of time only. The resulting (analytical) formula is then used
to write the result of the many-particle interaction using simple vector superposition.
This approach takes less computing time and can give greater numerical stability when
the distances between the particles become small and the force grows as the inverse
square of the separation distance.

1 Introduction

The problems of physics can be equally described using in-
teracting particles or fields. The flow of fluids, for example,
is the result of basic interactions of an enormous number of
small particles moving under an inverse square force system.
Such processes can be described correctly using force fields
that lead to PDE’s like those for fluid mechanics and electro-
dynamics of material media. It is also possible to achieve a
description of the same phenomena using interacting particles
following what truly happens in the real world. In the present
approach, all particles are assumed identical point masses that
may carry charges too. The particles interact under a central
force environment in which only the separation distance is
of any significance. The coupling constants of such interac-
tions can correspond to any of the known forces of nature
— gravitation, electrostatic, or any other similarly behaving
force. The resultant coupling constant is simply the arith-
metic sum of such constants for all the component forces,
with a negative sign to distinguish attractive forces from re-
pulsive forces. The numerical values of the individual con-
stants determine the relative strength of each force. In the
most basic interaction involving say a doublet of two oppo-
sitely charged point masses, the Coulomb force is the most
dominant. When very large groups of particles are consid-
ered, magnetic, and gravitational forces start becoming more
significant.

By using the particle approach, it is possible to do away
with the need for closure models (constitutive equations) that
describe the properties of matter - such as the elasticity con-
stants in dynamics and the permittivity and permeability of
electrodynamics. In fact, one can use the particle interaction
model to derive or check the validity of such closure models.
The real difficulty with the particle approach is the comput-

ing burden which involves solving one ODE corresponding to
every single particle in the interaction. We try to address this
problem here by performing an initial integration of the ODE,
then using vector superposition find the answer of the original
many particle interaction problems. In addition to the obvi-
ous gain in computing time, the stability of the solution can be
enhanced as the singularity is shifted from Inverse Square to
simple Inverse of the separation distance. The accumulation
error also reduces as a result in long time predictions.

Predicting the behavior of a single particle is well known-
as in calculating the position of the landing of a projectile be-
fore it is fired for example. The same can be said, at least in
principle, for predicting the behavior of multi-point interac-
tions. The equation of motion tells us that once we fix the
initial states of position and velocity of every participating
point particle, the outcome is determined. The normal way
to solve such problems is to find the velocity of each particle
from the acceleration by integration (after superposition of all
forces) then do a second integration to find the new position
and this is to be performed over a large set of simultaneous
Ode’s since every particle effects every other. In the present
work we instead calculate (analytically) the velocity and po-
sition in terms of time only for every particle then use vector
superposition to find the final picture.

As we are dealing with point particles only, moments of
forces and angular momentum and spin are not considered.
The gain is an enhanced stability and reduced computing time
coming from the fact that we integrate analytically first then
use superposition (simple algebraic operation) for displace-
ment as opposed to affecting the superposition of forces first
then integrating for the displacement for every point particle.
The method can be described as a multi-particle generaliza-
tion of the Kepler method originally put (and still in use) for
the motion of planets.
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2 Theory

In an inverse square interaction (electrostatic/gravitational) of
point masses, the expression for the force (acceleration since
mass is unity) of a pair of such point masses is given by

a =
d2r
dt2 =

k
r2 , (1)

where a = a(t), r = r(t) are the acceleration and separation dis-
tances between an isolated pair of particles as a function of
time t, and k is the coupling constant (negative for attractive
and positive for repulsive forces). The magnitude of k is de-
pendent on the type of interaction and equals the sum of the
k’s of all the forces at play. For example, in the case of re-
pulsive Coulomb forces k = 1

4 πε0 and for gravitational forces
k =−G, where ε0 is the permittivity of empty space and G is
the universal gravitational constant. For a small number of
interacting particles, the Coulomb forces by far dominate all
other forces. All charges and masses of all particles are as-
sumed unity as given above. The actual values can be incor-
porated in the coupling constant. As the interacting masses
are points, there is no need to consider angular velocity, spin,
angular momentum or any form of moments of forces on the
particle. Mass can simply be taken as the number of particles
in any setup.

For a group of interacting particles, the net acceleration
of particle j is given by

aj =
dvj

dt
=

∑

i

ki j ri j

r3
i j

ri j = |ri j| , i, j = 1, 2, . . . N


, (2)

where aj is the resultant acceleration, v is velocity, ki j is
the total coupling constant between particles i and j, and
ri j = rj − ri is the vector from i to j positions and N is the
total number of particles. Equation (2) is a set of simultane-
ous Ode’s that must be integrated once in order to find vj (t)
and twice to find the position rj (t). For a large number of par-
ticles, the task becomes formidable. One way to reduce this
burden is by going back to (1) and performing the integra-
tion for a pair of particles first, then use the resulting closed
form formula to perform superposition of displacements and
find the result of the interaction. Since the function r(t) is not
known before hand, we follow the Kepler route [2].

Assume a solution in the form r = tn, where t is time
and n is an exponent. Substituting in (1) we find that for the
equality to hold for any r, the value of n should be 2

3 , and
hence,

r =
9
4

k t2/3. (3)

This result can be directly checked by differentiating
twice and substituting back to recover the original inverse
square law. We are using scalar quantities because the force,
acceleration and displacement are all along the separation

line. The form of (3) is similar to Kepler’s third law for orbital
motion. In the original Kepler form the distance r refers to the
average radius of the orbit and t refers to the mean time of one
revolution. Formula (3) however, is more general and refers
to motion along the line joining any two interacting particles
under an inverse square relation. It is seen that the same for-
mula is suitable for both types of motions. In fact direct sub-
stitution in the centrifugal force formula v2/r using (3), with
v = dr/dt gives the same relation between r and t as that de-
rived form (3). A similar result is obtained if we substitute for
the Coriolis and the magnetic (Ampere) forces. In fact, such
a substitution in the general acceleration definition d2r/dt2

reduces it to an inverse square relation. Kepler formula is
also shown to be a direct consequence of mechanical similar-
ity [1], and the form 1/rn satisfy similarity for any n, but only
n = (2,−2) produces bounded motion, which corresponds
to the inverse square force and to the space oscillator type
(spring oscillators) interaction forces. The spring type force
is also shown to be a special case of the inverse square law
for small displacements around an equilibrium point. When
(3) is differentiated with respect to time we get

v (t) =
dr
dt

=
2
3

k t−1/3 = kr−1/2 (4)

further differentiation gives

a(t) =
d2r
dt2 =

(
−2

9

)
k t−4/3 =

(
−2

9

)
kr−2 (5)

thus we have recovered the inverse square law. Substituting
from (4) for the centrifugal force gives

v2

r
=

4
9

k2t−4/3 = k2r−2 (6)

which is, apart from a constant, has the same form of depen-
dency of t on r. The velocity is given by

vj = vj0 −
2
3

t1/3
∑

i

rj − ri

|rj − ri| , j, i = 1; n , i , j (7)

and the position rj is given by the vector relation

rj = rj0 + vj0 t +
9
4

t2/3
∑

i

rj − ri

|rj − ri| , (8)

where r is the net position vector of all particles and is given,
for each, as the vector sum of n − 1 vector displacements in
addition to the initial position of the particles r0 and the initial
velocity v0 multiplied by the time t.

The form in (8) is similar to the usual form of the equation
of motion for n interacting particles which can be written as

rj = rj0 + (dt)vj0 + (dt)2
∑

i

rj − ri

|rj − ri|3 (9)

with the obvious difference that (9) involves dt rather than t
and therefore must be advanced in very small steps to reach
the final solution.
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Fig. 1: Four point particles interacting under attractive (top) and re-
pulsive inverse square forces (bottom). Prediction using (8) starts
from time step kk = 1 (left) and kk = 150 (right), showing the capa-
bility of writing the correct solution for many particles at any time
without going through time evolution.

Fig. 2: Predictions using (7) keeping the circular boundary neutral.
T: four point particles interacting under attractive and repulsive in-
verse square forces. B: four point particles interacting under attrac-
tion forces for longer time showing the stability of the velocity solu-
tion at close encounters. Particle paths interweave as a result of the
attraction forces and the (inertia) forces.

Fig. 3: T: interaction using force (9) for five bodies (confined) and
three bodies (not confined). B: interaction using velocity formula
(7) for 20 & 200 particles under attractive forces with and without a
restraining circular boundary.

Fig. 4: Instability in the distance formula (8) at small interaction
distances. Each particle path branches into three but recovers back
to a single path as the particles further separate (top figures). The
path disintegrates to only two branches at the encounter of a particle
and a wall of particles. The minimum separation distance needed
for such behaviour increasing with the increase in the value of the
separation constant.
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Fig. 5: Rotation, stratification and condensation for large numbers
using (8). T: 150 particles under attractive forces only but at different
coupling constants. B: one time step and many time steps results of
the interaction of 500 particles of equal mix of charges.

3 Results

In this section we concentrate on showing that (7) and (8)
give the expected behavior in the case of interacting particles
under attraction or repulsion for the case of free particles and
for the case of particles trapped inside a constraining circular
wall. Comparison is then given with predictions using the
usual integration of the inverse square law (9). The distances
and coupling constants in these tests are arbitrary- chosen to
produce magnified effects of the forces involved. The actual
values used are marked on each figure.

Figure 1 shows four particles moving to the right with
initial velocities mainly in the horizontal direction. The rela-
tive values of initial kinetic energy and the coupling constant
determine the behavior of the interacting particles. When
the initial velocity is large, as expected, the particles do not
change direction appreciably, and when it is small, the re-
pulsion and attraction forces have bigger effect — creating
appreciable changes in the particle path. The trajectories are
calculated using the displacement expression (8). When using
this method it is possible to write the solution at any required
time instant as shown in the right hand side frames, wherein
the solution is now started at an advanced time location (at
the 150th time step kk) and still agreeing with the results of
the previous solutions starting at the first time step (t = 0) —
using the same original set of initial conditions.

Figure 2 shows the results using the velocity expression
(7) for the case of attractive and repulsive forces. The stabil-
ity of the solution is clearly demonstrated by the last frame
showing an interweaving paths forced by the equally effec-
tive inertial and attractive forces. The velocity formula gives
more stable solutions at closer encounters because of the ab-
sence of the inverse square term from (7), being replaced by
a quantity dependent on t. We should note here also that we

still have the direction cosines to consider for the vector su-
perposition. This, however, has a more favorable behavior at
very small separation distances since the quantities xi j/ri j, go
to unity as r goes to zero.

In Figure 3, the top two frames show the results of us-
ing the force formula (9) for the case of four free particles
and five particles respectively confined in a circular bound-
ary. The bottom two frames show the result for large number
of particles, when using the velocity formula (7), in which 20
particles are confined in a circular boundary and 200 particles
under attraction without a restraining boundary.

Problems have been experienced when using the distance
formula (8) when the separation distance is small. As shown
in Figure 4, the particle path divides into 3 branches but re-
covers afterwards as the two bodies separate and the sepa-
ration distance increases depending also on the strength of
the coupling constant. Note the effects on the path even be-
fore the target is reached. At the interaction with a wall of
charges, the path divides instead, into two parts and recovers
back again. This phenomenon requires further investigation
as it is found to occur only at larger separation distances if
the coupling constant is increased. It is numerical in origin,
which is somehow different to what one would expect of this
formula.

Figure 5 shows the results of using (9) for a large num-
ber of particle interactions. Results for 150 and 500 particles
under attractive forces are shown. The results show signs of
rotation and pulsation behavior as well as coagulation to form
separated groups.

4 Conclusion

It has been shown that it is possible to reduce the computa-
tion time and enhance the solution stability for multi-point
particle interactions. As a result it has been possible to follow
the interaction of very large number of particles using mod-
est computer memory and time. In the author opinion the
method shown here is worthy of further development and use
to numerically investigate the fascinating world of particle in-
teractions. Evidence of grouping appears when the number of
interacting particles is large and without the need of retaining
external boundaries or forces.

A consistent phenomenon of path splitting into three and
two branches has been observed. It is a direct result of eval-
uating distances using the square root, as it is treatable by
adding a very small constant value to the inverse of the rooted
quantities. Clearly this phenomenon needs to be corrected
first before the present method acquires its full potential.
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On a Formalization of Cantor Set Theory for Natural Models
of the Physical Phenomena
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This article presents a set theory which is an extension of ZFC. In contrast to ZFC, a
new theory admits absolutely non-denumerable sets. It is feasible that a symbiosis of
the proposed theory and Vdovin set theory will permit to formulate a (presumably) non-
contradictory axiomatic set theory which will represent the core of Cantor set theory in
a maximally full manner as to the essence and the contents of the latter. This is possible
due to the fact that the generalized principle of choice and the generalized continuum
hypothesis are proved in Vdovin theory. The theory, being more complete than ZF and
more natural according to Cantor, will allow to construct and study (in its framework)
only natural models of the real physical phenomena.

This paper is dedicated to the memory of
Alexander M. Vdovin (1949–2007)

I. It is generally accepted that the (presumably) non-contra-
dictory Zermelo-Fraenkel set theory ZF with the axiom of
choice is the most accurate and complete axiomatic represen-
tation of the core of Cantor set theory. However, it is acknowl-
edged [3, p. 109], that “Cantor’s set theory is so copious as
to admit absolutely non-denumerable sets while axiomatic set
theory [in particular, ZFC] is so limited [Skolem’s paradox]
that every non-denumerable set becomes denumerable in a
higher system or in an absolute sense”. An axiomatic set the-
ory defined here and abbreviated as ZFK admits absolutely
non-denumerable sets, as it does Cantor theory.

It is feasible that a symbiosis of the proposed theory and
Vdovin set theory [1, 2] will permit to formulate a (presum-
ably) non-contradictory axiomatic set theory which will rep-
resent the core of Cantor set theory in a maximally full man-
ner as to the essence and the contents. This is possible due to
the fact that the generalized principle of choice and the gen-
eralized continuum hypothesis are proved in Vdovin theory.

II. Our definition of ZFK will be based on the traditional
(classical) concept of formalized theory explained in [4]. But
ZFK is a theory which is axiomatic not completely in the
traditional sense, so the syntactic aspects of this theory will
be described with references to the principal interpretation
of ZFK.

Formulae of ZFK are formulae of the signature 〈∈, S 〉,
where ∈— is a two-place predicate symbol for denoting the
(standard) membership relation on the collection S k of all
Cantor’s (intuitive) sets, and S — is a null-place functional
symbol (a constant) denoting the family of all axiomatized
sets, and in the ZFK formulae containing the symbol “S ”, the
latter symbol is always placed to the right of the symbol “∈”.

In what follows, we use the conventional notation and ab-
breviations of ZF. In particular, the relativization of a for-

mula ϕ to the family S is denoted by [ϕ]S . Besides, depend-
ing on the context, records “∈” and “S ” denote either the sig-
nature symbols or denoted by them the relation and the fam-
ily, respectively. Cantor’s (intuitive) sets of S k will be called
k-sets, and the axiomatized sets of S will be simply called
as sets.

The axioms of ZFK are divided into two groups: G and
Gk. The axioms of group G describe the axiomatized sets, and
the axioms of group Gk characterize the relationship between
Cantor’s (intuitive) sets and the axiomatized sets.

The axioms of group G are the axioms of ZFC (formulae
of the signature 〈∈〉), with exception of the axiom of empty
set, which are relativized to the family S .

The axioms of group Gk:

1) Axiom of embedding S into S k

∀x ∈ S ∃ y (y = x).

2) Axiom of (absolutely) empty set

∃x ∈ S ∀ y (y < x).

3) Axiom of transitivity of S in S k

∀x ∈ S∀ y (y ∈ x→ y ∈ S ).

4) Axiom (schema) of generalization

[ϕ]S → ϕ,

where ϕ — is a formula of ZFK.
5) Axiom (schema) of mappings to S k

∀t (∀v, w1, w2(ϕ(v, w1, t) & ϕ(v, w2, t)→ w1 = w2)→
→ ∀x∃ y∀z(z ∈ y↔∃ v ∈ x∃w(z=〈v, w〉 & ϕ(v, w, t)))),

where ϕ— is a formula of ZFK and the variable y does
not occur free in ϕ.
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6) Axiom of general replacement

∀x (map(x) & dom(x) ∈ S & rang(x) ⊆ S →
→ rang(x) ∈ S & x ∈ S ),

where map(x) is the formula

∀z (z ∈ x→ ∃v, w (z = 〈v, w〉)) &∀v, w1, w2 (〈v, w1〉 ∈
x & 〈v, w2〉 ∈ x→ w1 = w2),

and k-sets dom(x) and rang(x) satisfy

∀v (v ∈ dom(x)↔ ∃w (〈v, w〉 ∈ x))
and

∀w (w ∈ rang(x)↔ ∃ v (〈v, w〉 ∈ x)).

The logic underlying ZFK is the calculus of predicates in
the language of ZFK.

III. It is well known [3, p. 27] that “An axiomatic system is in
general constructed in order to axiomatize a certain scientific
discipline previously given in a pre-systematic, “naive”, or
‘genetic’ form”. ZFK formulated here has been constructed,
like ZFC, to axiomatize the “naive” set theory of G. Cantor,
or more precisely, to axiomatize its non-contradictory core.
But ZFK has a more explicit and tight connection to Cantor
set theory than it does ZFC, since ZFK in its principal inter-
pretation defines the collection of all k-sets of S k (more pre-
cisely, 〈S k; ∈〉) as Cantor pre-axiomatic “world” of sets, and
the family S (more precisely, 〈S ; ∈ ∩(S × S )〉, where S ⊆ S k)
as the axiomatic fragment of Cantor “world” of sets.

It seems natural that ZFK is non-contradictory if ZFC is
non-contradictory. Let us show that it is true.

Suppose that ZFC is a non-contradictory theory. Then,
ZFC has a model and, in particular, a standard transitive
model M = 〈M; ∈ ∩(M × M)〉 such that for any set m ∈ M
absolutely all its subsets belong to the family M. It is clear
that the model M (the family M) includes absolutely denu-
merable sets. We consider the family M as the interpretation
of the signature symbol “S ” and will show that any axiom
of ZFK is either true in the model M or it does not deny the
existence of such a model.

It is natural that all axioms of group G are true in the
model M.

Axioms Gk–1 and Gk–2 affirm an obvious fact: any ZFC-
set (a set of the family M) is also a set of Cantor “world” of
sets S k.

Axiom Gk–3 affirms natural transitivity of the family M.
Axiom Gk–4 affirms an obvious fact: any statement con-

cerning sets of the family M is also true for sets of Cantor
“world” of sets S k due to the fact that ZFC is a formaliza-
tion of the (presumably) non-contradictory core of Cantor set
theory.

Axiom Gk–5) is a natural generalization of ZFC axiom of
replacement which is true in the model M.

Axiom Gk–6), in fact, affirms that the model M is natu-
rally ⊆-complete in the sense that any subset of the family
M belongs to that M if its power is equal to the power of a
certain set of M.

IV. Let x ∈ S . Then, a k-set {y | y ⊆ x & y ∈ S } is denoted
by P(x). It is clear that P(x) ∈ S (P(x) is a set) by axioms of
group G and Gk–1).

THEOREM (ZFK).

∀x ∈ S∀ y (
y ⊆ x→ y ∈ P(x)

)
.

Proof. Let us suppose that the contrary is fulfilled and let k-
sets x0 and y0 be such that x0 ∈ S , y0 ⊆ x0 and y0 < P(x). If
y0 ∈ S , than y0 ∈ P(x) by an axiom of group G. Therefore,
y0 < S . Since ∅ ∈ S , then y0 , ∅. Since y0 ⊆ x0 ∈ S and S
is transitive in S k (the axiom Gk–3)) then y0 ⊆ S .

Denote by z0 some element of a k-set y0. The axiom
Gk–5) says that there is a k-set (k-function) f such that

f =
{〈v, w〉 | v ∈ x0, (v ∈ y0 → w = v), (v < y0 → w = z0)

}
.

Since map( f ), dom( f ) = x0 ∈ S and rang( f ) = y0 ⊆ S , then
y0 ∈ S by the axiom Gk–6). A contradiction.

V. Let x be a k-set (x ∈ S or x < S ). Then Pk(x) denotes k-set
{y | y ⊆ x}. Since x ∈ S k, then Pk(x) ∈ S k (by the axiom
of generalization), i. e. Pk(x) is an element of Cantor pre-
axiomatic “world” of sets, whose power by the theorem of
G. Cantor is absolutely greater than the power of the k-set x.

Letω be a denumerably infinite set in S . Sinceω ∈ S then
ω ∈ S k (the axiom Gk–1)). It is clear that the k-set Pk(ω) is
absolutely non-denumerable. THEOREM says that any k-set
y of S k is such that y ⊆ ω (i. e. y ∈ Pk(ω)) is an element of the
set P(ω) of S . Therefore, the equality P(ω) = Pk(ω) is always
fulfilled. Thus the set P(ω) is absolutely non-denumerable
in any axiomatized model of ZFK, i. e. in any model of the
type 〈S ; ∈ ∩(S × S )〉.

Thus the concept “The set of all subsets of a set X” which
is formalized by the axioms of ZFK is absolute (in view of
the THEOREM) in the sense that it coincides with Cantor
concept “The set of all (absolutely all existing in the Cantor
‘world’ of sets) subsets of a set X”.

VI. Finally it should be noted that a symbiosis of the set the-
ory of Vdovin A. M. and the proposed theory may permit to
formulate an axiomatic non-contradictory (presumably) set
theory, the only standard model of which will be the most
important fragment of Cantor “world”of sets. This is en-
sured by the fact that Vdovin set theory proves the axioms of
ZF, the generalized principle of choice, and the generalized
continuum-hypothesis which are natural for Cantor “world”
of sets, and the theory presented above proves the absolute
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character of the concept “The set of all subsets of a set X”
which is natural for Cantor “world” of sets, as well.

Since ZF is a generally acknowledged theory and it is
applied as a framework for mathematical disciplines used to
describe (study) the real physical world, the natural (Cantor-
like) character of the future set theory will permit to develop
and investigate only natural models of real physical phenom-
ena.
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In our previous paper (Shnoll and Rubinstein, Progress in Physics, 2009, v. 2, 83–95),
we briefly reported about a phenomenon, which can be called the “arrow of time”:
when we compared histograms constructed from the results of 239-Pu alpha-activity
measurements that were obtained using West- and East-directed collimators, daytime
series of the “eastern” histograms were similar to the inverted series of the following
night, whereas daytime series of the “western” histograms resembled the inverted series
of the preceding night. Here we consider this phenomenon in more detail.

1 Introduction

As follows from all our past results, the fine structure of the
spectrum of amplitude fluctuations (the shape of the corre-
sponding histograms) is determined by the motion (orienta-
tion) of the object studied (the laboratory) in relation to spa-
tial inhomogeneities [2]. The spatial pattern (arrangement in
space) of these inhomogeneities is stable: as the Earth ro-
tates about its axis and moves along the circumsolar orbit,
similar histogram shapes are realized repeatedly with the cor-
responding periods (daily, near-monthly, yearly) [3, 4]. The
inhomogeneities themselves are analogous to the “numerals
on the dial of the celestial sphere”, which determine one or
another shape of histograms. In the experiments with ro-
tating collimators, beams of α-particles periodically go in
the direction of the same inhomogeneities, and similar his-
tograms appear with the corresponding periods [5]. Earlier,
when the collimator-equipped devices were immobile (with
one collimator directed West and another East), we showed
that histograms from either of the collimators would have
their analogs (similar shapes) from the other collimator lag-
ging behind by half a day [6] (i.e., by the time needed for
the collimators, rotating with the Earth, to face the same spa-
tial inhomogeneities). In the experiments with “daily palin-
dromes”, however, this periodicity turned out to be asymmet-
rical. Asymmetry manifested itself in the daytime series of
the “eastern” histograms being similar to the inverted series
of the following night and the daytime series of the “western”
histograms being similar to the inverted series of the preced-
ing night [1]. Below we describe this phenomenon in more
detail and discuss its possible nature.

2 Materials and methods

The material for this study was series of histograms construct-
ed from the results of long-term measurements of α-activity
registered from two 239Pu preparations using two indepen-

Fig. 1: Illustration of the “palindrome phenomenon”. A high prob-
ability of histograms of the same order numbers to be similar in the
direct daytime/inverse nighttime sequences (line 1) and the direct
nighttime/inverse daytime ones (line 2). A low probability of his-
tograms to be similar at comparing the direct daytime and nighttime
sequences (line 3). The counter did not contain a collimator. Date
of measurements, September 23, 2005. Every line sums up the re-
sults of approximately 10000 pairwise comparisons. X axis, interval
between the histograms compared (min); Y axis, the number of sim-
ilar pairs.

dent collimator-equipped devices. The collimators were used
to isolate beams of α-particles flying at certain directions.
In this study, one collimator was directed East and another
was directed West. The technical information on the devices,
which were constructed by I. A. Rubinstein and N. N. Ve-
denkin, can be found in [2]. The analysis of histogram series
consists in the estimation of histogram similarity depending
on the interval between them. A detailed description of the
methodology for constructing and comparing histograms, as
well as for obtaining distributions of the number of similar
pairs over the length of the interval between the histograms
compared, is given in [2]. To characterize correlations in
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Fig. 2: Palindrome effects in the simultaneous measurements of
239Pu α-activity with two independent collimator-equipped devices
directed East (A) and West (B). Date of measurements, September
22–23, 2003. The axes as in Fig. 1. (A) “East”: (1) “day” versus
the following inverse “night”; (2) “day” versus the preceding inverse
“night”. (B) “West”: (1) “day” versus the preceding inverse “night”;
(2) “day” versus the following inverse “night”.

the change of the histogram shape over time, we used the
“palindrome phenomenon” [7] — the high probability of a
sequence of histograms constructed from the results of day-
time measurements (from 6:00 to 18:00, by local longitude
time) to be similar to the inverse sequence of histograms con-
structed from the results of nighttime measurements (from
18:00 to 6:00 of the next day). Fig. 1 demonstrates this phe-
nomenon. The source material is series of 239Pu α-activity
measurements registered with a counter without collimator
(frequency of measurement, 1 point per second). From these
data, 1-min histogram sequences were constructed (60 points
per histogram), with the histograms smoothed 7-fold by the
moving summation method (for visual convenience). Two
histogram sequences were compared: (1) from 6:00 to 18:00
by accurate local time (“daytime” sequence) and (2) from
18:00 to 6:00 of the next day (“nighttime” series), each se-
quence consisting of 720 histograms. The sequences could
be direct (from no. 1 to 720) or inverse (from no. 720 to 1).

As seen in Fig. 1, if compared are the direct daytime and
nighttime sequences, the similarity (the probability to be sim-
ilar) of histograms of the same order numbers is low (line 3).
In contrast, the direct daytime/inverse nighttime (line 1) or in-
verse daytime/direct nighttime (line 2) comparisons reveal a
high similarity of the same histogram numbers — the “effect
of palindrome” [7].

3 Results

The phenomenon of palindrome was easily reproduced in
the analysis of measurements performed in different seasons
without a collimator. However, the analysis of data obtained
in the experiments with collimators (western and eastern)
showed varying results; the phenomenon became irregular.
In the experiments with the western collimator, palindromes
were reproduced regularly when a direct daytime sequence

Fig. 3: In the measurements of 239Pu α-activity with the West-
directed collimator, a direct sequence of daytime histograms is sim-
ilar to the reverse histogram sequence of the preceding night; in the
measurements of 239Pu α-activity with the East-directed collimator,
a direct sequence of daytime histograms is similar to the reverse his-
togram sequence of the following night. A sum of four experiments.

was compared with the inverse sequence of the preceding
night; with the eastern collimator, it must have been a direct
daytime sequence versus the inverse sequence of the follow-
ing night. This phenomenon is illustrated in Fig. 2.

Fig. 2 shows that in the measurements with the eastern
collimator, a clear palindrome can be seen when the direct se-
quence of histograms obtained from 6:00 to 18:00 on Septem-
ber 22 (“day”) is compared with the inverse sequence of his-
tograms obtained from 18:00 on September 22 to 6:00 on
September 23 (“night”). At the same time, comparing the
direct sequence of nighttime histograms (measurements from
18:00 on September 22 to 6:00 on September 23) with the
inverse sequence of the following daytime histograms (mea-
surements from 6:00 to 18:00 on September 23) shows no
palindromes.

In the experiments with the “western” collimator, the sit-
uation is opposite. A clear palindrome is seen when the di-
rect sequence of histograms obtained from 6:00 to 18:00 on
September 22 (“day”) is compared with the inverse sequence
of histograms obtained from 18:00 on September 21 to 6:00
on September 22 (“night”). No palindromes is revealed when
the direct sequence of histograms obtained from 6:00 to 18:00
on September 22 (“day”) is compared with the inverse se-
quence of histograms obtained from 18:00 on September 22
to 6:00 on September 23 (“night”). To put it briefly: the
eastern collimator will give palindromes upon the direct-day-
to-following-inverse-night comparing; the western collima-
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Fig. 4: The relation between the directions of motion during the
daily rotation of the Earth, its translocation along the circumsolar
orbit, the rotation of the Sun about its axis and the directions of α-
particles flying through the “western” and “eastern” collimators.

tor will show palindromes upon the direct-day-to-preceding-
inverse-night comparing. Since the regularities found were of
principle importance, we conducted more than 25 analogous
experiments. The regularities were reproduced well and did
not depend on the season. This can be seen in Fig. 3, which
represents a summary result of four independent experiments.

4 Discusion

The phenomenon under discussion concerns regularities re-
vealed in the experiments, in which 239Pu α-activity was
measured with collimator-equipped devices. The collimator
were directed either West or East, and the sequence of his-
tograms obtained with the western collimator from 6:00 to
18:00 by local time (“day”) turned out to be similar to the in-
verse sequence of the preceding night (from 18:00 to 6:00),
whereas the sequence of daytime histograms obtained with
the eastern collimator were similar to the inverse sequence of
the following night.

Here we would remind the reader that the matter does not
concern any “effects on α-decay”; it concerns changes of the
fine structure of amplitude fluctuation spectra (the shape of
the corresponding histograms). The intensity of α-decay, a
mean number of decay acts per time unit, does not depend on
the direction of the collimator; it will fluctuate according to
the Poisson statistics — proportionally to ±√N, where N is
the decay intensity.

Earlier we established that the changes of the histogram
shape would depend on the orientation of collimators in space
[8]. It seems that certain histogram shapes correspond to
certain directions, possibly, to the spatial locations of grav-
itational inhomogeneities. Changes of the histogram shape
are determined by the motion of our objects in relation to
these quite long-living (for more than a year) stable inhomo-

geneities. Now we see that apart from the dependence on
the spatial vector, there is also a dependence on the vector of
time.

Fig. 4 schematically illustrates spatial relations in the ex-
periments described above. There are two devices in the lab-
oratory (on the Earth), which differ only by the orientation
of the collimators: one isolates a beam of α-particles flying
West (i.e., against the direction that the Earth rotates in) and
the other is directed East (i.e., along the Earth rotation). The
Earth rotates about its axis and moves along the circumsolar
orbit. Both these motions, as well as rotation of the Sun, have
the same direction: they are directed counterclockwise. How-
ever, combining the first two motions results in the rotation of
the Earth to be counter-directed to its translocation along the
orbit in the daytime and co-directed in the nighttime [9]. Ac-
cordingly, α-particles from the “eastern” collimator would fly
against the orbital Earth motion in the daytime and along this
motion in the nighttime, this being the opposite for the “west-
ern” collimator. Hence, the collimators alternatively (one dur-
ing the day- and the other during the nighttime) take the same
orientation — either “along” or “against” the orbital motion
of the Earth. Therefore, the phenomenon discussed cannot be
explained by the change of the collimator orientation towards
the Earth motion along the circumsolar orbit.

Thus, the “arrow of time” in our experiments is deter-
mined only by the difference in the orientation of the
collimators in relation to the direction of the Earth ro-
tation about its axis.
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A new sheet of spacetime is isolated and added to the existing sheet, thereby yielding a
pair of co-existing sheets of spacetimes, which are four-dimensional inversions of each
other. The separation of the spacetimes by the special-relativistic event horizon com-
pels an interpretation of the existence of a pair of symmetrical worlds (or universes)
in nature. Further more, a flat two-dimensional intrinsic spacetime that underlies the
flat four-dimensional spacetime in each universe is introduced. The four-dimensional
spacetime is outward manifestation of the two-dimensional intrinsic spacetime, just as
the Special Theory of Relativity (SR) on four-dimensional spacetime is mere outward
manifestation of the intrinsic Special Theory of Relativity (φSR) on two-dimensional
intrinsic spacetime. A new set of diagrams in the two-world picture that involves rela-
tive rotation of the coordinates of the two-dimensional intrinsic spacetime is drawn and
intrinsic Lorentz transformation derived from it. The Lorentz transformation in SR is
then written directly from intrinsic Lorentz transformation in φSR without any need to
draw diagrams involving relative rotation of the coordinates of four-dimensional space-
time, as usually done until now. Indeed every result of SR can be written directly from
the corresponding result of φSR. The non-existence of the light cone concept in the
two-world picture is shown and good prospect for making the Lorentz group SO(3,1)
compact in the two-world picture is highlighted.

1 Introduction

The concept of other universe(s) or world(s) is not new in
physics. In 1898, Schuster contemplated a universe con-
taining negative mass [1]. The discovery in particle physics
of the existence of an anti-particle to every particle after-
wards, led some physicists to suggest the existence of an anti-
atom (composed of anti-particles) to every atom (composed
of particles); an anti-molecule to every molecule and an anti-
macroscopic-object to every macroscopic object. Then in or-
der to explain the preponderance of particles and matter over
anti-particles and anti-matter respectively in this our universe,
the existence of an anti-universe containing a preponderance
of anti-matter over matter was suggested, as discussed in [2,
see p. 695], for instance. However it has remained unknown
until now whether the speculated universe containing nega-
tive mass of Schuster and an anti-universe containing a pre-
ponderance of anti-matter exist or not.

The purpose of this article is to show formally that the
Special Theory of Relativity rests on a background of a two-
world picture, in which an identical partner universe in a dif-
ferent spacetime to this universe of ours in our spacetime co-
exist, and to commence the development of the two-world
picture thus introduced. The placement of the other universe
relative to our universe, as well as the configuration of matter
in it shall be derived. The symmetry of state and symmetry
of laws between the two universes shall be established. The
definite interaction between the two universes in relativistic
phenomena shall also be shown.

This article may be alternatively entitled as Isolating

a Symmetry-Partner Universe to Our Universe in the Context
of the Special Theory of Relativity. Apart from the derivation
of the Lorentz transformation (LT) and its inverse with the
aid of a new set of spacetime/intrinsic spacetime diagrams on
the combined spacetimes/intrinsic spacetimes of the two co-
existing identical “anti-parallel” universes, there are no fur-
ther implications on the other results of SR usually derived
from the LT and its inverse in the existing one-world picture.
However SR must be deemed to be tremendously expanded or
made more complete by exposing its two-world background
and by the addition of a parallel two-dimensional intrinsic
Special Theory of Relativity (φSR) on a flat two-dimensional
intrinsic spacetime that underlies the flat four-dimensional
spacetime of SR in each of the two universes.

There are several new implications of the two-world pic-
ture for SR as well, which include the non-existence of the
light cone concept, good prospect for making SO(3,1) com-
pact, a feat that has proved impossible in the existing one-
world picture and inter-universe transitions of symmetry-
partner particles between the two universes (at super-high en-
ergy regimes), on which the prospect for experimental test
ultimately of the two-world picture rests. This initial arti-
cles goes as far as a single article can on the vast subject of
two-world symmetry that lies at the foundation of the Special
Theory of Relativity and possibly the whole of physics.

2 Two schemes towards the Lorentz boost

As can be easily demonstrated, the two schemes summarized
in Table 1 both lead to the Lorentz boost, (which shall also
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Scheme I Scheme II

x = x′ coshα + ct′ sinhα x = x′secψ + ct′ tanψ
ct = ct′ coshα + x′ sinhα ct = ct′ secψ + x′ tanψ
y = y′ ; z = z′ y = y′ ; z = z′

coshα =
1√

1 − v2/c2
= γ secψ =

1√
1 − v2/c2

= γ

sinhα =
v/c√

1 − v2/c2
= βγ tanψ =

v/c√
1 − v2/c2

= βγ = βγ

tanhα = v/c = β sinψ = v/c = β

Table 1: Two schemes towards the derivation of the Lorentz boost
graphically.

be referred to as the Lorentz transformation (LT)) and the
Lorentz invariance (LI). Although the γ= coshα parametri-
zation of the LT in Scheme I is more familiar, the γ= secψ
parametrization in Scheme II is also known.

Now by letting v/c = 0 in Table 1 we obtain the following:

coshα = 1; sinhα = tanhα = 0 ⇒ α = 0 ,
secψ = 1; tanψ = sinψ = 0 ⇒ ψ = 0 .

By letting v/c = 1 we have

coshα = sinhα = ∞; tanhα = 1 ⇒ α = ∞ ,

secψ = tanψ = ∞; sinψ = 1 ⇒ ψ = π
2 ,

5π
2 ,

9π
2 , . . .

And by letting v/c =−1 we have

coshα = ∞; sinhα = −∞; tanhα = −1 ⇒ α = −∞ ,

secψ = ∞; tanψ = −∞; sinψ = −1 ⇒ ψ = − π2 , 3π
2 ,

7π
2 , . . .

Thus there are the following equivalent ranges of values
of the parameter α and the angle ψ between the two schemes:

0 6 α 6 ∞ (Scheme I) ≡ 0 6 ψ 6 π
2 (Scheme II)

−∞ 6 α 6 ∞ (Scheme I) ≡ − π2 6 ψ 6 π
2 (Scheme II)

The second range, which is −∞6α6∞ (Scheme I) or
− π2 6 ψ 6 π

2 (Scheme II), generates the positive half-plane
shown shaded in Figs. 1a and 1b.

If we consider Scheme I, then clearly there is only the
positive half-plane as illustrated in Fig. 1a. This is so since
the range −∞ 6 α 6 ∞ generates the positive half-plane only,
and there are no other values of α outside this range. Thus
going to the negative half-plane is impossible in the context
of SR in Scheme I.

If we consider Scheme II, on the other hand, then the
range − π2 6 ψ 6 π

2 , which generates the positive half-plane in
Fig. 1b is not exhaustive of the values of angle ψ in the first
cycle. There is also the range π

2 6 ψ 6
3π
2 , which generates

the negative half-plane. Thus going into the negative half-
plane is possible in SR in the context of Scheme II. There

Fig. 1: a) All values of the number α generate the positive half-plane
in Scheme I and b) all values of the angle ψ in the first cycle generate
the positive and negative half-planes in Scheme II.

is actually no gap between the solid line and the broken line
along the vertical as appears in Fig. 1b.

It must quickly be pointed out that there has not seemed
to be any need to consider the second range π

2 6 ψ 6
3π
2 (or

the negative half-plane) in Fig. 1b in physics until now be-
cause the parity inversion and time reversal associated with
it can be achieved by reflection of coordinates of 3-space in
the first range − π2 6 ψ 6 π

2 (or in the positive half-plane) that
also includes time reversal. However we consider it worthy
of investigation whether the range π

2 6 ψ 6
3π
2 and the parity

inversion it implies exist naturally apart from the possibil-
ity of parity inversion by coordinate reflection in the positive
half-plane. Reasoning that parity inversion and time reversal
will not be the only physical significance of the second range
π
2 6 ψ 6 3π

2 (or the negative half-plane) in Fig. 1b, should
it exist in nature, we deem it judicious to carry both ranges
− π2 6 ψ 6 π

2 and π
2 6 ψ 6

3π
2 along in the present develop-

ment with the hope that the theory shall ultimately justify the
existence of the second range or otherwise.

In translating Figs. 1a and 1b into spacetime diagrams, the
positive horizontal lines along which, v= 0, α= 0 and ψ= 0,
in the figure, correspond to the 3-dimensional Euclidean
space Σ with mutually orthogonal dimensions x, y and z in
the Cartesian system of coordinates; the positive vertical lines
along which, v= c, α=∞ and ψ= π

2 , correspond to the posi-
tive time dimension ct, while the negative vertical lines along
which v=−c, α=−∞ and ψ=− π

2 , correspond to the negative
time dimension (or the time reversal dimension) −ct∗. In ad-
dition, the horizontal line in the negative half-plane in Fig. 1b
corresponds to a negative 3-dimensional Euclidean space (not
known in physics until now) to be denoted by −Σ∗ with mutu-
ally orthogonal dimensions −x∗,−y∗ and −z∗ in the rectangu-
lar system. Thus Figs. 1a and 1b translate into the space-time
diagrams of Figs. 2a and 2b respectively. Representation of
the Euclidean 3-spaces by lines along the horizontal and the
time dimensions by vertical normal lines to the “space axes”,
as done in Figs. 2a and 2b, is a well known practice in the
graphical representation of four-dimensional spacetime, ex-
emplified by the modern Minkowski diagrams [3].

Figure 2a pertains to Scheme I in Table 1. The four-
dimensional spacetime with dimensions x, y, z and ct is the
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Fig. 2: The spacetime domains generated by a) all values of the
number α in Scheme I and b) all values of the angle ψ in the first
cycle in Scheme II.

Minkowski space as known. In addition, there is the nega-
tive time dimension −ct∗ that serves the role of time rever-
sal dimension, (which is different from the past time axis in
the past light cone). There are no second and third quad-
rants in Fig. 2a, since the negative half-plane is inaccessible
in Scheme I.

Figure 2b pertains to Scheme II in Table 1. There are
two “anti-parallel” Minkowski spaces in Fig. 2b namely, the
one with positive dimensions, (Σ, ct) ≡ (x, y, z, ct), gener-
ated by the range of angles 0 6 ψ 6 π

2 in the first quadrant in
Fig. 1b, to be referred to as the positive Minkowski space,
and the other with all negative dimensions, (−Σ∗,−ct∗) ≡
(−x∗,−x∗,−y∗,−ct∗), generated by the range of angles
π 6 ψ 6 3π

2 in the third quadrant, to be referred to as the
negative Minkowski space. There are in addition the negative
time dimension −ct∗ that serves the role of the time reversal
dimension to the positive Minkowski space, while the positive
time dimension ct serves the role of time reversal dimension
to the negative Minkowski space.

It shall again be quickly added that the spacetime dimen-
sions of the negative Minkowski space constitute parity inver-
sion and time reversal with respect to the spacetime dimen-
sions of the positive Minkowski space and conversely. Figure
2b says that this situation exists naturally, quite apart from the
fact that parity inversion (by coordinate reflection), x→− x;
y→ y; z→ z or x→− x; y→−y; z→−z and time reversal
t→− t are achievable within the positive half-plane, that is
within the positive Minkowski space (fist quadrant) plus the
fourth quadrant in Figs. 2a and 2b. Schemes I and II have
been known to imply the existence of the positive half plane
only in physics until now. The investigation of the implica-
tions of the existence naturally of the negative half-plane in
parallel with the positive half-plane in Figs. 1b and 2b shall
be started in this paper.

3 Minkowski’s diagrams as graphical representation of
Lorentz transformation in Scheme I

There is essentially nothing new in this section. Its inclusion
is necessary so that the derivation newly of the LT and its
inverse graphically in the context of Scheme II from the next
section can be compared with the known derivation of the LT
and its inverse graphically in the context of Scheme I, which

shall be re-presented in this section.
For the relative motion of two frames, (which involves

positive time dimension), the time reversal dimension −ct∗ is
irrelevant, leaving only the first quadrant in Fig. 2a, (in the
context of Scheme I). Thus relative rotations of the space-
time coordinates of the particle’s (or primed) frame and the
observer’s (or unprimed) frame, for every pair of frames in
relative motion, are limited to the interior of the first quad-
rant in Scheme I, which corresponds to the first quadrant in
Figs. 1a and 2a. As is clear from Fig. 2a, Scheme I pertains to
a one-world picture, including the time reversal dimension.

Now the Lorentz transformation (LT) is usually derived
analytically in the Special Theory of Relativity (SR), follow-
ing Albert Einstein’s 1905 paper [4]. In his paper, Einstein
inferred from two principles of relativity, the LT and its in-
verse for motion along the x′-direction of the coordinate sys-
tem (ct′, x′, y′, z′) attached to a particle moving at speed v
relative to an observer’s frame (ct, x, y, z), where the coor-
dinates x′ and x are taken to be collinear, respectively as fol-
lows:

t′ = γ
(
t − v

c2 x
)

; x′ = γ (x − vt) ; y′ = y; z′ = z (1)

and

t = γ
(
t′ +

v

c2 x′
)

; x = γ
(
x′ + vt′

)
; y = y′; z = z′, (2)

where γ= (1 − v2/c2)−1/2. As demonstrated in Einstein’s pa-
per, each of systems (1) and (2) satisfies the Lorentz invari-
ance,

c2t′2 − x′2 − y′2 − z′2 = c2t2 − x2 − y2 − z2. (3)

Somewhat later, Minkowski explored the graphical (or
coordinate- geometrical) implication of the LT and its in-
verse [5]. In the graphical approach, the first two equations of
the inverse LT, system (2), is interpreted as representing rota-
tions of the coordinates x′ and ct′ of the particle’s (or primed)
frame relative to the coordinates x and ct respectively of the
observer’s (or unprimed) frame, while the last two equations
are interpreted as representing no special-relativistic rotations
of coordinates y′ and z′ relative to y and z respectively (since
relative motion of SR does not occur along these coordinates).

The Minkowski spacetime diagrams from which the LT
and its inverse have sometimes been derived for two frames in
relative motion along their collinear x′- and x-axes, are shown
as Figs. 3a and 3b, where the surface of the future light cone
is shown by the broken lines.

The coordinates y′ and z′ of the particle’s frame, as well as
the coordinates y and z of the observer’s frame remain not ro-
tated from the horizontal, and have not been shown in Figs. 3a
and 3b. The net coordinate projection along the horizontal
in Fig. 3a, which in ordinary Euclidean geometry would be
x′ cos φ + ct′ sin φ, is given in the Minkowski geometry as
x′ coshα + ct′ sinhα. This is the net coordinate projection
to be denoted by x, along the X-axis of the observer’s frame.
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Similarly the net coordinate projection along the vertical in
Fig. 3a is ct′ coshα + x′ sinhα in the Minkowski geometry.
This is the net coordinate projection, to be denoted by ct,
along the cT -axis of the observer’s frame. Thus the following
familiar transformation of coordinates has been derived from
Fig. 3a:

ct = ct′ coshα + x′ sinhα;

x = x′ coshα + ct′ sinhα; y = y′ ; z = z′

 , (4)

where the trivial transformations, y= y′ and z = z′ of the co-
ordinates along which relative motion of SR does not occur
have been added.

The inverse of system (4) that can be similarly derived
from Fig. 3b is the following:

ct′ = ct coshα − x sinhα;

x′ = x coshα − ct sinhα; y′ = y ; z′ = z

 , (5)

System (5) can be presented in a matrix form as follows:


ct′

x′

y′

z′


=



coshα − sinhα 0 0
− sinhα coshα 0 0

0 0 1 0
0 0 0 1





ct
x
y
z


(6)

which of the form x′ = L x.
By considering the spatial origin, x′ = y′ = z′ = 0, of the

primed frame, system (4) reduces as follows:

x = ct′ sinhα and ct = ct′ coshα . (7)

Division of the first into the second equation of system (7)
gives

x
ct

=
v

c
= tanhα , (8)

where, x/t = v, is the speed of the primed frame relative to the
unprimed frame.

Using (8) along with cosh2 α − sinh2 α = 1 gives the fol-
lowing:

coshα =
1√

1 − v2/c2
≡ γ , (9a)

sinhα =
v/c√

1 − v2/c2
≡ βγ . (9b)

Substitution of equations (9a) and (9b) into systems (4)
and (5) gives the LT and its inverse in the usual forms of sys-
tems (1) and (2).

The transformation from the usual trigonometric ratios,
cosine and sine, of the angle φ in Figs. 3a and 3b, where
tan φ= v/c; − π4 < φ < π

4 (the light-cone), to hyperbolic func-
tions, cosh and sinh of a number α in expressing coordinate
projections on spacetime, in order to reproduce the Lorentz
transformation in the Minkowski graphical approach, is com-
pelled by the need for the parameter α to take on values in

Fig. 3: The Minkowski diagrams sometimes used to derive the Lo-
rentz transformation and its inverse in the existing one-world picture.

the unbounded range (−∞,∞) (in Fig. 1a) of Scheme I, as the
speed v of the particle relative to the observer takes on values
in the unbounded range (−c, c). In other words, the need to
transform from the trigonometric ratios, cosine and sine, of
the angle φ in Figs. 3a and 3b to hyperbolic functions, cosh
and sinh, of a number α is compelled by the need to restrict to
the positive half-plane of Fig. 1a or to the one-world picture
in Special Relativity until now.

There is also a known mathematical significance to the LT
system (5) or (6) and its inverse system (4) derived from the
Minkowski diagrams of Figs. 3a and 3b. This is the fact that
the 4× 4 matrix L that generates the Lorentz boost (6), which
contains the parameter α in the unbounded range (−∞,∞), is
a member of the pseudo-orthogonal Lorentz group SO(3,1),
which is a non-compact Lie group with an unbounded pa-
rameter space [6]. Moreover the matrix L is non-singular for
any finite value of α as required for all group SO(3,1) matri-
ces. This implies that non-physical discontinuities do not ap-
pear in the Minkowski space generated. Singularities appear
in systems (4) and (5) for the extreme values of α namely,
α=∞ and α=−∞ only, which are not included in the range
of α. These extreme values of α correspond to speeds v= c
and v=−c respectively, which material particles cannot at-
tain in relative motion.

The Lorentz boost is just a special Lorentz transforma-
tion. The general Lorentz transformation Λ is written in the
factorized form [6] as follows:

Λ = R(γ, β, 0) L3(α) R(φ, θ, ϕ)−1, (10)

where L3(α) is the Lorentz boost along the z-axis with speed
v= c tanhα; 0 6 α < ∞, and the Euler angles for rotation in
the Euclidean 3-space have their usual finite ranges.

Since the group SO(3) matrices are closed and bounded,
and are hence compact, the compactness or otherwise of Λ

is determined by the Lorentz boost. Thus since the Lorentz
boost is non-compact, the Lorentz group SO(3,1) is non-
compact as known. There is no way of making SO(3,1)
compact within the Minkowski one-world picture since the
parameter α naturally lies within the unbounded range
−∞ < α < ∞ in this picture. Thus the Minkowski diagrams
of Figs. 3a and 3b and the LT and its inverse of systems (5)
and (4) or the implied transformation matrix L in Eq. (6) de-
rived from them, have been seen as physical significance of
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the Lorentz group in mathematics, or perhaps the other way
round.

From the point of view of physics, on the other hand, one
observes that the coordinates x′ and ct′ of the primed frame
are non-orthogonal (or are skewed) in Fig. 3a, and the coor-
dinates x and ct of the unprimed frame are skewed in Fig. 3b.
These coordinates are orthogonal in the absence of relative
motion of the frames. Even in relative motion, an observer at
rest relative to the primed frame could not detect the uniform
motion of his frame. Hence the primed frame is stationary
relative to an observer at rest relative to it with or without the
motion of the primed frame relative to the unprimed frame.
Yet Fig. 3a shows that the coordinates of the primed frame are
skewed with respect to an observer at rest relative to it while
it is in uniform motion relative to the unprimed frame. This
skewness of the spacetime coordinates of a frame is then an
effect of the uniform motion of the frame, which an observer
at rest relative to it could detect. This contradicts the fact that
an observer cannot detect any effect of the uniform motion of
his frame. Skewness of rotated coordinates cannot be avoided
in Minkowski’s diagrams because relative rotation of coordi-
nates must be restricted to the first quadrant in Scheme I (or
in the one-world picture), as deduced earlier.

Skewness of spacetime coordinates of frames of reference
is not peculiar to the Minkowski diagrams. It is a general fea-
ture of all the existing spacetime diagrams (in the one-world
picture) in Special Relativity. There are at least two other
spacetime diagrams in Special Relativity, apart from the Min-
kowski diagrams namely, the Loedel diagram [7] and the Bre-
hme diagram [8]. The spacetime coordinates of two frames
in relative motion are skewed in the Loedel and Brehme dia-
grams shown as Figs. 4a and 4b respectively, for two frames
in relative motion along their collinear x′- and x-axes.

Skewness of the coordinates of a frame of reference in
uniform relative motion is undesirable because it is an effect
of uniform motion of a frame which an observer at rest rela-
tive to the frame could detect, which negates the fundamen-
tal principle that no effect of uniform motion is detectable,
as mentioned earlier. Moreover it gives apparent preference
for one of two frames of reference in uniform relative mo-
tion, which, again, is a contradiction of a tenet of Special
Relativity.

4 Geometric representation of Lorentz transformation
in Scheme II

Having discussed the existing geometric representation of the
Lorentz transformation and its inverse in Special Relativity
in the context of Scheme I in Table 1 (or in the one-world
picture) in the preceding section, we shall develop a new set
of spacetime diagrams that are compatible with the Lorentz
transformation and its inverse in the context of Scheme II in
Table 1 in the rest of this paper. We shall, in particular, watch
out for the possibility of making the Lorentz group SO(3,1)

Fig. 4: a) The Loedel diagram and b) the Brehme diagram for two
frames in uniform relative motion.

compact and for removing the skewness of rotated spacetime
coordinates of frames of reference in the existing spacetime
diagrams of Special Relativity (in the one-world picture or in
the context of Scheme I).

4.1 Co-existence of two identical universes in the context
of Scheme II

As shall be sufficiently justified with progress in this arti-
cle, the co-existence of two anti-parallel Minkowski spaces in
Fig. 2b implies the co-existence of two “anti-parallel” worlds
(or universes) in nature. The dimensions x, y, z and ct of the
positive Minkowski space, which are accessible to us by di-
rect experience, are the dimensions of our universe (or world).
The dimensions −x∗,−y∗,−z∗ and −ct∗ of the negative Min-
kowski space, which are inaccessible to us by direct expe-
rience, and hence, which have remained unknown until now,
are the dimensions of another universe. Dummy star label has
been put on the dimensions of the other universe, which are
non-observable to us in our universe, in order to distinguish
them from the dimensions of our universe.

The negative spacetime dimensions −x∗,−y∗,−z∗ and
−ct∗ are inversions in the origin (or four-dimensional inver-
sion) of the positive spacetime dimensions x, y, z and ct. Thus
the spacetime dimensions of the universe with negative dim-
ensions, to be referred to as the negative universe for brevity,
and the spacetime dimensions of our universe, (to sometimes
be referred to as the positive universe), have an inversion-in-
the-origin symmetry. There is a one-to-one mapping of points
in spacetimes between the positive (or our) universe and the
negative universe. In other words, to every point in spacetime
in our universe, there corresponds a unique symmetry-partner
point in spacetime in the negative universe.

In addition to the inversion in the origin relationship be-
tween the spacetime dimensions of the positive and negative
universes, we shall prescribe a reflection symmetry of space-
time geometry between the two universes. In other words, if
we denote the spacetime manifold of the positive universe by
M and that of the negative universe by −M∗, then spacetime
geometry at a point in spacetime in the positive universe shall
be prescribed by M and the metric tensor gµν at that point,
that is, by (M, gµν), while spacetime geometry shall be pre-
scribed at the symmetry-partner point in the negative universe
by (−M∗, gµν), where it must be remembered that the metric
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tensor is invariant with reflections of coordinates. Symmetry
of spacetime geometry between the two universes can only
be prescribed at this point of development of the two-world
picture.

Now Mach’s principle is very fundamental. We shall
make recourse to the principle here for the purpose of ad-
vancing our argument for the symmetry of state between the
positive and negative universes, while knowing that the prin-
ciple in itself has noting to do with Special Relativity. Es-
sentially the Mach’s principle states that the geometry of a
space is determined by the distribution of mass - energy in
that space [9, see p. 400]. It follows from the foregoing para-
graph and Mach’s principle that there is a reflection symmetry
of the distribution of mass-energy in spacetimes between the
two universes. Actually this is also a prescription at this point
since the symmetry of spacetime geometry is a prescription.

Reflection symmetry of geometry of spacetime and of the
distribution of mass-energy in spacetime also imply reflec-
tion symmetry of motions of particles and objects, natural or
caused by animate object, between the two universes. In other
words, corresponding to an event, natural or man-made, tak-
ing place within a local region of spacetime in our universe,
there is an identical event within the symmetry-partner lo-
cal region of spacetime in the negative universe. (This is the
symmetry of state between the two universes). The two uni-
verses are perfectly identical in state at all times. The perfect
symmetry of natural and man-made events (or perfect sym-
metry of state) between the two universes is a prescription at
this point.

There is also a perfect symmetry of laws between the two
universes, which implies that natural laws take on perfectly
identical forms in the two universes. Symmetry of laws be-
tween the two universes is simply the extension of the invari-
ance of laws found in our universe to the negative universe,
which follows partly from the validity of local Lorentz invari-
ance in the negative universe to be demonstrated shortly. The
two universes could not possess symmetry of state if the laws
that guide events and phenomena in them are different. The
perfect symmetry of laws between the two universes shall be
demonstrated with the advancement of the two-world picture.

The negative spacetime dimensions of the negative uni-
verse implies that distance in space, which is a positive scalar
quantity in our (positive) universe, is a negative scalar quan-
tity in the negative universe, and that interval of time, which is
a positive quantity in the positive universe is a negative quan-
tity in the negative universe; (it does not connote going to the
past in our time dimension). This can be easily ascertained
from the definition of distance, which is given in 3-space in
the negative universe as, d =

√
(−x∗)2 + (−y∗)2 + (−z∗)2. If

we consider motion along the dimension −x∗ solely, then we
must let −y∗ =−z∗ = 0, to have d =

√
(−x∗)2 =− x∗. Likewise

the distance element of Special Relativity in the negative uni-
verse is, ds∗ =

√
(−ct∗)2 − (−x∗)2 − (−y∗)2 − (−z∗)2. If we

Fig. 5: Combined positive and negative Minkowski’s spaces of the
positive and negative universes.

let −x∗ =−y∗ =−z∗ = 0, for propagation in time only, then
ds∗ =

√
(−ct∗)2 =−ct∗. Interestingly the negative worldline

element (ds∗ < 0) in the negative universe is the negative root
(−ds) of the quadratic line element ds2, which is usually dis-
carded since it conveys nothing to us from the point of view
of experience in the positive universe.

4.2 Non-separation of symmetry-partner points in
spacetimes in the positive and negative universes

It shall be shown here that a point in spacetime in our (or
positive) universe is effectively not separated in space or in
time dimension from its symmetry-partner point in spacetime
in the negative universe, for every pair of symmetry-partner
points in spacetimes in the two universes. Now let us con-
sider the larger spacetime of combined positive and negative
universes, Fig. 2b, which is re-illustrated as Fig. 5.

Point A* in the negative Euclidean 3-space −Σ∗ of the
negative universe is the symmetry-partner to point A in the
positive Euclidean 3-space Σ of the positive universe. Point
B* in the negative time dimension −ct∗ of the negative uni-
verse is the symmetry-partner to point B in the positive time
dimension ct of the positive universe. Hence points C* and C
are symmetry-partner points on four-dimensional spacetimes
in the two universes.

Now let points A and O in the positive 3-space Σ of the
positive universe be separated by a positive distance d, say,
since distances in space are positive scalar quantities in the
positive universe. Then the symmetry-partner points A* and
O* in the negative 3-space −Σ∗ of the negative universe are
separated by negative distance −d∗, since distances in space
are negative scalar quantities in the negative universe. Hence
the distance in 3-space between point A in the positive uni-
verse and its symmetry-partner point A* in the negative uni-
verse is, d − d∗ = 0, since d and −d∗ are equal in magnitude.
This implies that the symmetry-partner points A and A* are
effectively separated by zero distance in space with respect to

Akindele O. J. Adekugbe. Two-World Background of Special Relativity. Part I 35



Volume 1 PROGRESS IN PHYSICS January, 2010

observers (or people) in the positive and negative universes.
Likewise, if the interval of positive time dimension ct

between point O and point B is the positive quantity c∆t,
then the interval of the negative time dimension −ct∗ between
point O* and point B* is the negative quantity −c∆t∗, since
intervals of time are negative quantities in the negative uni-
verse. Hence the interval of time dimension between point B
in ct in the positive universe and its symmetry-partner point
B* in −ct∗ in the negative universe is, c∆t − c∆t∗ = 0. This
implies that the symmetry-partner points B and B* in the time
dimensions are effectively separated by zero interval of time
dimension with respect to observers (or people) in the positive
and negative universes. It then follows that the time t of an
event in the positive universe is effectively separated by zero
time interval from the time −t∗ of the symmetry-partner event
in the negative universe. Thus an event in the positive uni-
verse and its symmetry-partner in the negative universe occur
simultaneously.

It follows from the foregoing two paragraphs that sym-
metry-partner points C and C* in spacetimes in the positive
and negative universes are not separated in space or time,
and this is true for every pair of symmetry-partner points in
spacetimes in the two universes. Although symmetry-partner
points in spacetimes in the positive and negative universes
coincide at the same point, or are not separated, they do not
touch because they exist in different spacetimes.

One consequence of the foregoing is that local spacetime
coordinates, (Σ, ct) ≡ (x, y, z, ct), originating from a point O
in the positive universe and the symmetry-partner local space-
time coordinates, (−Σ∗,−ct∗) ≡ (−x∗,−y∗,−z∗,−ct∗), orig-
inating from the symmetry-partner point O* in spacetime in
the negative universe can be drawn from the same point on
paper, as done in Fig. 5, and geometrical construction whose
predictions will conform with observation or experiment in
each of the two universes can be based on this in the two-
world picture, as shall be done in the rest of this section.

4.3 Introducing a flat two-dimensional intrinsic space-
time underlying the flat four-dimensional spacetime

Since it is logically required for this article to propagate be-
yond this point and since space limitation in this paper does
not permit the presentation of its derivation, which shall be
presented elsewhere, we shall present (as ansatz) at this point
certain flat two-dimensional intrinsic spacetime with dimen-
sions to be denoted by φρ and φcφt, where φρ is intrinsic
space dimension (actually a one-dimensional intrinsic space)
and φcφt is intrinsic time dimension, which underlies the
flat four-dimensional spacetime (the Minkowski space) of the
Special Relativity, usually denoted by (x0, x1, x2, x3); x0 = ct,
but which shall be denoted by (Σ, ct) in this article for con-
venience, where Σ is the Euclidean 3-space with dimensions
x1, x2 and x3.

Every particle or object with a three-dimensional inertial

Fig. 6: a) The flat 4-dimensional spacetime and its underlying flat
2-dimensional intrinsic spacetime with the inertial masses of three
objects scattered in the Euclidean 3-space and their one-dimensional
intrinsic inertial masses aligned along the isotropic one-dimensional
intrinsic space with respect to observers in spacetime. b) The flat 2-
dimensional intrinsic spacetime with respect to observers in space-
time in a is a flat four-dimensional intrinsic spacetime containing
3-dimensional intrinsic inertial masses of particles and objects in 3-
dimensional intrinsic space with respect to intrinsic-mass-observers
in intrinsic spacetime.

mass m in the Euclidean 3-space Σ has its one-dimensional
intrinsic mass to be denoted by φm underlying it in the one-
dimensional intrinsic space φρ. The one-dimensional intrin-
sic space φρ underlying the Euclidean 3-space Σ is an iso-
tropic dimension with no unique orientation in Σ. This means
that φρ can be considered to be orientated along any direction
in Σ. The straight line intrinsic time dimension φcφt likewise
lies parallel to the straight line time dimension ct along the
vertical in the graphical presentation of the flat spacetime of
SR of Fig. 2 or Fig. 5.

If we temporarily consider the Euclidean 3-space Σ as
an hyper-surface, t = const, represented by a plane-surface
along the horizontal (instead of a line along the horizontal
as in the previous diagrams) and the time dimension ct as a
vertical normal line to the hyper-surface, then the graphical
representation of the flat four-dimensional spacetime (Σ, ct)
and its underlying flat two-dimensional intrinsic spacetime
(φρ, φcφt) in the context of SR described in the foregoing
paragraph is depicted in Fig. 6a.

Figure 6a is valid with respect to observers in the flat
physical four-dimensional spacetime (Σ, ct). The one-dimen-
sional intrinsic masses of all particles and objects are aligned
along the singular isotropic one-dimensional intrinsic space
φρ, whose inertial masses are scattered arbitrarily in the phys-
ical Euclidean 3-space Σ with respect to these observers,
in (Σ, ct), as illustrated for three such particles and objects
in Fig. 6a.

On the other hand, the intrinsic space is actually a flat
three-dimensional domain to be denoted by φΣ, with mutu-
ally orthogonal dimensions φx1, φx2 and φx3, at leat in the
small, with respect to intrinsic-mass-observers in φΣ. The in-
trinsic masses φm of particles and objects are likewise three-
dimensional with respect to the intrinsic-mass-observers in
φΣ. The intrinsic mass φm of a particle or object in the in-
trinsic space φΣ lies directly underneath the inertial mass m
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of the particle or object in the physical Euclidean 3-space Σ,
as illustrated for three such particles or objects in Fig. 6b.

The flat four-dimensional physical spacetime (Σ, ct) con-
taining the three-dimensional inertial masses m of particles
and objects in the Euclidean 3-space Σ is the outward man-
ifestation of the flat four-dimensional intrinsic spacetime
(φΣ, φcφt) containing the three-dimensional intrinsic masses
φm of the particles and objects in φΣ in Fig. 6b. It is due to
the fact that the flat three-dimensional intrinsic space φΣ is
an isotropic space, that is, all directions in φΣ are the same,
with respect to observers in the physical Euclidean 3-space Σ

that the dimensions φx1, φx2 and φx3 of φΣ, which are mutu-
ally orthogonal, at least locally, with respect to the intrinsic-
mass-observers in φΣ, are effectively directed along the same
non-unique direction in φΣ, thereby effectively constituting a
singular one-dimensional intrinsic space (or an intrinsic space
dimension) φρ with no unique orientation in φΣ and conse-
quently with no unique orientation in the physical Euclidean
3-space Σ overlying φΣ with respect to observers on the flat
spacetime (Σ, ct), as illustrated in Fig. 6a.

As follows from the foregoing paragraph, Fig. 6a is the
correct diagram with respect to observers in spacetime (Σ, ct).
It is still valid to say that the flat four-dimensional space-
time (Σ, ct) is the outward (or physical) manifestation of the
flat two-dimensional intrinsic spacetime (φρ, φcφt) and that
three-dimensional inertial mass m in Σ is the outward (or
physical) manifestation of one-dimensional intrinsic mass φm
with respect to observers in (Σ, ct) in Fig. 6a. Observers on
the flat four-dimensional spacetime (Σ, ct) must formulate in-
trinsic physics in intrinsic spacetime as two-dimensional in-
trinsic theories on flat intrinsic spacetime (φρ, φcφt).

It is for convenience that the three-dimensional Euclidean
space Σ shall be represented by a line along the horizontal as
done in Figs. 2a and 2b and Fig. 5 and as shall be done in the
rest of this article, instead of a plane surface along the hor-
izontal in Figs. 6a and 6b. Thus the flat four-dimensional
spacetime and its underlying flat two-dimensional intrinsic
spacetime shall be presented graphically in the two-world pic-
ture as Fig. 7. The origins O and O* are not actually separated
contrary to their separation in Fig. 7.

Figure 7 is Fig. 5 modified by incorporating the flat two-
dimensional intrinsic spacetimes underlying the flat four-
dimensional spacetimes of the positive and negative universes
into Fig. 5. Figure 7 is a fuller diagram than Fig. 5. As men-
tioned earlier, the intrinsic spacetime and intrinsic parameters
in it along with their properties and notations shall be derived
elsewhere.

The intrinsic spacetime dimensions φρ and φcφt and one-
dimensional intrinsic masses φm of particles and objects in
the intrinsic space φρ are hidden (or non-observable) to ob-
servers on the flat four-dimensional spacetime (Σ, ct). The
symbol φ attached to the intrinsic dimensions, intrinsic coor-
dinates and intrinsic masses is used to indicate their intrinsic
(or hidden) natures with respect to observers in spacetime.

Fig. 7: Combined flat four-dimensional spacetimes and combined
underlying flat two-dimensional intrinsic spacetimes of the positive
and negative universes.

When the symbol φ is removed from the flat two-dimensional
intrinsic spacetime (φρ, φcφt) we obtain the observed flat
four-dimensional spacetime (Σ, ct) and when φ is removed
from the one-dimensional intrinsic mass φm in φρ we ob-
tain the observed three-dimensional inertial mass m in the
Euclidean 3-space Σ.

As the inertial mass m moves at velocity~v in the Euclidean
3-space Σ of the flat four-dimensional spacetime (Σ, ct) rela-
tive to an observer in (Σ, ct), the intrinsic mass φm performs
intrinsic motion at intrinsic speed φv in the one-dimensional
intrinsic space φρ of the flat two-dimensional intrinsic space-
time (φρ, φcφt) relative to the observer in (Σ, ct), where
|φv|= |~v|. The inertial mass m of a particle in Σ and its intrinsic
mass φm in φρ are together always in their respective spaces,
irrespective of whether m is in motion or at rest relative to the
observer.

Finally in the ansatz being presented in this sub-section,
the intrinsic motion of the intrinsic rest mass φm0 of a particle
at intrinsic speed φv in an intrinsic particle’s frame (φx̃′, φcφt̃′)
relative to the observer’s intrinsic frame (φx̃, φcφt̃) on flat
two-dimensional intrinsic spacetime (φρ, φcφt) pertains to
two-dimensional intrinsic Special Theory of Relativity to be
denoted by φSR, while the corresponding motion of the rest
mass m0 of the particle at velocity ~v in the particle’s frame
(x̃′, ỹ′, z̃′, ct̃ ′) relative to the observer’s frame (x̃, ỹ, z̃, ct̃)
on the flat four-dimensional spacetime (Σ, ct), pertains to the
Special Theory of Relativity (SR) as usual. The SR on flat
four-dimensional spacetime (Σ, ct) is mere outward manifes-
tation of φSR on the underlying flat two-dimensional intrinsic
spacetime (φρ, φcφt).

The intrinsic motion at intrinsic speed φv of the intrin-
sic rest mass φm0 of a particle in the particle’s intrinsic
frame (φx̃′, φcφt̃ ′) relative to the observer’s intrinsic frame
(φx̃, φcφt̃), gives rise to rotation of the intrinsic coordinates
φx̃′ and φcφt̃ ′ relative to the intrinsic coordinates φx̃ and φcφt̃
on the vertical intrinsic spacetime plane (which are on the
(φρ, φcφt)-plane) in Fig. 7. It must be observed that rotation
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of the intrinsic coordinate φx̃′ can take place on the vertical
intrinsic spacetime plane only in Fig. 6a or Fig. 7.

Two-dimensional intrinsic spacetime diagram and its in-
verse must be drawn on the vertical (φρ, φcφt)-plane in the
two-world picture and intrinsic Lorentz transformation (φLT)
and its inverse derived from them in the context of φSR. The
intrinsic Lorentz invariance (φLI) on the flat two-dimensional
intrinsic spacetime must be validated and every result in the
context of the two-dimensional intrinsic Special Theory of
Relativity (φSR), each of which has its counterpart in SR,
must be derived from the φLT and its inverse in the manner
the results of SR are derived from the LT and its inverse.

Once φSR has been formulated as described above, then
SR being mere outward (or physical) manifestation on the flat
four-dimensional spacetime (Σ, ct) of φSR on the flat two-
dimensional intrinsic spacetime (φρ, φcφt), the results of SR
namely, the LT and its inverse, the Lorentz invariance (LI) on
the flat four-dimensional spacetime and every other results of
SR can be written directly from the corresponding results of
φSR, without having to draw spacetime diagrams involving
the rotation of the coordinates (x̃′, ỹ′, z̃′, ct̃ ′) of the primed
frame relative to the coordinates (x̃, ỹ, z̃, ct̃) of the unprimed
frame on the flat four-dimensional spacetime (Σ, ct) in the
context of SR. This procedure shall be demonstrated in the
next sub-section.

4.4 New spacetime/intrinsic spacetime diagrams for de-
rivation of Lorentz transformation/intrinsic Lorentz
transformation in the two-world picture

Consider two frames of reference with extended unprimed
straight line affine coordinates x̃, ỹ, z̃, ct̃ and extended
primed straight line affine coordinates x̃′, ỹ′, z̃′, ct̃ ′ respec-
tively on the flat metric four-dimensional spacetime (Σ, ct).
Let a three-dimensional observer (or a 3-observer), Peter, say,
be located in 3-space of the unprimed frame and another 3-
observer, Paul, say, be located in 3-space of the primed frame.

Corresponding to the 3-dimensional observer Peter in the
3-space of the unprimed frame, there is the one-dimensional
observer (or 1-observer) in the time dimension of the un-
primed frame to be denoted by P̃eter. Likewise corresponding
to the 3-observer Paul in 3-space of the primed frame is the
one-dimensional observer (or 1-observer) P̃aul in the time di-
mension of the primed frame. Thus there is the 4-observer
(Peter, P̃eter) in the unprimed frame (x̃, ỹ, z̃, ct̃) and the 4-
observer (Paul, P̃aul) in the primed frame (x̃′, ỹ′, z̃′, ct̃ ′)
in the positive universe. There is the symmetry-partner 4-
observer (Peter∗, P̃eter∗) in the symmetry-partner unprimed
frame (−x̃∗,−ỹ∗,−z̃∗,−ct̃∗) and symmetry-partner 4-observer
(Paul∗, P̃aul∗) in the symmetry-partner primed frame
(−x̃′∗,−ỹ′∗,−z̃′∗,−ct̃ ′∗) in the negative universe.

Before proceeding further, let us shine some light on
the concepts of metric spacetime and affine spacetime that
have been introduced in the preceding two paragraphs. As

well known, the metric spacetime (Σ, ct) is the physical four-
dimensional spacetime, which is flat with constant Lorentzian
metric tensor in the context of SR (and is postulated to be
curved with Riemannian metric tensor in the context of the
General Theory of Relativity, GR). The matter (or mass) of
particles and objects are contained in the metric 3-space Σ

(with Euclidean metric tensor in the context of SR). Thus par-
ticles and objects exist and move in the four-dimensional met-
ric spacetime in the theories of relativity. The coordinates or
dimensions of the metric spacetime shall be denoted by x, y, z
and ct without label (in the Cartesian system of coordinates
of 3-space) in this article.

On the other hand, the coordinates of an affine spacetime
shall be differentiated from those of a metric spacetime by an
over-head tilde label as x̃, ỹ, z̃ and ct̃. These are mere math-
ematical entities without physical (or metrical) quality used
to identify the positions and to track the motion of material
points relative to a specified origin in a metric spacetime. The
affine coordinates x̃, ỹ, z̃ and ct̃ are straight line coordinates
that can be of any extensions in the flat metric spacetime of
SR. Just as it is said that “the path of a fish in water can-
not be known”, so is the path (i.e. the locus of the affine
coordinates) of a material point through a metric spacetime
non-discernible or without metrical quality. An affine space-
time can be described as mere mathematical scaffolding with-
out physical (or metrical) significance for identifying possi-
ble positions of material particles in the metric spacetime.
The extended three-dimensional affine space constituted by
the affine coordinates x̃, ỹ and z̃ cannot hold matter (or mass
of particles and objects).

Now corresponding to the unprimed frame (x̃, ỹ, z̃, ct̃)
of the 4-observer (Peter, P̃eter) prescribed on the flat four-
dimensional metric spacetime (Σ, ct) earlier, is the unprimed
intrinsic frame (φx̃, φcφt̃) of intrinsic 2-observer (φPeter,
φP̃eter) in the two-dimensional metric intrinsic spacetime
(φρ, φcφt) underlying (Σ, ct) in the first quadrant in Fig. 7
and corresponding to the primed frame (x̃′, ỹ′, z̃′, ct̃ ′) of the
4-observer (Paul, P̃aul) prescribed in the metric spacetime
(Σ, ct) is the primed intrinsic frame (φx̃′, φcφt̃ ′) of intrinsic
2-observer (φPaul, φP̃aul) in the two-dimensional metric in-
trinsic spacetime (φρ, φcφt) underlying (Σ, ct) in Fig. 7. The
intrinsic coordinates φx̃ and φcφt̃ of the unprimed intrinsic
frame in (φρ, φcφt) are extended straight line affine intrinsic
coordinates like the coordinates x̃, ỹ, x̃ and ct̃ of the unprimed
frame in (Σ, ct). The intrinsic coordinates φx̃′ and φcφt̃ ′ of
the primed intrinsic frame in (φρ, φcφt) are likewise extended
straight line affine intrinsic coordinates like the coordinates
x̃′, ỹ′, x̃′ and ct̃ ′ of the primed frame in (Σ, ct).

The summary of all of the foregoing is that we have pre-
scribed a pair of frames with extended straight line affine
coordinates namely, (x̃, ỹ, z̃, ct̃) of 4-observer (Peter, P̃eter)
and (x̃′, ỹ′, z̃′, ct̃ ′) of 4-observer (Paul, P̃aul) on the flat four-
dimensional metric spacetime (Σ, ct) and underlying pair of
intrinsic frames with extended straight line affine intrinsic co-
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ordinates namely, (φx̃, φcφt̃) of intrinsic 2-observer (φPeter,
φP̃eter) and (φx̃′, φcφt̃ ′) of intrinsic 2-observer (φPaul, φP̃aul)
on the flat two-dimensional metric intrinsic spacetime
(φρ, φcφt) that underlies (Σ, ct) in the first quadrant (or in our
universe) in Fig. 7.

The perfect symmetry of state between the positive and
negative universes requires that there are identical symmetry-
partner pair of frames with extended straight line affine coor-
dinates (−x̃∗,−ỹ∗,−z̃∗,−ct̃∗) of symmetry-partner 4-observer
(Peter∗, P̃eter∗) and (−x̃′∗,−ỹ′∗,−z̃′∗,−ct̃ ′∗) of symmetry-
partner 4-observer (Paul∗, P̃aul∗) on the flat four-dimensional
metric spacetime (−Σ∗,−ct∗) and underlying pair of intrin-
sic frames with extended straight line affine intrinsic coordi-
nates namely, (−φx̃∗,−φcφt̃∗) of intrinsic 2-observer (φPeter∗,
φP̃eter∗) and (−φx̃′∗,−φcφt̃′∗) of intrinsic 2-observer (φPaul∗,
φP̃aul∗) on the flat two-dimensional metric intrinsic space-
time (−φρ∗,−φcφt∗) that underlies (−Σ∗,−ct∗) in the third
quadrant (or in negative universe) in Fig. 7.

As done at the beginning of section 2, let us consider the
propagation at a constant speed v of the rest mass m0 of a par-
ticle along the coordinate x̃′ of the particle (or primed) frame
(x̃′, ỹ′, z̃′, ct̃ ′) relative to the 3-observer Peter in the 3-space
Σ̃ (x̃, ỹ, z̃) of the observer’s frame (x̃, ỹ, z̃, ct̃) in the positive
universe (or our universe), where the coordinates x̃′ and x̃
shall be taken to be collinear. Correspondingly, the intrinsic
rest mass φm0 of the particle is in intrinsic motion at intrinsic
speed φv along the intrinsic coordinate φx̃′ of the particle’s in-
trinsic frame (or the primed intrinsic frame) (φx̃′, φcφt̃ ′) rel-
ative to the intrinsic observer’s frame (φx̃, φcφt̃) with respect
to the intrinsic 1-observer φPeter in the one-dimensional in-
trinsic space (φx̃) of the observer’s frame and hence with re-
spect to the 3-observer Peter in Σ̃(x̃, ỹ, z̃) overlying φx̃, where
the intrinsic coordinates φx̃′ and φx̃ are necessarily collinear
since they are affine intrinsic coordinates in the singular iso-
tropic one-dimensional metric intrinsic space φρ.

The intrinsic motion at intrinsic speed φv of the intrinsic
rest mass φm0 of the particle along the intrinsic coordinate φx̃′

of the particle’s intrinsic frame (φx̃′, φcφt̃ ′) relative to the ob-
server’s intrinsic frame (φx̃, φcφt̃) described in the foregoing
paragraph, will cause the anti-clockwise rotation of the ex-
tended straight line affine intrinsic coordinates φx̃′ and φcφt̃ ′

of the primed intrinsic frame at equal intrinsic angle φψ rel-
ative to the extended straight line affine intrinsic coordinates
φx̃ and φcφt̃ respectively of the unprimed intrinsic frame.

The perfect symmetry of state between the positive and
negative universes discussed earlier, implies that the rest mass
of the symmetry-partner particle (its sign is yet to be deter-
mined), is in simultaneous motion at constant speed v along
the coordinate −x̃′∗ of the particle’s frame (−x̃′∗,−ỹ′∗,−z̃′∗,
−ct̃ ′∗) relative to the symmetry-partner 3-observer∗ Peter∗

in the 3-space −Σ̃∗(−x̃∗,−ỹ∗,−z̃∗) of the observer’s frame
(−x̃∗,−ỹ∗,−z̃∗,−ct̃∗) in the negative universe. Correspond-
ingly, the intrinsic rest mass of the symmetry-partner parti-
cle is in intrinsic motion at constant intrinsic speed φv along

the intrinsic coordinate −φx̃′∗ of the particle’s intrinsic frame
(−φx̃′∗,−φcφt̃ ′∗) relative to the intrinsic observer’s frame
(−φx̃∗,−φcφt̃∗), with respect to the intrinsic 1-observer∗

φPeter∗ in the intrinsic space −φx̃∗ of the intrinsic observer’s
frame and consequently with respect to the 3-observer∗ Peter∗

in the 3-space −Σ̃∗(−x̃∗,−ỹ∗,−z̃∗) of the observer’s frame
overlying −φx̃∗ in the negative universe. Consequently the
extended affine intrinsic coordinates −φx̃′∗ and −φcφt̃ ′∗ of
the particle’s frame will be rotated anti-clockwise at equal
intrinsic angle φψ relative to the extended straight line affine
intrinsic coordinates −φx̃∗ and −φcφt̃∗ respectively of the ob-
server’s intrinsic frame.

Now on the larger spacetime/intrinsic spacetime of com-
bined positive universe and negative universe depicted in
Fig. 7, the extended straight line affine intrinsic time coor-
dinate φcφt̃ ′ of the primed intrinsic frame in the first quad-
rant can rotate into the second quadrant with respect to the 3-
observer (Peter) in the 3-space Σ̃(x̃, ỹ, z̃) along the horizontal
in the first quadrant in Fig. 7. This is so since the intrin-
sic angle φψ has values in the negative half-plane in Fig. 1b,
which correspond to the second and third quadrants in Fig. 7.
Similarly the extended straight line affine intrinsic time co-
ordinate −φcφt̃ ′∗ of the primed intrinsic frame in the third
quadrant can rotate into the fourth quadrant with respect to
3-observer∗ (Peter∗) in the 3-space −Σ̃∗ along the horizontal
in the third quadrant, since φψ has value in the positive half-
plane in Fig. 1b, which corresponds to the fourth and first
quadrants in Fig. 7, with respect to 3-observers∗ in −Σ∗ along
the horizontal in the third quadrant in Fig.7. Thus the rotation
of the intrinsic coordinates φx̃′ and φcφt̃ ′ relative to φx̃ and
φcφt̃ respectively in Fig. 8a is possible (or will ensue) in the
two-world picture.

The intrinsic coordinate φx̃ is the projection along the hor-
izontal of the inclined φx̃′ in Fig. 8a. That is, φx̃ = φx̃′ cos φψ.
Hence we can write,

φx̃′ = φx̃ sec φψ .

This transformation of affine intrinsic space coordinates
is all that should have been possible with respect to the intrin-
sic 1-observer φPeter in the intrinsic space φx̃ of the intrinsic
observer’s frame along the horizontal and consequently with
respect to 3-observer (Peter) in the 3-space Σ̃(x̃, ỹ, z̃) of the
observer’s frame from Fig. 8a, but for the fact that the neg-
ative intrinsic time coordinate −φcφt̃ ′∗ of the negative uni-
verse rotated into the fourth quadrant also projects component
−φcφt̃ ′ sin φψ along the horizontal, which must be added to
the right-hand side of the last displayed equation yielding,

φx̃′ = φx̃ sec φψ − φcφt̃ ′ sin φψ .

The dummy star label used to differentiate the coordi-
nates and parameters of the negative universe from those of
the positive universe has been removed from the component
−φcφt′∗ sin φψ projected along the horizontal by the coordi-
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Fig. 8: a) The diagram used to derive partial intrinsic Lorentz transformations / partial Lorentz transformations with respect to 3-observers
in the 3-spaces in the positive and negative universes. b) The complementary diagram to a used to derive partial intrinsic Lorentz transfor-
mations / partial Lorentz transformations with respect to 1-observers in the time dimensions in the positive and negative universes.

nate −φcφt̃ ′∗ of the negative universe rotated into the fourth
quadrant in Fig. 8a, since the projected component is now an
intrinsic coordinate in the positive universe.

But the intrinsic coordinates φcφt̃ and φcφt̃ ′ are also
related as, φcφt̃ = φcφt̃ ′ cos φψ hence φcφt̃ ′ = φcφt̃ sec φψ,
along the vertical in the same Fig. 8a. By replacing φcφt̃ ′

by φcφt̃ sec φψ in the last displayed equation we have

φx̃′ = φx̃ sec φψ − φcφt̃ tan φψ (11)

(w.r.t. 3-observer Peter in Σ̃).
Likewise the affine intrinsic time coordinate φcφt̃ is the

projection along the vertical of the inclined affine intrinsic
coordinate φcφt̃ ′ in Fig. 8b. Hence φcφt̃ = φcφt̃ ′ cos φψ or

φcφt̃ ′ = φcφt̃ sec φψ .

This affine intrinsic time coordinate transformation is all
that should have been possible with respect to the 1-observer
P̃eter in the time dimension ct̃ of the observer’s frame from
Fig. 8b, but for the fact that the inclined negative intrin-
sic space coordinate −φx̃′∗ of the negative universe rotated
into the second quadrant also projects component −φx̃′ sin φψ
along the vertical, which must be added to the right-hand side
of the last displayed equation yielding,

φcφt̃ ′ = φcφt̃ sec φψ − φx̃′ sin φψ .

The dummy star label has again been removed from the
component −φx̃′∗ sin φψ projected along the vertical in the
second quadrant by the inclined intrinsic coordinate −φx̃′∗ of
the negative universe rotated into the second quadrant, since
the projected component is now an intrinsic coordinate in the
positive universe.

But the intrinsic coordinate φx̃ is related to φx̃′ along the
horizontal in the same Fig. 8b as, φx̃ = φx̃′ cos φψ or φx̃′ =

φx̃ sec φψ along the horizontal in Fig. 8b. Then by replacing
φx̃′ by φx̃ sec φψ in the last displayed equation we have

φcφt̃ ′ = φct̃ sec φψ − φx̃ tan φψ (12)

(w.r.t. 1-observer P̃eter in ct̃).
The concept of 1-observer in the time dimension added to

3-observer in 3-space to have 4-observer in four-dimensional
spacetime introduced above is in agreement with the known
four-dimensionality of particles and bodies in 4-geometry of
relativity. Anti-clockwise (or positive) rotation of the intrin-
sic space coordinate φx̃′ by intrinsic angle φψ towards the
intrinsic time coordinate φcφt̃ along the vertical with respect
to the 3-observer (Peter) in the 3-space Σ̃(x̃, ỹ, z̃) of the ob-
server’s frame in Fig. 8a, corresponds to clockwise (or posi-
tive) rotation of the intrinsic time coordinate φcφt̃ ′ by equal
intrinsic angle φψ towards the intrinsic space coordinate φx̃
along the horizontal with respect to the 1-observer (P̃eter)
in the time dimension ct̃ of the observer’s frame in Fig. 8b.
The explanation of the fact that anti-clockwise rotation of the
primed intrinsic spacetime coordinates relative to unprimed
intrinsic spacetime coordinates is positive rotation with re-
spect to 3-observers in 3-spaces in Fig. 8a, while clockwise
rotation of primed intrinsic spacetime coordinates relative to
unprimed intrinsic spacetime coordinates is positive rotation
with respect to 1-observers in the time dimensions in Fig. 8b,
requires further development of the two-world picture than in
this paper. It shall be presented elsewhere.

The partial intrinsic Lorentz transformation of affine in-
trinsic space coordinates (11) with respect to the 3-observer
Peter in the 3-space Σ̃ (x̃, ỹ, z̃) of the observer’s frame and
the partial intrinsic Lorentz transformation of affine intrinsic
time coordinates (12) with respect to the 1-observer P̃eter in
the time dimension ct̃ of the observer’s frame must be col-
lected to obtain the intrinsic Lorentz transformation of ex-
tended straight line affine intrinsic spacetime coordinates with
respect to 4-observers (Peter, P̃eter) in the observer’s frame as
follows:

φcφt̃ ′ = φcφt̃ sec φψ − φx̃ tan φψ
(w.r.t. 1-observer P̃eter in ct̃)

φx̃′ = φx̃ sec φψ − φcφt̃ tan φψ
(w.r.t. 3-observer Peter in Σ̃)


, (13)
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Fig. 9: The inverse diagrams to Figures 8a and 8b respectively, used to derive inverse intrinsic Lorentz transformations / inverse Lorentz
transformations in the positive and negative universes.

where − π2 < φψ < π
2 (temporarily).

The range − π2 < φψ < π
2 of the intrinsic angles φψ in

system (13) in the positive universe is temporary as indicated.
This temporary range shall be modified later in this section.
The fact that the intrinsic angle φψ can have values in the
range [0, π2 ) in the first quadrant in Figs. 8a and 8b in the
two-world picture, instead of the range [0, π4 ) of the angle φ
in the Minkowski diagrams, (Figs. 3a and 3b in the one-world
picture), is due to the non-existence of light-cones in the two-
world picture, as shall be established shortly.

In order to obtain the inverses of equations (11) and (12)
and hence the inverse to system (13), let us draw the inverses
of Figs. 8a and 8b. The inverse to Fig. 8a obtained by rotating
all intrinsic coordinates clockwise by negative intrinsic angle
−φψ with respect to 3-observer in the 3-spaces Σ̃ and −Σ̃∗ in
Fig. 8a is depicted in Fig. 9a and the the inverse to Fig. 8b
obtained by rotating all intrinsic coordinates anti-clockwise
by negative intrinsic angle −φψ with respect to 1-observer
in the time dimensions ct̃ and −ct̃∗ in Fig. 8b is depicted in
Fig. 9b.

The clockwise sense of negative rotation (i.e. by nega-
tive intrinsic angle) of intrinsic coordinates in Fig. 9a is valid
with respect to the 3-observer (Paul) in the 3-space Σ̃′ of the
primed (or particle’s) frame with respect to whom positive ro-
tation is anti-clockwise. Hence the transformation of intrinsic
coordinates derived from Fig. 9a is valid with respect to the
3-observer (Paul) in Σ̃′. On the other hand, the anti-clockwise
sense of negative rotation of intrinsic coordinates in Fig. 9b
is valid relative to the 1-observer (P̃aul) in the time dimen-
sion ct̃ ′, with respect to whom positive rotation is clockwise.
Hence the intrinsic coordinate transformation derived from
Fig. 9b is valid relative to the 1-observer (Paul) in ct̃ ′.

Again the affine intrinsic time coordinate φcφt̃ ′ is the
projection along the vertical of the inclined φcφt̃ in Fig. 9a.
That is, φcφt̃ ′ = φcφt̃ cos(−φψ) = φcφt̃ cos φψ. Hence we
can write,

φcφt̃ = φcφt̃ ′ sec φψ .

This transformation of affine intrinsic time coordinates is

all that should have been possible along the vertical in Fig. 9a
by the 3-observer (Paul) in Σ̃′ of the particle’s frame, but for
the fact that the unprimed negative intrinsic space coordinate
−φx̃∗ of the negative universe rotated into the second quad-
rant projects component, −φx̃ sin(−φψ) = φx̃ sin φψ, along the
vertical, which must be added to the right-hand side of the
last displayed equation to have as follows:

φcφt̃ = φcφt̃ ′ sec φψ + x̃ sin φψ .

The dummy star label has again been removed from the
component −φx̃∗ sin(−φψ) projected along the vertical in the
second quadrant by the negative intrinsic space coordinate
−φx̃∗ of the negative universe rotated into the second quadrant
in Fig. 9a, since the projected component is now an intrinsic
coordinate in the positive universe.

But φx̃ and φx̃′ are related as φx̃ cos(−φψ) = φx̃′ hence,
φx̃ = φx̃′ sec φψ, along the horizontal in the same Fig. 9a. By
using this in the last displayed equation we have

φcφt̃ = φcφt̃ ′ sec φψ + φx̃′ tan φψ (14)

(w.r.t. 3-observer Paul in Σ̃′).
Likewise the affine intrinsic space coordinate φx̃ is related

to φx̃′ and the component −φcφt̃ sin(−φψ) projected along the
horizontal with respect to the 1-observer P̃aul in the time di-
mension ct̃ ′ of the particle’s frame in Fig. 9b as

φx̃ = x̃′ sec φψ + φcφt̃ sin φψ .

Then by using the relation, φcφt̃ = φcφt̃ ′ sec φψ, which
also holds along the vertical in the same Fig. 9b in the last
displayed equation, we have

φx̃ = φx̃′ sec φψ + φcφt̃ ′ tan φψ (15)

(w.r.t. 1-observer P̃aul in ct̃ ′).
By collecting the partial intrinsic coordinate transforma-

tions (14) and (15) we obtain the inverse intrinsic Lorentz
transformation to system (13) with respect to 4-observer

Akindele O. J. Adekugbe. Two-World Background of Special Relativity. Part I 41



Volume 1 PROGRESS IN PHYSICS January, 2010

(Paul, P̃aul) in the particle’s (or primed) frame as follows:

φcφt̃ = φcφt̃ ′ sec φψ + φx̃′ tan φψ
(w.r.t. 3-observer Paul in Σ̃′)

φx̃ = φx̃′ sec φψ + φcφt̃ ′ tan φψ
(w.r.t. 1-observer P̃aul in ct̃ ′)


, (16)

where − π2 < φψ < π
2 (temporarily).

Again the range − π2 < φψ < π
2 of the intrinsic angles φψ in

system (16) in the positive universe is temporary as indicated.
It shall be modified shortly in this section.

By considering the origin φx̃′ = 0 of the intrinsic space co-
ordinate φx̃′ of the primed intrinsic frame, system (16) sim-
plifies as follows:

φx̃ = φcφt̃ ′ tan φψ and φcφt̃ = φcφt̃ ′ sec φψ . (17)

Then by dividing the first into the second equation of sys-
tem (17) we have

φx̃
φcφt̃

= sin φψ .

But, φx̃/φt̃ = φv, is the intrinsic speed of the primed in-
trinsic frame relative to the unprimed intrinsic frame. Hence,

sin φψ = φv/φc = φβ (18)

sec φψ =
1√

1 − φv2/φc2
= φγ . (19)

By using relations (18) and (19) in systems (13) we have

φcφt̃ ′ =
1√

1 − φv2/φc2

(
φcφt̃ − φv

φc
φx̃

)

(w.r.t. 1-observer P̃eter in ct̃),

φx̃′ =
1√

1 − φv2/φc2

(
φx̃ − φv

φc
φcφt̃

)

(w.r.t. 3-observer Peter in Σ̃), or

φt̃ ′ = φγ

(
φt̃ − φv

φc2 φx̃
)

(w.r.t. 1-observer P̃eter in ct̃)

φx̃′ = φγ
(
φx̃ − φvφt̃

)
(w.r.t. 3-observer Peter in Σ̃)



. (20)

And by using equations (18) and (19) in system (16) we
have

φcφt̃ =
1√

1 − φv2/φc2

(
φcφt̃ ′ +

φv

φc
φx̃′

)

(w.r.t. 3-observer Peter in Σ̃′),

φx̃ =
1√

1 − φv2/φc2

(
φx̃′ +

φv

φc
φcφt̃ ′

)

(w.r.t. 1-observer P̃eter in ct̃ ′), or

φt̃ = φγ

(
φt̃ ′ +

φv

φc2 φx̃′
)

(w.r.t. 3-observer Paul in Σ̃′)

φx̃ = φγ
(
φx̃′ + φvφt̃ ′

)

(w.r.t. 1-observer P̃aul in ct̃ ′)



. (21)

Systems (20) and (21) are the explicit forms of the intrin-
sic Lorentz transformation (φLT) of extended affine intrin-
sic coordinates and its inverse respectively on the flat two-
dimensional metric intrinsic spacetime (φρ, φcφt) that under-
lies the flat four-dimensional metric spacetime (Σ, ct) in the
positive universe in Fig. 7.

As can be easily verified, either system (13) or (16) or its
explicit form (20) or (21) implies intrinsic Lorentz invariance
(φLI) on (φρ, φcφt):

φc2φt̃2 − φx̃2 = φc2φt̃ ′2 − φx̃′2 . (22)

Just as the 4-observer (Peter, P̃eter) in the unprimed frame
(x̃, ỹ, z̃, ct̃) derives system (13) given explicitly as system
(20) from Figs. 8a and 8b and the 4-observer (Paul, P̃aul)
in the primed frame derives the system (16) given explicitly
as system (21) from Figs. 9a and 9b in the positive universe,
the symmetry-partner 4-observer∗ (Peter∗, P̃eter∗) in the un-
primed frame (−x̃∗,−ỹ∗,−z̃∗,−ct̃∗) in the negative universe
derives the φLT and its inverse from Figs. 8a and 8b and
the symmetry-partner observer∗ (Paul∗, P̃aul∗) in the primed
frame (−x̃′∗,−ỹ′∗,−z̃′∗,−ct̃ ′∗) in the the negative universe
derives the inverse φLT from Figs. 9a and 9b, and the 4-
observers (Peter∗, P̃eter∗) and (Paul∗, P̃aul∗) write

−φcφt̃ ′∗ = −φcφt̃∗ sec φψ − (−φx̃∗) tan φψ

(w.r.t. 1-observer∗ P̃eter∗ in −ct̃∗)

−φx̃′∗ = −φx̃∗ sec φψ − (−φcφt̃∗) tan φψ

(w.r.t. 3-observer∗ Peter∗ in −Σ̃∗)



(23)

and

−φcφt̃∗ = −φcφt̃ ′∗ sec φψ + (−φx̃′∗) tan φψ

(w.r.t. 3-observer∗ Paul∗ in −Σ̃′∗)

−φx̃∗ = −φx̃′∗ sec φψ + (−φcφt̃ ′∗) tan φψ

(w.r.t. 1-observer∗ P̃aul∗ in −ct̃ ′∗)



, (24)

where − π2 < φψ < π
2 (temporarily).

The range − π2 < φψ < π
2 of the intrinsic angles φψ in

systems (23) and (24) in the negative universe is temporary
as indicated. It shall be modified shortly in this section.

Systems (23) and (24) can also be put in their explicit
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forms respectively as follows by virtue of Eqs. (18) and (19):

−φt̃ ′∗ = φγ

(
−φt̃∗ − φv

φc2 (−φx̃∗)
)

(w.r.t. 1-observer∗ P̃eter∗ in −ct̃∗)

−φx̃′∗ = φγ
(−φx̃∗ − φv (−φt̃∗)

)
(w.r.t. 3-observer∗ Peter∗ in −Σ̃∗)



(25)

and

−φt̃∗ = φγ

(
−φt̃ ′∗ +

φv

φc2 (−φx̃′∗)
)

(w.r.t. 3-observer∗ Paul∗ in −Σ̃′∗)

−φx̃∗ = φγ
(−φx̃′∗ + φv (−φt̃ ′∗)

)
(w.r.t. 1-observer∗ P̃aul∗ in −ct̃ ′∗)



. (26)

Again system (23) or (24) or the explicit form (25) or
(26) implies intrinsic Lorentz invariance on the flat two-
dimensional intrinsic spacetime (−φρ∗,−φcφt∗) in the neg-
ative universe:

(−φc2φt̃∗)2 − (−φx̃∗)2 = (−φc2φt̃ ′∗)2 − (−φx̃′∗)2. (27)

The intrinsic LT of system (13) and its inverse of system
(16) or their explicit forms of systems (20) and (21) and the
intrinsic Lorentz invariance (22) they imply, pertain to two-
dimensional intrinsic Special Theory of Relativity (φSR) on
the flat two-dimensional metric intrinsic spacetime (φρ, φcφt)
that underlies the flat four-dimensional metric spacetime
(Σ, ct) in the positive universe in Fig. 7. In symmetry, the
intrinsic LT and its inverse of system (23) and (24) or their ex-
plicit forms (25) and (26) and the intrinsic Lorentz invariance
(27) they imply pertain to the intrinsic Special Theory of Rel-
ativity (φSR) on flat two-dimensional metric intrinsic space-
time (−φρ∗,−φcφt∗) that underlies the flat four-dimensional
metric spacetime (−Σ∗,−ct∗) in the negative universe.

Having derived the intrinsic LT of system (13) on page 40
and its inverse of system (16) on page 42 and their explicit
forms of systems (20) and (21) in the context of intrinsic 2-
geometry φSR in the positive universe, we must now obtain
their outward (or physical) manifestations on the flat four-
dimensional spacetime in the context of 4-geometry Special
Theory of Relativity (SR). We do not have to draw a new
set of diagrams in the two-world picture in which extended
straight line affine spacetime coordinates x̃′ and ct̃ ′ of the
primed frame are rotated relative to the extended affine co-
ordinates x̃ and ct̃ respectively of the unprimed frame on the
vertical (x, ct)-plane, while the affine coordinates ỹ′ and z̃′

of the primed frame along which relative motion of SR do
not occur are not rotated on the vertical spacetime plane. In-
deed such diagram does exist. Figures 8a and 8b and their
inverses Figs. 9a and 9b, in which the intrinsic spacetime
coordinates are rotated being the only diagrams of Special
Relativity/intrinsic Special Relativity (SR/φSR) in the two-
world picture.

As discussed earlier, the flat four dimensional metric
spacetime (Σ, ct)≡ (x, y, z, ct) is the outward (or physical)
manifestation of the flat two-dimensional metric intrinsic
spacetime (φρ, φcφt) in Fig. 7. Likewise the extended mu-
tually orthogonal straight line affine coordinates x̃, ỹ and z̃
constitute a flat affine 3-space, shown as a straight line and de-
noted by Σ̃(x̃, ỹ, z̃) along the horizontal in the first quadrant.
It is the outward manifestation of the extended straight line
affine intrinsic coordinate φx̃ underlying it in Figs. 8a and 8b.
And the extended straight line affine time coordinate ct̃ is the
outward (or physical) manifestation of the extended straight
line affine intrinsic time coordinate φcφt̃ along the vertical in
Figs. 8a and 8b. The extended straight line affine spacetime
coordinates x̃′, ỹ′, z̃′ and ct̃ are likewise the outward manifes-
tations of the extended affine intrinsic spacetime coordinates
φx̃′ and φcφt̃ ′ in Figs. 9a and 9b.

It follows by virtue of the foregoing paragraph that the
LT and its inverse in the context of SR are the outward (or
physical) manifestations of the intrinsic Lorentz transforma-
tion (φLT) of system (13) or (20) and its inverse of system
(16) or (21). We must simply remove the symbol φ in systems
(13) and (16) to have the LT and its inverse in SR respectively
as follows:

ct̃ ′ = ct̃ secψ − x̃ tanψ
(w.r.t. P̃eter in ct̃)

x̃′ = x̃ secψ − ct̃ tanψ , ỹ′ = ỹ , z̃′ = z̃
(w.r.t. Peter in Σ̃)


(28)

and
ct̃ = ct̃ ′ secψ + x̃′ tanψ

(w.r.t. Paul in Σ̃′)

x̃ = x̃′ secψ + ct̃ ′ tanψ , ỹ = ỹ′, z̃ = z̃′

(w.r.t. P̃aul in ct̃ ′)


, (29)

where − π2 < ψ < π
2 (temporarily).

The trivial transformations ỹ= ỹ′ and z̃ = z̃′ of the coordi-
nates along which relative motion of SR does not occur have
been added to the first and second equations of systems (28)
obtained by simply removing symbol φ from system (13) on
page 40 and to the first and second equations of system (29)
obtained by simply removing symbol φ from system (16) on
page 42, thereby making the resulting LT of system (28) and
its inverse of system (29) consistent with the 4-geometry of
SR. The angle ψ being the outward manifestation in space-
time of the intrinsic angle φψ in intrinsic spacetime, has the
same temporary range in systems (28) and (29) as does φψ in
systems (13) and (16). This temporary range of ψ shall also
be modified shortly in this section.

System (28) indicates that the affine spacetime coordi-
nates x̃′ and ct̃ ′ are rotated at equal angle ψ relative to the
affine spacetime coordinates x̃ and ct̃ respectively, while ỹ is
not rotated relative ỹ and z̃′ is not rotated relative to z̃ by an-
gle ψ in the context of SR and system (29) indicates that x̃
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and ct̃ are rotated by equal negative angle −ψ relative to x̃′

and ct̃ ′ respectively. However the relative rotations of the
affine coordinates of the four-dimensional spacetime do not
exist in reality, as discussed earlier. The indicated rotations in
systems (28) and (29) may be referred to as intrinsic (i.e. non-
observable or hypothetical) relative rotations of affine space-
time coordinates only, which is what the actual relative rota-
tions of affine intrinsic spacetime coordinates in Figs. 8a and
8b and Figs. 9a and 9b represent.

By considering the spatial origin x̃′ = ỹ′ = z̃′ = 0 of the
primed frame, system (29) reduces as follows:

ct̃ = ct̃ ′ secψ and x̃ = x̃′ tanψ . (30)

And by dividing the second equation into the first equa-
tion of system (30) we have

x̃
ct̃

= sinψ .

But, x̃/t̃=v, is the speed of the primed frame (x̃′, ỹ′, z̃′,
ct̃ ′) frame relative to the unprimed frame (x̃, ỹ, z̃, ct̃), for rel-
ative motion along the collinear x̃ and x̃′ coordinates of the
frames. Hence

sinψ = v/c = β , (31)

secψ =
1√

1 − v2/c2
= γ . (32)

Relations (31) and (32) on flat four-dimensional space-
time corresponds to relations (18) and (19) respectively on
flat two-dimensional intrinsic spacetime. By using Eqs. (31)
and (32) in systems (28) and (29) we obtain the LT and its
inverse in their usual explicit forms respectively as follows:

t̃ ′ = γ
(
t̃ − v

c2 x̃
)

(w.r.t. P̃eter in ct̃)

x̃′ = γ
(
x̃ − vt̃) , ỹ′ = ỹ , z̃′ = z̃
(w.r.t. Peter in Σ̃)



(33)

and
t̃ = γ

(
t̃ ′ +

v

c2 x̃′
)

(w.r.t. Paul in Σ̃′)

x̃ = γ
(
x̃′ + v t̃ ′

)
, ỹ = ỹ′, z̃ = z̃′

(w.r.t. P̃eter in ct̃ ′)



. (34)

Systems (33) and (34) are the outward (or physical) man-
ifestations on flat four-dimensional spacetime (Σ, ct) in the
context of SR of systems (20) and (21) respectively on the flat
two-dimensional intrinsic spacetime (φρ, φcφt) in the context
of φSR in the positive universe.

Systems (28) and (29) or the explicit form (33) or (34)
implies Lorentz invariance (LI) in SR in the positive universe:

c2 t̃2 − x̃2 − ỹ2 − z̃2 = c2 t̃ ′2 − x̃′2 − ỹ′2 − z̃′2. (35)

This is the outward manifestation on flat four-dimensional
spacetime of SR of the intrinsic Lorentz invariance (φLI) (22)
on page 42 on flat two-dimensional intrinsic spacetime of
φSR. Just as the intrinsic LT and its inverse of system (13)
on page 40 and (16) on page 42 in the context of φSR are
made manifest in systems (28) and (29) respectively in SR in
the positive universe, the intrinsic LT and its inverse of sys-
tems (23) and (24) in φSR are made manifest in LT and its
inverse in SR in the negative universe respectively as follows:

−ct̃ ′∗ = −ct̃∗ secψ − (−x̃∗) tanψ

(w.r.t. P̃eter∗ in −ct̃∗)

−x̃′∗ = −x̃∗ secψ − (−ct̃∗) tanψ ,
−ỹ′∗ = −ỹ∗, −z̃′∗ = −z̃∗

(w.r.t. Peter∗ in −Σ̃∗)



(36)

and
−ct̃∗ = −ct̃ ′∗ secψ + (−x̃′∗) tanψ

(w.r.t. Paul∗ in −Σ̃′∗)

−x̃∗ = −x̃′∗ secψ + (−ct̃ ′∗) tanψ ,
−ỹ∗ = −ỹ′∗, −z̃∗ = −z̃′∗

(w.r.t. P̃aul∗ in −ct̃ ′∗)



. (37)

And by using equations (31) and (32) in systems (36) and
(37) we obtain the LT and it inverse in their usual explicit
forms in the negative universe as follows:

−t̃ ′∗ = γ
(
−t̃∗ − v

c2 (−x̃∗)
)

(w.r.t. P̃eter∗ in −ct̃∗)

−x̃′∗ = γ
(−x̃∗ − v (−t̃∗)

)
, −ỹ′∗ = −ỹ∗, −z̃′∗ = −z̃∗

(w.r.t. Peter∗ in −Σ̃∗)



(38)

and

−t̃∗ = γ
(
−t̃ ′∗ +

v

c2 (−x̃′∗)
)

(w.r.t. Paul∗ in −Σ̃′∗)

−x̃∗ = γ
(−x̃′∗ + v (−t̃ ′∗)

)
, −ỹ∗ = −ỹ′∗, −z̃∗ = −z̃′∗

(w.r.t. P̃aul∗ in −ct̃ ′∗)



. (39)

Systems (38) and (39) are the outward manifestations on
flat four-dimensional spacetime (−Σ∗,−ct∗) of SR of systems
(25) and (26) respectively on flat two-dimensional intrinsic
spacetime (−φρ∗,−φcφt∗) of φSR in the negative universe.
Either the LT (36) or its inverse (37) or the explicit form (38)
or (39) implies Lorentz invariance in SR in the negative uni-
verse:

(−ct̃∗)2 − (−x̃∗)2 − (−ỹ∗)2 − (−z̃∗)2 =

= (−ct̃ ′∗)2 − (−x̃′∗)2 − (−ỹ′∗)2 − (−z̃′∗)2. (40)

This is the outward manifestation on the flat four-dimen-
sional spacetime of SR of the intrinsic Lorentz invariance (27)
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Fig. 10: The concurrent open intervals (− π
2 ,

π
2 ) and ( π2 ,

3π
2 ) within which the intrinsic angle φψ could take on values: a) with respect to

3-observers in the positive universe and b) with respect to 3-observers in the negative universe.

on page 43 on flat two-dimensional intrinsic spacetime of
φSR in the negative universe. The restriction of the values of
the intrinsic angle φψ to a half-plane (− π2 < φψ < π

2 ) with re-
spect to observers in the positive universe in systems (13) and
(16) and with respect to observers∗ in the negative universe in
systems (23) and (24) is a temporary measure as indicated in
those systems. The intrinsic angle φψ actually takes on values
on the entire plane [− π2 6 φψ 6 3π

2 ] with respect to observers
in the positive and negative universes, except that certain val-
ues of φψ namely, − π2 , π2 and 3π

2 , must be excluded, as shall
be discussed more fully shortly. The values of φψ in the first
cycle as well as negative senses of rotation (by negative in-
trinsic angle −φψ) with respect to 3-observers in the 3-spaces
in the positive and negative universes are shown in Figs. 10a
and 10b respectively.

We have thus obtained a (new) set of spacetime/intrinsic
spacetime diagrams namely, Figs. 8a and 8b and their inverses
Figs. 9a and 9b in the context of Scheme II in Table 1 or in
the two-world picture, for deriving intrinsic Lorentz transfor-
mation (φLT) and its inverse in terms of extended straight line
affine intrinsic spacetime coordinates φx̃′, φcφt̃ ′ and φx̃, φcφt̃
on the flat two-dimensional metric intrinsic spacetime
(φρ, φcφt) of the two-dimensional intrinsic Special Theory of
Relativity (φSR) in both the positive and negative universes
and for deriving the Lorentz transformation (LT) and its in-
verse in terms of extended straight line affine spacetime coor-
dinates x̃, ỹ, z̃, ct̃ and x̃′, ỹ′, z̃′, ct̃ ′, as outward (or physical)
manifestations on the flat four-dimensional spacetime of SR
of the intrinsic Lorentz transformation (φLT) and its inverse
of φSR in both the positive and negative universes. Figures
8a and 8b and their inverses Figs. 9a and 9b must replace
the Minkowski diagrams of Figs. 3a and 3b in the context of
Scheme I in Table 1 or in the one-world picture.

The skewness of the rotated spacetime coordinates in the
Minkowski diagrams of Figs. 3a and 3b (and in the Loedel
and Brehme diagrams of Figs. 4a and 4b), from which the
LT and its inverse have sometimes been derived until now in

the existing one-world picture, has been remarked to be unde-
sirable earlier in this paper because the observer at rest with
respect to the frame with rotated spacetime coordinates could
detect the skewness of the coordinates of his frame as an ef-
fect of the uniform motion of his frame. Moreover the skew-
ness of the rotated coordinates of the “moving” frame vis-a-
vis the non-skewed coordinates of the “stationary” frame (in
the Minkowski diagrams) gives apparent preference to one
of two frames in uniform relative motion. On the other hand,
neither the skewness of the rotated intrinsic spacetime coordi-
nates of the “moving” frame nor of the “stationary” frame oc-
curs in Figs. 8a, 8b, 9a and 9b. The diagrams of Figs. 8a, 8b,
9a and 9b in the two-world picture do not give apparent pref-
erence for any one of the pair of intrinsic frames in relative
intrinsic motion and consequently do not give apparent pref-
erence for any one of the pair of frames on four-dimensional
spacetime in relative motion, since both intrinsic frames have
mutually orthogonal intrinsic spacetime coordinates in each
of those figures.

Although the negative universe is totally elusive to peo-
ple in our (or positive) universe, just as our universe is totally
elusive to people in the negative universe, from the point of
view of direct experience, we have now seen in the above
that the intrinsic spacetime coordinates of the two universes
unite in prescribing intrinsic Lorentz transformation and in-
trinsic Lorentz invariance on the flat two-dimensional intrin-
sic spacetime and consequently in prescribing Lorentz trans-
formation and Lorentz invariance on flat four-dimensional
spacetime in each of the two universes. It can thus be said
that there is intrinsic (or non-observable) interaction of four-
dimensional spacetime coordinates of the two universes in
Special Relativity.

The singularities at φψ= π
2 and φψ=− π

2 or φψ= 3π
2 in

systems (13) and (16), (of Scheme II in Table 1 or in the
two-world picture), correspond to the singularities at α=∞
and α=−∞ in the coordinate transformation of systems (4)
and (5) in the Minkowski one-world picture. Being smooth
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for all values of α, except for the extreme values, α=∞ and
α=−∞, at its boundary represented by the vertical line in
Fig. 1a, which corresponds to a line along the ct- and −ct∗-
axes in Fig. 2a, the only (positive) Minkowski space including
the time reversal dimension, (to be denoted by (Σ, ct,−ct∗)),
in Fig. 2a in the one-world picture is usually considered to
be sufficiently smooth. Similarly being smooth for all val-
ues of the intrinsic angle φψ in the first cycle, except for
φψ=− π

2 ,
π
2 and φψ= 3π

2 along their interface in Fig. 2b, the
positive Minkowski space including the time reversal dimen-
sion (Σ, ct,−ct∗) and the negative Minkowski space including
time reversal dimension (−Σ∗,−ct∗, ct) of the two-world pic-
ture in Fig. 2b must be considered to be sufficiently smooth
individually.

An attempt to compose the positive Minkowski space
including the time reversal dimension (Σ, ct,−ct∗) and the
negative Minkowski space including time reversal dimension
(−Σ∗,−ct∗, ct) into a single space, over which φψ has val-
ues within the range [− π2 , 3π

2 ] or [0, 2π], cannot work since
the resultant space possesses interior (and not boundary) dis-
continuities at φψ= π

2 in the case of the range [− π2 , 3π
2 ] and

φψ=− π
2 , φψ= π

2 and φψ= 3π
2 in the case of the range [0, 2π],

thereby making the single space generated non-smooth. This
implies that the larger spacetime domain of combined pos-
itive and and negative universes cannot be considered as a
continuum of event domain or as constituting a single world
or universe. The lines of singularity φψ= π

2 and φψ=− π
2

along the vertical ct- and and −ct∗-axes respectively repre-
sent event horizons, (the special-relativistic event horizons),
to observers in 3-spaces Σ and −Σ∗ in the positive and neg-
ative universes respectively. These event horizons at φψ= π

2
and − π2 show up as singularities in the intrinsic Lorentz trans-
formation (φLT) and its inverse of systems (13) and (16) and
consequently in the LT and its inverse of systems (28) and
(29) in the positive universe and in φLT and its inverse of sys-
tems (23) and (24) and consequently in the LT and its inverse
of systems (36) and (37) in the negative universe.

The observers in 3-space on one side of the event horizons
along the dimensions ct and −ct∗ in Fig. 5 and Fig. 7 cannot
observe events taking place on the other side. This makes
a two-world interpretation of Scheme II in Table 1 with the
spacetime/intrinsic spacetime diagram of Fig. 7 mandatory.

4.5 Reduction of the LT and its inverse to length con-
traction and time dilation formulae from the point
of view of what can be measured with laboratory rod
and clock

Nature makes use of all the terms of the LT, system (28) or
(33), and its inverse, system (29) or (34) to establish Lorentz
invariance. However man could not detect all the terms of the
LT and its inverse with his laboratory rod and clock. First of
all, it is the last three equations of system (28) or (33) writ-
ten by or with respect to the 3-observer (Peter) in 3-space in

the unprimed frame with affine coordinates x̃, ỹ and z̃ and the
first equation of system (29) or (34) written by or with re-
spect to the 3-observer Paul in 3-space in the primed frame
with affine coordinates x̃′, ỹ′ and z̃′ that are relevant for the
measurements of distance in space by a rod in 3-space and
of time duration by a clock kept in 3-space respectively of a
special-relativistic event by 3-observers in 3-space. By col-
lecting those equations we have the following:

x̃′ = x̃ secψ − ct̃ tanψ , ỹ′ = ỹ , z̃′ = z̃ (41a)

(w.r.t. 3-observer Peter in Σ̃), and

ct̃ = ct̃ ′ secψ + x̃′ tanψ (41b)

(w.r.t. 3-observer Paul in Σ̃′).
Now when Peter picks his laboratory rod to measure

length, he will be unable to measure the term −ct̃ tanψ of the
first equation of system (41a) with his laboratory-rod. Like-
wise when Paul picks his clock to measure time duration, he
will be unable to measure the term x̃′ tanψ in (41b) with his
clock. Thus from the point of view of what can be measured
by laboratory rod and clock by observers in 3-space, system
(41a) and Eq. (41b) reduce as follows:

x̃ = x̃′ cosψ , ỹ = ỹ′, z̃ = z̃′, t̃ = t̃ ′ secψ . (42)

System (42) becomes the following explicit form in terms
of particle’s speed relative to the observer by virtue of
Eq. (32) on page 44:

x̃ = x̃′
√

1 − v2/c2 , ỹ = ỹ′, z̃ = z̃′

t̃ =
t̃ ′√

1 − v2/c2


. (43)

These are the well known length contraction and time di-
lation formulae for two frames in relative motion along their
collinear x̃- and x̃′-axes in SR. Showing that they pertain to
the measurable sub-space of the space of SR is the essential
point being made here.

4.6 The generalized form of intrinsic Lorentz transfor-
mation in the two-world picture

Now let us rewrite the intrinsic Lorentz transformation (φLT)
and its inverse of systems (13) on page 40 and (16) on page
42 in the positive universe in the generalized forms in which
they can be applied for all values of φψ in the concurrent open
intervals (− π2 , π2 ) and ( π2 ,

3π
2 ) in Fig. 10a by factorizing out

sec φψ to have respectively as follows:

φcφt̃ ′ = sec φψ
(
φcφt̃ − φx̃ sin φψ

)

φx̃′ = sec φψ
(
φx̃ − φcφt̃ sin φψ

)
 (44)

and
φcφt̃ = sec φψ

(
φcφt̃ ′ + φx̃′ sin φψ

)

φx̃ = sec φψ
(
φx̃′ + φcφt̃ ′ sin φψ

)
 . (45)
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The 3-observers in the Euclidean 3-space Σ of the posi-
tive universe “observe” intrinsic Special Relativity (φSR) and
consequently observe Special Relativity (SR) for intrinsic an-
gles φψ in the range (− π2 , π2 ). However as Fig. 10a shows,
3-observers in the positive universe could construct φSR and
hence SR relative to themselves for all intrinsic angles φψ in
the concurrent open intervals (− π2 , π2 ) and ( π2 ,

3π
2 ), by using

the generalized intrinsic Lorentz transformation (φLT) and its
inverse of systems (44) and (45) and obtaining the LT and
its inverse as outward manifestations on flat four-dimensional
spacetime of the φLT and its inverse so derived, although
they can observe Special Relativity for intrinsic angles φψ in
(− π2 , π2 ) in Fig. 10a only.

Likewise the φLT and its inverse in the negative universe
of systems (25) on page 43 and (26) on page 43, shall be
written in the generalized forms in which they can be applied
for all intrinsic angles φψ in the concurrent open intervals
(− π2 , π2 ) and ( π2 ,

3π
2 ) in Fig. 10b respectively as follows:

−φcφt̃ ′∗ = sec φψ
(−φcφt̃∗ − (−φx̃∗) sin φψ

)
−φx̃′∗ = sec φψ

(−φx̃∗ − (−φcφt̃∗) sin φψ
)

}
(46)

and
−φcφt̃∗ = sec φψ

(−φcφt̃ ′∗ + (−φx̃′∗) sin φψ
)

−φx̃∗ = sec φψ
(−φx̃′∗ + (−φcφt̃ ′∗) sin φψ

)
}
. (47)

The 3-observers∗ in the Euclidean 3-space −Σ∗ of the neg-
ative universe “observe” intrinsic Special Relativity (φSR)
and hence observe Special Relativity (SR) for intrinsic angles
φψ in the open interval (− π2 , π2 ) in Fig. 10b. Again as Fig. 10b
shows, 3-observers∗ in the negative universe could construct
φSR and hence SR relative to themselves for all intrinsic an-
gles φψ in the concurrent open intervals (− π2 , π2 ) and ( π2 ,

3π
2 ),

by using the generalized φLT and its inverse of φSR of sys-
tems (46) and (47) and obtaining LT and its inverse of SR
as outward manifestations on flat four-dimensional spacetime
of the φLT and its inverse so constructed, although they can
observe SR for intrinsic angles φψ in (− π2 , π2 ) in Fig. 10b only.

The fact that the intrinsic Lorentz transformation (φLT)
and its inverse represent continuous rotation of intrinsic spa-
cetime coordinates φx̃′ and φcφt̃ ′ of the primed frame relative
to the intrinsic spacetime coordinates φx̃ and φcφt̃ respec-
tively of the unprimed frame through all intrinsic angles φψ in
the closed range [0, 2π], excluding rotation by φψ=− π

2 ,
π
2 and

φψ= 3π
2 , is clear from the concurrent open intervals (− π2 , π2 )

and ( π2 ,
3π
2 ) of the intrinsic angle φψ in Figs. 10a and 10b over

which the generalized φLT and its inverse of systems (44)
and (45) in the positive universe and systems (46) and (47) in
the negative universe could be applied. We shall not be con-
cerned with the explanation of how the intrinsic coordinates
φx̃′ and φcφt̃ ′ of the particle’s intrinsic frame can be rotated
continuously relative to the intrinsic coordinates x̃ and φcφt̃
of the observer’s intrinsic frame through intrinsic angles φψ
in the range [0, 2π], while avoiding φψ= π

2 and φψ= 3π
2 in

this paper.

4.7 Non-existence of light cones in the two-world picture

The concept of light-cone does not exist in the two-world pic-
ture. This follows from the derived relation, sin φψ= φv/φc,
(Eq. (18) on page 42), which makes the intrinsic speed φv
of relative intrinsic motion of every pair of intrinsic frames
lower than the intrinsic light speed φc, (φv< φc), for all val-
ues of φψ in the concurrent open intervals (− π2 , π2 ) and ( π2 ,

3π
2 )

in Fig. 10a in the context of φSR and consequently speed v of
relative motion of every pair of frames lower than the speed
of light c, (v < c), for all intrinsic angles φψ in the concurrent
open intervals (− π2 , π2 ) and ( π2 ,

3π
2 ) in Fig. 10a. The intrin-

sic angle φψ= π
2 corresponds to intrinsic speed φv= φc and

φψ=− π
2 or φψ= 3π

2 corresponds to φv=−φc, which are ex-
cluded from φSR. They correspond to speed v= c and v=−c
respectively, which are excluded from SR.

We therefore have a situation where all intrinsic angles
φψ in the closed range [0, 2π], except φψ= π

2 and φψ= 3π
2 ,

(in Fig. 10a), are accessible to intrinsic Special Relativity
(φSR) with intrinsic timelike geodesics and consequently to
SR with timelike geodesics with respect to observers in the
positive universe. All intrinsic angles φψ in the closed interval
[0, 2π], except φψ= π

2 and φψ= 3π
2 , (in Fig. 10b), are likewise

accessible to φSR with intrinsic timelike geodesics and hence
to SR with timelike geodesics with respect to observers∗ in
the negative universe.

Intrinsic spacelike geodesics of for which φv> φc and
spacelike geodesics for which v > c do not exist for any value
of the intrinsic angle φψ in the four quadrants, that is, for φψ
in the closed range [0, 2π], on the larger spacetime/intrinsic
spacetime domain of combined positive and negative univer-
ses in Fig. 7. Since the existence of light cones requires re-
gions of spacelike geodesics outside the cones, the concept of
light cones does not exist in the two-world picture.

4.8 Prospect for making the Lorentz group compact in
the two-world picture

The impossibility of making the Lorentz group SO(3,1) com-
pact in the context of the Minkowski geometry in the one-
world picture has been remarked earlier in this paper. It arises
from the fact that the unbounded parameter space −∞<α<∞
of the Lorentz boost (the matrix L in (6) on page 33), in the
one-world picture, is unavoidable. Compactification of the
Lorentz group in the two-world picture would be interesting.

Now the new intrinsic matrix φL∗ that generates the in-
trinsic Lorentz boost, φx → φx′ = φL∗φx, on the flat two-
dimensional intrinsic spacetime in Eq. (13) on page 40 in the
positive universe or (23) on page 42 in the negative universe
in the two-world picture is the following:

φL∗ =

(
sec φψ − tan φψ
− tan φψ sec φψ

)
, (48)

where φψ takes on values in the concurrent open intervals
(− π2 , π2 ) and ( π2 ,

3π
2 ) in the positive and negative universes, as
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explained earlier and illustrated in Figs. 10a and 10b.
The corresponding new matrix L∗ that generates the Lo-

rentz boost, x→ x′ = L∗x, on flat four-dimensional spacetime
in Eq. (28) on page 43 in the positive universe or (36) on
page 44 in the negative universe in the two-world picture is
the following

L∗ =



secψ − tanψ 0 0
− tanψ secψ 0 0

0 0 1 0
0 0 0 1


(49)

where, ψ takes on values in the concurrent open intervals
(− π2 , π2 ) and ( π2 ,

3π
2 ) like φψ, in the positive and negative uni-

verses.
The matrix L∗ can be said to be the outward manifestation

on flat four-dimensional spacetime of SR of the intrinsic ma-
trix φL∗ on flat two-dimensional intrinsic spacetime of φSR.
It must be recalled however that while the intrinsic angle φψ
in (48) measures actual rotation of intrinsic coordinates φx̃′

and φcφt̃ ′ of the primed frame relative to the intrinsic coor-
dinates φx̃ and φcφt̃ of the unprimed frame, (as in Figs. 8a,
8b, 9a and 9b), in the context of φSR, the angle ψ in (49)
represents intrinsic (i.e. non-observable or hypothetical) ro-
tation of spacetime coordinates x̃′ and ct̃ ′ of the primed frame
relative to x̃ and ct̃ of the unprimed frame.

The concurrent open intervals (− π2 , π2 ) and ( π2 , 3π) wherein
the intrinsic angle φψ and the angle ψ take on values in the
positive and negative universes imply that the intrinsic ma-
trix φL∗ (the intrinsic Lorentz boost) and the Lorentz boost
L∗ in the two-world picture are unbounded. It must be re-
called that the matrix L that generates the Lorentz boost in the
Minkowski one-world picture given by Eq. (6) on page 33 is
likewise unbounded because the parameter α in that matrix
takes on values in the unbounded interval (−∞,∞).

Also by letting φψ→ π
2 and φψ→ − π2 or 3π

2 in the intrin-
sic matrix φL∗, we have sec φψ= tan φψ → ∞ and sec φψ=

tan φψ→−∞ respectively, which shows that φL∗ (or the intrin-
sic Lorentz boost) and hence the Lorentz boost L∗ in the two-
world picture are not closed. Whereas α→∞, coshα→∞,
sinhα → ∞, and α → −∞, coshα → ∞, sinhα → −∞
in matrix L, which implies that the Lorentz boost in the Min-
kowski one-world picture is closed (since no entry of L is out-
side the range −∞ < α < ∞ of the parameter α [6]). Thus L is
not bounded but is closed, while φL∗ and L∗ are not bounded
and not closed. The matrices L, L∗ and the intrinsic matrix
φL∗ are therefore non-compact.

It is required that φL∗ be both closed and bounded for it to
be compact. Likewise the matrix L∗. It follows from this and
the foregoing paragraphs that making the the intrinsic Lorentz
boost (48) and consequently the Lorentz boost (49) in the
two-world picture compact has not been achieved in this pa-
per. As deduced in sub-section 1.1, making the Lorentz boost
compact implies making SO(3,1) compact. Thus SO(3,1) has
yet not been made compact in the two-world picture since the

Lorentz boost has yet not been made compact.
There is good prospect for making SO(3,1) compact in

the two-world picture however. This is so since the intrinsic
matrix φL∗ and consequently the matric L∗ (the Lorentz boost
in the two-world picture) will become compact by justifiably
replacing the concurrent open intervals (− π2 , π2 ) and ( π2 ,

3π
2 ), in

which the intrinsic angle φψ and the angle ψ take on values
in φL∗ and L∗ respectively, by the concurrent closed intervals
[−( π2 − ε), π2 − ε] and [ π2 − ε, 3π

2 − ε], where ε is a small non-
zero angle. This will make each of φL∗ and L∗ to be both
closed and bounded and hence to be compact. It will certainly
require further development of the two-world picture than in
this initial paper to make SO(3,1) compact in two-world − if
it will be possible.

This paper shall be ended at this point with a final remark
that although the possibility of the existence of a two-world
picture (or symmetry) in nature has been exposed, there is the
need for further theoretical justification than contained in this
initial paper and experimental confirmation ultimately, in or-
der for any one to conclude the definite existence of the two-
world picture. The next natural step will be to include the
light-axis and the distinguished frame of reference of electro-
magnetic waves in the two-world picture that encompasses
no light cones and to investigate the signs of mass and other
physical parameters, as well as the possibility of invariance
of natural laws in the negative universe.
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The two-world background of the Special Theory of Relativity started in part one of
this article is continued in this second part. Four-dimensional inversion is shown to be
a special Lorentz transformation that transforms the positive spacetime coordinates of a
frame of reference in the positive universe into the negative spacetime coordinates of the
symmetry-partner frame of reference in the negative universe in the two-world picture,
contrary to the conclusion that four-dimensional inversion is impossible as actual trans-
formation of the coordinates of a frame of reference in the existing one-world picture.
By starting with the negative spacetime dimensions in the negative universe derived in
part one, the signs of mass and other physical parameters and physical constants in the
negative universe are derived by application of the symmetry of laws between the pos-
itive and negative universes. The invariance of natural laws in the negative universe is
demonstrated. The derived negative sign of mass in the negative universe is a conclu-
sion of over a century-old effort towards the development of the concept of negative
mass in physics.

1 Introduction

A brief summary of the new geometrical representation of
Lorentz transformation and its inverse in the two-world pic-
ture and the other associated issues presented in part one of
this article [1], is appropriate at the beginning of this sec-
ond part.

Having deduced from the γ= secψ parametrization of the
Lorentz boost that a pair of flat four-dimensional spacetimes
(or a pair of Minkowski’s spaces), which are four-dimension-
al inversions of each other namely, (Σ, ct) ≡ (x1, x2, x3, ct)
and (−Σ∗,−ct∗) ≡ (−x1∗, −x2∗, −x3∗, −ct∗), co-exist in na-
ture and that this implies the co-existence in nature of a pair of
symmetrical worlds (or universes), referred to as our (or posi-
tive) universe and negative universe, a pair of two-dimension-
al intrinsic spacetimes denoted respectively by (φρ, φcφt)
and (−φρ∗,−φcφt∗), which underlie the flat four-dimensional
spacetimes (Σ, ct) of the positive universe and (−Σ∗,−ct∗)
of the negative universe respectively, were introduced (as
ansatz) in [1]. The derived graphical representation of the
larger spacetime/intrinsic spacetime of the co-existing “anti-
parallel” worlds (or universes) was then derived and present-
ed as Fig. 7 of [1].

A new set of intrinsic spacetime diagrams that involve ro-
tations of the primed affine intrinsic spacetime coordinates
φx̃′ and φcφt̃ ′ relative to the unprimed affine intrinsic space-
time coordinates φx̃ and φcφt̃ of a pair of frames in rela-
tive motion in the positive universe, which are united with
the symmetrical rotations of the primed affine intrinsic space-
time coordinates −φx̃′∗ and −φc φt̃ ′∗ relative to the unprimed
affine intrinsic spacetime coordinates −φx̃∗ and −φcφt̃∗ of
the symmetry-partner pair of frames in simultaneous identi-
cal relative motion in the negative universe, are then drawn

on the larger spacetime/intrinsic spacetime of combined pos-
itive and negative universes, as Figs. 8a, 8b, 9a and 9b of [1].
The intrinsic Lorentz transformations (φLT) and its inverse
are derived from the set of intrinsic spacetime diagrams and
intrinsic Lorentz invariance (φLI) validated in the context of
the intrinsic Special Theory of Relativity (φSR) on each of
the flat two-dimensional intrinsic spacetimes (φρ, φcφt) of the
positive universe and (−φρ∗,−φcφt∗) of the negative universe.

The flat four-dimensional spacetimes (Σ, ct) and
(−Σ∗,−ct∗) being the outward (or physical) manifestations
of their underlying flat two-dimensional intrinsic spacetimes
(φρ, φcφt) and (−φρ∗,−φcφt∗) respectively and the Special
Theory of Relativity (SR) on each of the spacetimes (Σ, ct)
and (−Σ∗,−ct∗) being mere outward manifestations of the
intrinsic Special Theory of Relativity (φSR) on each of
(φρ, φcφt) and (−φρ∗,−φcφt∗) respectively, the Lorentz
transformation (LT) and its inverse are written directly and
Lorentz invariance (LI) validated on each of the flat four-
dimensional spacetimes (Σ, ct) and (−Σ∗,−ct∗), as outward
manifestations of intrinsic Lorentz transformation (φLT) and
its inverse and intrinsic Lorentz invariance (φLI) derived
graphically on each of (φρ, φcφt) and (−φρ∗,−φcφt∗).

There is consequently no need to draw spacetime dia-
grams involving relative rotations of the primed affine space-
time coordinates x̃′ and ct̃ ′ relative to the unprimed affine
spacetime coordinates x̃ and ct̃ of a pair of frames in rela-
tive motion along their collinear x̃′− and x̃− axes in the pos-
itive universe, which would be united with the symmetrical
rotations of the primed affine spacetime coordinates −x̃′∗ and
−ct̃ ′∗ relative to the unprimed affine spacetime coordinates
−x̃∗ and −ct̃∗ of the symmetry-partner pair of frames in si-
multaneous identical relative motion in the negative universe,
on the larger spacetime of combined positive and negative

Akindele O. J. Adekugbe. Two-world background of Special Relativity. Part II 49



Volume 1 PROGRESS IN PHYSICS January, 2010

universes, in deriving LT and its inverse and in validating
LI in the positive and negative universes. Indeed such dia-
grams do not exist and if drawn, they must be understood that
they are intrinsic (that is, non-observable) or hypothetical di-
agrams only, as noted in [1].

The fact that the derived intrinsic Lorentz transformation
represents rotation of intrinsic spacetime coordinates φx̃′ and
φcφt̃ ′ of a particle’s frame relative to intrinsic spacetime co-
ordinates φx̃ and φcφt̃ respectively of the observer’s frame
at intrinsic angle φψ, where φψ can vary continuously in the
entire range [0, 2π], except that φψ= π

2 and φψ= 3π
2 must be

avoided, are shown in [1]. The non-existence of the light cone
concept and good prospect for making SO(3,1) compact in
the two-world picture are also shown in [1].

The next natural step in the theoretical justification of
the two-world background of the Special Theory of Relativ-
ity started in part one of this article, to which this second
part is devoted, is the derivations of the signs of mass and
other physical parameters and physical constants and investi-
gation of Lorentz invariance of natural laws in the negative
universe. The matter arising from [1] namely, the formal
derivation (or isolation) of the flat two-dimensional intrinsic
spacetimes (φρ, φcφt) and (−φρ∗,−φcφt∗) that underlie the
flat four-dimensional spacetimes (Σ, ct) and (−Σ∗,−ct∗) re-
spectively, which were introduced (as ansatz) in [1], requires
further development of the two-world picture than in this sec-
ond part of this article to resolve.

2 Four-dimensional inversion as special Lorentz trans-
formation of the coordinates of a frame of reference in
the two-world picture

The intrinsic Lorentz transformation (φLT) and its inverse in
the two-world picture have been written in the generalized
forms of equations (44) and (45) of part one of this article [1].
They can be applied for all intrinsic angles φψ in the first cy-
cle, while avoiding φψ= − π

2 , φψ= π
2 and φψ= 3π

2 , of relative
rotation of the affine intrinsic spacetime coordinates φx̃′ and
φcφt̃ ′ of the intrinsic particle’s (or primed) frame (φx̃′, φcφt̃ ′)
relative to the affine intrinsic coordinates φx̃ and φcφt̃ of the
intrinsic observer’s (or unprimed) frame (φx̃, φcφt̃) on the
larger two-dimensional intrinsic spacetime of combined pos-
itive and negative universes. They are reproduced here as fol-
lows

φcφt̃ ′ = sec φψ(φcφt̃ − φx̃ sin φψ)

φx̃′ = sec φψ(φx̃ − φcφt̃ sin φψ)

 (1)

and
φcφt̃ = sec φψ(φcφt̃ ′ + φx̃′ sin φψ)

φx̃ = sec φψ(φx̃′ + φcφt̃ ′ sin φψ)

 , (2)

where, as mentioned above, the intrinsic angle φψ can take
on values in the range [0, 2π], while avoiding φψ= π

2 and
φψ= 3π

2 .

Systems (1) and (2) on the flat two-dimensional intrinsic
spacetime (or in the intrinsic Minkowski space) (φρ, φcφt) of
intrinsic Special Theory of Relativity (φSR) are made man-
ifest outwardly (or physically) on the flat four-dimensional
spacetime (the Minkowski space) (Σ, ct) of the Special The-
ory of Relativity (SR) in the positive universe respectively as
follows, as developed in [1]

ct̃ ′ = secψ(ct̃ − x̃ sinψ)

x̃′ = secψ(x̃ − ct̃ sinψ) , ỹ′ = ỹ , z̃′ = z̃

 (3)

and

ct̃ = secψ(ct̃ ′ + x̃′ sinψ) ,

x̃ = secψ(x̃′ + ct̃ ′ sinψ) , ỹ = ỹ′, z̃ = z̃′

 , (4)

where, again, the angle ψ can take on values in [0, 2π], ex-
cluding ψ= π

2 and ψ= 3π
2 .

However, it must be noted, as discussed in [1], that while
the intrinsic angle φψ measures actual rotation of the affine
intrinsic coordinates φx̃′ and φcφt̃ ′ of the intrinsic particle’s
frame (φx̃′, φcφt̃ ′) relative to the intrinsic coordinates φx̃ and
φcφt̃ respectively of the intrinsic observer’s frame (φx̃, φcφt̃)
in system (1), the angle ψ refers to intrinsic (i.e. non-observ-
able) or hypothetical rotation of the coordinates x̃′ and ct̃ ′ of
the particle’s frame (x̃′, ỹ′, z̃′, ct̃ ′) relative to the coordinates
x̃ and ct̃ of the observer’s frame (x̃, ỹ, z̃, ct̃) respectively in
system (3). The affine spacetime coordinates x̃′, ỹ′, z̃′, ct̃ ′

of the particle’s frame are not rotated relative to the coordi-
nates x̃, ỹ, z̃, ct̃ of the observer’s frame and conversely in the
present geometrical representation of Lorentz transformation
and its inverse in the two-world picture started in [1].

We shall for now assume the possibility of continuous ro-
tation of the intrinsic coordinates φx̃′ and φcφt̃ ′ of the intrin-
sic particle’s frame by intrinsic angle φψ= π, while avoiding
φψ= π

2 , relative to the intrinsic coordinates φx̃ and φcφt̃ of the
intrinsic observer’s frame in the two-world picture, as devel-
oped in [1]. As also mentioned in [1], the explanation of how
rotation through all angles ψ in [0, π] while avoiding ψ = π

2
can be achieved shall not be of concern in this paper.

Then by letting φψ= π we have sec φψ= − 1, sin φψ= 0
and system (1) simplifies as follows

φcφt̃ ′ = −φcφt̃ and φx̃′ = −φx̃ . (5)

The meaning of system (5) is that upon rotation through
intrinsic angle φψ= π of the intrinsic coordinates φx̃′ and
φcφt̃ ′ of the intrinsic particle’s frame relative to the intrin-
sic coordinates φx̃ and φcφt̃ respectively of the intrinsic ob-
server’s frame in the positive universe, the rotated intrinsic
coordinates φx̃′ and φcφt̃ ′ transform into (or become) intrin-
sic coordinates of an observer’s frame with negative sign −φx̃
and −φcφt̃ respectively.

The outward manifestation on flat four-dimensional
spacetime of system (5) is the following

ct̃ ′ = −ct̃ , x̃′ = −x̃ , ỹ′ = −ỹ , z̃′ = −z̃ . (6)
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System (6) is valid because the intrinsic space coordinates
φx̃′ and −φx̃ are made manifest in the coordinates x̃′, ỹ′, z̃′

of 3-space Σ̃′ and the coordinates −x̃, −ỹ, −z̃ of 3-space −Σ̃

respectively, as explained in [1].
Although the coordinates ct̃ ′ and x̃′ of the particle’s frame

are not rotated relative to the coordinates ct̃ and x̃ of the ob-
server’s frame, once the intrinsic coordinates φx̃′ and φcφt̃ ′

of the intrinsic particle’s frame are rotated by intrinsic angle
φψ= π relative to the intrinsic coordinates φx̃ and φcφt̃ of the
intrinsic observer’s frame, thereby giving rise to system (5),
then system (6) will arise automatically as the outward man-
ifestation of system (5). It may be observed that system (6)
cannot be derived by letting ψ= π in system (3).

According to system (5), the intrinsic particle’s frame
whose intrinsic coordinates φx̃′ and φcφt̃ ′ are inclined at in-
trinsic angle φψ= π relative to the respective intrinsic coor-
dinates φx̃ and φcφt̃ of the intrinsic observer’s frame in the
positive universe, although is at rest relative to the observer’s
frame, since sin φψ= φv/φc = 0 ⇒ φv= 0 for φψ= π, it pos-
sesses negative intrinsic spacetime coordinates relative to the
intrinsic observer’s frame in the positive universe. This im-
plies that the intrinsic particle’s frame has made transition
into the negative universe. As confirmation of this fact, letting
φψ= π in Fig. 8a of [1] causes the inclined intrinsic coordi-
nate φx̃′ to lie along −φx̃∗ along the horizontal in the third
quadrant and the inclined intrinsic coordinate φcφt̃ ′ to lie
along −φcφt̃∗ along the vertical in the third quadrant in that
figure.

The negative intrinsic coordinates −φx̃ and −φcφt̃ in sys-
tem (5) are clearly the intrinsic coordinates of the symmetry-
partner intrinsic observer’s frame in the negative universe.
Then by putting a dummy star label on the unprimed negative
intrinsic coordinates in system (5) as our conventional way
of denoting the coordinates/intrinsic coordinates and param-
eters/intrinsic parameters of the negative universe, in order to
differentiate them from those of the positive universe we have

φcφt̃ ′ = −φcφt̃∗, φx̃′ = −φx̃∗. (7)

Likewise, by putting dummy star label on the negative
spacetime coordinates in system (6), since they are the coor-
dinates if the symmetry-partner observer’s frame in the nega-
tive universe we have

ct̃ ′ = −ct̃∗, x̃′ = −x̃∗, ỹ′ = −ỹ∗, z̃′ = −z̃∗. (8)

System (8) is the outward manifestation on flat four-
dimensional spacetime of system (7). System (7) is the form
taken by the generalized intrinsic Lorentz transformation (1)
for φψ= π and system (8) is the form taken by the generalized
Lorentz transformation (3) for ψ = π.

Since the intrinsic particle’s frame (φx̃′, φcφt̃ ′) is at rest
relative to the symmetry-partner intrinsic observer’s frame
(−φx̃∗, −φcφt̃∗) in the negative universe in system (7), which
is so since sin φψ= φv/φc = 0 ⇒ φv= 0, as mentioned ear-

lier, the intrinsic coordinates −φx̃∗ and −φcφt̃∗ of the intrin-
sic “stationary” observer’s frame are identical to the coordi-
nates −φx̃′∗ and −φcφt̃ ′∗ of the symmetry-partner intrinsic
particle’s frame in the negative universe. Consequently sys-
tem (7) is equivalent to the following transformation of the
primed intrinsic coordinates of the intrinsic particle’s frame
in the positive universe into the primed intrinsic coordinates
of the symmetry-partner intrinsic particle’s frame in the neg-
ative universe:

φcφt̃ ′ = −φcφt̃ ′∗, φx̃′ = −φx̃′∗
or

φcφt̃ ′ → −φcφt̃ ′∗, φx̃′ → −φx̃′∗. (9)

This is inversions in the origin (or intrinsic two-dimen-
sional inversions) of the intrinsic coordinates φx̃′ and φcφt̃ ′

of the intrinsic particle’s frame (φx̃′, φcφt̃ ′) in the positive
universe, which arises by virtue of actual rotations of the in-
trinsic coordinates φx̃′ and φcφt̃ ′ by intrinsic angle φψ= π
relative to the intrinsic coordinates φx̃ and φcφt̃ respectively
of the intrinsic observer’s frame (φx̃, φcφt̃) in the positive uni-
verse. The intrinsic two-dimensional inversion (9) is still the
generalized intrinsic Lorentz transformation (1) for φψ= π.

The outward manifestation on the flat four-dimensional
spacetime of system (9), which also follows from system (8),
is the following

ct̃ ′ = −ct̃ ′∗, x̃′ = −x̃′∗, ỹ′ = −ỹ′∗, z̃′ = −z̃′∗
or

ct̃ ′ → −ct̃ ′∗, x̃′ → −x̃′∗, ỹ′ → −ỹ′∗, z̃′ → −z̃′∗. (10)

This is the corresponding inversions in the origin (or four-
dimensional inversions) of the coordinates x̃′, ỹ′, z̃′ and ct̃ ′ of
the particle’s frame in the positive universe, which arises as
outward manifestation of system (9). The four-dimensional
inversion (10) is still the generalized Lorentz transformation
of system (3) for ψ= π. It shall be reiterated for emphasis that
the coordinates x̃′, ỹ′, z̃′ and ct̃ ′ of the particle’s frame in the
positive universe are not actually rotated by angle ψ= π rela-
tive to the coordinates x̃, ỹ, z̃ and ct̃ of the observer’s frame
in the positive universe, but that system (10) arises as a con-
sequence of system (9) that arises from actual rotation of in-
trinsic coordinates.

Corresponding to system (9) expressing inversions in the
origin of intrinsic coordinates of the intrinsic particle’s frame,
derived from the intrinsic Lorentz transformation (1) for
φψ= π, is the following inversions in the origin of the un-
primed intrinsic coordinates of the intrinsic observer’s frame,
which can be derived from the inverse intrinsic Lorentz trans-
formation (2) for φψ= π:

φcφt̃ = −φcφt̃∗, φx̃ = −φx̃∗
or

φcφt̃ → −φcφt̃∗, φx̃→ −φx̃∗. (11)

And the outward manifestation on flat four-dimensional
spacetime of system (11) is the following four-dimensional
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inversions of the coordinates of the observer’s frame

ct̃ = −ct̃∗, x̃ = −x̃∗, ỹ = −ỹ∗, z̃ = −z̃∗
or

ct̃ → −ct̃∗, x̃→ −x̃∗, ỹ→ −ỹ∗, z̃→ −z̃∗. (12)

We have thus shown that intrinsic two-dimensional inver-
sion is the special intrinsic Lorentz transformation (1) or its
inverse (2) for φψ= π. It transforms the intrinsic spacetime
coordinates of a frame in the positive universe into the intrin-
sic spacetime coordinates of the symmetry-partner frame in
the negative universe or conversely. Four-dimensional inver-
sion is likewise the special Lorentz transformation (3) or its
inverse (4) for ψ= π, which transforms the spacetime coordi-
nates of a frame in the positive universe into the spacetime
coordinates of the symmetry-partner frame in the negative
universe or conversely.

On the other hand, it has been concluded in the context of
the existing one-world background of the Special Theory of
Relativity (or in the one-world picture) that four-dimensional
inversion in impossible as actual transformation of the coor-
dinates of a frame of reference. This, as discussed in [2, see
p.39], for example, is due to the fact four-dimensional inver-
sion carries the time axis from the future light cone into the
past light cone, which is impossible without going through
regions of spacelike geodesics that requires the introduction
of imaginary spacetime coordinates in the one-world picture.

The light cone concept does not exist in the two-world
picture, as deduced in sub-section 4.7 of [1]. Consequently
continuous relative rotation of intrinsic spacetime coordinates
of two frames through all intrinsic angles φψ in [0, 2π], while
avoiding φψ= π

2 and φψ= 3π
2 , is possible, (granting that how

φψ= π
2 and φψ= 3π

2 are avoided shall be explained,) without
going into regions of spacelike geodesics in the two-world
picture. Four-dimensional inversion, (which does not in-
volve actual relative rotation of spacetime coordinates of two
frames), being mere outward manifestation of intrinsic two-
dimensional inversion that involves actual relative rotation of
intrinsic spacetime coordinates of two frames, is therefore
possible as transformation of the coordinates of a frame of
reference in the two-world picture.

3 Sign of mass in the negative universe derived from
generalized mass expression in Special Relativity in
the two-world picture

Now the intrinsic particle’s frame (φx̃′, φcφt̃ ′) contains the
intrinsic rest mass φm0 of the particle at rest relative to it
and the particle’s frame (x̃′, ỹ′, z̃′, ct̃ ′) contains the rest mass
m0 of the particle at rest relative to it in the positive uni-
verse. The question arises; what are the signs of the intrin-
sic rest mass and rest mass of the symmetry-partner particle
contained in the symmetry-partner intrinsic particle’s frame
(−φx̃′∗,−φcφt̃ ′∗) and symmetry-partner particle’s frame
(−x̃′∗, −ỹ′∗, −z̃′∗, −ct̃ ′∗) respectively in the negative univer-
ses? The answer to this question shall be sought from the the

generalized intrinsic mass relation in the context of the intrin-
sic Special Theory of Relativity (φSR) and from the corre-
sponding generalized mass relation in the context of the Spe-
cial Theory of Relativity (SR) in the two-world picture in this
section and by requiring the symmetry of laws between the
positive and negative universes in the next section.

The well known mass relation on flat four-dimensional
spacetime (Σ, ct) in the context of SR is the following

m =
m0√

1 − v2/c2
. (13)

The corresponding intrinsic mass relation on the flat two-
dimensional intrinsic spacetime (φρ, φcφt) in the context of
the intrinsic Special Theory of Relativity (φSR) is

φm =
φm0√

1 − φv2/φc2
. (14)

The three-dimensional masses m0 and m in the three-
dimensional Euclidean space are the outward manifestation
of the one-dimensional intrinsic masses φm0 and φm respec-
tively in the one-dimensional intrinsic space, as illustrated in
Fig. 6a of [1].

Then by using the relation, sec φψ= (1 − φv2/φc2)−
1
2 and

secψ= (1 − v2/c2)−
1
2 derived and presented as Eqs. (19) and

(32) respectively in [1], Eqs. (14) and (13) can be written re-
spectively as follows

φm = φm0 sec φψ (15)
and

m = m0 secψ . (16)

Eqs. (15) and (16) are the generalized forms in the two-
world picture of the intrinsic mass relation in the context of
φSR and mass relation in the context of SR respectively. They
can be applied for all intrinsic angle φψ and all angles ψ in
the range [0, 2π], except that φψ= π

2 and φψ= 3π
2 must be

avoided.
By letting φψ= π in Eq. (15) and ψ= π in Eq. (16) we

have
φm = −φm0 ≡ −φm∗0 (17)

and
m = −m0 ≡ −m∗0 . (18)

However the intrinsic particle’s frame is stationary rela-
tive to the intrinsic observer’s frame for φψ= π, since then
sin φψ= φv/φc = 0 ⇒ φv= 0, as noted earlier. Consequently
the intrinsic special-relativistic mass φm=φm0(1−φv2/φc2)−

1
2

must be replaced by the intrinsic rest mass φm0 in (17) and the
special-relativistic mass m = m0(1−v2/c2)−

1
2 must be replaced

by the rest mass m0 in (18) to have respectively as follows

φm0 = −φm∗0 or φm0 → −φm∗0 (19)
and

m0 = −m∗0 or m0 → −m∗0 . (20)

Just as the positive intrinsic coordinates φx̃′ and
φcφt̃ ′ of the intrinsic particle’s frame in the positive universe
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transform into the negative intrinsic coordinates −φx̃′∗ and
−φcφt̃ ′∗ of the symmetry-partner intrinsic particle’s frame in
the negative universe expressed by system (9), by virtue of the
generalized intrinsic Lorentz transformation (1) for φψ= π,
the positive intrinsic rest mass φm0 of the particle contained
in the intrinsic particle’s frame (φx̃′, φcφt̃ ′) in the positive
universe, transforms into negative intrinsic rest mass −φm∗0
contained in the intrinsic particle’s frame (−φx̃′∗,−φcφt̃ ′∗) in
the negative universe, by virtue of the generalized intrinsic
mass relation (15) for φψ= π. The negative intrinsic rest mass
−φm∗0 is certainly the intrinsic rest mass of the symmetry-
partner particle in the negative universe.

Likewise as the positive coordinates x̃′, ỹ′, z̃′ and ct̃ ′ of a
particle’s frame in the positive universe transform into nega-
tive coordinates −x̃′∗, −ỹ′∗, −z̃′∗ and −ct̃ ′∗ of the symmetry-
partner particle’s frame in the negative universe, expressed
by system (10), by virtue of the generalized Lorentz transfor-
mation (3) for ψ= π, the positive rest mass m0 of the particle
contained in the particle’s frame (x̃′, ỹ′, z̃′, ct̃ ′) in the positive
universe, transforms into negative rest mass −m∗0 contained in
the symmetry-partner particle’s frame (−x̃′∗,−ỹ′∗,−z̃′∗,−ct̃ ′∗)
in the negative universe, by virtue of the generalized relativis-
tic mass relation (16) for ψ= π. Again the negative rest mass
−m∗0 is certainly the rest mass of the symmetry-partner parti-
cle in the negative universe.

It follows from the foregoing two paragraphs that the in-
trinsic particle’s frame containing positive intrinsic rest mass
of the particle in the positive universe, to be denoted by
(φx̃′, φcφt̃ ′; φm0), corresponds to the symmetry-partner in-
trinsic particle’s frame containing negative intrinsic rest mass
(−φx̃′∗,−φcφt̃ ′∗; −φm∗0) in the negative universe. The parti-
cle’s frame containing the positive rest mass of the particle
(x̃′, ỹ′, z̃′, ct̃ ′; m0) in the positive universe, likewise corre-
sponds to the symmetry-partner particle’s frame containing
negative rest mass (−x̃′, −ỹ′∗, −z̃′∗, −ct̃ ′∗;−m∗0) in the nega-
tive universe.

The conclusion that follows from the foregoing is that
intrinsic rest masses and rest masses of material particles
and objects (that appear in classical, that is, in non-special-
relativistic intrinsic physics and physics) are negative quan-
tities in the negative universe. The special-relativistic in-
trinsic masses φm = γ(φv)φm0 and special-relativistic masses
m = γ(v)m0 of material particles and objects that appear in
special-relativistic intrinsic physics and special-relativistic
physics respectively are therefore negative quantities in the
negative universe.

4 Derivation of the signs of physical parameters and
physical constants in the negative universe by appli-
cation of symmetry of laws between the positive and
negative universes

Four-dimensional inversion is the transformation of the posi-
tive spacetime coordinates of a frame in the positive universe

into the negative spacetime coordinates of the symmetry-
partner frame in the negative universe, as systems (10) and
(12) show. Thus the simultaneous negation of spacetime co-
ordinates in the classical or special-relativistic form of a nat-
ural law amounts to writing that law in the negative universe.

Now the prescribed perfect symmetry of state between
the positive and negative universes discussed in sub-section
4.1 of part one of this article [1], will be impossible unless
there is also a perfect symmetry of laws between the two uni-
verses. That is, unless natural laws take on identical forms in
the two universes. Perfect symmetry of laws between the pos-
itive and negative universes is immutable, as shall be demon-
strated shortly in this article. It must be recalled that Lorentz
invariance in the negative universe, (which is an important
component of the invariance of laws in the negative universe),
has been validated from the derived LT and its inverse in the
negative universe of systems (38) and (39) of [1].

The simultaneous negation of space and time coordinates
in a natural law in the positive universe in the process of writ-
ing it in the negative universe will change the form of that
law in general unless physical quantities and constants, such
as mass, electric charge, temperature, flux, etc, which also
appear in the law (usually as differential coefficients in the in-
stantaneous differential laws) are given the appropriate signs.
By combining the simultaneous negation of space and time
dimensions with the invariance of laws, the signs of physical
quantities and constants in the negative universe can be de-
rived. The derivations of the signs of the fundamental quan-
tities namely, mass, electric charge and absolute temperature
in the negative universe shall be done below. The signs of all
derived (or non-fundamental) physical quantities and physi-
cal constants can then be inferred from their dimensions, as
shall be demonstrated.

Consider a body of constant mass m being accelerated by
a force ~F directed along the positive X-axis of the frame at-
tached to it. In the positive universe, Newton’s second law of
motion for this body is the following

~F =

(
m

d2x
dt2

)
ı̂ . (21)

Since the dimensions of 3-space of the negative uni-
verse is inversion in the origin of the dimensions of 3-space
of the positive universe, the dimensions, unit vector and
force, (x, y, z, t; ı̂; ~F ), in the positive universe correspond to
(−x∗, −y∗, −z∗, −t∗; −ı̂∗; − ~F∗) in the negative universe. Thus
in the negative universe, we must let x → −x∗, t → −t∗,
ı̂ → −ı̂∗ and ~F → − ~F∗, while leaving m unchanged mean-
while in (21) to have as follows

− ~F∗ =

(
m

d2(−x∗)
d(−t∗)2

)
(−ı̂∗) =

(
m

d2x∗

dt∗2

)
ı̂∗. (22)

While Eq. (21) states that a body pushed towards the
positive x-direction by a force ~F, moves along the positive
x-direction, (away from the force), in the positive universe,

Akindele O. J. Adekugbe. Two-world background of Special Relativity. Part II 53



Volume 1 PROGRESS IN PHYSICS January, 2010

Eq. (22) states that a body pushed in the −x∗-direction in the
negative universe by a force − ~F∗, moves in the +x∗-direction,
with unit vector +ı̂∗, (towards the force), in the negative uni-
verse. This implies that Newton’s second law of motion is
different in the negative universe, contrary to the required in-
variance of natural laws in that universe.

In order for (22) to retain the form of (21), so that New-
ton’s second law of motion remains unchanged in the negative
universe, we must let m→ −m∗ in it to have as follows

− ~F∗ =

(
−m∗

d2x∗

dt∗2

)
(ı̂∗) =

(
m∗

d2x∗

dt∗2

)
(−ı̂∗) , (23)

which is of the form of (21) upon cancelling the signs. The
fact that we must let m→ −m∗ in (22) to arrive at (23) implies
that mass is a negative quantity in the negative universe.

Newton’s second law has been chosen because it involves
spacetime coordinates and mass and no other physical quan-
tity or constant. However the negation of mass in the negative
universe does not depend on the natural law adopted, it fol-
lows from any chosen law once the signs in the negative uni-
verse of other physical quantities and physical constants that
appear in that law have been correctly substituted, in addition
to the simultaneous negation of space and time coordinates in
the law.

The negation of mass also follows from the required in-
variance of the metric tensor with the reflection of spacetime
dimensions. For if we consider the Schwarzschild metric in
empty space at the exterior of a spherically symmetric grav-
itational field source, for example, then the non-trivial com-
ponents of the metric tensor are, g00 =−g−1

11 = 1−2GM/rc2.
By letting r → −r∗, we must also let M → −M∗ in order to
preserve the metric tensor in the negative universe. It can be
verified that this is true for all other metric tensors in General
Relativity.

Thus negative mass in the negative universe has again
been derived from the symmetry of natural laws between the
positive and negative universes, which has been derived from
the generalized mass relation in the Special Theory of Rela-
tivity in the two-world picture in the preceding section.

For electric charge, the electrostatic field ~E emanating
from a particle (assumed spherical in shape) with net electric
charge q in the positive universe is given at radial distance r
from the centre of the particle as follows

~E =
q~r

4πε0 r3
. (24)

The symmetry-partner electrostatic field emanating
from the symmetry-partner particle in the negative universe is
inversion in the origin of the electrostatic field in the positive
universe. Hence the electrostatic field in the negative universe
points in opposite direction in space as its symmetry-partner
field ~E of Eq. (24) in the positive universe. This implies that
the symmetry-partner electrostatic field in the negative uni-
verse is −~E∗. By letting r → −r∗, ~r → −~r ∗ and ~E → −~E∗ in

(24), while retaining q and ε0 meanwhile we have

−~E∗ =
q (−~r ∗)

4πε0 (−r∗)3
=

q~r ∗

4πε0 r∗3
(25)

In order for (25) to retain the form of (24), so that Cou-
lomb’s law remains unchanged in the negative universe, we
must let q/ε0 → − (q∗/ε∗0) to have

−~E∗ = − q∗~r ∗

4πε∗0r∗3
, (26)

which is of the form of Eq. (24) upon cancelling the signs.
The negative sign of −(q∗/ε∗0) is associated with the electric
charge, while the electric permittivity of free space retains its
positive sign in the negative universe. This can be ascertained
from the relation for the divergence of electric field namely,

~∇ · ~E =
ρ

ε0

. (27)

In the negative universe, we must let ~∇→−~∇∗, ~E→− ~E∗,
ρ → ρ∗, (since ρ= q/V → −q∗/(−V∗) = q∗/V∗ = ρ∗), while
retaining ε0 meanwhile in (27) to have

−~∇∗ · (−~E∗) =
ρ∗

ε0

. (28)

In order for (28) to retain the form of (27), we must let
ε0 → ε∗0 , which confirms the positivity of the electric permit-
tivity of free space in the negative universe. The conclusion
then is that the electric charge of a particle in the negative uni-
verse has opposite sign as the electric charge of its symmetry-
partner in the positive universe.

We are now left to determine the sign in the negative uni-
verse of the last fundamental quantity namely, absolute tem-
perature. It has been found impossible to determine the sign
of absolute temperature in the negative universe in a unique
manner from consideration of the equations of thermodynam-
ics, kinetic theory of gases and transport phenomena. It has
been necessary to make recourse to the more fundamental no-
tions of the “arrow of entropy” and “arrow of time” in order
to propagate. These notions have been made tangible by the
works of Prigogine [3].

We know that entropy always increases or always “flows”
along the positive direction of the “entropy axis” S in our
(or the positive) universe, even as time always increases or
always “flows” into the future direction, that is, along the pos-
itive time axis ct in our universe. Thus the arrow of time and
the arrow of entropy lie parallel to each other in our universe.
Or in the words of Prigogine, “a [positively directed] arrow
of time is associated with a [positively directed] arrow of en-
tropy”. Thus absolute entropy is a positive quantity in our
(or positive) universe, just as time is a positive quantity in
our (or positive) universe. The arrow of time and the arrow
of entropy likewise lie parallel to each other in the negative
universe. We then infer from this that entropy is negatively
directed and is hence a negative quantity in the negative uni-
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verse, since time is negatively directed and is hence a negative
quantity in the negative universe.

Having determined the sign of absolute entropy in the
negative universe from the above reasoning, it is now an easy
matter to determine the sign of absolute temperature in the
negative universe. For let us write the following fundamental
relation for absolute entropy in our universe:

S = k ln W , (29)

where k is the Boltzmann constant and W is the number of
micro-states in an ensemble in the quantum-mechanical for-
mulation [4]. In the negative universe, we must let S → −S ∗

and W → W∗ while retaining k meanwhile to have as follows

−S ∗ = k ln W∗. (30)

In order for (30) to retain the form of (29) we must let
k → −k∗, in (30), to have as follows

−S ∗ = − k∗ ln W∗, (31)

which is of the form of (29) upon cancelling the signs. Thus
the Boltzmann constant is a negative quantity in the negative
universe.

The average energy ε of a molecule, for one degree-of-
freedom motion of a diatomic molecule in a gas maintained
at thermal equilibrium at temperature T, is given as follows

ε =
2
3

k T , (32)

where, again, k is the Boltzmann constant. In the negative
universe, we must let ε → −ε∗, (since the kinetic energy
1
2 mv2 of molecules, like mass m, is a negative quantity in the
negative universe), and k → −k∗, in (32) while retaining T
meanwhile to have as follows

−ε∗ =
2
3

(−k∗) T , (33)

which is of the form of (32) upon cancelling the signs. The
transformation, T → T ∗, required to convert Eq. (33) into
Eq. (32) implies that absolute temperature is a positive quan-
tity in the negative universe.

In summary, the fundamental quantities namely, mass
m, electric charge Q and absolute temperature T , transform
between the positive and negative universes as, m→−m∗,
Q→ −Q∗ and T → T ∗.

By writing various natural laws in terms of negative
spacetime dimensions, negative mass, negative electric
charge and positive absolute temperature and requiring the
laws to retain their usual forms in the positive universe, the
signs of other physical quantities and constants in the negative
universe can be derived. However a faster way of deriving the
signs in the negative universe of derived physical quantities
and constants is to check the signs of their dimensions in the
negative universe, as demonstrated for a few quantities and
constants below.

Let us consider the Boltzmann constant k and absolute en-
tropy S , whose negative signs in the negative universe have
been deduced above. They both have the unit, Joule/Kelvin,
or dimension ML2/T 2Θ in the positive universe, where M
represents mass “dimension”, L represents length dimension,
T represents time dimension and Θ represents absolute tem-
perature “dimension”. In the negative universe, we must let
M → −M∗, L→ −L∗,T → −T ∗ and Θ→ Θ∗, to have the di-
mensions of Boltzmann constant and absolute entropy in the
negative universe as−M∗(−L∗)2/(−T ∗)2Θ∗ =−M∗L∗2/T ∗2Θ∗.
The Boltzmann constant and absolute entropy are negative
quantities in the negative universe, since their common di-
mension is negative in the negative universe.

The Planck constant has the unit Joule/second and dimen-
sion ML2/T 3 in the positive universe. In the negative uni-
verse, it has dimension of −M∗(−L∗)2/(−T ∗)3), which is pos-
itive. Hence the Planck constant is a positive quantity in the
negative universe.

The specific heat capacity cp has the unit Joule/kg×Kelvin
and dimension L2/T 2Θ in the positive universe. In the neg-
ative universe it has dimension (−L∗)2/ (−T ∗)2Θ∗, which is
positive. Hence specific heat capacity is a positive quantity in
the negative universe.

The electric permittivity of space ε has the unit of
Joule ×metre/Coulomb2 and dimension ML3/T 2C2 in the
positive universe, where C is used to represent the charge
“dimension”. In the negative universe, it has dimension
(−M∗)(−L∗)3/(−T ∗)2(−C∗)2 = M∗L∗3/T ∗2C∗2, which is pos-
itive. Hence the electric permittivity of space is a positive
quantity in the negative universe. This fact has been derived
earlier in the process of deriving the sign of electric charge
in the negative universe. Likewise magnetic permeability of
space µ has dimension ML/C2 in the positive universe and di-
mension −M∗(−L∗)/(−C∗)2 = M∗L∗/C∗2, in the negative uni-
verse. It is hence a positive quantity in both the positive and
negative universes.

An angular measure in space in the positive universe has
the same sign as the symmetry-partner angular measure in
the negative universe. This follows from the fact that an arc
length, s = rθ [metre], in the positive universe corresponds to
a negative arc length, s∗ = − (r∗θ∗) [−metre∗], in the negative
universe. In other words, an arc length in the positive universe
and its symmetry-partner in the negative universe transform
as, rθ → − (r∗θ∗). But the radii of the symmetry-partner arcs
transform as, r → −r∗. It follows from these two transforma-
tions that an angular measure in space in the positive universe
has the same sign as its symmetry-partner in the negative uni-
verse, that is, ±θ → ±θ∗ and ±ϕ→ ±ϕ∗, etc.

Finally, a dimensionless quantity or constant in the posi-
tive universe necessarily has the same sign as its symmetry-
partner in the negative universe, as follows from the above.
Examples of dimensionless constants are the dielectric con-
stants, εr and µr.

Table 1 gives a summary of the signs of some physical
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Intrinsic Sign

Physical quantity/constant Symbol quantity/ positive negative
constant universe universe

Distance/dimension of space dx ; x dφ x ; φ x + −
Interval/dimension of time dt ; t dφ t ; φ t + −
Mass m φm + −
Electric charge q q + or − − or +

Absolute entropy S φS + −
Absolute temperature T T + +

Energy (total, kinetic) E φE + −
Potential energy U φU + or − − or +

Radiation energy hν hφν + −
Electrostatic potential ΦE φΦE + or − + or −
Gravitational potential Φg φΦg − −
Electric field ~E φE + or − − or +

Magnetic field ~B φB + or − − or +

Planck constant h h + +

Boltzmann constant k φk + −
Thermal conductivity k φk + −
Specific heat capacity cp φcp + +

Speed v φv + +

Electric permittivity ε0 φε0 + +

Magnetic permeability µ0 φµ0 + +

Angle θ, ϕ φθ, φϕ + or − + or −
Parity Π φΠ + or − − or +

...
...

...
...

...

Table 1: The signs of physical parameters/intrinsic parameters and physical constants/intrinsic
constants in the positive and negative universes.

quantities and physical constants in the positive and negative
universes. The signs in the positive and negative universes of
other physical quantities and constants that are not included
in Table 1 can be easily determined from the signs of their
dimensions in the negative universe. The appropriateness of
the names positive universe and negative universe is made
clearer by Table 1.

5 Demonstrating the invariance of the natural laws in
the negative universe

It shall be shown in this section that the simultaneous nega-
tions of spacetime dimensions and mass, along with simulta-
neous reversal of the sign of electric charge, retention of the
positive sign of absolute temperature and substitution of the
signs of other physical quantities and physical constants in
the negative universe summarized in column 5 of Table 1 in
its complete form, render all natural laws unchanged. How-
ever only the invariance of a few laws in the negative universe
namely, mechanics (classical and special-relativistic), quan-
tum mechanics, electromagnetism and propagation of light,
the theory of gravity, cosmology and fundamental interac-
tions in elementary particle physics shall be demonstrated for
examples.

5.1 Further on the invariance of classical mechanics,
classical gravitation and Special Relativity in the
negative universe

Demonstrating the invariance of classical mechanics in the
negative universe consists essentially in showing that New-
ton’s laws of motion for a body under an impressed force and
due to interaction of the body with an external force field are
invariant under the simultaneous operations of inversion of
all coordinates (or dimensions) of 3-space (parity inversion),
time reversal and mass negation. The laws are given respec-
tively as follows in the positive universe:

~Fmech = m
d2r
dt2 r̂ (34)

and
~Ffield = m (−∇Φ) k̂ , (35)

where r̂ and k̂ are unit vectors in the directions of the forces
~Fmech and ~Ffield respectively.

In the negative universe, we must let ~Fmech→− ~F∗mech,
~Ffield→− ~F∗field, m→−m∗, r→−r∗, t→− t∗, ∇→−∇∗,
Φ→Φ∗ (for gravitational and elastic potentials), r̂→− r̂∗ and
k̂→− k̂∗ in (34) and (35) to have as follows

− ~F∗mech = −m∗
d2(−r∗)
d(−t∗)2 (−r̂∗) = m∗

d2r∗

dt∗2
(−r̂∗) (36)
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and
− ~F∗field = −m∗

(− (−∇∗)(Φ∗))(−k̂∗)

= m∗ (−∇∗Φ∗) (−k̂∗) (37)

Equations (36) and (37) are the same as Eqs. (34) and (35)
respectively upon cancelling the signs.

The invariance in the negative universe of the classical
laws of motion (34) and (35) in the positive universe implies
that a body of negative mass −m∗ in the negative universe
moves along a trajectory, when impressed upon by an exter-
nal mechanical force − ~F∗mech, or when it is moving within
a force field with potential function Φ∗ in the negative uni-
verse, which is identical to the trajectory followed by the
symmetry-partner body of positive mass m in the positive
universe, which is impressed upon by an external symmetry-
partner mechanical force ~Fmech or which is moving within a
symmetry-partner force field with potential function Φ in the
positive universe.

The invariance in the negative universe of trajectories of
a body implied by the invariance in the negative universe of
the differential classical laws of motion (34) and (35) for the
body, established above can be alternatively formulated as the
invariance in the negative universe of the variational formula
of Maupertuis. In the positive universe, this is given as fol-
lows

δ

∫ P2

p1

(
2
m

(E − U)
)1/2

dt = 0 . (38)

In the negative universe, we must let m→−m∗, E→−E∗,
U→−U∗ and dt→−dt∗ in (38) to have as follows

δ

∫ p∗2

p∗1

(
2
−m∗

(−E∗ − (−U∗))
)1/2

(−dt∗) =

= δ

∫ p∗2

p∗1

(
2

m∗
(E∗ − U∗)

)1/2

dt∗ = 0 . (39)

The summary of the above is that although inertial mass,
kinetic energy, distances in space and periods of time are
negative in the negative universe, material particles in the
negative universe perform identical motions under impressed
forces and external force fields as their symmetry-partners
perform under symmetry-partner impressed forces and exter-
nal force fields in the positive universe. Thus outward ex-
ternal forces lead to outward motions of bodies both in the
positive and negative universes. Attractive gravitational field
in the positive universe correspond to symmetry-partner re-
pulsive gravitational field in the negative universe, but they
both give rise to attractive motions of particles (towards the
field sources) in both universes. In brief, the transformation of
classical mechanics in the positive universe into the negative
universe does not give rise to strange motions and associated
strange phenomena.

Demonstrating the invariance of classical gravitation (or
classical gravitational interaction) in the negative universe

consists in showing the invariance in the negative universe
of the Newtonian law of gravity in differential form and the
implied Newtonian law of universal gravity,

~∇ · ~g = − 4πG% (40)

or
∇2 Φ = 4πG% (41)

and
~F = m~g = −GMm~r

r3 , (42)

where
% = m/V (mass − density), (43)
Φ = −GM/r , (44)
~g = −GM~r/r3. (45)

In writing equations (43)–(45) in the negative universe,
we must let m → −m∗; M → −M∗; r → −r ∗ and V → −V∗

(volume of m) to have

m
V
→ −m∗

−V∗
=

m∗

V∗
⇒ %→ %∗ (46)

−GM
r
→ −G (−M∗)

−r∗
= −GM∗

r∗
⇒ Φ→ Φ∗ (47)

and

−GM~r
r3 → −G (−M)(−~r ∗)

(−r∗)3 =
GM∗~r ∗

r∗3
⇒ ~g→ −~g ∗. (48)

By using the transformations (46)–(48) along with ~∇ →
−~∇∗ in equations (40)–(42) we have

(−~∇∗) · (−~g ∗) = − 4πG%∗

or
~∇∗ · ~g ∗ = − 4πG%∗, (49)

(−∇∗)2 Φ∗ = 4πG%∗

or
∇∗2 Φ∗ = 4πG%∗ (50)

and
~F∗ = (−m∗)(−~g ∗) = −G (−M∗) (−m∗)(−~r ∗)

(−r∗)3

or
~F∗ = m∗~g∗ = −GM∗m∗~r ∗

r∗3
. (51)

A comparison of equations (40)–(42) in the positive uni-
verse with the corresponding equations (49)–(51) in the neg-
ative universe, shows that the Newtonian law of gravity in
differential form and the implied Newtonian law of universal
gravity are invariant in the negative universe. The invariance
of classical gravitation (or classical gravitational interaction)
in the negative universe has thus been demonstrated. This
is true despite the fact that gravitational potential does not
change sign while gravitational field (or gravitational accel-
eration) changes sign in the negative universe according to
equations (47) and (48).
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Demonstrating the invariance of Special Relativity in the
negative universe consists in showing the invariance of Lo-
rentz transformation, time dilation and length contraction for-
mulae and the special-relativistic expressions for mass and
other quantities in that universe. Now in the positive uni-
verse, for motion at speed v of a particle of rest mass m0
along the x-axis of the coordinate system attached to it rel-
ative to an observer, the Lorentz transformation of the coor-
dinates (x̃′, ỹ′, z̃′, ct̃ ′) of the primed (or particle’s) frame into
the coordinates (x̃, ỹ, z̃, ct̃) of the unprimed (or observer’s)
frame has been written as system (3). The special-relativistic
mass is given in the positive universe by the usual expression
(13), which shall be re-written here as

m = γm0 . (52)

In the negative universe, we must let (x̃′, ỹ′, z̃′, ct̃ ′; m0) →
(−x̃′∗, −ỹ′∗, −z̃′∗, −ct̃ ′∗; −m∗0), and also (x̃, ỹ, z̃, ct̃; m) →
(−x̃∗, −ỹ∗, −z̃∗, −ct̃∗; −m∗), yielding the Lorentz transform-
ation of the coordinates of the frame of reference attached to
the symmetry-partner particle in motion relative to the sym-
metry-partner observer in the negative universe written as sys-
tem (38) in [1], which shall be re-written here as follows

−x̃′∗ = γ
(−x̃∗ − v (−t̃∗)

)

−t̃′∗ = γ
(
−t̃∗− v

c2 (−x̃∗)
)

−ỹ′∗ = −ỹ∗, −z̃′∗ = −z̃∗


, (53)

while the expression for special-relativistic mass in the nega-
tive universe becomes the following

−m∗ = − γm∗0. (54)

The expressions for time dilation and length contraction
in the negative universe are similarly given respectively as
follows

∆(−t̃∗) = γ∆ (−t̃′∗) , (55)

∆(−x̃∗) = γ−1 ∆(−x̃′∗) . (56)

Although the negative signs must be retained in (53),
(54), (55) and (56) in the negative universe, mathematically
the signs cancel, thereby making Lorentz transformation and
the other equations of Special Relativity to retain their usual
forms in the negative universe. Thus Lorentz invariance, (and
local Lorentz invariance in gravitational fields), hold in the
negative universe.

5.2 Invariance of quantum mechanics in the negative
universe

The time-dependent Schrödinger wave equation is the follow-
ing in the positive universe

H(~r, t, m, q) |Ψ(~r, t, m, q)〉 = i~
∂

∂t
|Ψ(~r, t, m, q)〉 . (57)

By writing (57) in the negative universe, while leaving Ψ

unchanged meanwhile, we have

− H∗(−~r ∗, −t∗, −m∗, −q∗) |Ψ(~r, t, m, q)〉
= i~∗

∂

∂(−t∗)
|Ψ(~r, t, m, q)〉 , (58)

where the fact that the Boltzmann constant transforms as
~ → ~∗ between the positive and negative universes in Ta-
ble 1 has been used.

Now the wave function should transform between the pos-
itive and negative universes either as

Ψ(~r, t, m, q)→ Ψ∗(−~r ∗, −t∗, −m∗, −q∗) =

= Ψ∗(~r ∗, t∗, m∗, q∗) (59)
or as

Ψ(~r, t, m, q)→ −Ψ∗(−~r ∗, −t∗, −m∗, −q∗) =

= −Ψ∗(~r ∗, t∗, m∗, q∗) . (60)

The parity of the wave function is conserved in (59) and
inverted in (60).

Let us consider the following wave function in the posi-
tive universe,

Ψ(~r, t) = A sin
(
~k · ~r − ωt

)
(61)

The symmetry-partner wave function in the negative uni-
verse is obtained by letting ~r→−~r ∗, ~k→−~k∗, ω→−ω∗,
t→− t∗ and A→−A∗ in (61) to have

Ψ∗(~r, t) = − A∗ sin
(
−~k∗ · (−~r ∗) − (−ω∗)(−t∗)

)

= − A∗ sin
(
~k∗ · ~r ∗ − ω∗t∗

)
. (62)

The transformation A→ −A∗ is necessary since inversion
in the origin of the coordinates of a Euclidean 3-space inverts
the amplitude of a wave in that space. On the other hand, the
phase of a wave function, being a dimensionless number, does
not change sign in the negative universe. Thus the transfor-
mation (60) and not (59) is the correct transformation of the
wave function between the positive and negative universes.
This is obviously so since (60) is a parity inversion situation,
which is in agreement with the natural parity inversion of a
wave, Π → −Π, between the positive and negative universes
included in Table 1. By incorporating the transformation (60)
into (58) we obtain the following

−H∗(−~r ∗,−t∗,−m∗,−q∗) | − Ψ∗(−~r ∗,−t∗,−m∗,−q∗)〉 =

= − i~∗
∂

∂t∗
| − Ψ∗(−~r ∗,−t∗,−m∗,−q∗)〉

or
H∗(~r ∗, t∗,m∗, q∗) |Ψ∗(~r ∗, t∗,m∗, q∗)〉 =

= i~∗
∂

∂t∗
|Ψ∗(~r ∗, t∗,m∗, q∗)〉 . (63)

This is of the form of Eq. (57). The invariance of the
Schrödinger wave equation in the negative universe has thus
been established. It is straight forward to demonstrate the
invariance in the negative universe of the Dirac’s equation for
the electron and of Gordon’s equation for bosons.
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5.3 Invariance of Maxwell equations in the negative uni-
verse

The Maxwell equations in a medium with electric charge den-
sity ρ and electric current density ~J are given in the positive
universe as follows

~∇ · ~E =
ρ

ε
, ~∇ · ~B = 0

~∇ × ~B = µ~J + ε µ
∂~E
∂t

, ~∇ × ~E = −∂
~B
∂t


. (64)

Now, ρ=
charge
volume , is the electric charge density of the

medium in the positive universe. The charge density of the
symmetry-partner medium in the negative universe is the
positive quantity, − charge∗

− volume∗ =
charge∗

volume∗ = ρ∗. The magnitude of an
electric current is, I =

charge
time or I = ρvA, in the positive uni-

verse and the magnitude of its symmetry-partner in the nega-
tive universe is the positive quantity, − charge∗

− time∗ =
charge∗

time∗ = I∗ or
ρ∗vA∗ = I∗, since speed v and area A do not change sign in the
negative universe. Similarly the magnitude of an electric cur-
rent density of a medium in the positive universe is,
J = current

area , and the magnitude of the current den-
sity of the symmetry-partner medium in the nega-
tive universe is, current∗

area∗ = J∗. Thus in obtaining the
Maxwell equations in the negative universe, we must
let ~E→− ~E∗, ~B→− ~B∗, ρ→ ρ∗, ~J→ ~J ∗, ~∇→−~∇∗,
ε→ ε∗, µ→ µ∗ and t→− t∗ in system (65) to have as follows

−~∇∗ · (−~E∗) =
ρ∗

ε∗
, −~∇∗ · (−~B∗) = 0

−~∇∗ × (−~B∗) = µ∗ ~J ∗ + ε∗µ∗
∂ (−~E∗)
∂(−t∗)

−~∇∗ × (−~E∗) = −∂(−~B∗)
∂(−t∗)



. (65)

System (65) with the negative signs is the form the
Maxwell equations are written by physicists∗ in the negative
universe. The signs cancel mathematically thereby making
system (65) to retain the form of system (64) and thereby es-
tablishing the invariance of Maxwell equations in the negative
universe.

The law of propagation of electromagnetic waves derived
from the Maxwell equations remain invariant in the negative
universe as a consequence of the above. The equations are
given in the positive universe as follows

∇2 ~E =
1
c2

∂2 ~E
∂t2 , ∇2~B =

1
c2

∂2~B
∂t2 , (66)

while in the negative universe, the electromagnetic wave
equations are given as follows

(−∇∗)2 (−~E∗) =
1
c2

∂2(−~E∗)
∂(−t∗)2

(−∇∗)2 (−~B∗) =
1
c2

∂2(−~B∗)
∂(−t∗)2


. (67)

Thus as the perpendicular electric field and magnetic field
~E and ~B propagate as electromagnetic wave at the speed of
light in the positive universe, the symmetry-partner perpen-
dicular fields −~E∗ and −~B∗ propagate as the identical sym-
metry-partner electromagnetic wave at the speed of light in
the negative universe.

The foregoing shows that although electric charge as well
as electric field and magnetic field change signs in the nega-
tive universe, the laws of propagation of electric and magnetic
fields and electromagnetic waves remain invariant in the neg-
ative universe.

5.4 Invariance of General Relativity and cosmology in
the negative universe

Since system of coordinates does not enter the covariant ten-
sor formulation of Einstein’s field equations, the equations
are equally valid for the negative dimensions of the negative
universe. The most general form of Einstein’s field equations
in the positive universe is the following

Rν
µ −

1
2

R gνµ + Λ gνµ = −8πG
c2 T ν

µ , (68)

where the energy-momentum tensor T ν
µ is defined as follows

T ν
µ = (p + ρ) uνuµ − pgνµ , (69)

Λ is the cosmological constant, p and ρ are the pressure and
density of the universe respectively, while the other quantities
in (68) and (69) are as defined in the theory. Λ is usually set
to zero in General Relativity when considering local gravita-
tional problems but retained in cosmological problems.

For the static exterior field of a spherical body, we must
let Λ = T ν

µ = 0 in (68) and require the vanishing of the Ricci
tensor to have as follows

Rµν = 0 (70)

Adopting a metric with signature (+ − −−), the Schwarz-
schild solution to the field equation (70) is the following

ds2 = c2dt2
(
1 − 2GM

rc2

)
− dr2

(
1 − 2GM

rc2

) −

−r2
(
dθ2 + sin2 θ dϕ2

)
. (71)

By letting t→− t∗, r→−r∗, θ→ θ∗, ϕ→ϕ∗ and M→−M∗

in (71) we find that the Schwarzschild line element or metric
tensor remains invariant in the negative universe. Other forms
of exterior line elements or metric tensors, such as Kerr’s line
element, as well as interior metric tensors remain invariant
in the negative universe as well. This is so because ds2 is
quadratic in intervals cdt, dr, rdθ and r sin θdϕ, and the com-
ponents of the metric tensor are dimensionless. This con-
cludes the invariance of general relativity in the negative uni-
verse.
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Now the metric of spatially homogeneous universe in co-
moving coordinates is the Robertson-Walker metric

ds2 = c2dt2 − R(t)2


du2 + u2

(
dθ2 + sin2 θ dϕ2

)
(
1 + k

4 u2
)2

 , (72)

where u = r/r0 and the constant k is −1, 0 or +1, correspond-
ing to spherical space, Euclidean space or pseudo-spherical
space. Assuming that the universe is filled with perfect fluid,
the field equation (68) along with the energy-momentum ten-
sor (69) have been cast in the following forms, from which
various models of the universe have been derived in General
Relativity, as can be found in the standard texts on General
Relativity

8πGρ
c2 = −Λ +

[
3k

R(t)2 +
3Ṙ(t)2

c2R(t)2

]
, (73)

8πG
c2

( p
c2

)
= Λ −

[
k

R(t)2 +
Ṙ(t)2

c2R(t)2 +
2R̈(t)
c2R(t)

]
, (74)

R(t) = R0 exp(Ht) , R0 = R(t = 0) , (75)

where R(t) is the “radius” of the universe, H is the Hubble
constant given by

H =
Ṙ(t)
R(t)

=
1

R(t)
dR(t)

dt
(76)

and the cosmological constant Λ is related to the Hubble con-
stant H as follows

Λ =
3H2

c2 . (77)

The parameters that appear in cosmological model, that
is, in Eqs. (73) through (75), are the global time t, the “ra-
dius” of the universe R(t), the mass-density of the universe
ρ, the pressure of the universe p, the Hubble constant H, and
the cosmological constant Λ. Also the rate of expansion Ṙ(t),
as well as the acceleration R̈(t), of the expanding universe
enter into the equations. In the negative universe, we must
let t→− t∗, R(t)→−R∗(−t∗), p→ p∗, H→−H∗, Λ→Λ∗,
Ṙ(t)→ Ṙ∗(−t∗) and R̈(t)→− R̈∗(−t∗) in (73) through (75). Do-
ing this, we find that the equations remain unchanged, so that
physicists∗ in the negative universe formulate identical cos-
mological models as those in the positive universe. Conse-
quently observers∗ in the negative universe make observation
of that universe that are identical to the observation made of
the positive universe by observers in the positive universe at
all epochs.

It is easy and straight forward to demonstrate the invari-
ance of the kinetic theory of gas, the laws of propagation
of heat (conduction, convection and radiation) in continuous
media, transport phenomena and other macroscopic laws of
physics by following the procedure used to demonstrate the
invariance of some macroscopic natural laws above with the
aid of the complete form of Table 1.

5.5 Invariance of fundamental interactions in the nega-
tive universe

In a formal sense, the invariance in the negative universe
of quantum chromodynamics, quantum electrodynamics, the
electro-weak theory and quantum gravity must be demon-
strated with the aid of the complete form of Table 1 in or-
der to show the invariance in the negative universe of strong,
electromagnetic, weak and gravitational interactions among
elementary particles, as has been done for the macroscopic
natural laws in this section. However we shall not attempt
this. Rather we shall make recourse to the CPT theorem to
demonstrate the invariance of the strong, electromagnetic and
weak interactions in this section.

The CPT theorem, in a simplified form in [5, see p. 712],
for instance, states that any hermitian interaction relativisti-
cally invariant, commutes with all products of the three oper-
ators C (charge conjugation), P (parity inversion), and T (time
reversal) in any order. Even if an interaction is not invariant
under one or two of the three operations, it must be invari-
ant under CPT. The invariance of strong, weak and electro-
magnetic interactions under CPT is a well established fact in
elementary particle physics [5].

Now the spacetime dimensions −x∗, −y∗, −z∗ and −ct∗

(in the Cartesian system of the dimensions of 3-space) of the
third quadrant (or of the negative universe) are the products
of natural parity inversion operation (P) and time reversal op-
eration (T), (or of natural operation PT), on the spacetime
dimensions x, y, z and ct of the first quadrant (or of the pos-
itive universe) in Fig. 5 or Fig. 7 of [1]. This implies, for
instance, that the parity of a Schrodinger wave in the negative
universe is natural inversion of parity of the symmetry-partner
Schrodinger wave in the positive universe. The natural par-
ity inversion of classical quantum-mechanical waves between
the positive and negative universes equally applies to intrinsic
parties of relativistic quantum mechanics and quantum field
theories.

As also derived earlier in this paper and included in Ta-
ble 1, the electric charge Q of a particle in the positive uni-
verse corresponds to an electric charge of equal magnitude
but of opposite sign −Q∗ of the symmetry-partner particle in
the negative universe. Thus the electric charge of a particle in
the negative universe is the product of natural charge conju-
gation operation (C) on the electric charge of its symmetry-
partner particle in the positive universe.

It follows from the foregoing two paragraphs that strong,
weak and electromagnetic interactions among elementary
particles in the negative universe are the products of natu-
ral operations of parity inversion (P), time reversal (T) and
charge conjugation (C), in any order, (or of natural opera-
tion CPT), on strong, weak and electromagnetic interactions
among elementary particles in the positive universe. The
invariance of strong, weak and electromagnetic interactions
among elementary particles in the negative universe follow
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from this and the CPT theorem.
The invariance of classical gravitation and the General

Theory of Relativity (or of gravitational interaction) at the
macroscopic level in the negative universe has been demon-
strated earlier in this section. The invariance in the negative
universe of gravitational interaction among elementary par-
ticles follow from this. This section shall be ended with a
remark that all natural laws, including the fundamental inter-
actions among elementary particles, take on the same forms
in the positive and negative universes and this is perfect sym-
metry of laws between the positive and negative universes.

6 On the concept of negative mass in physics

The concept of negative mass is not new in physics. The earli-
est speculations include the elaborate theory of negative mass
by Föppl in 1897 and Schuster’s contemplation of a universe
with negative mass in 1898 [6] . However, as mentioned
in [6], the fundamental modern paper on negative mass can
be deemed to begin with Bondi [7]. As also stated in [6],
Bondi pointed out that the mass in classical mechanics ac-
tually consists of three concepts namely, inertial mass, mi,
passive gravitational mass mp, and active gravitational mass
ma. In Newton’s theory of gravity, mi = mp = ma. Also in the
General Theory of Relativity, the principle of equivalence re-
quires that, mi = mp = ma. Although all three mass concepts
are usually taken to be positive in physics, the theories do not
compel this, as noted in [6].

Several papers on negative mass listed in [6] have ap-
peared after Bondi’s paper [7]. As noted in [6], most of those
papers investigate the interaction and possible co-existence of
particles with masses of both signs. The paper by Bonnor [6]
is an important reappraisal of the concept of negative mass in
the more recent time. In his analysis, Bonnor starts with the
assumption mi, mp > 0, ma < 0. He arrives at the result that
either mi < 0, mp < 0 and ma < 0 for all particles and bodies or
mi > 0, mp > 0 and ma > 0 for all particles and bodies. He then
chooses to work with the former case, that is, all three mass
concepts negative in an hypothetical universe. He substitutes
negative mass into mechanics, relativity, gravitation as well
as cosmology and finds that observers located in the hypo-
thetical universe would observe strange phenomena, such as
pebbles or sand falling on a stretched membrane producing
tension and not compression of the membrane, and a push
on a trolley causing it to accelerate towards the person who
pushed it, etc. It is certain that this our universe is not the
hypothetical universe containing negative mass in [6].

The hypothetical universe containing negative mass in [6]
is not the negative universe isolated in the two parts of this
article either. This is so because only mass is made negative
while space and time dimensions, as well as other physical
quantities and constants retain their signs (in our universe)
in the hypothetical universe of [6]. This proviso leads to the
deduced observation of strange phenomena in the hypothet-

ical universe. On the other hand, the negative universe of
this article contains negative mass along with the negation
of space and time dimensions, as well as the signs of other
physical quantities and constants summarized in column 5 of
Table 1. As demonstrated in the preceding section, the laws
of physics retain their usual forms in the negative universe,
and observers located in the negative universe observe phe-
nomena in their universe that are identical to the phenomena
observed in our (or positive) universe. There are no strange
phenomena in the negative universe of the two parts of this
article.

This section is perhaps the conclusion of over a
century-old effort towards the development of the concept of
negative mass in physics. Schuster’s speculation one hundred
and ten years ago of a universe containing negative mass must
have now been realized. This second part of this article shall
be ended at this point, while possible further development of
the two-world background of Special Relativity (or the two-
world picture) shall be investigated elsewhere.
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Fractal Scaling Models of Natural Oscillations in Chain Systems and
the Mass Distribution of the Celestial Bodies in the Solar System
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The present paper interprets matter as a chain system of quantum harmonic oscillators.
A fractal spectral model of resonant oscillations in chain systems of protons generates
a scaling mass spectrum, that reproduces the mass distribution of the celestial bodies in
the Solar System.

1 Introduction

Fractal scaling models [1] of natural oscillations in chain sys-
tems of harmonic oscillators are not based on any statements
about the nature of the link or interaction between the ele-
ments of the oscillating chain system. Therefore the model
statements are quite generally, what opens a wide field of pos-
sible applications.

In comparison with empty cosmic space, celestial bodies
(stars, planets, moons, asteroids) are compressed matter and
the contribution of nucleons to the bodies mass is about 99%.
In the framework of the standard particle model, protons and
neutrons are baryons, in which the proton connects to a lower
quantum energy level and a much more stable state than the
neutron. In addition, the proton and neutron have similar rest
masses, what permits us to interpret protons and neutrons as
similar quantum oscillators with regard to their rest masses.

Based on a fractal scaling model [1] of natural oscilla-
tions in this paper we will interpret matter as a chain system
of many oscillating protons and find out spectral ranges where
the oscillation process stability and energy efficiency are rel-
ative high or low.

2 Methods

On the base of continued fraction method [1] we will search
the natural frequencies of a chain system of many vibrating
protons on the lowest energy level (ground stage) in this form:

f = fp exp (S ) , (1)

f is a natural frequency of a chain system of vibrating pro-
tons, fp is the natural oscillation frequency of one proton, S
is a finite continued fraction with integer elements:

S = n0 +
1

n1 +
1

n2 + . . . + 1
nk

= [n0; n1, n2, . . . , nk] , (2)

where n0, n1, n2, . . . , nk ∈ Z. The continued fractions (2) are
in the canonical form and have a discrete spectrum of eigen-
values. With the help of the Lagrange transformation [2] ev-
ery continued fraction with integer partial denominators can

be represented as a continued fraction with natural partial de-
nominators, that’s always convergent. In this paper we will
investigate spectra generated by convergent continued frac-
tions (2). The present paper follows the Terskich [3] defi-
nition of a chain system, where the interaction between the
elements proceeds only in their movement direction.

Model spectra (2) are not only logarithmic-invariant, but
also fractal, because the discrete hyperbolic distribution of
natural frequencies repeats itself on each spectral level k. We
investigate continued fractions (2) with a finite quantity of
layers k, which generate discrete spectra, because in this case
all continued fractions S represent rational numbers. There-
fore the free link n0 and the partial denominators n1 can be
interpreted as “quantum numbers”.

The partial denominators n1 run through positive and neg-
ative integer values. Maximum spectral density areas (spec-
tral nodes) arise automatically on the distance of one loga-
rithmic unit, where |n1|→∞. Fig.1 shows the spectrum on
the first layer k = 1 for |n1|= 2, 3, 4, . . . and |n0|= 0, 1, 2, . . .
(logarithmic representation). Integer S-values are labeled.

Fig. 1: The spectrum (2) on the first layer k = 1, for |n1|= 2, 3, 4, . . .
and |n0|= 0, 1, 2, . . . (logarithmic representation). Integer S-values
are labeled.

Ranges of relative low spectral density (spectral gaps)
and ranges of relative high spectral density (spectral nodes)
arise on each spectral layer. In addition to the first spec-
tral layer, Fig. 2 shows the second spectral layer k = 2 for
|n2|= 2, 3, 4, . . . and |n1|= 2 (logarithmic representation).

Fig. 2: The spectrum (2) on the first layer k = 1, for |n0|= 0, 1, 2, . . .
and |n1|= 2, 3, 4, . . . and, in addition, the second layer k = 2 for
|n1|= 2 and |n2|= 2, 3, 4, . . . (logarithmic representation).

In the spectral node ranges, where the spectral density
reachs local maximum, natural frequencies are distributed
maximum densely, so that near a spectral node almost each
frequency is a natural frequency. The energy efficiency of
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Celestial body Body mass m, kg ln (m/mp) S d, %

15 Eunomia (A) 3.12 × 1019 [8] 106.54 [106; 2] 0.037
Mimas (S) (3.7493 ± 0.0031) × 1019 [7] 106.73 [106; 2] 0.216
Miranda (U) (6.59 ± 0.75) × 1019 [8] 107.29 [107; 2] −0.195
10 Hygiea (A) (8.98 ± 0.01) × 1019 [8] 107.60 [107; 2] 0.093
Enceladus (S) (1.08022 ± 0.00101) × 1020 [7] 107.78 [108] −0.204
2 Pallas (A) (2.11 ± 0.26) × 1020 [8] 108.50 [108; 2] 0.001
4 Vesta (A) (2.67 ± 0.02) × 1020 [8] 108.69 [108; 2] 0.175
Tethys (S) (6.17449 ± 0.00132) × 1020 [7] 109.53 [109; 2] 0.028
1 Ceres (P) (9.43 ± 0.07) × 1020 [8, 9] 109.95 [110] −0.045
Dione (S) (1.095452 ± 0.000168) × 1021 [7] 110.10 [110] 0.091
Umbriel (U) (1.172 ± 0.135) × 1021 [10] 110.10 [110] 0.091
Ariel (U) (1.350 ± 0.120) × 1021 [10] 110.23 [110] 0.209
Charon (P) (1.52 ± 0.06) × 1021 [11] 110.43 [110; 2] −0.064
Iapetus (S) (1.805635 ± 0.000375) × 1021 [7] 110.60 [110; 2] 0.090
Rhea (S) (2.306518 ± 0.000353) × 1021 [7] 110.84 [111] −0.144
Oberon (U) (3.014 ± 0.075) × 1021 [12] 111.12 [111] 0.108
Titania (U) (3.53 ± 0.09) × 1021 [12] 111.28 [111; 2] −0.197
Haumea (P) (4.006 ± 0.040) × 1021 [13] 111.40 [111; 2] −0.090
Pluto (P) (1.305 ± 0.007) × 1022 [11] 112.57 [112; 2] 0.018
Eris (P) (1.67 ± 0.02) × 1022 [14] 112.83 [113] −0.150
Triton (N) 2.14 ± 1022 [15] 113.07 [113] 0.062
Europa (J) 4.80 ± 1022 [16] 113.88 [114] −0.105
Moon (E) 7.3477 ± 1022 114.30 [114; 2] −0.175
Io (J) (8.9319 ± 0.0003) × 1022 [16] 114.50 [114; 2] 0.001
Callisto (J) (1.075938 ± 0.000137) × 1023 [17] 114.69 [114; 2] 0.166
Titan (S) (1.3452 ± 0.0002) × 1023 [7] 114.91 [115] −0.078
Ganymede (J) (1.4819 ± 0.0002) × 1023 [16] 115.00 [115] 0.001
Mercury (3.3022 ± 0.0001) × 1023 115.81 [116] −0.164
Mars (6.4185 ± 0.0001) × 1023 116.47 [116; 2] −0.026
Venus (4.8685 ± 0.0001) × 1024 118.50 [118; 2] 0.001
Earth (5.9722 ± 0.0006) × 1024 [18] 118.69 [118; 2] 0.160
Uranus (8.6810 ± 0.0013) × 1025 [12] 121.38 [121; 2] −0.099
Neptune (1.0243 ± 0.0015) × 1026 121.55 [121; 2] 0.041
Saturn (5.6846 ± 0.0001) × 1026 123.27 [123; 2] −0.186
Jupiter (1.8986 ± 0.0001) × 1027 124.47 [124; 2] −0.024
Sun (1.9884 ± 0.0002) × 1030 [18] 131.42 [131; 2] −0.061

Table 1: The masses of celestial bodies — planets, dwarf planets (P), asteroids (A), moons of Jupiter (J), Saturn (S), Uranus (U), Nep-
tune (N) and Earth (E) and the S-values ( 6) of the nearest spectral nodes. The relative deviation d =

(
ln (m/mp) − S

)
/S is indicated in

percents.

natural oscillations is very high. Therefore, if a frequency
of an oscillation process is located near a node of the fractal
spectrum (2), the process energy efficiency (degree of effec-
tiveness) should be relative high. More detailed this topic is
described in [1].

Let’s assume that the oscillation amplitudes are low, the
oscillations are harmonic and the energy level E f of the vi-
brating protons depends only on their oscillation frequency
(h is the Planck constant):

E f = h f . (3)

Atomic nucleuses arise in the result of high energy pro-
cesses of nucleosynthesis. Einstein’s formula defines not only
the connection between the rest energy and rest mass of nu-
cleons, but also between binding energy and the mass defect
of an atomic nucleus. Therefore we assume that the rest mass
m of our model matter corresponds to the energy Em:

Em = mc2 . (4)

Let’s assume that the basis of nucleosynthesis is har-
monic oscillations of protons and the energy (4) is identically
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Fig. 3: The S-trajectory for S 0 = [106] and p = 1. Logarithmic scaling of Eunomia to Jupiter body mass.

with (3). In this case we can write:

m = f
h
c2 . (5)

In the framework of our oscillation model (1) the equation
(5) means not only that mass can be changed into energy, but
also that quantum oscillations generate the mass spectrum of
our model matter. Under consideration of (1) now we can
create a fractal scaling model of the natural mass spectrum of
our model matter of vibrating protons. This mass spectrum is
described by the same continued fraction (2), for mp = fp

h
c2 :

ln
m
mp

= [n0; n1, n2, . . . , nk] . (6)

Consequently, the frequency spectrum (2) and the mass
spectrum (6) are isomorphic, and mp is the proton rest mass
1.672621637(83) × 10−27 kg [4]. As mentioned already, we
assume that mass generation processes are based on quantum
natural oscillation processes. Celestial bodies are compressed
matter, which consist of nucleons over 99%. Therefore we
expect that the distribution of the celestial bodies in the pro-
ton resonance mass spectrum is not random and near spectral
nodes the formation probability of massive bodies is maxi-
mum. Like in the Kundt’s tube [5], near resonance nodes the
matter accumulation reachs maximum intensity. The mass
spectrum (6) is fractal and consequently it has a clear hierar-
chical structure, in which continued fractions (2) of the form
[n0] and [n0; 2] define main spectral nodes, as Fig. 2 shows.

Fig. 4: The S-trajectory for S 0 = [114] and p = 3. Possibly, the extra-
solar planet Gliese 581d could be a candidate of the node S = [120].

3 Results

In the present paper we will compare the scaling mass spec-
trum (6) of our model matter in the range of 1019 kg to 1030

kg with the mass distribution of well-known celestial bod-
ies. These are asteroids, planetoids, moons and planets of the
Solar System (including the Sun), which masses were mea-
sured precisely enough and which are massive enough to be
rounded by their own gravity.

For example, to locate the mass of the planet Venus in the
scaling mass spectrum (6) of our model matter, one divides
the Venus body mass by the proton rest mass and represents
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Particle Rest mass m, MeV/c2 [20] ln (m/mp) S d, %

electron 0.510998910 ± 0.000000013 −7.515 [−7;−2] −0.206
proton 938.27203 ± 0.00008 0.000 [0] 0.000
W 80398 ± 25 4,451 [4; 2] 1,089
Z 91187.6 ± 2.1 4,577 [4; 2] 1,711

Table 2: The rest masses of the electron, proton and the W-Z-bosons and the S-values (6) of the nearest spectral nodes. The relative
deviation d =

(
ln

(
m/mp

)
− S

)
/S is indicated in percent.

Fig. 5: The electron and W-Z-bosons rest masses lie on the S-
trajectory for S 0 = [0] and p = 3. It’s the same S-trajectory that
shows Fig. 4, but prolonged down to negative N.

the logarithm as a continued fraction:

S venus = ln
mvenus

mp
= ln

(
4.869 × 1024 kg

1.67262 × 10−27 kg

)
�

� 118.50 = 118 +
1
2
.

(7)

The analysis (6) of the Venus body mass takes the result
n0 = 118, n1 = 2. This means, that the Venus body mass cor-
responds to a spectral node on the first layer k = 1 of the spec-
trum (6). The Sun mass is near the spectral node [131; 2].
It’s also correct for the Alpha Centauri A and B masses. The
Alpha Aquilae (Altair) mass is about 1.7 solar masses, that’s
near the node [132]. Table 1 shows the logarithms (6) calcu-
lated from the measured masses m of the celestial bodies and
the S-values of the nearest spectral nodes.

Table 1 shows, that spectral nodes are occupied by bodies
which have maximum mass in a local group or family. For
example, the spectral node [115] is occupied by Ganymede
and Titan, the most massive moons of Jupiter and Saturn, the
spectral node [113] is occupied by Triton, the most massive
moon of Neptune, the body mass of Eris, the largest defined
dwarf planet, is also near the spectral node [113], but the
spectral node [110] is occupied by Ceres, the most massive
body of the asteroid belt. Mercury’s mass is near the node
[116]. Possibly, not Eris, but Mercury is the most massive
dwarf planet in the Solar System. Actually, Mercury behaves
like a dwarf planet, because it has the highest eccentricity of
all the Solar System planets and it has the smallest axial tilt.

Fig. 6: The S-trajectory for S 0 = [0] and p = 3. Logarithmic scaling
of the electron rest mass to the body mass of the Sun.

For the nodes [n0] and [n0; 2] the finite continued fraction
(2) is S = n0+1/n1 and the corresponding discrete mass values
can be defined by linear S-trajectories, in which N∈Z:

S = S 0 +
N
2
. (8)

The prime divisibility of N = pn, in which p is a prime
factor of N, defines sets of S-trajectories which form different
sequences of mass-values m of the discrete spectrum (6).

S-trajectories (8) present the discrete scaling mass dis-
tribution (6) very clear and can be interpreted as exponen-
tial equivalents to linear square-mass trajectories, which are
a well-known systematic feature in the hadrons spectrum
[6]. Fig. 3 shows the S-trajectory for S 0 = [106] and p = 1.
Largest bodies are labeled. Possibly, vacant nodes are occu-
pied by extrasolar bodies or bodies still to be discovered in
the Solar System.

Possibly, the existence of the discrete spectrum (6) in the
range of celestial bodies masses can be interpreted as “macro-
scopic quantization” [19]. The larger the bodies the more dis-
tinctive is this phenomenon. This can be recognized well at
the example of the 8 largest planets in the Solar System, as
Fig. 4 shows.

For S 0 = [0] and every p is m0 = mp, so that every
S-trajectory can be prolonged down to the proton rest mass.
Also the electron and W-Z-bosons rest masses lie on the S-
trajectory for S 0 = [0] and p = 3, as Fig. 5 shows. Already
within the eighties the scaling exponent 3/2 was found in the
distribution of particle masses by Valery A. Kolombet [21].
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Table 2 shows the logarithms (6) calculated from the mea-
sured particle rest masses, and the S-values of the nearest
spectral nodes.

The S-trajectory in Fig. 5 is the same as the S-trajectory
in Fig. 4, but prolonged down to the electron rest mass for
S = [−7;−2]. Possibly, there is a fundamental link between
particle rest masses and the masses of celestial bodies. Fig. 6
shows the S-trajectory for S 0 = [0] and p = 3 in the range of
−9 6 S 6 135, of the electron rest mass to the body mass of
the Sun.

4 Resume

In the framework of the present model discrete scaling distri-
butions arise as result of natural oscillations in chain systems
of harmonic oscillators. Particularly, the observable mass dis-
tribution of celestial bodies arise as result of natural oscilla-
tions in chain systems of protons, that can be understood as
contribution to the fundamental link between quantum- and
astrophysics. Possibly, the high energy efficiency of natural
oscillations is the cause of the fractal scaling distribution of
matter in the universe.
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Dynamical 3-Space Predicts Hotter Early Universe: Resolves CMB-BBN 7Li
and 4He Abundance Anomalies
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The observed abundances of 7Li and 4He are significantly inconsistent with the pre-
dictions from Big Bang Nucleosynthesis (BBN) when using the ΛCDM cosmolog-
ical model together with the value for ΩB h2 = 0.0224 ± 0.0009 from WMAP CMB
fluctuations, with the value from BBN required to fit observed abundances being
0.009<ΩB h2 < 0.013. The dynamical 3-space theory is shown to predict a 20% hot-
ter universe in the radiation-dominated epoch, which then results in a remarkable
parameter-free agreement between the BBN and the WMAP value for ΩB h2. The dy-
namical 3-space also gives a parameter-free fit to the supernova redshift data, and pre-
dicts that the flawed ΛCDM model would require ΩΛ = 0.73 and ΩM = 0.27 to fit the
3-space dynamics Hubble expansion, and independently of the supernova data. These
results amount to the discovery of new physics for the early universe that is matched by
numerous other successful observational and experimental tests.

1 Introduction

Astrophysical observed abundances of 7Li and 4He are sig-
nificantly inconsistent with the predictions from Big Bang
Nucleosynthesis (BBN) when using the ΛCDM cosmolog-
ical model, with the value for∗ ΩB h2 = 0.0224 ± 0.0009
from WMAP CMB fluctuations being considerably different
from the value from BBN required to fit observed abundances
0.009 < ΩB h2 < 0.013 (Coc et al. [1]).

The most significant long-standing discrepancy is that of
7Li because the pre-Galactic lithium abundance inferred from
observations of metal-poor (Population II) stars is at least 2–3
times smaller than predicted by BBN–ΛCDM. The 7Li prob-
lem has been most difficult to understand as its primordial
abundance should be the most reliable, because of the higher
observational statistics and an easier extrapolation to primor-
dial values. Various possible resolutions were discussed in
[2], with the conclusion that the lithium problem most likely
points to new physics.

It is shown herein that the new physics of a dynamical
3-space [4–6] results in a 20% hotter universe during the ra-
diation dominated epoch, and in a parameter-free analysis
the BBN abundances are brought into close agreement with
the WMAP value for the baryonic density ΩB h2 = 0.0224 ±
0.0009. The dynamical 3-space also gives a parameter free
account of the supernova redshift data, and fitting the ΛCDM
to the dynamical 3-space model requires ΩΛ = 0.73 and Ωm =

0.27, independently of the supernova data. There are nu-
merous other experimental and observational confirmations
of the new physics [4, 5], including a recent analysis of the
NASA/JPL spacecraft earth-flyby Doppler-shift anomalies
[7,8]. The conclusion is that the ΛCDM is flawed, with preci-

∗H0 = 100h km/s/Mpc defines h. ΩB is baryon density relative to critical
density ρc.

sion data from the supernova redshifts [10–12], and WMAP
CMB fluctuations [3] in conjunction with BBN computations
finally ruling out this model. As briefly noted below that
ΛCDM is essentially Newtonian gravity, and various data
have indicated the failure of Newtonian gravity.

2 Dynamical 3-space

Newton’s inverse square law of gravity [9] has the differential
form

∇ · g = − 4πGρ , ∇ × g = 0 , (1)

for the matter acceleration field g(r, t). Application of this to
spiral galaxies and the expanding universe has lead to many
problems, including, in part, the need to invent dark energy
and dark matter. However (1) has a unique generalisation that
resolves these problems. In terms of a velocity field v(r, t) (1)
has an equivalent form [4, 5]

∇ ·
(
∂v
∂t

+ (v · ∇) v
)

= − 4πGρ , ∇ × v = 0 , (2)

where now

g =
∂v
∂t

+ (v · ∇) v, (3)

is the Euler acceleration of the substratum that has velocity
v(r, t). Because of the covariance of v under a change of the
spatial coordinates only relative internal velocities have an
ontological existence — the coordinates r then merely define
a mathematical embedding space. In the form (2) Newton’s
law permits a unique generalisation by adding a term of the
same order but which can preserve the inverse square law out-
side of spherical masses,

∇ ·
(
∂v
∂t

+ (v · ∇) v
)

+
α

8

(
(tr D)2 − tr (D2)

)
= − 4πGρ,
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∇ × v = 0 , Di j =
1
2

(
∂vi

∂x j
+
∂v j

∂xi

)
. (4)

Eqn. (4) has two fundamental constants: G and α. Ex-
perimental bore-hole g anomaly data reveals that α is the
fine structure constant ≈ 1/137 to within experimental errors
[4, 5]. Eqn (4) has a rich variety of solutions: (i) black holes
with a non-inverse square law acceleration field that explains
the supermassive black hole mass spectrum and the flat rota-
tion curves of spiral galaxies without the need for dark matter
— these black holes may be primordial as well as induced, (ii)
the bore-hole g-anomaly, (iii) gravitational light bending, (iv)
a parameter free fit to the supernova data [6] without the need
for dark energy or dark matter, and other effects. As well the
3-space field v(r, t) has been directly detected in numerous
laboratory experiments, and now in Doppler shift data from
spacecraft earth-flybys [8].

Eqn (4) gives a different account of the Hubble expan-
sion of the universe, and here we outline a new account of the
thermal history of the universe. The results are very different
from the predictions of the Friedmann equation — the stan-
dard equation of cosmology since its inception (FRW-GR). In
the Friedmann equations the expansion of the universe is de-
termined solely by the presence of matter or energy, as would
be expected since it derives from (1), and it then requires, at
the present epoch, some 73% dark energy, 23% dark matter
and 4% baryonic matter. Eqn (4), in contrast, requires only
the normal matter — this is because (4) has an expanding
3-space solution even in the absence of matter/energy. Fit-
ting the Friedmann Hubble function H(z) to the Hubble func-
tion from (4), using the usual distance-redshift modulus as a
measure, indeed permits these dark energy and dark matter
quantities to be simply predicted, independently of the ob-
served supernova data, for these are the values that best-fit the
ΛCDM to the observed uniformly expanding 3-space Hubble
solution.

3 Expanding universe from dynamical 3-space

Let us now explore the expanding 3-space from (4). Criti-
cally, and unlike the FLRW-GR model, the 3-space expands
even when the energy density is zero. Suppose that we have a
radially symmetric effective density ρ (r, t), modelling normal
matter and EM radiation, and that we look for a radially sym-
metric time-dependent flow v(r, t) = v (r, t) r̂ from (4). Then
v (r, t) satisfies the equation, with v′ =

∂v (r,t)
∂r ,

∂

∂t

(
2v
r

+ v′
)

+ vv′′ + 2
vv′

r
+ (v′)2+

+
α

4

(
v2

r2 +
2vv′

r

)
= − 4πGρ(r, t). (5)

Consider first the zero energy case ρ = 0. Then we have a
Hubble solution v (r, t) = H(t)r, a centreless flow, determined

Fig. 1: Hubble diagram showing the supernovae data using several
data sets, and the Gamma-Ray-Bursts data (with error bars). Upper
curve (green) is ΛCDM “dark energy” only ΩΛ = 1, lower curve
(black) is ΛCDM matter only ΩM = 1. Two middle curves show
best-fit of ΛCDM “dark energy”—“dark-matter” (blue) and dynam-
ical 3-space prediction (red), and are essentially indistinguishable.
We see that the best-fit ΛCDM “dark energy”—“dark-matter” curve
essentially converges on the uniformly-expanding parameter-free
dynamical 3-space prediction. The supernova data shows that the
universe is undergoing a uniform expansion, although not reported
as such in [10–12], wherein a fit to the FRW-GR expansion was
forced, requiring “dark energy”, “dark matter” and a future “expo-
nentially accelerating expansion”.

by

Ḣ +

(
1 +

α

4

)
H2 = 0, (6)

with Ḣ = dH
dt . We also introduce in the usual manner the scale

factor a (t) according to H(t) = ȧ
a . We then obtain the solution

H(t) =
1

(1 + α
4 ) t

= H0
t0
t

; a (t) = a0

(
t
t0

)4/(4+α)

(7)

where H0 = H(t0) and a0 = a (t0) = 1, with t0 the present
age of the universe. Note that we obtain an expanding 3-
space even where the energy density is zero — this is in sharp
contrast to the FLRW-GR model for the expanding universe,
as shown below. The solution (7) is unique — it has one free
parameter — which is essentially the age of the universe t0 =

tH = 1/H0, and clearly this cannot be predicted by physics,
as it is a purely contingent effect — the age of the universe
when it is observed by us. Below we include the small effect
of ordinary matter and EM radiation.

We can write the Hubble function H(t) in terms of a (t)
via the inverse function t(a), i.e. H(t (a)) and finally as H(z),
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where the redshift observed now, relative to the wavelengths
at time t, is z = a0/a − 1. Then we obtain

H(z) = H0(1 + z)1+α/4. (8)

To test this expansion we need to predict the relationship
between the cosmological observables, namely the apparent
photon energy-flux magnitudes and redshifts. This involves
taking account of the reduction in photon count caused by the
expanding 3-space, as well as the accompanying reduction in
photon energy. The result is that the dimensionless “energy-
flux” luminosity effective distance is then given by

dL(z) = (1 + z)
∫ z

0

H0 dz′

H(z′)
(9)

and the distance modulus is defined as usual by

µ(z) = 5 log10 (dL(z)) + m . (10)

Because all the selected supernova have the same abso-
lute magnitude, m is a constant whose value is determined by
fitting the low z data.

Using the Hubble expansion (8) in (9) and (10) we obtain
the middle curve (red) in Fig. 1, yielding an excellent agree-
ment with the supernovae and GRB data. Note that because
α/4 is so small it actually has negligible effect on these plots.
But that is only the case for the homogeneous expansion —
the α dynamics can result in large effects such as black holes
and large spiral galaxy rotation effects when the 3-space is
inhomogeneous, and particularly precocious galaxy forma-
tion. Hence the dynamical 3-space gives an immediate ac-
count of the universe expansion data, and does not require the
introduction of a cosmological constant or “dark energy” nor
“dark matter”.

4 Expanding universe — matter and radiation only

When the energy density is not zero we need to take account
of the dependence of ρ (r, t) on the scale factor of the universe.
In the usual manner we thus write

ρ (r, t) =
ρm

a (t)3 +
ρr

a (t)4 , (11)

for ordinary matter and EM radiation. Then (5) becomes
for a(t)

ä
a

+
α

4
ȧ2

a2 = −4πG
3

(
ρm

a3 +
ρr

a4

)
, (12)

giving

ȧ2 =
8πG

3

(
ρm

a
+

ρr

2a2

)
− α

2

∫
ȧ2

a
da + f , (13)

where f is the integration constant. In terms of ȧ2 this has the
solution

ȧ2 =
8πG

3

(
ρm

(1 − α
2 ) a

+
ρr

(1 − α
4 ) 2a2 + ba−α/2

)
, (14)

Fig. 2: Shows the Big Bang nucleosynthesis (BBN) number abun-
dances for: the4He mass fraction (top), D and 3He (middle) and 7Li
(bottom) relative to hydrogen vs ΩBh2, as blue curves, from Coc
et al. [1]. Horizontal (red) bar-graphs show astrophysical abundance
observations. The vertical (yellow) bar-graphs show the values ΩBh2

= 0.0224± 0.0009 from WMAP CMB fluctuations, while the (blue)
bar-graph 0.009 < ΩBh2 < 0.013 shows the best-fit at 68% CL from
the BBN for the observed abundances [1]. We see that the WMAP
data is in significant disagreement with the BBN results for ΩBh2,
giving, in particular, the 7Li abundance anomaly within the ΛCDM
model. The dynamical 3-space model has a different and hotter ther-
mal history in the radiation dominated epoch, and the corresponding
BBN predictions are easily obtained by a re-scaling of the WMAP
value ΩBh2 to ΩBh2/2. The resultant ΩBh2 = 0.0112 ± 0.0005 val-
ues are shown by the vertical (red) bar-graphs that center on the BBN
0.009 < ΩBh2 < 0.013 range, and which is now in remarkable agree-
ment with BBN computations. So while the BBN — WMAP incon-
sistency indicates a failure of the Friedmann FRW-GR Big Bang
model, it is another success for the new physics entailed in the dy-
namical 3-space model. Plots adapted from [1].
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which is easily checked by substitution into (13), and where b
is the integration constant. We have written an overall factor
of 8πG/3 even though b, in principle, is independent of G.
This gives b convenient units of matter density, but which
does not correspond to any actual energy. From now on we
shall put α = 0. Finally we obtain from (14)

t(a) =

∫ a

0

da√
8πG

3

(
ρm

a
+

ρr

2a2 + b
) . (15)

When ρm = ρr = 0, (15) reproduces the expansion in
(7), and so the density terms in (14) give the modifications to
the dominant purely-spatial expansion, which we have noted
above already gives an excellent account of the red-shift data.
Having b , 0 simply asserts that the 3-space can expand even
when the energy density is zero — an effect missing from
FLRW-GR cosmology. From (14) we obtain∗

H(z)2 = H0
2
Ωm(1 + z)3 +

Ωr (1 + z)4

2
+ Ωs(1 + z)2

 , (16)

Ωm ≡ ρm/ρc , Ωr ≡ ρr/ρc , Ωs ≡ b/ρc , (17)

Ωm +
Ωr

2
+ Ωs = 1 , (18)

H0 =

(
8πG

3

(
ρm +

ρr

2
+ b

))1/2

≡
(

8πG
3

ρc

)1/2

, (19)

which defines the usual critical energy density ρc, but which
here is merely a form for H0 — it has no interpretation as
an actual energy density, unlike in FRW-GR. Note the factor
of 2 for Ωr, which is a key effect in this paper, and is not in
FRW-GR. In the dynamical 3-space model these Ω’s do not
correspond to the composition of the universe, rather to the
relative dynamical effects of the matter and radiation on the
intrinsic 3-space expansion dynamics. H0 = 73 km/s/Mpc
with Ωm ≈ ΩB = 0.04 and Ωs = 0.96 gives an age for the
universe of t0 = 12.6 Gyrs, while (22) with ΩM = 0.27 and
ΩΛ = 0.73 gives t0 = 13.3 Gyrs, Ωr = Ωr = 8.24 × 10−5.

5 Friedmann-GR standard ΛCDM cosmology model

We now discuss the strange feature of the standard model dy-
namics which requires a non-zero energy density for the uni-
verse to expand. The well known Friedmann equation is

( ȧ
a

)2
=

4πG
3

(
ρM

a3 +
ρr

a4 + Λ

)
, (20)

where now ρM = ρm + ρDM is the matter composition of the
universe, and includes ordinary matter and dark matter, and
Λ is the cosmological constant or dark energy, expressed in
mass density units. The differences between (13) and (20)

∗From now-on an “overline” is used to denote the 3-space values. Note
that H0 ≡ H0 — the current observable value.

need to be noted: apart from the α term (20) has no integra-
tion constant which corresponds to a purely spatial expansion,
and in compensation requires the ad hoc dark matter and dark
energy terms, whose best-fit values are easily predicted; see
below. It is worth noting how (20) arises from Newtonian
gravity. For radially expanding homogeneous matter (1) gives
for the total energy E of a test mass (a galaxy) of mass m

1
2

mv2 − GmM(r)
r

= E , (21)

where M(r) is the time-independent amount of matter within
a sphere of radius r. With E = 0 and M(r) = 4

3 πr3ρ (t) and
ρ (t) ∼ 1/r (t)3 (21) has the Hubble form v = H(t)r. In terms
of a(t) this gives (20) after an ad hoc and invalid inclusion of
the radiation and dark energy terms, as for these terms M(r)
is not independent of time, as assumed above. These terms
are usually included on the basis of the stress-energy tensor
within GR. Eqn. (20) leads to the analogue of (15),

t(a) =

∫ a

0

da√
8πG

3

(
ρM

a
+
ρr

a2 + Λa2
) , (22)

H(z)2 = H2
0

(
ΩM(1 + z)3 + Ωr (1 + z)4 + ΩΛ (1 + z)2

)
, (23)

ΩM ≡ ρM/ρc, Ωr ≡ ρr/ρc, ΩΛ ≡ Λ/ρc , (24)

ΩM + Ωr + ΩΛ = 1 , (25)

H0 =

(
8πG

3
(ρM + ρr + Λ)

)1/2

≡
(

8πG
3

ρc

)1/2

. (26)

This has the same value of ρc as in (19), but now inter-
preted as an actual energy density. Note that Ωr = Ωr, but
that Ωm , ΩM , as ΩM includes the spurious “dark matter”.

6 Predicting the ΛCDM parameters ΩΛ and ΩDM

The “dark energy” and “dark matter” arise in the FLRW-GR
cosmology because in that model space cannot expand un-
less there is an energy density present in the space, if that
space is flat and the energy density is pressure-less. Then
essentially fitting the Friedmann model µ(z) to the dynam-
ical 3-space cosmology µ(z) we obtain ΩΛ = 0.73, and so
ΩM = 1 − ΩΛ = 0.27. These values arise from a best fit for
z ∈ {0, 14} [6]. The actual values for ΩΛ depend on the red-
shift range used, as the Hubble functions for the FLRW-GR
and dynamical 3-space have different functional dependence
on z. These values are of course independent of the actual ob-
served redshift data. Essentially the current standard model of
cosmology ΛCDM is excluded from modelling a uniformly
expanding dynamical 3-space, but by choice of the parameter
ΩΛ the ΛCDM Hubble function H(z) can be made to best-fit
the data. However H(z) has the wrong functional form; when
applied to the future expansion of the universe the Friedmann
dynamics produces a spurious exponentially expanding uni-
verse.
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7 Dynamical 3-space and hotter early universe

The 3-space dynamics and the ΛCDM dynamics give differ-
ent accounts of the expansion of the universe, particularly the
thermal history and density during the radiation dominated
epoch. ΛCDM gives in that epoch from (22)

a (t) =

√
2H0 t

√
Ωr ,

while (15) gives

a (t) =

√
2H0 t

√
Ωr/2 .

Because the CMB is thermal radiation its temperature
varies as T (t) = (2.725 ± 0.001)/a (t) ◦K, and so the 3-space
dynamics predicts an early thermal history that is 20% hotter.
This means that a re-analysis of the BBN is required. How-
ever this is easily achieved by a scaling analysis. Essentially
we can do this by effectively using H0/

√
2 in place of H0 in

the radiation-dominated epoch, as this takes account of the
Ωr/2 effect. In terms of ΩB h2, which determines the BBN,
this amounts to the re-scaling ΩB h2 → ΩB h2/2. This imme-
diately brings the WMAP ΩB h2 = 0.0224±0.0009 down to,
effectively, ΩB h2 = 0.0112±0.0005, and into excellent agree-
ment with the BBN value 0.009<ΩB h2 < 0.013, as shown in
Fig. 2, and discussed in detail in the figure caption.

8 Conclusions

It has been shown that the significant inconsistency between
observed abundances of 7Li and 4He with the predictions
from Big Bang Nucleosynthesis (BBN) when using the
ΛCDM cosmological model together with the value for
ΩB h2 = 0.0224 ± 0.0009 from WMAP CMB fluctuations,
with the value from BBN required to fit observed abundances
being 0.009 < ΩB h2 < 0.013, are resolved with remarkable
precision by using the dynamical 3-space theory. This theory
is shown to predict a 20% hotter universe in the radiation-
dominated epoch, which then results in a remarkable agree-
ment between the BBN and the WMAP value for ΩB h2. The
dynamical 3-space also gives a parameter-free fit to the su-
pernova redshift data, and predicts that the flawed ΛCDM
model would require ΩΛ = 0.73 and ΩM = 0.27 to fit the
3-space dynamics Hubble expansion, and independently of
the supernova data. These results amount to the discovery of
new physics for the early universe. This new physics has also
explained (i) the bore-hole g anomaly, (ii) black-hole mass
spectrum, (iii) flat rotation curves in spiral galaxies, (iv) en-
hanced light bending by galaxies, (v) anomalies in laboratory
measurements of G, (vi) light speed anisotropy experiments
including the explanation of the Doppler shift anomalies in
spacecraft earth-flybys, and (vii) the detection of so-called
gravitational waves. As well because (4) is non-local it can
overcome the horizon problem. The new physics unifies cos-
mology with laboratory based phenomena, indicating a new
era of precision studies of the cosmos.
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Non scaling Fixed-Field Alternating Gradient (FFAG) accelerators have an unprece-
dented potential for muon acceleration, as well as for medical purposes based on car-
bon and proton hadron therapy. They also represent a possible active element for an
Accelerator Driven Subcritical Reactor (ADSR). Starting from first principle the Hamil-
tonian formalism for the description of the dynamics of particles in non-scaling FFAG
machines has been developed. The stationary reference (closed) orbit has been found
within the Hamiltonian framework. The dependence of the path length on the energy
deviation has been described in terms of higher order dispersion functions. The latter
have been used subsequently to specify the longitudinal part of the Hamiltonian. It
has been shown that higher order phase slip coefficients should be taken into account
to adequately describe the acceleration in non-scaling FFAG accelerators. A complete
theory of the fast (serpentine) acceleration in non-scaling FFAGs has been developed.
An example of the theory is presented for the parameters of the Electron Machine with
Many Applications (EMMA), a prototype electron non-scaling FFAG to be hosted at
Daresbury Laboratory.

1 Introduction

Fixed-Field Alternating Gradient (FFAG) accelerators were
proposed half century ago [1–4], when acceleration of elec-
trons was first demonstrated. These machines, which were in-
tensively studied in the 1950s and 1960s but never progressed
beyond the model stage, have in recent years become the fo-
cus of renewed attention. Acceleration of protons has been
recently achieved at the KEK Proof-of-Principle (PoP) pro-
ton FFAG [5].

To avoid the slow crossing of betatron resonances associ-
ated with a typical low energy-gain per turn, the first FFAGs
designed and constructed so far have been based on the ”scal-
ing” principle. The latter implies that the orbit shape and be-
tatron tunes must be kept fixed during the acceleration pro-
cess. Thus, magnets must be built with constant field in-
dex, while in the case of spiral-sector designs the spiral an-
gle must be constant as well. Machines of this type use con-
ventional magnets with the bending and focusing field be-
ing kept constant during acceleration. The latter alternate in
sign, providing a more compact radial extension and conse-
quently smaller aperture as compared to the AVF cyclotrons.
The ring essentially consists of a sequence of short cells with
very large periodicity.

Non scaling FFAG machines have until recently been con-
sidered as an alternative. The bending and the focusing is pro-
vided simultaneously by focusing and defocusing quadrupole
magnets repeating in an alternating sequence. There is a num-
ber of advantages of the non-scaling FFAG lattice as com-

pared to the scaling one, among which are the relatively small
transverse magnet aperture (tending to be much smaller than
the one for scaling machines) and the lower field strength.
Unfortunately this lattice leads to a large betatron tune varia-
tion across the required energy range for acceleration as op-
posed to the scaling lattice. As a consequence several res-
onances are crossed during the acceleration cycle, some of
them nonlinear created by the magnetic field imperfections,
as well as half-integer and integer ones. A possible bypass to
this problem is the rapid acceleration (of utmost importance
for muons), which allows betatron resonances no time to es-
sentially damage beam quality.

Because non-scaling FFAG accelerators have otherwise
very desirable features, it is important to investigate analyti-
cally and numerically some of the peculiarities of the beam
dynamics, the new type of fast acceleration regime (so-called
serpentine acceleration) and the effects of crossing of linear
as well as nonlinear resonances. Moreover, it is important to
examine the most favorable phase at which the cavities need
to be set for the optimal acceleration. Some of these problems
will be discussed in the present paper.

An example of the theory developed here is presented for
the parameters of the Electron Machine with Many Applica-
tions (EMMA) [6], a prototype electron non-scaling FFAG
to be hosted at Daresbury Laboratory. The Accelerators and
Lasers In Combined Experiments (ALICE) accelerator [7] is
used as an injector to the EMMA ring. The energy delivered
by this injector can vary from a 10 to 20 MeV single bunch
train with a bunch charge of 16 to 32 pC at a rate of 1 to 20
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Hz. ALICE is presently designed to deliver bunches which
are around 4 ps and 8.35 MeV from the exit of the booster
of its injector line. These are then accelerated to 10 or 20
MeV in the main ALICE linac after which they are sent to the
EMMA injection line. The EMMA injection line ends with a
septum for injection into the EMMA ring itself followed by
two kickers so as to direct the beam onto the correct, energy
dependent, trajectory. After circulation in the EMMA ring,
the electron bunches are extracted using what is almost a mir-
ror image of the injection setup with two kickers followed by
an extraction septum. The beam is then transported to a di-
agnostic line whose purpose it is to analyze in as much detail
as possible the effect the non-scaling FFAG has had on the
bunch.

The paper is organized as follows. Firstly, we review
some generalities and first principles of the Hamiltonian for-
malism [8–10] suitably modified to cover the case of a non-
scaling FFAG lattice. Firstly, a sequence of canonical trans-
formations within the synchrobetatron framework is applied
to determine the energy dependent reference orbit. Stability
of motion about the stationary reference orbit is described in
terms of betatron oscillations with energy dependent Twiss
parameters and betatron tunes. Dispersion, measuring the ef-
fect of energy variation on the path length along the reference
orbit is an essential feature of non-scaling FFAGs. Within the
developed synchrobetatron formalism higher order dispersion
functions have been introduced and their contribution to the
longitudinal dynamics has been further analyzed. Finally, a
complete description of the so-called serpentine acceleration
in non-scaling lepton FFAGs is given together with conclu-
sions. The calculations of the reference orbit and phase sta-
bility are detailed in the appendices.

2 Generalities and first principles

Let the ideal (design) trajectory of a particle in an accelerator
be a planar curve with curvature K. The Hamiltonian describ-
ing the motion of a particle in a natural coordinate system
attached to the orbit thus defined is [8]:

H = − (1 + Kx) ×

×
√

(H − qϕ)2

c2 − m2
p0

c2 − (Px − qAx)2 − (Pz − qAz)2 −

− q (1 + Kx) As , (1)

where mp0 is the rest mass of the particle. The guiding mag-
netic field can be represented as a gradient of a certain func-
tion ψ(x, z; s)

B = ∇ψ , (2)

where the latter satisfies the Laplace equation

∇2ψ = 0 . (3)

Using the median symmetry of the machine, it is straight-
forward to show that ψ can be written in the form

ψ =

(
a0 + a1x +

a2x2

2!
+ . . .

)
z −

−
(
b0 + b1x +

b2x2

2!
+ . . .

)
z3

3!
+ (c0 + c1x + . . . )

z5

5!
+ . . . .(4)

Inserting the above expression into the Laplace equation
(3), one readily finds relations between the coefficients bk and
ck on one hand and ak on the other

b0 = a′′0 + Ka1 + a2 , (5)

b1 = −2Ka′′0 − K′a′0 + a′′1 − K2a1 + Ka2 + a3 , (6)

b2 = 6K2a′′0 + 6KK′a′0 − 4Ka′′1 − 2K′a′1 +

+a′′2 + 2K3a1 − 2K2a2 + Ka3 + a4 , (7)

c0 = b′′0 + Kb1 + b2 . (8)

Prime in the above expressions implies differentiation
with respect to the longitudinal coordinate s. The coefficients
ak have a very simple meaning

a0 = (Bz)x,z=0, a1 =

(
∂Bz

∂x

)

x,z=0
,

a2 =

(
∂2Bz

∂x2

)

x,z=0
. (9)

In other words, this implies that, provided the vertical
component Bz of the magnetic field and its derivatives with
respect to the horizontal coordinate x are known in the me-
dian plane, one can in principle reconstruct the entire field
chart.

The vector potential A can be represented as

Ax = − z F (x, z; s) , Az = x F (x, z; s) , As = G (x, z; s) , (10)

where the Poincaré gauge condition

xAx + zAz = 0 , (11)

written in the natural coordinate system has been used. From
Maxwell’s equation

B = ∇ × A , (12)
we obtain

2F + (x ∂x + z ∂z) F = Bs , (13)
Kx

1 + Kx
G + (x ∂x + z ∂z) G = z Bx − x Bz . (14)

Applying Euler’s theorem for homogeneous functions, we
can write

F =
1
2

B(0)
s +

1
3

B(1)
s +

1
4

B(2)
s + . . . , (15)
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Gu =

(
1 +

Kx
2

)
B(0)

u +

(
1
2

+
Kx
3

)
B(1)

u +

+

(
1
3

+
Kx
4

)
B(2)

u + . . . , (16)

G =
z Gx − x Gz

1 + Kx
. (17)

Here u = (x, z) and B(k)
α denotes homogeneous polyno-

mials in x and z of order k, representing the corresponding
parts of the components of the magnetic field B = (Bx, Bz, Bs).
Thus, having found the magnetic field represented by equa-
tion (4), it is straightforward to calculate the vector poten-
tial A.

The accelerating field in AVF cyclotrons and FFAG ma-
chines can be represented by a scalar potential ϕ (the corre-
sponding vector potential A = 0). Due to the median symme-
try, we have

ϕ = A0 + A1x +
A2x2

2!
+ · · · −

(
B0 + B1x +

B2x2

2!
+ . . .

)
z2

2!
+

+ (C0 + C1x + . . . )
z4

4!
+ . . . . (18)

Inserting the above expansion into the Laplace equation
for ϕ, we obtain similar relations between Bk and Ck on one
hand and Ak on the other, which are analogous to those relat-
ing bk, ck and ak.

We consider the canonical transformation, specified by
the generating function

S 2

(
x, z, T , P̂x, P̂z, E; s

)
= x P̂x + z P̂z + TE +

+ q
∫

dTϕ(x, z,T ; s) , (19)

where T = − t (20)

is a canonical variable canonically conjugate toH . The rela-
tions between the new and the old variables are

û =
∂S 2

∂P̂u

= u, u = (x, z), T̂ =
∂S 2

∂E
= T , (21)

Pu =
∂S 2

∂u
= P̂u − q

∫
dTEu(x, z, T ; s) =

= P̂u − qẼu(x, z, T ; s), Eu = −∂ϕ
∂u

, (22)

H =
∂S 2

∂T = E + qϕ (x, z, T ; s) =

= mp0γc2 + qϕ(x, z,T ; s) . (23)

The new Hamiltonian acquires now the form

Ĥ = − (1 + Kx)×

×
√

E2

c2 − m2
p0

c2 −
(
P̂x − qẼx − qAx

)2 −
(
P̂z − qẼz − qAz

)2−

− q (1 + Kx)
(
As + Ẽs

)
, (24)

where

Ẽs =

∫
dTEs(x, z, T ; s) =

= − 1
1 + Kx

∫
dT ∂ϕ (x, z, T ; s)

∂s
. (25)

We introduce the new scaled variables

P̃u =
P̂u

p0
=

P̂u

mp0 c
, Θ = cT , γ =

E
Ep

=
E

mp0 c2 . (26)

The new scaled Hamiltonian can be expressed as

H̃ =
Ĥ
p0

= − (1 + Kx) ×

×
√
γ2 − 1 −

(
P̃x − q̃ Ẽx − q̃Ax

)2 −
(
P̃z − q̃ Ẽz − q̃Az

)2 −

− q̃ (1 + Kx)
(
As + Ẽs

)
, (27)

where
q̃ =

q
p0
. (28)

The quantities Ẽx and Ẽz can be neglected as compared to
the components of the vector potential A, so that

H̃ = βγ (1 + Kx) ×

×
−

√
1 −

(
Px − qAx

)2 −
(
Pz − qAz

)2 − qAs

 −

− q̃ (1 + Kx) Ẽs , (29)

where now

q =
q
p

=
q

βγp0
, Pu =

P̂u

p
=

P̂u

βγp0
, u = (x, z) . (30)

Since Pu and u are small deviations, we can expand the
square root in power series in the canonical variables x, Px

and z, Pz. Tedious algebra yields

H̃ = H̃0 + H̃1 + H̃2 + H̃3 + H̃4 + . . . , (31)

H̃0 = −βγ − q̃(1 + Kx) Ẽs , (32)

H̃1 = βγ (qa0 − K) x , (33)

H̃2 =
βγ

2

(
P

2
x + P

2
z

)
+

q̃
2

[
(Ka0 + a1)x2 − a1z2

]
, (34)

H̃3 =
βγ

2
K x

(
P

2
x + P

2
z

)
+

q̃a′0z
3

(
z Px − x Pz

)
+

74 James K. Jones, et al. Dynamics of Particles in Non Scaling Fixed Field Alternating Gradient Accelerators



January, 2010 PROGRESS IN PHYSICS Volume 1

+
q̃
3

[(
Ka1 +

a2

2

)
x3 −

(
Ka1 + a2 +

b0

2

)
xz2

]
, (35)

H̃4 =
βγ

8

(
P

2
x + P

2
z

)2
+

q̃xz
12

(
Ka′0 + 3a′1

)(
zPx − xPz

)
+

+
q 2βγa′20 z2

18

(
x2 + z2

)
+ +

q̃
4

[(Ka2

2
+

a3

6

)
x4 −

−
(
Ka2 +

a3

3
+

Kb0

2
+

b1

2

)
x2z2 +

b1

6
z4

]
. (36)

The Hamiltonian decomposition (31) represents the mile-
stone of the synchrobetatron formalism. For instance, H̃0
governs the longitudinal motion, H̃1 describes linear coupling
between longitudinal and transverse degrees of freedom and
is the basic source of dispersion. The part H̃2 is responsible
for linear betatron motion and chromaticity, while the remain-
der describes higher order contributions.

3 The synchro-betatron formalism and the reference
orbit

In the present paper we consider a FFAG lattice with polyg-
onal structure. To define and subsequently calculate the sta-
tionary reference orbit, it is convenient to use a global Carte-
sian coordinate system whose origin is located in the center of
the polygon. To describe step by step the fraction of the refer-
ence orbit related to a particular side of the polygon, we rotate
each time the axes of the coordinate system by the polygon
angle Θp = 2π/NL, where NL is the number of sides of the
polygon.

Let Xe and Pe denote the reference orbit and the reference
momentum, respectively. The vertical component of the mag-
netic field in the median plane of a perfectly linear machine
can be written as

Bz(Xe; s) = a1(s)[Xe − Xc − d(s)] ,

a0(Xe; s) = Bz(Xe; s) , (37)

where s is the distance along the polygon side, and Xc is the
distance of the side of the polygon from the center of the ma-
chine

Xc =
Lp

2 tan(Θp/2)
. (38)

Here Lp is the length of the polygon side which actually
represents the periodicity parameter of the lattice. Usually Xc

is related to an arbitrary energy in the range from injection to
extraction energy. In the case of EMMA it is related to the 15
MeV orbit. The quantity d(s) in equation (37) is the relative
offset of the magnetic center in the quadrupoles with respect
to the corresponding side of the polygon. In what follows
[see equations (47) and (50)] dF corresponds to the offset in
the focusing quadrupoles and dD corresponds to the one in
the defocusing quadrupoles. Similarly, aF and aD stand for

the particular value of a1 in the focusing and the defocusing
quadrupoles, respectively.

A design (reference) orbit corresponding to a local curva-
ture K(Xe; s) can be defined according to the relation

K(Xe; s) =
q

p0βeγe
Bz(Xe; s) , (39)

where γe is the energy of the reference particle. In terms of
the reference orbit position Xe(s) the equation for the curva-
ture can be written as

X′′e =
q

p0βeγe

(
1 + X′2e

)3/2
Bz(Xe; s) , (40)

where the prime implies differentiation with respect to s.
To proceed further, we notice that equation (40) parame-

terizing the local curvature can be derived from an equivalent
Hamiltonian

He(Xe, Pe; s) = −
√
β2

e γ
2
e − P2

e − q̃
∫

dXeBz(Xe; s) . (41)

Taking into account Hamilton’s equations of motion

X′e =
Pe√

β2
e γ

2
e − P2

e

, P′e = q̃Bz(Xe; s) , (42)

and using the relation

Pe =
βeγeX′e√
1 + X′2e

, (43)

we readily obtain equation (40). Note also that the Hamilto-
nian (41) follows directly from the scaled Hamiltonian (27)
with x = 0, P̃x = Pe, P̃z = 0, Ax = Az = 0 and the accelerating
cavities being switched off respectively.

Hamilton’s equations of motion (42) can be linearized and
subsequently solved approximately by assuming that

Pe � βeγe . (44)

Thus, assuming electrons (q =−e), we have

Pe = βeγeX′e , X′′e = − ea1(s)
p0βeγe

(
Xe − Xc − d(s)

)
. (45)

The three types of solutions to equations (45) are as fol-
lows:

Drift Space

Xe = X0 +
P0

βeγe
(s − s0) , Pe = P0 , (46)

where X0 and P0 are the initial position and reference mo-
mentum and s is the distance in longitudinal direction.

Focusing Quadrupole

Xe = Xc + dF + (X0 − Xc − dF) cosωF(s − s0) +

+
P0

βeγeωF
sinωF(s − s0) , (47)
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Pe = − βeγeωF(X0 − Xc − dF) sinωF(s − s0) +

+ P0 cosωF(s − s0) , (48)

where
ω2

F =
eaF

p0βeγe
. (49)

Defocusing Quadrupole

Xe = Xc + dD + (X0 − Xc − dD) coshωD(s − s0) +

+
P0

βeγeωD
sinhωD(s − s0) , (50)

Pe = βeγeωD(X0 − Xc − dD) sinhωD(s − s0) +

+ P0 coshωD(s − s0) , (51)

where
ω2

D =
eaD

p0βeγe
. (52)

In addition to the above, the coordinate transformation at
the polygon bend when passing to the new rotated coordinate
system needs to be specified. The latter can be written as

Xe = Xc +
X0 − Xc

cos Θp − P0 sin Θp/βeγe
,

Pe = βeγe tan
[
Θp + arctan

(
P0

βeγe

)]
. (53)

Once the reference trajectory has been found the corre-
sponding contributions to the total Hamiltonian (31) can be
written as follows

H̃0 = − βγ +
Z

AEp

(
d∆E
ds

) ∫
dΘ sin φ(Θ) , (54)

H̃1 = − (βγ − βeγe)Kx̃ , (55)

H̃2 =
1

2βγ

(
P̃ 2

x + P̃ 2
z

)
+

1
2

[(
g + βeγe K2

)
x̃2 − g z̃2

]
, (56)

H̃3 =
Kx̃

2βγ

(
P̃ 2

x + P̃ 2
z

)
+

Kg
6

(
2x̃3 − 3x̃z̃2

)
, (57)

H̃4 =

(
P̃ 2

x + P̃ 2
z

)2

8β3γ3 − K2g

24
z̃4. (58)

Here, we have introduced the following notation

g =
qa1

p0
. (59)

Moreover, Z is the charge state of the accelerated parti-
cle, A is the mass ratio with respect to the proton mass in the
case of ions, and φ(Θ) is the phase of the RF. For a lepton
accelerator like EMMA, A = Z = 1. In addition, (d∆E/ds) is
the energy gain per unit longitudinal distance s, which in thin
lens approximation scales as ∆E/∆s, where ∆s is the length

of the cavity. It is convenient to pass to new scaled variables
as follows

p̃u =
P̃u

βeγe
, h =

γ

β2
eγe

, (60)

τ = βeΘ , Γe =
βγ

βeγe
=

√
β2

eh2 − 1
β2

eγ
2
e
. (61)

Thus, expressions (54)–(58) become

H̃0 = − Γe +
Z

Aβ2
e Ee

(
d∆E
ds

) ∫
dτ sin φ(τ) , (62)

H̃1 = −(Γe − 1) Kx̃ , (63)

H̃2 =
1

2Γe

(
p̃2

x + p̃2
z

)
+

1
2

[(
ge + K2

)
x̃2 − gez̃2

]
, (64)

H̃3 =
Kx̃
2Γe

(
p̃2

x + p̃2
z

)
+

Kge

6

(
2x̃3 − 3x̃z̃2

)
, (65)

H̃4 =

(
p̃2

x + p̃2
z

)2

8Γ3
e

− K2ge

24
z̃4, (66)

Ep = mp0 c2, ge =
g

βeγe
. (67)

The longitudinal part of the reference orbit can be isolated
via a canonical transformation

F2

(
x̃, ˜̃px, z̃, ˜̃pz, τ, η; s

)
= x̃ ˜̃px + z̃ ˜̃pz + (τ + s)

(
η +

1
β2

e

)
, (68)

σ = τ + s , η = h − 1
β2

e
, (69)

where σ is the new longitudinal variable and η is the en-
ergy deviation with respect to the energy γe of the reference
particle.

4 Dispersion and betatron motion

The (linear and higher order) dispersion can be introduced via
a canonical transformation aimed at canceling the first order
Hamiltonian H̃1 in all orders of η. The explicit form of the
generating function is

G2
(
x̃, p̂x, z̃, p̂z, σ, η̂; s

)
= ση̂ + z̃ p̂z + x̃ p̂x +

+

∞∑

k=1

η̂k[x̃Xk(s) − p̂xPk(s) + Sk(s)
]
, (70)

x̃ = x̂ +

∞∑

k=1

η̂kPk , p̃x = p̂x +

∞∑

k=1

η̂kXk , (71)

σ = σ̂ +

∞∑

k=1

k η̂ k−1(Pk p̂x − Xk x̂
) −

−
∞∑

k=1

k η̂ k−1

Sk + Xk

∞∑

m=1

η̂mPm

 . (72)
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Equating terms of the form x̂̂ηn and p̂xη̂
n in the new trans-

formed Hamiltonian, we determine order by order the con-
ventional (first order) and higher order dispersions. The first
order in η̂ (terms proportional to x̂̂η and p̂xη̂) yields the well-
known result

P′1 = X1 , X′1 +
(
ge + K2

)
P1 = K . (73)

Since in the case, where betatron motion
(
x̂ = 0, p̂x = 0

)
can be neglected the new longitudinal coordinate σ̂ should
not depend on the new longitudinal canonical conjugate vari-
able η̂, the second sum in equation (72) must be identically
zero. We readily obtain S1 = 0, and

S2 = −X1P1

2
. (74)

In second order we have

P′2 = X2 − X1 + KX1P1 , (75)

X′2 +
(
ge + K2

)
P2 = −KgeP2

1 −
KX2

1

2
− K

2γ2
e
, (76)

and in addition the function S3(s) is expressed as

S3 = −1
3

(X1P2 + 2X2P1) . (77)

Close inspection of equations (73), (75) and (76) shows
thatP1 is the well-known linear dispersion function, whileP2
stands for a second order dispersion and so on. Up to third
order in η̂ the new Hamiltonian describing the longitudinal
motion and the linear transverse motion acquires the form

Ĥ0 = −K̃1η̂
2

2
+
K̃2η̂

3

3
+

Z
Aβ2

e Ee

(
d∆E
ds

) ∫
dτ sin φ(τ) , (78)

Ĥ2 =
1
2

(
p̂2

x + p̂2
z

)
+

1
2

[(
ge + K2

)
x̂2 − gêz2

]
, (79)

where

K̃1 = KP1 − 1
γ2

e
, K̃2 =

KP1

γ2
e
− KP2 −

X2
1

2
− 3

2γ2
e
. (80)

For the sake of generality, let us consider a Hamiltonian
of the type

Ĥb =
∑

u=(x,z)

[Fu

2
p̂2

u + Ruû p̂u +
Gu

2
û2

]
. (81)

A generic Hamiltonian of the type (81) can be transform-
ed to the normal form

Hb =
∑

u=(x,z)

χ′u
2

(
P

2
u + U

2
)
, (82)

Fig. 1: Horizontal betatron tune for the EMMA ring as a function of
energy.

by means of a canonical transformation specified by the gen-
erating function

F2

(
x̂, Px, ẑ, Pz; s

)
=

∑

u=(x,z)

 ûPu√
βu
− αuû2

2βu

 . (83)

Here the prime implies differentiation with respect to the
longitudinal variable s. The old and the new canonical vari-
ables are related through the expressions

û = U
√
βu, p̂u =

1√
βu

(
Pu − αuU

)
. (84)

The phase advance χu(s) and the generalized Twiss pa-
rameters αu(s), βu(s) and γu(s) are defined as

χ′u =
dχu

ds
=
Fu

βu
, (85)

α′u =
dαu

ds
= Gu βu − Fuγu, (86)

β′u =
dβu

ds
= −2Fuαu + 2Ruβu . (87)

The third Twiss parameter γu(s) is introduced via the
well-known expression

βuγu − α2
u = 1 . (88)

The corresponding betatron tunes are determined accord-
ing to the expression

νu =
Np

2π

s+Lp∫

s

dθFu(θ)
βu(θ)

. (89)

Typical dependence of the horizontal and vertical betatron
tunes on energy in the EMMA non-scaling FFAG is shown in
Figures 1 and 2.
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Fig. 2: Vertical betatron tune for the EMMA ring as a function of
energy.

It is worthwhile noting that the canonical transformation
specified by the generating function (70) allowed us to can-
cel terms linear in the transverse canonical coordinates x̂ and
p̂x. In order to take a due account of the dependence of the
longitudinal dynamics on the transverse one it is necessary to
retain terms in the resulting Hamiltonian that are proportional
to higher powers in η̂, x̂, p̂x and p̂z. Up to first order in η̂, this
gives rise to additional terms in the longitudinal Hamiltonian
of the form

Ĥ0ad = − η̂
2

(
p̂2

x + p̂2
z

)
− Kη̂x̂

2

(
p̂2

x + p̂2
z

)
+ . . . . (90)

The lengthening of the time of flight for one period of the
machine due to betatron oscillations can be expressed as

∆Θ = − 1
2βe

s+Lp∫

s

dθ
[
1 + K(θ) x̂(θ)

][
p̂2

x(θ) + p̂2
z (θ)

]
. (91)

5 Acceleration in a non-scaling FFAG accelerator

The process of acceleration in a non-scaling FFAG acceler-
ator can be studied by solving Hamilton’s equations of mo-
tion for the longitudinal degree of freedom. The latter are
obtained from the Hamiltonian (41) supplemented by an ad-
ditional term [similar to that in equation (54)], which takes
into account the electric field of the RF cavities. They read as

dΘ

ds
= − γ√

β2γ2 − P2
, (92)

dγ
ds

= −ZeUc

2AEp

Nc∑

k=1

δp(s − sk) sin
(
ωcΘ

c
− ϕk

)
. (93)

Here Uc is the cavity voltage, ωc is the RF frequency, Nc

is the number of cavities and ϕk is the corresponding cavity
phase.

Fig. 3: Time of flight as a function of energy for a single 0.394481
meter EMMA cell.

One could use the results obtained in the previous section
with the additional requirement that the phase slip coefficient
K̃1 averaged over one period vanishes. Instead, we shall use
an equivalent but more illustrative approach. The path length
in a FFAG arc and therefore the time of flight Θ is often well
approximated as a quadratic function of energy. The acceler-
ation process is then described by a longitudinal Hamiltonian,
which contains terms proportional to the zero-order (conven-
tional phase slip) factor and first-order phase slip factor. It
usually suffices to take into account only terms to second or-
der in the energy deviation

Θ = Θ0 + 2Aγmγ −Aγ2, (94)

as suggested by Figure 3.
Here γm corresponds to the reference energy with a mini-

mum time of flight. Provided the time of flight Θi at injection
energy γi and the time of flight Θm at reference energy γm are
known, the constants entering equation (94) can be express-
ed as

A =
Θm − Θi

(γm − γi)2 , Θ0 = Θm −Aγ2
m . (95)

Next, we pass to a new variable

γ̂ = γ − γm , Θ = Θm −Aγ̂2, (96)

similar to the variable η̂ introduced in the previous section.
Then, Hamilton’s equation of motion (92) can be rewritten in
an equivalent form

dΘ

ds
=

Θm

Lp
− Aγ̂

2

Lp
. (97)

In what follows, it is convenient to introduce a new phase
ϕ̃ and the azimuthal angle θ along the machine circumference
as an independent variable according to the relations

ds = Rdθ , ϕ̃ =
ωcΘ

c
, R =

NLLp

2π
. (98)
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It is straightforward to verify (see the averaging procedure
below) that the necessary condition to have acceleration is

ωcNL|Θm|
2πc

= h , (99)

where h is an integer (a harmonic number). Averaging Hamil-
ton’s equations of motion

dϕ̃
dθ

= −h − hâγ2, a =
A
|Θm| , (100)

d̂γ
dθ

= −ZeUc

2AEp

Nc∑

k=1

δp(θ − θk) sin (ϕ̃ − ϕk) , (101)

we rewrite them in a simpler form as

dϕ
dθ

= hâγ2,
d̂γ
dθ

= λ sinϕ , (102)

where
ϕ = − ϕ̃ − hθ + ψ0, λ =

ZeUcD
4πAEp

, (103)

D =

√
A2

c +A2
s , ψ0 = arctan

(As

Ac

)
, (104)

Ac =

Nc∑

k=1

cos (hθk + ϕk) , As =

Nc∑

k=1

sin (hθk + ϕk) . (105)

The effective longitudinal Hamiltonian, which governs
the equations of motion (102) can be written as

H0 =
ha
3
γ̂3 + λ cosϕ . (106)

Since the Hamiltonian (106) is a constant of motion, the
second Hamilton equation (102) can be written as

d̂γ
dθ

= ±λ
√

1 − 1
λ2

(
H0 − ha

3
γ̂3

)2

. (107)

Let us first consider the case of the central trajectory, for
which H0 = 0. It is of utmost importance for the so called gut-
ter (or serpentine) acceleration. Equation (107) can be solved
in a straightforward manner to give

θ =
J
b 2F1

(
1
6
,

1
2

;
7
6

; J6
)
− C

b
, (108)

where

J = γ̂
3

√
ha
3λ

, b = λ
3

√
ha
3λ

, (109)

C = 2F1

(
1
6
,

1
2

;
7
6

; J6
i

)
Ji . (110)

In the above expressions 2F1(α, β; γ; x) denotes the Gauss
hypergeometric function of the argument x. This case is il-
lustrated in Figure 4.

Fig. 4: An example of the so-called serpentine acceleration for
the EMMA ring for the central trajectory, where the longitudinal
H0 = 0. The harmonic number is assumed to be 11, with the RF
wavelength 0.405m. The parameter a from Eq. (100) is taken to be
2.686310−5.

In the general case where H0 , 0, we have

θ =
J

b
√

a1c
F1

(
1
3

;
1
2
,

1
2

;
4
3

;
J3

a1
, − J3

c

)
− C1

b
, (111)

where
a1 = 1 +

H0

λ
, c = 1 − H0

λ
, (112)

C1 =
Ji√
a1c

F1

1
3

;
1
2
,

1
2

;
4
3

;
J3

i

a1
, − J3

i

c

 . (113)

Here now, F1(α; β, γ; δ; x, y) denotes the Appell hyperge-
ometric function of the arguments x and y. The phase por-
trait corresponding to the general case for a variety of values
of the longitudinal Hamiltonian H0 is illustrated in Figure 5.
The important question on whether the serpentine accelera-
tion along the separatrix H0 = 0 is stable is addressed in Ap-
pendix B.

A qualitative analysis of the fast serpentine acceleration
has been presented earlier [11, 12]. However, to the best of
our knowledge the results presented here comprise the first
attempt to describe the process quantitatively. Although the
exact solution is expressed in the form of standard and gener-
alized hypergeometric functions, it can be easily incorporated
in modern computational environments like Mathematica.

6 Concluding remarks

Based on the Hamiltonian formalism, the synchro-betatron
approach for the description of the dynamics of particles in
non-scaling FFAG machines has been developed. Its starting
point is the specification of the static reference (closed) orbit
for a fixed energy as a solution of the equations of motion
in the machine reference frame. The problem of dynamical
stability and acceleration is sequentially studied in the natu-
ral coordinate system associated with the reference orbit thus
determined.
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Fig. 5: Examples of serpentine acceleration for the EMMA ring,
with varying value of the longitudinal Hamiltonian. The limits
of stability are given at values of the longitudinal Hamiltonian of
±0.31272, corresponding to either a 0 phase at 10MeV, or a π phase
at 20MeV.

It has been further shown that the dependence of the path
length on the energy deviation can be described in terms of
higher order (nonlinear) dispersion functions. The method
provides a systematic tool to determine the dispersion func-
tions and their derivatives to every desired order, and repre-
sents a natural definition through constitutive equations for
the resulting Twiss parameters.

The formulation thus developed has been applied to the
electron FFAG machine EMMA. The transverse and longitu-
dinal dynamics have been explored and an initial attempt is
made at understanding the limits of longitudinal stability of
such a machine.

Unlike the conventional synchronous acceleration, the ac-
celeration process in FFAG accelerators is an asynchronous
one in which the reference particle performs nonlinear os-
cillations around the crest of the RF waveform. To the best
of our knowledge, it is the first time that such a fully ana-
lytic (quantitative) theory describing the acceleration in non-
scaling FFAGs has been developed.

A Calculation of the reference orbit

The explicit solutions of the linearized equations of motion
(45) can be used to calculate approximately the reference or-
bit. To do so, we introduce a state vector

Ze =

(
Xe

Pe

)
. (114)

The effect of each lattice element can be represented in a
simple form as

Zout = M̂elZin + Ael . (115)

Here Zin is the initial value of the state vector, while Zout

is its final value at the exit of the corresponding element. The
transfer matrix M̂el and the shift vector Ael for various lattice
elements are given as follows:

1. Polygon Bend.
Within the approximation (44) considered here we can

linearize the second of equations (53) and write

M̂p =


1/ cos Θp −Xc tan Θp/

(
βeγe cos Θp

)

0 1/ cos2 Θp

 ,

Ap =


Xc

(
1 − 1/ cos Θp

)

βeγe tan Θp

 . (116)

2. Drift Space.

M̂O =


1 LO/βeγe

0 1

 , AO = 0 , (117)

where LO is the length of the drift. Every cell of the EMMA
lattice includes a short drift of length L0 and a long one of
length L1.

3. Focusing Quadrupole.
The transfer matrix can be written in a straightforward

manner as

M̂F =


cos (ωF LF) sin (ωF LF)/(βeγeωF)

−βeγeωF sin (ωF LF) cos (ωF LF)

 , (118)

AF =


(Xc + dF)[1 − cos (ωF LF)]

βeγeωF(Xc + dF) sin (ωF LF)

 , (119)

where LF is the length of the focusing quadrupole.

4. Defocusing Quadrupole.
The transfer matrix in this case can be written in analogy

to the above one as

M̂D =


cosh (ωDLD) sinh (ωDLD)/(βeγeωD)

βeγeωD sinh (ωDLD) cosh (ωDLD)

 , (120)

AD =


(Xc + dD)[1 − cosh (ωDLD)]

−βeγeωD(Xc + dD) sinh (ωDLD)

 , (121)

where LD is the length of the defocusing quadrupole.
Since the reference orbit must be a periodic function of s

with period Lp, it clearly satisfies the condition

Zout = Zin = Ze . (122)

Thus, the equation for determining the reference orbit be-
comes

Ze = M̂Ze + A, or Ze =
(
1 − M̂

)−1
A . (123)

Here M̂ and A are the transfer matrix and the shift vector
for one period, respectively. The inverse of the matrix 1 − M̂
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can be expressed as

(
1 − M̂

)−1
=

cos3 Θp

1 +
(
1 − SpM̂

)
cos3 Θp

×

×


1 −M22 M12

M21 1 −M11

 . (124)

For the EMMA lattice in particular, the components of
the one period transfer matrix and shift vector can be written
explicitly as

M11 =
1
cp

[
cFcD +

(
ωD

ωF
− L0L1ωFωD

)
sF sD +

+ (L0 + L1)ωDcF sD − L1ωF sFcD

]
, (125)

M12 =
1

βeγecp

{(L0 + L1

cp
− Xctp

)
cFcD +

+

[(
L0L1ωFωD − ωD

ωF

)
Xctp − ωF L1

ωDcp

]
sF sD +

+

[
1

ωDcp
− (L0 + L1)ωDXctp

]
cF sD +

+

(
1

ωFcp
+ L1ωF Xctp − L0L1ωF

cp

)
sFcD

}
, (126)

M21 = −βeγe

cp
(ωF sFcD + L0ωFωDsF sD − ωDcF sD) , (127)

M22 =
1
cp

[
cFcD

cp
+

(
L0ωFωDXctp − ωF

ωDcp

)
sF sD +

+ ωF

(
Xctp − L0

cp

)
sFcD − ωDXctpcF sD

]
, (128)

A1 = Xc + dF + (dD − dF)(cF − L1ωF sF) +

(
Xc

cp
+ dD

)
×

×
[
L1ωF sFcD − cFcD − (L0 + L1)ωDcF sD −

− ωDsF sD

ωF
+ L0L1ωFωDsF sD

]
+

+ tp

[
(L0 + L1)cFcD +

cF sD

ωD
+

+
sFcD

ωF
− L1ωF sF sD

ωD
− L0L1ωF sFcD

]
, (129)

A2 = − βeγeωF (dD − dF)sF + βeγe

(
Xc

cp
+ dD

)
×

× (
ωF sFcD + ωFωDL0sF sD − ωDcF sD

)
+

+ βeγetp

(
cFcD − ωF sF sD

ωD
− ωF L0sFcD

)
. (130)

Fig. 6: Phase stability of the standard EMMA ring, for the central
trajectory at H0 = 0. The errors are given as 0.1MeV in energy and
1.3o in phase.

For the sake of brevity, the following notations

cp = cos Θp , cF = cos (ωF LF) , cD = cosh (ωDLD) , (131)

tp = tan Θp , sF = sin (ωF LF) , sD = sinh (ωDLD) , (132)

have been introduced in the final expressions for the compo-
nents of the one period transfer matrix and shift vector.

B Phase stability in FFAGs

To study the stability of the serpentine acceleration in FFAG
accelerators, we write the longitudinal Hamiltonian (106) in
an equivalent form

H0 = λ
(
J3 + cosϕ

)
. (133)

Hamilton’s equations of motion can be written as

dϕ
dθ

= 3bJ2,
dJ
dθ

= b sinϕ . (134)

Let ϕa(θ) and Ja(θ) be the exact solution of equations
(134) described already in Section V. Let us further denote
by ϕ1 and J1 a small deviation about this solution such that
ϕ = ϕa + ϕ1 and J = Ja + J1. Then, the linearized equations
of motion governing the evolution of ϕ1 and J1 are

dϕ1

dθ
= 6bJaJ1 ,

dJ1

dθ
= bϕ1 cosϕa . (135)

The latter should be solved provided the constraint

3J2
a J1 − ϕ1 sinϕa = 0 , (136)

following from the Hamiltonian (133) holds. Differentiating
the second of equations (135) with respect to θ and eliminat-
ing ϕ1, we obtain

d2J1

dθ2 −
6b2H0

λ
JaJ1 + 15b2J4

a J1 = 0 . (137)
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Next, we examine the case of separatrix acceleration with
H0 = 0. In Section V we showed that to a good accuracy the
energy gain [Ja(θ) = bθ + Ji] is linear in the azimuthal vari-
able θ. Therefore, equation (137) can be written as

d2J1

dJ2
a

+ 15J4
a J1 = 0 . (138)

The latter possesses a simple solution of the form

J1 =
√
|Ja|

C1J1/6


√

5
3
|Ja|3

 + C2Y1/6


√

5
3
|Ja|3


 , (139)

where Jα(z) and Yα(z) stand for the Bessel functions of the
first and second kind, respectively. In addition the constants
C1 and C2 should be determined taking into account the initial
conditions

dJ1(Ji)
dJa

= ϕ1(Ji) cosϕi , J1(Ji) = J1i . (140)
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We shortly review a series of novel ideas on the physics of hadrons and nuclear mat-
ter. Despite being vastly different in scope and content, these models share a common
attribute, in that they offer unconventional viewpoints on infrared QCD and nuclear phe-
nomena. In a sense, they are reminiscent of the plethora of formulations that have been
developed over the years on classical gravitation: many seemingly disparate approaches
can be effectively used to describe and explore the same physics.

1 Introduction

Given the extent and complexity of hadron and nuclear phe-
nomena, any attempt for an exhaustive review of new ideas is
outright unpractical. We survey here only a limited number
of models and guide the reader to appropriate references for
further information. The paper is divided in several sections
according to the following plan:

1. The first section discusses the Brightsen model and the
Nuclear String hypothesis;

2. Models inspired by Kerr-Newman twistor model and
the AdS/CFT conjecture are introduced in the second
section;

3. The last section discusses CGLE model of hadron
masses and non-equilibrium phase transitions in infra-
red QCD.

The selection of topics is clearly incomplete and subjec-
tive. As such, it may not necessarily reflect the prevalent
opinion of theorists working in this field. Our intent is to
simply stimulate a constructive exchange of ideas in this ac-
tive area of research.

2 Brightsen mdodel and the nuclear string hypothesis

In this hadron model, developed by M.Pitkanen [1] based on
his TGD theory, it is supposed that 4He nuclei and A < 4
nuclei and possibly also nucleons appear as basic building
blocks of nuclear strings. This seems like some kind of im-
provement of the Close Packed Spheron model of L. Pauling
in 1960s, which asserts that nuclei is composite form of small
numbers of interacting boson-fermion nucleon clusters, i.e.
3He (PNP), triton (NPN) and deuteron (NP). Another exten-
sion of Pauling model is known as Brightsen’s cluster nuclei
model, which has been presented and discussed by F. Smaran-
dache and D. Rabounski [2].

Interestingly, it can be shown that the Close Packed model
of nuclei may explain naturally why all the upper quarks have
fractional electric charge at the order of Q =+ 2√

3
. So far this

is one of the most mysterious enigma in the hadron physics.
But as described by Thompson [4], in a closed-packed crystal

sheet model, the displacement coefficients would be given by
a matrix where the 1-1 component is:

c11 =
2ρ√

3
− 1 , (1)

where the deformation can be described by the resolved dis-
tance between columns, written as ρd. Here d represents
diameter of the nuclei entity. Now it seems interesting to
point out here that if we supposed that ρ= 1 +

√
3

2
, then c

from equation (3) yields exactly the same value with the up-
per quark’s electric charge mentioned above. In other words,
this seems to suggest plausible deep link between QCD/quark
charges and the close-packed nuclei picture [3].

Interestingly, the origin of such fractional quark charge
can also be described by a geometric icosahedron model [4].
In this model, the concept of quark generation and electro-
weak charge values are connected with (and interpreted as)
the discrete symmetries of icosahedron geometry at its 12
vertices. Theoretical basis of this analog came from the fact
that the gauge model of electroweak interactions is based on
SU(2)×U(1) symmetry group of internal space. Meanwhile,
it is known that SU(2) group corresponds to the O(3) group
of 3D space rotations, hence it appears quite natural to con-
nect particle properties with the discrete symmetries of the
icosahedron polygon.

It is worth to mention here that there are some recent
articles discussing plausible theoretical links between icosa-
hedron model and close-packed model of nuclei entities,
for instance by the virtue of Baxter theory [5]. Further-
more, there are other articles mentioning theoretical link be-
tween the close-packed model and Ginzburg-Landau theory.
There is also link between Yang-Baxter theory and Ginzburg-
Landau theory [6]. In this regards, it is well known that
cluster hydrogen or cluster helium exhibit superfluidity [7,8],
therefore it suggests deep link between cluster model of Paul-
ing or Brightsen and condensed matter physics (Ginzburg-
Landau theory).

The Brightsen model supports a hypothesis that antimat-
ter nucleon clusters are present as a parton (sensu Feynman)
superposition within the spatial confinement of the proton
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(1H1), the neutron, and the deuteron (1H2). If model pre-
dictions can be confirmed both mathematically and experi-
mentally, a new physics is suggested. A proposed experi-
ment is connected to orthopositronium annihilation anoma-
lies, which, being related to one of known unmatter entity, or-
thopositronium (built on electron and positron), opens a way
to expand the Standard Model.

Furthermore, the fact that the proposed Nuclear String hy-
pothesis is derived from a theory which consists of many-
sheeted spacetime framework called TGD seems to suggest
a plausible link between this model and Kerr-Schild twistor
model as described below.

3 Multiparticle Kerr-Schild twistor model and AdS/

CFT Light-Front Holography model

Kerr’s multiparticle solution can be obtained on the basis of
the Kerr theorem, which yields a many-sheeted multi-twistor-
ial spacetime over M4 with some unusual properties. Gravita-
tional and electromagnetic interaction of the particles occurs
with a singular twistor line, which is common for twistorial
structures of interacting particles [6].

In this regards the Kerr-Newman solution can be repre-
sented in the Kerr-Schild form [9]:

gµν = ηµν + 2hkµkν , (2)

where ηµν is the metric of auxiliary Minkowski spacetime.
Then the Kerr theorem allows one to describe the Kerr

geometry in twistor terms. And using the Kerr-Schild for-
malism, one can obtain exact asymptotically flat multiparticle
solutions of the Einstein-Maxwell field equations. But how
this model can yield a prediction of hadron masses remain to
be seen. Nonetheless the axial stringy system corresponds to
the Kerr-Schild null tetrad can be associated with supercon-
ducting strings. Interestingly one can find an interpretation of
Dirac equation from this picture, and it is known that Dirac
equation with an effective QCD potential can describe hadron
masses.

What seems interesting from this Kerr-Schild twistor
model, is that one can expect to give some visual interpre-
tation of the electromagnetic string right from the solution
of Einstein-Maxwell field equations. This would give an in-
teresting clue toward making the string theory a somewhat
testable result. Another approach to connect the superstring
theory to hadron description will be discussed below, called
Light-Front Holography model.

Brodsky et al. [10, 11] were able to prove that there are
theoretical links, such that the Superstring theory reduces
to AdS/CFT theory, and Ads/CFT theory reduces to the so-
called Light Front Holography, which in turn this model can
serve as first approximation to the Quantum Chromodynam-
ics theory.

Starting from the equation of motion in QCD, they iden-
tify an invariant light front coordinate which allows separa-
tion of the dynamics of quark and gluon binding from the

kinematics of constituent spin and internal orbital angular
momentum. Of most interesting here is that this method gives
results in the from of 1-parameter light-front Schrödinger eq-
uation for QCD which determines the eigenspectrum and the
light-front wavefunctions of hadrons for general spin and or-
bital angular momentum.

The light-front wave equation can be written as [8]:
(
− d2

dζ2 −
1 − 4L2

4ζ2 + U(ζ)
)
φ(ζ) = M2φ(ζ) , (3)

which is an effective single-variable light-front Schrödinger
equation which is relativistic, covariant, and analytically
tractable; here M represents the mass spectra.

Nonetheless, whether this Light-Front Holography pic-
ture will yield some quantitative and testable predictions of
hadron masses, remains to be seen.

4 Concluding note

We shortly review a series of novel ideas on the physics of
hadrons and nuclear matter. Despite being vastly different in
scope and content, these models share a common attribute, in
that they offer unconventional viewpoints on hadron, nuclear
phenomena, and infrared QCD. In a sense, they are reminis-
cent of the plethora of formulations that have been developed
over the years on classical gravitation: many seemingly dis-
parate approaches can be effectively used to describe and ex-
plore the same physics.

These very interesting new approaches, therefore, seem
to suggest that there is a hitherto hidden theoretical links be-
tween different approaches.

In our opinion, these theoretical links worth to discuss
further to prove whether they provide a consistent picture, in
particular toward explanation of the hadron mass generation
mechanism and spontaneous symmetry breaking process.

The present article is a first part of our series of review of
hadron physics. Another part is under preparation.
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The concept of coordinate transformation is fundamental to the theory of differentiable
manifolds, which in turn plays a central role in many modern physical theories. The
notion of metric extension is also important in these respects. In this short note we
provide some simple examples illustrating these concepts, with the intent of alleviating
the confusion that often arises in their use. While the examples themselves can be
considered unrelated to the theory of general relativity, they have clear implications for
the results cited in a number of recent publications dealing with the subject. These
implications are discussed.

1 Introduction
Differentiable manifolds play a central role in modern phys-
ical theories. Roughly speaking, a differentiable manifold
(hereafter manifold) is a topological space whose local equiv-
alence to Euclidean space permits a global calculus. In more
precise mathematical terms, a manifold is a topological space
M with a collection of coordinate systems that cover all of M.
Thus the concept of a coordinate system is fundamental to the
notion of manifold.

A coordinate system is defined as a mapping φ (with cer-
tain properties) from an open set U of a topological space
onto an open set φ(U) of Euclidean space. The open set U
is called the coordinate neighborhood of φ and the functions
x1, . . . , xn on U such that φ =

(
x1, . . . , xn

)
, are the coordinate

functions, or more simply the coordinates. A manifold can
have an infinite number of equally valid coordinates defined
on it.

As an example consider the topological space S 2 (the unit
sphere). Further consider the northern and southern hemi-
spheres of the sphere, which are both open subsets of S 2. On
each of the hemispheres we can define stereographic coor-
dinates by projecting the respective hemispheres onto two-
dimensional Euclidean space. Each of the projections defines
a coordinate system, which when taken together cover all of
S 2. Thus S 2 is a manifold.

The notion of a metric tensor g on a manifold M is funda-
mental to the theory of differential geometry (indeed, the met-
ric tensor is alternatively called the first fundamental form).
Explicitly, g is a type-(0,2) tensor that defines a scalar prod-
uct g(p) on the tangent space Tp(M), for each point p ∈ M.
On a domain U, corresponding to a particular coordinate
system {x1, . . . , xn}, the components of the metric tensor are
gi j = g(∂i, ∂ j). It is important to note that the metric compo-
nents gi j are functions, not tensors. The metric tensor itself is
given by g = gi j dxi ⊗ dx j, where summation over the indices
is implied. It must be stressed that a metric, by virtue of the

fact that it is a tensor, is independent of the coordinate system
which is used to express the component functions gi j.

The metric tensor can be represented by its line-element
ds2, which gives the associated quadratic form of g(p). We
stress that a line-element is not a tensor. A line-element can
be expressed in terms of a coordinate system as

ds2 = gi j dxi dx j.

Representing the metric in a particular coordinate system
by the associated quadratic form is equivalent to expressing
it as a square matrix with respect to the coordinate basis. For
example, on the unit sphere the metric σ is often written in
terms of the line-element with respect to spherical coordi-
nates {θ, ϕ} as

ds2 = dθ2 + sin2 θ dϕ2,

or equivalently as the matrix

[σ]{θ,ϕ} =

(
1 0
0 sin2 θ

)
.

It is important when practicing differential geometry to
distinguish between coordinate dependent quantities and co-
ordinate invariant quantities. We have already seen some ex-
amples of these: the metric tensor is coordinate invariant (as
is any tensor), while the line-element is coordinate dependent.
Another example of a coordinate dependent quantity are the
Christoffel symbols

Γi
jk = gim

(
∂kgm j + ∂ jgmk − ∂mg jk

)

while the scalar curvature (Kretschmann scalar), which is de-
rived from them as

f = gab
(
∂cΓ

c
ab − ∂bΓc

ac + Γd
abΓc

cd − Γd
acΓ

c
bd

)
,

is coordinate invariant. Another example of a coordinate in-
variant quantity is the metric length of a path in a manifold.
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Suppose now that we have two different sets of coordi-
nates defined on an open set U ⊂ M. That is to say that we
have two mappings φ1 and φ2 that act from U onto two (pos-
sibly different) open sets V1 and V2 in Euclidean space. It
is apparent that we can change from one coordinate system
to the other with the maps φ2 ◦ φ−1

1 or φ1 ◦ φ−1
2 . Such maps

define a change of coordinates or coordinate transformation.
Alternatively if we have a mapping ζ from V1 into V2 and a
coordinate system (mapping) φ from U onto V1, then the map-
ping ζ ◦ φ also defines a coordinate system. In this context ζ
is the coordinate transformation. Coordinate invariant quan-
tities, such as the metric, the scalar curvature and lengths, do
not change under the action of a coordinate transformation

In what follows we illustrate these concepts by means of
some simple examples and discuss some of their implications.

2 Some simple examples

We begin by illustrating the concept of coordinate transfor-
mation with a simple example in ordinary Euclidean 3-space
(E3). Suppose that (r, θ, ϕ) are the usual spherical coordinates
on E3 and consider the spherically symmetric line-element

ds2 = r2 dr2 + r2 dΩ2, (1)

where dΩ2 = dθ2 + sin2 θ dϕ2 is the usual shorthand for the
line-element on the unit sphere S 2.

Defining a new radial coodinate ρ by 2ρ = r2, the line-
element can be written in terms of the coordinates (ρ, θ, ϕ) as

ds2 = dρ2 + 2ρ dΩ2. (2)

Note that if ρ is held constant then the line-element re-
duces to the standard line-element for a sphere of radius√

2ρ = r.
Note that the coordinate transformation has changed noth-

ing. The metrics corresponding to the line-elements given by
(1) and (2) are exactly the same tensor, they have just been ex-
pressed in two different sets of coordinates. To illustrate this
consider calculating metric length along a radial line. Specif-
ically, consider the path defined in terms of the (r, θ, φ) coor-
dinates by

γa = {(r, θ, ϕ) : r ∈ (0, a), θ = π/4, ϕ = 0}.
Equivalently, we can define the path in terms of the

(ρ, θ, ϕ) coordinates as

γa = {(ρ, θ, ϕ) : ρ ∈ (0, a2/2), θ = π/4, ϕ = 0}.
Thus calculating the metric length of the path γa with re-

spect to the line-element (1) we find

L(γa) =

∫ r=a

r=0
r dr =

a2

2
,

while if we calculate it with respect to the line-element (2) we
find that

L(γa) =

∫ ρ=a2/2

ρ=0
dρ =

a2

2
.

This confirms that the metric length does not depend on
the particular coordinate expression (line-element) represent-
ing the metric.

This example also illustrates another interesting property
of the metric corresponding to (1) or (2). If we set ρ = b,
where b is a constant, the line-element (2) reduces to the 2D
line-element:

ds2 = 2b dΩ2.

This is the line-element of a 2-sphere with a radius of cur-
vature of

√
2b, i.e. the Gaussian curvature is 1/2b. However,

calculating the metric distance d from the origin (ρ = 0) to
this sperical shell (ρ = b), we find that

d =

∫ b

0
dρ = b.

Hence, the metric radius and the radius of curvature are
not equal in general. Repeating the calulation with (1) yields
the same result.

As another example consider the two-dimensional, non-
Euclidean metric

ds2
1 = −x2 dt2 + dx2, (3)

where it is assumed that t ∈ (−∞,∞) and x ∈ (0,∞). In terms
of the coordinates {t, x} the metric tensor g1 can therefore be
represented as

[g1]{t,x} =

( −x2 0
0 1

)
, (4)

with a metric determinant of |g1| = −x2, which suggests that
as x→ 0 the metric becomes singular.

However, calculating the scalar curvature of the metric we
find that Rg1 = 0, which is independent of x. The metric g1
therefore defines a flat manifold (N, g1). The fact that the sin-
gularity arises in the coordinate dependent form of the metric,
but not in the coordinate invariant scalar curvature, indicates
that the apparent singularity may in fact be due solely to a
breakdown in the coordinate system {t, x} that was chosen to
represent the metric, i.e. it may merely be a coordinate singu-
larity rather than a true singularity of the manifold described
by g1. A coordinate singularity can be removed by a good
choice of coordinates, whereas a true singularity cannot.

Introducing new coordinates {T, X}, which are defined in
terms of the old coordinates {t, x} by

X = x cosh t

T = x sinh t,

the line-element ds2
1 may be written as

ds2
1 = −dT 2 + dX2. (5)

Note that t ∈ (−∞,∞) and x ∈ (0,∞) implies that T ∈
(−∞,∞) and X ∈ (0,∞) also.
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In terms of the {T, X} coordinates, the metric tensor g1 is
represented by

[g1]{T,X} =

( −1 0
0 1

)
. (6)

and so the metric determinant is |g1| = −1. The apparent
singularity has been removed by invoking a good choice of
coordinates.

We note further that even though the line-element (5) was
only defined for X ∈ (0,∞) there is now nothing stopping us
from extending the definition to include X ∈ (−∞,∞). We
thus make the distinction between the line-element ds2

1, de-
fined above, and the line-element ds2

2 defined as

ds2
1 = −dτ2 + dξ2, (7)

with coordinates τ, ξ ∈ (−∞,∞). The metric corresponding
to the line-element (7), denoted by g2, defines a manifold
(M, g2) that can be thought of as 2D Minkowski space. By
restricting the coordinate ξ to the semi-finite interval (0,∞)
we recover the metric g1, that is

g2|ξ>0 = g1.

It follows that the manifold (N, g1) is a submanifold of the
Minkowski space (M, g2). Alternatively we say that (M, g2) is
a coordinate extension of the manifold (N, g1). The manifold
(N, g1) is known as the Rindler wedge and corresponds to that
part of (M, g2) defined by |τ| < ξ.
3 Implications

In [1] the author notes that the line-element written in terms
of coordinates {t, r, θ, ϕ} as

ds2 = A(r) dt2 + B(r) dr2 + C(r) dΩ2 (8)

corresponds to the most general spacetime metric that is static
and spherically symmetric. He then goes on to claim that the
line-element written in terms of coordinates {t, ρ, θ, φ} as

ds2 = A∗(ρ) dt2 + B∗(ρ) dρ2 + ρ2 dΩ2 (9)

does not correspond to the most general metric that is static
and spherically symmetric∗. This claim is false, as we will
now demonstrate.

Consider the line-element (9) and define the coordinate
transformation ρ =

√
C(r), where C is some function inde-

pendent of the functions A∗ and B∗. Taking the differential
we find that

dρ =
C′(r)

2
√

C(r)
dr

and so the line-element (9) can be written in terms of the co-
ordinates {t, r, θ, ϕ} as

ds2 = E(r) dt2 + D(r) dr2 + C(r) dΩ2, (10)
∗Note that in [1] the author has used r again instead of ρ. We use the

different symbol ρ to avoid confusion.

where

E(r) = A∗
(√

C(r)
)

and D(r) =
B∗

(√
C(r)

)
C′(r)2

4C(r)
.

Since the functions A∗ and B∗ are independent of the func-
tion C, the functions E and D are also independent of the
function C. The line-element (10) is identical to (8) and it fol-
lows that the metrics represented by (8) and (9) are the same
metric (just expressed in terms of different coordinates), and
therefore that both line-elements represent the most general
static, sperically symmetric spacetime metric.

Based on the claim of [1], just shown is false, the author
goes on to conclude that solutions of the gravitational field
equations that are derived from the metric ansatz (9) are par-
ticular solutions rather than general solutions. These claims
are also false for the same reasons as illustrated above.

The foregoing considerations therefore have bearing on
the relativistic arguments contained in [1] and subsequent pa-
pers by the author. For example, in [1–8] the author repeat-
edly makes the following claims:

1. The coordinate ρ, appearing in (9), is not a proper ra-
dius;

2. The “Schwarzschild” solution, as espoused by Hilbert
and others is different to the Schwarzschild solution ob-
tained originally by Schwarzschild [9];

3. The original Schwarzschild solution is a complete (i.e.
inextendible) metric;

4. There are an infinite number of solutions to the static,
spherically symmetric solutions to the field equations
correponding to a point mass;

5. For line-elements of Schwarzschild form†, the scalar
curvature f remains bounded everywhere, and hence
there is no “black hole”.

We will now address and dismiss each of these claims.

Claim 1. The claim that ρ is not a proper radius stems from a
calculation in [1]. The author defines the proper radius as

Rp =

∫ √
B(r) dr (11)

where B is the function appearing in (8). Strictly speaking
this is not a radius, per se, but a function of the coordinate r.
In more precise terms, the proper radius should be defined as
the metric length of the radial path γa defined by‡

γa = {(t, r, θ, ϕ) : r ∈ (a1, a2), t, θ, ϕ = constant}.
This then implies that the proper radius is defined as

Rp = L1(γa) =

∫ a2

a1

√
B(r) dr . (12)

†Line-elements of “Schwarzschild form” are defined in [2].
‡We believe that this is what the definition in [1] was actually aiming at.
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The claim in [1] relates to the fact that Rp, as defined by
(11), is equal to r only if B(r) = 1. This conclusion is based
on an imprecise definition of the proper radius and does not
take into account the effect of coordinate transformation. If
we work in terms of the coordinates appearing in the line-
element (9), which we have already shown represents the
same metric as (8), then the path γa is defined as

γa = {(t, ρ, θ, ϕ) : ρ ∈ (ρ1, ρ2), t, θ, ϕ = constant},
with ρ1 =

√
C(a1) and ρ2 =

√
C(a2). In terms of the line-

element (9) the metric length of γa is given by

L2(γa) =

∫ √
C(a2)

√
C(a1)

√
B∗(ρ) dρ.

Noting the effect of the coordinate transformation, that
was established earlier, we then find that

Rp = L1(γa) =

∫ a2

a1

√
B(r) dr

=

∫ a2

a1

[
B∗(

√
C(r)

]1/2 C′(r)
2
√

C(r)
dr

=

∫ √
C(a2)

√
C(a1)

√
B∗(ρ) dρ

= L2(γa) .

Hence the proper radius does not depend on the form of
the line-element. Proper radius (i.e. a metric length) can be
equivalently defined in terms of either of the “radial” coordi-
nates r or ρ.

Claims 2 and 3. The original Schwarzschild solution ob-
tained in [9] is given as the line-element

ds2 = A(R)dt2 − A(R)−1dR2 − R2dΩ2, (13)

where
A(R) = 1 − α

R
and R = (r3 + α3)1/3.

The coordinate r ∈ (0,∞) that appears is the standard
spherical radial coordinate. The expression R = (r3 + α3)1/3

defines a transformation of the radial coordinate r into the
auxilliary radial coordinate R. The constant α is related to
the value of the mass at the origin [9]. Indeed, by imposing
the additional boundary condition at infinity, that the solution
be consistent with the predictions of Newtonian gravitational
theory, it is found that the constant α = 2m, where m is the
mass at the origin. The line-element (13) can therefore be
written as

ds2 =

(
1 − 2m

R

)
dt2 −

(
1 − 2m

R

)−1

dR2 − R2dΩ2, (14)

with R ∈ (2m,∞). Note that if R and t are held constant
(say R = a and t = t0) the line-element reduces to that of a

2-sphere with radius a > 2m. The line-element therefore de-
fines a manifold that is foliated by 2-spheres with radii greater
than 2m.

The line-element is of precisely the same form as the line-
element derived by Hilbert [10], i.e.

ds2 =

(
1 − 2m

ρ

)
dt2 −

(
1 − 2m

ρ

)−1

dρ2 − ρ2dΩ2, (15)

where ρ ∈ (0, 2m) ∪ (2m,∞). The only difference is that (14)
is defined over a subset of the domain over which (15) is de-
fined. To obtain the line-element (15) the radial coordinate
has been extended to values less than 2m in much the same
way that the metric corresponding to (5) was extended to the
metric corresponding to (7). The only real difference is that
in the case at hand there remains a coordinate singularity at
R = 2m, and so in terms of the coordinates used, the extended
manifold must be viewed as a disjoint union of the regions
corresponding to R < 2m and R > 2m. Both of the disjoint re-
gions satisfy the static, spherically symmetric field equations.
In fact it is well-known that there exist coordinates in which
the difficulty at R = 2m can be removed, resulting in a single
manifold that satisfies the field equations. As a point of his-
torical interest we note that the extended metric is also known
as the “Schwarzschild” metric in honour of Schwarzschild’s
contribution to the field, despite the fact that his original so-
lution is only a subset of the complete solution.

From the above considerations it clear that the manifold
corresponding to the line-element (13) is incomplete. Indeed,
in deriving this form of the line-element, Schwarzschild im-
posed a very specific boundary condition, namely that the
line-element is continuous everywhere except at r = 0, where
r ∈ (0,∞) is the standard spherical radial coordinate. Impo-
sition of this boundary condition has significant implications
for the solution obtained. In particular, as a consequence of
the boundary condtion the coordinate R is shifted away from
the origin. Indeed, if r ∈ (0,∞) then R ∈ (α,∞). Hence the
manifold represented by (13) is foliated by 2-spheres of ra-
dius greater than α = 2m — the spacetime has a hole in its
centre!

Claim 4. In [2] the author derives the general solution for the
static, spherically symmetric field due to a point mass as

ds2 =

( √
Cn − α√

Cn

)
dt2 −

( √
Cn√

Cn − α

)
C′n

2

4Cn
dr2 −Cn dΩ2, (16)

where r is the standard radial spherical coordinate and

Cn(r) =
[
(r − r0)n + αn]2/n (17)

with r0 > 0 and n > 0 arbitrary constants. The author also
notes that (16) is only defined for r > r0.

Let us now see the effect of transforming coordinates.
Firstly, let ρ = r−r0 so that the coordinate ρ is simply a shifted
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version of the coordinate r. Taking differentials implies that
dρ = dr and so we may equivalently write the line-element
(16) as

ds2 =

( √
Cn − α√

Cn

)
dt2 −

( √
Cn√

Cn − α

)
C′n

2

4Cn
dρ2 −Cn dΩ2, (18)

where now
Cn(ρ) =

[
ρn + αn]2/n

and the line-element is defined for ρ > 0.
Secondly, define another change of coordinates by R =√

Cn(ρ). This is essentially a rescaling of the radial coordinate
ρ. Taking differentials we find that

dR =
C′n

2
√

Cn
dρ .

Thus in terms of the coordinate R the line-element may
be written as

ds2 =

(R − α
R

)
dt2 −

( R
R − α

)
dR2 − R2 dΩ2, (19)

where the coordinate R > α.
Hence we have shown that what appeared to be an infini-

tude of particular solutions are actually just different coordi-
nate expressions of the same solution, which without loss of
generality can be expressed in “Schwarzschild coordinates”
{t,R, θ, ϕ} by (19). This solution is incomplete, as we have
already seen, since the line-element and the corresponding
metric are only defined when the coordinate R > α. The so-
lution is known as the exterior Schwarzschild solution.

Another way of seeing that the metrics corresponding to
the line-elements defined by (16) are all the same, is by invok-
ing Birkoff’s Theorem [11]. This theorem establishes, with
mathematical certainty, that the Schwarzschild solution (ex-
terior, interior or both) is the only solution of the spherically
symmetric vacuum field equations∗.

Claim 5. In [2] the author notes that the scalar curvature of
the metric corresponding to (16) is given by

f =
12α2

C3
n

=
12α2

[(r − r0)n + αn]6/n

and that as r → r0 there is no curvature singularity. He then
concludes that a “black hole” singularity cannot exist.

In fact, as we have just seen, the line-element (16) only
corresponds to the exterior Schwarzschild solution, which is
a manifold foliated by 2-spheres with radial coordinate R > α.
The calculation in [2] therefore only proves that the exterior
solution has no curvature singularity. This is a well known
fact. Writing (16) in its equivalent form (19) and extending

∗The assumption of staticity is not actually required, hence all spheri-
cally symmetric spacetimes satisfying the vacuum field equations are static.

the coordinate R to obtain the interior Schwarzschild solution
(0 < R < α), the scalar curvature is given by

f =
12α2

R3 ,

from which it is clear that

lim
R→0

f = ∞ .

Hence there is a curvature singularity at R = 0. Since the
vector ∂R is timelike for 0 < R < α, the singularity corre-
sponds to a black hole.

4 Conclusions

We have presented a number of simple examples which hope-
fully elucidate the concepts of coordinate transformation and
metric extension in differential geometry. Implications of the
concepts were also discussed, with particular focus on a num-
ber of the relativistic claims of [1–8]. It was proven that each
of these claims was false. The claims appear to arise from a
lack of understanding of the notions of coordinate transfor-
mation and metric (coordinate) extension. Any conclusions
contained in [1–8] that are based on such claims should there-
fore be considered as unproven. In particular, the claim that
the black hole “is not consistent at all with general relativity”
is completely false.

General relativity is a difficult topic, which is grounded
in advanced mathematics (indeed, Einstein himself is quoted
as saying something along the lines of “Ever since the math-
ematicians took hold of relativity, I no longer understand it
myself!”). A sound understanding of differential geometry
is a prerequisite for understanding the theory in its modern
form. Thus to paraphrase Lao Tzu [12] — beware of the half-
enlightened master.

Postscript

The article by Stephen J. Crothers in the current issue [13]
provides a good illustration of the problems discussed above.
For example, in his first “counter-example” he considers a
metric which is easily seen to be the Schwarzschild metric
written in terms of an ‘inverted’ radial coordinate. Using x to
denote the inverted radial coordinate (denoted by r in [13]),
and R to denote the usual Schwarzschild radius, the transfor-
mation is R = 2m − x. In particular, R = 0 corresponds to
x = 2m, and R = 2m corresponds to x = 0. It is thus not
surprising that the coordinate singualrity is at x = 0 and the
point singularity is at x = 2m. The other counter-examples
in [13] can be dismissed through similar arguments.

The author is grateful to S. J. Crothers for a number of discus-
sion that resulted in the writing of this paper.

Submitted on August 06, 2009 / Accepted on August 14, 2009
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LETTERS TO PROGRESS IN PHYSICS

On Crothers’ Assessment of the Kruskal-Szekeres “Extension”

Ulrich E. Bruchholz
Wurzen, Germany. E-mail: Ulrich.Bruchholz@t-online.de; http://www.bruchholz-acoustics.de

I agree with Crothers in it that any introduction of Kruskal-Szekeres coordinates is
unnecessary. The solution of problems from so-called Schwarzschild solutions appears
amazingly simpler than discussed in Crothers’ paper.

S. J. Crothers [1] discusses the introduction of Kruskal-
Szekeres coordinates, which pursue the target to avoid certain
forms of singularity and the change of signature. Crothers ar-
gues that this measure is off target. — Let me note following:

1. The Kruskal-Szekeres coordinates as quoted with the equa-
tions before Eq. (4) of [1] mingle time and length. That
is physically self-defeating. Moreover, any real coordinate
transformation does not change the situation with the original
coordinates.

2. The solution according to Eq. (1) of [1] is physically dif-
ficult for the coordinate singularity. We should take notice of
this fact instead of doing inept tries, see item 1.

3. The general central symmetric and time-independent so-
lution of Rµν = 0 is the first part of Schwarzschild’s actual
solution

ds2 =
(
1 − α

R

)
dt2 −

(
1 − α

R

)−1
dR2 −

− R2(dθ2 + sin2θ dϕ2) ,

in which R is an arbitrary function of r within the limit that
metrics must be asymptotically Minkowski spacetime, i.e.
R ⇒ r for great r. α is an integration constant related to
the mass,

α =
κm
4π

.

This solution is based on “virtual” coordinate transfor-
mation, which is possible for the degrees of freedom from
Bianchi identities.

4. Above solution implies also an isotropic solution without
singularity at the event horizon

ds2 =
( r − rg
r + rg

)2
dt2 −

−
(
1 +

rg
r

)4 (
dr2 + r2(dθ2 + sin2θ dϕ2)

)

with
rg =

α

4
=
κm
16π

.

The event horizon (at r = rg) turns up to be a geometric
boundary with g= 0.

5. Any change of signature is physically irrelevant, because
areas with different signature (from normal, according to ob-
server’s coordinates) are not locally imaged. Therefore, any
singularity in such an area is absolutely irrelevant.

6. It is deduced from the geometric theory of fields [2]
that particles do not follow any analytic solution, no mat-
ter whether obtained from General Relativity or any quantum
theory. One can specify the field only numerically. It has to
do with chaos. — It was interesting to see if the discussed an-
alytic solutions are possible at all, or if macroscopic solutions
are decided by chaos too.

Submitted on October 17, 2009 / Accepted on November 09, 2009
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LETTERS TO PROGRESS IN PHYSICS

An Einstein-Cartan Fine Structure Constant Definition

Robert A. Stone Jr
1313 Connecticut Ave, Bridgeport, CT 06607 (USA). E-mail: robert.a.stone.jr@gmail.com

The fine structure constant definition given in Stone R. A. Jr. Progress in Physics, 2010,
v.1, 11–13 [1] is compared to an Einstein-Cartan fine structure constant definition. It
is shown that the Einstein-Cartan definition produces the correct pure theory value, just
not the measure value. To produce the measured value, the pure theory Einstein-Cartan
fine structure constant requires only the new variables and spin coupling of the fine
structure constant definition in [1].

1 Introduction

Stone in [1] gives Nature’s coupling constants, the fine struc-
ture constant and the weak angle, and a single mass formula
for the W, the proton, the electron and electron generations
all as functions of (4π)n.

If these 4π coupling constant definitions are correct, then
if a literature search found another theoretical definition, one
would expect a similar form for the two definitions.

In [1] the fine structure constant (FSC), designated as
αcs (α charge to spin), is defined as πς (4π%)−2/(2

√
2) with

%=αcsαsg (1) mp/(meπ) = 0.959973785 where αsg (1)=2
√

2/4π
and ς = (4π%)3 me/mp = 0.956090324.

2 An Einstein-Cartan model

Many Einstein-Cartan models are scale independent models
where the force magnitude (scale) is related to some internal
variable like a length, e.g. l0. The pure theory scale is l0 while
potential deviation from the pure theory is represented by l.
The Einstein-Cartan model of Horie’s [2] is such a model.

Equation (4.2) in Horie’s paper [2] gives the Einstein-
Cartan theoretical definition for the FSC as

αcs =
1

64π
l20
l2
, (1)

where l assumed to be less than and approximately l0.
When l = l0, (1) gives the FSC value of approximately

4.97 × 10−3. To match the measured FSC value requires l0/l
to equal about 1.2113 (l20/l

2 ' 1.4672), a value for l not ap-
proximately l0.

The 4π definition of the fine structure coupling constant
is given in [1] as αcs = πς (4π%)−2/(2

√
2) and the charged

particle weak angle coupling constant as αsg = 2
√

2(4π%)−1.
Noting that the

√
2 appears with both spin couplings sug-

gests that the origin of the
√

2 is related to the coupling of the
other force in the coupling constant to spin.

From the underlying approach, this is true. However the√
2 is mathematically on the side of the other force because

the coupling of spin to charge (and g) is larger than expected
by present approaches.

Thus in order to reflect the underlying approach of the 4π

definitions, αcs is better written as

αcs =
1

16π
1
4

√
2

1
%2 ς. (2)

Rewriting Horie’s equation (1) in a similar form yields

αcs =
1

16π
1
4

1
1

(l/l0)2 1. (3)

Where as Horie’s pure theory Einstein-Cartan model as-
sumes 1 for the coupling, the underlying source coupling
value in αcs (and αsg) is larger by

√
2.

Where as Horie’s pure theory Einstein-Cartan model can
not give a value for l/l0 for αcs, the definition in [1] gives the
value as %. Note that using the correct spin coupling (

√
2) now

results in l / l0 as expected.
Lastly, Horie’s pure theory Einstein-Cartan model simply

lacks an additional factor ς that appears on the charge side of
the coupling constants αcs and αcg [1].

Thus, as a pure theory model, Horie’s result is correct. To
produce the measured FSC value, Horie’s pure theory model
only needs the correct spin coupling (

√
2), the correct l/l0

value (%) and the ς adjustment that come from the approach
that produced the 4π definition of Nature’s constants.

3 Summary

In [1], several 4π coupling constant definitions were given
including the fine structure constant.

It is shown that the 4π fine structure constant definition
of [1] is in keeping with Horie’s complex connection pure
theory Einstein-Cartan fine structure constant definition [2].

Thus not only does the 4π definitions in [1] produce the
two weak angle values as experimentally observed, the fine
structure constant definition has the three missing constants
required by a pure theory Einstein-Cartan fine structure con-
stant definition to produce the measured value.
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Valery N. Smirnov (1939–2009) and His Detector
Victor A. Panchelyuga

Research Institute of Hypercomplex Systems in Geometry and Physics, Friazino, Russia
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sscience, Pushchino, Russia

E-mail: panvic333@yahoo.com

Dr. Valery N. Smirnov who passed away recently, was an experimental physicist work-
ing on accelerator physics. Despite this fact, the main achievement of his scientific
creation was the detector for measurement of perturbations in gravitational fields. This
detector, having originally construction suggested by Smirnov, was launched at Moscow
Engineer Physical Institute, Russia. Valery N. Smirnov continued his observations with
the detector until his last days. We therefore refer to this device as Smirnov’s detector.

Dr. Valery N. Smirnov. Pictured in the last decade.

Valery N. Smirnov was born in October 6, 1939, in Magadan,
Russia, where his parents worked as reporters. In 1945, his
family returned to Moscow, where he lived all his life.

After high school, in 1958, he was employed at the Insti-
tute of Radio Engineering. In 1960 he entered to Moscow En-
gineer Physical Institute, where was gaduated in 1966. Then
he returned to the Institute of Radio Engineering. In 1975
he was employed at Kurchatov Institute of Atomic Energy, as
an experimental physicist in the field of accelerator physics.
Smirnov designed “Fakel” (tourch), the linear accelerator,
and also numerous other accelerators for Kurchatov Institute.
In 1983, he awarded Kurchatov Prize for the best engineering
work done in the field. As one of the stuff of Kurchatov In-
stitute, Smirnov produced some studies at Chernobyl Nuclear

Power Station, in 1987 and 1989, after the catastroph. He was
gratituded by the Government for this job.

Some persons work in order only to earn money for live.
In contrast, Smirnov spent all his life for scientific studies. He
found the main task of his scientific creation when read the
papers, published by Prof. Nikolai A. Kozyrev, the famous
astronomer and physicist of Pulkovo Observatory, Leningrad.
Kozyrev pointed out that, in his regular experiments with gy-
poscopes, the devices experienced small fluctuations at the
moments connected to the dynamics of celestial bodies, e.g.
the planets. This effect remained unexplained.

Smirnov supposed that the source of this effect is hidden
in the imperfect suspension of Kozyrev’s gyroscope. Thus,
every period of revolution may be broken due to an external
influence. In aim to study his supposition, Smirnov designed
a special device, containing a gyroscope which was rotating
in a special regime of braking (different braking regimes were
ruled by special control electronics). Experiments conducted
by him confirmed his initially supposition: the device showed
steady sensitivity to the specific moments of celestial bodies
dynamics, exact according to Kozyrev.

During the years and until his last days, Smirnov con-
ducted regular observations with the device. He also im-
proved its contruction, making it more sensitive. The exper-
imental results and the technical descriptions were presented
by him in the publication [1]. Complete review of the experi-
ments will be submitted to Progress in Physics later.

Dr. Valery N. Smirnov passed away in November 4, 2009,
being full of new plans for research and creative ideas. In our
memory he is still live amongst us, with his device we refer
to as Smirnov’s detector.
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The current paradigm in fundamental physics assumes that Newton’s gravitational con-
stant G, Planck’s (reduced) constant ~, and the fine structure constant α are primary
constants — i.e., these constants are associated with something basic in nature and are
thus not reducible to something more fundamental. This assumption leads, for exam-
ple, to the conclusion [1] that quantum fields are the fundamental building blocks out
of which the visible universe is constructed.

The Planck vacuum (PV) theory [2] derives the three con-
stants

G =
e2
∗

m2∗
, (1)

~ =
e2
∗
c
, (2)

α =
e2

e2∗
, (3)

where e∗ is the bare electronic charge, m∗ is the Planck
mass, c is the speed of light, and e is the experimentally ob-
served electronic charge. In effect, then, a new paradigm∗ has
emerged where the PV is the source of the visible universe
and its properties.

What follows is a brief survey of some equations that
demonstrate how the current and new paradigms are related.
The details leading to the equations are unimportant here and
are left to the references. What is important is how the current
primary constants on the left side of (1)–(3) are replaced by
the new primary constants e∗ and m∗ on the right and in the
equations to follow.

The Compton relation [3, p.433]

λc =
h

mc
or rc mc = ~ (4)

associates a Compton wavelength λc (or a Compton radius
rc = λc/2π) with the particle mass m, while the de Broglie
relation [3, p.81]

p =
~

rd
(5)

relates the particle’s relativistic momentum (p = mγv) to
its de Broglie radius rd = rc/βγ, where β = v/c and γ =

1/
√

1 − β2 . The PV theory explains these relations [2] [4] in
terms of the magnitudes, mc2/r and e2

∗/r
2, of the two distor-

tion forces the particle exerts on the PV, the radius at which

∗Merriam-Webster Online Dictionary, 2009. Paradigm: a philosophical
and theoretical framework of a scientific school or discipline within which
theories, laws, and generalizations and the experiments performed in support
of them are formulated.

these two forces are equal being the Compton radius rc. The
calculations lead to the string of Compton relations

r∗m∗ c = rc mc = e2
∗/c , (6)

where rc is the Compton radius of any of the elementary par-
ticles, m is the particle mass, and r∗ and m∗ are the Compton
radius and mass of the individual Planck particles making up
the negative-energy PV state.

The Compton relations (6) yield the free-space permittiv-
ities [2]

ε =
1
µ

=
e2
∗

r∗m∗ c2 = 1 , (7)

while the static electric force between two charges e becomes

Fel =
e2

r2 = α
e2
∗

r2 (8)

showing the fine structure constant α to be closely related to
the PV polarizability.

The Heisenberg uncertainty relations

∆p · ∆q >
~

2
=

e2
∗/c
2

(9)

where p and q correspond to any two canonically conjugate
operators, remain a wave-particle-duality mystery in the cur-
rent paradigm. The PV theory explains these relations in the
following manner: the so-called free particle interacts con-
tinually with the invisible PV continuum; as this continuum,
like any continuum, can support wavelike disturbances, the
reaction of the PV to the particle perturbations produces a
wavelike reaction in the particle; then (9), which is currently
ascribed to the particle, is actually a straightforward mathe-
matical property of the perturbed continuum [3, p.105].

The gravitational equations of Newton and Einstein trans-
form from the current paradigm to the new paradigm in the
following way [5]:

Fgr = −mMG
r2 =

(−mc2/r)(−Mc2/r)
−m∗c2/r∗

(10)

and

Gµν =
8πG
c4 Tµν → Gµν/6

1/r2∗
=

Tµν
ρ∗c2 , (11)
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where c4/G (= m∗c2/r∗) and 1/r2
∗ are the ultimate curvature

force and Gaussian curvature sustainable by the PV, and ρ∗
(= m∗/(4πr3

∗/3)) is the Planck-particle mass density of the PV.
Finally, the quantum vacuum consists of an electromag-

netic (photon) component and a massive-particle (kc = 1/rc)
component [4]. The energy densities of the two transform as

c~
2π2

∫
k3dk → 1

8
e2
∗/r∗
r3∗

(12)

and
c~
4π2

∫
k2

(
k2

c + k2
)1/2

dk → 1
16

e2
∗/r∗
r3∗

(13)

from the current to the new paradigm respectively.
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As geometry is constructed from points and their separating distances, physics may
be similarly constructed using identical material points and their separating distances
with the additional requirement that all points have infinitesimal masses and move all
the time at the speed of light. Pairs of such points can get locked together in circles
to make doublet particles that can have any speed from zero to that of light, at which
point the doublet disintegrates. Using this construct together with the rich mathematical
properties of a 3D space, a mechanical definition of time, and simple symmetry rule for
displacement, it is possible to derive many of the fundamental laws of physics such
as the inverse square laws of gravitation and static electricity, many of the relativistic
and quantum mechanical results such as the mass-energy conversion of Einstein and
the quantized energy levels of Planck and Bohr. In addition, a better understanding of
some illusive terms like inertia and force becomes possible. No arbitrary constants are
needed in the process. Extra dimensions (variables that are not a distance) are created
as a result of this setup — but they are all found to be discrete. Mass, charge, spin, and
time are some notable examples.

1 Introduction

We use common ideas, simple constructs and simple mathe-
matics to shed light on the origin of the grand laws of physics
that have hitherto remained untied together. That this is pos-
sible was a big astonishment to the author having spent years
of search to achieve the same using fields and waves ex-
cluding discrete masses. We first postulate the existence of
a 3D Euclidian space containing a large number of material
points (point masses). The distance between the points is to
be a continuous function, which goes well with our intuition,
as we never observed material objects jump without passing
through all joining points in between. We then realize that this
postulate endows the space with an enormously rich struc-
ture [1] due to the fact that the distance becomes analytic and
infinitely differentiable. The masses must be infinitesimal in
order to move continuously at the speed of light without vio-
lating Einstein’s and other results in this regard. We are tac-
itly assuming that no space can be defined without material
points. As to what is a material point is left undefined.

Material points can acquire other properties like electric
charge etc which we will come to meet later. When the
separating distance between two material points of suitable
attributes is small, they trap each other to make a doublet
particle. This combined structure can have any speed —
from zero to that of light, in which case it disintegrates into
two point particles. Bound states of equal masses do exist in
physics as in the case of the exotic particle “positronium” [2].
The normal mass of a material body, composed of a large
number of such doublet particles, is simply the total number
of doublets and hence it is discrete. We note that an immedi-
ate benefit of this setup is a simple mechanism for converting

mass into energy and visa versa if we associate energy flux
with point particle flux. In fact it amounts to an ultimate
unification of the of mass and energy concepts. We also note
that a space with continuously moving material points may
be an alternative and fairly convincing way of interpreting
Einstein’s space time continuum ideas. This becomes even
more apparent as we arrive at the same relativistic results
using the simple doublet structure.

To reach to the more fundamental laws of physics, we
shall put a simple mechanical definition for time and a sym-
metry rule that governs the displacement of point particles
(and doublets as a result) in space. We shall consider such
grand ideas with the simplicity they deserve, as Einstein have
suggested in more than one occasion — what is needed is
simple physical interpretations rather than complicated math-
ematical descriptions [3]. The transformation between point
and doublet particles may be looked at as a process of equi-
librium or a continuous forward and backward transformation
— an evaporation condensation process if you like, and one
that can be observed on larger and larger scales in nature. The
trapping and escape of photons in matter(radiation), of elec-
trons out and into the nucleus of different materials, of whole
molecules from the surfaces of any liquid and the trapping
and escape of large masses in volcano eruptions on planets
and stars are few such examples.

Doublet particles are to be taken to represent the simplest
form of condensed matter, whereas singlet particles are to
represent energy flux. Singlet particles may also combine
(along their flight path) in any number and remain as different
energy fluxes as long as they do not take the form of circularly
bound doublets. Doublets can also come together(condense)
and combine to form massive particles. In [4] the doublet
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structure is examined further and it is shown that the geo-
metrical rules for the combination(packing) of doublets seem
to fit well measured values of different forms of condensed
matter.

2 Theory

2.1 Space and Time

Intuitively, it is not possible to define space when it is de-
void of matter [6,7]. Our starting point therefore is to assume
the existence of material points with infinitesimal masses that
move all the time at the characteristic speed of the space —
the speed of light c. The numerical value of c = 2.99×108

comes from our arbitrary choice for the units of distance and
of time. A 3D Euclidean space may(at one instance) be struc-
tured out of all such material points and the distances that
separate them. This space is continuous to go with our in-
tuition — that is to say when material points move, they do
not jump, but pass by all the joining points along the path of
motion as given earlier.

We then note that time itself can not be defined in a space
devoid of motion. Just imagine one is at night in a desert with
nothing moving — no moon, no stars and not even a heart
beat. In this setup there is no way to see time flowing. So we
are led to say that time must be connected with the motion of
material points. To get a sense of time we need an observer
point and a moving point, since if we move along a straight
line without being able to observe anything else moving, we
will not be able to see time flowing either. The problem now
is that any observation over a distance must rely on light prop-
agation and will introduce the well known complication of a
finite value of c.

A simple case however, where this is not a problem is the
case of two material points moving on a circle in a doublet
formation and the observer point is sitting on the path of this
doublet. We can then define time as the number of visits of
the doublet members. This number has all the characteristics
of time since it is an ever increasing variable (pointing in one
direction- hence the arrow of time expression) and it is sym-
metric in the sense that the zero of count (zero of time) can
be placed anywhere. It is, however, discrete according to this
picture. It is also an independent variable in the sense that it
can have any integral value for any value of the other three
spatial coordinates. This is well in tune with our intuition
of the variable “time”, as we always rely in our time mea-
surements on some sort of oscillation and count the number
of such oscillations to measure time. If light can be sent to
come back in a straight line to a distant point, the distance
to that point can be judged from the knowledge of the period
taken as given by the number of rotations(visits) of our local
doublet members and the assumption that the characteristic
speed c is constant all the time. Time can thus be looked at as
a measure of the distance travelled by any material object to
the distance travelled by a material point as given by the cir-

cumference and the number of rotations of our local doublet.
A mathematical fact is that if a particle in an isolated sys-

tem follows one path exactly more than once, it will continue
to do so for ever. We can convince ourselves with this if we
remembered that the number of points along an even a dif-
ferential line segment of such path is more than enough to
fix any number of constants in the solution of the differential
equation of motion — thus ensuring that the path is fixed and
unchanged in subsequent visits. This conclusion is possible
only if the line of motion is continuous and analytic (infinitely
differentiable) which is the reason for our original assump-
tion. The emergence of such eternal stability can prove useful
in explaining the eternal stability of some of the elementary
particles like the photon and the electron when in isolation.

We also note that the rich mathematical properties of the
path of motion in space lead to new variables or dimensions
that are independent of the original three spatial dimensions.
Any extra dimension derivable this way appears to be not a
distance and only discrete however. We notice also that the
creation of such extra variables comes out of a process of a
closure or folding in the path of motion and turning it into
a multi-valued variable in which every point is described not
only by its three space coordinates, but also by other numbers
derived from the multiplicity at that space point. We mention
angle measurement as one more example of such multiplicity.

Since the velocity of a moving point is a mathematical
derivative with respect to time, and as time is represented by
a number, we conclude that the process of determining the
velocity and acceleration, (or the process of going from static
to kinematic and dynamic), is a process of comparison (ra-
tio) of the motion of a larger system with that of a simpler
and standard one like a doublet. In other words, the motion
of the simple doublet is effectively being used as a yardstick
to gauge the velocity and acceleration of more complicated
systems. This definition of time breaks down of course for
periods that are smaller than one unit of measurement (deter-
mined by the smallest possible doublet) whatever that may be.
Since time is discrete, velocity, acceleration, force, momen-
tum and any similarly related variable are all discrete. This
will later lead to the Heisenberg uncertainty principle.

2.2 Laws of motion — action and reaction

We put here a simple rule for the displacement of material
points that goes with the state of natural symmetry possessed
by two material points (in isolation) in the form; “The dis-
placement of any material point must be accompanied by the
displacement of another point by the same amount in an op-
posite direction”. For two isolated points it might be argued
that it does not matter if one point made the entire move and
the other stays a foot, as the outcome would be the same. This
is clearly not the case, since in reality we will have many more
points and our rule should apply to every pair of them.

Since mass is composed of many material points of the
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same value, and motion is to be discrete, the displacement of
ten points one distance can be compensated for by the dis-
placement of one point ten times that distance in the opposite
direction, and our equivalent statement of action and reaction
becomes; “The sum of mass times displacement is zero at any
point and along any direction”. In other words, the center of
mass of an isolated system of points never moves. We can
also see that as time is now just a number, differentiation of
the displacement with respect to time gives; “The sum of mass
times velocity (linear momentum) is zero at any point and
along any direction”, and differentiating again gives; “The
sum of mass times acceleration (force) is zero at any point
and along any direction”. Thus we see that it is possible to
recover both the second and third Laws of motion of New-
ton from a simple rule of displacement. We take this to be a
strong support of the correctness of this postulate as a rule of
displacement.

Our rule of displacement, which we shall call the “bal-
anced displacement” (BD) rule, may be considered as the
equivalent of Newton’s first law of motion since it tells that
points can not change their state of motion independently. . .
if a material point moves, another must also move by the same
amount and in the opposite direction, and things can then stay
like this forever as long as the BD rule is true. The BD rule
also provides a neat explanation of the source of inertia of
massive bodies. It is simply a balanced displacement require-
ment. As if the world is sitting on a knife edge and moving
anything must be done symmetrically to keep the balance .

Displacement can be resolved into three directions, the
first along the separation distance between two moving points
plus two components normal to this direction. The two nor-
mal components combine to define the spin direction of the
doublet. The doublet particle can have left or right hand spin
property. Such spin, once initiated, will continue unchanged
since the BD rule works correctly all the time– that is until an
interaction occurs with another group of points.

The displacement along a radial line separating two mov-
ing points can have two directions; to the inward and to the
outward directions. This produces the attraction and repul-
sion type effects. The probability for material points to take
any one of six possible motions along three perpendicular di-
rections is presumably equal, this provides a plausible reason
for the existence of antiparticles, and the fact that antiparti-
cles can be anti in all their attributes and have the same mass.
Thus we have by now two types of coupling constants and
two different spins — all new variables and all discrete, since
they can only take the values (+/− a constant) representing
each of the two opposing directions. Larger values of charge,
spin etc must now be in multiples of this constant value.

An interesting conclusion of all this is that the sum of
displacements of all material points in the universe is zero at
any time and hence the center of mass in the universe never
moves. It is also not hard to see that as a result of the BD rule
being applicable to every two points separated by a distance,

there is a universal entanglement situation of every single
point mass in the universe. If we now imagine doing a back
play of all the events of displacements that has occurred since
the start of time, we may reach the original point start(the big
bang point!). The clear impossibility of such undoing, should
tell us that it is impossible to go back in time. We could also
say here that time must have started with the first motion and
will only stop when everything else stops moving.

As pointed above, the BD rule can give us a neat expla-
nation of inertia which some believed it to be a property of
matter and others to be due to the effect of distant masses (the
Mach principle). In the present setup we see that it is a result
of the symmetry of displacement — i.e. a property of space
and matter together with distant and near masses all involved.
One interesting example to make the picture clear is the case
of the rotation of a thin disc in isolation. Every two diamet-
rically opposed points of the disc follow happily the BD rule
and, as such, constitute a self contended system that will, if
not disturbed, remain as it is for ever. If we move the disc
along the axis of rotation, we must create a movement of other
masses equivalent to that of the disc in the opposite direction
— as in propelling it with the gases of a rocket for example.
The rotational motion of the disc remains unaffected in this
case. If we now try to move the disk on a curved path, we
need to provide an equivalent opposite motion to the curving
and rotating material points of the disc in its new complex
motion, and it is this that shows as the gyroscopic effect.

2.3 The inverse square laws

The interaction between two isolated material points can only
be a function of the separation distance — because of isola-
tion. Such interaction, as a result, becomes homogenous in
the coordinates — that is to say there can be no preference of
one coordinate to the other. For such cases we quote few lines
from [8] “. . . the multiplication of a Lagrangian by a constant
does not effect the equation of motion. This fact makes it
possible, in a number of important cases, some useful infer-
ences concerning the properties of the motion without the ne-
cessity of actually integrating the equation of motion. Such
cases include those where the potential energy is a homoge-
nous function of the coordinates, i.e. satisfying the condition
U(ar1, ar2, . . . , arn) = akU(r1, r2, . . . rn), where a is a scaling
constant, k is the order of the potential function and n is the
number of coordinates”. This then lead the reference to the
following conclusion “If the potential energy of the system is
a homogenous function of degree k in the (Cartesian) coor-
dinates, the equation of motion permits a series of geometri-
cally similar paths and the times of the motion between cor-
responding points are in the ratio t′/t = (l ′/l)1−k/2, where l ′/l
is the ratio of the linear dimensions of the two paths”. To
follow our notations, put r for l ′, t′ for t to get r = Kt2/(2−k),
where K = l ′/(t′)2/3 is a coupling constant and is made up of
the values of the radius and the time of one rotation “of a
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standard doublet in our case” and r is the separation distance
between the two points.

There are only two values for k [8] that result in a bound
motion. These are k = (−1, 2). The first gives r = Kt2/3 and
the second leads to a spring type force or what is known as
a “space oscillator”. The space oscillator case can be shown
to be not a new case and occurs in a field of inverse square
when the displacement is small, the region is small with a
large number of interacting particles [8]. The first case (the
two third power formula) is one form of the famous Kepler
third law of motion and if differentiated twice gives the in-
verse square law d2r/dt2 = (−2/9)K/r2 in confirmation of our
starting assumption. In [5] this form of the inverse square law
(involving time only) was used to predict the motion of many
point particles with a notable gain on computing time. The
quantity (−2/9)K is the coupling constant of the interaction
which takes the value of the universal gravitational constant
Kg = (−2/9)K = G for gravity forces or the Coulomb coupling
constant Ke = 1/4πε0 for electrostatic forces. The value of G
is therefore calculable(in principle) from the dimensions of
the doublet used in the dynamic scaling of the problem —
when this is known.

The values of the coupling constant for the gravitation and
electrostatic forces come from our arbitrary definitions of the
units of mass and charge. By now we had four constants;
the speed of light c, the Planck’s constant h, the gravitational
constant G and the permittivity of free space ε0 . Our arbitrary
physical units from which these are derived are the meter, the
second, the kilogram and the Coulomb.

When we have more than two material points, vector su-
perposition of forces, velocities and displacements must be
used, with the force (= acceleration since we have equal
mass) for each pair calculated separately then added for the
lot. For N material points, there are N − 1 interacting pairs
of points as we exclude the interaction of a point with itself.
If N is large, N − 1 can be replaced with N. For the case
of a large collection of points that are effectively sitting at
the same point, the center of mass of any such body obeys
the same rules of motion given above, since mathematically
the two are equivalent. The final interaction force is a resul-
tant of the interaction of all pairs in each collection and will
thus be a multiple of the total number of interacting pairs, or
equivalently by the product of the masses of any two interact-
ing groups having the same center of mass. This reproduces
Newton’s law for gravitational interaction and the Coulomb
charge interaction and the product of the two masses/charges
will appear in the coupling constant.

2.4 The size of a doublet

Take the case of pairs of points with an attractive force locked
in doublets to form particles. These doublets will have fixed
masses(by assumption) and also fixed spin velocity since the
tangential speed of all the material points making a doublet

is fixed at c at all times. It has a fixed radius also since the
speed of the constituents are fixed and the coupling constant is
also fixed. This creates a particle with fixed and well defined
properties. Since the product of the mass of two point masses
2δm, the speed v, and the radius of the doublet r is given
by; 2δmcr = δmcd, where d = 2r; has the units of energy and
time (or that of angular momentum) and is the same as that of
the Planck’s constant, we conclude that a limit must be placed
on the smallest allowable doublet, giving δmd = ~/c, where ~
is the reduced Planck constant. This also suggests that (δmd)
is a new fundamental physical unit involving mass and dis-
tance combined together (= 3.5177×10−43 kg m). The numer-
ical value of this constant (or equivalently of the Planck’s con-
stant) comes from our arbitrary choice for the unit of mass in
addition to that of distance and time used earlier. The quan-
tity (δmcd = ~) is the angular momentum and also the spin of
our doublet particle and it is the unit of measurement of spin.
As we have now a lower bound on spin, the orbital momen-
tum of any one or more particles can only be a multiple of
this value ~.

3 Further results

3.1 Heisenberg uncertainty

Since δmvd = ~ can be rewritten as pd = ~, where p = δmv
is momentum for one material point, we get (putting ∆x for
d) the uncertainty principle of Heisenberg usually written as
∆p∆x = ~. Accordingly, the uncertainty principle refers to the
smallest possible angular momentum in nature. As material
points always move at c and must have some effective size,
it is only natural that there is a minimum radius for the cir-
cle of rotation of a doublet. For larger masses, ∆x is smaller
according to this principle. This need not cause any contra-
diction. It can be taken in this setup to represent the region
inside which the center of mass of all doublets is likely to be
located. It becomes smaller as the mass increases, very much
like the uncertainty (scatter) in the average of a large number
of collected data growing smaller and smaller as the number
of data points is larger. Interestingly when this is extended to
take the mass of the entire universe, it becomes equivalent to
saying that the center of mass of the universe is firmly fixed
at a point.

3.2 Einstein mass and energy conversion

As all points making a doublet particle move at the speed of
light, the kinetic energy in any doublet must be a function of
c2 and accordingly we can write E = mc2, with m defined as
the number of doublets in any larger particle. As we have
two point masses in any doublet particle, the more general
formula E = 0.5mv2 for kinetic energy is still valid if applied
to a single point constituent of a doublet.

Riadh H. Al Rabeh. New Ideas for the Extra Dimensions and for Deriving the Basic Laws of Physics L15



Volume 1 PROGRESS IN PHYSICS January, 2010

3.3 Planck’s energy of radiation

For points moving with a speed c around a circle or escap-
ing out of it, we have c =ωr, and mvr = mc(c/ω) = h/2π us-
ing the results above. Using ω= 2π f , we have f h = mc2 or
E = h f . This is Planck relation for the energy of radiation of
frequency f . Also if we put p = mc, we get E = cp for points
moving at c. This is the momentum-energy relation for a par-
ticle with infinitesimal mass (zero mass in the literature).

3.4 Einstein’s relativistic mass

Since points forming a doublet can have two motions — one
along a circle with velocity c and one along the center line
with velocity v (less than c), the ratio of the kinetic energy
of the doublet particle to its total energy must be like (v/c)2,
i.e. Ek/E = (v/c)2 since both quantities refer to the same set
of masses. Also, as we had E = mc2, we get E2

k = E2(v2/c2) =

= (E2/c2)v2 = p2c2, which then gives the relation for the total
energy as E2 = E2

0 + c2 p2. This is the well known relativistic
formula for the total energy of a particle in terms of its rest
energy and kinetic energy. Here it is derived using the simple
doublet structure alone.

3.5 Bohr’s energy levels

For a group containing n doublet particles bound together, the
single doublet formula given above in the form; mvd = ~ be-
comes mnvd = n~ giving the well known Bohr formula for the
spin of bound electrons. This formula, despite its success in
being very close to experiment, has been criticized as not be-
ing based on a model. The doublet model as explained above
can be given in support of this very useful, simple and ex-
perimentally correct formula. The Bohr formula is normally
combined with the centrifugal force expression Fc = mv2/r
and static electric force Fe = e2/4πε0r2 [9] to derive another
expression for the energy levels in an atom (and other bound
structures) in the form rb = (n2/Z)(4πε0h2/mee2), where Z is
the total charge of an atom and n is an integer multiple of the
spin of the atom. For a single charge atom like hydrogen and
lowest spin level corresponding to n = 1, we get the Bohr ra-
dius r = rb = ε0h2/πmee2 = 5.2917×10−11 m. This formula has
been declared wrong, in some of the literature, because it pre-
dicts the spin squared as n2~2 rather n (n−1)~2 as predicted by
the wave function theory of quantum mechanics (which has a
better agreement with experiment). In the author opinion this
is an unfair conclusion, since in any n discrete interactions, a
particle does not interact with itself(as given above), leaving
only n(n − 1) interactions that should replace the n2 term in
the Bohr formula and bring it inline with the corresponding
quantum formula.

When a group of doublets form a larger structure, the vol-
ume of the new structure will intuitively depend on the num-
ber of doublets if these happen to occupy different volumes
and not share the same center of rotation. This fits well with
the observations about the nucleus of any atom being a func-

tion of the number of the nucleons only. The application of
this fact lead to the one third power law for the radius of an
atom R in terms of the atomic number A [9] giving R = r0 A1/3;
where r0 = 1.4×10−15 m is an experimental constant. For the
nucleus of hydrogen A = 1 and r0 becomes the diameter of a
proton. We shall compare this value with that of the electron
as calculated in the next section.

3.6 The fine structure constant

When the gravitational and magnetic forces are small, the
electrical Coulomb forces Fe = e2/4πε0r2 for electrons are
nearly equal to the centrifugal forces Fc = mev

2/r. In the case
v= c; re = e2/4πε0mec2 = 2.817×10−15, giving the classic ra-
dius of the electron. This formula is normally derived in the
literature (see [10]) from the potential distribution around the
electron due to its charge using energy conservation. The
present derivation relies on the doublet model alone. In a
doublet however, we have two material points (two masses)
contributing to the force which seems to suggest a different
value for re, giving re = 1.4010×10−15 instead. This is prob-
ably more plausible as an electron radius, and it is to one’s
surprise, exactly the same as that for the proton as we found
from the hydrogen nucleus in the previous paragraph. If this
is correct, it indicates a similarity in the packing in both the
electron and the proton despite the large difference in mass.
One possible explanation is that this is the result of many dou-
blets occupying the same volume and sharing the same center
of rotation — increasing the energy content but not the size.
Experimentally, the electron has, so far, behaved as a point
charge with no internal details apparent. The proton on the
other do have an internal structure.

If in the expressions for the centrifugal and static forces
above, the velocity v is less than c, we could calculate v us-
ing mvd = ~ and obtain; v2 = e2/2ε0h, and v/c = e2/2ε0hc =

= 1/137.036. This is the fine structure constant and it now
points to the relative velocity of the electron in an orbit to
that of light (or that of the material points in a doublet), and
can therefore be looked at as a form of a packing factor. If
the expression for the doublet radius is divided by the radius
of the electron using mvdc = ~; we get de/dc = e2/4πε0~c =

= 1/137.036, giving the “fine structure constant” again —
now it is a clear packing factor. The quantity dc is the Comp-
ton wavelength of the electron. The ratio of the Compton
diameter dc and the Bohr diameter db as found above gives
dc/db = e2/2ε0hc, that is the fine structure constant again —
now representing the next level of particle packing. All these
are well known results, but now we have a clearer reasoning
for their existence– using expressions derived from the struc-
ture of the doublet alone.

3.7 Planck’s length scale

The Coulomb force between two point charges is given by
Fe = q2/4πε0r2; and the magnetic force between two moving
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point charges is given by Ampere’s law Fm = µ0 q2v2/4πr2.
This can be modified using the identity c2 = 1/ε0µ0 to give
Fm = (q2/4πε0r2)(v/c)2. Thus if v= c the electric and mag-
netic forces between two point charges are equal regardless of
the value of the separation distance r or charge q, since they
cancel out. This is very interesting because it allows the pack-
ing of doublets without having to overcome the huge electro-
static repulsion forces. This is an asymptotic freedom type
condition. Such equality is normally broken as the particles
go to form a doublet and the electric forces between different
doublets become much stronger than the magnetic forces be-
tween them, since the speed of the center of a particle doublet
is small and the magnetic forces between two doublets, be-
coming small compared to the electrostatic forces. The situa-
tion changes again for a very large collection of moving dou-
blets wherein the magnetic forces become important again
because of the shear number of participants (when correctly
oriented) rather than the result of very high velocity. We ob-
serve this in our daily usage of the magnetic force wherein
currents are the result of the orderly movement of a very large
number of particles.We note here that Ampere’s law is also
derivable from the inverse square law when the charges are in
motion.

When the electric and the magnetic forces are balanced
at the velocity limit c, only gravity and centrifugal forces are
left in play. Gravity force is given by Fg = Gm2/r2 and cen-
trifugal forces by Fc = mv2/r; equating the two and taking
into account the Planck formula mvr = ~ with v= c, we ob-
tain rp =

√
G~/c3 = 1.616×10−35 m. This is the Planck length

scale and it gives the smallest possible dimension of any dou-
blet structure. When the separation distance increases beyond
this length, the equality changes and the centrifugal force be-
comes more dominant over gravity as in normal interactions.
For large astronomical masses the picture changes again and
gravity becomes strong and dominant because of the shear
number of participating particles.

3.8 Spin and space quantization

In the presence of more than one doublet contained inside a
larger particle, it is not unreasonable to think that space and
size limitations allow the compaction of only a limited inte-
gral number of doublets. This leads to an angle quantization,
if doublets shared the same spherical space and to volume
quantization if doublets are in separate spheres. Angle quan-
tization leads to the well known quantization of angular mo-
mentum and volume quantization gives the nucleus a size that
is dependent only on the number of nucleons [9].

4 Final remarks

We have started with identical material points together with
the continuous distances separating them and formed a 3D
Euclidean space for any point in time. We have assumed that
all material points have infinitesimal masses and move all the

time at the characteristic speed of space and that of light c.
The value of c comes from our arbitrary choice of the ratio
of the units of mass and time. We formed doublet particles
that have a (center of mass) speed from zero to that of light
from every two point particles of suitable attributes. This sim-
ple construct produced a simple mechanism for the transfor-
mation between mass and energy and when further analyzed,
produced the correct relativistic energy and quantum mechan-
ical relations too.

Extra dimensions — all discrete are derived from the
properties of the 3D space and the differentiable distances ex-
isting between any two material points in it — using the fact
that through a single point in space one can have multiple
paths of motion. The dimension of time is found to corre-
spond to one such multiplicity– the number of rotations of a
standard doublet counted at any one space point.

Velocity, acceleration, force, momentum and any variable
dependent on time are found to be discrete as a result of the
discreteness of time. This naturally lead to the Heisenberg
uncertainty principle and the discrete energy and some other
ideas associated with quantum mechanics. The need for dis-
crete description of some of the basic variables of physics can
be traced as far back as the Greek philosopher Zeno, who put
paradoxes that threatened the rational basis of science till very
recently. These were only recently resolved using arguments
from calculus in which infinitesimal quantities can integrate
to finite quantities in a limiting process. Making time discrete
is another neat way to clear Zeno’s paradoxes.

The process of timing is found to represent a gauging pro-
cess of the dynamics of larger systems by those of a simpler
system like a doublet. The dimensions of spin etc are cre-
ated in connection with movements in the directions normal
to the line joining any two material points. The inverse square
laws are only the result of similarity in the motion of different
size systems. The coupling constants in the two opposite di-
rections along the line joining two material points can be ±1
for repulsion and attraction. To work with individual charges,
rather than the resultant outcome, is the square root of this
giving;

√−1 = ± i, to produce the desired effect of repulsion
for similar charges and attraction for different charges, and√

1 = 1 to represent attraction only in the case of gravitational
forces — since we do not have negative masses in nature as
far as we know. Again if we are only concerned with the com-
bined effect of two charges or two masses, then we only need
to consider the real quantities ±1 for the coupling constant for
the gravitational and electrostatic forces.

Only four different forces are needed in the present setup.
Two of the forces, the magnetic force and the centrifugal force
result from the motion of the sources of the other two — that
is masses and charges. The last two types of forces disappear
at zero velocity. As we have identical point masses, the word
“force” becomes not essential and can be replaced with just
“acceleration”. The mathematical ideas of superposition and
center of mass are very useful and should be used for all vec-
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tor quantities. Four numerical constants appear in the present
formulation. At the same time, we have four arbitrary units
to fix. Therefore we could assume that the two make two
equivalent sets of values or figures.

A transformation from a singlet particle to doublet parti-
cle was taken to occur when two material points are locked in
a circular motion to form a doublet. In the absence of exter-
nal factors, this system is self preserving and eternal, since the
two rotating points observe the rule of balanced displacement
BD all the time and the linear speed is fixed at that of light
all time by assumption. Further the coupling constant is fixed
and this fixes the radius of the doublet. This made one doublet
exactly similar to any other doublet in size, mass, magnitude
of spin, but may differ in the other attributes like the sign of
spin, sign of charge etc. This allows for creating antiparticles
that are identical in mass, but have anti other attributes. The
rule of motion in the form of balanced displacement BD is a
generator of the three laws of motion of Newton as it leads
directly by differentiation to the conservation of momentum
and to the usual action reaction for forces. As the measure of
time is discrete, all the quantities connected to time are dis-
crete leading naturally to the Heisenberg uncertainty principle
and Planck’s discrete energy quanta.

The method of using fields rather than particles is not es-
sentially different. Water is composed of particles, but it is
describable in terms of a continuous field of pressure. Also
a large number of particles with suitable coupling constants
can be described using waves, and a group of waves can be-
come concentrated to resemble a particle(the soliton). Parti-
cles however, constitute the simples and more natural model
for construction of matter. The phenomenon of interference
and others have been sighted in the past as arguments against
the particle picture. The Newton’s corpuscular theory of light,
for example, was rejected by simply asking where the corpus-
cles go at points of zero amplitude in the interference pattern
(the dark spots in the interference pattern). These and other
objections, have long been shown to be false since interfer-
ences happen only at the surfaces of matter and the energy or
photons or corpuscles are readily absorbed by matter itself —
very much like hitting a body with two bullets from two op-
posite directions produces no apparent kinetic energy — it is
simply transferred to the molecules in each of the two bodies.

Another problem of interest is that when all particles at
sight are connected via deterministic laws, as in the present
case, one may suspect the disappearance of the free will con-
cept. It is a fact that at this moment I can stop writing this
article if I wanted to. How a decision like this can be made
if the destiny is decided by the fact that all material points
in the world are entangled together by the balanced displace-
ment rule and the motion of any material point as a result is
decided by the fate of every other one. The author believes
this problem is closely related to an earlier situation we met
above, wherein material points can “decide” whether to have
a left handed or right handed spin or some of the other op-

posing attributes. At the point of branching or multiplicity of
choices of paths that are equally likely, it takes nearly “zero”
energy to change ones mind, and this could be why we feel
free to take decisions at a moment where more than one ac-
tion route is possible. In other words, our free will decisions
are mainly done on branching and cross roads situations.

Reference [4], considers further the idea of a doublet par-
ticle and the geometry of aggregate of doublets, and show that
it is possible to use such building blocks to make more com-
plicated pieces of condensed matter and that there is good
evidence that the masses of the elements in the periodic ta-
ble and those of the elementary particles of physics are well
correlated with assumptions given for simple doublets.

The Pauli Exclusion Principle, which is a corner stones of
modern physics, has not been considered here. This principle
is also derivable from the geometry of space and symmetry.
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Some major problems of physics, which remained unsolved within classical and rel-
ativistic gravitation theories, are explained adopting the quantum gravity interaction
descending from the micro-quanta paradigm. The energy source of the gravitational
power Pgr, which heats and contracts the Bok’s gas globules harbouring the future stars,
is identified and defined as well as the gravitational power generated on the solid/fluid
planets. Calculations are carried out to make the comparison between Pgr predicted for
the solar giant planets and the measured infrared radiation power Pint coming from the
interior. The case of planets with solid crust (Earth, etc.) requires a particular attention
due to the threat to stability produced by the thermal dilatation. An analysis is done
of the Earth’s planetary equilibrium which may be attained eliminating the temperature
rise through the migration of hot internal magma across the crust fractured by earth-
quakes. The temperatures observed up to 420,000 years ago in Antartica through Vostok
and Epica ice cores suggest the possibility that the Earth gravitational power Pgr may be
radiated in space through these temperature cycles (Glacial Eras). In this general frame
the Earth’s high seismicity and the dynamics of Plate tectonics may find their origin.

1 Introduction

A preceding paper showed that some fundamental forces, i.e.
the Gravitational, the relativistic Inertial forces and the Strong
force between nucleons and other particles, have the com-
mon origin from the interaction of particles with the uniform
flux of micro-quanta [1]. The paradigm is characterised by
a very high flux of very small quanta (wavelength equal to
the Planck’s lengh) which collide with particles determining
their motion according to the Relativistic Mechanics. Micro-
quanta easily penetrate any large mass, generating the Grav-
itational and the Strong forces on each particle. Travelling
with the speed of light, these quanta explain why all princi-
pal interactions travel with this velocity. For these reasons
the micro-quanta paradigm represents the underlying real-
ity which supports Special Relativity, a fundameental the-
ory which comes out reinforced by this physical paradigm.
The supposed frailty of SR was denounced through several
scratching paradoxes, such as the twins paradox, etc. Now the
uncertainty on the inertial frames vanishes because the par-
ticle kinetic energy depends on the physical collisions with
the micro-quanta flux. Some new results has been already
analised [1], for instance the congruence of the Strong force
between nucleons (an explicit expression is given for the first
time) with the dynamical structure of the Deuterium nucleus.
Here we try to explain some gravitational problems which
did not find solution in the frame of the classical and the GR
gravitation theories.

2 The quantum gravitational pushing force. Some fun-
damental concepts

In the last decades some quantum gravitational theories have
been proposed, but they found difficulties. All these theo-

ries assume, like classical gravitation and General Relativity,
that the gravitational mass is the source of the gravitational
force, directly or indirectly through the space curvature. The
present theory assumes that two masses are not attracted, but
are pushed towards each other by the gravitational force, be-
cause the interaction between two particles is due to collisions
with the micro-quanta flux φ0. The cross section σi = A0mi

of any particle is proportional to its inertial mass mi through
the fundamental constant [1] A0 ≈ 4.7×10−11 (units SI system).
This simple origin of the most general characteristic of parti-
cles (i.e. the mass) depends on the fact that cross sections
are the measure of the particle interaction with the micro-
quanta flux filling the Universe. For the sake of simplicity
we consider in the following only nucleons since they rep-
resent in practice the total mass of any gravitational body.
Let’s summarise some fundamental concepts. Particles are
made of electromagnetic energy supporting a spherical sym-
metric field which scatters the incident quanta. Due to the
very little Compton ratio K0 ≈ E0/mc2 = 3.93×10−51 between
quantum and nucleon rest energy, the colliding quanta fol-
low the optical reflection law. This fact prevents between a
pair of particles the beam of quanta directed along the join-
ing line and delimited by the small fractional cross section
∆σ= K0σ(σ/2πr2) centered on each particle. Due to the lack
of the quantum beam ψ(r) = ∆σφ0, each particle feels a force
due to an equal beam ψ(r) colliding on the diametrically op-
posite ∆σ. Since each recoiling quantum leaves the momen-
tum 2E0/c, the beam ψ(r) gives rise to the radial pushing
force

f (r) =
2E0

c
ψ(r) =

2E0

c
K0σφ0

σ

2πr2 , (1)

where E0 � 5.9×10−61 is the quantum of energy and σ �
7.85×10−38 is the nucleon cross section. This equation must
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be compared with the inertial model of particles [1]

mc2 = σφ0E0τ0 (2)

where τ0 = 2λ0/c is the simultaneous collision time of the
micro-quanta, whose wavelength derived from Eq. (2)

λ0 = c3/2A0φ0E0 ≈ 4×10−35 (3)

results very close to the Planck’s length. In the time τ0 a
nucleon scatters a high number of quanta

σφ0τ0 = 1/K0 � 2.54×1050 (4)

which press uni f ormly any f ree particle, without changing
its state of motion or rest (Principle of Inertia). The force
f (r) which pushes the particles towards each other is just the
experienced gravitational force. This may be described rear-
ranging Eq. (1) and imposing that the term in brackets equals
the gravitational constant G

f (r) =
E0 K0φ0 A2

0

πc
m2

r2 =
Gm2

r2 . (5)

The rihgt side is the newtonian law, but now G cannot in
principle be considered constant and uniform throughout the
Universe, although within the solar system it is. The newto-
nian law gives a simple notation of the pushing gravitational
force.

It is largely believed that the newtonian gravitation sup-
ports the paradigm of the gravitational mass. Let’s put a
question : Who defined this paradigm? In his famous words
“Ipotheses non fingo” Newton did not make assumptions on
the mechanism of interaction. Many years ago I was im-
pressed by the fact that Newton never declared that masses
generate the force drawing them. He said that massive bod-
ies show between them an “action at a distance” requiring that
the mutual forces are aligned. This feature has been verified
by the astronomers of the XIX century.

For some centuries the physicists found natural that the
mass of bodies was the source of the gravitational force mea-
sured between them, as the experience about the new elec-
trical phenomena taught us. However it has been recognised
that the concept of mass as a field source is inappropriate,
since it does not produce the “action at a distance”condition.
Let’s notice that this condition is satisfied by the gravitational
pushing force.

The history of science taught us that when in the long
run physics stagnates, then some old paradigm obstructs the
development. In 1939 some difficulties were recognised with
the GR theory. For instance it was found that stars of adequate
mass undergo an unlimited gravitational collapse. The final
product of this collapse was named “black hole”, but this con-
cept soon appeared unphysical. To be short, the enourmous
stellar body vanishes but the great gravitational field remains.
Contrary to the common conviction, the unlimited gravita-
tional collapse is not linked to the GR theory, which is a rig-
orous logical construction excepting one point: the arbitrary

incorporation in the theory of the (not necessarily universal)
gravitational constant introducing the empirical gravitational
force between the masses.

The unlimited collapse depends in fact on the gravita-
tional mass paradigm, which arbitrarily considers the grav-
itational force as a property of the mass. Recent theoretical
studies within the GR mathematical frame [2] esclude the ex-
istence of black holes, never really observed. This comes in
favour of the new class of observed neutron stars originating
from the collapse of large stars with enormous emission of
radiation (supernovae).

In the frame of the micro-quanta pushing gravity the mass
of particles is not the source of the gravitational force, but is
simply a duplicate of the inertial mass. This explains why
the Equivalence principle is perfectly verified up to 1 part on
1012 by the experiments. As a consequence the large star bod-
ies undergo limited collapses, because the increasing gravita-
tional pushing force does not exceed a maximum linked to
the micro-quanta flux constants. These collapses originate
the neutron stars.

Finally let’s recall that in [1] a strong force between nu-
cleons is defined, which is accurate at distances lower than the
nuclear diametre. At the usual distances between atomic nu-
clei, the gravitational force largely exceeds the strong force,
giving rise to the concept of gravitational power. In the fol-
lowing paragraphs we shall examine the implications of the
gravitational power on the evolution of celestial bodies. For
instance : i) H2 galactic gas clouds (Bok globules), ii) dense
cold planets, iii) neutron stars. The case of neutron stars will
be dealt with subsequently.

3 Gravitational power on the contracting Bok globules

Before considering the solid and liquid aggregation state, let’s
consider the case of free atoms in gas clouds which inter-
act emitting radiation. The astronomer Bart Bok, observing
in 1947 some dark galactic gas globules with low tempera-
ture about 8◦K and radius around 1015 metres, predicted that
they might be the forge of the stars. After 43 years J. L. Yun
and D. P. Clemens [3] found that practically all Bok globules
they observed through CO spectroscopy resulted associated
with IR emission, so they could affirm that “almost every Bok
globule harbours a young star”. They examined a total of 248
globules having an average mass of 11 M� and an average
infrared radiation power Prad ≈ 0.5M(L�/M�) [4].

At the end of XIX century lord Kelvin and Helmholtz
studied a physical mechanism which could explain why the
Sun shines from billions years without reducing its luminos-
ity. But they correctly recognised that the gravitational con-
traction of the outer solar layers cannot explain quantitatively
the star luminosity. Only after the advent of Special relativ-
ity it was recognised that the solar energy comes from the
high temperature fusion of light nuclei through the Einstein’s
mass-energy equivalence.
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To day we don’t know which source of energy heats the
core of gas globules up to the temperature of star ignition.
Of course the gravitational force accelerates the atoms which
colliding emit infrared radiation and tend to aggregate to-
wards the cloud centre. The infrared power is generated re-
ducing the atomic kinetic energy, but the average gas temper-
ature, instead of reducing, increases. From which physical
source comes the energy which heats the mass and produces
radiation? It cannot come from the Einstein’s mass-energy
equivalence, considering the low gas temperature within the
Bok globules.

The problem of correctly defining the source of the grav-
itational power heating the Bok globules remained unsolved
in absence of a theory of the gravitational interaction able
to specify the rate at which the gravitational waves hit the
particles. During the last century the GR theory, which pre-
dicts correctly the astronomical observations, didn’t solve this
problem. The non-existence in GR theory of the standard
gravitational waves has been theoretically guessed by several
authors and recently shown by A. Loinger [5]. As a matter
of fact several groups of physicists are searching for the stan-
dard GW’s throughout the Universe, but they didn’t find a
definite result. To define the gravitational power we need to
know the collision rate of known waves. It has been shown
that each particle of a pair undergoes a pushing force f (r)
given by Eq. (1), which recalling Eq. (4) can be written as
f (r) = (2E0/cτ0)(σ/2πr2), a form expressing clearly the mo-
mentum variation in the time τ0 of the bouncing quantum
beam. Assuming that the particle velocity v � c, which
holds up to temperatures of 108 ◦K within the star core, this
force originates during the time τ0 of the beam reflection, so
the energy released to the particle by the force along the dis-
tance of reflection lr = cτ0 is ∆L � f (r) × lr = 2E0(σ/2πr2).
Then the power given up to the particle in the time τ0 is
pi = ∆L/τ0 = f (r)× c [1]. Using for the sake of simplicity the
newtonian notation (Eq. 5), the gravitational power received
by each nucleus of a pair at a distance xi becomes

pi = G cm2
i /x2

i , (6)

where mi is the mass of nuclei, xi = (mi/δ)1/3 is the average
distance between nuclei within a body of local density δ(r)
where r is the distance along the body radius. Summing up
to all nuclei mi of a celestial body with radius R, the gravita-
tional power released to the body is defined

Pgr =

R∫

0

pi(r)
4πr2δ(r)

mi(r)
dr . (7)

First let’s assume the limiting case where the atoms are at
rest. From Eq. (6) one gets

pi(r) = Gcm4/3
i δ2/3(r) (8)

which, substituted in Eq. (7) and considering that the molec-
ular mass (mostly Hydrogen) does not vary along r, gives the

gravitational power of a gas cloud at absolute zero tempera-
ture

Pgr = Gcm1/3
i

R∫

0

4πr2δ5/3(r) dr . (9)

This situation looks like the atoms of very cold gas clouds.
However Eq. (9) is inaccurate because does not consider the
high temperature reached in the core of galactic gas glob-
ules made of free molecules having velocity v= (2kT/mi)1/2.
When the distance xi (t) between two close molecules some-
times reduces to the molecule diametre, there is a collision
with probable emission of a visible photon. More in general,
putting x0 the minimun distance, the two atomic nuclei graze
with angular velocity

ω ≈ v

x0
=

(2kT/mi)1/2

x0
. (10)

For a very small time, the charged nuclei oscillate with
amplitude x(t) = x0/ cos(ωt) = 2x0 cos(ωt)/(1 + cos(2ωt)).
Since gas oscillators at temperature T produce radiation with
wavelength λ= 2.89×10−3/T (Wien’s law) the corresponding
radiation emitted from a gas cloud is linked to

ω = (2πc/λ) = 6.52×1011 T . (11)

Substituting ω in Eq. (10) one has

x2
0 = 6.49×10−47/Tmi. (12)

Putting in Eq. (6) the distance xi = x0, the gravitational
power of a pair just emitting an infrared photon at a distance
r along the radius of the body is

pi(r) = 1.54×1046 Gcm3
i (r) T (r) . (13)

Susbstituting in Eq. (7) and integrating to all nuclei of a
gas globule made of equal molecules one obtains

Pgr = 1.54×1046 Gcm2
i

R∫

0

4πr2δ(r) T (r) dr . (14)

Assuming the H2 molecules of the Bok globules, quick
calculations can be made recognising that Eq. (14) contains
just the definition of the average temperature Tav of a body of
mass M. So we have

Pgr ≈ 3.42×10−9 MTav . (15)

To calculate the average temperature through the ideal gas
equation of state, we need to calculate the average radius Rav

of the 248 observed globules, which emit infrared radiation
corresponding to an external temperature T0 comprised be-
tween 26◦ and 254◦K [3]. This may be obtained putting the
radiation power Prad = 4πR2

avκsT 4
0 equal to the observed radi-

ation Prad ≈ 10−4 M which, substituting the average globule
mass, gives Prad ≈ 2.2×1027 Watt. The resulting Rav ≈ 2×1012
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gives an average temperature Tav ≈ 5×104 ◦K leading to a
gravitational power Pgr ≈ 3.8×1027 Watt.

The observed Bok globules denounced an inner hot core.
As appearing in Eq. (14), the inner gravitational power is pro-
portional to the high central temperature, which explains why
the inner core temperature increases so rapidly.

Part of the gravitational power escapes as radiation ac-
cording to the energy balance of the globule

CH M(dTav/dt) = Pgr − Prad (16)

where CH = 1.44×104 J/kg×K is the specific heat of the molec-
ular Hydrogen. Since it has been found that Pgr > Prad,
Eq. (16) states that the globule temperature increases.

Had the theory predicted Pgr less than the experimental
Prad, it should be considered wrong.

Now we have to proof that this inequality holds during
the globule lifetime. The micro-quanta paradigm shows that
within the gas clouds Pgr increments the molecular kinetic
energy and produces photons which undergo many Compton
scattering with reduction of their energy before escaping from
the globule. In fact the photon mean free path results 1011–
1012 metres in the periphery of a cold large globule (R = 1015)
whereas takes a figure of 102–104 metres within the observed
Bok globules (R = 2×1012). Since the last case shows an op-
tical thickness much greater than the first case, this means
that the fraction Y = Prad/Pgr of the infrared radiation escap-
ing from the cold large globule is higher than the fraction
Y = 2.2×1027/3.8×1027 ≈ 0.55 escaping from the observed Bok
globules. The fraction Y(R) is a function of the globule radius
and reduces when the globule contracts, increasing the opti-
cal thickness. To evaluate the temporal trend of the globule
temperature from Eq. (16) we substitute the definition of Pgr

and put Prad = Y(R)Pgr

CH M (dTav/dt) = 3.42×10−9MTav (1 − Y(R)) . (17)

It appears that Tav depends slowly on the mass through the
factor Y(R). If one assumes that the observed value Y ≈ 0.55
does not vary much during the globule lifetime, the solution is

Tav(t) ≈ Tin exp
(
9.96×10−14 t

)
, (18)

where Tin is the average temperature of the Bok globule at
the initial stage t = 0. For instance one may put the initial
stage when the radius R≈ 1015 corresponds to the cold large
globule. In this case the average temperature, calculating the
right average gravitational pressure, results Tin ≈ 3.2×104 ◦K,
showing that even the cold globule has a hot core. From this
initial stage one can calculate the time a Bok globule needs to
heat the mass at a temperature Tav

∆tB ≈ 1013 ln
Tav

3.2×104 . (19)

The most important event in the life of Bok globules is
the ignition of the nuclear reactions which takes place when

the inner core attains a temperature of the order of 107 ◦K.
Assuming the corresponding average temperature Tav ≈
8×105 ◦K, the star ignition occurs after the time

∆tF ≈ 106 years. (20)

This result agrees with the computation of the star incuba-
tion time given by some classical methods. However Herbig’s
method predicted that globules producing small stars required
an increasing incubation time. For instance a star of 0.2M�
would require more than 109 years before it begins to shine.
This implies that these small stars would be only a little frac-
tion in the celestial vault, contrary to the common observa-
tion.

Conversely, the gravitational power concept satisfies the
experimental evidence because the incubation time depends
on the firing temperature of fusion reactions, which is the
same for the Hydrogen gas globules. Since the ideal gas equa-
tion holds in the case of gas globules (escluding the inner core
where the high temperature determines plasma conditions),
the thermal energy of the body equals substantially the gravi-
tational energy

GM2/2R � CH MTav (21)

from which the radius R corresponding to a globule of mass
M and average temperature Tav can be calculated. The high
power generated by the nuclear reactions in the inner core
(protostar) gives rise to a radiation wind able to sweep away
the external globule layers, revealing a young bright star. It
may be useful to recall that the fire of nuclear reactions lim-
its, through the radiation wind, the size of the star mass. The
different masses of the stars depend probably on the differ-
ent increasing rate of the inner core temperature at the mo-
ment of the nuclear ignition. This very complex phenomenon
has been recently observed and described by an equipe of
astronomers which observed the formation of a star group
within an infrared dark cloud in the G327.3-0.6 region [6].

4 A new dynamical principle in the Universe

Cosmologists have long debated between the expanding uni-
verse described by various GR models and the stationary uni-
verse described by the Hoyle-Bondi model, where new matter
continuosly emerges apparently from the void space.

The micro-quanta flux is the physical reality underlying
the Relativistic Mechanics which rules the motion of parti-
cles. The gravitational power on the bodies heats cosmic
cold gas clouds at different places in the Universe, which
become observable at different times when their electromag-
netic emissions come within the sensitivity of the astronomi-
cal and astrophysical instruments. The energy heating small
and large masses in the Universe is drawn from the collisions
of particles with the micro-quanta flux filling the space, giv-
ing up to each particle a gravitational power produced by the
gravitational force due to the mutual screening of masses. Is
this the “creation of matter” mentioned by Hoyle? Strictly
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speaking, the gravitational power concept implies only the
drawing of energy from the underlying reality. Being the en-
ergy equivalent to mass, the answer might be yes.

The new dynamical principle describes, more likely, the
model of the Universe depicted by the astronomer H. Arp [7]:
the Universe has no origin and is in continuous transforma-
tion, drawing locally from its interior the possibility of evo-
lution. Any large gas cloud at temperature near the abso-
lute zero may give rise to crowded star clusters or to new
galaxies thanks to the gravitational power, which acts also in
many other astrophysical situations. For instance influencing
even the behaviour of modest astrophysical bodies, such as
the planets.

5 Gravitational power on the planets

In the so-called “inert” celestial bodies, such as the planets,
atoms are bound to each other by the forces of the Lennard-
Jones potential, which determine the equilibrium distance be-
tween them. A planet forms when the density of a contract-
ing small cloud takes values corresponding to the solid or
liquid state. Obviously this fact stops the contraction and
makes largely inaccurate the ideal gas equation, so the equiv-
alence between the gravitational and thermal energy vanishes.
Around their rest-place the atomic nuclei oscillate with am-
plitude and frequency depending on the temperature. Any
nucleus of mass mi and average velocity v shows an absolute
temperature given by

kT =
1
2

mi v
2. (22)

The instanteneous velocity v(t) is bound to the oscillation
amplitude x(t) = a sin(ωt + α) through the relationship

v2(t) = (dx/dt)2 = a2ω2 cos2(ωt + α) (23)

whose average value is v2 = 1
2 a2ω2.Then the oscillation am-

plitude is given by

a =
(4kT/mi)1/2

ω
(24)

which is a little different from Eq. (10). The frequency of the
emitted photon is linked to the temperature of the gas through
the Wien’s law which leads to ω given by Eq. (11). Substitut-
ing ω and mi = Am0 into Eq. (24) and putting the numerical
values, one gets the radial behaviour of the amplitude depend-
ing on T (r) and A(r)

a(r) =
2.79×10−10

[T (r) A(r)]1/2 . (25)

The electrical forces rule the motion of the oscillating
atoms in thermal equilibrium. But the kinetic energy of the
atoms came from the same source that heated the ancient Bok
globule which produced our Sun and planets. The primeval
planets were hot bodies with outer temperature around
950◦ K, which lose their energy early by radiating in space,

thus allowing life on the Earth during nearly 4 billion years.
Abstracting from the heating of solar radiation, all planet sur-
faces should be presently near the absolute zero. But the as-
tronomers found a sensible infrared radiation which comes
from the interior of the giant solar planets [see Table 1]. As
explained for the gas globules, also the atoms in the planets
receive new kinetic energy from the micro-quanta flux. Each
atom receives the major fraction of the gravitational power
from the nearest nuclei. The work done on each oscillating
atom by the resultant gravitational force always increments
its kinetic energy. Let’s consider the resultant gravitational
force on a nucleus of mass mi oscillating with amplitude x(t)
along the straight line joining some nuclei placed on both
sides at equal distance xi. Pairs of adjacent nuclei are alterna-
tively approaching and removing of a displacement 2x(t) due
to the thermal motion. Thus the nearest two nuclei gives the
greatest contribute, whereas the nuclei at distance 2xi do not
contribute and the nuclei at distance 3xi contribute for a few
percent, as shown by Eq. (26). Multiplying the resultant force
by the velocity c of the colliding quanta gives us (considering
that x � xi) the released power

pi(t) = Gcm2
i

[ 1
(xi − 2x)2 −

1
(xi + 2x)2 +

+
1

(3xi − 2x)2 −
1

(3xi + 2x)2

]
� 8.3 Gcmi xδ .

(26)

To obtain the time averaged power when the amplitude
varies from 0 to a we have to multiply by 2

π
, so one gets

the radial power distribution pi(r) � 16.6
π

Gcmi a(r)δ(r) to
be substituted in Eq. (7). As a consequence the gravitational
power released to a planet results

Pgr �
16.6
π

Gc

R∫

0

4πr2δ2(r) a(r) dr (27)

which, substituting the amplitude a(r) from Eq. (25), gives

Pgr � 2.95×10−9 Gc

R∫

0

4πr2δ2(r)
[T (r) A(r)]1/2 dr . (28)

If the internal parameters were known, Eq. (28) might be
simply computed by numerical integration. But the trends of
the internal density, nuclear mass and temperature are in gen-
eral not known (excepting perhaps the Earth) with an accu-
racy better than 20%. To the aim of doing some quick calcu-
lations we observed that the ratio B = δ(r)/T (r)A(r) results to
be, referring to the Earth’s internal parameters recently cal-
culated by D. Alphe et al. [8], independent from the radial
coordinate and about equal to B≈ 4×10−2 (SI system). Let’s
recall that Earth is the unique planet whose internal structure
is known with an accuracy better than 10%. Substituting B in
Eq. (28) one may obtain the approximate formula

Pgr ≈ 2.9×10−11M (δavB)1/2. (29)
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Planet

Predicted
gravi-
tational
power
Pgr (W)

Measured
infrared
flux φir

(W/m2)

Internal
infrared
flux ∆φir

(W/m2)

Measured
internal
power
Pint (W)

Jupiter 4.3×1017 13.89 5.57 3.5×1017

S aturn 9.1×1016 4.40 1.93 8.6×1016

Uranus 9.8×1015 0.69 0.04 3.2×1014

Neptune 1.7×1016 0.72 0.45 3.5×1015

Earth 2.6×1015 ? ? ?

Table 1: Predicted gravitational power Pgr compared with the mea-
sured internal power Pint observed for the solar giant planets, ac-
cording to [10].

5.1 Calculation of the gravitational power on Earth and
the giant solar planets

When applied to the Earth, Eq. (29) gives a gravitational
power Pgr ≈ 2.6×1015 Watt. This approximate formula shows
an accuracy comparable to that we would obtain introducing
the Earth internal parameters directly in the exact Eq. (28).
The predicted Pgr is 60 times higher than the classical heat
flow (4.4×1013 Watt) calculated by laborious evaluation of the
geothermal gradient measured throughout the continents and
adopting an average thermal conductivity κ measured in lab-
oratory for the principal rocks [9]. Of course the value of the
geothermal gradient and of κ for the remaining 70% of the
planet surface (under the oceans) had to be inferred, due to
the difficulties of making measurements. Because the clas-
sical heat flow is likely not affected by a computational error
higher than 30%, the discrepancy with Pgr has to be attributed
to the lack of other forms of heat flow across the crust. The
contribution of the radioactive isotopes in the rocks to the
total power generated inside the planet becomes negligible
when compared to Pgr. Useful verifications of the computa-
tional formula for Pgr (Eq. 29) may be done searching for the
constant Bi of the giant planets of the solar system for which
the infrared radiation coming from the interior has been mea-
sured. A recent book by P. G. Irwin [10] analyses the data
collected from various interplanetary spacecrafts launched in
the last decades towards Jupiter, Saturn, Uranus and Neptune.
A draft of the internal structure of these planets is given from
which only rough values of Bi may be obtained. However
for Jupiter and Saturn the values of Bi are not much differ-
ent from the Earth’s value, whereas lower values were ob-
tained for Uranus and Neptune, whose structure is dominated
by H2O ice instead of molecular Hydrogen.

In Table 1 the gravitational power Pgr computed for the
giant planets is compared with the internal infrared power
Pint = 4πR2(φir − φS un) derived from the measured infrared
flux φir minus the infrared contribution φS un due to the so-
lar absorbed/emitted radiation. The difference ∆φir appears
to be numerically accurate for Jupiter, Saturn and Neptune
because it amounts to a large fraction of the observed flux
φir. Only for Uranus ∆φir is a small fraction (5.8%) of the

observed flux, so some inaccuracy on the related Pint is un-
avoidable. The agreement between Pgr and Pint for Jupiter
and Saturn confirm that the experimental Pint appears to be
the gravitational power theoretically predicted. The discrep-
ancy found for Neptune may be likely due to the uncertain
factor B. However the high discrepancy between Pgr and Pint

of Uranus has to be attributed to some profound reason. For
instance, the fact that the internally generated Pgr does not
entirely reach the external surface due to the particular pe-
ripheral structure of the planet. Let’s recall that specific stud-
ies suggest that Uranus presents a discontinuity of the inter-
nal structure, probably near the surface [11]. As we know,
a similar discontinuity (Mohorovich’s one) is present also on
the Earth. Observing Table 1 one wonders if an experimental
method may be adopted (as for the giant planets) to measure
the IR flux radiating from the Earth interior. This would give
an independent check of the gravitational power generated on
the planets.

5.2 The emergent problem of the Earth dilatation

We have seen that the gravitational power discharged on the
Earth largely exceeds the classical heat flow by conduction
through the crust. The classical method does not consider
the heat flow through other ways, for instance the cooling
of magma escaping from the Mid Ocean Ridges, from the
seismic fractures linked to the Plate tectonics [12] and from
volcanic activities on the ocean seafloor. Let’s recall that the
U.S. Geological Service data show a frequency of about 8
earthquakes per day, Richter magnitude > 4, mostly under
the ocean seafloor.

The gravitational power is the physical agent heating and
contracting the galactic gas globules. In the case of planets
— where the atoms are tightly packaged — Pgr can no longer
induce a contraction. On the contrary it may induce a thermal
expansion which increases the Earth radius. Let’s consider
the energy balance of the core + mantle mass

CavM(dTav/dt) = 0.966Pgr − Pex(t) , (30)

where Cav = 708 J/kg×K is the average specific heat. It is
taken into account that about 3.4% of Pgr is generated into
the lithosphere. Pex(t) is the power exiting from the mantle
towards the lithosphere. To a first approximation, it equals
the classical heat flow by conduction across the solid crust
4.4×1013 W plus the heat flow of hot magma which cools pen-
etrating the seismic fractures produced through the crust

Pex(t) = Q0(dV/dt) + 4.4×1013, (31)

where Q0 is the heat released by 1 m3 of hot magma which
enters the crust at a temperature around 1800◦ K and (dV/dt)
is the volume rate of hot magma entering the crust (Eq. 33).
Correspondingly the power entering the crust and accumulat-
ing before to be radiated into space, obey the energy balance

Ccr Mcr(dTcr/dt) = 0.034 Pgr + Pex(t) − Pint(t) , (32)
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where Ccr ≈ 1200 J/kg×K is the average specific heat of the
rocks and Pint is the infrared radiation power coming from the
interior.

Eqs. (30, 31, 32) contain the unknown temperature deriva-
tives of the Earth interior and of the crust. Pex(t) and Pint(t)
are physical quantities to be found. To a first approximation
the exiting power Pex may be evaluated assuming that the
expansion rate of the core + mantle exceeds the expansion
rate allowed by the solid crust, which consequently under-
goes seismic fractures incorporating the increased volume of
hot magma. The volume rate of magma entering the crust
(and partially escaping from the ocean seafloor and volcanic
activity) is given by

dV
dt
≈ 4πR2

(
dRm

dt
− dRcr

dt

)
. (33)

The temperature derivative dTav/dt produces a dilatation
of the mantle radius

dRm/dt = Riαav (dTav/dt) (34)

where it has been considered an average core + mantle linear
expansion coefficient αav = 1.12×10−5 ◦K−1 based on the usual
data at normal temperature. It is not clear how much α might
change at temperature > 2000◦ K (mantle) and > 5000◦ K
(FeNi-core). The core + mantle expansion originates a radial
compression on the solid crust (spherical shell) whose inner
radius Rcr shows an annual dilatation

dRcr/dt = Riαcr (dTcr/dt) , (35)

where the assumed expansion coefficient of the rocks is αcr ≈
1.3×10−5 ◦K−1.

Let’s recall that the 1 m3 of hot magma at a temperature
around 1800◦ K releases to the crust the heat which is Q0 =

= δ(c∆T + H f ) ≈ 6.9×109 J/m3, where H f us ≈ 3.7×105 J/kg is
the average heat of fusion/solification of the rocks. Multiply-
ing by Q0 the magma flow of Eq. (33), one obtains the heat
flow due to the cooling of magma entering the crust fractures,
to which is added the classical heat flow by conduction. Part
of the magma flow escapes from the Mid ocean Ridges, thus
removing the tectonic plates [12] which undergo subduction.
Rough estimates of the plate dynamics show an amount of
new formed crust of the order of 1.3×1010 m3/y, that is proba-
bly a little fraction of the total.

This scheme gives values of Pex(t) depending on the two
unknown temperature derivatives.

The infrared radiation Pint(t) coming from the interior re-
mains up to now unspecified. A simple equation comes out
summing Eq. (30) and Eq. (32)

CavM(dTav/dt) + Ccr Mcr(dTcr/dt) = Pgr − Pint(t) (36)

which does no longer need to know Pex(t). When the infrared
radiation power Pint(t) is less than the gravitational power,
this equation states that the Earth temperature increases sen-

sibly along some million years, thus producing the dilatation
threat.

5.3 Comparison between the effects on Earth and the
giant solar planets

Some points of the present analysis about the Earth thermal
dilatation require further specification. The lithosphere began
to form upon the fluid planet about 4 billion years ago, to ac-
count for the evolution of primeval life on the Earth. If the
magma estimated by Eq. (33) escaped during 4 billion years,
the volume of the lithosphere would be about 16 times the
present value. This requires an explanation. One may won-
der which fraction of time the tectonic process was operating.
A recent hypothesis [13] suggests that plate dynamics was in-
termittent along the geological periods. As a matter of fact the
process of the magma escaping through seismic fractures has
just the characteristics of discontinuity. However this does
not match with the continuous feeding of heat to the Earth by
the gravitational power.

To this aim it is necessary to make reference to the fluid
planets, such as the giant solar planets (namely Jupiter and
Saturn) where the mass expands freely and the gravitational
power generated in the interior flows up to the outer surface
where it is radiated in space. For these planets the energy
balance

CavM(dTav/dt) = Pgr − Pint(t) (37)

indicates that, when Pgr = Pint, the internal temperature of the
planet is constant. No thermal expansion stresses arise be-
cause the solid crust is lacking. Let’s now return to the Earth.
The major problems are:

1. If in Eq. (30) we neglect Pex, the increase of the av-
erage temperature dTav/dt ≈ (Pgr/CavM) would be of
the order of 10−5 ◦K/y). Lasting for 10 million years
this would increase the internal temperaure of about
100◦ C. Conversely the sur f ace temperature would ex-
perience a little increment because an increase of 1◦ C
is sufficient to radiate in space an infrared power equal
to the whole Pgr. This can be proved recalling that
the Earth effective temperature T0 = 255◦ K, calculated
by P. G. Irwin [10] considering the bond albedo, ra-
diates an infrared power equal to the absorbed solar
light. If the planet surface were radiating in addition the
predicted power Pgr, the surface effective temperature
would increase from 255◦ K to 256◦ K only;

2. If the duration of the Earth increasing temperature is
assumed to be 1 billion years, the resulting temperature
would have evaporised the planet. Because this din’t
happen, there was some mechanism which braked the
increasing temperature;

3. At the boundary between astenosphere and lithosphere
a modest increase of temperature (for instance 100◦ C)
makes fluid some solid rocks, so reducing the mass of
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the solid crust. This explains why the volume of the
present solid crust is many times smaller than the vol-
ume of the total magma escaped during 4 billion years.
Let’s assume that the escaping magma that annually so-
lidifies within the crust is counterbalanced by an equal
volume of liquefied rocks at the boundary with the as-
tenosphere. This requires that the Earth should give up
to the crust some heat flow which can be easily fur-
nished by the gravitational power;

4. The risk still remains of the increasing Earth tempera-
ture. Up to now we have assumed that the transfer of
the internally generated power towards the outer sur-
face depends on the fact that the expanding volume
(dilatation) of the hot interior produces many fractures
(deep earthquakes) on the solid crust, which are rapidly
filled by hot fluid magma. In this frame the Earth ap-
pears to be an intrinsically seismic planet.

In a recent work, the pressure exerted by the expanded
core + mantle on the elastic solid crust has been assumed
to produce a continuous passage of some hot fluid miner-
als through a complex physical-chemical process conveying
some thermal power. A plain description of such a process
by P. B. Kelemen may be found in Scientific American [13],
whereas the fundamental concepts may be found in a previ-
ous paper [14]. However the potentiality of the process in
transferring internal power towards the outer surface does not
appear to have been evaluated.

5.4 The ice core data recording the Glacial Eras

The cycles of the temperature (Fig.1) observed from ice cores
in Antartica by two independent teams, Vostok [15] and Epica
[16], show an impressive result: the most recent four cycles
may be nearly placed one upon other. The cycle durations are
between 85–122 ky. Each peak is preceded by a temperature
strong rise with slope around 1.8◦ C/ky and is followed by a
partial descent with about the same slope. This fact is worth
receiving an explanation. The descent continues with a se-
ries of small alternated rises and descents characteristics of
each cycle. The Antarctica temperature behaviour has been
observed together with the concentrations of CO2 and CH4
greenhouse gases and of the local insolation.

Deciphering this lot of data is the main trouble of many
scientists. Since the peaks of the greenhouse gases are con-
siderably less than their present concentration, the tempera-
ture rising in Antarctica could not be due to the greenhous
gas effect. In any case the slope of the present climate effect
by greenhouse gases (more than 10◦ C/ky) is not comparable
with the antartic cycling phenomena. Most likely, since there
is simultaneity between the temperature peaks and the green-
house gas peaks, the antartic CO2 and CH4 concentrations
could be due to the increase of temperature in the equatorial
and temperate regions, where the decomposition of organic
matter in CO2 and CH4 was enhanced, so the greenhouse

gases migrate rapidly through winds towards the poles.
The cycling temperature amplitude ∆T (t) in Antartica is

notable (each cycle shows an amplitude comprised between
10◦ C and 13◦ C). Here it is considered as the increase, over
the undisturbed average antartic temperature TA, due to some
thermal power Pint(t) coming from the planet interior and ra-
diated to space. Since the average temperature measured at
the Vostok site is −64◦ C, it follows that the minimum temper-
ature of the ice core record (see Fig.1) results TA ≈ 200◦ K.
Let’s consider 1 m2 of surface in Antartica where, in absence
of the internal power, the radiation balance is

κε (TA)4 ≈ 110ε (W/m2) = psun + patm (38)

where κ is the Stephan-Boltzmann constant, ε is the snow
emissivity, psun is the specific power from sunlight and patm

is the power released on 1 m2 by the atmospheric precipita-
tions transported by winds from the oceans. By consequence,
in the energy balance the internal power pint(t) = Pint(t)/4πR2

radiates in space through the temperature increment ∆T (t)

pint(t) = κε
[
(TA + ∆T (t))4 − T 4

A

]
� 4κεT 3

A∆T (t) . (39)

Substituting TA ≈ 200◦ K in this equation one gets

pint(t) ≈ 1.81ε∆T (t) (40)

which shows an internal power rising from 0 up to the maxi-
mum pint ≈ 19ε W/m2 and subsequently descending to 0 with
a particular series of descents and risings.

We assume that the Earth gravitational power Pgr goes
beyond the solid crust via the hot magma entering the seismic
fractures in the crust. The longest duration of magma flow
produces the strongest ∆T (t) rise up to the interglacial peak,
which occurs due to the stop of the magma flow consequent
to the stop of earthquakes. The seismicity depends on the
crust ruptures consequent to the dilatation of the Earth interior
(Eq. 33). Resuming, each rising of the ∆T (t) cycle occurs
in presence of the seismic activity. Conversely, when ∆T (t)
descends (due to the radiative emission cooling) the seismic
activity should vanish. In this frame each temperature cycle
is made of seismic periods alternated with quiet periods.

Some considerations on the nearly equal slopes (except-
ing the sign) of ∆T (t) before and after the peak. The con-
stant slope of the strong ascent is due to the increasing magma
flow entering the superficial crust. The slope of the descent is
linked to the radiative cooling of the superficial mass.

In any case the ice core data imply that the temperatures
of the crust Tcr(t) and of the Earth interior Tav(t) undergo cy-
cles. Assuming in Eq. (36) these temperature cycles, we ob-
serve that integrating of the left side along the cycle period
gives zero. By consequence the integration of the right side
gives

Pgr ≈ (pint)av 4πR2, (41)

where (pint)av is uniform on the Earth surface since the gravi-
tational power flows outside isotropically.
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Fig. 1: 420,000 years of ice core data recorded from Vostok, Antartica research station. From bottom to top: Solar variation at 65◦N due
to Milankovitch cycles; 18O isotope of oxygen; levels of methane CH4; relative temperature respect to local annual temperature; levels of
carbon dioxide CO2.

In particular (pint)av may be calculated in Antartica mak-
ing in Eq. (40) the graphic integration of ∆T (t), which gives
the average (∆T )av ≈ 3.9◦ C.

Substituting (pint)av in Eq. (41) one gets

Pgr ≈ 1.81ε (∆T )av 4πR2 (42)

which, considering the snow emissivity ε= 0.82, gives an in-
dependent value of the Earth gravitational power through the
ice core data from Antartica

Pgr ≈ 2.9×1015 Watt. (43)

This empirical value of Pgr is higher than the approximate
value 2.6×1015 derived from the theoretical Eq. (28), where
the numerical uncertainties on the Earth internal structure,
currently discussed in the literature, are present.

6 Some final considerations

After the conceptual default of classical physics about the en-
ergetic mechanism of the contracting gas globules leading to
the star birth, the introduction of the gravitational power con-
cept permits us to explain the genesis of several celestial bod-
ies from the primeval Hydrogen cold clouds. The new dy-
namical principle describes an Universe (somewhat similar
to the Hoyle-Bondi stationary model) putting light on new
phenomena such as the discordant redshifts of quasars stud-
ied by the astronomer H. Arp. The fluid giant planets do not

feel heavy troubles from the gravitational power they receive.
Conversely the gravitational power produces on the Earth and
any planet or satellite with solid crust, dangerous physical ef-
fects through heating and dilatation. Firstly, the internal di-
latation stresses the solid crust producing the planetary seis-
micity originating fractures rapidly filled by the mantle fluid
magma. The process presents periods of emphasis followed
by stasis, as confirmed by the periodic changes of the temper-
ature slope derived from the ice core data, which show that
Glacial and Interglacial Eras depend on the variable rate of
the internally generated heat flowing up to the planet surface.

The present contribution to the unsatisfying knowledge of
geodynamics is aimed at finding the common origin of differ-
ent phenomena: the high planet seismicity, the surface ther-
mal cycles around 100.000 years (Glacial Eras) and the Tec-
tonic dynamics (around some ten million years). Much work
needs to be done.
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Two New Type Surface Polaritons Excited into Nanoholes in Metal Films
Vahan Minasyan and Valentin Samoilov

Scientific Center of Applied Research, JINR, Dubna, 141980, Russia
E-mails: mvahan@scar.jinr.ru; scar@off-serv.jinr.ru

We argue that the smooth metal-air interface should be regarded as a distinct dielectric
medium, the skin of the metal. Here we present quantized Maxwell’s equations for
electromagnetic field in an isotropic homogeneous medium, allowing us to solve the
absorption anomaly property of these metal films. The results imply the existence of
light quasi-particles with spin one and effective mass m = 2.5×10−5me which in turn
provide the presence of two type surface polaritons into nanoholes in metal films.

1 Introduction

There have been many studies of optical light transmission
through individual nanometer-sized holes in opaque metal
films in recent years [1–3]. These experiments showed highly
unusual transmission properties of metal films perforated
with a periodic array of subwavelength holes, because the
electric field is highly localized inside the grooves (around
300-1000 times larger than intensity of incoming optical
light). Here we analyze the absorption anomalies for light
in the visible to near-infrared range observed into nanoholes
in metal films. These absorption anomalies for optical light as
seen as enhanced transmission of optical light in metal films,
and attributed to surface plasmons (collective electron den-
sity waves propagating along the surface of the metal films)
excited by light incident on the hole array [4]. The enhanced
transmission of optical light is then associated with surface
plasmon (SP) polaritons. Clearly, the definition of surface
metal-air region is very important factor, since this is where
the surface plasmons are excited. In contrast to this surface
plasmon theory, in which the central role is played by collec-
tive electron density waves propagating along the surface of
metal films in a free electron gas model, the authors of pa-
per [5] propose that the surface metal-air medium should be
regarded as a metal skin and that the ideas of the Richardson-
Dushman effect of thermionic emission are crucial [6]. Some
of the negatively charged electrons are thermally excited from
the metal, and these evaporated electrons are attracted by pos-
itively charged lattice of metal to form a layer at the metal-
air interface. However, it is easy to show that the thermal
Richardson-Dushman effect is insufficient at room tempera-
ture T ' 300K because the exponent exp−

φ
kT with a value of

the work function φ ' 1 eV–10 eV leads to negligible num-
bers of such electrons.

In this letter, we shall regard the metal skin as a distinct di-
electric medium consisting of neutral molecules at the metal
surface. Each molecule is considered as a system consist-
ing of an electron coupled to an ion, creating of dipole. The
electron and ion are linked by a spring which in turn defines
the frequency ω0 of electron oscillation in the dipole. Ob-
viously, such dipoles are discussed within elementary dis-
persion theory [7]. Further, we shall examine the quantiza-

tion scheme for local electromagnetic field in the vacuum,
as first presented by Planck for in his black body radiation
studies. In this context, the classic Maxwell equations lead
to appearance of the so-called ultraviolet catastrophe; to re-
move this problem, Planck proposed modelled the electro-
magnetic field as an ideal Bose gas of massless photons with
spin one. However, Dirac [8] showed the Planck photon-gas
could be obtained through a quantization scheme for the local
electromagnetic field, presenting a theoretical description of
the quantization of the local electromagnetic field in vacuum
by use of a model Bose-gas of local plane electromagnetic
waves, propagated by speed c in vacuum. An investigation
of quantization scheme for the local electromagnetic field [9]
predicted the existence of light quasi-particles with spin one
and finite effective mass m = 2.5×10−5me (where me is the
mass of electron) by introducing quantized Maxwell equa-
tions. In this letter, we present properties of photons which
are excited in clearly dielectric medium, and we show exis-
tence of two new type surface polaritons into nanoholes in
metal films.

2 Quantized Maxwell equations

We now investigate Maxwells equations for dielectric med-
ium [7] by quantum theory field [8]

curl ~H − 1
c

d ~D
dt

= 0 , (1)

curl ~E +
1
c

d~B
dt

= 0 , (2)

div ~D = 0 , (3)

div ~B = 0 , (4)

where ~B = ~B(~r, t) and ~D = ~D(~r, t) are, respectively, the local
magnetic and electric induction depending on space coordi-
nate ~r and time t; ~H = ~H(~r, t) and ~E = ~E(~r, t) are, respec-
tively, the magnetic and electric field vectors, and c is the
velocity of light in vacuum. The further equations are

~D = ε ~E , (5)

~B = µ ~H , (6)
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where ε > 1 and µ = 1 are, respectively, the dielectric and the
magnetic susceptibilities of the dielectric medium.

The Hamiltonian of the radiation field ĤR is

ĤR =
1

8π

∫ (
εE2 + µH2

)
dV . (7)

We now wish to solve a problem connected with a quan-
tized electromagnetic field, a nd begin from the quantized
equations of Maxwell. We search for a solution of (1)–(6),
in an analogous manner to that presented in [9]

~E = −α
c

d ~H0

dt
+ β ~E0 (8)

and
~H = αcurl ~H0 + β ~H0 , (9)

where α = ~
√

2π√
m and β = c

√
2mπ are the constants obtained

in [9]. Thus ~E0 = ~E0(~r, t) and ~H0 = ~H0(~r, t) are, respec-
tively, vectors of electric and magnetic field for one Bose-
light-particle of electromagnetic field with spin one and finite
effective mass m. The vectors of local electric ~E0 and mag-
netic ~H0 fields, presented by equations (8) and (9), satisfy to
equations of Maxwell in dielectric medium

curl ~H0 − εc
d ~E0

dt
= 0 , (10)

curl ~E0 +
1
c

d ~H0

dt
= 0 , (11)

div ~E0 = 0 , (12)

div ~H0 = 0 . (13)

By using of (10), we can rewrite (9) as

~H =
αε

c
d ~E0

dt
+ β ~H0 . (14)

The equations (10)–(13) lead to a following wave-
equations:

∇2 ~E0 − ε

c2

d2 ~E0

dt2 = 0 (15)

and

∇2 ~H0 − ε

c2

d2 ~H0

dt2 = 0 (16)

which in turn have the following solutions

~E0 =
1
V

∑

~k

(
~E~k ei(~k~r+ kct√

ε
)
+ ~E+

~k e−i(~k~r+ kct√
ε

)
)
, (17)

~H0 =
1
V

∑

~k

(
~H~k ei(~k~r+ kct√

ε
)
+ ~H+

~k e−i(~k~r+ kct√
ε

)
)
, (18)

where ~E+
~k, ~H+

~k and ~E~k, ~H~k are, respectively, the second quan-
tization vector wave functions, essentially the vector Bose

“creation” and “annihilation” operators for the Bose quasi-
particles of electric and magnetic waves with spin one in di-
electric medium. With these new terms ~E0 and ~H0, the radia-
tion Hamiltonian ĤR in (7) takes the form

ĤR =
1

8π

∫ (
εE2 + H2

)
dV =

=
1

8π

∫ [
ε
(
−α

c
d ~H0

dt
+ β~E0

)2
+

+

(
αε

c
d ~E0

dt
+ β ~H0

)2 ]
dV ,

(19)

where, by substituting into (17) and (18), leads to the reduced
form of ĤR

ĤR = Ĥe + Ĥh , (20)

where the operators Ĥe and Ĥh are

Ĥe =
∑

~k

(
~2k2ε2

2m
+

mc2ε

2

)
~E+
~k
~E~k −

− 1
2

∑

~k

(
~2k2ε2

2m
− mc2ε

2

) (
~E+
~k
~E+
−~k + ~E−~k ~E~k

) (21)

and

Ĥh =
∑

~k

(
~2k2ε

2m
+

mc2

2

)
~H+
~k
~H~k −

− 1
2

∑

~k

(
~2k2ε

2m
− mc2

2

) (
~H+
~k
~H+
−~k + + ~H−~k ~H~k

)
.

(22)

In the letter [9], the boundary wave number k0 = mc
~

for
electromagnetic field in vacuum was appeared by suggestion
that the light quasi-particles interact with each other by repul-
sive potential U~k in momentum space

U~k = −~
2k2

2m
+

mc2

2
> 0 .

As result, condition for wave numbers of light quasi-
particles k 6 k0 is appeared.

On other hand, due to changing energetic level into Hy-
drogen atom, the appearance of photon with energy hkc is
determined by a distance between energetic states for elec-
tron going from high level to low one. The ionization energy
of the Hydrogen atom EI = mee4

2~2 is the maximal one for de-
struction atom. Therefore, one coincides with energy of free
light quasi-particle ~2k2

0
2m which is maximal too because k 6 k0.

The later represents as radiated photon with energy ~k0c in
vacuum. This reasoning claims the important condition as
mee4

2~2 = ~k0c which in turn determines a effective mass of the

light quasi-particles m = mee4

2~2c2 = 2.4×10−35 kg in vacuum.
In analogy manner, we may find the boundary wave num-

ber kε = mc
~ε

for light quasi-particles of electromagnetic field
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in isotropic homogenous medium by suggestion that light
quasi-particles in medium interact with each other by repul-
sive potentials UE,~k in (21) and UH,~k in (22) which corre-
spond, respectively, to electric and magnetic fields in momen-
tum space

UE,~k = −~
2k2ε2

2m
+

mc2ε

2
> 0

and

UH,~k = −~
2k2ε

2m
+

mc2

2
> 0 .

Obviously, the both expressions in above determine wave
numbers of light quasi-particles k satisfying to condition
k6 kε.

We now apply a new linear transformation of the vector
Bose-operators which is a similar to the Bogoliubov trans-
formation [10] for scalar Bose operator, so as to evaluate the
energy levels of the operator ĤR within diagonal form

~E~k =
~e~k + M~k ~e

+
−~k√

1 − M2
~k

(23)

and

~H~k =
~h~k + L~k ~h

+
−~k√

1 − L2
~k

, (24)

where M~k and L~k are the real symmetrical functions of a wave
vector ~k.

The operator Hamiltonian ĤR within using of a canonical
transformation takes a following form

ĤR =
∑

k6kε

χ~k ~e
+
~k ~e~k +

∑

k6kε

η~k
~h+
~k
~h~k (25)

Hence, we infer that the Bose-operators ~e+
~k, ~e~k and ~h+

~k, ~h~k
are, respectively, the vector creation and annihilation opera-
tors of two types of free photons with energies

χ~k =

√(
~2k2ε2

2m
+

mc2ε

2

)2
−

(
~2k2ε2

2m
− mc2ε

2

)2
=

= ~kve

(26)

and

η~k =

√(
~2k2ε

2m
+

mc2ε

2

)2
−

(
~2k2ε

2m
− mc2ε

2

)2
=

= ~kvh .

(27)

where ve = cε
3
2 and vh = cε

1
2 are, respectively, velocities of

photons excited by the electric and the magnetic field. Thus,
we predict the existence of two types photons excited in di-
electric medium, with energies χ~k = ~kcε

3
2 and η~k = ~kcε

1
2

that depend on the dielectric response of the homogeneous
medium ε. The velocities of the two new type photon modes
ve = cε

3
2 and vh = cε

1
2 are more than velocity c of photon in

vacuum because ε > 1. Obviously, the phase velocity of light
is given by vp = c√

ε
, contradicting the results obtained for

ve = cε
3
2 and vh = cε

1
2 . This is the source of the absorption

anomalies in isotropic homogeneous media.

3 Skin of metal on the boundary metal-air

A standard model of metal regards it as a gas of free electrons
with negative charge −e in a box of volume V , together with
a background of lattice ions of opposite charge e to preserve
charge neutrality. For the boundary of this metal with the
vacuum, we introduce the concept of a metal skin comprising
free neutral molecules at the metal surface. The skin then has
a thickness similar to the size of the molecule, a small number
of Bohr diameter a = 2~2

me2 = 1 Å. We assume N0 molecules
per unit area is N0 = 3

4πr3 (where r = a
2 is the Bohr radius)

which in turn determines the dielectric constant of metal’s
skin ε under an electromagnetic field in the visible to near-
infrared range with frequency ω 6 ω0, by the well known
formulae

ε = 1 +
4πN0e2

me
(
ω2

0 − ω2) . (28)

As we show in below, namely, the anomalies property of
light is observed near resonance frequency ω0.

4 Two new type surface polaritons excited in metal films

We now show that presented theory explains the absorption
anomalies such as enhanced transmission of optical light in
metal films. We consider the subwavelength sized holes into
metal films as cylindrical resonator with partly filled homo-
geneous medium [11]. The hole contains vacuum which has
boundary with metals skin with width a = 10−4 µm but the
grooves radius is d = 0.75 µm as experimental data [2]. The
standing electromagnetic wave is excited by incoming light
with frequency ω related to the frequency of cylindrical res-
onator ω by following system of dispersion equations

J1

(
ωd
c

)

J0

(
ωd
c

) =

J1

(
ω
√
εd

c

)

J0

(
ω
√
εd

c

)

J0

(
ω
√
ε (d + a)

c

)
= 0



, (29)

where J0(z) and J1(z), are, respectively, the Bessel functions
of zero and one orders.

There is observed a shape resonance in lamellar metal-
lic gratings when frequency ω of optical light in the visible
to near-infrared range coincides with resonance frequency of
dipole ω0 in metal’s skin because the dielectric response is
given by

lim
ω→ω0

ε→ ∞ .

Therefore, the energies of two types of surface polari-
tons tend to infinity. This result confirms that the electric
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field is highly localized inside the grooves because the energy
of electric field inside the grooves is 300–1000 times higher
than energy incoming optical light in air χ~k = η~k = ~kc as
ε = 1 in air. Thus, we have shown the existence of two new
type surface polaritons with energies χ~k and η~k which are ex-
cited into nanoholes.

The resonance frequency of dipole ω0 in metal’s skin is
defined from (29), at condition ε → ∞ in the metal skin,
which is fulfilled at ω = ω0. In turn, this leads to following
equation:

J1

(
ω0d

c

)
= 0 , (30)

because second equation in (29) is fulfilled automatically at
condition ε→ ∞.

The equation (30) has a root ω0 = 3.8c
d which in turn de-

termines the resonance wavelength λ0 = 2πc
ω0

= 1.24 µm. This
theoretical result is confirmed by experiment [2], where the
zero-order transmission spectra were obtained with a Cary-
5 spectrophotometer using of incoherent light sources with
a wavelength range 0.2 6 λ 6 3.3 µm. Thus, the geome-
try of hole determines the transmission property of light into
nanoholes.

In conclusion, we may say that the theory presented above
confirms experimental results on metal films, and in turn
solves the problem connected with the absorption anomalies
in isotropic homogeneous media.
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Throughout its journey universe follows strong gravity. By unifying general theory
of relativity and quantum mechanics a simple derivation is given for rotating black
hole’s temperature. It is shown that when the rotation speed approaches light speed
temperature approaches Hawking’s black hole temperature. Applying this idea to the
cosmic black hole it is noticed that there is “no cosmic temperature” if there is “no
cosmic rotation”. Starting from the Planck scale it is assumed that- universe is a rotating
and expanding black hole. Another key assumption is that at any time cosmic black hole
rotates with light speed. For this cosmic sphere as a whole while in light speed rotation
“rate of decrease” in temperature or “rate of increase” in cosmic red shift is a measure of
“rate of cosmic expansion”. Since 1992, measured CMBR data indicates that, present
CMB is same in all directions equal to 2.726 ◦K, smooth to 1 part in 100,000 and there
is no continuous decrease! This directly indicates that, at present rate of decrease in
temperature is practically zero and rate of expansion is practically zero. Universe is
isotropic and hence static and is rotating as a rigid sphere with light speed. At present
galaxies are revolving with speeds proportional to their distances from the cosmic axis
of rotation. If present CMBR temperature is 2.726 ◦K, present value of obtained angular
velocity is 2.17 × 10−18 rad

sec � 67 Km
sec×Mpc . Present cosmic mass density and cosmic time

are fitted with a ln (volume ratio) parameter. Finally it can be suggested that dark matter
and dark energy are ad-hoc and misleading concepts.

1 Introduction

Now as recently reported at the American Astronomical So-
ciety a study using the Very Large Array radio telescope in
New Mexico and the French Plateau de Bure Interferometer
has enabled astronomers to peer within a billion years of the
Big Bang and found evidence that black holes were the first
that leads galaxy growth [1]. The implication is that the black
holes started growing first. Initially astrophysicists attempted
to explain the presence of these black holes by describing
the evolution of galaxies as gathering mass until black holes
form at their center but further observation demanded that the
galactic central black hole co-evolved with the galactic bulge
plasma dynamics and the galactic arms. This is a fundamen-
tal confirmation of N. Haramein’s theory [2] described in his
papers as a universe composed of “different scale black holes
from universal size to atomic size”.

This clearly suggests that: (1) Galaxy constitutes a central
black hole; (2) The central black hole grows first; (3) Star
and galaxy growth goes parallel or later to the central black
holes growth. The fundamental questions are: (1) If “black
hole” is the result of a collapsing star, how and why a stable
galaxy contains a black hole at its center? (2) Where does the
central black hole comes from? (3) How the galaxy center
will grow like a black hole? (4) How its event horizon exists
with growing? If these are the observed and believed facts —
not only for the author — this is a big problem for the whole
science community to be understood. Any how, the important
point to be noted here is that “due to some unknown reasons

galactic central black holes are growing”! This is the key
point for the beginning of the proposed expanding or growing
cosmic black hole! See this latest published reference [3] for
the “black hole universe”.

In our daily life generally it is observed that any animal or
fruit or human beings (from birth to death) grows with closed
boundaries (irregular shapes also can have a closed bound-
ary). An apple grows like an apple. An elephant grows like
an elephant. A plant grows like a plant. A human grows
like a human. Through out their life time they won’t change
their respective identities. These are observed facts. From
these observed facts it can be suggested that “growth” or “ex-
pansion” can be possible with a closed boundary. By any
reason if the closed boundary is opened it leads to “destruc-
tion” rather than “growth or expansion”. Thinking that nature
loves symmetry, in a heuristic approach in this paper author
assumes that “through out its life time universe is a black
hole”. Even though it is growing, at any time it is having
an event horizon with a closed boundary and thus it retains
her identity as a black hole for ever. Note that universe is an
independent body. It may have its own set of laws. At any
time if universe maintains a closed boundary to have its size
minimum at that time it must follow “strong gravity” at that
time. If universe is having no black hole structure any mas-
sive body (which is bound to the universe) may not show a
black hole structure. That is black hole structure may be a
subset of cosmic structure. This idea may be given a chance.

Rotation is a universal phenomenon [4, 5, 6]. We know
that black holes are having rotation and are not stationary. Re-
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cent observations indicates that black holes are spinning close
to speed of light [7]. In this paper author made an attempt to
give an outline of “expanding and light speed rotating black
hole universe” that follows strong gravity from its birth to end
of expansion.

Stephen Hawking in his famous book A Brief History of
Time [8], in Chapter 3 which is entitled The Expanding Uni-
verse, says: “Friedmann made two very simple assumptions
about the universe: that the universe looks identical in which
ever direction we look, and that this would also be true if
we were observing the universe from anywhere else. From
these two ideas alone, Friedmann showed that we should
not expect the universe to be static. In fact, in 1922, sev-
eral years before Edwin Hubble’s discovery, Friedmann pre-
dicted exactly what Hubble found. . . We have no scientific
evidence for, or against, the Friedmann’s second assumption.
We believe it only on grounds of modesty: it would be most
remarkable if the universe looked the same in every direc-
tion around us, but not around other points in the universe”.
From this statement it is very clear and can be suggested that,
the possibility for a “closed universe” and a “flat universe”
is 50–50 per cent and one can not completely avoid the con-
cept of a “closed universe”. Clearly speaking, from Hubble’s
observations and interpretations in 1929, the possibility of
“galaxy receding” and “galaxy revolution” is 50–50 per cent
and one can not completely avoid the concept of “rotating
universe”.

1.1 Need for cosmic constant speed rotation

1. Assume that a planet of mass M and size R rotates with
angular velocity ωe and linear velocity ve in such a way that
free or loosely bound particle of mass m “lying on its equator”
gains a kinetic energy equal to its potential energy and linear
velocity of planet’s rotation is equal to free particle’s escape
velocity. That is without any external power or energy, test
particle gains escape velocity by virtue of planet’s rotation

mv2
e

2
=

GMm
R

, (1)

ωe =
ve

R
=

√
2GM

R3 . (2)

Using this idea, “black hole radiation” and “origin of cos-
mic rays” can be understood. Now writing M = 4π

3 R3ρe and

ωe = ve
R =

√
8πGρe

3 it can be written as

ω2
e =

8πGρe

3
, (3)

where density ρe is

density = ρe =
3ω2

e

8πG
. (4)

In real time this obtained density may or may not be equal
to the actual density. But the ratio 8πGρreal

3ω2
real

may have some

physical meaning. From equation (4) it is clear that propor-
tionality constant being 3

8πG

density ∝ angular velocity2. (5)

Equation (4) is similar to the “flat model concept”of cos-
mic “critical density”

ρ0 =
3H2

0

8πG
. (6)

Comparing equations (4) and (6) dimensionally and con-
ceptually ρe =

3ω2
e

8πG and ρ0 =
3H2

0
8πG one can say that

H2
0 → ω2

e ⇒ H0 → ωe . (7)

In any physical system under study, for any one “simple
physical parameter” there will not be two different units and
there will not be two different physical meanings. This is a
simple clue and brings “cosmic rotation” into picture. This
is possible in a closed universe only. It is very clear that di-
mensions of Hubble’s constant must be “radian per second”.
Cosmic models that depends on this “critical density” must
accept “angular velocity of the universe” in the place of Hub-
ble’s constant. In the sense “cosmic rotation” must be in-
cluded in the existing models of cosmology. If this idea is
rejected without any proper reason, alternatively the subject
of cosmology can be studied in a rotating picture where the
ratio of existing Hubble’s constant and estimated present cos-
mic angular velocity will give some valuable information.

2. After the Big Bang, since 5 billion years if universe is
“accelerating” and at present dark energy is driving it- right
from the point of Big Bang to the visible cosmic boundary in
all directions, thermal photon wavelength must be stretched
instantaneously and continuously from time to time and cos-
mic temperature must decrease instantaneously and continu-
ously for every second. This is just like “rate of stretching
of a rubber band of infinite length”. Note that photon light
speed concept is not involved here. Against to this idea since
1992 from COBE satellite’s CMBR data reveals that cosmic
temperature is practically constant at 2.726 ◦K. This observa-
tional clash clearly indicates that something is going wrong
with accelerating model. Moreover the standard model pre-
dicts that the cosmic background radiation should be cooling
by something like one part in 1010 per year. This is at least
6 orders of magnitude below observable limits. Such a small
decrease in cosmic temperature might be the result of cosmic
“slowing down” rather than cosmic acceleration. See this lat-
est published reference for cosmic slowing down [9].

3. If universe is accelerating, just like “rate of stretch-
ing of a rubber band of infinite length” CMBR photon wave-
length stretches and CMBR temperature decreases. Techni-
cally from time to time if we are able to measure the changes
in cosmic temperature then rate of decrease in cosmic tem-
perature will give the rate of increase in cosmic expansion
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accurately. Even though acceleration began 5 billion years
before since all galaxies will move simultaneously from our
galaxy “rate of increase” in super novae red shift can not be
measured absolutely and accurately. Hence it is reasonable
to rely upon “rate of decrease” in cosmic temperature rather
than “rate of increase” in galaxy red shift.

4. Based on this analysis if “cosmic constant tempera-
ture” is a representation of “isotropy” it can be suggested that
at present there is no acceleration and there is no space ex-
pansion and thus universe is static. From observations it is
also clear that universe is homogeneous in which galaxies
are arranged in a regular order and there is no mutual attrac-
tion in between any two galaxies. Not only that Hubble’s ob-
servations clearly indicates that there exists a linear relation
in between galaxy distance and galaxy speed which might
be a direct consequence of “cosmic rotation” with “constant
speed”. This will be true if it is assumed that “rate of increase
in red shift” is a measure of cosmic “rate of expansion”. In-
stead of this in 1929 Hubble interpreted that “red shift” is a
measure of cosmic “expansion”. This is the key point where
Einstein’s static universe was discarded with a simple 50–50
percent misinterpretation [10].

5. At present if universe is isotropic and static how can it
be stable? The only one solution to this problem is “rotation
with constant speed”. If this idea is correct universe seems to
follow a closed model. If it is true that universe is started with
a big bang, the “Big Bang” is possible only with “big crunch”
which is possible only with a closed model.

6. At present if universe rotates as a rigid sphere with
constant speed then galaxies will revolve with speeds pro-
portional to their distances from the cosmic axis of rotation.
This idea matches with the Hubble’s observations but not
matches with the Hubble’s interpretation as “galaxy reced-
ing” . From points 2, 3 and 4 it is very clear that at present
universe is isotropic and static. Hence the Hubble’s law must
be re-interpreted as “at present as galaxy distance increases
its revolving speed increases”. If so H0 will turn out to be
the present angular velocity. In this way cosmic stability and
homogeneity can be understood.

7. This “constant speed cosmic rotation” can be extended
to the Big Bang also. As time passes while in constant speed
of rotation some how if the cosmic sphere expands then “gal-
axy receding” as well as “galaxy revolution” both will come
into picture. In the past while in constant speed of rotation
at high temperatures if expansion is rapid for any galaxy (if
born) receding is rapid and photon from the galaxy travels
towards the cosmic center in the opposite direction of space
expansion and suffers a continuous fast rate of stretching and
there will be a continuous fast rate of increase in red shift.
At present at small temperatures if expansion is slow galaxy
receding is small and photon suffers continuous but very slow
rate of stretching and there will be a continuous but very slow
rate of increase in red shift i.e. red shift practically remains
constant. From this analysis it can be suggested that rate of

decrease in cosmic temperature or rate of increase in red shift
will give the rate of cosmic expansion.

8. In the past we have galaxy receding and at present we
can have galaxy revolution. By this time at low temperature
and low angular velocity, galaxies are put into stable orbits.

1.2 Need for cosmic strong gravity

1. After Big Bang if universe follows “least path of expan-
sion” then at any time “time of action” will be minimum and
“size of expansion” will be minimum and its effects are stable
and observable.

2. For any astrophysical body its size is minimum if it
follows strong gravity. Being an astrophysical body at any
time to have a minimum size of expansion universe will fol-
low strong gravity. No other alternative is available.

3. Following a closed model and similar to the growth of
an “apple shaped apple” if universe grows in mass and size it
is natural to say that as time is passing cosmic black hole is
“growing or expanding”.

1.3 Need for light speed cosmic rotation and red shift
boundary from 0 to 1

1. From Hubble’s observations when the red shift z 6 0.003,
velocity-distance relation is given by v = zc and ratio of
galaxy distance and red shift is equal to c

H0
. If H0 represents

the present cosmic angular velocity c
H0

must be the present
size of the universe. Hence it can be guessed that cosmic
speed of rotation is c. Since from Big Bang after a long time,
i.e. at present if rotation speed is c, it means at the time of
Big Bang also cosmic rotation speed might be c. Throughout
the cosmic journey cosmic rotation speed [7] is constant at c.
This is a heuristic idea. One who objects this idea must ex-
plain — being bound to the cosmic space, why photon travels
at only that much of speed. This idea supports the recent ob-
servations of light speed rotation of black holes. Universe is
an independent body. It is having its own mechanism for this
to happen.

2. Galaxies lying on the equator will revolve with light
speed and galaxies lying on the cosmic axis will have zero
speed. Hence it is reasonable to put the red shift boundary as
0 to 1. Then their distances will be proportional to their red
shifts from the cosmic axis of rotation.

1.4 Origin of cosmic black hole temperature

1. Following the Hawking’s black hole temperature formula
(see subsection 2.1) it is noticed that black hole temperature
is directly proportional to its rotational speed. For a station-
ary or non-rotating black hole its temperature is zero. As the
rotational speed increases black hole’s temperature increases
and reaches to maximum if its rotational speed approaches to
light speed. At any time if we treat universe as black hole
when it is stationary its temperature will be zero. Without
cosmic black hole rotation there is no cosmic temperature.
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2. When the growing cosmic black hole rotates at light
speed it attains a maximum temperature corresponding to its
mass or angular velocity at that time. As time passes if the
cosmic black hole continues to rotate at light speed and ex-
pands then rate of decrease in temperature seems to be mini-
mum if rate of increase in size is minimum and thus it always
maintains least size of expansion to have minimum drop in
temperature.

2 The four assumptions

To implement the Planck scale successfully in cosmology, to
develop a unified model of cosmology and to obtain the value
of present Hubble’s constant (without considering the cosmic
red shifts), starting from the Planck scale it is assumed that at
any time t: (1) The universe can be treated as a rotating and
growing black hole; (2) With increasing mass and decreasing
angular velocity universe always rotates with speed of light;
(3A) Without cosmic rotation there is no “cosmic tempera-
ture”; (3B) Cosmic temperature follows Hawking black hole
temperature formula where mass is equal to the geometric
mean of Planck mass MP and cosmic mass Mt; (4) Rate of
decrease in CMBR temperature is a measure of cosmic rate
of expansion.

2.1 Derivation for black hole temperature and base for
assumptions 1, 2 and 3

A black hole of mass M having size R rotates with an angu-
lar velocity ω and rotational speed v = Rω. Assume that its
temperature T is inversely proportional to its rotational time
period t. Keeping “Law of uncertainty” in view assume that

(kBT ) × t =
~

2
=

h
4π

. (8)

T × t =
~

2kB
. (9)

where, t = rotational time period, T = temperature, kB =

Boltzmann’s radiation constant, h = Planck’s constant and
kBT

2 + kBT
2 = kBT is the sum of kinetic and potential ener-

gies of a particle in any one direction.
Stephen Hawking in Chapter 11 The Unification of Phys-

ics of his book [8], says: “The main difficulty in finding a the-
ory that unifies gravity with the other forces is that general
relativity is a “classical” theory; that is, it does not incorpo-
rate the uncertainty principle of quantum mechanics. On the
other hand, the other partial theories depend on quantum me-
chanics in an essential way. A necessary first step, therefore,
is to combine general relativity with the uncertainty princi-
ple. As we have seen, this can produce some remarkable
consequences, such as black holes not being black, and the
universe not having any singularities but being completely
self-contained and without a boundary”. We know that

t =
2π
ω

=
2πR
v

=
4πGM

c2v
, (10)

T =
~c2v

8πkBGM
=

~ω

4πkB
, (11)

thus if black hole rotational speed v reaches light speed then
its temperature reaches to maximum

v→ vmax = c⇒ T → Tmax =
~c3

8πkBGM
=
~ωmax

4πkB
. (12)

Note that this idea couples GTR and quantum mechanics
successfully. Hawking’s black hole temperature formula can
be obtained easily. And its meaning is simple and there is
no need to consider the pair particle creation for understand-
ing “Hawking radiation”. This is the main advantage of this
simple derivation. From this idea it is very clear that origin
of Hawking radiation is possible in another way also. But it
has to be understood more clearly. Information can be ex-
tracted from a black hole, if it rotates with light speed. If a
black hole rotates at light speed photons or elementary parti-
cles can escape from its “equator only” with light speed and
in the direction of black hole rotation and this seems to be a
signal of black hole radiation around the black hole equator.
With this idea origin of cosmic rays can also be understood.
Note that not only at the black hole equator Hawking radi-
ation can take place at the event horizon of the black hole
having a surface area.

This equation (12) is identical to the expression derived
by Hawking [11]. From the assumptions and from the ob-
tained expressions it is clear that black hole temperature is
directly proportional to the rotational speed of the black hole.
Temperature of a stationary black hole is always zero and in-
creases with increasing rotational speed and reaches to maxi-
mum at light speed rotation. In this way also GTR and quan-
tum mechanics can be coupled. But this concept is not the
output from Hawking’s black hole temperature formula. In
any physical system for any physical expression there exists
only one true physical meaning. Either Hawking’s concept is
true or the proposed concept is true. Since the black hole tem-
perature formula is accepted by the whole science commu-
nity author humbly request the science community to kindly
look into this major conceptual clash at utmost fundamental
level. Recent observations shows that black holes are spin-
ning close to light speed. Temperature of any black hole is
very small and may not be found experimentally. But this
idea can successfully be applied to the universe! By any rea-
son if it is assumed that universe is a black hole then it seems
to be surprising that temperature of a stationary cosmic black
hole is zero. Its temperature increases with increase in its ro-
tational speed and reaches to maximum if the rotational speed
approaches light speed. This is the essence of cosmic black
hole rotation. CMBR temperature demands the existence of
“cosmic rotation”. This is the most important point to be
noted here.

Hawking radiation is maintained at event horizon as a
(particle and anti particle) pair particle creation. One parti-
cle falls into the black hole and the other leaves the black
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hole. Since the black hole is situated in a free space and lot of
free space is available around the black hole’s event horizon
this might be possible. But applying this idea to the universe
this type of thinking may not be possible. There will be no
space for the particle to go out side the cosmic boundary or
the cosmic event horizon and there is no scope for the cre-
ation of antiparticle also. If so the concept of cosmic black
hole radiation and normally believed black hole radiation has
to be studied in a different point of view. If there is no par-
ticle creation at the cosmic event horizon then there will be
no evaporation of the cosmic black hole and hence there is no
chance for decay of the cosmic black hole. Due to its internal
mechanism it will grow like a black hole.

2.2 Black hole minimum size, maximum rotation speed
and stability

Here, the fundamental question to be answered is — by birth,
is black hole a rigid stationary sphere or a rigid light speed
rotating sphere? See the web reference [7]. Super massive
black holes, according to new research, are approaching the
speed of light. Nine galaxies were examined by NASA us-
ing the Chandra X-ray Observatory, and found each to con-
tain black holes pumping out jets of gas in to the surrounding
space. “Extremely fast spin might be very common for large
black holes”, said co-investigator Richard Bower of Durham
University. This might help us explain the source of these
incredible jets that we see stretching for enormous distances
across space. This reference indicates that author’s idea is
correct. Not only that it suggests that there is something new
in black hole’s spin concepts. Author suggests that [12, 13,
14] force limit c4

G keeps the black hole stable or rigid even
at light speed rotation. This force can be considered as the
“classical limit” of force. It represents the “maximum grav-
itational force of attraction” and “maximum electromagnetic
force”. It plays an important role in unification scheme. It is
the origin of Planck scale. It is the origin of quantum grav-
ity. Similar to this classical force, classical limit of power
can be given by c5

G . It plays a crucial role in gravitational
radiation. It represents the “maximum limit” of mechanical
or electromagnetic or radiation power. The quantity c4

G can
be derived based on “Newton’s law of gravitation and “con-
stancy of speed of light”. In solar system force of attraction
between sun and planet can be given as

F =

( m
M

) (
v4

G

)
, (13)

where M = mass of sun, m = mass of planet and v = planet
orbital velocity. Since m

M is a ratio v4

G must have the dimen-
sions of force. Following the constancy of speed of light, a
force of the form c4

G can be constructed. With 3 steps origin of
rotating black hole formation can be understood with c5

G and
Mc2, i.e.

torque = τ 6 Mc2, (14)

power = τω 6
(

c5

G

)
, (15)

ω 6
c3

GM
⇒ ωmax =

c3

GM
. (16)

To have maximum angular velocity size should be mini-
mum

Rmin =
c

ωmax
=

GM
c2 . (17)

That is, if size is minimum, the black hole can rotate
with light speed! Hence the space and matter surrounding
its equator can turn at light speed! This is found to be true
for many galaxy centers. Acceleration due to gravity at its
surface can be given as c4

GM . Rotational force can be given
as MRminω

2
max = c4

G . This is the ultimate magnitude of force
that keeps the black hole stable even at light speed! This is a
natural manifestation of space-time geometry.

Note that here in equation (17) only the coefficient 2 is
missing compared with Schwarzschild radius. If the concept
of “Schwarzschild radius” is believed [15] to be true, for any
rotating black hole of rest mass (M) the critical conditions
are: (1) Magnitude of kinetic energy never crosses rest en-
ergy; (2) Magnitude of torque never crosses potential energy;
(3) Magnitude of mechanical power never crosses

(
c5

G

)
.

Based on virial theorem, potential energy is twice of ki-
netic energy and hence, τ 6 2Mc2. In this way factor 2 can
be obtained easily from equations (14), (15) and (16). Not
only that special theory of relativity, classical mechanics and
general theory of relativity can be studied in a unified way.

2.3 Planck scale and cosmic black hole temperature

At any time (t) from assumption (1) based on black hole con-
cepts, if mass of the universe is Mt size of the cosmic event
horizon can be given by

Rt =
2GMt

c2 . (18)

From assumption (2) if cosmic event horizon rotates with
light speed then cosmic angular velocity can be given by

ωt =
c
Rt

=
c3

2GMt
. (19)

From assumptions (3A) and (3B),

Tt =
~c3

8πkBG
√

Mt MP
, (20)

where Mt > MP. From equations (19) and (20)

4πkBTt = ~
√
ωtωP . (21)

This is a very simple expression for the long lived large
scale universe! At any time if temperature Tt is known

ωt =

(
4πkBTt

~

)2 (
1
ωp

)
. (22)
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Ultimate gravitational force of attraction between any two
Planck particles of mass MP separated by a minimum dis-
tance rmin can be given as

GMPMP

r2
min

=
c4

G
, (23)

where 2πrmin = λP = h
cṀP

= Planck wave length. In this way
Planck scale mass and energy can be estimated

Pl. mass = MP = 2.176×10−8 Kg =

√
~c
G
, (24)

Pl. size = RP = 3.2325×10−35 meter =
2GMP

c2 , (25)

Pl. angl. velocity = ωP = 9.274×1042 rad
sec

=
c3

2GMP
, (26)

Pl. temperature = TP = 5.637×1030 ◦K =
~ωP

4πkB
. (27)

Substituting the present cosmic CMBR temperature [16]
2.726 ◦K in equation (22) we get present cosmic angular ve-
locity as ωt = 2.169×10−18 rad

sec u 66.93 Km
sec×Mpc . Numeri-

cally this obtained value is very close to the measured value
of Hubble’s constant H0 [17, 18]. Not only that this proposed
unified method is qualitatively and quantitatively simple com-
pared with the “cosmic red shift” and “galactic distance” ob-
servations. This procedure is error free and is reliable. Author
requests the science community to kindly look into this kind
of rotating and growing universe models. If this procedure is
really true and applicable to the expanding universe then ac-
celerating model, dark matter and dark energy are becomes
ad-hoc concepts. At any time it can be shown that

MtRtω
2
t = Mtcωt =

c4

2G
. (28)

2.4 Cosmic mass density and baryon-photon number
density ratio

With this model empirically it is noticed that, mass density

ρmass u 3 ln
(

Rt

RP

) [
aT 4

t

c2

]
u 6 ln

(
TP

Tt

) [
aT 4

t

c2

]
. (29)

If Tt = 2.726 ◦K, ωt = 2.169×10−18 rad
sec , Rt = c

ωt
=

1.383×1026 meter and RP = 3.232×10−35 meter, present mass
density can be obtained as

ρmass u 418.82 × 4.648×10−34 = 1.95×10−31 gram
cm3 .

This is very close to the observed mater density [19] of
the universe (1.75 to 4.1) ×10−31 gram

cm3 . If this idea is true the
proposed term

3 ln
(

Rt

RP

)
u 6 ln

(
TP

Tt

)
, (30)

can be given a chance in modern cosmology. Actually this is
the term given as

ln
(

cosmic volume at time, t
Planck volume

)
u 3 ln

(
Rt

RP

)
. (31)

The interesting idea is that, if Rt → RP, and Tt → TP,

the term 3 ln
(

Rt
RP

)
→ 0 and mass density at Planck time ap-

proaches zero. Conceptually this supports the Big Bang as-
sumption that “at the time of Big Bang matter was in the form
of radiation”. Not only that as cosmic time increases mass
density gradually increases and thermal density gradually de-
creases. Using this term and considering the present CMBR
temperature baryon-photon number density ratio can be fitted
as follows

NB

Nγ
u 3 ln

(
Rt

RP

) [
2.7kBTt

mnc2

]
, (32)

Here interesting point is that
[
2.7kBTt

mnc2

]
u

average energy per photon
rest energy of nucleon

, (33)

thus present value can be given as

NB

Nγ
u

1
3.535×109 . (34)

2.5 The 2 real densities

Since the cosmic black hole always follows closed model and
rotates at light speed, at any time size of cosmic black hole
is c

ωt
. It’s density = mass

volume =
3ω2

t
8πG . It is no where connected

with “critical density” concepts. From equations (18), (19)
and (20) it is noticed that

3ω2
t

8πG
= 5760π

[
aT 4

t

c2

]
. (35)

Finally we can have only 2 real densities, one is “thermal
energy density” and the second one is “mass density”.

3 Origin of the cosmic red shift, galaxy receding and
galaxy revolution

As the cosmic sphere is expanding and rotating galaxies re-
ceding and revolving from and about the cosmic axis. As time
passes photon from the galaxy travels opposite to the direc-
tion of expansion and reaches to the cosmic axis or center.
Thus photon shows a red shift about the cosmic center. If this
idea is true cosmic red shift is a measure of galactic distances
from the cosmic axis of rotation or center. Galaxy receding
is directly proportional to the rate of expansion of the rotat-
ing cosmic sphere as a whole. In this scenario for any galaxy
continuous increase in red shift is a measure of rapid expan-
sion and “practically constant red shift” is a measure of very
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slow expansion. That is change in galaxy distance from cos-
mic axis is practically zero. At any time (t) it can be defined
as, cosmic red shift

zt =
∆λ

λmeasured
6 1. (36)

when zt is very small this definition is close to the existing
red shift definition

z =
∆λ

λemitted
. (37)

At present time relation between equations (36) and (37)
can be given as

z
z + 1

u zt . (38)

Equation (38) is true only when z is very small. Note that
at Hubble’s time the maximum red shift observed was z =

0.003 which is small and value of H0 was 530 Km/sec/Mpc.
By Hubble’s time equation (36) might have been defined in
place of equation (37). But it not happened so! When rate
of expansion is very slow, i.e. at present, based on v = rω
concepts

vt � zt c , (39)

gives revolving galaxies tangential velocity where increase
in red shift is very small and practically remains constant
and galaxy’s distance from cosmic axis of rotation can be
given as

rt �
vt

ωt
� zt

(
c
ωt

)
. (40)

Numerically this idea is similar to Hubble’s law [20]. This
indicates that there is something odd in Hubble’s interpreta-
tion of present cosmic red shifts and galaxy moments. By
this time even though red shift is high if any galaxy shows
a continuous increase in red shift then it can be interpreted
that the galaxy is receding fast in the sense this light speed
rotating cosmic sphere is expanding at a faster rate. Mea-
sured galactic red shift data indicates that, for any galaxy
at present there is no continuous increase in their red shifts
and are practically constants! This is a direct evidence for
the slow rate of expansion of the present light speed rotat-
ing universe. When the universe was young i.e. in the past,
Hubble’s law was true in the sense “red shift was a mea-
sure of galaxy receding (if born)” and now also Hubble’s law
is true in the sense “red shift is a measure of galaxy revo-
lution”.

As time is passing “galaxy receding” is gradually stopped
and “galaxy revolution” is gradually accomplished. Galaxies
lying on the equator will revolve with light speed and galax-
ies lying on the cosmic axis will have zero speed. Hence it
is reasonable to put the red shift boundary as 0 to 1. Then
their distances will be proportional to their red shifts from the
cosmic axis of rotation.

4 The present cosmic time

(1) Time required to complete one radian is 1
ωt

where ωt is
the angular velocity of the universe at time t. At any time
this is not the cosmic age. If at present ωt → H0, it will not
represent the present age of the universe. (2) Time required
to complete one revolution is 2π

ωt
. (3) Time required to move

from Planck volume to existing volume = present cosmic age.
How to estimate this time? Author suggests a heuristic

procedure in the following way. With reference to Big Bang
picture present cosmic time can be given as

t � ln
(

TP

Tt

) √
3c2

8πGaT 4
t

= 4.33×1021 seconds. (41)

Here Tt 6 TP, and interesting idea is that if Tt → TP,
the term ln

(
Tt
TP

)
→ 0. It indicates that, unlike the Planck

time, here in this model cosmic time starts from zero sec-
onds. This idea is very similar to the birth of a living creature.
How and why, the living creature has born? This is a funda-
mental question to be investigated by the present and future
mankind. In the similar way, how and why, the “Planck par-
ticle” born? has to be investigated by the present and future
cosmologists. Proposed time is 9400 times of 1

H0
. With this

large time “smooth cosmic expansion” can be possible. Infla-
tion, magnetic monopoles problem and super novae dimming
can be understood by a “larger cosmic time and smooth cos-
mic expansion”. Proportionality constant being unity with the
following 3 assumptions “cosmic time” can be estimated

t ∝ 3 ln
(

Rt

RP

)
, (42)

t ∝
[

MPc2

4πkBTt

]
, (43)

t ∝
[
~

kBTt

]
. (44)

After simplification, obtained relation can be given as

t =

√
36π
90

× ln
(

TP

Tt

) √
3c2

8πGaT 4
t
, (45)

t = 1.121× ln
(

TP

Tt

) √
3c2

8πGaT 4
t

= 4.85×1021 sec. (46)

5 Conclusion

The force c4

G and power c5

G are really the utmost fundamen-
tal tools of black hole physics and black hole cosmology. In
this paper author presented a biological model for viewing
the universe in a black hole picture. In reality its validity
has to be studied, understood and confirmed by the science
community at utmost fundamental level. At present also re-
garding the cosmic acceleration some conflicts are there [9].
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The concept of dark energy is still facing and raising a num-
ber of fundamental problems. If one is able to understand
the need and importance of “universe being a black hole for
ever”, “CMBR temperature being the Hawking temperature”
and “angular velocity of cosmic black hole being the present
Hubble’s constant”, a true unified model of “black hole uni-
verse” can be developed.

The main advantage of this model is that, it mainly de-
pends on CMBR temperature rather than the complicated red
shift observations. From the beginning and up to right now
if universe rotates at light speed- “Big Bang nucleosynthesis
concepts” can be coupled with the proposed “cosmic black
hole concepts”. Clearly speaking, in the past there was no Big
Bang. Rotating at light speed for ever high temperature and
high RPM (revolution per minute) the “small sized Planck
particle” gradually transforms into low temperature and low
RPM “large sized massive universe”.
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The Radiation Reaction of a Point Electron as a Planck Vacuum
Response Phenomenon

William C. Daywitt

National Institute for Standards and Technology (retired), Boulder, Colorado, USA. E-mail: wcdaywitt@earthlink.net

The polarizability of the Planck vacuum (PV) transforms the bare Coulomb field e∗/r2

of a point charge into the observed field e/r2, where e∗ and e are the bare and observed
electronic charges respectively [1]. In uniform motion this observed field is transformed
into the well-known relativistic electric and magnetic fields [2, p.380] by the interac-
tion taking place between the bare-charge field and the PV continuum. Given the in-
volvement of the PV in both these transformations, it is reasonable to conclude that the
negative-energy PV must also be connected to the radiation reaction or damping force
of an accelerated point electron. This short paper examines that conclusion by compar-
ing it to an early indication [3] that the point electron problem may involve more than
just a massive point charge.

The nonrelativistic damping force

2e2

3c3

d r̈
dt

(1)

is the one experimentally tested fact around which the classi-
cal equations of motion for the point electron are constructed.
The relativistic version of the equation of motion due to Dirac
[3] can be expressed as [4, p.393]

m aµ =
2e2

3c3

vα(vαȧµ − ȧαvµ)
c2 + Fµ (2)

where µ = 0, 1, 2, 3; vµ and aµ are the velocity and acceler-
ation 4-vectors; the dot above the acceleration vectors repre-
sents differentiation with respect to the proper time; and Fµ is
the external 4-force driving the electron. The first term on the
right side of (2) is the relativistic damping-force 4-vector that
leads to (1) in the nonrelativistic limit. In the derivation of (2)
Dirac stayed within the framework of the Maxwell equations;
so the m on the left side is a derived electromagnetic mass for
the electron.

In deriving (2) Dirac was not interested in the physical
origin of the damping force (1) — he was interested in a co-
variant expression for the damping force that recovered (1)
in the nonrelativistic limit, whatever it took. In the deriva-
tion he utilized a radiation-reaction field proportional to the
difference between retarded and advanced fields [4, p.399]:

F µα
ret − F µα

adv

2
−→ 2e

3c3

(vµȧα − ȧµvα)
c

(3)

where F µα
ret and F µα

adv are, respectively, the retarded and ad-
vanced electromagnetic field tensors for a point charge. The
right side of (3) is the left side evaluated at the point elec-
tron. It is significant that this field difference is nonsingular
at the position of the electron’s charge, for the Maxwell equa-
tions then imply that the origin of the damping force and the
field (3) must be attributed to charged sources other than the

electron charge since that charge’s Coulomb field diverges as
r → 0. This conclusion implies that a third entity, in addi-
tion to the electron charge and its mass, is the cause of the
damping force.

It can be argued that this third entity is the omnipresent
PV if it is assumed that the electron charge interacts with
the PV in the near neighborhood of the charge to produce
the damping force. Under this assumption, the advanced
field in (3) represents in a rough way the reaction field from
the PV converging on the charge. (To the present author’s
knowledge, there exists no other simple explanation for this
convergent field.) Thus the superficial perception of the ad-
vanced field in (3) as a cause-and-effect-violating conundrum
is changed into that of an acceptable physical effect involving
the PV.

The Wheeler-Feynman model for the damping force [5]
[4, pp.394–399] comes to a conclusion similar to the pre-
ceding result involving the PV. In their case the third entity
mentioned above is a completely absorbing shell containing
a compact collection of massive point charges that surrounds
the point electron. The total force exerted on the electron by
the absorber is [4, eqn.(21–91)]

e
n∑

i=1

F(i)
ret µα v

α

c
+

2e2

3c3

(vµȧα − ȧµvα) vα

c2 (4)

where F(i)
ret µα is the retarded field tensor due to the i-th charged

particle in an absorber containing n particles, and where the
vµs and aµs are defined in (2). (The reader should note that the
index i on the sum is defined somewhat differently here than
in [4].) A central property of the electron-plus-absorber sys-
tem is that there is no radiation outside that system. That is,
the disturbance caused by the accelerated electron is confined
to a neighborhood (the electron-plus-absorbed) surrounding
the electron.

In summary, the importance of the PV theory to (1) and
its covariant cousin in the Dirac radiation-reaction equation
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(2) is that it explains the advanced field in (3) as a conver-
gent field whose source is the PV. Also, it is interesting to
note that the Wheeler-Feynman model for the damping force
tends to support the PV model, where the free-space absorber
is a rough approximation for the negative-energy PV in the
vicinity of the accelerated electron charge.
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A Massless-Point-Charge Model for the Electron

William C. Daywitt

National Institute for Standards and Technology (retired), Boulder, Colorado, USA. E-mail: wcdaywitt@earthlink.net

“It is rather remarkable that the modern concept of electrodynamics is not quite 100
years old and yet still does not rest firmly upon uniformly accepted theoretical foun-
dations. Maxwell’s theory of the electromagnetic field is firmly ensconced in modern
physics, to be sure, but the details of how charged particles are to be coupled to this
field remain somewhat uncertain, despite the enormous advances in quantum electrody-
namics over the past 45 years. Our theories remain mathematically ill-posed and mired
in conceptual ambiguities which quantum mechanics has only moved to another arena
rather than resolve. Fundamentally, we still do not understand just what is a charged
particle” [1, p.367]. As a partial answer to the preceeding quote, this paper presents
a new model for the electron that combines the seminal work of Puthoff [2] with the
theory of the Planck vacuum (PV) [3], the basic idea for the model following from [2]
with the PV theory adding some important details.

The Abraham-Lorentz equation for a point electron can be
expressed as [4, p.83]

mr̈ = (m0 + δm) r̈ =
2e2

3c3

dr̈
dt

+ F , (1)

where

δm =
4e2

3πc2

∫ kc∗

0
dk =

4αm∗
3π1/2 (2)

is the electromagnetic mass correction; e (= e∗
√
α ) is the ob-

served electronic charge; α is the fine structure constant; e∗
is the true or bare electronic charge; kc∗ (=

√
π/r∗) is the

cutoff wavenumber for the mass correction [2, 5]; m∗ and
r∗ (= e2

∗/m∗c
2) are the mass and Compton radius of the Planck

particles in the PV; m and m0 are the observed and bare elec-
tron masses; and F is some external force driving the electron.
One of the e∗s in the product e2 (= αe2

∗) comes from the free
electronic charge and the other from the charge on the indi-
vidual Planck particles making up the PV. The bare mass is
defined via

m0 = m − δm ≈ −αm∗ (3)

the approximation following from (2) and the fact that
αm∗ � m. In other words, the bare mass is equal to some
huge negative mass αm∗, an unacceptable result in any clas-
sical or semiclassical context.

The problem with the mass in (1) and (3) stems from as-
signing, ad hoc, a mass to the point charge to create the point
electron, a similar problem showing up in quantum electrody-
namics. The PV theory, however, derives the string of Comp-
ton relations [5]

r∗m∗c2 = rcmc2 = e2
∗ (4)

that relate the mass m and Compton radius rc (= e2
∗/mc2) of

the various elementary particles to the mass m∗ and Comp-
ton radius r∗ of the Planck particles constituting the negative

energy PV. Since the same bare charge e∗ is associated with
the various masses in (4), it is reasonable to suggest that e∗ is
massless, implying that the electron charge is also massless.
A massless-point-charge electron model is pursued in what
follows.

The Puthoff model for a charged particle [2, 5] starts with
an equation of motion for the mass m0

m0r̈ = e∗Ezp , (5)

where m0, considered to be some function of the actual parti-
cle mass m, is eliminated from (5) by substituting the damp-
ing constant

Γ =
2e2
∗

3c3m0
(6)

and the electric dipole moment p = e∗r, where r represents
the random excursions of the point charge about its average
position at 〈r〉 = 0. The force driving the charge is e∗Ezp,
where Ezp is the zero-point electric field [5, Appendix B]

Ezp(r, t) = e∗Re
2∑

σ=1

∫
dΩk

∫ kc∗

0
dk k2 êσ(k)

√
k/2π2 ×

× exp
[
i
(
k · r − ωt + Θσ(k)

)]
(7)

and ω = ck. The details of the equation are unimportant here,
except to note that this free-space stochastic field depends
only upon the nature of the PV through the Planck particle
charge e∗ and the cutoff wavenumber kc∗.

Inserting (6) into (5) leads to the equation of motion

p̈ =
3c3Γ

2
Ezp (8)

for the point charge in the massless-charge electron model,
where the mass equation of motion (5) is now discarded. The
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mass m of the electron is then defined via the charge’s average
kinetic energy [2, 5]

m ≡ 2e2
∗

3c3

〈
ṙ2

2

〉

c2Γ
, (9)

where ṙ2 represents the planar velocity of the charge normal
to its instantaneous propagation vector k, and where

〈
ṙ2

2

〉
=

3c4(kc∗Γ)2

2π
(10)

is the squared velocity averaged over the random fluctuations
of the field.

The cutoff wavenumber and damping constant are deter-
mined to be [2, 5]

kc∗ =

√
π

r∗
(11)

and

Γ =

(
r∗
rc

)
r∗
c

=

(
1.62×10−33

3.91×10−11

)
r∗
c
∼ 10−66 [sec], (12)

where the vanishingly small damping constant is due to the
large number (∼ 1099 per cm3) of agitated Planck particles in
the PV contributing their fields simultaneously to the zero-
point electric field fluctuations in (7). This damping constant
is assumed to be associated with the dynamics taking place
within the PV and leading to the free-space vacuum field (7).

Inserting (11) and (12) into (9) and (10) yields
〈
ṙ2

2

〉

c2 =
3
2

(
r∗
rc

)2

(13)

and
m =

r∗m∗
rc

(14)

where the result in (14) agrees with the Compton relations in
(4). Equation (13) shows the root-mean-square relative ve-
locity of the massless charge to be

〈
ṙ2

2

〉1/2

c
=

√
3
2

(
r∗
rc

)
∼ 10−23 (15)

a vanishingly small fraction of the speed of light. The reason
for this small rms velocity is the small damping constant (12)
that prevents the velocity from building up as the charge is
randomly accelerated.

The equation of motion (8) of the point charge can be put
in a more transparent form by replacing the zero-point field
(7) with [3]

Ezp =

√
π

2
e∗
r2∗

Izp , (16)

where Izp is a random variable of zero mean and unity mean
square

〈
I2

zp

〉
= 1. Making this substitution leads to

r̈ =

√
9π
8

(
m
m∗

)
c2

r∗
Izp =

√
9π
8

c2

rc
Izp , (17)

where the factors multiplying Izp are the rms acceleration of
the point charge. The electron mass m now appears on the
right side of the equation of motion, a radical departure from
equations of motion similar to (1) and (5) that are modeled
around Newton’s second law with the mass multiplying the
acceleration r̈ on the left of the equation. The final expression
follows from the Compton relations in (4) and shows that the
acceleration is roughly equivalent to a constant force acceler-
ating the charge from zero velocity to the speed of light in the
time rc/c it takes a photon to travel the electron’s Compton
radius rc.

The overall dynamics of the new electron model can be
summarized in the following manner. The zero point agita-
tion of the Planck particles within the degenerate negative-
energy PV create zero-point electromagnetic fields that exist
in free space [5], the evidence being the e∗ and kc∗ in (7),
the rms Coulomb field e∗/r2

∗ in (16), and the fact that Ezp
drives the free-space charge e∗. When the charge is injected
into free space (presumably from the PV), the driving force
e∗Ezp generates the electron mass in (9), thereby creating the
point electron characterized by its bare point charge e∗, its
derived mass m, and its Compton radius rc. Concerning the
point-charge aspect of the model, it should be recalled that,
experimentally, the electron appears to have no structure at
least down to a radius around 10−20 [cm], nine orders of mag-
nitude smaller than the electron’s Compton radius in (12).
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Quark Confinement and Force Unification
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String theory had to adopt a bi-scale approach in order to produce the weakness of
gravity. Taking a bi-scale approach to particle physics along with a spin connection
produces 1) the measured proton radius, 2) a resolution of the multiplicity of measured
weak angle values 3) a correct theoretical value for the Z 0 4) a reason that h is a constant
and 5) a “neutral current” source. The source of the “neutral current” provides 6) an
alternate solution to quark confinement, 7) produces an effective r like potential, and 8)
gives a reason for the observed but unexplained Regge trajectory like J ∼ M 2 behavior
seen in quark composite particle spin families.

1 Introduction

One of the successful aspects of String Theory is its ability to
produce both atomic type and gravitational type forces within
the same mathematical formalism. The problem was that the
resultant gravitational force magnitude was not even close.

This problem continued until the string theorists added
extra dimension of about 1019th times larger than plank scale
dimensions [1, 2]. The weakness of inter-scale gravity is due
to the size difference between the two scales.

But a bi-scale approach raises the question; Is there also
a “strong” intra-scale gravity force at the scale that produces
the other strong particle level forces?

The particle level gravity proposition (e.g. Recami [3] and
Salam [4]) is revisited, as the source of the “neutral current”.

Spin in the Standard Model (SM) is not viewed as phys-
ical. As shown in [5], it is not the SM mathematics, but the
“standard” view of the mathematics that results in the Cosmo-
logical Constant Problem while hiding Nature’s mass sym-
metry, a symmetry in keeping with the cosmological constant
and a symmetry that results in a single mass formula for the
fundamental particles (W±, p±, e∓) and electron generations.

The results of [5] could not have occurred without putting
aside the SM “standard” view.

This paper proposes that the particle’s components real
spin is the source of a particle level gravity.

2 The spin connection

It is proposed that spin is the source of a strong particle level
gravity and associated intra-scale induced curvature. A spin
torsion connection to a “strong” gravity is not new [6].

An intra-scale induced curvature is different than an inter-
scale induced curvature. An inter-scale force is related to the
difference between scales making G a constant.

The proposed intra-scale gravity magnitude is dependent
on the frequency of spin. The higher the energy the higher the
frequency (e.g. like E = hν used in the development of the
Schrödinger equation). The higher the frequency the higher
the resultant curvature. Thus this intra-scale gravity value is
not a constant.

Given the units of strong particle level gravity (sG ) are
gm−1cm3sec−2 and spin (h) are gm1cm2sec−1 the first spin
1
2 ~ particle “x” relationship one might propose is

C
2 sGx m2

x

c
= ~ , (1)

where c is the velocity of light, C is a proportionality constant
and the 2 on the lhs comes from the 1

2 originally in front of ~.
In [5], a 4π definition of Nature’s coupling constants was

given for the charged particle weak angle as αsg=2
√

2(4π%)−1

(∼0.2344 vs 0.2312 [7]) where % = 0.959973785.
Equating C with the αsg gives

αsg
2 sGx m2

x

c
= ~ . (2)

3 The proton radius

Using the traditional gravity radius relationship for proof of
concept (see §12), i.e. Rp = 2 sGp mp/c2 and the proton mass
(mp [8]) gives the proton radius of

Rp =
2 sGp mp

c2 =
~

c mp αsg
= 8.96978×10−14 cm . (3)

From scattering data, Sick [9] gives a proton radius Rp
of 8.95×10−14cm ± 0.018 making (3) 0.221% of Sick’s value
and Ezhela [10] gives a proton radius Rp of 8.97×10−14cm ±
0.02(exp) ± 0.01(norm) making (3) 0.0024% of Ezhela’s
value.

4 A force magnitude unification

The proposed spin frequency strong gravity connection re-
sults in the three force distance squared ratios of

αcs = 7.2973525310−3 , (4)

αcg = 1.7109648410−3 , (5)

αsg = 0.234463777 . (6)

Thus the string theory conjecture that Nature’s space-time
is bi-scalar and this paper’s conjecture on real spin as the
source of a strong particle level gravity curvature results in
a unification of forces at the particle level.
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5 A weak theory puzzle

One recognized puzzle is that there are three statistically dif-
ferent weak angle values (Salam-Weinberg mass ratio SM
theoretical value 0.2227 [11], sin2 θ̂W(MZ) = 0.2312 [7], neu-
trino s2

W = 0.2277 [11]) rather than a single value as expected
by the SM. Note that the conversion between these weak an-
gle forms does not resolve this puzzle.

6 A weak theory solution

The puzzle of three different measured weak angles using the
present work is no longer a puzzle.

Unlike the SM view, the theoretical definition, αsg =

2
√

2(4π%)−1, allows for at least two basic weak angle val-
ues. When % = 1 the pure theory definition gives αsg(1) =

2
√

2(4π 1)−1 ∼ 0.2251, close to the measured neutrino weak
angle (0.2277 [11]). When using the same value of % used for
the fine structure constant definition [5], i.e % = 0.959973785,
the definition αsg = 2

√
2(4π%)−1 is close to the measured

charge particle weak angle (∼0.2344 vs 0.2312 [7]).
Thus these two different values, s2

W and sin2 θ̂W(MZ),
result from two different spin couplings (% = 1 and % =

0.959973785) for two different types of particles, neutrino
particles and charged particles.

The resolution for the Salam-Weinberg value in part
comes from the recognition that the charged particle weak
angle is different from the pure theory value, and that the
Salam-Weinberg mass ratio is a pure theory value. The other
part comes from the expectation that a true pure theory value
would use chargeless particle masses.

Using the PDG W mass (mW [8]) and the new constant αcg
given in [5] to produce the W particle charge reduced mass
value, mW(1− Sαcg) with S =1, yields the pure theory Salam-
Weinberg bare mass ratio equation

1 − (mW(1 − αcg))2

m2
Z

= 0.2253 ' αsg(1) = 0.2251. (7)

Note that using the pure theory approach to the Salam-
Weinberg mass ratio reduces the number values for the weak
angle to two. Now, as theoretically expected, the pure theory
charge reduced bare Salam-Weinberg mass ratio numerically
matches the pure theory weak angle value.

7 A theoretical Z 0 mass

Given the theoretical value of the W mass in [5] and rearrang-
ing to give the Z 0 theoretical mass produces the mZ

mZ =
mW(1 − αcg)

(1 − αsg(1))
1
2

= 91188.64 MeV, (8)

a value within 0.0011% of the measured PDG value of
91187.6 ± 2.1 [8].

8 Confinement and quark’s existence

This particle level gravity approach also gives a reason that
quarks are only seen inside of particles, but not all particles.

Noting that all quark composite particle masses are
greater than the mass symmetry point (Msp ∼ 21 MeV), im-
plies that quark particles are only stable inside the higher
curvature (compacted) space-time fabric particles above the
mass symmetry point and are not stable inside the low curva-
ture (voided) space-time particles below Msp.

9 Confinement, persistence and Regge trajectories

But if quarks can only exist inside high curvature particles
then unstable particle decay may not occur at the quarks base
mass but when the curvature is not high enough for the quarks
to persist.

This means that the measured quark masses may not be
their base mass but their decay point masses.

The two natural postulates, 1) that the enclosure curvature
makes quarks stable and 2) that a quark decays before reach-
ing its base mass, imply that a given quark orbital spin con-
figuration will decay at or near some given curvature value.
This means that for a specific quark particle spin family (e.g.
a S = 1/2, 3/2, 5/2 J(S ~) family), all members of the family
would decay at or around the same curvature.

That a quark spin family all decay at the same curvature,
i.e sG is a constant (sG = Cdecay), means that Eq. (2) becomes

C ′M 2
x = J(S ~). (9)

This equation is the Regge trajectory like (J ∼ M 2) behavior
seen in Chew-Fraustchi plots for unstable quark spin families
(see [12] for some examples).

Thus the spin strong gravity connection that produces the
correct proton radius and the correct weak angle, also gives
a reason why quarks do not exist outside of particles and can
produce the observed Regge trajectory like behavior.

10 The proton and quarks

As indicated by the single quantized mass formula for the
electron, proton and W particle given in [5], the quantization
process’ spin dominates the proton and thus the (stable) pro-
ton is not a typical (unstable) quark composite particle.

Evidence that the proton is not typical also comes from
B. G. Sidharth [13]. Sidharth reproduces numerous compos-
ite particle masses using the pion as the “base particle”. Sid-
harth states, “Secondly, it may be mentioned that . . . using the
proton as the base particle has lead to interesting, but not such
comprehensive results”.

That the proton is not a quark spin dominated particle may
be one of the reasons that QCD has struggled for 40 years,
with numerous additions to the model to produce a good pro-
ton radius value within 5% and why “solutions”, like adding
the effect of the s quarks fails to be supported by experimental
evidence consistent with no s quarks.

The spin connection with the strong gravity approach im-
mediately results in a proton radius value significantly less
than 1%.
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11 A r potential from a 1/r potential force

What the data for unstable quark composite particles indi-
cates is that there is an effective r like confining potential.

What the data does not say is how this r like potential
effect occurs.

One way of creating this r potential was found by making
a new force nature that requires the QCD “equivalent of the
photon”, the gluon, to not only mediate the force as does the
photon, but also participates in it (requires glueballs to exist).

However, there is another way that does not require a new
force nature nor force form nor particle nature. Note that what
follows is for quark (spin dominated) composite particles, not
quantization dominated fundamental particles, i.e. the proton,
and is a simplification of a complex situation including the
frame dragging of quarks.

For quark composite particles the real spin proposition
implies that the quark orbital spin angular momentum can be
a significant contribution to the strong gravity value.

The particles strong gravity value would not be a constant
but fluctuate with the quarks contribution due to their radius
and velocity within the strong gravity enclosure.

That is to say, the higher the internal quark real spin
angular momentum value, the higher the curvature and the
stronger the confinement force. Mathematically this implies
a C/r potential whose “gravitational constant value” C is not
constant, but also a function of constituent quark orbital spin
angular momentum.

As the quark orbital spin angular momentum contribution
is a function of r 2 (C = C ′r 2) the resulting effective confining
potential (V(r)) would be V(r) = C/r = C ′r 2/r = C ′r. Thus
the quark contribution to the resultant strong gravity confin-
ing potential, i.e. effective behavior, can act like a r potential.

Phenomenologically/experimentally the essential require-
ment is that the effective confining behavior, not that the ac-
tual potential form, is r like. Though not rigorous, this shows
the potential to produce the effective r like behavior.

12 The particle level gravity proposition

The particle level gravity proposition is not new. Back in the
early days of the quark strong force conjecture, there also was
a particle level gravity conjecture.

Nobel Prize winner Abdus Salam [4] and Recami [3], via
two different particle level gravity approaches, show that both
asymptotic freedom and confinement can result from this ap-
proach. Both of these two approaches lacked a source of or
cause and thus were unable to produce any specific values.

As indicated by Ne’eman and Sijacki [12] “Long ago, we
noted the existence of a link between Regge trajectories and
what we then thought was plain gravity . . . In nuclei, . . . the
quadrupolar nature of the SL(3,R), SU(3) and Eucl(3) se-
quences . . . all of these features again characterize the action
of a gravity like spin-2 effective gauge field. Overall the ev-
idence for the existence of such an effective component in

QCD seems overwhelming”.
Note that a particle level gravity theory is a spin torsion

intra-scale gravity theory that includes the curvature stress en-
ergy tensor. Thus it’s properties can differ from those associ-
ated with traditional inter-scale gravity theory. For example
Yilmaz’s [14] attempt at inclusion of a gravity stress energy
tensor term appears not to have the intra-scale “hard” event
horizon associated with the inter-scale Kerr solution.

With respect to the SM, Sivaram [6] indicates that the
Dirac spinor can gain mass via a strong gravity field.

Last but not least, in Sivaram’s paper [6] on the potential
of the strong particle level gravity approach, Sivaram states;
“It is seen that the form of the universal spin-spin contact
interaction . . . bears a striking resemblance to that of the fa-
miliar four-fermion contact interaction of Fermi’s theory of
weak interactions. This suggests the possibility of identify-
ing the coupling of spin and torsion to the vierbein strong
gravitational field as the origin of the weak interaction”.

Sivaram’s association of Fermi’s weak theory with the
coupling of spin and strong gravity is in keeping with Eq. (2)
and the proposition in [5] that αsg is a theoretical definition of
the SM charged particle weak mixing angle.

13 Why h is constant and its value source

In particle physics, h is a constant of spin. However, the Stan-
dard Model does not answer the question, “Why does particle
physics have the spin constant h ?”.

The answer naturally results from the real spin extent con-
nection to strong gravity.

The spin extent is limited by the size of the particle. As
real spin angular momentum energy is added to the particle,
the coupling requires the particle size to contract resulting in
extent contraction and resultant increase in frequency to con-
serve angular momentum, i.e. a spin constant. Field acceler-
ation to a higher spin frequency results in extent contraction
to match the higher spin frequency, i.e. a spin constant.

This is the observed Frequency Lorentzian nature of the
photon, i.e energy dilation, (wave)length contraction and fre-
quency dilation.

Thus the gravitational curvature constant constrains the
spin constant via the coupling value of spin to strong gravity
as given in Eq. (2).

14 Summary

To produce gravity’s weak value, string theory requires a bi-
scale approach where gravity is an inter-scale property. This
leads to the conjecture that there is also an intra-scale gravity
at the same scale as the other particle forces.

There is also the additional proposition that there is a real
spin strong particle level gravity relationship.

If this spin particle level gravity connection is correct then
one would expect that it would produce the correct proton
radius and it does.
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One would also expect that either the αsg value or the αcg
value should be a value within the Standard Model.

Not only does αsg match the charged particle weak angle,
the pure theory αsg(1) matches the neutrino weak angle.

These propositions resolve the problem of the NuTev [11]
neutrino results being 2.5σ from the SM sin2 θ (on−shell)

W value.
The true sin2 θ (on−shell)

W is the Salam-Weinberg bare mass ratio
which is near the NuTev result and almost exactly αsg(1).

As shown in [15] the FSC definition (αcs) of this electro-
gravitic approach matches an Einstein-Cartan FSC definition.

In keeping with [5], neither the quantization proposition
nor the strong particle level gravity proposition are in conflict
with the existence of quarks.

This particle level gravity approach does not require a new
force form for the confinement of quarks and due to the spin
strong gravity connection, can result in an effective r potential
force for quark spin dominated unstable particles.

A strong gravity confinement source indicates that quarks
can only exist inside high curvature particles thus giving a
reason why quarks are not seen as free particles. The high
curvature quark connection and the quark mass pattern in-
dicates that the “measured” quark masses are not their base
“invariant” mass values but decay point mass values. This
proposition results in Regge trajectory like behavior.

Though the SM has had great numerical and behavioral
success, its propositions (Higgs, QCD, etc.) result in fun-
damental problems like the Cosmological Constant Problem
(1034+ off) and no excepted solution to the Matter Only Uni-
verse Problem, while not addressing the integration of grav-
ity. Thus despite its numerical success, the SM has not solved
the particle puzzle in all of its parts.

In [5], taking a non-standard view of the fundamental par-
ticle masses, the quantization proposition not only results in a
single mass formula for the W, p, e and electron generations, it
can solve the Cosmological Constant Problem and the Matter
Only Universe Problem.

In this paper, the proposition of a real spin connection to
the strong particle level gravity gives a source for the weak
angle. This makes strong particle level gravity the “neutral
current” and the foundation for the particle nature of particles.

These papers produce values for the W± and Z 0 mass and
proton radius that are within the uncertainty in the measured
values, naturally results in two weak angle values as exper-
imentally observed, matches these values and explains why
Nature has a spin angular momentum constant and thus show
this approach potential. Also indicated is the potential of a
bi-scalar approach to Nature which can solve the Hierarchy
Problem and produce a particle scale Unification of Forces.
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Quaternion space and its respective Quaternion Relativity (it also may be called as Ro-
tational Relativity) has been defined in a number of papers, and it can be shown that
this new theory is capable to describe relativistic motion in elegant and straightforward
way. Nonetheless there are subsequent theoretical developments which remains an open
question, for instance to derive Maxwell equations in Q-space. Therefore the purpose of
the present paper is to derive a consistent description of Maxwell equations in Q-space.
First we consider a simplified method similar to the Feynman’s derivation of Maxwell
equations from Lorentz force. And then we present another derivation method using
Dirac decomposition, introduced by Gersten (1998). Further observation is of course
recommended in order to refute or verify some implication of this proposition.

1 Introduction

Quaternion space and its respective Quaternion Relativity (it
also may be called as Rotational Relativity has been defined
in a number of papers including [1], and it can be shown that
this new theory is capable to describe relativistic motion in el-
egant and straightforward way. For instance, it can be shown
that the Pioneer spacecraft’s Doppler shift anomaly can be
explained as a relativistic effect of Quaternion Space [2]. The
Yang-Mills field also can be shown to be consistent with
Quaternion Space [1]. Nonetheless there are subsequent the-
oretical developments which remains an open issue, for in-
stance to derive Maxwell equations in Q-space [1].

Therefore the purpose of the present article is to derive a
consistent description of Maxwell equations in Q-space. First
we consider a simplified method similar to the Feynman’s
derivation of Maxwell equations from Lorentz force. Then
we present another method using Dirac decomposition, in-
troduced by Gersten [6]. In the first section we will shortly
review the basics of Quaternion space as introduced in [1].

Further observation is of course recommended in order to
verify or refute the propositions outlined herein.

2 Basic aspects of Q-relativity physics

In this section, we will review some basic definitions of
quaternion number and then discuss their implications to
quaternion relativity (Q-relativity) physics [1].

Quaternion number belongs to the group of “very good”
algebras: of real, complex, quaternion, and octonion, and nor-
mally defined as follows [1]

Q ≡ a + bi + c j + dk . (1)

Where a, b, c, d are real numbers, and i, j, k are imaginary
quaternion units. These Q-units can be represented either via
2×2 matrices or 4×4 matrices. There is quaternionic multi-
plication rule which acquires compact form [1]

1qk = qk1 = qk , q jqk = − δ jk + ε jkn qn . (2)

Where δkn and ε jkn represents 3-dimensional symbols of
Kronecker and Levi-Civita, respectively.

In the context of Quaternion Space [1], it is also possible
to write the dynamics equations of classical mechanics for an
inertial observer in constant Q-basis. SO(3,R)-invariance of
two vectors allow to represent these dynamics equations in
Q-vector form [1]

m
d2

dt2 (xk qk) = Fk qk . (3)

Because of antisymmetry of the connection (generalised
angular velocity) the dynamics equations can be written in
vector components, by conventional vector notation [1]

m
(
~a + 2~Ω ×~v + ~Ω × ~r + ~Ω × (~Ω × ~r )

)
= ~F . (4)

Therefore, from equation (4) one recognizes known types
of classical acceleration, i.e. linear, coriolis, angular, cen-
tripetal.

From this viewpoint one may consider a generalization of
Minkowski metric interval into biquaternion form [1]

dz = (dxk + idtk) qk . (5)

With some novel properties, i.e.:

• time interval is defined by imaginary vector;
• space-time of the model appears to have six dimensions

(6D model);
• vector of the displacement of the particle and vector of

corresponding time change must always be normal to
each other, or

dxkdtk = 0 . (6)

One advantage of this Quaternion Space representation is
that it enables to describe rotational motion with great clarity.

After this short review of Q-space, next we will discuss a
simplified method to derive Maxwell equations from Lorentz
force, in a similar way with Feynman’s derivation method us-
ing commutative relation [3, 4].
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3 An intuitive approach from Feynman’s derivative

A simplified derivation of Maxwell equations will be dis-
cussed here using similar approach known as Feynman’s de-
rivation [3–5].

We can introduce now the Lorentz force into equation (4),
to become

m
(

d~v
dt

+ 2~Ω ×~v + ~Ω × ~r + ~Ω ×
(
~Ω × ~r

))
=

= q⊗

(
~E +

1
c
~v × ~B

)
, (7)

or
(

d~v
dt

)
=

q⊗
m

(
~E +

1
c
~v × ~B

)
−2~Ω×~v− ~Ω×~r− ~Ω×

(
~Ω × ~r

)
. (8)

We note here that q variable here denotes electric charge,
not quaternion number.

Interestingly, equation (4) can be compared directly to
equation (8) in [3]

mẍ = F −m
(

d~v
dt

)
+ m~r × ~Ω + m2ẋ × ~Ω + m~Ω ×

(
~r × ~Ω

)
. (9)

In other words, we find an exact correspondence between
quaternion version of Newton second law (3) and equation
(9), i.e. the equation of motion for particle of mass m in a
frame of reference whose origin has linear acceleration a and
an angular velocity ~Ω with respect to the reference frame [3].

Since we want to find out an “electromagnetic analogy”
for the inertial forces, then we can set F = 0. The equation of
motion (9) then can be derived from Lagrangian L = T − V ,
where T is the kinetic energy and V is a velocity-dependent
generalized potential [3]

V (x, ẋ, t) = ma · x − mẋ · ~Ω × x − m
2

(
~Ω × x

)2
, (10)

Which is a linear function of the velocities. We now may
consider that the right hand side of equation (10) consists of
a scalar potential [3]

φ (x, t) = ma · x − m
2

(
~Ω × x

)2
, (11)

and a vector potential

A (x, t) ≡ mẋ · ~Ω × x , (12)
so that

V (x, ẋ, t) = φ (x, t) − ẋ · A (x, t) . (13)

Then the equation of motion (9) may now be written in
Lorentz form as follows [3]

mẍ = E (x, t) + x × H (x, t) (14)
with

E = −∂A
∂t
− ∇φ = −mΩ × x − ma + mΩ × (x ×Ω) (15)

and
H = ∇ × A = 2mΩ . (16)

At this point we may note [3, p. 303] that Maxwell equa-
tions are satisfied by virtue of equations (15) and (16). The
correspondence between Coriolis force and magnetic force,
is known from Larmor method. What is interesting to remark
here, is that the same result can be expected directly from the
basic equation (3) of Quaternion Space [1]. The aforemen-
tioned simplified approach indicates that it is indeed possible
to find out Maxwell equations in Quaternion space, in partic-
ular based on our intuition of the direct link between Newton
second law in Q-space and Lorentz force (We can remark that
this parallel between classical mechanics and electromagnetic
field appears to be more profound compared to simple simi-
larity between Coulomb and Newton force).

As an added note, we can mention here, that the afore-
mentioned Feynman’s derivation of Maxwell equations is
based on commutator relation which has classical analogue
in the form of Poisson bracket. Then there can be a plausible
way to extend directly this “classical” dynamics to quater-
nion extension of Poisson bracket, by assuming the dynam-
ics as element of the type: r ∈ H ∧ H of the type: r =

ai ∧ j + bi ∧ k + c j ∧ k, from which we can define Poisson
bracket on H. But in the present paper we don’t explore yet
such a possibility.

In the next section we will discuss more detailed deriva-
tion of Maxwell equations in Q-space, by virtue of Gersten’s
method of Dirac decomposition [6].

4 A new derivation of Maxwell equations in Quaternion
Space by virtue of Dirac decomposition

In this section we present a derivation of Maxwell equations
in Quaternion space based on Gersten’s method to derive
Maxwell equations from one photon equation by virtue of
Dirac decomposition [6]. It can be noted here that there are
other methods to derive such a “quantum Maxwell equations”
(i.e. to find link between photon equation and Maxwell equa-
tions), for instance by Barut quite a long time ago (see ICTP
preprint no. IC/91/255).

We know that Dirac deduces his equation from the rela-
tivistic condition linking the Energy E, the mass m and the
momentum p [7]

(
E2 − c2~p 2 − m2c4

)
I(4) Ψ = 0 , (17)

where I(4) is the 4×4 unit matrix and Ψ is a 4-component col-
umn (bispinor) wavefunction. Dirac then decomposes equa-
tion (17) by assuming them as a quadratic equation

(
A2 − B2

)
Ψ = 0 , (18)

where
A = E , (19)

B = c~p + mc2. (20)
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The decomposition of equation (18) is well known, i.e.
(A + B)(A − B) = 0, which is the basic of Dirac’s decomposi-
tion method into 2×2 unit matrix and Pauli matrix [6].

By virtue of the same method with Dirac, Gersten [6]
found in 1998 a decomposition of one photon equation from
relativistic energy condition (for massless photon [7])

(
E2

c2 − ~p 2
)

I(3) Ψ = 0 , (21)

where I(3) is the 3×3 unit matrix and Ψ is a 3-component col-
umn wavefunction. Gersten then found [6] equation (21) de-
composes into the form

[E
c

I(3) − ~p · ~S
] [E

c
I(3) + ~p.~S

]
~Ψ −


px

py
pz


(
~p · ~Ψ

)
= 0 (22)

where ~S is a spin one vector matrix with components [6]

S x =


0 0 0
0 0 −i
0 −i 0

 , (23)

S y =


0 0 i
0 0 0
−i 0 0

 , (24)

S z =


0 −i 0
−i 0 0
0 0 0

 , (25)

and with the properties
[
S x, S y

]
= iS z ,

[
S x, S z

]
= iS y

[
S y, S z

]
= iS x , ~S 2 = 2I(3)


. (26)

Gersten asserts that equation (22) will be satisfied if the
two equations [6]

[E
c

I(3) + ~p · ~S
]
~Ψ = 0 , (27)

~p · ~Ψ = 0 (28)

are simultaneously satisfied. The Maxwell equations [8] will
be obtained by substitution of E and p with the ordinary quan-
tum operators (see for instance Bethe, Field Theory)

E → i~
∂

∂t
(29)

and
p→ − ih∇ (30)

and the wavefunction substitution

~Ψ = ~E − i~B , (31)

where E and B are electric and magnetic fields, respectively.
With the identity

(
~p · ~S

)
~Ψ = ~∇ × ~Ψ , (32)

then from equation (27) and (28) one will obtain

i
~

c

∂
(
~E − i~B

)

∂t
= − ~∇ ×

(
~E − i~B

)
, (33)

∇ ·
(
~E − i~B

)
= 0 , (34)

which are the Maxwell equations if the electric and magnetic
fields are real [6, 7].

We can remark here that the combination of E and B as
introduced in (31) is quite well known in literature [9,10]. For
instance, if we use positive signature in (31), then it is known
as Bateman representation of Maxwell equations div~ε = 0,
rot~ε = ∂ε

∂t , ε = ~E + i~B. But the equation (31) with negative
signature represents the complex nature of electromagnetic
fields [9], which indicates that these fields can also be repre-
sented in quaternion form.

Now if we represent in other form ~ε = ~E − i~B as more
conventional notation, then equation (33) and (34) will get a
quite simple form

i
~

c
∂~ε

∂t
= − ~∇ × ~ε , (35)

∇ · ~ε = 0 . (36)

Now to consider quaternionic expression of the above re-
sults from Gersten [6], one can begin with the same lineariza-
tion procedure just as in equation (5)

dz = (dxk + idtk) qk , (37)

which can be viewed as the quaternionic square root of the
metric interval dz

dz2 = dx2 − dt2. (38)

Now consider the relativistic energy condition (for mass-
less photon [7]) similar to equation (21)

E2 = p2c2 ⇒
(

E2

c2 − ~p 2
)

= k2. (39)

It is obvious that equation (39) has the same form with
(38), therefore we may find its quaternionic square root too,
then we find

k =
(
Eqk + i~pqk

)
qk , (40)

where q represents the quaternion unit matrix. Therefore the
linearized quaternion root decomposition of equation (21) can
be written as follows [6]
[

Eqk qk

c
I(3) + i~pqk qk · ~S

] [
Eqk qk

c
I(3) + i~pqk qk · ~S

]
~Ψ −

−


px

py
pz


(
i~pqkqk · ~Ψ

)
= 0 . (41)
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Accordingly, equation (41) will be satisfied if the two
equations

[
Eqk qk

c
I(3) + i ~pqk qk · ~S

]
~Ψk = 0 , (42)

i ~pqk qk · ~Ψk = 0 (43)

are simultaneously satisfied. Now we introduce similar wave-
function substitution, but this time in quaternion form

~Ψqk = ~Eqk − i~Bqk = ~εqk . (44)

And with the identity
(
~pqk qk · ~S

)
~Ψk = ~∇k × ~Ψk . (45)

Then from equations (42) and (43) one will obtain the
Maxwell equations in Quaternion-space as follows

i
~

c
∂~εqk
∂t

= − ~∇k × ~εqk , (46)

∇k · ~εqk = 0 . (47)

Now the remaining question is to define quaternion dif-
ferential operator in the right hand side of (46) and (47).

In this regards one can choose some definitions of quater-
nion differential operator, for instance the Moisil-Theodore-
sco operator [11]

D
[
ϕ
]

= gradϕ =

3∑

k=1

ik∂kϕ = i1∂1ϕ + i2∂2ϕ + i3∂3ϕ . (48)

where we can define i1 = i; i2 = j; i3 = k to represent 2×2
quaternion unit matrix, for instance. Therefore the differen-
tial of equation (44) now can be expressed in similar notation
of (48)

D
[
~Ψ
]

= D
[
~ε
]

= i1∂1E1 + i2∂2E2 + i3∂3E3−
− i

(
i1∂1B1 + i2∂2B2 + i3∂3B3

)
,

(49)

This expression indicates that both electric and magnetic
fields can be represented in unified manner in a biquaternion
form.

Then we define quaternion differential operator in the
right-hand-side of equation (46) by an extension of the con-
ventional definition of curl

∇ × Aqk =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k
∂

∂x
∂

∂y

∂

∂z
Ax Ay Az

∣∣∣∣∣∣∣∣∣∣∣∣
. (50)

To become its quaternion counterpart, where i, j, k repre-
sents quaternion matrix as described above. This quaternionic
extension of curl operator is based on the known relation of

multiplication of two arbitrary complex quaternions q and b
as follows

q · b = q0 b0 −
〈
~q, ~b

〉
+

[
~q × ~b

]
+ q0~b + b0~q , (51)

where
〈
~q, ~b

〉
:=

3∑

k=1

qk bk ∈ C , (52)

and
[
~q × ~b

]
:=

∣∣∣∣∣∣∣∣∣

i j k
q1 q2 q3

b1 b2 b3

∣∣∣∣∣∣∣∣∣
. (53)

We can note here that there could be more rigorous ap-
proach to define such a quaternionic curl operator [10].

In the present paper we only discuss derivation of Max-
well equations in Quaternion Space using the decomposition
method described by Gersten [6]. Further extension to Proca
equations in Quaternion Space seems possible too using the
same method [7], but it will not be discussed here.

In the next section we will discuss some physical implica-
tions of this new derivation of Maxwell equations in Quater-
nion Space.

5 A few implications: de Broglie’s wavelength and spin

In the foregoing section we derived a consistent description of
Maxwell equations in Q-Space by virtue of Dirac-Gersten’s
decomposition. Now we discuss some plausible implications
of the new proposition.

First, in accordance with Gersten, we submit the view-
point that the Maxwell equations yield wavefunctions which
can be used as guideline for interpretation of Quantum Me-
chanics [6]. The one-to-one correspondence between classi-
cal and quantum wave interpretation actually can be expected
not only in the context of Feynman’s derivation of Maxwell
equations from Lorentz force, but also from known exact
correspondence between commutation relation and Poisson
bracket [3,5]. Furthermore, the proposed quaternion yields to
a novel viewpoint of both the wavelength, as discussed below,
and also mechanical model of spin.

The equation (39) implies that momentum and energy
could be expressed in quaternion form. Now by introduc-
ing de Broglie’s wavelength λDB = ~

p → pDB = ~
λ
, then one

obtains an expression in terms of wavelength

k =
(
Ek + i~pk

)
qk =

(
Ekqk + i~pkqk

)
=

Ekqk + i
~

λDB
k qk

 . (54)

In other words, now we can express de Broglie’s wave-
length in a consistent Q-basis

λDB−Q =
~∑3

k=1 (pk) qk
=

~

vgroup
∑3

k=1 (mk) qk
, (55)

therefore the above equation can be viewed as an extended
De Broglie wavelength in Q-space. This equation means that
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the mass also can be expressed in Q-basis. In the meantime, a
quite similar method to define quaternion mass has also been
considered elsewhere, but it has not yet been expressed in
Dirac equation form as presented here.

Further implications of this new proposition of quaternion
de Broglie requires further study, and therefore it is excluded
from the present paper.

6 Concluding remarks

In the present paper we derive a consistent description of
Maxwell equations in Q-space. First we consider a simpli-
fied method similar to the Feynman’s derivation of Maxwell
equations from Lorentz force. And then we present another
method to derive Maxwell equations by virtue of Dirac de-
composition, introduced by Gersten [6].

In accordance with Gersten, we submit the viewpoint that
the Maxwell equations yield wavefunctions which can be
used as guideline for interpretation of quantum mechanics.
The one-to-one correspondence between classical and quan-
tum wave interpretation asserted here actually can be expect-
ed not only in the context of Feynman’s derivation of Max-
well equations from Lorentz force, but also from known exact
correspondence between commutation relation and Poisson
bracket [3, 6].

A somewhat unique implication obtained from the above
results of Maxwell equations in Quaternion Space, is that it
suggests that the De Broglie wavelength will have quater-
nionic form. Its further implications, however, are beyond
the scope of the present paper.

In the present paper we only discuss derivation of Max-
well equations in Quaternion Space using the decomposition
method described by Gersten [6]. Further extension to Proca
equations in Quaternion Space seems possible too using the
same method [7], but it will not be discussed here.

This proposition, however, deserves further theoretical
considerations. Further observation is of course recommend-
ed in order to refute or verify some implications of this result.
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As a continuation of the preceding section, we shortly review a series of novel ideas
on the physics of hadrons. In the present paper, emphasis is given on some different
approaches to the hadron physics, which may be called as “programs” in the sense of
Lakatos. For clarity, we only discuss geometrization program, symmetries/unification
program, and phenomenology of inter-quark potential program.

1 Introduction

We begin the present paper by reiterating that given the ex-
tent and complexity of hadron and nuclear phenomena, any
attempt for an exhaustive review of new ideas is outright un-
practical. Therefore in this second part, we limit our short
review on a number of scientific programs (in the sense of
Lakatos). Others of course may choose different schemes or
categorization. The main idea for this scheme of approaches
was attributed to an article by Lipkin on hadron physics. ac-
cordingly, we describe the approaches as follows:

1. The geometrization approach, which was based on
analogy between general relativity as strong field and
the hadron physics;

2. Models inspired by (generalization of) symmetry prin-
ciples;

3. Various composite hadron models;

4. The last section discusses phenomenological approach
along with some kind of inter-quark QCD potential.

To reiterate again, the selection of topics is clearly incom-
plete, and as such it may not necessarily reflect the prevalent
opinion of theorists working in this field (for more standard
review the reader may wish to see [1]). Here the citation is
far from being complete, because we only cite those refer-
ences which appear to be accessible and also interesting to
most readers.

Our intention here is to simply stimulate a healthy ex-
change of ideas in this active area of research, in particu-
lar in the context of discussions concerning possibilities to
explore elementary particles beyond the Standard Model (as
mentioned in a number of papers in recent years).

2 Geometrization approach

In the preceding section we have discussed a number of
hadron or particle models which are essentially based on geo-
metrical theories, for instance Kerr-Schild model or Topolog-
ical Geometrical Dynamics [1].

However, we can view these models as part of more gen-
eral approach which can be called “geometrization” program.
The rationale of this approach can be summarized as follows
(to quote Bruchholz): “The deeper reason is that the standard

model is based on Special Relativity while gravitation is the
principal item of General Relativity” [2].

Therefore, if we follow this logic, then it should be clear
that the Standard Model which is essentially based on Quan-
tum Electrodynamics and Dirac equation, is mostly special
relativistic in nature, and it only explains the weak field phe-
nomena (because of its linearity). And if one wishes to extend
these theories to explain the physical phenomena correspond-
ing to the strong field effects (like hadrons), then one should
consider the nonlinear effects, and therefore one begins to in-
troduce nonlinear Dirac-Hartree-Fock equation or nonlinear
Klein-Gordon equation (we mentioned this approach in the
preceding section).

Therefore, for instance, if one wishes to include a consis-
tent general relativistic approach as a model of strong fields,
then one should consider the general covariant generalization
of Dirac equation [3]

(
iγk (x)∇k − m

)
ψ (x) = 0 . (1)

Where the gamma matrices are related to the 4-vector rel-
ative to General Coordinate Transformations (GCT). Then
one can consider the interaction of the Dirac field with
a scalar external field U which models a self-consistent quark
system field (by virtue of changing m→ m + U) [3].

Another worth-mentioning approach in this context has
been cited by Bruchholz [2], i.e. the Geilhaupt’s theory which
is based on some kind of Higgs field from GTR and Quantum
Thermodynamics theory.

In this regards, although a book has been written dis-
cussing some aspects of the strong field (see Grib et al. [3]),
actually this line of thought was recognized not so long ago,
as cited in Jackson and Okun [4]: “The close mathematical
relation between non-Abelian gauge fields and general rela-
tivity as connections in fiber bundles was not generally real-
ized until much later”.

Then began the plethora of gauge theories, both includ-
ing or without gravitational field. The essential part of these
GTR-like theories is to start with the group of General Co-
ordinate Transformations (GCT). It is known then that the
finite dimensional representations of GCT are characterized
by the corresponding ones of the SL(4,R) which belongs to
GL(4,R) [5]. In this regards, Ne’eman played the pioneering

28 F. Smarandache and V. Christianto. On Some Novel Ideas in Hadron Physics. Part II



April, 2010 PROGRESS IN PHYSICS Volume 2

role in clarifying some aspects related to double covering of
SL(n,R) by GL(n,R), see for instance [6]. It can also be men-
tioned here that spinor SL(2,C) representation of GTR has
been discussed in standard textbooks on General Relativity,
see for instance Wald (1983). The SL(2,C) gauge invariance
of Weyl is the most well-known, although others may prefer
SL(6,C), for instance Abdus Salam et al. [7].

Next we consider how in recent decades the progress of
hadron physics was mostly driven by symmetries conside-
ration.

3 Symmetries approach

Perhaps it is not quite an exaggeration to remark here that
most subsequent developments in both elementary particle
physics and also hadron physics were advanced by Yang-
Mills’ effort to generalize the gauge invariance [8]. And then
Ne’eman and Gell-Mann also described hadrons into octets
of SU(3) flavor group.

And therefore, it becomes apparent that there are numer-
ous theories have been developed which intend to generalize
further the Yang-Mills theories. We only cite a few of them
as follows.

We can note here, for instance, that Yang-Mills field
somehow can appear more or less quite naturally if one uses
quaternion or hypercomplex numbers as basis. Therefore, it
has been proved elsewhere that Yang-Mills field can be shown
to appear naturally in Quaternion Space too [8].

Further generalization of Yang-Mills field has been dis-
cussed by many authors, therefore we do not wish to reiterate
all of them here. Among other things, there are efforts to
describe elementary particles (and hadrons) using the most
generalized groups, such as E8 or E11, see for instance [9].

Nonetheless, it can be mentioned in this regards, that there
are other symmetries which have been considered (beside
the SL(6,C) mentioned above), for instance U(12) which has
been considered by Ishida and Ishida, as generalizations of
SU(6) of Sakata, Gursey et al. [10].

One can note here that Gursey’s approach was essentially
to extend Wigner’s idea to elementary particle physics using
SU(2) symmetry. Therefore one can consider that Wigner has
played the pioneering role in the use of groups and symme-
tries in elementary particles physics, although the mathemat-
ical aspects have been presented by Weyl and others.

4 Composite model of hadrons

Beside the group and symmetrical approach in Standard
Model, composite model of quarks and leptons appear as an
equivalent approach, as this method can be traced back to
Fermi-Yang in 1949, Sakata in 1956, and of course the Gell-
Mann-Ne’eman [10]. Nonetheless, it is well known that at
that time quark model was not favorite, compared to the geo-
metrical-unification program, in particular for the reason that
the quarks have not been observed.

With regards to quarks, Sakata has considered in 1956
three basic hadrons (proton, neutron, and alphaparticle) and
three basic leptons (electron, muon, neutrino). This Nagoya
School was quite inuential and the Sakata model was essen-
tially transformed into the quark model of Gell-Mann, though
with more abstract interpretation. It is perhaps more inter-
esting to remark here, that Pauling’s closed-packed spheron
model is also composed of three sub-particles.

The composite models include but not limited to super-
conductor models inspired by BCS theory and NJL (Nambu-
Jona-Lasinio theory). In this context, we can note that there
are hadron models as composite bosons, and other models
as composite fermions. For instance, hadron models based
on BCS theory are essentially composite fermions. In de-
veloping his own models of composite hadron, Nambu put
forward a scheme for the theory of the strong interactions
which was based on and has resemblance with the BCS theory
of superconductivity, where free electrons in superconductiv-
ity becomes hypothetical fermions with small mass; and en-
ergy gap of superconductor becomes observed mass of the
nucleon. And in this regards, gauge invariance of supercon-
ductivity becomes chiral invariance of the strong interaction.
Nambu’s theory is essentially non-relativistic.

It is interesting to remark here that although QCD is the
correct theory for the strong interactions it cannot be used to
compute at all energy and momentum scales. For many pur-
poses, the original idea of Nambu-Jona-Lasinio works better.

Therefore, one may say that the most distinctive aspect
between geometrization program to describe hadron models
and the composite models (especially Nambu’s BCS theory),
is that the first approach emphasizes its theoretical correspon-
dence to the General Relativity, metric tensors etc., while the
latter emphasizes analogies between hadron physics and the
strong field of superconductors [3].

In the preceding section we have mentioned another com-
posite hadron models, for instance the nuclear string and
Brightsen cluster model. The relativistic wave equation for
the composite models is of course rather complicated (com-
pared to the 1-entity model of particles) [10].

5 Phenomenology with Inter-Quark potential

While nowadays most physicists prefer not to rely on the
phenomenology to build theories, it is itself that has has its
own virtues, in particular in studying hadron physics. It is
known that theories of electromagnetic fields and gravitation
are mostly driven by some kind of geometrical principles. But
to describe hadrons, one does not have much choices except
to take a look at experiments data before begin to start theoriz-
ing, this is perhaps what Gell-Mann meant while emphasiz-
ing that physicists should sail between Scylla and Charybdis.
Therefore one can observe that hadron physics are from the
beginning affected by the plentitude of analogies with human
senses, just to mention a few: strangeness, flavor and colour.
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In other words one may say that hadron physics are more
or less phenomenology-driven, and symmetries consideration
comes next in order to explain the observed particles zoo.

The plethora of the aforementioned theories actually
boiled down to either relativistic wave equation (Klein-
Gordon) or non-relativistic wave equation, along with some
kind of inter-quark potential. The standard picture of course
will use the QCD linear potential, which can be derived from
Maxwell equations.

But beside this QCD linear potential, there are other types
of potentials which have been considered in the literature, to
mention a few of them:

a. Trigononometric Rosen-Morse potential [11]

νt (|z|) = − 2b cot |z| + a (a + 1)2 csc |z| , (2)

where z = r
d ;

b. PT-Symmetric periodic potential [12];
c. An Interquark qq-potential from Yang-Mills theory has

been considered in [13];
d. An alternative PT-Symmetric periodic potential has

been derived from radial biquaternion Klein-Gordon
equation [14]. Interestingly, we can note here that a re-
cent report by Takahashi et al. indicates that periodic
potential could explain better the cluster deuterium
reaction in Pd/PdO/ZrO2 nanocomposite-samples in
a joint research by Kobe University in 2008. This ex-
periment in turn can be compared to a previous excel-
lent result by Arata-Zhang in 2008 [15]. What is more
interesting here is that their experiment also indicates
a drastic mesoscopic effect of D(H) absorption by the
Pd-nanocomposite-samples.

Of course, there is other type of interquark potentials
which have not been mentioned here.

6 Concluding note

We extend a bit the preceding section by considering a num-
ber of approaches in the context of hadron theories. In a
sense, they are reminiscent of the plethora of formulations
that have been developed over the years on classical gravita-
tion: many seemingly disparate approaches can be effectively
used to describe and explore the same physics.

It can be expected that those different approaches of
hadron physics will be advanced further, in particular in the
context of possibility of going beyond Standard Model.
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The Apache Point Lunar Laser-ranging Operation (APOLLO), in NM, can detect pho-
ton bounces from retroreflectors on the moon surface to 0.1ns timing resolution. This
facility enables not only the detection of light speed anisotropy, which defines a local
preferred frame of reference — only in that frame is the speed of light isotropic, but also
fluctuations/turbulence (gravitational waves) in the flow of the dynamical 3-space rela-
tive to local systems/observers. So the APOLLO facility can act as an effective “gravi-
tational wave” detector. A recently published small data set from November 5, 2007, is
analysed to characterise both the average anisotropy velocity and the wave/turbulence
effects. The results are consistent with some 13 previous detections, with the last and
most accurate being from the spacecraft earth-flyby Doppler-shift NASA data.

1 Introduction

Light speed anisotropy has been repeatedly detected over
more than 120 years, beginning with the Michelson-Morley
experiment in 1887 [1]. Contrary to the usual claims, that ex-
periment gave a positive result, and not a null result, and when
the data was first analysed, in 2002, using a proper calibration
theory for the detector [2, 3] an anisotropy speed, projected
onto the plane of the gas-mode interferometer, in excess of
300 km/s was obtained. The problem was that Michelson had
used Newtonian physics to calibrate the interferometer. When
the effects of a gas in the light path and Lorentz contraction of
the arms are taken into account the instrument turns out to be
nearly 2000 times less sensitive that Michelson had assumed.
In vacuum-mode the Michelson interferometer is totally in-
sensitive to light speed anisotropy, which is why vacuum-
mode resonant cavity experiments give a true null result [4].
These experiments demonstrate, in conjunction with the var-
ious non-null experiments, that the Lorentz contraction is a
real contraction of physical objects, not that light speed is in-
variant. The anisotropy results of Michelson and Morley have
been replicated in numerous experiments [5–15], using a va-
riety of different experimental techniques. The most compre-
hensive early experiment was by Miller [5], and the direction
of the anisotropy velocity obtained via his gas-mode Michel-
son interferometer has been recently confirmed, to within 5◦,
using [15] spacecraft earth-flyby Doppler shift data [16]. The
same result is obtained using the range data — from space-
craft bounce times.

It is usually argued that light speed anisotropy would be in
conflict with the successes of Special Relativity (SR), which
supposedly is based upon the invariance of speed of light.
However this claim is false because in SR the space and time
coordinates are explicitly chosen to make the speed of light
invariant wrt these coordinates. In a more natural choice of
space and time coordinates the speed of light is anisotropic,

as discussed in [18]. Therein the new exact mapping be-
tween the Einstein-Minkowski coordinates and the natural
space and time coordinates is given. So, rather than being
in conflict with SR, the anisotropy experiments have revealed
a deeper explanation for SR effects, namely physical con-
sequences of the motion of quantum matter/radiation wrt a
structured and dynamical 3-space. In 1890 Hertz [17] gave
the form for the Maxwell equations for observers in motion
wrt the 3-space, using the more-natural choice of space and
time coordinates [18]. Other laboratory experimental tech-
niques are being developed, such as the use of a Fresnel-drag
anomaly in RF coaxial cables, see Fig. 6e in [15]. These ex-
perimental results, and others, have lead to a new theory of
space, and consequently of gravity, namely that space is an
observable system with a known and tested dynamical the-
ory, and with gravity an emergent effect from the refraction
of quantum matter and EM waves in an inhomogeneous and
time-varying 3-space velocity field [19, 20]. As well all of
these experiments show fluctuation effects, that is, the speed
and direction of the anisotropy fluctuates over time [15, 20]
— a form of turbulence. These are “gravitational waves”,
and are very much larger than expected from General Rela-
tivity (GR). The observational data [15] determines that the
solar system is in motion through a dynamical 3-space at an
average speed of some 486 km/s in the direction RA = 4.29h,
Dec = −75◦, essentially known since Miller’s extraordinary
experiments in 1925/26 atop Mount Wilson. This is the mo-
tion of the solar system wrt a detected local preferred frame
of reference (FoR) — an actual dynamical and structured sys-
tem. This FoR is different to and unrelated to the FoR defined
by the CMB radiation dipole, see [15].

Here we report an analysis of photon travel time data from
the Apache Point Lunar Laser-ranging Operation (APOLLO)
facility, Murphy et al. [21], for photon bounces from retrore-
flectors on the moon. This experiment is very similar to the
spacecraft Doppler shift observations, and the results are con-
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Fig. 1: Total photon travel times, in seconds, for moon bounces from
APO, November 5, 2007, plotted against observing time, in seconds,
after 1st shot at UTC = 0.5444 hrs. Shots 1–5 shown as 1st data point
(size of graphic point unrelated to variation in travel time within each
group of shots, typically ±20 ns as shown in Fig. 2, shots 1100-1104
shown as middle point, and shots 2642–2636 shown in last graphic
point. Data from Murphy [21], and tabulated in Gezari [22] (Table 1
therein). Straight line reveals linear time variation of bounce time vs
observer time, over the observing period of some 500 s. Data reveals
that distance travelled decreased by 204 m over that 500 s, caused
mainly by rotation of earth. Data from shots 1000–1004 not used due
to possible misprints in [22]. Expanded data points, after removal of
linear trend, and with false zero for 1st shot in each group, are shown
in Fig. 2. The timing resolution for each shot is 0.1 ns.

sistent with the anisotropy results from the above mentioned
experiments, though some subtleties are involved, and also
the presence of turbulence/ fluctuation effects are evident.

2 APOLLO lunar ranging data

Light pulses are launched from the APOLLO facility, using
the 3.5-meter telescope at Apache Point Observatory (APO),
NM. The pulses are reflected by the AP15RR retroreflector,
placed on the moon surface during the Apollo 15 mission, and
detected with a time resolution of 0.1 ns at the APOLLO facil-
ity. The APOLLO facility is designed to study fundamental
physics. Recently Gezari [22] has published some bounce-
time∗ data, and performed an analysis of that data. The anal-
ysis and results herein are different from those in [22], as are
the conclusions. The data is the bounce time recorded from
2036 bounces, beginning at UTC = 0.54444 hrs and ending
at UTC = 0.55028 hrs on November 5, 2007†. Only a small
subset of the data from these 2036 bounces is reported in [22],
and the bounce times for 15 bounces are shown in Fig. 1,
and grouped into 3 bunches‡. The bounce times, at the plot
time resolution, show a linear time variation of bounce time
vs observer time, presumably mainly caused by changing dis-

∗Total travel time to moon and back.
†The year of the data is not given in [22], but only in 2007 is the moon

in the position reported therein at these UTC times.
‡An additional 5 shots (shot #1000-1004) are reported in [22] — but

appear to have identical launch and travel times, and so are not used herein.

Fig. 2: Fluctuations in bounce time, in ns, within each group of
shots, shown as one data point in Fig. 1, and plotted against time,
in s, from time of 1st bounce in each group, and after removing
the best-fit linear drift in each group, essentially the straight line in
Fig. 1. The fluctuations are some ±20 ns. Shaded region shows fluc-
tuation range expected from dynamical 3-space and using spacecraft
earth-flyby Doppler-shift NASA data [16] for 3-space velocity [15],
and using a fluctuation in RA angle of, for example, 3.4◦ and a 3-
space speed of 490 km/s. Fluctuations in only speed or declination
of 3-space produce no measureable effect, because of orientation
of 3-space flow velocity to APO-moon direction during these shots.
These fluctuations suggest turbulence or wave effects in the 3-space
flow. These are essentially “gravitational waves”, and have been de-
tected repeatedly since the Michelson-Morley experiment in 1887;
see [20] for plots of that fringe shift data.

tance between APO and retroreflector, which is seen to be de-
creasing over time of observation. Herein we consider only
these bounce times, and not the distance modellings, which
are based on the assumption that the speed of light is invari-
ant, and so at best are pseudo-ranges.

Of course one would also expect that the travel times
would be affected by the changing orientation of the APO-
moon photon propagation directions wrt the light speed an-
isotropy direction. However a bizarre accident of date and
timing occurred during these observations. The direction of
the light-speed anisotropy on November 5 may be estimated
from the spacecraft earth-flyby analysis, and from Fig. 11
of [15] we obtain RA=6.0h, Dec=−76◦, and with a speed
≈490 km/s. And during these APOLLO observations the di-
rection of the photon trajectories was RA=11h40′, Dec=0◦3′.
Remarkably these two directions are almost at right angles
to each other (88.8◦), and then the speed of 490 km/s has a
projection onto the photon directions of a mere vp = 11 km/s.

From the bounce times, alone, it is not possible to extract
the anisotropy velocity vector, as the actual distance to the
retroreflector is not known. To do that a detailed modelling
of the moon orbit is required, but one in which the invariance
of the light speed is not assumed. In the spacecraft earth-flyby
Doppler shift analysis a similar problem arose, and the reso-
lution is discussed in [15] and [16], and there the asymptotic
velocity of motion, wrt the earth, of the spacecraft changed
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Fig. 3: Azimuth, in degrees, of 3-space flow velocity vs local side-
real time, in hrs, detected by Miller [5] using a gas-mode Michelson
interferometer atop Mt Wilson in 1925/26. Each composite day is a
collection of results from various days in each indicated month. In
August, for example, the RA for the flow being NS (zero azimuth
— here measured from S) is ≈5 hrs and ≈17 hrs. The dotted curves
show expected results for the RA, determined in [19], for each of
these months — these vary due to changing direction of orbital speed
of earth and of sun-inflow speed, relative to cosmic speed of solar
system, but without wave effects..The data shows considerable fluc-
tuations, at the time resolution of these observations (≈1 hr). These
fluctuations are larger than the errors, given as ±2.5◦ in [5].

from before to after the flyby, and as well there were various
spacecraft with different orbits, and so light-speed anisotropy
directional effects could be extracted.

3 Bounce-time data analysis

Herein an analysis of the bounce-time data is carried out to
try and characterise the light speed anisotropy velocity. If
the 3-space flow-velocity vector has projection vp onto the
photon directions, then the round-trip travel time, between co-
moving source/reflector/detector system, shows a 2nd order
effect in vp/c, see Appendix,

t =
2L
c

+
L
c

v2
p

c2 + . . . (1)

where L is the actual 3-space distance travelled. The last term
is the change in net travel time if the photons have speed c±vp,
relative to the moving system. There is also a 1st order effect
in vp/c caused by the relative motion of the APO site and
the retroreflector, but this is insignificant, again because of
the special orientation circumstance. These effects are par-
tially hidden by moon orbit modelling if the invariance of
light speed is assumed in that modelling. To observe these
vp effects one would need to model the moon orbit taking
into account the various gravity effects, and then observing
anomalies in net travel times over numerous orientations of
the APO-moon direction, and sampled over a year of obser-
vations. However a more subtle effect is used now to extract
some characteristaion of the anisotropy velocity. In Fig. 2 we
have extracted the travel time variations within each group

of 5 shots, by removing a linear drift term, and also using a
false zero. We see that the net residual travel times fluctuate
by some ±20 ns. Such fluctuations are expected, because of
the 3-space wave/turbulence effects that have been detected
many times, although typically with much longer resolution
times. These fluctuations arise from changes in the 3-space
velocity, which means fluctuations in the speed, RA and Dec.
Changes in speed and declination happen to produce insignif-
icant effects for the present data, because of the special ori-
entation situation noted above, but changes in RA do produce
an effect. In Fig. 2 the shaded region shows the variations
of 20 ns (plotted as ±10ns because of false zero) caused by
a actual change in RA direction of +3.4◦. This assumes a 3-
space speed of 490 km/s. Fig. 3 shows fluctuations in RA in
the anisotropy vector from the Miller experiment [5]. We see
fluctuations of some ±2 hrs in RA (≡ ±7.3◦ at Dec =−76◦),
observed with a timing resolution of an hour or so. Other
experiments show similar variations in RA from day to day,
see Fig. 6 in [15], so the actual RA of 6h in November is not
steady, from day to day, and the expected APOLLO time fluc-
tuations are very sensitive to the RA. A fluctuation of +3◦ is
not unexpected, even over 3 s. So this fluctuation analysis
appear to confirm the anisotropy velocity extracted from the
earth-flyby Doppler-shift NASA data. However anisotropy
observations have never been made over time intervals of the
order of 1sec, as in Fig. 2, although the new 1st order in vp/c
coaxial cable RF gravitational wave detector detector under
construction can collect data at that resolution.

4 Conclusions

The APOLLO lunar laser-ranging facility offers significant
potential for observing not only the light speed anisotropy
effect, which has been detected repeatedly since 1887, with
the best results from the spacecraft earth-flyby Doppler-shift
NASA data, but also wave/turbulence effects that have also
been repeatedly detected, as has been recently reported, and
which are usually known as “gravitational waves”∗. These
wave effects are much larger than those putatively suggested
within GR. Both the anisotropy effect and its fluctuations
show that a dynamical and structured 3-space exists, but
which has been missed because of two accidents in the de-
velopment of physics, (i) that the Michelson interferometer
is very insensitive to light speed anisotropy, and so the orig-
inal small fringe shifts were incorrectly taken as a “null ef-
fect”, (ii) this in turn lead to the development of the 1905
Special Relativity formalism, in which the speed of light was
forced to be invariant, by a peculiar choice of space and time
coordinates, which together formed the spacetime construct.
Maxwell’s EM equations use these coordinates, but Hertz as
early as 1890 gave the more transparent form which use more

∗It may be shown that a dynamical 3-space velocity field may be mapped
into a non-flat spacetime metric gµν formalism, in that both produce the same
matter acceleration, but that metric does not satisfy the GR equations [19,20]
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natural space and time coordinates, and which explicitly takes
account of the light-speed anisotropy effect, which was of
course unknown, experimentally, to Hertz. Hertz had been
merely resolving the puzzle as to why Maxwell’s equations
did not specify a preferred frame of reference effect when
computing the speed of light relative to an observer. In the
analysis of the small data set from APOLLO from November
5, 2007, the APO-moon photon direction just happened to be
at 90◦ to the 3-space velocity vector, but in any case determi-
nation, in general, by APOLLO of that velocity requires sub-
tle and detailed modelling of the moon orbit, taking account
of the light speed anisotropy. Then bounce-time data over a
year will show anomalies, because the light speed anisotropy
vector changes due to motion of the earth about the sun, as
1st detected by Miller in 1925/26, and called the “apex aber-
ration” by Miller, see [15]. An analogous technique resolved
the earth-flyby spacecraft Doppler-shift anomaly [16]. Nev-
ertheless the magnitude of the bounce-time fluctuations can
be explained by changes in the RA direction of some 3.4◦,
but only if the light speed anisotropy speed is some 490 km/s.
So this is an indirect confirmation of that speed. Using the
APOLLO facility as a gravitational wave detector would not
only confirm previous detections, but also provide time reso-
lutions down to a few seconds, as the total travel time of some
2.64 s averages the fluctuations over that time interval. Com-
parable time resolutions will be possible using a laboratory
RF coaxial cable wave/turbulence detector, for which a proto-
type has already been successfully operated. Vacuum-mode
laboratory Michelson interferometers are of course insensi-
tive to both the light speed anisotropy effect and its fluctua-
tions, because of a subtle cancellation effect — essentially a
design flaw in the interferometer, which fortunately Michel-
son, Miller and others avoided by using the detector in gas-
mode (air) but without that understanding.

Appendix
Fig. 4 shows co-moving Earth-Moon-Earth photon bounce trajec-
tories in reference frame of 3-space. Define tAB = tB − tA and
tBC = tC − tB. The distance AB is vtAB and distance BC is vtBC . To-
tal photon-pulse travel time is tAC = tAB + tBC . Applying the cosine
theorem to triangles ABB′ and CBB′ we obtain

tAB =
vL cos(θ) +

√
v2L2 cos2(θ) + L2(c2 − v2)

(c2 − v2)
, (2)

tBC =
−vL cos(θ) +

√
v2L2 cos2(θ) + L2(c2 − v2)
(c2 − v2)

. (3)

Then to O(v2/c2)

tAC =
2L
c

+
Lv2(1 + cos2(θ))

c3 + . . . (4)

However the travel times are measured by a clock, located at
the APO, travelling at speed v wrt the 3-space, and so undergoes a
clock-slowdown effect. So tAC in (4) must be reduced by the factor

A

L L L

A′

CB
θ

B′

-

C′

v
µ ²

Fig. 4: Co-moving Earth-Moon-Earth photon bounce trajectories in
reference frame of 3-space, so speed of light is c in this frame. Earth
(APO) and Moon (retroreflector) here taken to have common ve-
locity v wrt 3-space. When APO is at locations A,B,C, at times
tA, tB, tC , . . . the moon retroreflector is at corresponding locations A′,
B′, C′, . . . at same respective times tA, tB, tC , . . . Earth-Moon separa-
tion distance L, at same times, has angle θ wrt velocity v, and shown
at three successive times: (i) when photon pulse leaves APO at A (ii)
when photon pulse is reflected at retroreflector at B′, and (iii) when
photon pulse returns to APO at C.

√
1 − v2/c2, giving

tAC =
2L
c

+
Lv2 cos2(θ)

c3 + · · · = 2L
c

+
Lv2

P

c3 + . . . (5)

where vP is the velocity projected onto L. Note that there is no
Lorentz contraction of the distance L. However if there was a solid
rod separating AA′ etc, as in one arm of a Michelson interferome-
ter, then there would be a Lorentz contraction of that rod, and in the
above we need to make the replacement L → L

√
1 − v2 cos2(θ)/c2,

giving tAC = 2L/c to O(v2/c2). And then there is no dependence of
the travel time on orientation or speed v to O(v2/c2).

Applying the above to a laboratory vacuum-mode Michelson in-
terferometer, as in [4], implies that it is unable to detect light-speed
anisotropy because of this design flaw. The “null” results from such
devices are usually incorrectly reported as proof of the invariance of
the speed of light in vacuum. This design flaw can be overcome by
using a gas or other dielectric in the light paths, as first reported in
2002 [2].
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A classical unification theory that completely unifies all the fundamental interactions of
nature is developed. First, the nature is suggested to be composed of the following four
fundamental elements: mass, radiation, electric charge, and color charge. All known
types of matter or particles are a combination of one or more of the four fundamental
elements. Photons are radiation; neutrons have only mass; protons have both mass and
electric charge; and quarks contain mass, electric charge, and color charge. The nature
fundamental interactions are interactions among these nature fundamental elements.
Mass and radiation are two forms of real energy. Electric and color charges are con-
sidered as two forms of imaginary energy. All the fundamental interactions of nature
are therefore unified as a single interaction between complex energies. The interac-
tion between real energies is the gravitational force, which has three types: mass-mass,
mass-radiation, and radiation-radiation interactions. Calculating the work done by the
mass-radiation interaction on a photon derives the Einsteinian gravitational redshift.
Calculating the work done on a photon by the radiation-radiation interaction derives a
radiation redshift, which is much smaller than the gravitational redshift. The interaction
between imaginary energies is the electromagnetic (between electric charges), weak
(between electric and color charges), and strong (between color charges) interactions.
In addition, we have four imaginary forces between real and imaginary energies, which
are mass-electric charge, radiation-electric charge, mass-color charge, and radiation-
color charge interactions. Among the four fundamental elements, there are ten (six real
and four imaginary) fundamental interactions. This classical unification theory deep-
ens our understanding of the nature fundamental elements and interactions, develops a
new concept of imaginary energy for electric and color charges, and provides a possible
source of energy for the origin of the universe from nothing to the real world.

1 Introduction

In the ancient times, the nature was ever considered to have
five elements: space, wind, water, fire, and earth. In tradi-
tional Chinese Wu Xing (or five-element) theory, the space
and wind are replaced by metal and wood. All the natural
phenomena are described by the interactions of the five ele-
ments. There are two cycles of balances: generating (or sheng
in Chinese) and overcoming (or ke in Chinese) cycles. The
generating cycle includes that wood feeds fire, fire creates
earth (or ash), earth bears metal, metal carries water, and wa-
ter nourishes wood; while the overcoming cycle includes that
wood parts earth, earth absorbs water, water quenches fire,
fire melts metal, and metal chops wood.

According to the modern scientific view, how many ele-
ments does the nature have? How do these fundamental el-
ements interact with each other? It is well known that there
have been four fundamental interactions found in the nature.
They are the gravitational, electromagnetic, weak, and strong
interactions. The gravitational interaction is an interaction
between masses. The electromagnetic interaction is an inter-
action between electric charges. The strong interaction is an
interaction between color charges. What is the weak inter-
action? Elementary particles are usually classified into two

categories: hadrons and leptons. Hadrons participate in both
strong and weak interactions, but leptons can only partici-
pate in the weak interaction. If the weak interaction is an
interaction between weak charges, what is the weak charge?
How many types of weak changes? Are the weak charges in
hadrons different from those in leptons? Do we really need
weak charges for the weak interaction? All of these are still
unclear although the weak interaction has been extensively
investigated for many decades. Some studies of particular
particles show that the weak charges might be proportional to
electric charges.

In this paper, we suggest that the nature has four funda-
mental elements, which are: mass M, radiation γ, electric
charge Q, and color charge C. Any type of matter or particle
contains one or more of these four elements. For instances,
a neutron has mass only; a photon is just a type of radiation,
which is massless; a proton contains both mass and electric
charge; and a quark combines mass, electric charge, and color
charge together. Mass and radiation are well understood as
two forms of real energy. Electric charge is a property of
some elementary particles such as electrons and protons and
has two varieties: positive and negative. Color charge is a
property of quarks, which are sub-particles of hadrons, and
has three varieties: red, green, and blue. The nature funda-
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mental interactions are the forces among these fundamental
elements. The weak interaction is considered as an interac-
tion between color charges and electric charges.

Recently, Zhang has considered the electric charge to be a
form of imaginary energy [1]. With this consideration, the en-
ergy of an electrically charged particle is a complex number.
The real part is proportional to the mass as the Einsteinian
mass-energy expression represents, while the imaginary part
is proportional to the electric charge. The energy of an an-
tiparticle is given by conjugating the energy of its correspond-
ing particle. Newton’s law of gravity and Coulomb’s law of
electric force were classically unified into a single expres-
sion of the interaction between the complex energies of two
electrically charged particles. Interaction between real ener-
gies (including both mass and radiation) is the gravitational
force, which has three types: mass-mass, mass-radiation, and
radiation-radiation interactions. Calculating the work done
by the mass-radiation interaction on a photon, we derived the
Einsteinian gravitational redshift. Calculating the work done
by the radiation-radiation interaction on a photon, we ob-
tained a radiation redshift, which is negligible in comparison
with the gravitational redshift. Interaction between imaginary
energies (or between electric charges) is the electromagnetic
force.

In this study, we further consider the color charge to be
another form of imaginary energy. Therefore, the nature is
a system of complex energy and the four fundamental ele-
ments of nature are described as a complex energy. The real
part includes the mass and radiation, while the imaginary part
includes the electric and color charges. All the fundamental
interactions can be classically unified into a single interaction
between complex energies. The interaction between real en-
ergies is gravitational interaction. By including the massless
radiation, we have three types of gravitational forces. The
interaction between imaginary energies are electromagnetic
(between electric charges), weak (between electric and color
charges), and strong (between color charges) interactions. In
addition, we have four types of imaginary forces (between
real and imaginary energies): mass-electric charge interac-
tion, radiation-electric charge interaction, mass-color charge
interaction, and radiation-color charge interaction. Among
the four fundamental elements, we have in total ten (six real
and four imaginary) fundamental interactions.

2 Fundamental elements of Nature

2.1 Mass — a form of real energy

It is well known that mass is a fundamental property of mat-
ter, which directly determines the gravitational interaction via
Newton’s law of gravity [2]. Mass M is a quantity of matter
[3], and the inertia of motion is solely dependent upon mass
[4]. A body experiences an inertial force when it accelerates
relative to the center of mass of the entire universe. In short,
mass there affects inertia here.

According to Einstein’s energy-mass expression (or Ein-
stein’s first law) [5], mass is also understood as a form of real
energy. A rest object or particle with mass M has real energy
given by

EM = Mc2, (1)

where c is the speed of light. The real energy is always posi-
tive. It cannot be destroyed or created but can be transferred
from one form to another.

2.2 Radiation — a form of real energy

Radiation γ refers to the electromagnetic radiation (or light).
In the quantum physics, radiation is described as radiation
photons, which are massless quanta of real energy [6]. The
energy of a photon is given by

Eγ = hν, (2)

where h = 6.6×10−34 J ·s is the Planck constant [7] and ν is the
radiation frequency from low frequency (e.g., 103 Hz) radio
waves to high frequency (e.g., 1020 Hz) γ-rays. Therefore,
we can generally say that the radiation is also a form of real
energy.

2.3 Electric charge — a form of imaginary energy

Electric charge is another fundamental property of matter,
which directly determines the electromagnetic interaction via
Coulomb’s law of electric force [8], which is generalized to
the Lorentz force expression for moving charged particles.
Electric charge has two varieties of either positive or negative.
It appears or is observed always in association with mass to
form positive or negative electrically charged particles with
different amount of masses. The interaction between electric
charges, however, is completely independent of mass. Posi-
tive and negative charges can annihilate or cancel each other
and produce in pair with the total electric charges conserved.
Therefore, electric charge should have its own meaning of
physics.

Recently, Zhang has considered the electric charge Q to
be a form of imaginary energy [1]. The amount of imaginary
energy is defined as

EQ =
Q√
G

c2, (3)

where G is the gravitational constant. The imaginary energy
has the same sign as the electric charge. Then, for an electri-
cally charged particle, the total energy is

E = EM + iEQ = (1 + iα)Mc2. (4)

Here, i =
√−1 is the imaginary number, α is the charge-

mass ratio defined by

α =
Q√
GM

, (5)
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in the cgs unit system. Including the electric charge, we have
modified Einstein’s first law Eq. (1) into Eq. (4). In other
words, electric charge is represented as an imaginary mass.
For an electrically charged particle, the absolute value of α is
a big number. For instance, proton’s α is about 1018 and elec-
tron’s α is about −2×1021. Therefore, an electrically charged
particle holds a large amount of imaginary energy in compar-
ison with its real or rest energy. A neutral particle such as a
neutron, photon, or neutrino has only a real energy. Weinberg
suggested that electric charges come from the fifth-dimension
[9], a compact circle space in the Kaluza-Klein theory [10–
12]. Zhang has shown that electric charge can affect light and
gravity [13].

The energy of an antiparticle [14, 15] is naturally obtained
by conjugating the energy of the corresponding particle [1]

E∗ =
(
EM + iEQ

)∗
= EM − iEQ. (6)

The only difference between a particle and its correspond-
ing antiparticle is that their imaginary energies (thus their
electric charges) have opposite signs. A particle and its an-
tiparticle have the same real energy but have the sign-opposite
imaginary energy. In a particle-antiparticle annihilation pro-
cess, their real energies completely transfer into radiation
photon energies and their imaginary energies annihilate or
cancel each other. Since there are no masses to adhere, the
electric charges come together due to the electric attraction
and cancel each other (or form a positive-negative electric
charge pair (+,−)). In a particle-antiparticle pair production
process, the radiation photon energies transfer to rest ener-
gies with a pair of imaginary energies, which combine with
the rest energies to form a particle and an antiparticle.

To describe the energies of all particles and antiparticles,
we can introduce a two-dimensional energy space. It is a
complex space with two axes denoted by the real energy EM

and the imaginary energy iEQ. There are two phases in this
two-dimensional energy space because the real energy is pos-
itive. In phase I, both real and imaginary energies are positive,
while, in phase II, the imaginary energy is negative. Neutral
particles including massless radiation photons are located on
the real energy axis. Electrically charged particles are dis-
tributed between the real and imaginary energy axes. A par-
ticle and its antiparticle cannot be located in the same phase
of the energy space. They distribute in two phases symmetri-
cally with respect to the real energy axis.

The imaginary energy is quantized because the electric
charge is so. Each electric charge quantum e has the follow-
ing imaginary energy Ee = ec2/

√
G ∼ 1027 eV, which is

about 1018 times greater than proton’s real energy (or the en-
ergy of proton’s mass). Dividing the size of proton by the
imaginary-real energy ratio (1018), we obtain a scale length
lQ = 10−33 cm, the size of the fifth-dimension in the Kaluza-
Klein theory. In addition, this amount of energy is equivalent
to a temperature T = 2Ee/kB ∼ 2.4×1031K with kB the Boltz-
mann constant. In the epoch of big bang, the universe could

Names Symbols Masses Electric Charge (e)

up u 2.4 MeV 2/3
down d 4.8 MeV −1/3
charm c 1.27 GeV 2/3
strange s 104 MeV −1/3
top t 171.2 GeV 2/3
bottom b 4.2 GeV −1/3

Table 1: Properties of quarks: names, symbols, masses, and electric
charges.

reach this high temperature. Therefore, big bang of the uni-
verse from nothing to a real world, if really occured, might
be a process that transfers a certain amount of imaginary en-
ergy to real energy. In the recently proposed black hole uni-
verse model, however, the imaginary-real energy transforma-
tion could not occur because of low temperature [16].

2.4 Color charge — a form of imaginary energy

In the particle physics, all elementary particles can be cat-
egorized into two types: hadrons and leptons, in accord
with whether they experience the strong interaction or not.
Hadrons participate in the strong interaction, while leptons do
not. All hadrons are composed of quarks. There are six types
of quarks denoted as six different flavors: up, down, charm,
strange, top, and bottom. The basic properties of these six
quarks are shown in Table 1.

Color charge (denoted by C) is a fundamental property of
quarks [17], which has analogies with the notion of electric
charge of particles. There are three varieties of color charges:
red, green, and blue. An antiquark’s color is antired, anti-
green, or antiblue. Quarks and antiquarks also hold electric
charges but the amount of electric charges are frational such
as ±e/3 or ±2e/3. An elementary particle is usually com-
posed by two or more quarks or antiquarks and colorless with
electric charge to be a multiple of e. For instance, a proton
is composed by two up quarks and one down quarks (uud); a
neutron is composed by one up quark and two down quarks
(udd); a pion, π+, is composed by one up quark and one down
antiquark (ud̄); a charmed sigma, Σ++

c , is composed by two up
quarks and one charm quark (uuc̄); and so on.

Similar to electric charge Q, we can consider color charge
C to be another form of imaginary energy. The amount of
imaginary energy can be defined by

EC =
C√
G

c2. (7)

Then, for a quark with mass M, electric charge Q, and
color charge C, the total energy of the quark is

E = EM + iEQ + iEC =
[
1 + i (α + β)

]
Mc2, (8)

where β is given by

β =
C√
GM

. (9)
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The total energy of a quark is a complex number.
The energy of an antiquark is naturally obtained by con-

jugating the energy of the corresponding quark

E∗ =
(
EM + iEQ + iEC

)∗
= EM − iEQ − iEC =

=
[
1 − i(α + β)

]
Mc2. (10)

The only difference between a quark and its correspond-
ing antiquark is that their imaginary energies (thus their elec-
tric and color charges) have opposite signs. A quark and
its antiquark have the same real energy and equal amount of
imaginary energy but their signs are opposite. The opposite
of the red, green, and blue charges are antired, antigreen, and
antiblue charges.

To describe the energies of all particles and antiparticles
including quarks and antiquarks, we can introduce a three-
dimensional energy space. It is a complex space with three
axes denoted by the real energy EM , the electric imaginary en-
ergy iEQ, and the color imaginary energy iEC . There are four
phases in this three-dimensional energy space. In phase I, all
real and imaginary energies are positive; in phase II, the imag-
inary energy of electric charge is negative; in phase III, the
imaginary energies of both electric and color charges are neg-
ative; and in phase IV, the imaginary energy of color charge is
negative. Neutral particles including massless radiation pho-
tons are located on the real-energy axis. Electrically charged
particles are distributed on the plane composed of the real-
energy axis and the electric charge imaginary-energy axis.
Quarks are distributed in all four phases. Particles and their
antiparticles are distributed on the plane of the real-energy
axis and the electric charge imaginary-energy axis symmetri-
cally with respect to the real-energy axis. Quarks and their
antiquarks are distributed in different phases by symmetri-
cally with respect to the real-energy axis and separated by
the plane of the real and electric imaginary energy axes.

3 Fundamental interactions of Nature

Fundamental interactions of nature are all possible interac-
tions between the four fundamental elements of nature. Each
of the four fundamental elements is a form of energy (ei-
ther real or imaginary), the fundamental interactions can
be unified as a single interaction between complex energies
given by

~FEE = −G
E1E2

c4r2 ~̂r , (11)

where E1 and E2 are the complex energy given by

E1 = EM
1 + Eγ

1 + i
(
EQ

1 + EC
1

)
, (12)

E2 = EM
2 + Eγ

2 + i
(
EQ

2 + EC
2

)
. (13)

Replacing E1 and E2 by using the energy expression (12)
and (13), we obtain

~FEE = ~FRR + ~FII + i ~FRI =

Fig. 1: Fundamental interactions among four fundamental elements
of nature: mass, radiation, electric charge and color charge. Mass
and radiation are real energies, while electric and color charges are
imaginary energies. The nature is a system of complex energy and
all the fundamental interactions of nature are classically unified into
a single interaction between complex energies. There are six real and
four imaginary interactions among the four fundamental elements.

= −G
M1M2

r2 ~̂r −G
M1hν2 + M2hν1

c2r2 ~̂r −G
hν1hν2

c4r2 ~̂r +

+
Q1Q2

r2 ~̂r +
Q1C2 + Q2C1

r2 ~̂r +
C1C2

r2 ~̂r −

− i
√

G
M1Q2 + M2Q1

r2 ~̂r − i
√

G
M1C2 + M2C1

r2 ~̂r −

− i
√

G
hν1Q2 + hν2Q1

c2r2 ~̂r − i
√

G
hν1C2 + hν2C1

c2r2 ~̂r ≡

≡ ~FMM + ~FMγ + ~Fγγ + ~FQQ + ~FQC + ~FCC +

+ i ~FMQ + i ~FMC + i ~FQγ + i ~FCγ . (14)

It is seen that the interaction between complex energies
~FEE is decoupled into the real-real energy interaction ~FRR,
the imaginary-imaginary energy interaction ~FII , and the real-
imaginary energy interaction i ~FRI . The real-real energy inter-
action ~FRR is decoupled into the mass-mass interaction ~FMM ,
the radiation-radiation interaction ~Fγγ, and the mass-radiation
interaction ~FMγ. The imaginary-imaginary energy interaction
~FII is decoupled into the interaction between electric charges
~FQQ, the interaction between color charges ~FCC , and the in-
teraction between electric and color charges ~FQC . The real-
imaginary energy interaction i ~FRI is decoupled into the mass-
electric charge interaction i ~FMQ, the mass-color charge in-
teraction i ~FMC , the radiation-electric charge interaction i ~FQγ,
the radiation-color charge interaction i ~FCγ. All these interac-
tions as shown in Eq. (14) can be represented by Figure 1 or
Table 2.
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M γ iQ iC

M ~FMM ~FMγ i ~FMQ i ~FMC

γ ~Fγγ i ~FQγ i ~FCγ

iQ ~FQQ ~FQC

iC ~FCC

Table 2: Fundamental elements and interactions of nature.

3.1 Gravitational force

The force ~FMM represents Newton’s law for the gravitational
interaction between two masses. This force governs the or-
bital motion of the solar system. The force ~FMγ is the grav-
itational interaction between mass and radiation. The force
~Fγγ is the gravitational interaction between radiation and ra-
diation. These three types of gravitational interactions are
categorized from the interaction between real energies (see
Figure 3 of [1]).

Calculating the work done by this mass-radiation force on
a photon, we can derive the Einsteinian gravitational redshift
without using the Einsteinian general relativity

ZG =
λo − λe

λe
= exp

(GM
c2R

)
− 1. (15)

In the weak field approximation, it reduces

ZG ' GM
c2R

. (16)

Similarly, calculating the work done on a photon from an
object by the radiation-radiation gravitation ~Fγγ, we obtain a
radiation redshift,

Zγ =
4GM
15c5 σAT 4

c +
G
c5 σAT 4

s , (17)

where σ is the Stepan-Boltzmann constant, A is the surface
area, Tc is the temperature at the center, Ts is the temperature
on the surface. Here we have assumed that the inside temper-
ature linearly decreases from the center to the surface. The
radiation redshift contains two parts. The first term is con-
tributed by the inside radiation. The other is contributed by
the outside radiation. The redshift contributed by the outside
radiation is negligible because Ts � Tc .

The radiation redshift derived here is significantly small
in comparison with the empirical expression of radiation red-
shift proposed by Finlay-Freundlich [18]. For the Sun with
Tc = 1.5×107 K and Ts = 6×103 K, the radiation redshift is
only about Zγ = 1.3×10−13, which is much smaller than the
gravitational redshift ZG = 2.1×10−6.

3.2 Electromagnetic force

The force ~FQQ represents Coulomb’s law for the electro-
magnetic interaction between two electric charges. Electric
charges have two varieties and thus three types of interac-
tions: 1) repelling between positive electric charges ~F++,

Fig. 2: Six types of strong interactions between color charges: red-
red, green-green, blue-blue, red-green, red-blue, and green-blue in-
teractions.

2) repelling between negative electric charges ~F−−, and 3) at-
tracting between positive and negative electric charges ~F+−.
Figure 2 of [1] shows the three types of Coulomb interactions
between two electric charges.

3.3 Strong force

The force ~FCC is the strong interaction between color and
color charges. Color charges have three varieties: red, blue,
and green and thus six types of interactions: 1) the red-red
interaction ~Frr, 2) the blue-blue interaction ~Fbb, 3) the green-
green interaction ~Fgg, 4) the red-blue interaction ~Frb, 5) the
red-green interaction ~Frg, and 6) the blue-green interaction
~Fbg. Figure 2 shows these six types of color interactions.

Considering the strong interaction to be asymptotically
free [19], we replace the color charge by

C → r C ; (18)

this assumption represents that the color charge becomes less
colorful if it is closer to each other, i.e., asymptotically col-
orless. Then the strong interaction between color charges can
be rewritten by

~FCC = C1C2 ~̂r , (19)

which is independent of the radial distance and consistent
with measurement.

The strong interaction is the only one that can change the
color of quarks in a hadron. A typical strong interaction is
proton-neutron scattering, p + n −→ n + p. This is an interac-
tion between the color charge of one up quark in proton and
the color charge of one down quark in neutron via exchang-
ing a π+ , u + d −→ d + u (see Figure 2). In other words,
during this proton-neutron scattering an up quark in the pro-
ton changes into a down quark by emitting a π+, meanwhile
a down quark in the neutron changes into an up quark by ab-
sorbing the π+. Another typical strong interaction is delta
decay, ∆0 −→ p+π−. This is an interaction between the color
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Fig. 3: Six types of weak interactions between electric and color
charges: positive-red, positive-green, positive-blue, negative-red,
negative-green, and negative-blue interactions.

charge of one down quark and the color charges of the other
two quarks. In this interaction, a down quark emits a π− and
then becomes a up quark, d −→ u + π−.

3.4 Weak force

The force ~FQC is the weak interaction between electric and
color charges. Considering electric charges with two varieties
(positive and negative) and color charges with three varieties
(red, blue, and green), we have also six types of weak inter-
action: 1) the positive-red interaction ~F+r, 2) the positive-
blue interaction ~F+b, 3) the positive-green interaction ~F+g,
4) the negative-red interaction ~F−r, 5) the negative-blue inter-
action ~F−b, and 6) the negative-green interaction ~F−g. Figure
3 shows these six types of electric-color charge interactions.

Considering equation (18), we can represent the weak in-
teraction by

~FQC =
QC
r

~̂r , (20)

which is inversely proportional to the radial distance and con-
sistent with measurement.

The weak interaction is the only one that can change the
flavors of quarks in a hadron. A typical weak interaction is
the neutron decay, n −→ p + e− + ν̄e. In this process, a down
quark in the neutron changes into an up quark by emitting
W− boson, which lives about 10−26 seconds and then breaks
into a high-energy electron and an electron antineutrino, i.e.,
d −→ u + W− and then W− −→ u + e−+ ν̄e. There are actually
two interactions involved in this neutron decay. One is the in-
teraction between electric and color charges inside the down
quark, which is changed into an up quark by emitting a W−

boson. Another is the interaction inside W−, which is broken
into an electron and an electron antineutrino. Since W− is
composed of an up antiquark and a down quark (ūd), we sug-
gest that the down quark changes into an up quark by emitting
an electron and then the up antiquark and the up quark anni-
hilate into an electron antineutrino. It should be noted that an

upper antiquark and an up quark usually forms an η particle,
which may live about a few tens of nanoseconds and decay
into other particles such as photons and pions, which further
decay to nuons and nuon neutrinos and antineutrinos. The
formation of η and decay to photons and pions may explain
the solar neutrino missing problem and neutrino oscillations,
the detail of which leaves for a next study.

3.5 Imaginary force

The other terms with the imaginary number in Eq. (14) are
imaginary forces between real and imaginary energies. These
imaginary forces should play essential roles in combining or
separating imaginary energies with or from real energies. The
physics of imaginary forces needs further investigations.

4 Summary

As a summary, we have appropriately suggested mass, radia-
tion, electric charge, and color charge as the four fundamen-
tal elements of nature. Mass and radiation are two types of
real energy, while electric and color charges are considered
as two forms of imaginary energy. we have described the na-
ture as a system of complex energy and classically unified all
the fundamental interactions of nature into a single interac-
tion between complex energies. Through this classical uni-
fication theory, we provide a more general understanding of
nature fundamental elements and interactions, especially the
weak interaction as an interaction between electric and color
charges without assuming a weak charge. The interaction be-
tween real energies is the gravitational force, which has three
types: mass-mass, mass-radiation, and radiation-radiation in-
teractions. Calculating the work done by the mass-radiation
gravitation on a photon derives the Einsteinian gravitational
redshift. Calculating the work done on a photon from an ob-
ject by the radiation-radiation gravitation derives a radiation
redshift, which is much smaller than the gravitational redshift.
The interaction between imaginary energies is the electro-
magnetic (between electric charges), weak (between electric
and color charges), and strong (between color charges) inter-
actions. In addition, we have four imaginary forces between
real and imaginary energies, which are mass-electric charge,
radiation-electric charge, mass-color charge, and radiation-
color charge interactions. Therefore, among the four funda-
mental elements, we have in total ten (six real and four imag-
inary) fundamental interactions. In addition, we introduce a
three-dimensional energy space to describe all types of matter
or particles including quarks and antiquarks.
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The Solar System According to General Relativity: The Sun’s Space
Breaking Meets the Asteroid Strip

Larissa Borissova
E-mail: borissova@ptep-online.com

This study deals with the exact solution of Einstein’s field equations for a sphere of
incompressible liquid without the additional limitation initially introduced in 1916 by
Schwarzschild, by which the space-time metric must have no singularities. The ob-
tained exact solution is then applied to the Universe, the Sun, and the planets, by the
assumption that these objects can be approximated as spheres of incompressible liq-
uid. It is shown that gravitational collapse of such a sphere is permitted for an object
whose characteristics (mass, density, and size) are close to the Universe. Meanwhile,
there is a spatial break associated with any of the mentioned stellar objects: the break
is determined as the approaching to infinity of one of the spatial components of the
metric tensor. In particular, the break of the Sun’s space meets the Asteroid strip, while
Jupiter’s space break meets the Asteroid strip from the outer side. Also, the space
breaks of Mercury, Venus, Earth, and Mars are located inside the Asteroid strip (inside
the Sun’s space break).

The main task of this paper is to study the possibilities of
applying condensed matter models in astrophysics and cos-
mology. A cosmic object consisting of condensed matter has
a constant volume and a constant density. A sphere of incom-
pressible liquid, being in the weightless state (as any cosmic
object), is a kind of condensed matter. Thus, assuming that
a star is a sphere of incompressible liquid, we can study the
gravitational field of the star inside and outside it.

The Sun orbiting the center of the Galaxy meets the
weightless condition (see [1] for detail)

GM
r

= v2,

where G = 6.67×10−8 cm3/g ×sec2 is the Newtonian gravita-
tional constant, M is the mass of the Galaxy, r is the distance
of the Sun from the center of the Galaxy, and v is the Sun’s
velocity in its orbit. The planets of the Solar System also
satisfy the weightless condition. Assuming that the planets
have a similar internal constitution as the Sun, we can con-
sider these objects as spheres of incompressible liquid being
in a weightless state.

I will consider the problems by means of the General The-
ory of Relativity. First, it is necessary to obtain the exact so-
lution of the Einstein field equations for the space-time metric
induced by the gravitational field of a sphere of incompress-
ible liquid.

The regular field equations of Einstein, with the λ-field
neglected, have the form

Rαβ − 1
2
gαβR = − κ Tαβ , (1)

where Rαβ is the Ricci tensor, R is the Riemann curvature
scalar, κ= 8πG

c2 = 18.6×10−28 cm/g is the Einstein gravitational
constant, Tαβ is the energy-momentum tensor, and α, β =

0, 1, 2, 3 are the space-time indices. The gravitational field of
spherical island of substance should possess spherical sym-
metry. Thus, it is described by the metric of spherical kind

ds2 = eνc2dt2 − eλdr2 − r2(dθ2 + sin2θ dϕ2) , (2)

where eν and eλ are functions of r and t.
In the case under consideration the energy-momentum

tensor is that of an ideal liquid (incompressible, with zero
viscosity), by the condition that its density is constant, i.e.
ρ= ρ0 = const. As known, the energy-momentum tensor in
this case is

Tαβ =

(
ρ0 +

p
c2

)
bαbβ − p

c2 g
αβ, (3)

where p is the pressure of the liquid, while

bα =
dxα

ds
, bαbα = 1 (4)

is the four-dimensional velocity vector, which determines the
reference frame of the given observer. Also, the energy-
momentum tensor should satisfy the conservation law

∇σTασ = 0 , (5)

where ∇σ is the four-dimensional symbol of covariant dif-
ferentiation.

Formally, the problem we are considering is a generaliza-
tion of the Schwarzschild solution produced for an analogous
case (a sphere of incompressible liquid). Karl Schwarzschild
[2] solved the Einstein field equations for this case, by the
condition that the solution must be regular. He assumed that
the components of the fundamental metric tensor gαβ must
satisfy the signature conditions (the space-time metric must
have no singularities). Thus, the Schwarzschild solution, ac-
cording to his initial assumption, does not include space-time
singularities.
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This limitation of the space-time geometry, initially intro-
duced in 1916 by Schwarzschild, will not be used by me in
this study. Therefore, we will be able to study the singular
properties of the space-time metric associated with a sphere
of incompressible liquid. Then I will apply the obtained re-
sults to the cosmic objects such as the Sun and the planets.

The exact solution of the field equations (1) is obtained for
the spherically symmetric metric (2) inside a sphere of incom-
pressible liquid, which is described by the energy-momentum
tensor (3). I consider here the reference frame which accom-
panies to the observer, consequently the components of his
four-velocity vector are [3]

b0 =
1√
g00

, bi = 0 , i = 1, 2, 3, (6)

while the physically observed components of the energy-
momentum tensor Tαβ has the form

ρ =
T00

g00
= ρ0 , Ji =

c T i
0√
g00

= 0 , U ik = c2T ik = phik, (7)

where ρ is the density of the medium, Ji is the density of the
momentum in the medium, U ik is the stress-tensor, hik is the
observable three-dimensional fundamental metric tensor [3].

Because we do not limit the solution by that the metric
must be regular, the obtained metric has two singularities:
1) collapse by g00 = 0, and 2) break of the space by g11→∞.
It will be shown then that these singularities are irremovable,
because the strong signature condition is also violated in both
cases.

In order to obtain the exact internal solution of the Ein-
stein field equations with respect to a given distribution of
matter, it is necessary to solve two systems of equations: the
Einstein field equations (1), and the equations of the conser-
vation law (5).

After algebra we obtain the Einstein field equations in the
spherically symmetric space (2) inside a sphere of incom-
pressible liquid. The obtained equations, in component no-
tation, are

e−ν
(
λ̈ − λ̇ν̇

2
+
λ̇2

2

)
− c2e−λ

[
ν′′ − λ

′ν′

2
+

2ν′

r
+

(ν′)2

2

]
=

= − κ
(
ρ0c2 + 3 p

)
, (8)

λ̇

r
e−λ−

ν
2 = κJ1 = 0 , (9)

eλ−ν
(
λ̈ − λ̇ν̇

2
+
λ̇2

2

)
− c2

[
ν′′ − λ

′ν′

2
+

(ν′)2

2

]
+

2c2λ′

r
=

= κ
(
ρ0c2 − p

)
eλ, (10)

c2 (λ′ − ν′)
r

e−λ +
2c2

r2

(
1 − e−λ

)
= κ

(
ρ0c2 − p

)
. (11)

The second equation manifests that λ̇= 0 in this case.
Hence, the space inside the sphere of incompressible liquid

does not deform. Taking this circumstance into account, and
also that the stationarity of λ, we reduce the field equations
(8–11) to the final form

c2e−λ
[
ν′′ − λ

′ν′

2
+

2ν′

r
+

(ν′)2

2

]
= κ

(
ρ0c2 + 3 p

)
eλ, (12)

− c2
[
ν′′ − λ

′ν′

2
+

(ν′)2

2

]
+

2c2λ′

r
= κ

(
ρ0c2 − p

)
eλ, (13)

c2 (λ′ − ν′)
r

e−λ +
2c2

r2

(
1 − e−λ

)
= κ

(
ρ0c2 − p

)
eλ. (14)

To solve the equations (12–14), a formula for the pres-
sure p is necessary. To find the formula, we now deal with
the conservation equations (5). Because, as was found, Ji = 0
we obtain, this formula reduces to only a single nontrivial
equation

p′e−λ +
(
ρ0c2 + p

) ν′
2

e−λ = 0 , (15)

where p′ = dp
dr

, ν′= dν
dr

, eλ , 0. Dividing both parts of (15) by
e−λ, we arrive at

dp
ρ0c2 + p

= −dν
2
, (16)

which is a plain differential equation with separable variables.
It can be easily integrated as

ρ0c2 + p = Be−
ν
2 , B = const. (17)

Thus we have to express the pressure p as the function of
the variable ν,

p = Be−
ν
2 − ρ0c2. (18)

In look for an r-dependent function p(r), we integrate the
field equations (12–14), taking into account (18). We find
finally expressions for eλ and eν

g00 = eν =
1
4

3e
νa
2 −

√
1 − κρ0r2

3


2

, (19)

eλ = − g11 =
1

1 − κρ0r2

3

, (20)

where e
νa
2 =

√
1 − 2GM

c2a =

√
1 − rg

r is obtained from the
boundary conditions, while rg is the Hilbert radius.

Thus the space-time metric of the gravitational field inside
a sphere of incompressible liquid is, since the formulae of ν
and λ have already been obtained, as follows

ds2 =
1
4

3e
νa
2 −

√
1 − κρ0r2

3


2

c2dt2 −

− dr2

1 − κρ0r2

3

− r2
(
dθ2 + sin2θ dϕ2

)
. (21)
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Taking into account that M =
4πa3ρ0

3 and rg = 2GM
c2 , we

rewrite (21) in the form

ds2 =
1
4

3
√

1 − rg
a
−

√
1 − r2rg

a3



2

c2dt2 −

− dr2

1 − r2rg
a3

− r2
(
dθ2 + sin2θ dϕ2

)
. (22)

It is therefore obvious that this “internal” metric com-
pletely coincides with the Schwarzschild metric in empti-
ness on the surface of the sphere of incompressible liquid
(r = a). This study is a generalization of the originally
Schwarzschild solution for such a sphere [2], and means that
Schwarzschild’s requirement to the metric to be free of sin-
gularities will not be used here. Naturally, the metric (22)
allows singularities. This problem will be solved by analogy
with the singular properties of the Schwarzschild solution in
emptiness [4] (a mass-point’s field), which already gave black
holes.

Consider the collapse condition for the space-time metric
of the gravitational field inside a sphere of incompressible
liquid (21). The collapse condition g00 = 0 in this case is

3e
νa
2 =

√
1 − κρ0r2

3
, (23)

or, in terms of the Hilbert radius, when the metric takes the
form (22), the collapse condition is

3

√
1 − rg

a
=

√
1 − rgr2

a3 . (24)

We obtain that the numerical value of the radial coordi-
nate rc, by which the sphere’s surface meets the surface of
collapse, is

rc = a

√
9 − 8a

rg
. (25)

Because we keep in mind really cosmic objects, the nu-
merical value of rc should be real. This requirement is obvi-
ously satisfied by

a < 1.125 rg . (26)

If this condition holds not (a> rg), the sphere, which is a
spherical liquid body, has not the state of collapse. It is ob-
vious that the condition a = rg satisfies to (26). It is obvious
that rc is imaginary for rg� a, so collapse of such a sphere of
incompressible liquid is impossible.

For example, consider the Universe as a sphere of incom-
pressible liquid (the liquid model of the Universe). Assum-
ing, according to the numerical value of the Hubble constant
(17), that the Universe’s radius is a = 1.3×1028 cm, we obtain
the collapse condition, from (26),

rg > 1.2×1028 cm, (27)

and immediately arrive at the following conclusion:

The observable Universe as a whole, being represented
in the framework of the liquid model, is completely lo-
cated inside its gravitational radius. In other words, the
observable Universe is a collapsar — a huge black hole.

In another representation, this result means that a sphere of
incompressible liquid can be in the state of collapse only if
its radius approaches the radius of the observable Universe.

Let’s obtain the condition of spatial singularity — space
breaking. As is seen, the metric (21) or its equivalent form
(22) has space breaking if its radial coordinate r equals to

rbr =

√
3
κρ0

= a
√

a
rg
. (28)

For example, considering the Sun as a sphere of incom-
pressible liquid, whose density is ρ0 = 1.4 g/cm3, we obtain

rbr = 3.4×1013 cm, (29)

while the radius of the Sun is a = 7×1010 cm and its Hilert
radius rg = 3×105 cm. Therefore, the surface of the Sun’s
space of breaking is located outside the surface of the Sun,
far distant from it in the near cosmos.

Another example. Assume our Universe to be a sphere
of incompressible liquid, whose density is ρ0 = 10−31 g/cm3.
The radius of its space breaking, according to (28), is

rbr = 1.3×1029 cm. (30)

Observational astronomy provides the following numeri-
cal value of the Hubble constant

H =
c
a

= (2.3 ± 0.3)×1018 sec−1, (31)

where a is the observed radius of the Universe. It is easily
obtain from here that

a = 1.3×1028 cm. (32)

This value is comparable with (30), so the Universe’s ra-
dius may meet the surface of its space breaking by some con-
ditions. We calculate the mass of the Universe by M =

4πa3ρ0
3 ,

where a is (32). We have M = 5×1054 g. Thus, for the liq-
uid model of the Universe, we obtain rg = 7.4×1026 cm: the
Hilbert radius (the radius of the surface of gravitational col-
lapse) is located inside the liquid spherical body of the Uni-
verse.

A few words more on the singularities of the liquid
sphere’s internal metric (21). In this case, the determinant
of the fundamental metric tensor equals

g = − 1
4

3e
νa
2 −

√
1 − κρ0r2

3


2

r4 sin2 θ√
1 − κρ0r2

3

, (33)

so the strong signature condition g< 0 is always true for
a sphere of incompressible liquid, except in two following
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cases: 1) in the state of collapse (g00 = 0), 2) by the breaking
of space (g11→∞). These particular cases violate the weak
signature conditions g00 > 0 and g11 < 0 correspondingly. If
both weak signature conditions are violated, g has a singu-
larity of the kind 0

0 . If collapse occurs in the absence of the
space breaking, we have g= 0. If no collapse, while the space
breaking is present, we have g→∞. In all the cases, the sin-
gularity is non-removable, because the strong singular condi-
tion g< 0 is violated.

So, as was shown above, a spherical object consisting of
incompressible liquid can be in the state of gravitational col-
lapse only if it is as large and massive as the Universe. Mean-
while, the space breaking realizes itself in the fields of all
cosmic objects, which can be approximated by spheres of in-
compressible liquid. Besides, since rbr ∼ 1√

ρ0
, the rbr is then

greater while smaller is the ρ0. Assuming all these, we arrive
at the following conclusion:

A regular sphere of incompressible liquid, which can
be observed in the cosmos or an Earth-bound labo-
ratory, cannot collapse but has the space breaking —
a singular surface, distantly located around the liquid
sphere.

First, we are going to consider the Sun as a sphere of
incompressible liquid. Schwarzschild [2] was the first per-
son who considered the gravitational field of a sphere of in-
compressible liquid. He however limited this consideration
by an additional condition that the space-time metric should
not have singularities. In this study the metric (21) will be
used. It allows singularities, in contrast to the limited case
of Schwarzschild: 1) collapse of the space, and 2) the space
breaking.

Calculating the radius of the space breaking by formula
(28), where we substitute the Sun’s density ρ0 = 1.41 g/cm3,
we obtain

rbr = 3.4×1013 cm = 2.3 AU, (34)

where 1 AU = 1.49×1013 cm (Astronomical Unit) is the av-
erage distance between the Sun and the Earth. So, we have
obtained that the spherical surface of the Sun’s space break-
ing is located inside the Asteroid strip, very close to the orbit
of the maximal concentration of substance in it (as is known,
the Asteroid strip is hold from 2.1 to 4.3 AU from the Sun).
Thus we conclude that:

The space of the Sun (its gravitational field), as that
of a sphere of incompressible liquid, has a breaking.
The space breaking is distantly located from the Sun’s
body, in the space of the Solar System, and meets the
Asteroid strip near the maximal concentration of the
asteroids.

In addition to it, we conclude:

The Sun, approximated by a mass-point according to
the Schwarzschild solution for a mass-point’s field
in emptiness, has a space breaking located inside

the Sun’s body. This space breaking coincides with the
Schwarzschild sphere — the sphere of collapse.

What is the Schwarzschild sphere? It is an imaginary
spherical surface of the Hilbert radius rg = 2GM

c2 , which is not
a radius of a physical body in a general case (despite it can
be such one in the case of a black hole — a physical body
whose radius meets the Hilbert radius calculated for its mass).
The numerical value of rg is determined only by the mass of
the body, and does not depend on its other properties. The
physical meaning of the Hilbert radius in a general case is as
follows: this is the boundary of the region in the gravitational
field of a mass-point M, where real particles exist; particles in
the boundary (the Hilbert radius) bear the singular properties.
In the region wherein r6 rg, real particles cannot exist.

Let us turn back to the Sun approximated by a sphere of
incompressible liquid. The space-time metric is (21) in this
case. Substituting into (25) the Sun’s mass M = 2×1033 g, ra-
dius a = 7×107 cm, and the Hilbert radius rg = 3×105 cm cal-
culated for its mass, we obtain that the numerical value of the
radial coordinate rc by which the Sun’s surface meets the sur-
face of collapse of its mass is imaginary. Thus, we arrive at
the conclusion that a sphere of incompressible liquid, whose
parameters are the same as those of the Sun, cannot collapse.

Thus, we conclude:

A Schwarzschild sphere (collapsing space breaking)
exists inside any physical body. The numerical value
of its radius rg is determined only by the body’s mass
M. We refer to the space-time inside the Schwarzschild
sphere (r < rg) as a “black hole”. This space-time
does not satisfy the singular conditions of the space-
time where real observers exist. Schwarzschild sphere
(internal black hole) is an internal characteristic of
any gravitating body, independent on its internal con-
stitution.

One can ask: then what does the Hilbert radius rg mean
for the Sun, in this context? Here is the answer: rg is the pho-
tometric distance in the radial direction, separating the “ex-
ternal” region inhabited with real particles and the “internal”
region under the radius wherein all particles bear imaginary
masses. Particles which inhabit the boundary surface (its ra-
dius is rg) bear singular physical properties. Note that no one
real (external) observer can register events inside the singu-
larity.

What is a sphere of incompressible liquid of the radius
r = rc? This is a “collapsar” — the object in the state of
gravitational collapse. As it was shown above, not any sphere
of incompressible liquid can be collapsar: the possibility of
its collapse is determined by the relation between its radius
a and its Hilbert radius rg, according to formula (25). It was
shown above that the Universe considered as a sphere of in-
compressible liquid is a collapsar.

Now we apply this research method to the planets of the
Solar System. Thus, we approximate the planets by spheres

46 Larissa Borissova. The Solar System According to General Relativity: The Sun’s Space Breaking Meets the Asteroid Strip



April, 2010 PROGRESS IN PHYSICS Volume 2

of incompressible liquid. The numerical values of rc, cal-
culated for the planets according to the same formula (25) as
that for the liquid model of the Sun, are imaginary. Therefore,
the planets being approximated by spheres of incompressible
liquid cannot collapse as well as the Sun.

The Hilbert radius rg calculated for the planets is much
smaller than the sizes of their physical bodies, and is in the
order of 1 cm. This means that, given any of the planets of the
Solar System, the singulary surface separating our world and
the imaginary mass particles world in its gravitational field
draws the sphere of the radius about one centimetre around
its centre of gravity.

The numerical values of the radius of the space break-
ing are calculated for each of the planets through the average
density of substance inside the planet according to the for-
mula (28).

The results of the summarizing and substraction associ-
ated with the planets lead to the next conclusions:

1. The spheres of the singularity breaking of the spaces
of Mercury, Venus, and the Earth are completely lo-
cated inside the sphere of the singularity breaking of
the Sun’s space;

2. The spheres of the singularity breaking of the internal
spaces of all planets intersect among themselves, when
being in the state of a “parade of planets”;

3. The spheres of the singularity breaking of the Earth’s
space and Mars’ space reach the Asteroid strip;

4. The sphere of the singularity breaking of Mars’ space
intersects with the Asteroid strip near the orbit of
Phaeton (the hypothetical planet which was orbiting the
Sun, according to the Titius–Bode law, at r = 2.8 AU,
and whose distraction in the ancient time gave birth to
the Asteroid strip).

5. Jupiter’s singularity breaking surface intersects the As-
teroid strip near Phaeton’s orbit, r = 2.8 AU, and meets
Saturn’s singularity breaking from the outer side;

6. The singularity breaking surface of Saturn’s space is
located between those of Jupiter and Uranus;

7. The singularity breaking surface of Uranus’s space is
located between those of Saturn and Neptune;

8. The singularity breaking surface of Neptune’s space
meets, from the outer side, the lower boundary of the
Kuiper belt (the strip of the aphelia of the Solar Sys-
tem’s comets);

9. The singularity breaking surface of Pluto is completely
located inside the lower strip of the Kuiper belt.

Just two small notes in addition to these. The intersections of
the space breakings of the planets, discussed here, take place
for only that case where the planets thenselves are in the state
of a “parade of planets”. However the conclusions concerning
the location of the space breaking spheres, for instance — that

the space breaking spheres of the internal planets are located
inside the sphere of the Sun’s space breaking, while the space
breaking spheres of the external planets are located outside it,
— are true for any position of the planets.

The fact that the space breaking of the Sun meets the As-
teroid strip, near Phaeton’s orbit, allows us to say: yes, the
space breaking considered in this study has a really physi-
cal meaning. As probable the Sun’s space breaking did not
permit the Asteroids to be joined into a common physical
body, Phaeton. Alternatively, if Phaeton was an already exist-
ing planet of the Solar System, the common action of the
space breaking of the Sun and that of another massive cos-
mic body, appeared near the Solar System in the ancient ages
(for example, another star passing near it), has led to the dis-
traction of Phaeton’s body.

Thus the internal constitution of the Solar System was
formed by the structure of the Sun’s space (space-time) filled
with its gravitational field, and according to the laws of the
General Theory of Relativity.

These and related results will be published in necessary
detail later [5]∗.
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In this paper, we briefly review the theory elaborated by Louis de Broglie who showed
that in some circumstances, a particle tunneling through a dispersive refracting material
may reverse its velocity with respect to that of its associated wave (phase velocity):
this is a consequence of Rayleigh’s formula defining the group velocity. Within his
“Double Solution Theory”, de Broglie re-interprets Dirac’s aether concept which was
an early attempt to describe the matter-antimatter symmetry. In this new approach,
de Broglie suggests that the (hidden) sub-quantum medium required by his theory be
likened to the dispersive and refracting material with identical properties. A Riemannian
generalization of this scheme restricted to a space-time section, and formulated within
an holonomic frame is here considered. This procedure is shown to be founded and
consistent if one refers to the extended formulation of General Relativity (EGR theory),
wherein pre-exists a persistent field.

1 Introduction

The original wave function first predicted by Louis de Broglie
[1] in his famous Wave Mechanics Theory, then was detected
in 1927 by the American physicists Davisson and Germer in
their famous experiment on electrons diffraction by a nickel
crystal lattice.

In the late 1960’s, Louis de Broglie improved on his
first theory which he called Double Solution Interpretation of
Quantum Mechanics [2, 3].

His successive papers actually described the massive par-
ticle as being much closely related to its physical wave and
constantly in phase with it.

The theory which grants the wave function a true physical
reality as it should be, necessarily requires the existence of an
underlying medium that permanently exchanges energy and
momentum with the guided particle [4].

The hypothesis of such a concealed “thermostat” was
brought forward by D. Bohm and J. P. Vigier [5] who referred
to it as the sub-quantum medium.

They introduced a hydrodynamical model in which the
(real) wave amplitude is represented by a fluid endowed with
some specific irregular fluctuations so that the quantum the-
ory receives a causal interpretation.

Francis Fer [6] successfully extended the double solu-
tion theory by building a non-linear and covariant equation
wherein the “fluid” is taken as a physical entity. In the recent
paper [7], the author proposed to generalize this model to an
extended formulation of General Relativity [8], which allows
to provide a physical solution to the fluid random perturbation
requirement.

Based on his late conceptions, Louis de Broglie then com-
pleted a subsequent theory [9] on the guided particle: under
specific circumstances the particle tunneling through a dis-
persive refracting material is shown to reverse velocity with

respect to the associated wave phase velocity.
As a further assumption, Louis de Broglie identified the

dispersive refracting material with the hidden medium [10]
considered above.

In this case, the theoretical results obtained are describ-
ing the behavior of a pair particle-antiparticle which is close
to the Stuckelberg-Feynmann picture [11], in which antipar-
ticles are viewed as particles with negative energy that move
backward in time.

Within this interpretation, the sub-quantum medium as
derived from de Broglie’s theories, appears to provide
a deeper understanding of Dirac’s aether theory [12], once
popular before.

In this paper, we try to generalize this new concept by
identifying the hidden medium with the persistent energy-
momentum field tensory inherent to the EGR theory.

Such a generalization is here only restricted to a Rieman-
nian space-time section (t = const), where the integration is
further performed over a spatial volume. By doing so, we are
able to find back the essential formulas set forth by Louis de
Broglie in the Special Relativity formulation.

We assumed here a limited extension without loss of gen-
erality: a fully generalized therory is desirable, as for example
the attempt suggested by E. B. Gliner [13], who has defined a
“µ-medium” entirely derived from General Relativity consid-
erations.

2 Short overview of the Double Solution Theory within
wave mechanics (Louis de Broglie)

2.1 The reasons for implementing the theory

As an essential contribution to quantum physics, Louis de
Broglie’s wave mechanics theory has successfully extended
the wave-particle duality concepts to the whole physics.

Double solution theory which aimed at confirming the
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true physical nature of the wave function is based on two
striking observations: within the Special Theory of Relativ-
ity, the frequency ν0 of a plane monochromatic wave is trans-
formed as

ν =
ν0√

1 − β2
,

whereas a clock’s frequency ν0 is transformed according to
νc = ν0

√
1 − β2 with the phase velocity

ṽ =
c
β

=
c2

v
.

The 4-vector defined by the gradient of the plane mono-
chromatic wave is linked to the energy-momentum 4-vector
of a particle by introducing Planck’s constant h as

W = hν , λ =
h
p
, (1)

where p is the particle’s momentum and λ is the wave length.
If the particle is considered as that containing a rest en-

ergy M0c2 = hν0, it is likened to a small clock of frequency
ν0 so that when moving with velocity v = βc, its frequency
different from that of the wave is then

ν = ν0

√
1 − β2 .

In the spirit of the theory, the wave is a physical entity
having a very small amplitude not arbitrarily normed and
which is distinct from the ψ-wave reduced to a statistical
quantity in the usual quantum mechanical formalism.

Let us call ϑ the physical wave which is connected to the
ψ-wave by the relation ψ = Cϑ, where C is a normalizing
factor.

The ψ-wave has then nature of a subjective probability
representation formulated by means of the objective ϑ-wave.

Therefore wave mechanics is complemented by the dou-
ble solution theory, for ψ and ϑ are two solutions of the same
equation.

If the complete solution of the equation representing the
ϑ-wave (or, if preferred, the ψ-wave, since both waves are
equivalent according to ψ = Cϑ), is written as

ϑ = a(x, y, z, t) exp
[ i
~
φ(x, y, z, t)

]
, ~ =

h
2π

, (2)

where a and φ are real functions, while the energy W and the
momentum p of the particle localized at point (x, y, z), at time
t are given by

W = ∂tφ , p = − grad φ , (3)

which in the case of a plane monochromatic wave, where one
has

φ = h
[
ν − (αx + βy + γz)

λ

]

yields equation (1) for W and p.

2.2 The guidance formula and the quantum potential

Taking Schrodinger’s equation for the scalar wave ϑ, and U
being the external potential, we get

∂tϑ =
~

2im
∆ϑ +

i
~

Uϑ . (4)

This complex equation implies that ϑ be represented by
two real functions linked by these two real equations which
leads to

ϑ = a exp
( iφ
~

)
, (5)

where a the wave’s amplitude, and φ its phase, both are real.
Substituting this value into equation (4), it gives two impor-
tant equations

∂tφ − U − 1
2m

(grad φ)2 = − ~
2

2m
∆a
a

∂t (a2) − 1
m

div (a2 grad φ) = 0


. (6)

If terms involving Planck ’s constant ~ in equation (6) are
neglected (which amounts to disregard quanta), and if we set
φ = S , this equation becomes

∂t S − U =
1

2m
(
grad S

)2 .

As S is the Jacobi function, this equation is the Jacobi
equation of Classical Mechanics.

Only the term containing ~2 is responsible for the parti-
cle’s motion being different from the classical motion.

The extra term in (6) can be interpreted as another poten-
tial Q distinct from the classical U potential

Q = − ~
2

2m
∆a
a
. (7)

One has thus a variable proper mass

M0 = m0 +
Q0

c2 , (8)

where, in the particle’s rest frame, Q0 is a positive or negative
variation of this rest mass and it represents the “quantum po-
tential” which causes the wave function ’s amplitude to vary.

By analogy with the classical formula ∂t S = E, and p =

−grad S , E and p being the classical energy and momentum,
one may write

∂tφ = E , − grad φ = p . (9)

As in non-relativistic mechanics, where p is expressed as
a function of velocity by the relation p = mv, one eventually
finds the following results

v =
p
m

= − 1
m

grad φ , (10)

which is the guidance formula.
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It gives the particle’ s velocity, at position (x, y, z) and
time t as a function of the local phase variation at this point.

Inspection shows that relativistic dynamics applied to the
variable proper mass M0 eventually leads to the following re-
sult

W =
M0c2

√
1 − β2

= M0c2
√

1 − β2 +
M0v2

√
1 − β2

(11)

known as the Planck-Laue formula.
Here, the quantum force results from the variation of

M0c2 as the particle moves.

2.3 Particles with internal vibration and the hidden
thermodynamics

The idea of considering the particle as a small clock is of
central importance here.

Let us look at the self energy M0c2 as the hidden heat
content of a particle. One easily conceives that such a small
clock has (in its proper system) an internal periodic energy of
agitation which does not contribute to the whole momentum.
This energy is similar to that of a heat containing body in the
state of thermal equilibrium.

Let Q0 be the heat content of the particle in its rest frame,
and viewed in a frame where the body has a velocity βc, the
contained heat will be

Q = Q0

√
1 − β2 = M0c2

√
1 − β2 = hν0

√
1 − β2 . (12)

The particle thus appears as being at the same time a small
clock of frequency

ν = ν0

√
1 − β2

and a small reservoir of heat

Q = Q0

√
1 − β2

moving with velocity βc. If φ is the wave phase a exp( iφ
~

),
where a and φ are real, the guidance theory states that

∂tφ =
M0c2

√
1 − β2

, − grad φ =
M0v√
1 − β2

. (13)

The Planck-Laue equation may be written

Q = M0c2
√

1 − β2 =
M0c2

√
1 − β2

− v p . (14)

Combining (13) and (14) results in

M0c2
√

1 − β2 = ∂tφ + v grad φ =
dφ
dt

.

Since the particle is regarded as a clock of proper fre-
quency M0

c2

h , the phase of its internal vibration expressed
with ai exp( iφi

~
) and ai and φi real will be

φi = hν0

√
1 − β2 t = M0c2

√
1 − β2 t ,

thus we obtain
d (φi − φ) = 0 . (15)

This fundamental result agrees with the assumption ac-
cording to which the particle as it moves in its wave, remains
constantly in phase with it.

3 Propagation in a dispersive refracting material

3.1 Group velocity

The classical wave is written as

a exp
[
2πi(νt − kr)

]
; (16)

it propagates along the direction given by the unit vector n.
We next introduce the phase velocity ṽ of the wave, which

determines the velocity between two “phases” of the wave.
Consider now the superposition of two stationary waves

having each a very close frequency: along the x-axis, they
have distinct energies

E1 = A sin 2π(ν + dν)
[
t − x

v + dv

]
,

E2 = A sin 2π(ν − dν)
[
t − x

v − dv

]
,

thus next we have

ν + dν
v + dv

=
ν

v
+ d

(
ν

v

)
,

(ν − dν)
v − dv

=
ν

v
− d

(
ν

v

)
,

and by adding both waves

E = 2A cos 2πdν
[
t − x

(
d
dν

) (
ν

v

)]
sin 2πν

(
t − x

v

)
. (17)

The term

2A cos 2πdν
[
t − x

(
d
dν

) (
ν

v

)]
(18)

may be regarded as the resulting amplitude that varies along
with the so-called “group velocity” [v]g and such that

1
[v]g

=

(
d
dν

) (
ν

v

)
. (19)

Recalling the relation between the wave length λ and the
material refracting index n

λ =
ṽ
ν

=
v0

nν
(20)

where v0 is the wave velocity in a given reference material (c
in vacuum), we see that

n =
v0

ṽ
, i.e. in vacuum n =

c
ṽ
. (21)

Now, we have the Rayleigh formulae

1
[v]g

=
d
dν

(
ν

v

)
=

1
ν0

(
∂

∂ν

)
nν =

(
∂

∂ν

) (
1
λ

)
. (22)
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It is then easy to show that [v]g coincides with the velocity
v of the particle, which is also expressed in term of the wave
energy W as

[v]g =
∂W
∂k

.

The velocity of the particle v may be directed either in the
propagating orientation of the wave in which case

p = k =

(
h
λ

)
n ,

or in the opposite direction p = −k = −
(

h
λ

)
n.

When the particle’s velocity v > 0, and p = k, we have
the Hamiltonian form

v =
∂W
∂p

.

3.2 Influence of the refracting material

Let us recall the relativistic form of the Doppler’s formulae:

ν0 =
ν
(
1 − v

ṽ

)
√

1 − β2
, (23)

where as usual ν0 is the wave’s frequency in the frame at-
tached to the particle.

Considering the classical relation W = hν connecting the
particle energy and its wave frequency, and taking into ac-
count (23), we have

W = W0

√
1 − β2

(
1 − v

ṽ

)
.

However, inspection shows that the usual formula

W =
W0√
1 − β2

holds only if
1 − v

ṽ
= 1 − β2,

which implies
ṽ = c2

and this latter relation is satisfied provided we set

W =
M0c2

√
1 − β2

, p =
M0v√
1 − β2

,

where M0 is the particle’s proper mass which includes an ex-
tra term δM0 resulting from the quantum potential Q contri-
bution.

When the particule whose internal frequency is ν0 =
M0c2

h
has travelled a distance dn during dt, its internal phase φi has
changed by

dφi = M0c2
√

1 − β2 dt = dφ ,

where n is the unit vector normal to the phase surface.
The identity of the corresponding wave phase variation

dφ = ∂tφ dt + ∂nφ dn =
(
∂tφ + v grad φ

)
dt

is also expressed by

∂tφ + ∂nφ dt n = dtφi , (24)

and it leads to

M0c2

√
1 − β2

− M0v2

√
1 − β2

= M0c2
√

1 − β2 .

The situation is different in a refracting material which is
likened to a “potential” P acting on the particle so that we
write

W =
M0c2

√
1 − β2

+ P , (25)

p =
M0v√
1 − β2

= v
W − P

c2 . (26)

Now taking into account equation (23), the equation (24)
reads (re-instating ~)

1
~

dtφi = ν0

√
1 − β2 = ν

(
1 − v

ṽ

)

yielding

W − v2 W − P
c2 = W

(
1 − v

ṽ

)
(27)

from which we infer the expression of the potential P

P = W
(
1 − c2

ṽ
v
)

= hν
(
1 − c2

ṽ
v
)

(28)

and with the Rayleigh formulae (22)

P = W
[
1 − n

∂(nν)
∂ν

]
(29)

(we assume v0 = c), for the phase φ of the wave along the
x-axis we find dφ = Wdt − kdx with

k = v
W − P

c2 =
h
λ
. (30)

The phase concordance hdφi = hdφ readily implies

(W − kv) dt =

(
W − v2 W − P

c2

)
dt (31)

and taking into account (28),

dφi =
W
h

(
1 − v

ṽ

)
dt = 2πv

(
1 − v

ṽ

)
dt . (32)

Now applying the Doppler formulae (23), and bearing in
mind the transformation dt0 = dt

√
1 − β2, we can write

dφ = 2πν0dt0 = 2πν
(
1 − v

ṽ

)
dt . (33)

One easily sees that the equivalence of (32) and (33) fully
justifies the form of the “potential” P.
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4 The particle-antiparticle state

4.1 Reduction of the EGR tensor to the Riemannian
scheme

4.1.1 Massive tensor in the EGR formulation

Setting the 4-unit velocity ua = dxa

ds which obeys here

gab uaub = gabuaub = 1 .

Expressed in mixed indices, the usual Riemannian mas-
sive tensor is well known

(
T b

a
)
Riem = ρ0c2ubua , (34)

where ρ0 is the proper density of the mass.
In the EGR formulation, the massive tensor is given by
(
T b

a
)
EGR = (ρ0)EGRc2 (ub)EGR (ua)EGR +

(
T b

a
)
field . (35)

The EGR world velocity is not explicitly written but it
carries a small correction w.r.t. to the regular Riemannian ve-
locity ua.

The EGR density ρ0 is also modified, as was shown in our
paper [8] which explains the random perturbation of the fluid.

Let us now express
(
T b

a
)
EGR in terms of the Riemannian

representation (
T b

a
)
EGR =

(
T b

a
)?
Riem . (36)

With respect to
(
T b

a
)
Riem, the tensor

(
T b

a
)?
Riem is obviously

only modified through the Riemannian proper density ρ we
denote ρ? since now.

Having said that, we come across a difficulty since the
quantity

(
T b

a
)
EGR is antisymmetric whereas

(
T b

a
)?
Riem is sym-

metric.
In order to avoid this ambiguity, we restrict ourselves to a

space-time section x4 = const. In this case, we consider the
tensor

(
T b

4
)
EGR which we split up into

(
Tα

4
)
EGR =

(
Tα

4
)?
Riem , (37)

(
T 4

4
)
EGR =

(
T 4

4
)?
Riem . (38)

Inspection shows that each of the EGR tensors compo-
nents when considered separately in (37) and (38) is now
symmetric.

4.1.2 The modified proper mass

We write down the above components
(
Tα

4
)?
Riem = ρ?0 c2uαu4 , (39)

(
T 4

4
)?
Riem = ρ?0 c2u4u4 . (40)

This amounts to state that the proper density ρ0 is mod-
ified by absorbing the EGR free field component

(
T b

a
)
field

tensor.
By the modification, we do not necessarily mean an “in-

crease”, as will be seen in the next sections.

4.2 Refracting material

4.2.1 Energy-momentum tensor

We now consider a dispersive refracting material which is
characterized by a given (variable) index denoted by n.

Unlike a propagation in vacuum, a particle progressing
through this material will be subject to a specific “influence”
which is acting upon the tensor

(
T b

4
)?
Riem. Thus, the energy-

momentum tensor of the system will thus be chosen to be
(
T b

4
)?
Riem = ρ?0 c2ubu4 − δb

4 b(n) , (41)

where b(n) is a scalar term representing the magnitude of the
influence and which is depending on the refracting index n.

The tensor δb
4 b(n) is reminiscent of a “pressure term”

which appears in the perfect fluid solution except that no
equation of state exists.

Equation (41) yields
(
Tα

4
)?
Riem = ρ?0 c2uαu4 , (42)

(
T 4

4
)?
Riem = ρ?0 c2 + b(n) , (43)

Applying the relation uαc = vαu4, equation (42) becomes
(
Tα

4
)?
Riem = ρ?0 cvα. (44)

4.2.2 Integration over the hypersurface x4 = const

Integration of (43) over the spatial volume V yields

(
P4)?

Riem =
1
c

∫
ρ?0 c2 √−g dV +

1
c

∫
b(n)
√−g dV, (45)

c
(
P4)?

Riem = m?
0 c2 + B(n) , (46)

while integrating (44), we get a 3-momentum vector

(
Pα)?

Riem =
1
c

∫
ρ?0 cvα

√−g dV, (47)

(
Pα)?

Riem = m?
0 vα. (48)

4.2.3 Matching the formulas of de Broglie

Let us multiply, respectively, (46) and (48) by u4

u4c
(
P4)?

Riem = u4m?
0 c2 + u4B(n) ; (49)

if we set P = u4B(n), we retrieve de Broglie’s first formula
(25)

u4c
(
P4)?

Riem = W =
m?

0 c2

√
1 − β2

+ P(n) (50)

as well as the second formula (26)

u4 (Pα)?
Riem = p =

m?
0 vα√

1 − β2
. (51)
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5 A new aspect of the antiparticle concept

5.1 Proper mass

In §4.1.2 we have considered the modified proper density ρ?0 ,
resulted from the EGR persistent free field “absorbed” by the
tensor in the Riemannian scheme.

Having established the required generalization, we now
revert to the classical formulation as suggested by de Broglie.

The corresponding modified proper mass m?
0 should al-

ways be positive, therefore we are bound to set

p = k if v > 0 , p = −k if v < 0 . (52)

With these, we infer

m?
0√

1 − β2
= ±W − P

c2 (53)

that is
m?

0 = ± W
ṽv

√
1 − β2 . (54)

For propagation in vacuum we have P = 0, v = v0 = c2/ṽ,
and W = m0c2/

√
1 − β2 which implies, a expected,

m?
0 = m0 .

5.2 Antiparticles state

The early theory of antiparticles is due to P. A. M. Dirac af-
ter he derived his famous relativistic equation revealing the
electron-positon symmetric state. In order to explain the
production of a pair “electron-positon”, Dirac postulated the
presence of an underlying medium filled with electrons e
bearing a negative energy −m0c2.

An external energy input 2m0c2 would cause an nega-
tive energy electron to emerge from the medium as a positive
energy one, thus become observable. The resulting “hole”
would constitute, in this picture, an “observable” particle,
positon, bearing a positive charge.

With Louis de Broglie, we follow this postulate: we con-
sider that the hidden medium should also be filled with par-
ticles bearing a negative proper energy. Therefore the proper
mass “modification” discussed above is expressed by

m?
0 = −m0 (55)

and is true in the medium.
At this point, two fundamental situations are to be consid-

ered as follows:
a) The “normal” situation where P = 0, m?

0 , and v = v0;
b) The “singular” situation where P = 2W, in which case,

according to (28) and (29), the following relations are
obtained

n
∂(nν)
∂ν

= −1.

Hence, in the “singular” situation b),

1
[v]g

=
∂
(

1
λ

)

∂ν
= − ṽ

c2 = − 1
v0
,

from which is inferred

W =
m?

0 c2

√
1−β2

+ P = − m?
0 c2

√
1−β2

, W =
m?

0 c2

√
1−β2

. (56)

On the other hand

k = v0
(W − P)

c2 =
m?

0 v0√
1−β2

, k =
m0v0√
1−β2

p = − k = − m0v0√
1−β2


. (57)

Within this interpretation, the observed antiparticle has
an opposite charge, a positive rest mass m0 and a reversed
velocity v0 with respect to the phase wave propagation.

The state of electron-positon requires negative energies
bounded to the sub-quantum medium which can be now fur-
ther explicited.

The external energy input 2m0c2 causes a positive (ob-
servable) energy of the electron to emerge from the medium
according to

−m0c2 + 2m0c2 = m0c2. (58)

However, the charge conservation law requires the simul-
taneous emergence of an electron with positive rest energy
m0c2 implying for the hidden medium to supply a total en-
ergy of 2m0c2. In other words, we should have

Q = 2m0c2. (59)

5.3 Introducing the quantum potential

Following the same pattern as above, the quantum potential
Q is now assumed to act as a dispersive refracting material.

This means thatQ = P where the definition (8) holds now,
for m?

0 ,
Q = M0c2 − m?

0 c2. (60)

Since m?
0 c2 = −m0c2, we have with (59)

M0 = m0 .

The energy and the momentum of the antiparticle are now
given by

W =
M0c2

√
1 − β2

=
m0c2

√
1 − β2

, (61)

p =
M0v√
1 − β2

= − m0v0√
1 − β2

= − k. (62)

Clearly, the value obtained here for p characterizes a par-
ticle whose velocity direction v is opposite to that of the as-
sociated wave −v0.

This result perfectly matches the equation (57), which is
physically satisfied.
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6 Concluding remarks

According to the double solution theory, there exists a close
relationship between the guidance formula, and the relativis-
tic thermodynamics.

Following this argument, it is interesting to try to connect
the entropy with the particle/antiparticle production process
as it is derived above.

We first recall the classical action integral for the free par-
ticle :

a =

∫
L dt = −

∫
M0c2

√
1 − β2 dt . (63)

If we choose a period Ti of the particle’s internal vibration
(its proper mass is M0) as the intergration interval, from (12)
we have

1
Ti

=
m0c2

h

√
1 − β2 (64)

so that a “cyclic” action integral be defined as

a

h
= −

∫ Ti

0
M0c2

√
1 − β2 dt = −M0c2

m0c2 (65)

(Ti is assumed to be always short so that M0 and β2 = v2

c2 can
be considered as constants over the integration interval).

Denoting the hidden thermostat’s entropy by s, we set

s

R
=
a

h
, (66)

where R is Boltzmann’s constant.
Since

δQ0 = δm0c2,

we obtain
δs = −R δQ0

m0c2 . (67)

An entropy has thus been determined for the single par-
ticle surrounded by its guiding wave. According to Boltz-
mann’s relation

s = R lnP ,
where P= exp

(
s
R

)
is the probability characterizing the sys-

tem.
In this view, the prevailing plane monochromatic wave

representing the quantized (stable) stationary states corres-
ponds to an entropy maxima, whereas the other states also
exist but with a much reduced probability.

Now, we revert to the hidden sub-quantum medium which
thus supplies the equivalent heat quantity

Q0 = Q . (68)

The definition (8) can be re-written as

Q0 = M0c2 − m0c2. (69)

Therefore, according to the formula (67), the medium is
needed to supply an energy of 2m0c2 that is characterized by
an entropy decrease of 2R.

Its probability being reduced, this explains why an an-
tiparticle is unstable.

So, the thermodynamics approach, which could at first
glance seem strange in quantum theory, eventually finds here
a consistent ground. It is linked to “probability” situations
which fit in the physical processes involving wave “packet”
propagations within the guidance of the single particle.

We have tried here to provide a physical interpretation of
the sub-quantum medium from which the particle-antiparticle
symmetry originates within the double solution theory elabo-
rated by Louis de Broglie. In the Riemannian approximation
which we have presented above, the introduction of a term
generalizing the quantum potential would appear as that hav-
ing a somewhat degree of arbitrariness. However, if one refers
to our extended general relativity theory (EGR theory), the
introduction of this term is no longer arbitrary as it naturally
arises from its main feature.
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mécanique ondulatoire: la théorie de la double solution. Gauthier-
Villars, Paris, 1960.
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A Derivation of π(n) Based on a Stability Analysis of the Riemann-Zeta Function

Michael Harney∗ and Ioannis Iraklis Haranas†

∗841 North 700 West, Pleasant Crove, Utah, 84062, USA. E-mail: michael.harney@signaldisplay.com
†Department of Physics and Astronomy, York University, 314 A Pertie Science Building North York, Ontario, M3J-1P3, Canada. E-mail: ioannis@yorku.ca

The prime-number counting function π(n), which is significant in the prime number the-
orem, is derived by analyzing the region of convergence of the real-part of the Riemann-
Zeta function using the unilateral z-transform. In order to satisfy the stability criteria
of the z-transform, it is found that the real part of the Riemann-Zeta function must con-
verge to the prime-counting function.

1 Introduction

The Riemann-Zeta function, which is an infinite series in a
complex variable s, has been shown to be useful in analyzing
nuclear energy levels [1] and the filling of s1-shell electrons in
the periodic table [2]. The following analysis of the Riemann-
Zeta function with a z-transform shows the stability zones and
requirements for the real and complex variables.

2 Stability with the z-transform

The Riemann-Zeta function is defined as

Γ(s) =

∞∑

n=1

n−s. (1)

We start by setting the following equality

Γ(s) =

∞∑

n=1

n−s =

∞∑

n=1

e−as. (2)

Then by simplifying

n−s = e−as = e−a(r+ jω) (3)

and taking natural logarithm of both sides we obtain

− s ln(n) = − as. (4)

We then find the constant a such that

a = ln(n). (5)

We then apply the unilateral z-transform on (1):

Γ(s) =

∞∑

n=1

n−sz−n =

∞∑

n=1

e−asz−n =

∞∑

n=1

e−a(r+ jω)z−n. (6)

Substituting (5), the real part of (6) becomes:

Re [Γ(s)] =

∞∑

n=1

e−arz−n =

∞∑

n=1

e−r ln(n)z−n. (7)

In order to find the region of convergence (ROC) of (7),
we have to factor (7) to the common exponent −n, which re-
quires

r = n/ ln(n), (8)

which is the same as saying that the real part of Γ(s) must
converge to the prime-number counting function π(n). With
(8) satisfied, (7) becomes

Re [Γ(s)] =

∞∑

n=1

(ez)−n. (9)

which has a region of convergence (ROC)

ROC =
1

1 − 1
ez

. (10)

To be within the region of convergence, z must satisfy the
following relation

|z| > e−1 or |z| > 0.368. (11)

which, places z within the critical strip. It can also be shown
that the imaginary part of (6)

Im [Γ(s)] =

∞∑

n=1

e−a jωz−n =

∞∑

n=1

e− jω ln(n)z−n. (12)

converges based on the Fourier series of
∑

e− jω ln(n).

3 Conclusions

The prime number-counting function π(n) has been derived
from a stability analysis of the Riemann-Zeta function using
the z-transform. It is found that the real part of the roots of
the zeta function correspond to π(n) under the conditions of
stability dictated by the unit-circle of the z-transform. The
distribution of prime numbers has been found to be useful in
analyzing electron and nuclear energy levels.
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On the Significance of the Upcoming Large Hadron Collider Proton-Proton
Cross Section Data
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The relevance of the Regular Charge-Monopole Theory to the proton structure is de-
scribed. The discussion relies on classical electrodynamics and its associated quantum
mechanics. Few experimental data are used as a clue to the specific structure of baryons.
This basis provides an explanation for the shape of the graph of the pre-LHC proton-
proton cross section data. These data also enable a description of the significance of
the expected LHC cross section measurements which will be known soon. Problematic
QCD issues are pointed out.

1 Introduction

Scattering experiments are used as a primary tool for inves-
tigating the structure of physical objects. These experiments
can be divided into several classes, depending on the kind of
colliding particles. The energy involved in scattering experi-
ments has increased dramatically during the previous century
since the celebrated Rutherford experiment was carried out
(1909). Now, the meaningful value of scattering energy is the
quantity measured in the rest frame of the projectile-target
center of energy. Therefore, devices that use colliding beams
enable measurements of very high energy processes. The new
Large Hadron Collider (LHC) facility at CERN, which is de-
signed to produce 14 TeV proton-proton (pp) collisions, will
make a great leap forward.

This work examines the presently available pp elastic and
total cross section data (denoted by ECS and TCS, respec-
tively) and discusses the meaning of two possible alternatives
for the LHC pp ECS values which will be known soon. The
discussion relies on the Regular Charge-Monopole Theory
(RCMT) [1,2] and its relevance to strong interactions [3,4].

Section 2 contains a continuation of the discussion pre-
sented in [4]. It explains the meaning of two possible LHC
results of the pp ECS. Inherent QCD difficulties to provide an
explanation for the data are discussed in section 3. The last
section contains concluding remarks.

2 The proton-proton elastic cross section

The discussion carried out below is a continuation of [4].
Here it aims to examine possible LHC’s ECS results and their
implications for the proton structure. Thus, for the reader’s
convenience, the relevant points of [4] are presented briefly
in the following lines.

RCMT is the theoretical basis of the discussion and strong
interactions are regarded as interactions between magnetic
monopoles which obey the laws derived from RCMT. Two
important results of RCMT are described here:

1. Charges do not interact with bound fields of monopoles
and monopoles do not interact with bound fields of
charges. Charges interact with all fields of charges and

Fig. 1: A qualitative description of the pre-LHC proton-proton cross
section versus the laboratory momentum P. Axes are drawn in a log-
arithmic scale. The solid line denotes elastic cross section and the
broken line denotes total cross section. (The accurate figure can be
found in [5]). Points A-E help the discussion (see text).

with radiation fields emitted from monopoles. Analo-
gously, monopoles interact with all fields of monopoles
and with radiation fields emitted from charges.

2. The unit of the elementary magnetic charge g is a free
parameter. However, hadronic data indicate that this
unit is much larger than that of the electric charge:
g2 � e2 ' 1/137. (Probably g2 ' 1.)

The application of RCMT to strong interactions regards
quarks as spin-1/2 Dirac particles that carry a unit of mag-
netic monopole. A proton has three valence quarks and a core
that carries three monopole units of the opposite sign. Thus,
a proton is a magnetic monopole analogue of a nonionized
atom. By virtue of the first RCMT result, one understands
why electrons (namely, pure charges) do not participate in
strong interactions whereas photons do that [6]. Referring to
the pre-LHC data, it is shown in [4] that, beside the three va-
lence quarks, a proton has a core that contains inner closed
shells of quarks.

Applying the correspondence between a nonionized atom
and a proton, one infers the validity of screening effects and of
an analogue of the Franck-Hertz effect that takes place for the
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proton’s quarks. Thus, quarks of closed shells of the proton’s
core behave like inert objects for cases where the projectile’s
energy is smaller than the appropriate threshold.

The pre-LHC pp scattering data is depicted in Fig. 1. Let
ep denote both electron-proton and positron-proton interac-
tion. Comparing the ep scattering data with those of pp,
one finds a dramatic difference between both the ECS and
the TCS characteristics of these experiments. Thus, the deep
inelastic and the Rosenbluth ep formulas respectively show
that TCS decreases together with an increase of the collision
energy and that at the high energy region, ECS decreases even
faster and takes a negligible part of the entire TCS events (see
[7], p. 266). The pp data of Fig. 1 show a completely dif-
ferent picture. Indeed, for high energy, both the TCS and the
ECS pp graphs go up with collision energy and ECS takes
about 15% of the total events.

The last property proves that a proton contains a quite
solid component that can take the heavy blow of a high en-
ergy pp collision and leave each of the two colliding protons
intact. Valence quarks certainly cannot do this, because in
the case of a high energy ep scattering, an electron collides
with a valence quark. Now, in this case, deep inelastic scat-
tering dominates and elastic events are very rare. The fact
that the quite solid component is undetected in an ep scatter-
ing experiment, proves that it is a spinless electrically neutral
component. This outcome provides a very strong support for
the RCMT interpretation of hadrons, where baryons have a
core [3,4].

The foregoing points enable one to interprete the shape
of the pp ECS graph of Fig. 1. Thus, for energies smaller
than that of point A of the figure, the wave length is long
and effects of large distance between the colliding protons
dominate the process. Here the ordinary Coulomb potential,
1/r, holds and the associated 1/p2 decrease of the graph is in
accordance with the Rutherford and Mott formulas (see [7],
p. 192) (

dσ
dΩ

)

Mott
=

α2 cos2
(
θ
2

)

4p2 sin4
(
θ
2

) [
1 +

2p
M sin2

(
θ
2

)] . (1)

At the region of points A-B, the rapidly varying nuclear
force makes the undulating shape of the graph. Results of
screening effects of the valence quarks are seen for momen-
tum values belonging to the region of points B-C. Indeed,
a correspondence holds for electrons in an atom and quarks
(that carry a monopole unit) in a proton. Hence, for a core-
core interaction, the screening associated with the valence
quarks weakens as the distance from the proton’s center be-
comes smaller. It means that the strength of the core’s mono-
pole potential arises faster than the Coulomb 1/r formula. For
this reason, the decreasing slope of the graph between points
B-C is smaller than that which is seen on the left hand side of
point A.

The ECS graph stops decreasing and begins to increase
on the right hand side of point C. This change of the graph’s

slope indicates that for this energy a new effect shows up. In-
deed, assume that the proton consists of just valence quarks
and an elementary pointlike core which is charged with three
monopole units of the opposite sign. Then, as the energy in-
creases and the wave length decreases, the contribution of the
inner proton region becomes more significant. Now, at inner
regions, the valence quarks’ screening effect fades away and
the potential tends to the Coulomb formula 1/r. Hence, in this
case, the steepness of the decreasing graph between points B-
C should increase near point C and tend to the Coulomb-like
steepness of the graph on the left hand side of point A. The
data negate this expectation. Thus, the increase of the graph
on the right hand side of point C indicates the existence of in-
ner closed shells of quarks at the proton. It is concluded that
at these shells, a new screening effect becomes effective.

It is interesting to note that at the same momentum region
also the TCS graph begins to increase and that on the right
hand side of point C, the vertical distance between the two
graphs is uniform. The logarithmic scale of the figure proves
that, at this region, the ratio ECS to TCS practically does not
change. The additional TCS events are related to an analogue
of the Franck-Hertz effect. Here a quark of the closed shells
is struck out of its shell. This effect corresponds to the ep
deep inelastic process and it is likely to produce an inelastic
event.

The main problem to be discussed here is the specific
structure of the proton’s closed shells of quarks. One may
expect that the situation takes the simplest case and that the
core’s closed shells consist of just two u quarks and two d
quarks that occupy an S shell. The other extreme is the case
where the proton is analogous to a very heavy atom and the
proton’s core contains many closed shells of quarks. Thus,
the energy of the higher group of the core’s shells takes quite
similar value and their radial wave functions partially over-
lap. (Below, finding the actual structure of the proton’s core is
called Problem A.) The presently known pp ECS data which
is depicted in Fig. 1 is used for describing the relevance of the
LHC future data to Problem A.

The rise of the pp ECS graph on the right hand side of
point C is related to a screening effect of the proton’s inner
closed shells that takes a repulsive form. An additional con-
tribution is the repulsive phenomenological force that stems
from Pauli’s exclusion principle which holds for quarks of the
inner shells of the two colliding protons. Now, if the simplest
case which is described above holds then, for higher energies,
this effect should diminish and the graph is expected to stop
rising and pass near the open circle of Fig. 1, which is marked
by the letter D. On the other hand, if the proton’s core contains
several closed shells having a similar energy and a similar ra-
dial distribution, then before the screening contribution of the
uppermost closed shell fades away another shell is expected
to enter the dynamics. In this case, the graph is expected to
continue rising up to the full LHC energy and pass near the
gray circle of Fig. 1, which is marked by the letter E [8].
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The foregoing discussion shows one example explaining
how the LHC data will improve our understanding of the pro-
ton’s structure.

3 Inherent QCD difficulties

Claims stating that QCD is unable to provide an explanation
for the pp cross section data have been published in the last
decade [9]. Few specific reasons justifying these claims are
listed below. The examples rely on QCD’s main property
where baryons consist of three valence quarks, gluons and
possible pairs of quark-antiquark:
• Deep inelastic ep scattering proves that for a very high

energy, elastic events are very rare (see [7], p. 266). It
means that an inelastic event is found for nearly every
case where a quark is struck violently by an electron.
On the other hand, Fig. 1 proves that for high energy,
elastic pp events take about 15% of the total events.
Therefore, one wonders what is the proton’s compo-
nent that takes the heavy blow of a high energy pp col-
lision and is able to leave the two colliding protons in-
tact? Moreover, why this component is not observed in
the corresponding ep scattering?

• A QCD property called Asymptotic Freedom (see [10],
p. 397) states that the interaction strength tends to zero
at a very small vicinity of a QCD particle. Thus, at
this region, a QCD interaction is certainly much weaker
than the corresponding Coulomb-like interaction. Now,
the general expression for the elastic scattering ampli-
tude is (see [7], p. 186)

Mi f =

∫
ψ∗f Vψi d3x , (2)

where V represents the interaction. Evidently, for very
high energy, the contribution of a very short distance
between the colliding particles dominates the process.
Therefore, if asymptotic freedom holds then the pp
ECS line is expected to show a steeper decrease than
that of the Coulomb interaction, which is seen on the
left hand side of point A of Fig. 1. The data of Fig. 1
proves that for an energy which is greater than that of
point C of Fig. 1, the pp ECS line increases. Hence,
the data completely contradict this QCD property.

• A general argument. At point C of Fig. 1, the ECS
graph changes its inclination. Here it stops decreasing
and begins to increase. This effect proves that for this
energy value, something new shows up in the proton.
Now, QCD states that quarks and gluons are elemen-
tary particles that move quite freely inside the proton’s
volume. Therefore, one wonders how can QCD explain
why a new effect shows up for this energy?

Each of these specific points illustrates the general state-
ment of [9], concerning QCD’s failure to describe the high
energy pp cross section data.

4 Concluding remarks

The following lines describe the logical structure of this work
and thereby help the reader to evaluate its significance.

A construction of a physical theory must assume the va-
lidity of some properties of the physical world. For exam-
ple, one can hardly imagine how can a person construct the
Minkowski space with three spatial dimensions, if he is not
allowed to use experimental data. Referring to the validity of
a physical theory, it is well known that unlike a mathemati-
cal theory which is evaluated just by pure logics, a physical
theory must also be consistent with well established exper-
imental data that belong to its domain of validity. The Oc-
cam’s razor principle examines another aspect of a theory and
prefers a theory that relies on a minimal number of assump-
tions. Thus, the Occam’s razor can be regarded as a ”soft”
acceptability criterion for a theory.

Following these principles, the assumptions used for the
construction of RCMT and of its application to strong inter-
actions are described below. The first point has a theoretical
character and the rest rely on experimental results that serve
as a clue for understanding the specific structure of baryons:

• A classical regular charge-monopole theory is built on
the basis of duality relations which hold between ordi-
nary Maxwellian theory of charges together with their
fields and a monopole system together with its associ-
ated fields [2]. (In [1], it is also required that the theory
be derived from a regular Lagrangian density.) Like
ordinary electrodynamics, this theory is derived from
the variational principle where regular expressions are
used. Therefore, the route to quantum mechanics is
straightforward.

• In RCMT, the value of the elementary monopole unit g
is a free parameter. Like the case of the electric charge,
it is assumed that g is quantized. It is also assumed
that its elementary value g2 � e2 ' 1/137. (Probably,
g2 ' 1.).

• It is assumed that strong interactions are interactions
between monopoles. The following points describe the
specific systems that carry monopoles.

• It is assumed that quarks are spin 1/2 Dirac particles
that carry a unit of magnetic monopole. (As a mat-
ter of fact, it can be proved that an elementary massive
quantum mechanical particle is a spin-1/2 Dirac parti-
cle [11].)

• It is assumed that baryons contain three valence quarks.
It follows that baryons must have a core that carries
three monopole units of the opposite sign.

• It is assumed that the baryonic core contains closed
shells of quarks.

The discussion carried out in [4] and in section 2 of this
work explains how RCMT can be used for providing a qual-
itative interpretation of the shape of the graph that describes
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the elastic pp scattering data. In particular, an explanation
is provided for the relation between the pre-LHC pp elastic
cross section data and the existence of closed shells of quarks
at the baryonic core. It is also explained how the upcom-
ing LHC data will enrich our understanding of the structure
of baryonic closed shells of quarks by providing information
on whether there are just two active closed shells of u and d
quarks or there are many shells having a quite similar energy
value and radial distribution.

QCD’s inherent difficulties to provide an explanation for
the high energy pre-LHC pp scattering data are discussed in
the third section. Screening effects of proton’s quarks are
used in the Regular Charge-monopole Theory’s interpretation
of the elastic cross section pp scattering. It is interesting to
note that this kind of screening also provides an automatic
explanation for the first EMC effect [12]. This effect com-
pares the quarks’ Fermi motion in deuteron and iron (as well
as other heavy nuclei). The data show that the Fermi motion
is smaller in hevier nuclei. This experimental data and the
Heisenberg uncertainty relations prove that the quarks’ self-
volume increases in heavier nuclei. In spite of the quite long
time elapsed, QCD supporters have not yet provided an ade-
quate explanation for the first EMC effect [13].
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First, we predict existence of transverse electromagnetic field created by supersonic
longitudinal waves in solid. This electromagnetic wave with frequency of ultrasonic
field is moved by velocity of supersonic field toward of direction propagation of one.
The average Poynting vector of superposition field is calculated by presence of the
transverse electromagnetic and the optical fields which in turn provides appearance the
diffraction of light.

1 Introduction

In 1921 Brillouin have predicted that supersonic wave in ideal
liquid acts as diffraction gratings for optical light [1]. His re-
sult justify were confirmed by Debay and Sears [2]. Further,
Schaefer and Bergmann had shown that supersonic waves in
crystal leads to light diffraction [3]. The description of latter
experiment is that the diffraction pattern is formed by pass-
ing a monochromatic light beam through solid perpendicular
to direction of ultrasonic wave propagation. Furthermore, the
out-coming light is directed on diffraction pattern. As results
of these experiment, a diffraction maximums of light inten-
sity represent as a sources of light with own intensities. Each
intensity of light source depends on the amplitude of acousti-
cal power because at certain value of power ultrasound wave
there is vanishing of certain diffraction maxima. Other impor-
tant result is that the intensity of the first positive diffraction
maximum is not equal to the intensity of the first negative
minimum, due to distortion of the waveform in crystals by
the departures from Hooke’s law as suggested [4]. For the-
oretical explanation of experimental results, connected with
interaction ultrasonic and optical waves in isotropy homoge-
nous medium, were used of so called the Raman-Nath theory
[5] and theory of photo-elastic linear effect [6] which were
based on a concept that acoustic wave generates a periodical
distribution of refractive index in the coordinate-time space.
For improving of the theory photo-elastic effect, the theories
were proposed by Fues and Ludloff [7], Mueller [8] as well
as Melngailis, Maradudin and Seeger [9]. In this letter, we
predict existence of transverse electromagnetic radiation due
to strains created by supersonic longitudinal waves in solid.
The presence of this electromagnetic field together with op-
tical one provides appearance of superposition wave which
forms diffracted light with it’s maxima.

2 Creation of an electromagnetic field

A model of solid is considered as lattice of ions and gas of
free electrons. Each ion coupled with a point of lattice knot
by spring, creating of ion dipole. The knots of lattice define
a position equilibrium of each ion which is vibrated by own
frequency Ω0.

The electron with negative charge −e and ion with pos-
itive charge e are linked by a spring which in turn defines
the frequency ω0 of electron oscillation in the electron-ion
dipole. Obviously, such dipoles are discussed within elemen-
tary dispersion theory [10]. Hence, we suggest that property
of springs of ion dipole and ion-electron one is the same.

Now we attempt to investigate an acoustic property of
solid. By under action of longtidunal acoustic wave which is
excited into solid, there is an appearance of vector displace-
ment ~u of each ions.

Consider the propagation of an ultrasonic plane traveling
wave in cubic crystal. Due to laws of elastic field for solid
[11], the vector vector displacement ~u satisfies to condition
which defines a longitudinal supersonic field

curl~u = 0 (1)

and is defined by wave-equation

∇2~u − 1
c2

t

d2~u
dt2 = 0 , (2)

where cl is the velocity of a longitudinal ultrasonic wave
which is determined by elastic coefficients.

The simple solution of (2) in respect to ~u has a following
form

~u = ~u0~ex sin(Kx + Ωt) , (3)

where u0 is the amplitude of vector displacement; ~ex is the
unit vector determining the direction of axis OX in the coor-
dinate system XYZ.

The appearance of the vector displacement for ions im-
plies that each ion acquires the dipole moment ~p = e~u in of
ion dipole. Consequently, we may argue that there is a pres-
ence of the electromagnetic field which may find by using of
a moving equation for ion in the ion dipole

M
d2~u
dt2 + q~u = e~El , (4)

where ~El is the vector electric field which is induced by lon-
gitudinal ultrasonic wave; M is the mass of ion; the sec-
ond term q~u in left part represents as changing of quasi-
elastic force which acts on ion in ion dipole, in this respect
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Ω0 =

√
q
M = ω0

√ m
M which is the resonance frequency or

own frequency of ion determined via a resonance frequency
ω0 of electron into electron-ion dipole [10].

Using of the operation rot of the both part of (4) together
with (1), we obtain a condition for longitudinal electromag-
netic wave

curl ~El = 0 . (5)

Now, substituting solution ~u from (3) in (4), we find the
vector longitudinal electric field of longitudinal electromag-
netic wave

~El = E0,l ~ex sin(Kx + Ωt) , (6)

where

E0,l =
M (Ω2

0 −Ω2)u0

e
(7)

is the amplitude of longitudinal electric field.
On other hand, the ion dipole acquires a polarizability α,

which is determined by following form

~p = α ~El =
M (Ω2

0 −Ω2)α~u
e

. (8)

The latter is compared with ~p = e~u, and then, we find a
polarizability α for ion dipole as it was made in the case of
electron-ion one presented in [10]

α =
e2

M (Ω2
0 −Ω2)

. (9)

Thus, the dielectric respond ε of ion medium takes a fol-
lowing form

ε = 1 + 4πN0α = 1 +
4πN0 e2

M (Ω2
0 −Ω2)

, (10)

where N0 is the concentration of ions.
The dielectric respond ε of acoustic medium likes to op-

tical one, therefore, √
ε =

c
cl
, (11)

where c is the velocity of electromagnetic wave in vacuum.
We note herein that a longitudinal electric wave with fre-

quency Ω is propagated by velocity cl of ultrasonic wave in
the direction OX. In the presented theory, the vector electric
induction ~Dl is determined as

~Dl = 4π~Pl + ~El , (12)
and

~Dl = ε~El , (13)

where ~Pl = N0~p is the total polarization created by ion dipoles
in acoustic medium.

Furthermore, the Maxwell equations for electromagnetic
field in acoustic medium with a magnetic penetration µ = 1
take following form

curl ~E +
1
c

d ~H
dt

= 0 , (14)

curl ~H − 1
c

d ~D
dt

= 0 , (15)

div ~H = 0 , (16)

div ~D = 0 (17)
with

~D = ε~E , (18)

where ~E = ~E(~r, t) and ~H = ~H(~r, t) is the vectors of local
electric and magnetic fields in acoustic medium; ~D = ~D(~r, t)
is the local electric induction in the coordinate-time space;~r is
the coordinate; t is the current time in space-time coordinate
system.

As we see in above, due to action of ultrasonic wave on
the solid there is changed a polarization of ion dipole by cre-
ation electric field ~El and electric induction ~Dl. Therefore,
we search a solution of Maxwell equations by introducing the
vector electric field by following form

~E = ~Et + ~El − grad φ (19)

and
~H = curl ~A , (20)

where

~Et = −d~A
cdt

, (21)

where φ and ~A are, respectively, the scalar and vector poten-
tial of electromagnetic wave.

As result, the solution of Maxwell equations leads to fol-
lowing expression

grad φ = ~El . (22)

In turn, using of (6) we find a scalar potential

φ = φ0 cos(Kx + Ωt) , (23)

where φ0 = − E0, l

K .
As we see the gradient of scalar potential grad φ of

electromagnetic wave neutralizes the longitudinal electric
field ~El.

After simple calculation, we obtain a following equations
for vector potential ~A of transverse electromagnetic field

∇2~A − ε

c2

d2~A
dt2 = 0 (24)

with condition of plane transverse wave

div ~A = 0 . (25)

The solution of (24) and (25) may present by plane trans-
verse wave with frequency Ω which is moved by velocity cl

along of direction of unit vector ~s

~A = ~A0 sin (K~s~r + Ωt) (26)

and
~A · ~s = 0 , (27)
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where K =
Ω
√
ε

c is the wave number of transverse electromag-
netic wave; ~s is the unit vector in direction of wave normal;
~A0 is the vector amplitude of vector potential. In turn, the
vector electric transverse wave ~Et takes a following form

~Et = ~E0 cos(K~s~r + Ωt) , (28)

where the vector amplitude ~E0 of vector electric wave equals
to

~E0 = −Ω~A0

c
.

Consequently, we found a transverse electromagnetic ra-
diation which is induced by longitudinal ultrasonic wave. To
find the vector amplitude ~E0, we using of the law conserva-
tion energy. In turn, the energy Wa of ultrasonic wave is trans-
formed by energy Wt of transverse electromagnetic radiation,
namely, there is a condition Wa = Wt because there is absence
the longitudinal electric field ~El which was neutralized by the
gradient of scalar potential grad φ of electromagnetic wave as
it was shown in above

Wa =
M
2

[(d~u
dt

)2
+

1
c2

l

(d~u
dx

)2]
= M Ω2u2

0 cos2(Kx + Ωt) , (29)

Wt =
ε

4π
E2

0 cos2(K~s~r + Ωt) . (30)

At comparing of (29) and (30), we may argue that vector
of wave normal ~s is directed along of axis OX or ~s = ~ex, and
then, we arrive to finally form of

~Et = ~E0 cos(Kx + Ωt) (31)

with condition
ε

4π
E2

0 = MΩ2u2
0 . (32)

Obviously, the law conservation energy plays an impor-
tant role for determination of the transverse traveling plane
wave.

3 Diffraction of light

First step, we consider an incident optical light into solid
which is directed along of axis OZ in the coordinate space
XYZ with electric vector ~Ee

~Ee = ~E0,e cos(kz + ωt) , (33)

where k =
ω
√
ε0

c is the wave number; ω is the frequency of
light; ε0 is the dielectric respond of optical medium created
by electron dipoles [10]

ε0 − 1
ε0 + 2

=
4πN0e2

3m(ω2
0 − ω2)

, (34)

where ω0 is the own frequency of electron in electron-ion
dipole; m is the mass of electron.

The interaction of ultrasonic waves with incident optical
light in a crystal involves the relation between intensity of out
coming light from solid and the strain created by ultrasonic
wave.

Consequently, the superposition vector electric ~Es field in
acoustic-optical medium is determined by sum of vectors of
electric transverse ~Et and optical ~Ee waves

~Es = ~E0 cos(Kx + Ωt) + ~E0,e cos(kz + ωt) . (35)

The average Poynting vector of superposition field 〈~S 〉 in
acoustic-optical medium is expressed via the average Poynt-
ing vectors of 〈~S e〉 and 〈~S t〉 corresponding to the optical and
the transverse electromagnetic waves

〈~S 〉 =
c√
ε0
we~ez +

c√
ε
wt~ex , (36)

where we and wt are, respectively, the average density ener-
gies of the optical and the transverse electromagnetic waves

we =
ε0 E2

0,e

4π
· lim

T→∞
1

2T

∫ T

−T
cos2(kz + ωt)dt =

ε0 E2
0,e

8π
(37)

and

wt =
εE2

0

4π
· lim

T→∞
1

2T

∫ T

−T
cos2(Kx + Ωt)dt =

MΩ2u2
0

2
(38)

by using of condition (32).
Thus, the average Poynting vector of superposition field

〈~S 〉 is presented via intensities of the optical Ie and the trans-
verse electromagnetic wave It

〈~S 〉 = Ie~ez + It~ex , (39)

where

Ie =
E2

0,e c
√
ε0

8π
(40)

and

It =
M Ω2u2

0 cl

2
. (41)

This result shows that the intensity of transverse electro-
magnetic wave It represents as amplitude of acoustic field.

Obviously, we may rewrite down (39) by complex form
within theory function of the complex variables

〈~S 〉 = Ie + iIt =

√
I2
e + I2

t exp(iθ) , (42)

where θ is the angle propagation of observation light in the
coordinate system XYZ in regard to OZ

θ = arcctg
( Ie

It

)
, (43)

which is chosen by the condition 0 6 arcctg
( Ie

It

)
6 π.
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Using of identity

exp(iz cosψ) =

m=∞∑

m=−∞
Jm(z) im exp(imψ) , (44)

where ψ = arccos θ.
The average Poynting vector of superposition field 〈~S 〉 is

explicated on the spectrum of number m light sources with
intensity Im

〈~S 〉 =

m=∞∑

m=−∞
Im , (45)

where

Im =

√
I2
t + I2

e Jm

(
arcctg

( Ie

It

))
im exp(imψ) , (46)

but Jm(z) is the Bessel function of m order.
Thus, there is a diffraction of light by action of ultrasonic

wave. In this respect, the central diffraction maximum point
corresponds to m = 0 with intensity Im=0

Im=0 =

√
I2
t + I2

e J0

(
arcctg

( Ie

It

))
. (47)

In the case, when arcctg Ie
It

= 2.4 (at z = 2.4, the Bessel
function equals zero J0(z) = 0, that implies Im=0 = 0. In this
respect, there is observed a vanishing of central diffraction
maximum at certainly value of amplitude It acoustic field.

The main result of above-mentioned experiment [4,9] is
that the intensity of the first positive diffraction maximum
Im=1 is not equal to the intensity of the first negative mini-
mum Im=−1. Due to presented herein theory, the intensity of
the first positive diffraction maximum is

Im=1 = i
√

I2
t + I2

e J1

(
arcctg

( Ie

It

))
exp(ψ) , (48)

but the intensity of the first negative diffraction maximum is

Im=−1 = −i
√

I2
t + I2

e J−1

(
arcctg

( Ie

It

))
exp(−ψ) . (49)

It is easy to show that Im=1 , Im=−1. Indeed, at comparing
Im=1 and Im=−1, we have

J−1 = −J1

and
exp(ψ) , exp(−ψ) ,

which is fulfilled always because the there is a condition for
observation angle θ , π

2 . Consequently, we proved that evi-
dence Im=1 , Im=−1 confirms the experimental data.

Thus, as we have been seen the longitudinal ultrasonic
wave induces the traveling transverse electromagnetic field
which together with optical light provides an appearance dif-
fraction of light.
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It is known (Quznetsov G. Higgsless Glashow’s and quark-gluon theories and gravity
without superstrings. Progress in Physics, 2009, v. 3, 32–40) that probabilities of point-
like events are defined by some generalization of Dirac’s equation. One part of such
generalized equation corresponds to the Dirac’s leptonic equation, and the other part
corresponds to the Dirac’s quark equation. The quark part of this equation is invariant
under the oscillations of chromatic states. And it turns out that these oscillations bend
space-time so that at large distances the space expands with acceleration according to
Hubble’s law.

1 Introduction

In 1998 observations of Type Ia supernovae suggested that the
expansion of the universe is accelerating [1]. In the past few
years, these observations have been corroborated by several
independent sources [2]. This expansion is defined by the
Hubble rule [3]

V (r) = Hr, (1)

where V (r) is the velocity of expansion on the distance r, H
is the Hubble’s constant (H ≈ 2.3×10−18c−1 [4]).

It is known that Dirac’s equation contains four anticom-
mutive complex 4 × 4 matrices. And this equation is not in-
variant under electroweak transformations. But it turns out
that there is another such matrix anticommutive with all these
four matrices. If additional mass term with this matrix will
be added to Dirac’s equation then the resulting equation shall
be invariant under these transformations [5]. I call these five
of anticommutive complex 4 × 4 matrices Clifford pentade.
There exist only six Clifford pentads [7,8]. I call one of them
the light pentad, three — the chromatic pentads, and two —
the gustatory pentads.

The light pentad contains three matrices corresponding to
the coordinates of 3-dimensional space, and two matrices rel-
evant to mass terms — one for the lepton and one for the
neutrino of this lepton.

Each chromatic pentad also contains three matrices corre-
sponding to three coordinates and two mass matrices — one
for top quark and another — for bottom quark.

Each gustatory pentad contains one coordinate matrix and
two pairs of mass matrices [9] — these pentads are not needed
yet.

It is proven [6] that probabilities of pointlike events are
defined by some generalization of Dirac’s equation with ad-
ditional gauge members. This generalization is the sum of
products of the coordinate matrices of the light pentad and
covariant derivatives of the corresponding coordinates plus
product of all the eight mass matrices (two of light and six of
chromatic) and the corresponding mass numbers.

Fig. 1: Dependence of v(t, x) from x [8].

If lepton’s and neutrino’s mass terms are equal to zero in
this equation then we obtain the Dirac’s equation with gauge
members similar to eight gluon’s fields [8]. And oscillations
of chromatic states of this equation bend space-time.

2 Chromatic oscillations and the Hubble’s law

Some oscillations of chromatic states bend space-time as fol-
lows [8]

∂t
∂t′

= cosh 2σ

∂x
∂t′

= c sinh 2σ


. (2)

Hence, if v is the velocity of a coordinate system {t′, x′} in
the coordinate system {t, x} then

sinh 2σ =

(
v
c

)
√

1 − v2

c2

, cosh 2σ =
1√

1 − v2

c2

.

Therefore,
v = c tanh 2σ. (3)

Let
2σ := ω (x)

t
x
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Fig. 2: Dependence of VA (r) on r with xA = 25 × 103 l.y.

with

ω (x) =
λ

|x| ,

where λ is a real constant with positive numerical value.
In that case

v (t, x) = c tanh
(
λ

|x|
t
x

)
. (4)

Let a black hole be placed in a point O. Then a tremen-
dous number of quarks oscillate in this point. These oscilla-
tions bend time-space and if t has some fixed volume, x > 0,
and Λ := λt then

v (x) = c tanh
(

Λ

x2

)
. (5)

A dependency of v(x) (light years/c) from x (light years)
with Λ = 741.907 is shown in Fig. 1.

Let a placed in a point A observer be stationary in the co-
ordinate system {t, x}. Hence, in the coordinate system {t′, x′}
this observer is flying to the left to the point O with velocity
−v (xA). And point X is flying to the left to the point O with
velocity −v (x).

Consequently, the observer A sees that the point X flies
away from him to the right with velocity

VA (x) = c tanh
 Λ

x2
A

− Λ

x2

 (6)

in accordance with the relativistic rule of addition of veloci-
ties.

Let r := x − xA (i.e. r is distance from A to X), and

VA (r) := c tanh
 Λ

x2
A

− Λ

(xA + r)2

 . (7)

In that case Fig. 2 demonstrates the dependence of VA (r)
on r with xA = 25×103 l.y.

Fig. 3: Dependence of H on r.

Hence, X runs from A with almost constant acceleration

VA (r)
r

= H. (8)

Fig. 3 demonstrates the dependence of H on r (the Hubble
constant).

3 Conclusion

Therefore, the phenomenon of the accelerated expansion of
Universe is explained by oscillations of chromatic states.
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Smarandache Spaces as a New Extension of the Basic Space-Time
of General Relativity
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This short letter manifests how Smarandache geometries can be employed in order to
extend the “classical” basis of the General Theory of Relativity (Riemannian geometry)
through joining the properties of two or more (different) geometries in the same single
space. Perspectives in this way seem much profitable: the basic space-time of General
Relativity can be extended to not only metric geometries, but even to non-metric ones
(where no distances can be measured), or to spaces of the mixed kind which possess
the properties of both metric and non-metric spaces (the latter should be referred to as
“semi-metric spaces”). If both metric and non-metric properties possessed at the same
(at least one) point of a space, it is one of Smarandache geometries, and should be re-
ferred to as “Smarandache semi-metric space”. Such spaces can be introduced accord-
ing to the mathematical apparatus of physically observable quantities (chronometric
invariants), if we consider a breaking of the observable space metric in the continuous
background of the fundamental metric tensor.

When I was first acquainted with Smarandache geometries
many years ago, I immediately started applying them, in order
to extend the basic geometry of Einstein’s General Theory of
Relativity.

Naturally, once the General Theory of Relativity was es-
tablished already in the 1910’s, Albert Einstein stated that
Riemannian geometry, as advised to him by Marcel Gross-
mann, was not the peak of excellence. The main advantage of
Riemannian geometry was the invariance of the space metric
and also the well-developed mathematical apparatus which
allowed Einstein to calculate numerous specific effects, un-
known or unexplained before (now, they are known as the
effects of General Relativity). Thus, Einstein concluded, the
basic spacetime of General Relativity would necessarily be
extended in the future, when new experiments would over-
come all the possibilities provided by the geometry of Rie-
mannian spaces. Many theoretical physicists and mathemati-
cians tried to extend the basic space-time of General Relativ-
ity during the last century, commencing in the 1910’s. I do
not survey all the results obtained by them (this would be im-
possible in so short a letter), but only note that they all tried
to get another basic space, unnecessary Riemannian one, then
see that effects manifest themselves in the new geometry. No
one person (at least according to my information on this sub-
ject, perhaps incomplete) did consider the “mixed” geome-
tries which could possess the properties of two or more (dif-
ferent in principle) geometries at the same point.

This is natural, because a theoretical physicist looks for
a complete mathematical engine which could drive the ap-
plications to physical phenomena. What would have hap-
pened had there been no Bernhard Riemann, Erwin Christof-
fel, Tullio Levi-Civita, and the others; could Einstein have
been enforced to develop Riemannian geometry in solitude

from scratch? I think this would have been a “dead duck” af-
ter all. Einstein followed a very correct way when he took the
well-approved mathematical apparatus of Riemannian geom-
etry. Thus, a theoretical physicist needs a solid mathemati-
cal ground for further theoretical developments. This is why
some people, when trying to extend the basis of General Rela-
tivity, merely took another space instead the four-dimensional
pseudo-Riemannian space initially used by Einstein.

Another gate is open due to Smarandache geometries,
which can be derived from any of the known geometries by
the condition that one (or numerous, or even all) of its ax-
ioms is both true and violated in the space. This gives a
possibility to create a sort of “mixed” geometries possessing
the properties of two or more geometries in one. Concerning
the extensions of General Relativity, this means that we can
not refuse the four-dimensional pseudo-Riemannian space in
place of another single geometry, but we may create a ge-
ometry which is common to the basic one, as well as one or
numerous other geometries in addition to it. As a simplest ex-
ample, we can create a space possessing the properties of both
the curved Riemannian and the flat Euclidean geometries. So
forth, we can create a space, every point of which possesses
the common properties of Riemannian geometry and another
geometry which is non-Riemannian.

Even more, we can extend the space geometry in such a
way that the space will be particularly metric and particularly
non-metric. In the future, I suggest we should refer to such
spaces as semi-metric spaces. Not all semi-metric spaces
manifest particular cases of Smarandache geometries. For ex-
ample, a space wherein each pair of points is segregated from
the others by a pierced point, i.e. distances can be determined
only within diffeerential fragments of the space segregated by
pierced points. This is undoubtely a semi-metric space, but is

Dmitri Rabounski. Smarandache Spaces as a New Extension of the Basic Space-Time of General Relativity L1



Volume 2 PROGRESS IN PHYSICS April, 2010

not a kind of Smarandache geometries. Contrarily, a space
wherein at least one pair of points possesses both metric and
non-metric properties at the same time is definitely that of
Smarandache geometries. In the future, I suggest, we should
refer to such spaces as Smarandache semi-metric spaces, or
ssm-spaces in short.

Despite the seeming impossibility of joining metric and
non-metric properties in “one package”, Smarandache semi-
metric spaces can easily be introduced even by means of
“classical” General Relativity. The following is just one ex-
ample of how to do it. Regularly, theoretical physicists are
aware of the cases where the signature conditions of the space
are violated. They argue that, because the violations pro-
duce a breaking of the space, the cases have not a physical
meaning in the real world and, hence, should not be consid-
ered. Thus, when considering a problem of General Relativ-
ity, most theoretical physicists artificially neglect, from con-
sideration, those solutions leading to the violated signature
conditions and, hence, to the breaking of the space. On the
other hand, we could consider these problems by means of the
mathematical apparatus of chronometric invariants, which are
physically observable quantities in General Relativity. In this
way, we have to consider the observable (chronometrically
invariant) metric tensor on the background of the fundamen-
tal (general covariant) metric tensor of the space. The sig-
nature conditions of the metrics are determined by different
physical requirements. So, in most cases, the violated signa-
ture conditions of the observable metric tensor, i.e. breaking
of the observable space, can appear in the continuous back-
ground of the fundamental metric tensor (and vice versa).
This is definitely a case of Smarandache geometries. If a
distance (i.e. a metric, even if non-Riemannian) can be de-
termined on the surface of the space breaking, this is a metric
space of Smarandache geometry. I suggest we should refer to
such spaces as Smarandache metric spaces. However, if the
space breaking is incapable of determining a distance inside
it, this is a Smarandache semi-metric space: the space pos-
sesses both metric and non-metric properties at all points of
the surface of the space breaking.

A particular case of this tricky situation can be observed
in Schwarzschild spaces. There are two kinds of these: a
space filled with the spherically symmetric gravitational field
produced by a mass-point (the center of gravity of a spherical
solid body), and a space filled with the spherically symmet-
ric gravitational field produced by a sphere of incompress-
ible liquid. Both cases manifest the most apparent metrics
in the Universe: obviously, almost all cosmic bodies can be
approximated by either a sphere of solid or a sphere of liq-
uid. Such a metric space has a breaking along the spheri-
cal surface of gravitational collapse, surrounding the center
of the gravitating mass (a sphere of solid or liquid). This
space breaking originates in the singularity of the fundamen-
tal metric tensor. In the case of regular cosmic bodies, the
radius of the space breaking surface (known as the gravita-

tional radius, it is determined by the body’s mass) is many
orders smaller than the radius of such a body itself: it is 3 km
for the Sun, and only 0.9 cm for the Earth. Obviously, only
an extremely dense cosmic body can completely be located
under its gravitational radius, thus consisting a gravitational
collapsar (black hole). Meanwhile, the space breaking at the
gravitational radius really exists inside any continuous body,
close to its center of gravity. Contrary, the space breaking
due to the singularity of the observable metric tensor is far
distant from the body; the sphere of the space breaking is
huge, and is like a planetary orbit. Anyhow, in the subspace
inside the Schwarzschild space breaking, distances can be de-
termined between any two points (but they are not those of
the Schwarzschild space distances). Thus, when considering
a Schwarzschild space without any breaking, as most theo-
retical physicists do, it is merely a kind of the basic space-
time of General Relativity. Contrarily, being a Schwarzschild
space considered commonly with the space breaking in it, as
a single space, it is a kind of Smarandache metric spaces —
a Schwarzschild-Smarandache metric space, which general-
izes the basic space-time of General Relativity. Moreover,
one can consider such a space breaking that no distance (met-
ric) can be determined inside it. In this case, the common
space of the Schwarzschild metric and the non-metric space
breaking in it is a kind of Smarandache semi-metric spaces
— a Schwarzschild-Smarandache semi-metric space, and is
an actual semi-metric extension of the basic space-time of
General Relativity.

So, we see how Smarandache geometries (both metric and
semi-metric ones) can be a very productive engine for further
developments in the General Theory of Relativity. Because
the Schwarzschild metrics lead to consideration of the state
of gravitational collapse, we may suppose that not only reg-
ular gravitational collapsars can be considered (the surface
of a regular black hole possesses metric properties), but even
a much more exotic sort of collapsed objects — a collapsar
whose surface cannot be presented with metric geometries.
Because of the absence of metricity, the surface cannot be
inhabited by particles (particles, a sort of discrete matter, im-
ply the presence of coordinates). Only waves can exist there.
These are standing waves: in the metric theory, time cannot
be introduced on the surface of gravitational collapse due to
the collapse condition g00 = 0; the non-metric case manifests
the state of collapse by the asymptopic conditions from each
side of the surface, while time is not determined in the non-
metric region of collapse as well. In other words, the non-
metric surface of such a collapsar is filled with a system of
standing waves, i.e. holograms. Thus, we should refer to such
objects — the collapsars of a Schwarzschild-Smarandache
semi-metric space — as holographic black holes. All these
are in the very course of the paradoxist mathematics, whose
motto is “impossible is possible”.
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Calibration of Microwave Reference Blackbodies and Targets for Use in Satellite
Observations: An Analysis of Errors in Theoretical Outlooks

and Testing Procedures

Pierre-Marie Robitaille
Department of Radiology, The Ohio State University, 395 W. 12th Ave, Suite 302, Columbus, Ohio 43210, USA

E-mail: robitaille.1@osu.edu

Microwave reference blackbodies and targets play a key role in astrophysical and geo-
physical studies. The emissivity of these devices is usually inferred from return-loss
experiments which may introduce at least 10 separate types of calibration errors. The
origin of these inaccuracies depends on test conditions and on the nature of each target.
The most overlooked errors are related to the geometry adapted in constructing refer-
ence loads and to the effects of conduction or convection. Target shape and design can
create an imbalance in the probabilities of absorption and emission. This leads to loss of
radiative equilibrium, despite the presence of a thermodynamic steady state. Heat losses
or gains, through conduction and convection, compensate for this unexpected physical
condition. The improper calibration of blackbodies and targets has implications, not
only in global climate monitoring, but also relative to evaluating the microwave back-
ground.

1 Introduction

Blackbodies [1–4] can be difficult to construct and analyze.
For example, by unknowingly pumping normal radiation
[2, 3] into cavities using their detectors, scientists can eas-
ily make the interior of enclosures appear black [4]. They
thereby create the illusion that all cavities emit normal radi-
ation [1–3]. Relative to microwave reference targets, the sit-
uation is further complicated by the realization that these de-
vices are pseudo-cavities and become subject to geometrical
considerations. These problems are important as microwave
targets are present on numerous satellites monitoring the mi-
crowave background [5–7] and global climate (e.g. [8]).

Calibration targets for microwave frequencies [9–15] are
typically made from carbon or iron containing foams and
epoxy resins, such as Eccosorb foams and Eccosorb CR-110
and 117 [Emerson and Cuming, Randolph, MA]. Recently,
an aqueous blackbody has been proposed for calibration pur-
poses [16]. Such a device takes advantage of the powerful
microwave absorbance of water. As for Eccosorb surfaces
used in the microwave [5,7], unlike graphite and carbon black
paints in the infrared [3, 17–20], they manifest significantly
increased absorbance as a function of thickness. Therefore,
it is impossible to obtain a blackbody emission from a thin
layer of Eccosorb, irrespective of claims to the contrary. For
example, a 1 cm layer of Eccosorb CR-110 has an absorbance
of only ∼6 dB at 18 GHz [21]. Despite this reality, space
restrictions aboard spacecraft often limit the volume avail-
able for satellite reference targets [7]. Further complicat-
ing the situation, these materials permit transmission at mi-
crowave frequencies and are not opaque. Consequently, the
correct treatment of their properties involves the considera-
tion of transmission. Unfortunately, since reference targets

are often backed by highly reflective metal casings [10–15],
it becomes easy to ignore the effects of transmission in the ab-
sorber. This can lead to a serious overestimation of calibrator
emissions, as will be demonstrated.

2 The testing of reference targets

Almost without exception, the testing of microwave refer-
ence targets involves their placement within an anechoic
chamber (e.g. [10–15]). Here, they are subjected to incident
microwave radiation emitted from a test horn, typically driven
at the frequency of interest by a network analyzer. This is
achieved while making the assumption that the target, with
its absorbing material and metal casing (e.g. [10–15]), can be
treated as a single opaque unit. By measuring the return-loss
produced in this configuration, the emissivity of the target can
be inferred, but not without risk of error.

Return loss measurements are based on the validity of
Stewart’s formulation, which advances the equivalence of
emission and absorption under conditions of thermal equi-
librium [22, 23]. This statement is commonly viewed by the
scientific community as Kirchhoff’s law [1]. However, Kirch-
hoff’s law differs from Stewart’s formulation by advocating
that all radiation within cavities must be black. Such a con-
cept is demonstrably false [4, 17, 23]. As a result, the law
of equivalence between emissivity and absorptivity, must be
attributed uniquely to Stewart [22, 23].

The emissivity of a target is usually estimated through the
relationship εt = 1 − σtn, where εt and σtn represent target
emissivity and normal reflectivity, respectively (i.e. [10–15].
This treatment assumes that only normal reflection takes
place and also constitutes an implicit formulation of Stewart’s
law [23]. Nonetheless, in this discussion, we will consider the
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measurement of absorption, rather than emission, and write
κt = 1−σtn, where κt represents the absorptivity of the target.
In the end, it is demonstrated that the measurement of absorp-
tivity from return loss measurements in no way implies that
the emissivity of the target has been properly evaluated.

2.1 Type-1, -2, -3 and -4 errors

The first error in the determination of emissivity using re-
turn loss measurements, involves leakage of incident radia-
tion from the horn, directly into the anechoic chamber, with-
out ever striking the target. This will be referred to as a Type-
1 error (see Figure 1A) and symbolized as Γbp, as it depends
on the beam pattern of the horn. Type-2 errors can occur
when incident radiation is diffracted around the edges of the
horn on transmission, as shown in Figure 1A. Type-2 errors
will be symbolized as Γdh as they represent diffraction on the
horn. These errors are also associated with the beam pattern.
Since corrugated edging can be placed on a horn to minimize
the effects of diffraction, it is treated as a separate error. Type-
3 errors are similar in nature to Type-2 errors, but involve the
diffraction of incoming radiation on the edges of the target,
Γdt. This term also includes radiation which is scattered by
the target. Finally, a Type-4 error results from the neglect of
diffuse reflection off the target surface, σtd.

Each of these error types result in radiation being lost to
the walls of the anechoic chamber. Such radiation will not
be available to the horn and will subsequently contribute to
lowering the measured return radiation. In order to overcome
this problem, it is important to numerically evaluate the beam
pattern of the horn, thereby inferring the percentage of inci-
dent radiation that does, in fact, strike the target. It is also
possible to place pick-up horns in the anechoic chamber and
evaluate the beam patterns directly, in the absence of a tar-
get. Thus, whether through calculations or direct measure-
ment, the magnitude of these errors can be understood and
are usually properly addressed. Nonetheless, and for the sake
of completeness, it is clear that the absorptivity of the target
is actually given by:

κt = 1 − σtn − σtd − Γbp − Γdh − Γdt . (1)

When viewing the target as a single unit, Type-1, -2, -3,
and -4 errors can lead to the inaccurate assessment of target
emissivity from return-loss experiments. Yet, it is the effect
of using a transmissive absorber, in the presence of a metal
casing or support, which can lead to the greatest errors in
evaluating emissivity.

2.2 Type-5 and -6 errors

The emissivity of microwave targets is exclusively dominated
by an absorbing material, like Eccosorb, which is also trans-
missive [9, 21]. Accordingly, it is unwise to treat these de-
vices as single units. Instead, clearer insight into the problem
can be gained if one views the target as made from its two

Fig. 1: Schematic representation of error types when assessing ef-
fective emissivity using return-loss measurements.

components: the absorbent material and the perfectly reflec-
tive metallic backing. In this scenario, the absorbent material
can be considered as possessing absorptivity, κa, and emis-
sivity, εa, equal to one another (κa = εa), along with normal
reflectivity, σan, diffuse reflectivity, σad, and transmissivity,
τa. The metallic casing, c, often constructed from aluminum,
is viewed as having perfect reflectivity (σc = 1).

Under such conditions, the difficulties in ascertaining the
emissivity of the target become evident, since for any non-
opaque substance, ε = 1−σ− τ, rather than ε = 1−σ. Be-
cause the absorber has transmittance, it can permit microwave
energy to pass through its body and strike the metallic back-
ing at virtually any angle. While an object transmits incident
radiation, it is not required to preserve either phase or angle of
incidence. As such, when the transmitted component strikes
the casing, it can do so in a manner whereby the microwave
energy, following reflection, re-enters the absorber only to be
absorbed, transmitted towards the horn, scattered into space,
or diffracted by the edge of the casing. This would lead to a
good return-loss measurement on the network analyzer; but it
would be improper to assume that ε = 1 − σ. Therefore, it
becomes nearly impossible to measure emissivity, as will be
demonstrated.

In reality, by treating the target as an opaque unit made
up of two components (i.e. the absorber and the reflective
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casing), it is apparent that its absortivity is now given by:

κt = 1 − σan − σad − Γbp − Γdh − Γdc −
− κa τaσc − τa τaσc − sa τaσc − da τaσc , (2)

where the normal and diffuse reflection of the absorber are
now being considered (σan and σad), along with the diffrac-
tion of incident radiation on the casing, Γdc (previously
viewed as Γdt), and four new terms arise, whose coefficients
sum to 1 (i.e. κa +τa + sa +da = 1). The seventh term, κa τaσc,
corresponds to that fraction of transmitted power which is re-
flected by the casing, σc, and absorbed, κa, upon reentry into
the absorber. The eighth term, τa τaσc, represents that frac-
tion of the transmitted power which is reflected by the cas-
ing and is subsequently re-transmitted, τa, towards the horn.
The seventh term, like the eighth term, has been innocently
considered when treating the target as an opaque unit in sec-
tion 2.1. These terms introduce no errors in the return-loss
measurement itself. For instance, it is evident that, with rear-
rangement, Eq. (2) becomes:

κteff
= (κt + κa τaσc) = 1 − (σan + τa τaσc) − σad −

− Γbp − Γdh − Γdc − sa τaσc − da τaσc . (3)

In this expression, the seventh term in Eq. (2), κa τaσc,
is moved to the left as it makes a positive contribution to the
effective absorptivity of the target, where on measurement,
κt is indistinguishable from κa τaσc. Unfortunately, we must
now consider the effective absorptivity, κteff

, from the target.
In fact, the seventh term, κa τaσc, brings such difficulty in the
determination of emissivity that it will be considered below
separately as a Type-7 problem. This occurs as the targets
permit repeated cycles of absorption and reflection. The as-
sociated Type-7 errors experience geometric growth. It is also
clear that, in Eq. (2), the eighth term, τa τaσc, can be paired
with normal reflection, σan, the two being indistinguishable.

The ninth term in Eq. (2), sa τaσc, generates a Type-5 er-
ror as shown in Figure 1B. It accounts for that fraction of the
transmitted power which is reflected by the casing, re-enters
the absorber, and is then scattered, sa, into the anechoic cham-
ber. The term resembles a Type-4 error, σtd, involving the
effect of diffuse reflection when considering the entire target.
However, it is not diffuse reflection, though indistinguishable
from such a process. It is properly viewed, as a Type-5 error,
as it involves scattering by the absorber following reflection
on the casing.

Finally, the tenth term in Eq. (2), da τaσc, introduces a
Type-6 error. It corresponds to that fraction of the transmitted
power which is reflected by the aluminum casing, re-enters
the Eccosorb and is then diffracted, da, by the edge of the
casing into the anechoic chamber (see Figure 1B). The tenth
term involves diffraction on the casing from a direction op-
posite to the incident radiation. It resembles a Type-3 error,
Γdc (previously referred to as Γdt), in being indistinguishable
from it on measurement, but is distinct in its origin. It is real-

ly a “reverse diffraction” since it is produced from radiation
which was previously reflected by the metallic casing. It will
be properly viewed as a Type-6 error. The distinction is im-
portant because, while corrugations can be placed on horns to
minimize diffractions on their edges during transmission, they
are often not present on the metallic casings of their reference
targets [7]. Hence, the diffraction produced as radiation exits
the interior of the target is often ignored [7].

If we now represent the seventh through the tenth terms
as Γκσ, Γτσ, Γsσ, and Γdσ, Eq. (2) can be re-expressed, with
pairing of indistinguishable terms, as follows:

κteff
= (κt + Γκσ) = 1 − (σan + Γτσ) − (σad + Γsσ) −

− (Γbp + Γdh) − (Γdc + Γdσ) . (4)

2.3 Type-7 errors

The most serious problem with microwave target return-loss
measurements can be viewed as Type-7 errors which involve
the geometry of the targets themselves. This problem exists
in all determinations of emissivity from return-loss measure-
ments in the presence of a metal casing. In reality, we are
returning to the κa τaσc, or Γκσ term. As previously men-
tioned, this term does not lead to an error in the return-loss
measurement. But, it can cause an enormous error in the de-
termination of emissivity from such measurements. This is
a geometric effect, which is best understood by considering
targets of varying geometry.

2.3.1 The Planck LFI

Consider, for instance, the target geometry for the ∼4 K ref-
erences on the Planck LFI [7]. These targets are box-like
in appearance. They are composed of various layers of Ec-
cosorb, including a small pyramid, enclosed on 5 sides by an
aluminum casing (see Figures 8, 10 and 12 in [7]). Given
incident radiation from the test horn and neglecting Type-1
through -4 errors, the layer of Eccosorb can initially absorb
some of the microwave power. The radiation which is not
absorbed is transmitted through the Eccosorb and strikes the
aluminum casing. At this point, it ideally experiences normal
reflection on the casing and travels back through the absorber.
If this radiation is not absorbed following reentry, it travels
into space. There, neglecting Type-5 and -6 errors, it can be
detected by the horn and registered as return radiation. Note
that, now, there are two chances for the incident microwave
radiation to be absorbed: first on incidence and then follow-
ing reflection on the metal casing (term κa τaσc above). The
situation is not balanced on emission.

Relative to pure emission, the absorber is unable to pro-
vide the same performance. For instance, microwaves emit-
ted from the upper surface of the absorber can travel unin-
terrupted towards the detector. Conversely, radiation emitted
through the lower surface of the absorber immediately en-
counters reflection on striking the metal casing and then re-
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enters the material of origin. Once in the absorber, the ra-
diation which had been emitted from the lower surface has a
chance of being absorbed before exiting towards the test horn.
Furthermore, it is unlikely that the lower surface of such a test
target can emit any photons towards the casing, since conduc-
tion is also taking place at the interface of the Eccosorb and
the aluminum casing (see section 2.4). The effective emis-
sivity, εeff, of the absorber is reduced by the presence of the
metal casing, whereas the effective absorptivity, κeff, is being
increased.

Speaking in quantum mechanical terms, the presence of
the metal casing has created a condition where the proba-
bility of absorption is no longer equal to the probability of
emission. Herein lays the major flaw associated with such ap-
proaches. Geometry has produced a condition where return-
loss measurements can no longer properly evaluate the effec-
tive emissivity of the target. The effective absorbtivity has
been enhanced by geometry and the effective emissivity re-
duced. This is a Type-7 error. Effective radiative equilibrium
is being destroyed by geometry and εeff , κeff. This occurs
precisely because the highly conductive metallic casing en-
sures that thermodynamic steady state remains. Conduction
now compensates for the imbalance created in effective ab-
sorptivity and emissivity. In fact, conduction and convection
can introduce Type-8 and 9 errors, respectively, as will be
discussed in section 2.4.

2.3.2 Pyramidal targets

In order to emphasize the effect of geometry, consider a target
where a metal casing is built, composed of a group of small
pyramidal structures [10–12]. Such targets are important on
geophysical satellites and in radiometry standards laborato-
ries [8, 10–12]. In these targets, each pyramid is about 4 cm
in height with a 1×1 cm base [10–12]. A large array of such
pyramids, coated with a thin layer of absorber, will form the
target. Often, the aluminum casing supports a thin layer of
Eccosorb, as seen in the ARIS instrument [8] and other cal-
ibration sources [10–12]. In Figure 2A and B, a section of
these calibrators is expanded, displaying only the valley cre-
ated by two adjacent pyramids. Figure 2A treats the situation
experienced in measuring absorption from such a target. Con-
versely, in Figure 2B, emission from a small surface element,
at the bottom of the valley, is being considered. In order to
simplify the presentation, only absorption and emission to-
wards or away from a single element at the bottom of the
valley is considered.

Thus, when radiation is incident on such a structure (see
Figure 2A), it has an initial probability of being absorbed
when it first enters the Eccosorb, P1. If the radiation is not
absorbed at this interface, it is transmitted to the metal casing
where it is immediately reflected. At this point, the radia-
tion re-enters the Eccosorb, where it still has another proba-
bility of being absorbed, P2. Should the photons not be ab-

Fig. 2: Schematic representation of geometric, or Type-7 errors, in
the assessment of effective emissivity. A) Path of a photon towards
an absorptive element at the bottom of the valley. B) Path of a photon
emitted by an element at the bottom of the valley. See Table 1 for
the effect of geometries on effective emissivity of this element.

sorbed, the radiation travels to the adjacent pyramid. Here,
once again, it has a probability of being absorbed, P3. This
scenario continues through many reflections and absorptions.
As the photons travel towards the element at the bottom of the
valley, a tremendous increase in the probability of being ab-
sorbed is generated. This effective absorptivity is made up of
the sum of all individual absorption probabilities created from
geometry in the presence of the casing. Because of repeated
chances of absorption and reflection, the total probability for
effective absorptivity, κeff, is tremendous as shown in Table 1.
In fact, this represents geometric growth. For instance, if one
permits a total of 8 interactions with the Eccosorp on the
way to the small element (9 interactions in total), any pho-
ton will have nearly an 87% chance of being absorbed even
if the emissivity of the Eccosorb layer (in isolation) was only
0.2. To make matters worse, if that same photon then tries to
leave the valley, it must do so while dealing with the prob-
abilities of absorption on exit. Other examples are provided
in Table 1. Of course, the effective absorptivity of the target
involves the sum of all probabilities for all photons and for all
elements. The path through the Eccosorb layers will also be
slightly different with each crossing. Nonetheless, it is easy to
visualize why these geometric configurations give such out-
standing results for effective absorptivity. This is true, even
when extremely thin layers of absorber are placed on the sur-
faces of the metal casing.

Unfortunately, while this situation is outstanding for ab-
sorption, it is suboptimal relative to emission. Consequently,
a photon produced by a surface element at the bottom of the
valley, which is not emitted directly in the direction of the
horn, will be subject to repeated chances of being absorbed as
it tries to make its way out of this microwave “death valley”
(see Table 1). For instance, in considering the reverse path
of Figure 2B, we can see that an element with an emissiv-
ity of 0.2, will be able to contribute an effective emissivity of
only 0.034 after 8 interactions with the Eccosorb (4 changes
in direction). Just 4 interactions would more than half the
effective emissivity from this element. Once again, the effec-
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Fig. 3: Schematic representation of A) Type-8, or conductive, errors
and B) Type-10, or standing wave errors. These errors can occur
when assessing effective emissivity using return-loss measurements.

tive emissivity must include emission over all possible angles.
Nonetheless, the situation is unfavorable, as geometry is hin-
dering free emission from most elements.

Moreover, the situation is greatly accentuated if each el-
ement of the Eccosorb has a real emissivity of 0.7. In this
case, after only 4 interactions with the Eccosorb (2 changes
in direction), a photon leaving the bottom of the valley would
contribute an effective emissivity of only 0.006. As such, su-
perior absorptive characteristics of the surface absorber lead
to inferior performance on effective emission. Furthermore,
even a photon emitted near the tips of the pyramid has a
chance of doing so in the direction of the valley, not the detec-
tor. Such a photon would have almost no chance of escaping
the valley. This demonstrates the profoundness of Type-7 er-
rors and the impact of geometry on calibration targets.

It is clear that the probability of absorption or the effective
absorptivity, in this geometry, far surpasses the effective emis-
sivity and all return-loss measurements involving such con-
figurations improperly overestimate emission. In fact, rather
than building a calibration target which ensures good emis-
sion, scientists unknowingly accomplished exactly the oppo-
site. For instance, using infrared imaging, thermal variations
in the targets are revealed, wherein the pyramidal tips display
a reduced temperature (see Figure 5 in [10]). Such tempera-
ture distributions within calibration targets point to the pres-
ence of conductive and radiative imbalances which prove that
the targets are not black (see section 2.4.1). Figure 5 in [10]
constitutes a direct manifestation of Type-7 errors. Relative
to emission, it would have been better to provide a very thick
surface of Eccosorb. Unfortunately, return-loss measurement
would indicate considerable diffuse reflection from such a
surface. This had been circumvented by using valleys.

κeff κ N εeff ε N

0.865 0.2 8 0.034 0.2 8
0.672 0.2 4 0.082 0.2 4
0.488 0.2 2 0.128 0.2 2
0.2 0.2 0 0.2 0.2 0
0.99 0.4 8 0.0067 0.4 8
0.922 0.4 4 0.0518 0.4 4
0.784 0.4 2 0.144 0.4 2
0.4 0.4 0 0.4 0.4 0
0.99998 0.7 8 0.00005 0.7 8
0.9975 0.7 4 0.00567 0.7 4
0.973 0.7 2 0.063 0.7 2
0.7 0.7 0 0.7 0.7 0

Table 1: Summary of calculated effective absorptivity and emissiv-
ity. In this table, κeff represents the effective absorptivity obtained
after N interactions of an incoming photon with the absorber and
1 interaction with the element at the bottom of the valley (see Fig-
ure 2). It is assumed that Eccosorb is coating the 4×1×1 cm metal-
lic pyramids [10–12]. The process involves geometric growth as
given by κeff = 1 − (1 − κ)N+1. Similarly, εeff represents the effective
emissivity from a single element obtained after N interactions of an
emitted photon with the Eccosorb. If the emitted photon travels di-
rectly to the detector, without further interactions with the Eccosorb,
then N = 0. For effective emissivity, geometric decay is occurring
corresponding to εeff = ε − ε [1 − (1 − κ)N]. As a consequece of
thermodynamic steady state, it is assumed that the ability of an in-
dividual element to absorb or emit radiation remains equal (κ = ε).
The total effective emissivity of the target constitutes the summation
of effective emissivities over all elements, e, and angles (θ and ϕ):
εeffT = ΣΣΣ εeff.

2.4 Type-8, -9 errors

Type-8 and -9 errors can occur when heat flows out of the
target through either conductive or convective paths, respec-
tively. To ensure that radiative heat transfer dominates the
equilibrium thermodynamics of the target, it is important to
minimize all contacts.

A conductive path out of the reference target created with
metallic fixtures can set up a Type-8 error as shown in Fig-
ure 3A. In this case, it is possible to produce an imbalance
between thermal absorption and emission which immediately
renders return-loss measurements invalid.

It is evident that a target bombarded with incident mi-
crowave radiation on absorption can dissipate such energy
through conduction out of the target. It does not need to resort
to emission. In this situation, the effective absorptivity of the
target will not be equal to its effective emissivity (εeff , κeff),
even though thermodynamic steady state is being maintained.
This also explains why geometry can produce imbalances in
effective emissivity and absorptivity while still maintaining a
fixed target temperature.

In theory, a Type-9 error could also be produced, with the
same consequences, if convective paths out of the target are
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present. Such effects are unlikely to be significant in most
scenarios as convective heat transfer is usually ineffective rel-
ative to conductive mechanisms.

Consequently, the presence of conduction and convection
can introduce two new error terms, Γcond and Γconv, such that
Eq. (4) now becomes:

κteff
= (κt + Γκσ) = 1 − (σan + Γτσ) − (σad + Γsσ) −
− (Γbp + Γdh) − (Γdc + Γdσ) − Γcond − Γconv . (5)

Conductive and convective errors in target calibration are
often not properly addressed and the use of conduction to
“cool the target” unwisely advocated [7]. Such approaches
highlight elementary errors relative to the understanding of
heat transfer. For instance, it is true that conductive paths
can be used to heat a target to steady state with all heat being
dissipated through radiation. In fact, this was the approach
first used to make radiant cavities isothermal [24] in the days
which led to Planck’s formulation of the blackbody relation-
ship [2, 3]. In this case, conductive paths bring heat into the
device which is then forced to escape through radiation. It is
quite another matter to permit conductive or convective paths
to bring heat out of a target. In the former case, heat leaves the
target exclusively through radiation. In the later, it can leave
either through radiation or conduction. Accordingly, there is
no reason to expect that brightness temperatures in the second
setting will be correct.

2.4.1 Max Planck and heat radiation

Relative to this question, Max Planck insists that blackbodies
be isolated from the surrounding system. He writes: “A sys-
tem of bodies of arbitrary nature, shape, and position which
is at rest and is surrounded by a rigid cover impermeable
to heat will, no matter what its initial state may be, pass in
the course of time into a permanent state, in which the tem-
perature of all bodies of the system is the same. This is the
state of thermodynamic equilibrium, in which the entropy of
the system has the maximum value compatible with the total
energy of the system as fixed by the initial conditions. This
state being reached, no further increase in entropy is possi-
ble” [3]. In this treatment, Planck is really making a state-
ment of Prévost’s theory of exchanges [25, 26]. However, he
is moving beyond Prévost, because he is considering the en-
tropy of the radiation itself. For Planck, the normal spectrum
is obtained when the entropy of radiation is maximized [3].
In any case, he continues: “We shall begin with the simplest
case, that of a single medium extending very far in all direc-
tions of space, and like all systems we shall here consider,
being surrounded by a rigid cover impermeable to heat” [3].
Finally, Planck makes the point relative to conduction: “Now
the condition of thermodynamic equilibrium requires that the
temperature shall be everywhere the same and shall not vary
with time. Therefore in any arbitrary time just as much ra-

diant heat must be absorbed as is emitted in each volume-
element of the medium. For the heat of the body depends only
on the heat radiation, since on account of the uniformity of
temperature, no conduction of heat takes place” [3]. Remem-
ber, in this case, that Planck is dealing with a closed system.
As such, once thermal equilibrium exists in such a system,
there can be no net conduction.

Nonetheless, in open systems, an object can assume a
fixed temperature, even if net conduction takes place. Such
a situation can be devastating to the production of thermal
photons as seen in section 2.4.2.

2.4.2 An example from the remote sensing of soil mois-
ture

Soil moisture can be evaluated through emission profiles in
the microwave region [27]. It is well known that the bright-
ness temperature of soil drops dramatically with moisture
content [27]. Given the presence of water, the soil can dis-
sipate its heat through conduction, directly into the water,
or through convection, as the liquid evaporates. In response,
brightness temperatures drop [27]. When soil moisture is re-
moved, brightness temperatures recover, for the simple rea-
son that thermal emission now becomes the primary means
of dissipating heat. Placing a body in direct contact with
conductive or convective paths, allows heat to escape using
non-radiative means, resulting in the lowering of brightness
temperatures. In such a scenario, the brightness temperature
recorded will be unrelated to the actual temperature of the ob-
ject of interest. This is precisely what has been done in the
case of the LFI reference targets on the Planck satellite [7,28].

2.5 Type-10 errors

In addition to all of the issues discussed so far, a Type-10 er-
ror can exist when standing waves are able to form inside the
metal casing, enclosing the absorber (see Figure 3B). Thus,
since the casing is made of metal, often possessing a back-
ing along with small walls [7], it introduces the possibility of
forming a pseudo-cavity in front of the horn wherein stand-
ing waves can build [4]. This leads to a Type-10 error. Such
waves would trap energy into the target, making it unavail-
able to return-loss measurements. Nonetheless, absorption
has not occurred. Standing waves simply confine the mi-
crowaves [4] and the return-loss measurements suggest an
emissivity which is superior to that actually present.

As a result, a complete expression for the determination
of absorptivity is as follows:

κteff
= (κt + Γκσ) = 1 − (σan + Γτσ) − (σad + Γsσ) −
− (Γbp + Γdh) − (Γdc + Γdσ) − Γcond − Γconv − Γsw , (6)

where Γsw accounts for the presence of standing waves. Once
again, this term is important in addressing the reference tar-
gets on the Planck satellite [28].
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3 Conclusions

Much can be gained by carefully considering all thermal com-
ponents in a heat transfer problem. A complete analysis of
error leads to the realization that progress must be made in
the fabrication and testing of microwave reference loads and
targets. At the same time, these considerations also impact
the design of test facilities and anechoic chambers. Ideally,
by lining room surfaces with temperature controlled metallic
pyramids covered with Eccosorb, it should be possible to si-
multaneously create tremendous effective absorptivity by the
walls and bring their effective emissivity down to very low
levels. Such conditions would be ideal in many test scenarios
involving anechoic chambers.

At the same time, the measurement of emissivity from
microwave targets is a complex problem, wherein up to 10
or more, error types can be identified. Most of these errors
are familiar to the geosciences and astrophysics communi-
ties. Some may have escaped analysis. Often though, calibra-
tion errors have been inappropriately dismissed as insignif-
icant [7]. This is true for Type-10 errors, as the presence
of standing waves in the metal casing is almost always ig-
nored [7]. Nonetheless, a greater concern rests in the Type-7
errors which alter the effective radiative balance of the target
due to geometrical arguments. Such errors can also be present
in calibration blackbodies for use in the infrared [18,19]. Tar-
gets are not enclosures [4] and are never blackbodies. Hence,
they become subject to geometrical considerations. In addi-
tion, Type-8 errors can easily occur raising the possibility that
conduction itself, by allowing heat to flow out of the target, is
creating an imbalance between effective target emission and
absorption. If heat can be funneled out of a target through
conduction, its emissivity will fall. This can constitute an im-
portant limitation in building calibration targets.

As a result, though attempts have been made to quantify
error sources in microwave calibration targets [13–15], it ap-
pears that many of the devices used as emissivity references
on satellites and in the laboratory (e.g. [4–15] are inaccurate.
They are simply unable to provide the emissivity believed to
exist using return-loss measurements. This is a significant
scientific oversight which affects the monitoring of global cli-
mate change (e.g. [8]) and the microwave background [5, 7].
Perhaps it is for this reason that geoscientists are now turn-
ing to Earth surfaces as potential calibration sources [29].
Nonetheless, this solution is not available to satellites such as
Planck [7,28] which must rely on their internal reference tar-
gets. The proper functioning of spacecraft internal reference
targets can have the most profound consequences on scien-
tific advancement, as will be discussed in the accompanying
work [28].
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Armed with ∼4 K reference targets, the Planck satellite low frequency instrument (LFI)
is intended to map the microwave anisotropies of the sky from the second Lagrange
point, L2. Recently, the complete design and pre-flight testing of these ∼4 K targets has
been published (Valenziano L. et al., JINST 4, 2009, T12006). The receiver chain of
the LFI is based on a pseudo-correlation architecture. Consequently, the presence of
a ∼3 K microwave background signal at L2 can be established, if the ∼4 K reference
targets function as intended. Conversely, demonstration that the targets are unable to
provide the desired emission implies that the ∼3 K signal cannot exist, at this location.
Careful study reveals that only the second scenario can be valid. This analysis thereby
provides firm evidence that the monopole of the microwave background, as initially
detected by Penzias and Wilson, is being produced by the Earth itself.

1 Introduction

Over the years, I have expressed growing concern [1] about
the origin of the microwave background [2]. My evaluation
has focused on three fronts. First, I have highlighted that
errors exist in the derivation of Kirchhoff’s law of thermal
emission (e.g. [3, 4] and references therein) which renders
its use inappropriate in physics. The universality of black-
body radiation is invalid on both theoretical and experimen-
tal grounds [3, 4], making it impossible to assign an absolute
temperature to the Penzias and Wilson [2] signal. At the same
time, I have emphasized that the law of equivalence between
emission and absorption, under conditions of thermal equilib-
rium, remains valid [4]. This is properly referred to as Stew-
art’s law [5]. Second, I have questioned the assignment of the
microwave background to the cosmos [6], invoking (see [1]
and references therein), along with Borissova and Raboun-
ski [7], that the Earth’s oceans are responsible for this signal.
It is the presence of the hydrogen bond within water which
gives cause for reconsideration [8]. The emission of this bond
has not yet been assigned for the Earth’s spectrum, despite the
reality that our planet is 70% water. Finally, I have outlined
shortcomings in the measurements of the microwave back-
ground, especially relative to the COBE [9] and WMAP [10]
satellites. Concern, relative to the results of these satellites,
has also been voiced by a number of other groups [11–18].
Now, the Planck mission [19] is drawing the attention of the
scientific community. But early reports [20] and system eval-
uations [21] should provoke uneasiness. This can only be
appreciated when the function of the low frequency instru-
ment (LFI) is understood [22–26]. It is through the analysis
of the LFI’s performance that the origin of the microwave
background can be established [27].

On July 30, 2009 the ESA Planck team wrote: “In the
case of LFI, the results show even better than expected per-

formances due to benign space environment and an improved
tuning process” [20]. On first consideration, it would seem
that the monopole of the microwave background was present
at L2, as expected by the astrophysics community. Unfor-
tunately, upon careful review, this statement directly implies
that the opposite situation has taken place. There can be no
3 K signal at this location. The arguments center on the func-
tioning of the ∼4 K targets, whose full description only re-
cently became available [21]. When the performance of these
references is considered, in combination with the function
of the pseudo-correlation receivers [22–26], solid evidence
emerges that there can be no ∼3 K signal permeating space.

2 The performance of the Planck LFI

The proper characterization of the ∼4 K reference loads [21]
and LFI [22–26] on the Planck satellite is critical to under-
standing whether the monopole of the 2.7 K microwave back-
ground is present at L2 [27]. This situation occurs, since
the presence of a monopole cannot be ascertained with the
high frequency instrument, HFI [28]. Relative to the HFI,
the Planck team writes: “Plank cannot measure accurately
the monopole (uniform part of the emission) because many
sources contribute (telescope, horns, filters,. . . )” [29]. Thus,
the HFI bolometers, though operating in absolute mode, can
receive thermal photons from the spacecraft itself much of
which is in a 50 K environment. As Planck’s mirrors are ex-
posed to 300 K at L2, photons of instrumental origin can enter
the bolometers, making it difficult for the HFI to extract the
∼3 K background signal from instrumental foregrounds. It
is anticipated that such effects are less important at the fre-
quencies of the LFI. Consequently, it seems that only the LFI
[22–26] can properly address the existence of a monopole at
L2. The issue is critical since, in the absence of the monopole,
any anisotropy measurements by this satellite would have lit-
tle or no scientific value.
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Expected performance of the PLANCK LFI receivers

Sky Temperature ∼3 K Sky Temperature ∼0 K

Reference ∼4 K As expected Poor
Reference ∼0 K Poor Better than expected

Table 1: Summary of the scenarios which impact the expected performance of the pseudo-correlation receivers on the Planck satellite. Four
possibilities exist depending on the actual brightness temperatures of the sky and the reference targets. It is assumed that the sky can be
either at ∼3 K (the Penzias and Wilson temperature [2]) or at ∼0 K [1]. Similarly, the reference targets can be either operating as intended
near 4 K [21], or are unable to generate a meaningful blackbody spectrum, ∼0 K (as proposed herein).

As discussed in considerable detail [22–26], the low fre-
quency instrument (LFI) functions as a pseudo-correlation re-
ceiver, wherein the sky signal is constantly being compared
against a ∼4 K reference signal. In this configuration, the re-
ceiver displays optimal performance only when the two in-
put signals display approximately the same amplitude. Under
these conditions, the input offsets are nearly identically zero,
the knee frequency of the receiver is minimized and so is the
1/ f noise [22–27]. The LFI team states, “to minimize the 1/ f
noise of the radiometers, the reference blackbody tempera-
ture should be as close as possible to the sky temperatures
(∼3K)” [21]. This represents an ideal situation, wherein the
mechanical configurations of both receiver chains are iden-
tical. In practice, this cannot be achieved, as the reference
horns are much smaller than the sky horns. Thus, a gain
modulation factor is utilized to partially account for such ef-
fects [21–27]. In any case, the radiometric temperature dif-
ference between the signals captured by the sky and the ref-
erence horns constitutes a critical element in receiver perfor-
mance. In order for the LFI to function properly, the sky sig-
nal must balance the reference signal.

There are four scenarios which need to be considered
relative to the performance of the LFI receiver chains. These
scenarios are summarized in Table 1 and are described as
follows:

2.1 Sky at ∼3 K, reference loads at ∼4 K

The cosmology community is expecting a 2.7 K monopole
signal at L2 [2]. In addition, some thermal photons might
be expected from the galactic foreground and the spacecraft
itself. As a result, the receiver would have optimal perfor-
mance, if the sky signal was being compared with a refer-
ence signal at 2.7 K. However, the LFI group mentions that
“there is no convenient spacecraft source of 2.7 K with suf-
ficient cooling power” [21], and chose to passively cool the
reference loads to ∼4 K by mounting them on the 4 K ther-
mal shield of the HFI. At first glance, this appears to be an
elegant solution. But in actuality, as will be seen in section
3, this placement demonstrates suboptimal conditions rela-
tive to the principles of heat transfer. In any event, should the
sky be at 2.7 K and the ∼4 K load properly constructed, the
receiver performance would be as expected from pre-flight
modeling. Being approximately balanced, the sky and refer-

ence signals would generate a receiver performance matching
the pre-flight technical specifications [22–26].

2.2 Sky at ∼0 K, reference loads at ∼4 K

Alternatively, if the monopole signal does not exist at L2
and if the reference loads are truly acting as ∼4 K blackbody
sources, a tremendous input offset would be generated in the
receiver. The knee frequencies would rise, as would the 1/ f
noise. The result would be significant stripes in the maps
generated by the satellite. These concerns were previously
outlined in detail [27], on the assumption that the ∼4 K ref-
erence loads would be properly designed and able to provide
the needed emission.

2.3 Sky at ∼3 K, reference loads acting as ∼0 K sources

An interesting case can also manifest itself if the microwave
sky is indeed at 2.7 K, but the reference loads, due to im-
proper fabrication, do not produce an emission correspond-
ing to a ∼4 K blackbody source. In the extreme, the reference
loads might be considered as producing no valuable emission
signal. This would produce an emission from the loads in-
distinguishable from a ∼0 K source, despite their ∼4 K actual
temperature. Under such a scenario, a tremendous imbalance
would once again be produced in the receivers, the knee fre-
quencies would rise, and 1/ f noise would be manifested in
the resultant maps.

2.4 Sky at ∼0 K, reference loads acting as ∼0 K sources

Finally, there is the possibility that the microwave sky is at
∼0 K and that improperly manufactured reference loads pro-
duce a signal much inferior to the expected ∼4 K source.
Once again, in the extreme, the reference loads might be con-
sidered as producing no valuable emission signal, thereby be-
having as ∼0 K sources. Interestingly, in the case, the perfor-
mance of the spacecraft would be better than expected. Only
relatively small microwave emissions from the sky would be
observed, and their lack of power would be complemented by
the lack of power coming from the reference loads.

Of these four scenarios, only the first and last can be valid,
given what we now know [20] about the performance of the
LFI [22–26]. In fact, assuming that the ∼4 K references were
properly constructed, the performance of the LFI receivers,
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by themselves, would prove that there is indeed a monopole
signal at L2 [27]. Everything hinges on the quality of the
∼4 K reference blackbodies [21]. But given that “even bet-
ter than expected performances” [20] were obtained, there is
concern that the ∼4 K reference loads are not functioning as
they should and that the last scenario (Sky at ∼0 K, reference
loads ∼0 K) is the one which will prevail. Unfortunately, a
detailed description of the ∼4 K loads was not available to the
general public until December 29, 2009 [21]. The materials
contained in this work provide enough information to resolve
the question.

3 The ∼4 K Reference Loads on the PLANCK LFI

A schematic representation of a ∼4 K reference load system
for the LFI is displayed in Figure 1. Each reference load
system is comprised of a small horn, separated from a tar-
get by a 1.5 mm gap in order to preserve thermal isolation
between the 20 K shield which houses the LFI and the ∼4 K
shield housing the HFI [21]. The Planck team states: “One
of the main requirements of the 4KRL design was to minimize
the heat load on the HFI to a value lower than 1 mW. Safety
considerations (a thermal short between the two instruments
will prevent the HFI to work) lead to mechanically decou-
ple the loads, mounted on the HFI external shield, from the
LFI radiometers, at 20 K” [21]. They continue: “This solu-
tion implies the presence of a gap in the radiometer reference
arm, through which external spurious signals can leak in the
radiometers” [21]. They attempt to address this issue, by in-
troducing grooves on the edge of the horn, in order to limit
spillover. In addition, they state: “Targets also need to be
small and placed in the very near field of the reference horns
to reduce the leak from the gap” [21]. The LFI group notes
that: “the conceptual design is therefore based on small ab-
sorbing targets, mounted inside a metal enclosure (“case”)
to confine the radiation. . . ” [21].

The satellite team relays that: “Each target is basically a
rectangular EccosorbTM CR block, shaped for optimal match-
ing with the incoming field. The back part is made of highly
absorbing CR117, while the front sector, made from CR 110,
reduces the mismatch” [21]. The absorbing material for each
target is then enclosed on 5 sides, within an aluminum cas-
ing. These targets are mounted on the 4 K shield of the HFI
using “stainless steel (AISI304) thermal washers” which are
“interposed between the loads and the interface points to the
HFI” [21]. The LFI group explains that: “These are small
cylinders (typically 5 mm long, 1 mm wall thickness) whose
dimensions are optimized to dump temperature fluctuations in
order to meet requirements” [21]. Apparently, the ∼4 K refer-
ence loads are then attached directly through the washers onto
the HFI 4 K shield with “screws (mounted on the HFI)” [21].

The designers opt to conduct heat out of the ∼4 K refer-
ence loads into the 4 K shield of the HFI in order to achieve
a stable temperature. They enclose the Eccosorb material in

an aluminum casing to help ensure that conductive paths are
open which can suppress any thermal fluctuations within the
loads. In so doing, they have introduced Type-8 errors into
their system [30]. In fact, the LFI group, during the testing
stage, observes that they must work to better suppress thermal
fluctuations. Therefore, they attempt to increase thermal fluc-
tuation damping. They write: “the RF and thermal test results
were used to further refine the design (i.e. thermal dumping
was increased, mounting structure was slightly modified to
facilitate integration)” [21] and “The optimization of the ther-
mal washers allowed to increase the damping factor. . . ” [21].
Thus, they are trying to adopt a delicate balance between the
necessity to cool the references on the 4 K shield and the need
to efficiently address heat fluctuations: “Cases, supported by
an Al structure, are mounted on the HFI using Stainless Steel
thermal decouplers (washers), which allows to carefully con-
trol the thermal behavior” [21]. In reality, while the presence
of the washers and their construction primarily impacts the
time constants for damping heat fluctuations, they still pro-
vide a very efficient conductive heat path out of the targets.
After all, the references remain cooled by conductive mecha-
nisms which rely on thermal contact with the 4 K HFI shield.
Herein is found the central design flaw of the Planck LFI.

3.1 Conductive paths and Type-8 errors

The Planck reference loads are cooled by conduction, not
self-radiation. As a consequence, there is no reason to ex-
pect that the reference loads can output any photons at ∼4 K.
Being cooled by conduction, the references do not need to
invoke thermal radiation in achieving steady state. Indeed,
the Planck team writes: “Thermal interface is dominated by
conduction through thermal washers” [21]. They continue:
“Metal parts are assembled using Stainless Steel screws at
high torque, to make thermal contact as close as possible to
an ideal value” [21]. Relative to thermal modeling they write:
“the 70 GHz loads are assumed to be perfect thermal conduc-
tors, due to their small thickness and mass” [21]. Hence, the
LFI group members, by introducing conduction directly into
their loads, have rendered them ineffective as ∼4 K blackbody
sources.

Certainly, in order for an object to act as a true black-
body, it must be devoid of all outgoing conductive paths of
heat transfer. Reference targets must be spatially isolated
from their surroundings, such that only radiation can domi-
nate [30]. Yet, the ∼4 K targets on the Planck satellite are
configured such that net conduction of heat out of the tar-
get is allowed to take place. The targets are mounted onto
the 4 K shield of the HFI, and heat can flow continuously
using conduction into that heat sink. Since the targets are
continually exposed to a 20 K environment, their temperature
is being ensured by conduction, not heat radiation. In this
manner, thermodynamic steady state and a stable tempera-
ture is maintained, but through conduction, not heat radia-
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Fig. 1: Schematic representation of a Planck LFI reference load.
Each load is comprised of a horn (upper section) and a target (middle
section) separated by a 1.5 mm gap. The targets are constructed
from molded Eccosorb (CR-110 or 117) absorber surrounded by an
aluminum casing which acts to preserve thermodynamic steady state
within each unit, using conduction. Heat is allowed to flow out of
the target casing through a conductive path into the 4 K shield of
the HFI (represented by the cross hatched area in the lower section).
This path is provided by stainless steel cylindrical washers (see text
and [21] for more detail). By providing a conductive path out of the
target, the Planck LFI team has created a situation wherein a Type-8
error is introduced [30]. By itself, such a design ensures that these
targets cannot operate as ∼4 K loads as intended (see text).

tion. The Planck LFI ∼4 K targets are directly linked, which
good thermal contact, through stainless steel washers, onto a
4 K shield. Such a scenario will not only reduce the bright-
ness temperature, relative to the real temperature, it is likely
to completely inhibit the emission of photons [30]. In this
respect, the presence of conductive paths in the Planck LFI
∼4 K targets provides a much worse scenario for achieving
the expected brightness temperature, then when water perme-
ates soil [30].

Rather than using conductive washers, stainless steel
screws, and an aluminum casing, it would have been prefer-
able to encase the Eccosorb in a strong insulator suspended
in air with thin non-conducting support rods. Such a load
could then be enclosed in a perfectly reflective shield at 4 K.
It is only through this kind of geometry that a ∼4 K load can
suitably act as a reference.

By itself, the Type-8 error indicates that no 3K signal ex-
ists at L2. The loads do not need to cool by radiation. Ac-
cordingly, they do not need to emit a single photon. They are
unable to act as blackbodies in the intended capacity. Still,
beyond the Type-8 error, there are sufficient concerns with
the ∼4 K reference loads, that their lack of functionality can
be established. In order to properly follow these issues, it is
important to consider all of the potential errors related to mea-
suring emissivity using return-loss methods on microwave
targets [30].

3.2 Type-3, -4, -5, -6, and -7 errors

First, the ∼4 K reference loads are subject to a Type-3 error
[30]. Radiation from the horn during testing can be diffracted
on the edge of the target casing through the 1.5 mm ther-
mal gap into the surroundings. This is because, unlike the
horns, the casing contains no edge structure which can min-
imize diffraction. Secondly, the ∼4 K reference systems are
subject to a Type-4 error, wherein incident radiation from the
horn, experiences diffuse reflection on the surface of the Ec-
cosorb, and is lost through the gap into space [30]. Similarly,
Type-5 errors can occur. Incident radiation, in this case, en-
ters the Eccosorb, is reflected on the casing, and then, after re-
entry into the absorber, becomes scattered into space through
the gap. In the same way, a Type-6 error can occur [30].
That is, incident radiation which traverses the Eccosorb layer
can be reflected by the casing, and on re-entry into the ab-
sorber, is diffracted upon striking the edge of the casing. Once
more, such radiation could exit the system through the 1.5
mm thermal gap which separates the horn and the target (see
Figure 1). In addition, Type-7 errors exist as previously dis-
cussed in detail [30]. These are errors which depend on the
geometry of the target. They occur when a transmissive ab-
sorber is mounted on a reflective metallic casing and their
characteristics have been addressed [30].

3.2.1 Planck test data, calculations, and Type-10 errors

There is also the possibility of a Type-10 error [30]. Namely,
because the Planck team chose to use so little material in
their casings, they have enclosed only weak absorbers. In
so doing, they introduce the likelihood of generating standing
waves within the casings during testing. This would represent
a Type-10 error [30].

A careful study of Planck LFI return-loss traces provides
strong evidence that such standing waves do exist. For in-
stance, the Planck team presents Figure 26 [21], wherein the
return-loss is measured. A single such tracing, obtained from
a 30 GHz horn-target assembly, is extracted from this Fig-
ure to generate Figure 2 herein. Note that the network ana-
lyzer tracing has pronounced resonances extending as low as
−50 dB at some frequencies. These resonances should not
be present if the target is black [3]. In fact, the presence of
such resonances, by itself, provides ample evidence that the
30 GHz targets are far from being black.

As a result, it is clear that the return-loss measurements
published by the Planck team [21] far overstate the actual
performance of the reference targets, if these values are di-
rectly utilized to calculate emissivity. In fact, this is evident
by examining data provided by the Planck team. Consider, for
instance, Figure 10 in [21] which is reproduced herein as Fig-
ure 3. This represents a computational analysis of field dis-
tributions that takes place both inside and around the targets,
during testing with microwave radiation. It is evident, from
this figure, that the targets are unable to localize microwave
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Fig. 2: Schematic representation of a network analyzer tracing for a 30 GHz reference target system, as provided by the Planck LFI
team [21]. This particular tracing was extracted from Figure 26 in [21] in order to better visualize its features. Note the presence of
significant resonances on this tracing, indicating the existence of standing waves within the horn-target system. It is well known, based
on elementary considerations in electromagnetics [3], that cavities, waveguides, and enclosures, at microwave frequencies, can sustain
standing waves in a manner depending on their size and geometry (see [3] and references therein). This problem is particularly important
when the dimensions of the target approach the wavelengths of interest. In this case, 30 GHz corresponds to a wavelength of ∼1 cm in
vacuum. The target casings are 3.3 × 3.3 × (∼ 2) cm (see Table 1 and Figure 12 in [21]). The presence of such resonances in the ∼4 K
reference loads, demonstrates unambiguously that the targets are not black. In fact, the targets are still acting as resonant devices [3]. For
a blackbody to exist, all such resonances must be suppressed (i.e. as ideally seen by a constant −50 dB tracing across the spectral range).
In this case however, and when combined with the data in Figure 3, it appears that approximately −15 to −20 dB of return loss can be
accounted for by leakage from the 1.5 mm gap. Then, between −20 to −25 dB of return loss can be attributed, at certain frequencies, to
the existence of resonance features. Note that 29 GHz gives a wavelength of ∼1.03 cm in vacuum, and perhaps a little more in Eccosorb
(see [30] and references therein). As such, the resonances at 28.5–29.2 GHz correspond almost exactly to 3 wavelengths in a square 3.3 cm
enclosure. Reproduced from [21] with permission of the IOP and L.Valenziano on behalf of the authors and the Planck LFI consortium.

Fig. 3: Computational determination of the E-field distribution at 70 GHz for a horn-target assembly as reproduced from Figure 10 in
[21]. White areas represent perfect conductors, whereas regions of increased brightness depict more intense fields [21]. The left panel
corresponds to PHI = 90 while the right panel to PHI = 0. Further details are available in [21]. Note how the target is unable to localize
microwave energy. Leakage of radiation beyond the 1.5 mm gap separating the horn and the target is evident, especially in the right
panel. If leakage appears to be less intense in the left panel (examine the left edge of the casing), it is because the horn dimension in this
cut is substantially smaller than the target. Nonetheless, some restriction of radiation is visible on the left edge of the casing in the left
panel. This acts to confirm that none of the other edges are able to confine the radiation. Note also that the section of CR-117 absorber
below the pyramid is actually acting to reflect rather than absorb the radiation. This is especially evident in the left panel (note red area
beneath the central pyramid (see [21] for more detail). From these calculations, it is apparent that the Planck LFI targets at 70 GHz are not
black, enabling dissipation of energy well beyond the horn-target assembly. Unfortunately, the Planck team does not display corresponding
results at 30 and 44 GHz. Reproduced from [21] with permission of the IOP and L.Valenziano on behalf of the authors and the Planck LFI
consortium.
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energy within the casing. In fact, especially in the PHI = 0 cut
(see Figure 3, right side), microwave power is flowing freely
throughout the space in front and around the target. No local-
ization of energy is evident. This provides solid evidence that
the return-loss measurements far overstate the performance
of these devices when attempting to evaluate emissivity.

4 Discussion

Consequently, the Planck LFI group has not properly mea-
sured the emission of their reference loads. “Indeed, Valen-
ziano et al. [21] do not even provide the estimated emissivity
of their targets. By itself, this constitutes an implicit indi-
cation that these values cannot be properly determined, with
such methods, as I previously stated” [9].

Faced with Type-3, -4, -5, -6, -7 and -10 errors, the target
is unable to absorb the microwave energy from the horn and
the latter is able to leak out of the gap into the surrounding
space. This occurs even though the horn has edge structure to
prevent leakage into the gap as such a configuration neglects
the chaotic propagation of microwave energy which can oc-
cur within the target. Nonetheless, the Planck team assumes
that, in making their return-loss measurements, no leakage
into the gap takes place, even though such phenomena is ev-
ident in their own calculations (see Figure 3). They further
assume that their casing cannot support any standing waves
(see Figure 2).

As such, relative to the Planck satellite LFI, the published
return-loss values, do not properly represent the emissive
power of their reference targets. The latter is much less than
expected, both due to gap leaks, as mentioned above, and be-
cause return-loss methods overestimate the true emission in
the presence of metal casings (Type-7 errors). The presence
of the aluminum casings provides ample opportunities to set
up standing waves in front of the horn (Type-10 errors). Such
waves are present in the traces displayed by the Planck team
(see Figure 2 herein and Figure 26 in [21]). This further il-
lustrates that these reference blackbodies are not black. Ulti-
mately, the most serious concern is the presence of a Type-8
error [30]. Conduction has been allowed as the key means
of establishing thermodynamic steady state. Subsequently, it
can be said that reference blackbodies do not even exist on
the Planck satellite.

Given this information, the members of the scientific
community, independent of the Planck team, can now either
confirm or refute the existence of a monopole at L2. They
may do so by concurring with this analysis and establishing
the emissivity of the ∼4 K reference loads on the LFI. If the
loads truly act as ∼4 K references, then the monopole signal
must be present at L2. Conversely, as suggested by this work,
if the ∼4 K references are unable to emit properly as ∼4 K
blackbodies, then the excellent performance of the LFI im-
plies that there is no monopole at L2 and that this signal does
indeed arise from the Earth itself [1].

Unfortunately, it is rather difficult to establish the extent
to which a reference target is black in the microwave. How-
ever, the following approaches might be considered. At the
onset, the measurements must not occur inside an anechoic
chamber. Such chambers suppress leaked signals and thereby
overstate the emissivity of the target obtained with return-loss
measurements. Therefore, such a setting should be avoided.
Relative to a small target, like those on the Planck satel-
lite [21], it might be possible to ascertain that they are very
poor emitters in the following way. First, a duplicate horn
must be placed inside a perfectly reflecting enclosure. The
return-loss perfomance in such a case will be poor. This is
because virtually all the energy emitted by the horn becomes
trapped by the enclosure. This energy would then be able to
return to the network analyzer, provided that it is not involved
in the formation of standing waves either in the enclosure or
within the horn [3].

Once this has been accomplished, the experiment must be
repeated, but this time, the target must be placed in front of
the horn with a 1.5 mm spacing, as noted by the Planck team.
The entire assembly must be once again positioned inside a
perfectly reflecting enclosure, wherein the horn and target ge-
ometry are preserved. A single drive mechanism must enter
the enclosure. As for the target, two cases should be consid-
ered: one where a conductive path to the enclosure exists and
one where it is suppressed. Once again, the network analyzer
would be connected. But this time, any power incident on the
target which is not absorbed will be reflected by the walls.
Indeed, standing waves will be set up inside either the alu-
minum casing itself, or the enclosure [3], both of which are
acting now as microwave cavities. These standing waves will
create oscillations on the network analyzer tracing. By con-
structing a box whose dimensions can be gradually modified,
it should be possible to alter the pattern of standing waves in
the cavity. A target will be considered black only when all
modifications of the enclosure dimensions, or that of the cas-
ings, can yield no changes on the return-loss signal proving
that no standing waves exist. Ideally, in this case, the return-
loss tracing will display a constant value across the spectral
range with no trace of resonance. This can solely occur if all
radiation, incident on the target, is absorbed. In this fashion,
the blackness of a radiator can be established. Interestingly,
this test, so critical to the proper scientific evaluation of the
Planck mission, is readily accessible, and at low cost, by most
of the electromagnetic laboratories of the world.

However, given our current knowledge of the LFI refer-
ence loads [21–27], it is already evident that the Planck tar-
gets within this test setting will display strong resonances.
Indeed, from the analysis provided above, the references can-
not be operating as blackbodies relative to the frequencies of
interest. The Planck team has permitted conduction in their
system. As a result, the reference targets are envisioned to
have constant uniformity of temperature. In fact, this is as-
sured by dumping heat through conduction into the 4 K shield
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at all times during flight, in violation of Planck’s requirement
that conduction not transpire. Max Planck writes: “For the
heat of the body depends only on heat radiation, since, on ac-
count of the uniformity in temperature, no conduction of heat
takes place” [31]. To complicate matters, the Planck team
ignores the reality that good conductors make poor emitters
(see [3] and references therein). This fact has been known for
more than 100 years. Yet, the LFI consortium unknowingly
has created a situation where they believe that their reference
loads can be treated as perfect conductors. They write that:
“the 70 GHz loads are assumed to be perfect thermal con-
ductors, due to their small thickness and mass” [21]. They
have created these “perfect conductors” by enclosing a small
amount of absorber within a metallic enclosure. This issue
is discussed in greater detail in [30], but nonetheless, the de-
sign of the Planck LFI reference targets reflects a sidestep of
elementary thermodynamic principles.

In closing, for nearly 50 years, the microwave signal first
detected by Penzias and Wilson [2], has fascinated scientists.
Yet, all too quickly, its cosmological nature was embraced
[6]. In fact, the publication of the interpretation [6] preceded
the discovery itself [2]. Now, with the aid of the Planck satel-
lite, the electromagnetics laboratories of the world should be
able to confirm or refute the existence of a ∼3 K cosmic sig-
nal. The key to this puzzle rests in the understanding of the
LFI and reference targets [21–27]. Soon, scientists should
reach the definitive answer. In the end, in this age of concern
for the global climate, mankind cannot long afford to main-
tain that a signal of Earthly origin [1] is, in fact, cosmic [6].
Enough evidence is already beginning to build [1, 3, 4, 7–18]
indicating that physics, astrophysics, and geophysics stand
on the verge of a significant reformulation. In any event, the
definitive proof that the monopole of microwave background
belongs to the Earth has now been provided.
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Young’s double slit experiment performed in 1801 was a milestone in the history of
physics. The passing of light through two narrow slits creates interference patterns that
sums up the diffraction patterns from each slit when separately uncovered. The exper-
iment was later repeated by others using single photons, single electrons, atoms and
even molecules producing similar effects. The present interpretation of the results is
that photons and all other particles behave like waves and particles at the same time
(the wave-particle duality principle). Further explanations were also given, including
notions like particles can exist in more than one position at the same time and interfere
with itself, and that the classical laws of physics are not applicable in an atomic scale.
In this work we perform a numerical experiment in which a single charged particle is
fired at a wall of (fixed) charged particles containing gaps to mimic slits, and collect the
results over many events in time. Assuming only a classical inverse square relation to
hold between the particles- including those of the wall, the results show clear diffrac-
tion and interference patterns indicating that the wave behaviour of the bullet particles
arises simply from such interactions- hence providing a pure classical interpretation to
the problem. That is; particles follow classical laws and produce waves only when in-
teracting with each others. An analytical treatment of this subject is further required to
remove the effects of a finite time step inherent in a numerical solution.

1 Introduction

The double slit experiment is considered an important mile-
stone in the history of physics. It was first conducted by
Thomas Young in 1801. In Young’s experiment, light was
made to pass through two narrow slits in an opaque barrier
(wall) and collect on a photographic plate behind the bar-
rier. The picture obtained with any one slit open, was that of
diffraction in the form of one bright line in the middle of fad-
ing alternating dark and bright lines. When two slits are open,
the picture changes into an interference pattern that can be
explained by the addition of two diffraction patterns from the
two slits separately. The double slit experiment was originally
performed to settle the argument at the time of whether light-
seen to travel along straight lines and reflect like being com-
posed of particles (or corpuscles), and as suggested by New-
ton, or as waves like Huygens was advocating in his new the-
ory for waves. The interference obtained were taken to favour
the wave theory- since the effects of having particles should
be producing only positive additions and no annihilation- as
the slit experiment seemed to be suggesting [1].

As evidence from experiments in different fields and the-
oretical work started to accumulate in favour of the particle
nature of light, there was a return to the slit experiment to be
conducted this time using particles like electrons, neutrons,
atoms and molecules [2,3]. This is to establish if all particles
do exhibit a wave-like behaviour as that of the photon particle.
The results were again all positive prompting a new explana-
tion to the results, namely that: particles have a dual particle-
wave nature. Further tests were subsequently conducted us-

ing single photons, electrons and other particles fired one at a
time. The interference pattern persisted in all these cases as
well- prompting the conclusion that atomic scale particles do
not obey the laws of classical mechanics [3–5]. In all these
explanations however, the interaction between the barrier par-
ticles and those of the bullets are only taken to be of the go
no-go relation with no regard to the possibility of some in-
verse square type forces being involved. Random scatter at
the edges of the slits might have also been considered but
thought not being capable of producing such consistent wave
behaviour. The main thinking instead was concentrated on
the interference pattern as being the result of an interaction
between the bullet particles alone.

In this article we shall assume that the barrier particles
do interact with the bullet particles through a simple inverse
square relation. To do this we shoot a charged bullet parti-
cle at a wall composed of fixed and similarly or oppositely
charged particles (with gaps to mimic the presence of slits).
The path of the bullet particle is to be predicted by numeri-
cally integrating the equation of motion for a single path at a
time and collect the paths over time. An interaction between
the barrier particles and the bullet is a must of course, since
otherwise there is no meaning to the word slit at all. The type
of interaction however, is what is new in the present work.
The results seem to show that an inverse square interaction is
capable of producing the wave behaviour required to explain
the results using pure classical laws and interpretations. A
major drawback of the present numerical solution however, is
that it is discrete and hence can be affected by the size of the
time step. Further analytical treatment of the subject (in the

Riadh H. Al Rabeh. A Numerical Experiment with the Double Slit Geometry 19



Volume 3 PROGRESS IN PHYSICS July, 2010

light of the present results) will be needed before a concrete
conclusion can be made on this matter. Such work is not ex-
pected to contradict the vivid wave and interference patterns
observed in the numerical results.

To be able to cover two slits and to produce different wave
patterns, the axial velocity of the bullet was changed in a sys-
temic manner in the experiment and the vertical (transverse)
component of the bullet velocity was changed randomly by a
very small amount around zero. This allows the accumulating
beam to cover both slits over time.

2 Theory

For Coulomb forces, the expression for the acceleration is
given by;

a =
d2r
dt2 =

k
r2 , (1)

where a = a(t), r = r(t) are the acceleration and separation
distances between any isolated pair of particles as a func-
tion of time t, and k is the coupling constant (negative for
attractive, and positive for repulsive forces) and in which the
masses and charges of all particles are unity. The magnitude
of k is dependent on the type of interaction. For example, in
the case of a repulsive Coulomb forces k = 1/4πε0, where ε0
is the permittivity of empty space. In the case the number of
interacting particles is small; the Coulomb forces by far dom-
inate other forces as assumed here. As the interacting masses
are points, there is no need to consider angular velocity, spin,
angular momentum or any form of moments of forces on the
particle. For a group of interacting particles, the net accelera-
tion of particle j is given by;

a j =
dv j

dt
=

∑

i

ki jri j

r3
i j

; ri j = |ri j|, i, j = 1, 2, · · ·N , (2)

where a j is the resultant acceleration, v is velocity, ki j is the
total coupling constant between particles i and j, and ri j =

r j − ri is the vector from i to j positions and N is the total
number of particles. Equation (2) is a set of simultaneous
ode’s that must be integrated once in order to find v j(t) and
again to find the position r j(t) giving;

r j = r j0+(dt)v j0+(dt)2
∑

i

r j − ri

|r j − ri|3 ; j = 1 : N; i , j. (3)

If we know the initial position r j0, the initial velocity v j0,
and the time step dt, we can find the new position of the bul-
let r j. This is to be repeated for different initial velocities and
the resulting trajectories are collected over time and plotted.
The values chosen for the various parameters do not necessar-
ily correspond to particular physical values, but rather chosen
to accentuate the resulting picture and make it clearer. The
actual values used are given. A simple one step method is
chosen for the integration as in equation (3) to avoid any erro-
neous contributions from any extra terms contained in a more
refined integration procedure.

If we hope to produce results showing a wave behaviour
using only inverse square relations, we should be able to show
that this is possible in theory. In fact [6] states that the poten-
tial equation of motion becomes a spring like relation in the
case of small displacements together with a large number of
interacting particles. In the present case, we assume the wall
particles are fixed in space, which is equivalent to a presence
of a large number of particles in a small space making the
group massive and well connected to resist the effects of the
bullet particle approaching the barrier. We further confirm
this in Fig. 1, where a spring type relation results from fixing
two particles and allowing a third to experience a small dis-
placement in the middle under an inverse square force. The
algorithm needed to implement equation (3) is fairly straight
forward as shown below;

Algorithm to compute the trajectory of a charged

particle fired at a wall containing slits and composed

of similarly (or oppositely) charged fixed particles.

Total number of particles nb=10 at position r(x,y),

velocity (vx,vy), acc. (ax,ay)

and force (fx,fy)=acc.

For a fixed wall, x,y are calculated only

for the 1st particle.

ee=1e-100;X=[];Y=[];dt0=.01; v01=3.2; nb=12;

nbv=1:nb;x(nbv)=0;x=x’;y=x;vx=x;

vy=x;kb(1:nb)=2e-3;kb(5:9)=0;

for ii=1:250;

y(1)=0; vy(1)=0.08*(rand-0.5); x(1)=-1;

vx(1)=v01;x(2:nb)=-0.25;

y(2:end)=0.002*((2:nb)-nb/2 -1);

for kk=1:100; for jj=1:nb; xj=x(jj); yj=y(jj);

vxj=vx(jj);vyj=vy(jj); xb=xj-x;yb=yj-y;

rb2=ee+xb.̂ 2+yb.̂ 2; rb=sqrt(rb2);

fb=kb’./rb2; fxb=fb.*xb./rb; fyb=fb.*yb./rb;

fx=sum(fxb);fy=sum(fyb);

ax=fx;ay=fy; dt=dt0;

if jj > 1;dt=0;end;

vxj=vxj+dt*ax; vyj=vyj+dt*ay; xj=xj+dt*vxj;

yj=yj+dt*vyj;x(jj)=xj; y(jj)=yj;

vx(jj)=vxj; vy(jj)=vyj;

end;

if abs(x(1)) > 1.5 | abs(y(1)) > 1;break;end;

X=[ X;x’];Y=[Y;y’];end;end;

figure(1);plot(X,Y);

The inner loop j j adds the forces over all the particles,
then we advance in time in the kk loop to give one path (tra-
jectory). The ii loop repeats this many times to arrive at the
final picture. The rest of the algorithm is self explanatory.

3 Results

The values of the coupling constant k, (units m3/s2 as in (1)),
the horizontal and vertical velocity components, the distances
between slits and between the particles making the wall, the
time step and other constants are clearly referenced in the al-
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Fig. 2: Time collection of an electron fired (from left) against a fixed column barrier of loose electrons with a random small vel. component
in the vertical direction. Total of 50 events are collected. Wave–front plane in (a), (b) changing to circular after the barrier. At another
speed, the wave-front is completely reflected (b), (c) and also changed to circular.

Fig. 1: A spring like force relation capable of producing a wave
behavior can result from the interaction of particles under an inverse
square relation. F31 = F32 = k/r2; for small deflection x; L = r.
Fν = 2 k

r2
x
r = 2 k

r3 x = Kx; k, r, K are constants. Therefore, force on
m3 is a spring type force.

gorithm given above. It is again stressed that the different
constants are chosen so as to produce a clear picture rather
than correspond to certain physical values. The main goal
of this article is to show the wave phenomenon of diffraction
and interference happening in a purely inverse square envi-
ronment and with bullet particles that do not know of each
other and hence never have a chance to interact as they exist
in different times.

Fig. 2(a) shows a plot collecting 50 events and showing

that what was originally a plane wave-front (elements of the
front exist at different times) have been changed by the barrier
to a circular wave-front as one would expect of a true wave.
A magnified scale of the same is shown in the next figure. In
Figs. 2(c),(d) the wave front is reflected completely as what
could happen with real waves when the wavelength compared
to the sparseness of the particle of the wall is of the correct
order. In Fig. 3(a) few of the wall particles are assumed to be
inert to mimic the presence of a slits. The result as expected is
a superposition of two circular waves producing an interfer-
ence pattern. It is seen that a single bullet collected over time
is behaving like a true beam composed of many particles. The
presence of the one barrier in all the shooting events is what
unifies all the outputs and creates the observed effects.

4 Conclusions

The results shown indicate clearly that the passage of a bul-
let particle through a slit modifies its path and the wave-front
composed of many particles, which need not exist at the same
time, can change from plane to circular if the force between
the barrier and the bullet particles is that of an inverse square
type. In [6] and in Fig. 1 in this article, it is shown how a
change from an inverse square to a spring relation can result
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Fig. 3: Wall particles 5:9 (out of 11) are made neutral to mimic a slit. This causes two diffraction patterns interfering with each other. The
last two (c), (d), are plotted using the algorithm given in this article with bullet horizontal speed vx = 3.2.

in the case of large interacting particles as those of the barrier
(and mimicked here by having fixed particles). This picture is
equivalent to what happens in field theory in which a poten-
tial equation (resulting from inverse square relation) acquires
wave solutions due to the presence of a boundary. This ef-
fect occurs in the case of waves in fluids and solids which are
composed essentially of particles interacting under an inverse
square environment.

The present results upholds the fact that particles behave
like waves and particles, but differs in giving a more natu-
ral explanation that agrees with common logic and classical
laws. It is difficult to believe at the end that classical laws that
apply to planets composed of trillions of particles fail when
considering few of them. The particle picture is simple to
comprehend and can also afford to explain many of the rel-
ativistic and quantum findings in physics (see [7, 8] by this
author for more on this).

For deeper understanding of the present results, it is use-
ful to do a complementary theoretical analysis to overcome
the finite time step effects inherent in any numerical solution.
Further understanding of the problem may be achieved by us-
ing more elaborate particles where spin and moments are to
be taken into consideration.
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Brightsen Model is opposite to the Standard Model, and it was build on John Weeler’s
Resonating Group Structure Model and on Linus Pauling’s Close-Packed Spheron
Model. Among Brightsen Model’s predictions and applications we cite the fact that
it derives the average number of prompt neutrons per fission event, it provides a the-
oretical way for understanding the low temperature / low energy reactions and for ap-
proaching the artificially induced fission, it predicts that forces within nucleon clusters
are stronger than forces between such clusters within isotopes; it predicts the unmatter
entities inside nuclei that result from stable and neutral union of matter and antimat-
ter, and so on. But these predictions have to be tested in the future at the new CERN
laboratory.

According to the Brightsen Nucleon Cluster Model [1] all nu-
clides of beta stable isotopes can be described by three funda-
mental nucleon clusters (NPN, PNP, NP), with halo clusters
(NN, PP, NNN) now experimentally observed. The Bright-
sen model builds on the early cluster models of the Resonat-
ing Group Structure of John Wheeler [2] and the Linus Paul-
ing Close-Packed Spheron Model [3], which predict mathe-
matically that the wave function of a composite nucleus can
be viewed quantum mechanically as a combination of partial
wave functions that correspond to the multiple ways nucle-
ons (protons, neutrons) can be distributed into close-packed
clusters, thus rejecting the standard model Hartree-Fock for-
malism of average field interactions between independent nu-
cleons in nuclear shells. Presented in this section are a num-
ber of unsolved problems, questions, and future experimen-
tal pathways based on the Brightsen Nucleon Cluster Model
formalism–many additional applications can be gleamed
from careful study of the literature cited in the references pro-
vided:

1. The Brightsen Model derives the average number of
prompt neutrons per fission event for many radioactive iso-
topes of human importance (U-235, U-233, Pu-239, Pu-241)
as well as emission of light charged particles, suggesting that
all modes of fission derive from a four step process [4]. Fur-
ther study of these claims are warranted given the importance
of understanding the fission of radioactive isotopes for energy
production.

2. The Brightsen Model provides a theoretical pathway
for experimentalists to understand the numerous laboratory
results of low temperature transformation/low energy reac-
tions, such as the well studied 104Pd (p, alpha) 101Rh reaction
[5]. Application of the Brightsen Model to low energy fusion
reactions as a possible result of interactions between nucleon
clusters is of fundamental importance to human energy de-
mands.

3. The Brightsen Model predicts the existence of “un-
matter entities” inside nuclei [6], which result from stable

and neutral union of matter and antimatter nucleon clusters.
As a result, the Brightsen Model predicts that antimatter has
corresponding antigravity effects [7]. This prediction can be
tested in the future at CERN beginning 2008 using antihydro-
gen. Once accurate measurements can be made of the grav-
itational acceleration of antihydrogen, and the results com-
pared with matter hydrogen, if the two forms have opposite
acceleration, then a major prediction of the Brightsen Model
will be confirmed (e.g., that antimatter has both anti-gravity
effect and anti-mass). If experimentally confirmed, then pre-
dictive equations will need to be developed using the Bright-
sen Model formalism of union of matter and antimatter clus-
ters (e.g., the unsolved mathematical formation of unmatter
entities inside nuclei). The importance of this aspect of the
Brightsen Model links to the current problem in physics of
the missing matter of the universe and possible unification
of gravity at relativistic (macroscopic) and quantum (micro-
scopic) states.

4. The Brightsen Model offers a theoretical approach for
artificially induced fission of dangerous radioactive nuclei to
produce relatively stable elements [5]. In theory, if externally
produced electromagnetic radiation can be caused to resonate
with the exact magnetic moment of a specific sub-nuclear nu-
cleon cluster (e.g., NPN, PNP, NP nucleon clusters), than an
individual nucleon cluster can in theory be excited to a en-
ergy such that it is expelled from the nucleus, resulting in
transmutation of the parent isotope via fission and/or beta or
alpha decay to less radioactive daughter structures. The ap-
plications of this process for nuclear energy production are
clear and worthy of experimental test.

5. The Brightsen Model predicts that one sub-cluster iso-
dyne [5] of the very stable Helium-4 isotope consists of two
weakly stable deuteron [NP] clusters, each with their own dis-
tinct energy level, spin, magnetic moment, etc. Experimental
tests are needed to confirm this fundamental model predic-
tion. If confirmed, new physics mathematical description of
shell structure of isotopes would follow.
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6. The Brightsen Model predicts that forces “within” nu-
cleon clusters (NPN,PNP,NP) are stronger that forces “be-
tween” such clusters within isotopes, a result of different
combinations of the spin doublet and triplet clusters. It is
predicted that research here would result in new measurable
macroscopic properties of atomic nuclei including new fun-
damental force interactions.

7. The Brightsen Model predicts that the next “magic
number” will be found at N = 172, Z = 106, A = 278 (Sea-
borgium-278). Experimental confirmation of this prediction
would require a revised explanation of magic numbers in iso-
topes based on nucleon clusters as the fundamental building
blocks of shell structure in atomic nuclei, as opposed to inde-
pendent nucleons in an average field.

8. The Brightsen Model predicts that the large cross sec-
tion of Boron-10 (as opposed to the small cross section of
Boron-11) results from the presence of a stable and indepen-
dent nucleon cluster structure [PNP], which coexists with two
[NP] and one [NPN] clusters that maintain very small cross
sections. Thus the vast majority of the cross section dynam-
ics of Boron-10 is predicted by the Brightsen Model to derive
from a strongly interacting [PNP] cluster. This four cluster
formalism for Boron-10 (e.g., 1PNP, 2NP, 1NPN) also cor-
rectly derives the I = 3 spin experimentally observed.
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Phenomenon of the regular variability of the fine structure of the fluctuation in the am-
plitude distributions (shapes of related histograms) for the case of Brownian motion
was investigated. We took an advantage of the dynamic light scattering method (DLS)
to get a stochastically fluctuated signal determined by Brownian motion. Shape of the
histograms is most likely to vary, synchronous, in two proximally located independent
cells containing Brownian particles. The synchronism persists in the cells distant at
2 m from each other, and positioned meridionally. With a parallel-wise positioning of
the cells, high probability of the synchronous variation in the shape of the histograms
by local time has been observed. This result meets the previous conclusion about the
dependency of histogram shapes (“fluctuation amplitudes” of the spectra of stochastic
processes) upon rotation of the Earth.

1 Introduction

The works surveyed in [1–3] revealed a determinate varia-
tion in the spectra of the fluctuation amplitudes (these are
the shapes of the related histograms in the characteristics of
the various processes under measurement, ranging from the
rates of chemical and biochemical reactions to the noises in
gravity-gradient antennae and semiconductor circuits, and to
radioactive decay). This paper represents data of a similar
study of the process of Brownian motion.

2 Subject, materials, and methods

In 2006, we studied variations in the shapes of the histograms
obtained from measurements of the fluctuations of the ve-
locity of Brownian motion in an aqueous suspension of ZnO
(average particle size: 5 µm). We obtained proofs of the syn-
chronous variations in the histograms plotted according to the
measurement data in independent “generators”, placed on a
lab bench.

In 2009, the same experiments were retried using 450-
nm polystyrene microspheres (manufactured by Polysciences
Inc.) with applying an improved measurement technique.
The known method of dynamic light scattering (DLS) [4] was
applied to measure the fluctuations of the velocity of Brown-
ian motion. The method is based on the measurement of the
fluctuations in coherent light scattering across an ensemble of
the moving particles. In practice, a collimated laser beam was
passed through a glass cell containing suspension of Brown-
ian particles.

Electromagnetic waves, diffracted on the suspended par-
ticles, give a rise to a stochastically fluctuating intensity at the
detector plane and corresponding photocurrent

i (t) ∼ 〈E (t) E (t)〉.

Here, the angle parentheses denote the average of the
rapid optical oscillations. A schematic diagram of the ex-
perimental installation is shown in Fig. 1.

We took an advantage of the “backscatter” geometry and
a multiple scattering mode in our installation. Two identical
optical cells (we refer to these as Brownian signal generators)
were used. Each cell consisted of a 1-mm-spacing glass cell
filled with a suspension, and an optoelectronic unit compris-
ing a laser diode, a photodiode, and a preamplifier. Photo cur-
rents i1 (t) and i2 (t) of the detector were converted into volt-
age by trans-impedance amplifiers, whose conversion factor
is r = 10 MOhm, then were saved on a PC hard disk follow-
ing digitization in a 42 KHz 12-digit two-channel analog-to-
digital converter. The detectors were differential pin photodi-
odes by Hamamatsu Co. Ltd. The lasers were single-mode
VCSEL structures (wavelength: λ= 850 nm; emission band-
width: ∼100 MHz; radiant energy: 1 mW) manufactured by
RayCan. Special steps were taken to exclude potential syn-
chronous interference: the sensors were placed on a vibroiso-
lated table; both lasers and the power supply circuits of the
amplifiers were separated and duly filtered. A high-pass filter
with cutoff frequency below 30 Hz was used in the amplifi-
cation path to minimize vibration-related synchronous inter-
ference.

Fig. 2 shows a segment of photocurrent time series i1 (t) in
one of the Brownian generators. The signal’s shape is typical
of persistent signals.

The above autocorrelation function of the signal, for mod-
erately large numerical values of τ, is described by an ex-
ponent C (τ) = exp (−q2Dτ) with die-away time determined
by the geometry of the scattering and diffusion coefficient
D = k T/3πηd (Stokes-Einstein formula), where k is Boltz-
mann’s constant, T is temperature, η is viscosity, and d is the
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Fig. 1: A schematic diagram of the experimental installation.

Fig. 2: A segment of time series: a result of DLS signal measurements taken from 1 “generator”: 10,000 measurements of 1/8, 000 =

1.2 × 10−4 duration each.

particle’s diameter. The numerical value of q determines the
momentum transfer of a photon in scattering on the Brown-
ian particles. The power spectrum is of Lorentzian-like shape
is S ($) ∼ $0/($2

0 + $2), where $0 = 1/T0 is the relaxation
frequency. With $�$0, the spectrum is approximated by
a power-law dependence. Similarly, in the time-domain rep-
resentation, the correlation function may be approximated by
the power-law dependence in the area of τ� T0.

In our case, the DLS signal is described by a fractional
Brownian motion model [5]. The signal is self-similar at the
high-frequency range of >100 Hz, and an asymptotic behav-
ior of the correlation function under τ′ = q2 Dτ→ 0 is of the
power-law nature: C (τ) = 1− |τ′ |α. Here α is a scaling pa-
rameter related to the fractal dimension D = 2− 1

2 α. At low
frequencies we have τ→ ∞ and C (τ) = |τ′ |−β, where β is the
scaling parameter related to the Hurst coefficient: β = 2−2H.

The following characteristics of the time series were ob-
tained for the DLS signal of the Brownian generators. They
are: α≈ 0.7, D≈ 1.65, H = 0.82± 0.1.

Fig. 3a shows the autocorrelation function of a signal for
one of the channels: g11 = 〈i1(t) i1(t + τ)〉, while Fig. 3b shows
the cross-correlation function between the channels: g12 =

= 〈i1 (t) i2(t + τ)〉.
As seen in 3b, there is no significant physical link between

the channels. This might lead to a correlation moment dif-

ferent from 0. Insignificant near-zero-line fluctuations of the
cross-correlation function g12 tend to 0 under bigger statistics
figures.

3 Histogram plotting and shape examination

Amplitude distribution of the histograms were plotted using
30 or 60-measurement series segments. For better conve-
nience of visual comparing, the said histograms were made
smooth by the moving summation technique. All the pro-
cedures of histogram plotting, smoothing, and scaling were
carried out using Histogram Manager software developed by
Edwin Pozharsky (see [1] for detail).

We consider the histograms to be similar if visual simi-
larity of their shapes can be attained by applying admissible
expansion and mirror reflection operations. In other words,
the “hystogram shape” can be articulated as an invariant of a
subgroup of affine transformations in a plane involving oper-
ations of scaling, parallel translation, and X-axis reflection.

The histogram plotting and shape examination methods
are given with requisite particularization used in the studies
published in [1].

Fig. 4 shows a chunk of a computer archives: a sequence
of the histograms based on the data obtained from the mea-
surements produced in two independent Brownian genera-
tors. The histograms were plotted according to the data of
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Fig. 3: Autocorrelation (a) and cross-correlation (b) functions for the signals of two “Brownian generators” in our experiment.

Fig. 4: A chunk of a computer archives: a sequence of the his-
tograms based on the data obtained from the measurements pro-
duced in two independent Brownian generators. X-axis in each his-
togram represents values (in relative units) of the photocurrent in the
mesurement of Brownian motion. Y-axis gives the number of sim-
ilar pairs which correspond to the specific values of the photocur-
rent. The histograms are given after a 17-fold moving-summation
smoothing.

30 measurements, and given a 17-fold smoothing. The upper
and lower rows show No. 1 and No. 2 generator’s histograms,
correspondingly. Numbers of the sequential histograms are
shown. The total of the sequential histograms amounted to
several thousands.

4 Synchronous variation of the shape of the histograms
in the measurements of Brownian motion on the inde-
pendent “generators” in the same location

Fig. 5 shows a chunk of computer archives representing the
pairs of synchronous histograms plotted on the basis of the
data obtained by independent measurements in two installa-
tions found to be similar by experts. Numbers of the his-
tograms in the time series are given. As seen in Fig. 5, the
synchronous histograms turn out to be similar in shape.

In plotting a distribution of the number of similar pairs
of the histograms, according to the values of the related sep-
arating intervals, a particularly large number of the similar
pairs corresponds to some intervals. This is in exact a core
evidence of a non-random nature of the similarity of the his-

Nos. of syn-
chronous
histograms
in two arrays

N1

(array 1)
P1 =

N1

720
N2

(array 2)
P2 =

N2

720

8 6 0.008 5 0.007
59 1 0.001 3 0.004

232 4 0.006 6 0.008
294 17 0.024 7 0.010
457 2 0.003 13 0.018

3 × 10−12 4 × 10−11

Table 1: Occurrence frequency of the histograms of the shape un-
der measurements produced in two independent Brownian genera-
tors during 24.09.2009 experiment (Fig. 8).

tograms in independent processes.
Fig. 6 shows a distribution of the number of similar pairs

of the histograms plotted according to the data obtained by
the measurements of Brownian motion in two independent
generators.

As seen in Fig. 6, the number of the synchronous pairs is
definitely above the “background”. The height of the central
log is equal to 89 pairs with 720 histograms in the rows, that is
about 12% of the maximumally possible height. In the other
intervals, the height of the logs is about 2.5% of the maximu-
mally possible height. Making the use of majorizing estima-
tion by

√
N criterion is enough to evaluate the reliability of

the inference on the synchronous variation of the histogram
shape in independent Brownian generators. The figure shows
that the central crest’s height differs from the “background”
by around 6

√
N which corresponds to a 10−11 probability for

obtaining such a result at random.
It should be noted that according to Fig. 5 the histograms,

forming the central log in Fig. 6 and evidencing the syn-
chronous nature of the shape variation of the histograms in
independent processes, do not have an apparent difference
from the histograms that would correspond to other intervals.
In other words, there is no definite shape specifically corre-
sponding to the synchronous variation of the histogram shape.
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Fig. 5: A log piece: pairs of the histograms plotted on the basis of the data obtained by independent synchronous measurements in two
independent Brownian generators found to be similar by an expert evaluation. Numbers of the histograms in the time series are given.
Coordinate axes are the same as in Fig. 4.

However, a relatively small number of rare, “exotic” shapes
can be found among the histograms that correspond to the
central log. The pairs of such histograms can be used for an
additional evaluation of the reliability of the core inferences.

At this point, we assume that realization of a complex-
shaped histogram is per se an unlikely event to occur. A
simultaneous occurrence of rare events in independent mea-
surements is even a less probable event to happen. This eval-
uation has proven to be very strong. Illustration to this eval-
uation is given in Fig. 7 and Table 1. Fig. 7 shows 5 pairs
of rare-shape histograms obtained synchronously during the
24.09.2009 experiment (there was 89 similar synchronous
pairs, all-in-all). We can see, for example, that out of these
720 possible histograms, there was 6 No. 8 histograms in row
1 of the first array, and 5 ones in row 2, thus constituting 0.008
and 0.007 fractions out of the maximal values, respectively.

These fractions do come as an evaluation of the probabil-
ity of a random occurrence of the given-shape histograms at
this particular spot. The general probability of the uncertainty
of the inference on a synchronous occurence of similarly-
shaped histograms in two independent rows of measurement
is equal to the product of these special-case probabilities.
For example, given the 5 rare-shape histograms, this general
probability constitutes P1 = 3×10−12 for the first array, and
P2 = 4×10−11 for the second one, i.e., vanishing small val-
ues. It should be noted, however, that the number of the
synchronous pairs of the rare-shape histograms is consider-
ably large. Thus, the reliability of the inference on the syn-
chronous occurrence of the similarly-shaped histograms in
the independent Brownian generators is proven by these two
types of evaluation.

Fig. 6: Shapes of the histograms in the independent Brownian gen-
erators vary synchronously. Similar pairs of the histograms are dis-
tributed according to the values of the respective separating intervals
of time. Date of the experiment: 24.09.2009. Each histogram is plot-
ted according to the data of 30 measurements. X-axis shows values
of the time intervals separating similar histograms. One interval is
equal to 3.6 × 10−3 seconds.

Fig. 7: Examples of the similarity in the rare-shape synchronous
histograms according to the occurrence frequency shown in Table 1.
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Fig. 8: Interval distribution of the number of similar pairs of the
histograms plotted according to the results of 60 measurements pro-
duced in two independent Brownian generators which were distant
at 200 cm from each other. A) Meridian (from North to South) po-
sitioning of the generators; B) Parallel-wise positioning of the gen-
erators. In the meridian positioning, the similar histograms occur in
the two generators simultaneously. In the parallel-wise positioning,
similar histograms of West generator occur 4 interval (11.6 msec)
later than they do in the East one.

5 Synchronism in different locations

Similarity of the shape of the histograms obtained during in-
dependent measurements taken in different locations at the
same local time comes as an evidence of the dependency
of the histogram shape upon rotation of the Earth. Earlier
we obtained this evidence by conducting experiments mea-
suring radioactivity at an extremely near distance between
the laboratories: at Pustchino (54◦N, 37◦E) and in Antarc-
tic (Novolazarevskaya Station, 70◦S, 11.5◦E), so the distance
is about 14,000 km. In the works [6–9], when measuring the
noise in semiconductor circuits, a “local time effect” was ob-
tained at a distance of about 1 meter. We carried out similar
measurements using the “Brownian generators”.

Figs. 8 and 9 show results of the experiments conducted at
the town of Rekhovot, Israel (31.89◦N, 34.80◦E) on October
11, 2009. Two Brownian generators were distant as ∆ L = 2
meters from each other, and were first oriented by the Merid-
ian, then by the Parallel. The signals were recorded for 4
minutes. Local time delay for the said latitude with the ba-
sic East-West orientation constitutes ∆ T = ∆ L/V sec, where
V ≈ 2π6378000 cos(31.89π/180)/86400 m/sec is the speed
of the present point of the Earth’s surface bearing the above
specified coordinates. With sampling frequency of 42 KHz,
this delay value corresponds to 3.6 histograms plotted by 60
points, and to 7.1 histograms plotted by 30 points. As seen
in the drawings below, the time intervals, where the maximal

Fig. 9: Interval distribution of the number of similar pairs of the
histograms plotted according to the results of 30 measurements pro-
duced in two independent Brownian generators at a distance of 200
cm from each other. The local-time synchronism has a more distinct
manifestation under the 30-result plotting. In the meridian position-
ing of the independent generators, similar histograms occur simulta-
neously. In the parallel-wise positioning, similar histograms of West
generator occur in West generator 7–8 intervals later than they do in
the East one.

number of the similarly-shaped histograms is found, are close
to the estimated values.

6 Discussion

Our study of Brownian motion by means of the dynamic light
scattering method showed that the fine structure of the dis-
tribution of intensity fluctuations of the light, scattered by
Brownian particles (shapes of the corresponding histograms)
varies synchronously by local time. In other words, Brown-
ian motion is specific for the same regularities as those found
previously during examination of stochastic processes of a
different nature, namely — those of chemical reactions, ther-
mal fluctuation in resistors, radioactive decay etc. Thus, the
similar regularities in the processes, where the energy chang-
ing range varies by many orders, show up the same space-
time being the only thing in common. Proceeding from this
fact, a conclusion was made according to which the observed
regularities were explained by the space-time fluctuations de-
termined by the motion of the Earth in a surrounding inho-
mogeneous gravitational field [1–3].
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Whether it may be real or an equivalent, existence of strong nuclear gravitational con-
stant GS is assumed. Its value is obtained from Fermi’s weak coupling constant as
GS = 6.9427284×1031 m3/kg sec2 and thus “nuclear planck scale” is defined. For strong
interaction existence of a new integral charged “confined fermion” of mass 105.383
MeV is assumed. Strong coupling constant is the ratio of nuclear planck energy = 11.97
MeV and assumed 105.383 MeV. 1

αs
= Xs is defined as the strong interaction mass gen-

erator. With 105.383 MeV fermion various nuclear unit radii are fitted. Fermi’s weak
coupling constant, strong interaction upper limit and Bohr radius are fitted at funda-
mental level. Considering Fermi’s weak coupling constant and nuclear planck length a
new number Xe = 294.8183 is defined for fitting the electron, muon and tau rest masses.
Using Xs, Xe and α 105.32 = 0.769 MeV as the Coulombic energy constant = Ec, en-
ergy coefficients of the semi-empirical mass formula are estimated as Ev = 16.32 MeV,
Es = 19.37 MeV, Ea = 23.86 MeV and Ep = 11.97 MeV where Coulombic energy
term contains [Z]2 . Starting from Z = 2 nuclear binding energy is fitted with two terms
along with only one energy constant = 0.769 MeV. Finally nucleon mass and its excited
levels are fitted.

1 Introduction

It can be supposed that elementary particles construction is
much more fundamental than the black hole’s construction. If
one wishes to unify electroweak, strong and gravitational in-
teractions it is a must to implement the classical gravitational
constant G in the sub atomic physics. By any reason if one
implements the planck scale in elementary particle physics
and nuclear physics automatically G comes into subatomic
physics. Then a large arbitrary number has to be considered
as a proportionality constant. After that its physical signifi-
cance has to be analyzed. Alternatively its equivalent “strong
nuclear gravitational constant GS can also be assumed. Some
attempts have been done in physics history [1–5]. Whether
it may be real or an equivalent if it is existing as a “single
constant” its physical significance can be understood. “Nu-
clear size” can be fitted with “nuclear Schwarzschild radius”.
“Nucleus” can be considered as “strong nuclear black hole”.
This idea requires a basic nuclear fermion! Nuclear binding
energy constants can be generated directly. Proton-neutron
stability can be studied. Origin of “strong coupling constant”
and “Fermi’s weak coupling constant” can be understood.
Charged lepton masses can be fitted. Authors feel that these
applications can be considered favorable for the proposed as-
sumptions and further analysis can be carried out positively
for understanding and developing this proposed “nuclear
planck scale”

2 Proposed assumptions

1. Strong nuclear gravitational constant can be given as
GS = 6.94273×1031 m3/kg sec2;

2. There exists a strongly interacting “confined” Fermion-
ic mass unit MS f c2 = 105.383 MeV.With this assump-

tion in particle physics “super symmetry in strong and
weak interactions” can be understood very easily [6];

3. Strong interaction mass generator XS = 8.8034856 and
Lepton mass generator XE = 294.8183;

4. In the semi-empirical mass formula ratio of “Coulom-
bic energy coefficient” and the proposed 105.383 MeV
is equal to α. The Coulombic energy constant EC =

0.769 MeV.

2.1 Planck scale Coulombic energy and the unified force

Let

MPc2 = planck energy =

√
~c5

G
=

√
~c

c4

G
. (1)

Multiplying this energy unit with
√
α, we get

√
αMPc2 =

√
e2

4πε0

c4

G
, (2)

where
√
αMPc2 can be termed as “Coulombic energy”, c4

G
is having the dimensions of force and can be considered as
the classical limit of any force. This classical force limit c4

G

and the classical power limit c5

G plays a very vital role in black
hole formation and planck scale generation [7]. These are two
very important observations to be noted here: c5

G plays a very
crucial role in “gravitational radiation”; using c4

G minimum
distance rmin between any two charged particles is given as

e2

4πε0r2
min

6
c4

G
, (3)

rmin >

√
e2

4πε0

G
c4 , (4)
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planck mass can be generated if it is assumed that

GMPc2

r2
min

6
c4

G
, (5)

2πrmin = λP = planck wave length, (6)

where, MP= planck mass and rmin= minimum distance be-
tween two planck particles. With these two conditions,
planck mass can be obtained as

MP = planck mass =
h

cλP
=

√
~c
G
. (7)

Aim of equations (3, 4, 5, 6 and 7) is to show that there
exists a fundamental force of the form k c4

G � 1.21027×1044

Newton, where k is a proportionality ratio and is close to
unity. This can be considered as the “unified force” of “true
grand unification”. In the foregoing sections authors show
how it changes into the “strong nuclear force”.

2.2 Strong nuclear gravitational constant GS and strong
nuclear force

Let the classical gravitational constant be represented by GC

and the assumed strong nuclear gravitational constant be rep-
resented by GS . The most important definition is that

c4

GS
= 116.3463 Newton (8)

can be called as the “nuclear strong force”. This is the begin-
ning of this “nuclear planck scale”. Authors request the sci-
ence community to analyze this equation positively. Magni-
tude of force of attraction or repulsion in between two nucle-
ons when their distance of separation is close to 1.4 Fermi is

e2

4πε0R2
0

�
c4

GS
, (9)

R0 �

√
e2

4πε0

GS

c4 . (10)

If a nucleon of mass mn revolves at a radius of R0,

potential energy = EP = − e2

4πε0R0
, (11)

kinetic energy = EK =
mnv

2

2
=

e2

8πε0R0
, (12)

total energy = ET = EP + EK =
mnv

2

2
= − e2

8πε0R0
. (13)

We know that the characteristic size of nucleus is 1.3 to
1.4 Fermi. For R0 = 1.4 Fermi total energy of revolving nu-
cleon is close to the rest “energy of electron”. This is still a
mystery. Hence

e2

8πε0R0
�

1
2

√
e2

4πε0

c4

GS
� mec2. (14)

Here mec2 is the rest energy of electron. Half the classical
radius of electron can also be considered as the unit size of
nucleus. If so with the assumed strong nuclear gravitational
constant GS it is noticed that

R0 �

√
e2

4πε0

GS

c4 �
e2

8πε0mec2 �
2GS me

c2 . (15)

This equation (15) clearly suggests that nucleus that we
are observing or studying is not a simple object. It is a strange
object and can be considered as an “electronic black hole” and
works at strong nuclear gravitational constant GS . Experi-
mentally knowing the (exact) characteristic size of nucleus
one can easily estimate the value of proposed GS . Alterna-
tively its value can be estimated form the famous Fermi weak
coupling constant FW . Considering “planck mass” and “elec-
tron mass” in view in a unified manner value of GS can be
obtained from the following 3 semi-empirical relations

FW �
1
3

[
ln

(
~c

GCm2
e

)]−2 (
e2

4πε0

)2 (GS

c4

)
. (16)

This can be obtained from eq. (42, 31, 36, 43, 44 and 28)

GS � 3
[
ln

(
~c

GCm2
e

)]2 (
4πε0

e2

)2

FWc4. (17)

Its obtained value is 6.9427284×1031 m3/kg sec2. This
value is considered in this paper

FW �
16α2

27

(
e2

4πε0

)2 (GS

c4

)
. (18)

This can be obtained from eq. (42, 31, 36, 43, 44, and 10)

GS �
(

27
16α2

) (
4πε0

e2

)2

FWc4. (19)

Its obtained value is 6.9052×1031 m3/kg sec2. This method
is independent of the classical gravitational constant GC . An-
other interesting idea is

e2

4πε0GS m2
e
� 4, (20)

GS �
1
4

(
e2

4πε0m2
e

)
� 6.9506×1031 m3/kg sec2. (21)

Here me = rest mass of electron. If this is having any
physical meaning without considering the classical gravita-
tional constant GC value of GS can be calculated from elec-
tron mass directly. Not only that in quark physics in our pa-
per [6] it is assumed that

DCT geometric ratio
USB geometric ratio

� 4. (22)
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2.3 “Strong nuclear force” and “nuclear planck scale”

Similar to the planck scale in unified nuclear physics nuclear
scale planck energy can be given as

Mnc2 =

√
~c5

GS
=

√
~c

c4

GS
� 11.9705568 MeV. (23)

These 4 energy coefficients of the semi-empirical mass
formula lies in between 11.97 MeV and 2×11.97=23.94 MeV.
Not only that using this expression in particle physics [6] it
can be shown that strongly interacting particles follows en-

ergy levels as [n (n + 1)]
1
4 and

[
n(n+1)

2

] 1
4 where, n =1, 2, 3. . .

We know that

planck length =

√
~GC

c3 = 1.616244×10−35 meter. (24)

Nuclear planck length can be given as

Ln =

√
~GS

c3 = 1.664844×10−14 meter. (25)

Nuclear scale Coulombic energy can be given as

Mec2 =

√
e2

4πε0

c4

GS
� 1.02258 MeV. (26)

These energy units directly can be implemented in nuclear
physics for understanding nuclear structure. Nuclear planck
energy Mnc2 or nuclear planck length Ln plays an interest-
ing role in understanding the origin of strong coupling con-
stant [8] and energy coefficients of the semi-empirical mass
formula. Lepton masses can also be fitted. It is also noticed
that

MS f c2E2
P �

(
Mnc2

)2
EC . (27)

where Ms f c2 = proposed new strongly interacting 105.383
MeV, EP = nucleon’s potential energy close to 1.4 Fermi =

2×0.511 MeV, Mnc2 = proposed nuclear scale planck energy
= 11.97 MeV, EC = assumed Coulombic energy coefficient
of the semi-empirical mass formula αMS f c2 = α105.383 =

0.769 MeV.

3 New strongly interacting fermion ( 105.38 MeV) and
Fermi’s weak coupling constant (FW )

It is assumed that 105.383 MeV is a strongly interacting par-
ticle. Authors request that this should not be confused with
weakly interacting muon. This particle can be called as sion.
Its charge is ±e. Just like quarks it is a confined fermion. It
plays a crucial part in understanding the nuclear size, nuclear
binding energy, magnetic moments of nucleons and weak in-
teraction. Along with the strong coupling constant it plays
a heuristic role in understanding “super symmetry” in strong
and weak interactions [6]. Considering “planck mass” and

“electron mass” in a unified manner it is empirically def-
ined as

ln
(

MPc2

mec2

)2
√

e2

4πε0

c4

GS
� 105.3826 MeV. (28)

Here MPc2 = planck energy and mec2 = rest energy of
electron. Classical radius of MS f c2 can be given as

e2

4πε0MS f c2 = 1.3664×10−17 meter. (29)

Compton length of MS f c2 can be given as

~

MS f c
= 1.87245×10−15 meter. (30)

This length can be considered as the strong interaction
upper limit.

3.1 Various nuclear unit sizes and the mystery of 1.4
Fermi

Let ~

MS f c
= 1.87245×10−15 meter = a , (31)

~

2MS f c
= 0.93624×10−15 meter = b . (32)

Here a can be considered as the upper limit of strong inter-
action range and b can be considered as lower limit of strong
interaction. Considering these two lengths as the semi-major
axis and semi-minor axis of the nucleus it is noticed that

arthematic mean of (a, b) =

[
a+b

2

]
� 1.404 Fermi, (33)

geometric mean of (a, b) =
[√

ab
]
� 1.324 Fermi, (34)

harmonic mean of (a, b) =

[
2ab
a + b

]
� 1.248 Fermi. (35)

These sizes can be compared with the experimental val-
ues of various nuclear unit or characteristic sizes. From equa-
tion (33) it is noticed that arithmetic mean of semi-major and
semi-minor axis of the assumed nuclear size = 1.404 Fermi.
From this coincidence “existence of the strongly interacting
105.383 MeV” can be justified

R0 �
3
4

~

MS f c
� 1.40436 Fermi, (36)

ET =
e2

8πε0R0
�

2
3

(
αMS f c2

)
� 0.512676 MeV. (37)

This idea suggests that a nucleon revolving at 1.404 Fermi
having a total energy of 0.51267 MeV which is close to the
electron rest energy 0.511 MeV. This small energy difference
0.51267−0.511= 0.00167 MeV may be related with origin of
massive neutrino. It is assumed that

αMS f c2 = 0.769 MeV, (38)
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ET

EC
�

0.511 MeV
0.769 MeV

� 0.66445 �
2
3
. (39)

Considering ET = mec2 and rearranging this equation
we get

MS f c2

ET
�

MS f c2

mec2 �
3

2α
, (40)

and from literature [9] it is noticed that

muon mass
electron mass

�
(

3
2α

+ 2
)
. (41)

Authors here suggest that in equation (41) it is not the
muon mass but it is the strongly interacting proposed 105.383
MeV particle.

3.2 Fermi’s weak coupling constant and estimation of
105.383 MeV

Empirically Fermi’s weak coupling constant FW [10] can be
fitted as

FW �
(
α2

2

) (
e2

8πε0R0

)
a3. (42)

Authors request the science community to consider this
equation positively. It has interesting applications. Electron’s
“total energy” in hydrogen atom can be related with the strong
interaction range! From equations (31 and 36)

FW �
(
α3

3

) (
MS f c2

)
a3 �

1
3

(
MS f c2

) ( e2

4πε0MS f c2

)3

. (43)

Experimentally FW = 1.435841179×10−62 J×meter3

∴ MS f c2 �
(

e2

4πε0

) (
e2

12πε0FW

) 1
2

� 105.38 MeV. (44)

3.3 Strong interaction mass generator XS

Based on nuclear planck scale it is assumed that strong inter-
action mass generator is

XS �
MS f c2

Mnc2 � 8.803486 �
Ln

a
, (45)

XS �

√
GS M2

S f

~c
� 8.803486 , (46)

αs (MZ) �

√
~c

GS M2
S f

� 0.11359. (47)

It is noticed that XS = 8.803486 = 1
0.11359 seems to be

the “inverse” of the strong coupling constant [8] αs (MZ) =

0.1186 ± 0.0011
(
exper

) ± 0.0050 (theor) . Considering the
lower limits of this value we get 0.1186 − 0.0050 (theor) =

0.1136.We know the importance of the “strong coupling con-
stant” in particle physics. If the proposed definition is found

to be true and meaningful one has to accept the existence of
proposed “nuclear planck scale”. In the sense one must ac-
cept the existence of “strong nuclear gravitational constant
GS and existence of 105.383 MeV”. This number XS plays a
very interesting role in correlating the energy coefficients of
the semi-empirical mass formula and proton-neutron stabil-
ity. This number plays a crucial role in understanding super
symmetry in strong and weak interactions [8].

Based on XS it is noticed that, XS MS f c2 = 927.737 MeV.
This is roughly close to proton mass. XS MS f c2 + Mnc2 =

939.7 MeV. This is close to the neutron mass = 939.57 MeV.
Some how 105.383 MeV and XS plays a vital role in “weigh-
ing” of the nucleon mass. See Section 5 for “nucleon mass
fitting” and nucleon’s basic excited levels.

3.4 Fermi’s weak coupling constant and the Bohr radius

By any reason for the nucleus if

e2

8πε0R0
� mec2, (48)

e2

4πε0R0
� 2mec2. (49)

Equation(42) takes the following interesting form as

FW �
(
α2

2

) (
e2

8πε0R0

)
a3 �

(
α2

2

) (
mec2

)
a3. (50)

At a glance equation (50) suggests that
(
α2

2

) (
mec2

)
�

FW

a3 �
(
α3

3

)
MS f c2 � 13.65 eV. (51)

In this equation (51) “left hand side” is nothing but the
“total energy of electron” in hydrogen atom. This is a very
simple and strange relation! Based on the unification of
strong and weak interactions “Bohr radius” of hydrogen atom
can be given as

a0 �
(

e2

8πε0

) (
a3

FW

)
� 5.27745×10−11 meter. (52)

This is matching with a0 = 5.29177×10−11 meter. This
idea suggests that existence of the proposed nuclear strong
interaction upper limit a=1.8725 Fermi and strongly interact-
ing MS f c2 = 105.383 MeV seems to be true and can be con-
sidered for further analysis. Their direct existence strongly
supports the hidden existence of the proposed strong nuclear
gravitational constant GS .

3.5 Lepton mass generator XE and electron, muon and
tau rest mass fitting

A new number (XE) is empirically defined [1] as

XE �
[

e2

8πε0R0

L3
n

FW

] 1
3

� XS

[
e2

8πε0R0

a3

FW

] 1
3

. (53)
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n Obtained lepton mass, MeV Exp. lepton mass, MeV

0 0.5127 0.510998922
1 105.86 105.658369
2 1775.506 1776.9
3 42206.19 Not discovered

Table 1: Fitting of charged lepton rest masses.

Its obtained value is 294.8183. Here Ln = proposed nu-
clear planck length, a = strong interaction upper limit and FW

= Fermi’s weak coupling constant.
This number can be called as “lepton mass generator”. It

has wide applications in nuclear and particle physics. It is no-
ticed that (αXE) = 2.1514 plays a very interesting role in esti-
mating the quark masses [6]. The weak coupling angle can be
considered as (αXE)−1 = sin (θW ) = 0.4648. It plays a crucial
role in estimating the charged lepton rest masses. It plays a
very interesting role in fitting energy coefficients of the semi-
empirical mass formula. It can be used for fitting the nuclear
size with “Compton wavelength of nucleon”. It is noticed that
ratio of “nuclear volume” and “A nucleons Compton volume”
is XE . It can be called as the nuclear “volume ratio” factor.

Till now no mechanism is established for the generation
of the charged lepton rest masses [11]. Considering equation
(39) an interesting empirical relation is given for fitting elec-
tron, muon and tau particle rest masses as

mlc2 �
2
3

[
E3

C +
(
n2XE

)n
E3

A

] 1
3
, (54)

where EC = Coulombic energy coefficient of the semi-empir-
ical mass formula, EA = asymmetry energy coefficient of the
semi-empirical mass formula and XE = proposed lepton mass
generator = 294.8183 and n = 0, 1, 2.

If EC = 0.769 MeV and EA= 23.86 MeV obtained charged
lepton masses are shown in the following Table 1. It is known
that these two coefficients plays a vital role in nuclear stabil-
ity. It is well known that in weak decay for getting stability
neutron in an unstable nuclide emits electron. If our study is
focused on why and how a charged lepton is coming out from
the nucleus this idea can be adapted. For any model data fit-
ting is the first successful step in its implementation in the
actual field.

3.6 Role of XE in estimating the nuclear size R0

Compton wave length of nucleon is
~

mnc
= 2.1016×10−16 meter, (55)

where mn is the average mass of nucleon = 938.92 MeV. It is
noticed that

R0 � (XE)
1
3
~

mnc
= 1.399×10−15 meter. (56)

This is very close to the estimated nuclear characteris-
tic size. With reference to Rutherford’s alpha scattering ex-
periments size of a nucleus that contains A nucleons can be

given as

RA � (AXE)
1
3
~

mnc
. (57)

Hence ratio of “nuclear volume” and “A nucleons Comp-
ton volume” = XE .

4 Relations between energy coefficients of the semi-
empirical mass formula

We know that the best energy coefficients of the semi-empir-
ical mass formula [12–14] are, Coulombic energy coefficient
EC = 0.71 MeV, volume energy coefficient EV = 15.78 MeV,
surface energy coefficient ES = 18.34 MeV, asymmetry en-
ergy coefficient EA = 23.21 MeV and pairing energy coeffi-
cient EEO = 12.0 MeV. The 4 major energy coefficients of the
semi-empirical mass formula lies in between 11.97 MeV and
2×11.97 = 23.94 MeV. Really this is a very interesting case.
If one proceeds further for analyzing this strange observation
possibly role of “strong coupling constant” or “strong interac-
tion mass generator” can be understood in the “nuclear mass
generation”. Thus unification of “gravitation” with “nuclear
physics” may be possible. Authors proposal may be given a
chance. See the following Table 2. In this context it is as-
sumed that

MS f c2

EC
�

1
α

and EC � αMS f c2 = 0.769 MeV. (58)

From equations (23, 46, 53 and 58) empirically it is no-
ticed that

EV � Mnc2 +

(
X

1
3
E − 1

)
EC � 16.32 MeV, (59)

ES � Mnc2 +

(
X

1
3
E +
√

XS

)
EC � 19.37 MeV, (60)

EA � Mnc2 +

(
X

1
3
E + XS

)
EC � 23.86 MeV � 2Mnc2, (61)

EA − ES �
(
XS −

√
XS

)
EC , (62)

EEO � Mnc2 � 11.97 MeV. (63)

It is also noticed that

XE �
ES

EC

√
MS f c2

EC
�

ES

EC

√
1
α
. (64)

This is another interesting guess. This successfully imple-
ments the new number XE . It is observed that proposed EV -
existing EV = 16.32−15.78 = 0.54 MeV ≈ ET = 0.511 MeV.
Proposed ES — existing ES = 19.37 − 18.34 = 1.03 MeV
≈ 2ET = 2×0.511 MeV. Proposed EA-existing EA = 23.86 −
23.21 = 0.65 MeV ≈ ET = 0.511 MeV.

Please note that asymmetry energy coefficient is matching
with twice of Mnc2 = 23.94 MeV. This is very interesting.
If proposed ideas has no significance here why and how it
is happening like this? This data coincidence indicates that
proposed scheme of energy coefficients can be applied in the
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Z A Obtained Be, MeV Be, MeV [13, 14]

8 16 121.6 118.13, 128.57
20 44 382.7 377.66, 382.78
28 62 543.7 538.85, 544.41
50 118 1003.4 1000.22, 1004.74
82 208 1620.6 1618.41, 1635.36

108 292 2089.6 2082.53, 2089.48

Table 2: Fitting of nuclear binding energy with proposed coeffi-
cients.

semi-empirical formula for understanding the significance of
proposed 105.383 MeV and XS = 8.803486 in the context of
strong interaction. The semi-empirical mass formula is

Be = AEV−A
2
3 ES − Z2

A
1
3

EC− (A − 2Z)2

A
EA±

√
1
A

EEO. (65)

Here EV = 16.32 MeV, ES = 19.37 MeV, EC = 0.769
MeV, EA = 23.86 MeV and EEO = 11.97 MeV can be consid-
ered as the unified energy coefficients of the semi-empirical
formula [13,14] where Coulombic energy term contains [Z]2.

If one wants to retain [Z (Z − 1)] energy coefficients can
be fine tuned in the following way

EEO � Mnc2 � 11.97 MeV, (66)

EA � 2Mnc2 � 23.94 MeV, (67)
EA

EV
�

√
αXE and EV � 16.322 MeV, (68)

EV + ES � EA + EEO � 3EEO, (69)

ES � 3EEO − EV � 35.91 − 16.322 � 19.59 MeV. (70)

Alternatively

EV �
(

3EEO

2

)
− (αXE) EC � 16.30 MeV, (71)

ES �
(

3EEO

2

)
+ (αXE) EC � 19.61 MeV, (72)

with EV = 16.30 MeV, ES = 19.61 MeV and with EV =

16.32 MeV, ES = 19.59 MeV,

• for Z = 26 and A = 56, Be = 489.87 MeV and
491.40 MeV,

• for Z = 50 and A = 118, Be = 1002.88 MeV and
1005.96 MeV,

• for Z = 79 and A = 197, Be = 1547.96 MeV and
1552.97 MeV,

• for Z = 92 and A = 238, Be = 1794.87 MeV and
1800.87 MeV.

Taking mean values of EV and ES , energy coefficients can
be given as EV = 16.31 MeV, ES = 19.60 MeV, EC = 0.769
MeV, EA = 23.94 MeV and EEO = 11.97 MeV.

4.1 Nuclear binding energy with two terms and one en-
ergy constant 0.769 MeV

An empirical method is proposed here for fitting the nuclear
binding energy. This method contains two terms. For these
two terms, Coulombic energy constant EC = 0.769 MeV is
applied. In this method the important point is at first for any
Z its stable mass number AS has to be estimated. Strong inter-
action mass generator XS plays a crucial role in this method.
For any Z error in binding energy is very small near the stable
isotope AS and increasing above and below AS . Unifying 5
terms having 5 energy constants into two terms with one en-
ergy constant which are related with strong interaction mass
generator is not a simple task. Authors proposal can be given
a chance.

This method is applicable for light atoms also. For light
atoms, when A = 2Z, obtained binding energy is very close
to the actual value. For Z = 2 and A = 4 is 28.86 MeV, Z = 4,
A = 8 is 59.57 MeV, Z = 6, A = 12 is 92.63 MeV Z = 7,
A = 14 is 114.0 MeV, Z = 8 A = 16 is 127.14 MeV, Z = 9,
A = 19 is 149.72 MeV and Z = 10, A = 20 is 155.06 MeV.
For very light odd elements error is due to estimation of their
stable mass numbers

T1 =

[
(A + 1)

(
1 +

2Z
AS

)]
ln [(A + 1) XS ] EC . (73)

Stable isotope of any Z can be estimated as

AS � 2Z +
Z2

S f
� 2Z +

Z2

155.72
. (74)

Here S f can be called as the nuclear stability factor. It can
be given as

S f �
EA

EC

√
ES

EC
� 155.72 � 2X2

S � 155.00. (75)

After rounding off for even Z values, if obtained AS is
odd consider AS + 1, for odd Z values if obtained AS is even,
consider AS − 1. For very light odd elements this seems to be
not fitting.

Term T1 indicates the factors for increase in binding en-
ergy. Another observation is [(A + 1) XS ] . This factor plays a
key role in the saturation of the binding energy. It is observed
that for any Z at its stable isotope AS

T1 � [AS + 2Z + (1 or 2)] ln [(AS + 1) XS ] EC . (76)

The basic question is that how to extrapolate from the sta-
ble isotope AS of any Z to above and below its stable and
unstable isotopes? Authors are working in this direction also

T2 �


A2 +

(
f Z2

)

X2
S

 EC , (77)

where
f � 1 +

2Z
AS

� a factor 6 2. (78)
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Z AS Obtained Be, MeV

2 4 28.9
8 16 127.1
20 44 368.4
26 56 481.6
44 100 856.2
68 166 1347.1
83 209 1623.5
92 238 1775.5

Table 3: Fitting of nuclear binding energy with two terms and one
energy constant.

Term T2 indicates the factors for decrease in binding en-
ergy. Both of these terms has to be analyzed at fundamen-
tal level. T1 and T2 indicates the importance of the number
XS = 8.8034856 in strong interaction mass generation

Be = T1 − T2. (79)

Whether this is the total binding energy that includes shell
effects or liquid drop energy has to be decided with observa-
tions and analysis. This method has to be analyzed and ex-
tended for isotopes above and below the stable mass number
AS of any Z value. With reference to AS and by considering
shell effects error in finding the first term can be eliminated.
In the second term by selecting a suitable expression for f
error can be minimized. The advantage of this method is that
number of energy constants can be minimized. See the fol-
lowing Table 3.

5 Rest mass of nucleon

Let mnc2 = rest mass of nucleon. Semi-empirically it is ob-
served that

mnc2 � ln
(
Mnc2 8πε0R0

e2

)2 √
RS

a
Mnc2. (80)

Here a is the Compton length of MS f and RS is the black
hole radius of MS f and is given by

RS =
2GS MS f

c2 = 2.9023×10−13 meter, (81)

mnc2 � ln
(

8πε0R0Mnc2

e2

)2
√

2GS M2
S f

~c
Mnc2. (82)

From equation (48)

mnc2 � ln
(

Mnc2

mec2

)2
√

2GS M2
S f

~c
Mnc2. (83)

5.1 Nucleon stability relation

If it is assumed that

AS � 2Z +
Z2

155.00
� 2Z +

Z2

2X2
S

, (84)

significance of 2X2
S can be given as

2X2
S �

2GS M2
S f

~c
�

RS

a
� 155.00 (85)

Hence

AS � 2Z +
Z2

S f
� 2Z +

(
a

RS

)
Z2 . (86)

For example, if Z = 47, AS = 108.25, Z = 82, AS =

207.38 and Z = 92, AS = 238.6. This clearly indicates the
beautiful role of 2X2

S in nuclear stability.

5.2 Excited levels of nucleon

From quantum mechanics quantized angular momentum is
given by

√
n (n + 1).~ where n = 0, 1, 2. . . Some how if ~

goes under a “square root” like the planck energy, MPc2 =√
~c5

GC
as a ground state energy level in a heuristic way its mas-

sive excited levels are given by [6]

(
MPc2

)
I

= [n (n + 1)]
1
4

√
~c5

GC
. (87)

Here n = 0, 1, 2, 3. . . and I = n (n + 1). Keeping this
idea in view it is assumed that “if m0c2 is the rest energy of a
particle then its massive excited levels are given by

mc2 = [n (n + 1)]
1
4 m0c2 (88)

and each excited state can be seen as a new massive parti-
cle”. The surprising observation is that in particle physics ex-
cited massive states are following two types of discrete levels.
They are

[n (n + 1)]
1
4 m0c2 and

[
n (n + 1)

2

] 1
4

m0c2. (89)

Presently understood “Regge trajectory” of some of the
baryons and mesons are fitted in this way. These levels can
be called as Fine rotational levels. If the proposed idea is
correct nucleon must show excited levels as

(
mnc2

)
I

= [I]
1
4 939 and

(
mnc2

)
I
2

=

[ I
2

] 1
4

939, (90)

where I = n (n + 1) and n =1, 2, 3, . . .
At I = 2, 1117 MeV, I

2 = 3, 1236 MeV, at I = I
2 = 6, 1470

MeV, at I
2 = 10, 1670 MeV, I = 12, 1748 MeV levels are

obtained. This is a great coincidence and is a true reflection
of the correctness of the proposed assumptions. Hence the
proposed ideas can be given a chance in “final grand unified
physics”.

Conclusions

Nucleus has strong nuclear gravitational mechanism. Some
how electron plays a crucial role in its structural formation.
Just like quark masses MS f c2 can be considered as a strongly
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interacting “confined” fermion. Whether GS is really exist-
ing or an equivalent value it plays a heuristic role in under-
standing the experimental things and can be considered for
further analysis. Based on the proposed data fitting results
existence of the proposed strong interaction fermion MS f c2

and the strong interaction mass generator XS = 8.8034856
can be confirmed. 0.769 MeV can be considered as the uni-
fied Coulombic energy coefficient.

Two most important and interesting observations are as
follows

αXE �

√√√
ln

√
4πε0GS M2

S f

e2 � 2.153. (91)

This expression clearly demonstrates the hidden existence
of MS f c2 and GS in nuclear and particle physics. In our pa-
per [6] it is assumed that there exists a strongly interacting
fermion 11450 MeV which plays a crucial role in estimating
quark-gluon masses. Empirically it is noticed that

(11450)
14
30 (105.38)

16
30 � 939.54 MeV. (92)

This is very close to the neutron mass. Since both are in-
tegral charged particles and giving importance to the charged
proton mass it can be written as

(
11450
105.38

) 14
30

(105.38) � 939.54 MeV, (93)

where (
11450
105.38

) 14
30

� 8.9157 � XS . (94)

This number is very close to the proposed strong interac-
tion mass generator XS . It is noticed that 14

30 � 0.4666 and
16
30 � 0.5333. Comparing

(
14
30

)
with

(
1

αXE

)
one can see the sig-

nificance of (αXE) in deciding the mass of proton.
Even though this is an unconventional paper number of

inputs are only two and they are assumed MS f c2 and strong
nuclear gravitational constant GS . The main advantage of this
paper is that there is no need to go beyond 4 dimensions. Au-
thors humbly request the world science community to kindly
look into these new and heuristic ideas for further analysis
and development.
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A combinatorial spacetime (CG | t) is a smoothly combinatorial manifold C underlying a
graph G evolving on a time vector t. As we known, Einstein’s general relativity is suit-
able for use only in one spacetime. What is its disguise in a combinatorial spacetime?
Applying combinatorial Riemannian geometry enables us to present a combinatorial
spacetime model for the Universe and suggest a generalized Einstein gravitational equa-
tion in such model. For finding its solutions, a generalized relativity principle, called
projective principle is proposed, i.e., a physics law in a combinatorial spacetime is
invariant under a projection on its a subspace and then a spherically symmetric multi-
solutions of generalized Einstein gravitational equations in vacuum or charged body are
found. We also consider the geometrical structure in such solutions with physical for-
mations, and conclude that an ultimate theory for the Universe maybe established if all
such spacetimes in R3. Otherwise, our theory is only an approximate theory and endless
forever.

1 Combinatorial spacetimes

The multi-laterality of our Universe implies the best space-
time model should be a combinatorial one. However, classi-
cal spacetimes are all in solitude. For example, the Newton
spacetime (R3|t) is a geometrical space (x1, x2, x3) ∈ R3 with
an absolute time t ∈ R+. With his deep insight in physical
laws, Einstein was aware of that all reference frames were es-
tablished by human beings, which made him realized that a
physics law is invariant in any reference frame. Whence, the
Einstein spacetime is (R3|t) � R4 with t ∈ R+, i.e., a warped
spacetime generating gravitation. In this kind of spacetime,
its line element is

ds2 =
∑

06µ,ν63

gµν(x)dxµdxν ,

where gµν, 0 6 µ, ν 6 3 are Riemannian metrics with local
flat, i.e., the Minkowskian spacetime

ds2 = −c2dt2 + dx2
1 + dx2

2 + dx2
3 ,

where c is the light speed. Wether the spacetime of Universe
is isolated? In fact, there are no justifications for Newton’s or
Einstein’s choice but only dependent on mankind’s percep-
tion with the geometry of visible, i.e., the spherical geome-
try(see [1–4] for details).

Certainly, different standpoints had unilaterally brought
about particular behaviors of the Universe such as those of
electricity, magnetism, thermal, optics. . . in physics and their
combinations, for example, the thermodynamics, electromag-
netism, . . . , etc. But the true colours of the Universe should
be hybrid, not homogeneous or unilateral. They should be
a union or a combination of all these features underlying a
combinatorial structure. That is the origin of combinatorial

spacetime established on smoothly combinatorial manifolds
following ([5–9]), a particular case of Smarandache multi-
space ([10–11]) underlying a connected graph.

Definition 1.1 Let ni, 1 6 i 6 m be positive integers. A com-
binatorial Euclidean space is a combinatorial system CG of
Euclidean spaces Rn1 , Rn2 , · · · , Rnm underlying a connected
graph G defined by

V(G) = {Rn1 ,Rn2 , · · · ,Rnm } ,
E(G) = { (Rni ,Rn j ) | Rni

⋂
Rn j , ∅, 1 6 i, j 6 m} ,

denoted by EG(n1, · · · , nm) and abbreviated to EG(r) if n1 =

· · · = nm = r.

A combinatorial fan-space R̃(n1, · · · , nm) is a combina-
torial Euclidean space EKm (n1, · · · , nm) of Rn1 , Rn2 , · · · , Rnm

such that for any integers i, j, 1 6 i , j 6 m, Rni
⋂

Rn j =
m⋂

k=1
Rnk , which is in fact a p-brane with p = dim

m⋂
k=1

Rnk in

string theory ([12]), seeing Fig. 1.1 for details.

-¾

?

6

µ

ª

p-brane

Fig. 1.1
For ∀p ∈ R̃(n1, · · · , nm) we can present it by an m × nm
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coordinate matrix [x] following with xil =
xl

m
for 1 6 i 6

m, 1 6 l 6 m̂,

[x] =



x11 · · · x1m̂ · · · x1n1 · · · 0
x21 · · · x2m̂ · · · x2n2 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
xm1 · · · xmm̂ · · · · · · · · · xmnm


.

A topological combinatorial manifold M̃ is defined in the
next.

Definition 1.2 For a given integer sequence 0 < n1 < n2 <
· · · < nm, m > 1, a topological combinatorial manifold M̃ is a
Hausdorff space such that for any point p ∈ M̃, there is a lo-
cal chart (Up, ϕp) of p, i.e., an open neighborhood Up of p in
M̃ and a homeomorphism ϕp : Up → R̃(n1(p), · · · , ns(p)(p))
with

{n1(p), · · · , ns(p)(p)} ⊆ {n1, · · · , nm} ,⋃

p∈M̃

{n1(p), · · · , ns(p)(p)} = {n1, · · · , nm} ,

denoted by M̃(n1, n2, · · · , nm) or M̃ on the context and

Ã = {(Up, ϕp)|p ∈ M̃(n1, n2, · · · , nm))}

an atlas on M̃(n1, n2, · · · , nm).
A topological combinatorial manifold M̃ is finite if it is

just combined by finite manifolds without one manifold con-
tained in the union of others.

For a finite combinatorial manifold M̃ consisting of man-
ifolds Mi, 1 6 i 6 m, we can construct a vertex-edge labeled
graph GL[M̃] defined by

V(GL[M̃]) = {M1, M2, · · · , Mm} ,
E(GL[M̃) = { (Mi, M j) | Mi

⋂
M j , ∅, 1 6 i, j 6 n}

with a labeling mapping

Θ : V(GL[M̃])
⋃

E(GL[M̃])→ Z+

determined by

Θ(Mi) = dim Mi, Θ(Mi, M j) = dim Mi

⋂
M j

for integers 1 6 i, j 6 m, which is inherent structure of com-
binatorial manifolds. A differentiable combinatorial manifold
is defined by endowing differential structure on a topological
combinatorial manifold following.

Definition 1.3 For a given integer sequence 1 6 n1 <
n2 < · · · < nm, a combinatorial Ch-differential mani-
fold (M̃(n1, n2 · · · , nm); Ã) is a finite combinatorial manifold

M̃(n1, · · · , nm), M̃(n1, · · · , nm) =
⋃
i∈I

Ui, endowed with an at-

las Ã = {(Uα;ϕα)| α ∈ I} on M̃(n1, · · · , nm) for an integer
h, h > 1 with conditions following hold.

(1) {Uα;α ∈ I} is an open covering of M̃(n1, n2, · · · , nm).

(2) For ∀α, β ∈ I, local charts (Uα;ϕα) and (Uβ;ϕβ) are
equivalent, i.e., Uα

⋂
Uβ = ∅ or Uα

⋂
Uβ , ∅ but the overlap

maps

ϕαϕ
−1
β : ϕβ(Uα

⋂
Uβ)→ ϕβ(Uβ) ,

ϕβϕ
−1
α : ϕα(Uα

⋂
Uβ)→ ϕα(Uα)

both are Ch-mappings, such as those shown in Fig. 1.2 fol-
lowing.

-

-

?

Uα

Uβ

Uα ∩ Uβ

ϕα

ϕβ

ϕβ(Uα
⋂

Uβ)
ϕβ(Uα

⋂
Uβ)

ϕβϕ
−1
α

Fig. 1.2

(3) Ã is maximal, i.e., if (U;ϕ) is a local chart of M̃(n1,
· · · , nm) equivalent with one of local charts in Ã, then (U;ϕ)
∈ Ã.

A finite combinatorial manifold M̃(n1, · · · , nm) is smooth
if it is endowed with a C∞-differential structure. Now we are
in the place introducing combinatorial spacetime.

Definition 1.4 A combinatorial spacetime (CG | t) is a smooth
combinatorial manifold C underlying a graph G evolving on
a time vector t, i.e., a geometrical space C with a time system
t such that (x| t) is a particle’s position at a time t for x ∈ C .

The existence of combinatorial spacetime in the Universe
is a wide-ranging, even if in the society science. By the ex-
plaining in the reference [13], there are four-level hierarchy
of parallel universes analyzed by knowledge of mankind al-
ready known, such as those of Hubble volumes, chaotic in-
flation, wavefunction and mathematical equations, etc. Each
level is allowed progressively greater diversity.

Question 1.5 How to deal behaviors of these different com-
binatorial spacetimes definitely with mathematics, not only
qualitatively?

Recently, many researchers work for brane-world cos-
mology, particular for the case of dimensional 6 6, such
as those researches in references [14–18] and [3] etc. This
brane-world model was also applied in [19] for explaining a
black hole model for the Universe by combination. Notice
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that the underlying combinatorial structure of brane-world
cosmological model is essentially a tree for simplicity.

Now we have established a differential geometry on com-
binatorial manifolds in references [5–9], which provides us
with a mathematical tool for determining the behavior of
combinatorial spacetimes. The main purpose of this paper
is to apply it to combinatorial gravitational fields combining
with spacetime’s characters, present a generalized relativity in
combinatorial fields and use this principle to solve the grav-
itational field equations. We also discuss the consistency of
this combinatorial model for the Universe with some observ-
ing data such as the cosmic microwave background (CMB)
radiation by WMAP in 2003.

2 Curvature tensor on combinatorial manifolds

Applying combinatorial spacetimes to that of gravitational
field needs us to introduce curvature tensor for measuring the
warping of combinatorial manifolds. In this section, we ex-
plain conceptions with results appeared in references [5–8],
which are applied in this paper.

First, the structure of tangent and cotangent spaces TpM̃,
T ∗pM̃ at any point p ∈ M̃ in a smoothly combinatorial mani-
fold M̃ is similar to that of differentiable manifold. It has been

shown in [5] that dim TpM̃(n1, · · · , nm) = ŝ (p)+
s(p)∑
i=1

(ni− ŝ (p))

and dim T ∗pM̃(n1, n2, · · · , nm) = ŝ (p) +
s(p)∑
i=1

(ni − ŝ (p)) with a

basis

{
∂

∂xi0 j |p|16 j6 ŝ (p)
}⋃

s(p)⋃

i=1

{
∂

∂xi j |p | ŝ (p) + 16 j6 ni

} ,

{
dxi0 j|p|1 6 j 6 ŝ (p)

}⋃(s(p)⋃

i=1

{
dxi j|p | ŝ (p) + 1 6 j 6 ni

})

for any integer i0, 1 6 i0 6 s(p), respectively. These mathe-
matical structures enable us to construct tensors, connections
on tensors and curvature tensors on smoothly combinatorial
manifolds.

Definition 2.1 Let M̃ be a smoothly combinatorial manifold,
p ∈ M̃. A tensor of type (r, s) at the point p on M̃ is an
(r + s)-multilinear function τ,

τ : T ∗pM̃ × · · · × T ∗pM̃︸                 ︷︷                 ︸
r

× TpM̃ × · · · × TpM̃︸                 ︷︷                 ︸
s

→ R .

Let M̃(n1, · · · , nm) be a smoothly combinatorial manifold.
Denoted by T r

s (p, M̃) all tensors of type (r, s) at a point p
of M̃(n1, · · · , nm). Then for ∀p ∈ M̃(n1, · · · , nm), we have
known that

T r
s (p, M̃) = TpM̃ ⊗ · · · ⊗ TpM̃︸                 ︷︷                 ︸

r

⊗T ∗pM̃ ⊗ · · · ⊗ T ∗pM̃︸                 ︷︷                 ︸
s

,

where
TpM̃ = TpM̃(n1, · · · , nm) ,

T ∗pM̃ = T ∗pM̃(n1, · · · , nm) ,

particularly,

dim T r
s (p, M̃) =

̂s (p) +

s(p)∑

i=1

(
ni − ŝ (p)

)


r+s

by argumentation in [5–7].
A connection on tensors of a smooth combinatorial man-

ifold is defined by

Definition 2.2 Let M̃ be a smooth combinatorial manifold. A
connection on tensors of M̃ is a mapping D̃ : X (M̃)×T r

s M̃ →
T r

s M̃ with D̃Xτ = D̃(X, τ) such that for ∀X,Y ∈ X M̃, τ, π ∈
T r

s (M̃),λ ∈ R and f ∈ C∞(M̃),

(1) D̃X+ f Yτ = D̃Xτ+ f D̃Yτ and D̃X(τ+λπ) = D̃Xτ+λD̃Xπ;

(2) D̃X(τ ⊗ π) = D̃Xτ ⊗ π + σ ⊗ D̃Xπ;
(3) for any contraction C on T r

s (M̃),

D̃X(C(τ)) = C(D̃Xτ) .

For a smooth combinatorial manifold M̃, we have shown
in [5] that there always exists a connection D̃ on M̃ with co-
efficients Γκλ(σς)(µν) determined by

D̃ ∂
∂xµν

∂

∂xσς
= Γκλ(σς)(µν)

∂

∂xσς
.

A combinatorially connection space (M̃, D̃) is a smooth
combinatorial manifold M̃ with a connection D̃.

Definition 2.3 Let M̃ be a smoothly combinatorial manifold
and g ∈ A2(M̃) =

⋃
p∈M̃

T 0
2 (p, M̃). If g is symmetrical and pos-

itive, then M̃ is called a combinatorially Riemannian mani-
fold, denoted by (M̃, g). In this case, if there is also a connec-
tion D̃ on (M̃, g) with equality following hold

Z(g(X,Y)) = g(D̃Z ,Y) + g(X, D̃ZY) ,

then M̃ is called a combinatorially Riemannian geometry, de-
noted by (M̃, g, D̃).

It has been proved in [5] and [7] that there exists a unique
connection D̃ on (M̃, g) such that (M̃, g, D̃) is a combinatori-
ally Riemannian geometry.

Definition 2.4 Let (M̃, D̃) be a combinatorially connection
space. For ∀X,Y ∈ X (M̃), a combinatorially curvature op-
erator R̃(X,Y) : X (M̃)→X (M̃) is defined by

R̃(X,Y)Z = D̃X D̃YZ − D̃Y D̃XZ − D̃[X,Y]Z

for ∀Z ∈X (M̃).
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Definition 2.5 Let (M̃, D̃) be a combinatorially connection
space. For ∀X,Y,Z ∈ X (M̃), a linear multi-mapping R̃ :
X (M̃) ×X (M̃) ×X (M̃)→X (M̃) determined by

R̃(Z, X,Y) = R̃(X,Y)Z

is said a curvature tensor of type (1, 3) on (M̃, D̃).

Calculation in [7] shows that for ∀p ∈ M̃ with a local
chart (Up; [ϕp]),

R̃ = R̃ηθ(σς)(µν)(κλ)dxσς ⊗ ∂

∂xηθ
⊗ dxµν ⊗ dxκλ

with

R̃ηθ(σς)(µν)(κλ) =

(∂Γ
ηθ
(σς)(κλ)

∂xµν
−
∂Γ

ηθ
(σς)(µν)

∂xκλ
+

+ Γϑι(σς)(κλ)Γ
ηθ
(ϑι)(µν) − Γϑι(σς)(µν)Γ

ηθ
(ϑι)(κλ)

)
∂

∂xϑι
,

where Γ
σς
(µν)(κλ) ∈ C∞(Up) is determined by

D̃ ∂
∂xµν

∂

∂xκλ
= Γ

σς
(κλ)(µν)

∂

∂xσς
.

Particularly, if (M̃, g, D̃) is a combinatorially Riemannian
geometry, we know the combinatorially Riemannian curva-
ture tensor in the following.

Definition 2.6 Let (M̃, g, D̃) be a combinatorially Rieman-
nian manifold. A combinatorially Riemannian curvature ten-
sor R̃ : X (M̃)×X (M̃)×X (M̃)×X (M̃)→ C∞(M̃) of type
(0, 4) is defined by

R̃(X,Y,Z,W) = g(R̃(Z,W)X,Y)

for ∀X,Y,Z,W ∈X (M̃).

Now let (M̃, g, D̃) be a combinatorially Riemannian man-
ifold. For ∀p ∈ M̃ with a local chart (Up; [ϕp]), we have
known that ([8])

R̃ = R̃(σς)(ηθ)(µν)(κλ)dxσς ⊗ dxηθ ⊗ dxµν ⊗ dxκλ

with

R̃(σς)(ηθ)(µν)(κλ) =
1
2

(∂2g(µν)(σς)

∂xκλ∂xηθ
+
∂2g(κλ)(ηθ)

∂xµνν∂xσς
−

− ∂2g(µν)(ηθ)

∂xκλ∂xσς
− ∂

2g(κλ)(σς)

∂xµν∂xηθ

)
+ Γϑι(µν)(σς)Γ

ξo
(κλ)(ηθ) g(ξo)(ϑι) −

− Γ
ξo
(µν)(ηθ)Γ(κλ)(σς)ϑι g(ξo)(ϑι) ,

where g(µν)(κλ) = g

(
∂

∂xµν
,
∂

∂xκλ

)
.

Application of these mechanisms in Definitions 2.1–2.6
with results obtained in references [5–9], [20–23] enables us
to find physical laws in combinatorial spacetimes by mathe-
matical equations, and then find their multi-solutions in fol-
lowing sections.

3 Combinatorial gravitational fields

3.1 Gravitational equations

The essence in Einstein’s notion on the gravitational field is
known in two principles following.

Principle 3.1 These gravitational forces and inertial forces
acting on a particle in a gravitational field are equivalent and
indistinguishable from each other.

Principle 3.2 An equation describing a law of physics should
have the same form in all reference frame.

By Principle 3.1, one can introduce inertial coordinate
system in Einstein’s spacetime which enables it flat locally,
i.e., transfer these Riemannian metrics to Minkowskian ones
and eliminate the gravitational forces locally. Principle 3.2
means that a physical equation should be a tensor equation.
But how about the combinatorial gravitational field? We as-
sume Principles 3.1 and 3.2 hold in this case, i.e., a physical
law is characterized by a tensor equation. This assumption
enables us to deduce the gravitational field equation follow-
ing.

Let LGL[M̃] be the Lagrange density of a combinatorial
spacetime (CG | t). Then we know equations of the combina-
torial gravitational field (CG | t) to be

∂µ
∂LGL[M̃]

∂∂µφM̃
−
∂LGL[M̃]

∂φM̃
= 0 , (3.1)

by the Euler-Lagrange equation, where φM̃ is the wave func-
tion of (CG | t). Choose its Lagrange density LGL[M̃] to be

LGL[M̃] = R̃ − 2κLF ,

where κ = −8πG and LF the Lagrange density for all other
fields with

R̃ = g(µν)(κλ)R̃(µν)(κλ), R̃(µν)(κλ) = R̃σς
(µν)(σς)(κλ) .

Applying the Euler-Lagrange equation we get the equa-
tion of combinatorial gravitational field following

R̃(µν)(κλ) − 1
2

R̃ g(µν)(κλ) = κE(µν)(κλ) , (3.2)

where E(µν)(κλ) is the energy-momentum tensor.
The situation for combinatorial gravitational field is a lit-

tle different from classical field by its combinatorial character
with that one can only determines unilateral or part behaviors
of the field. We generalize the Einstein notion to combina-
torial gravitational field by the following projective principle,
which is coordinated with one’s observation.

Principle 3.3 A physics law in a combinatorial field is in-
variant under a projection on its a field.

By Principles 3.1 and 3.2 with combinatorial differential
geometry shown in Section 2, Principle 3.3 can be rephrased
as follows.
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Projective principle Let (M̃, g, D̃) be a combinatorial Rie-
mannian manifold and F ∈ T r

s (M̃) with a local form

F (κ1λ1)···(κrλr)
(µ1ν1)···(µsνs)

eκ1λ1 ⊗ · · · ⊗ eκrλrω
µ1ν1 ⊗ · · · ⊗ ωµsνs

in (Up, [ϕp]). If
F (κ1λ1)···(κrλr)

(µ1ν1)···(µsνs)
= 0

for integers 1 6 µi 6 s(p), 1 6 νi 6 nµi with 1 6 i 6 s and
1 6 κ j 6 s(p), 1 6 λ j 6 nκ j with 1 6 j 6 r, then for any
integer µ, 1 6 µ 6 s(p), there must be

F (µλ1)···(µλr)
(µν1)···(µνs)

= 0

for integers νi, 1 6 νi 6 nµ with 1 6 i 6 s.

Certainly, we can only determine the behavior of space
which we live. Then what is about these other spaces in
(CG | t)? Applying the projective principle, we can simulate
each of them by that of our living space. In other words, com-
bining geometrical structures already known to a combinato-
rial one (CG | t) and then find its solution for equation (3.2).

3.2 Combinatorial metric

Let Ã be an atlas on (M̃, g, D̃). Choose a local chart (U;$)

in Ã. By definition, if ϕp : Up →
s(p)⋃
i=1

Bni(p) and ŝ (p) =

dim (
s(p)⋂
i=1

Bni(p)), then [ϕp] is an s(p) × ns(p) matrix. A combi-

natorial metric is defined by

ds2 = g(µν)(κλ)dxµνdxκλ , (3.3)

where g(µν)(κλ) is the Riemannian metric in the combinatori-
ally Riemannian manifold (M̃, g, D̃). Generally, we choose a
orthogonal basis

{e11, · · · , e1n1 , · · · , es(p)ns(p) }

for ϕp[U], p ∈ M̃(t), i.e.,
〈
eµν, eκλ

〉
= δ(κλ)

(µν). Then the formula
(3.3) turns to

ds2 = g(µν)(µν)(dxµν)2

=

s(p)∑

µ=1

ŝ (p)∑

ν=1

g(µν)(µν) (dxµν)2
+

+

s(p)∑

µ=1

ŝ (p)+1∑

ν=1

g(µν)(µν) (dxµν)2

=
1

s2(p)

ŝ (p)∑

ν=1


s(p)∑

µ=1

g(µν)(µν)

 dxν +

+

s(p)∑

µ=1

ŝ (p)+1∑

ν=1

g(µν)(µν) (dxµν)2 .

We therefore find an important relation of combinatorial
metric with that of its projections following.

Theorem 3.1 Let µds2 be the metric in a manifold φ−1
p (Bnµ(p))

for integers 1 6 µ 6 s(p). Then

ds2 = 1ds2 + 2ds2 + · · · + s(p)ds2 .

Proof Applying the projective principle, we immediately
know that

µds2 = ds2|φ−1
p (Bnµ(p)), 1 6 µ 6 s(p) .

Whence, we find that

ds2 = g(µν)(µν) (dxµν)2

=

s(p)∑

µ=1

ni(p)∑

ν=1

g(µν)(µν) (dxµν)2

=

s(p)∑

µ=1

ds2|φ−1
p (Bnµ(p)) =

s(p)∑

µ=1
µds2 .

�
This relation enables us to find the line element of combi-

natorial gravitational field (CG | t) by applying that of gravita-
tional fields.

3.3 Combinatorial Schwarzschild metric

Let (CG | t) be a gravitational field. We know its Schwarzschild
metric, i.e., a spherically symmetric solution of Einstein’s
gravitational equations in vacuum is

ds2 =

(
1 − rs

r

)
dt2 − dr2

1 − rs
r

−

−r2dθ2 − r2 sin2 θdφ2 , (3.4)

where rs = 2Gm/c2. Now we generalize it to combinatorial
gravitational fields to find the solutions of equations

R(µν)(στ) − 1
2
g(µν)(στ)R = −8πGE(µν)(στ)

in vacuum, i.e., E(µν)(στ) = 0. Notice that the underlying
graph of combinatorial field consisting of m gravitational
fields is a complete graph Km. For such a objective, we only
consider the homogeneous combinatorial Euclidean spaces
M̃ =

⋃m
i=1 Rni , i.e., for any point p ∈ M̃,

[ϕp] =



x11 · · · x1n1 · · · 0
x21 · · · x2n2 · · · 0
· · · · · · · · · · · · · · ·
xm1 · · · · · · · · · xmnm



with m̂ = dim (
m⋂

i=1
Rni ) a constant for ∀p ∈

m⋂
i=1

Rni and xil = xl

m

for 1 6 i 6 m, 1 ≤ l 6 m̂.
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Let (CG | t) be a combinatorial field of gravitational fields
M1, · · · , Mm with masses m1, · · · ,mm respectively. For usu-
ally undergoing, we consider the case of nµ = 4 for 1 6 µ 6 m
since line elements have been found concretely in classical
gravitational field in these cases. Now establish m spherical
coordinate subframe (tµ; rµ, θµ, φµ) with its originality at the
center of such a mass space. Then we have known its a spher-
ically symmetric solution by (3.4) to be

ds2
µ =

(
1 − rµs

rµ

)
dt2
µ −

(
1 − rµs

rµ

)−1

dr2
µ −

− r2
µ(dθ2

µ + sin2 θµdφ2
µ)

for 1 6 µ 6 m with rµs = 2Gmµ/c2. By Theorem 3.1, we
know that

ds2 = 1ds2 + 2ds2 + · · · + mds2 ,

where µds2 = ds2
µ by the projective principle on combina-

torial fields. Notice that 1 6 m̂ 6 4. We therefore get the
geometrical of (CG | t) dependent on m̂ following.

Case 1. m̂ = 1, i.e., tµ = t for 1 6 µ 6 m.

In this case, the combinatorial metric ds is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2rµ

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2rµ

)−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2

µ + sin2 θµdφ2
µ

)
.

Case 2. m̂ = 2, i.e., tµ = t and rµ = r, or tµ = t and θµ = θ,
or tµ = t and φµ = φ for 1 6 µ 6 m.

We consider the following subcases.

Subcase 2.1. tµ = t, rµ = r.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2 −

−


m∑

µ=1

(
1 − 2Gmµ

c2r

)−1
 dr2 −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
µ

)
,

which can only happens if these m fields are at a same point
O in a space. Particularly, if mµ = M for 1 6 µ 6 m, the

masses of M1,M2, · · · ,Mm are the same, then rµg = 2GM is
a constant, which enables us knowing that

ds2 =

(
1 − 2GM

c2r

)
mdt2 −

−
(
1 − 2GM

c2r

)−1

mdr2 −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
µ

)
.

Subcase 2.2. tµ = t, θµ = θ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2rµ

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2rµ

)−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2 + sin2 θdφ2

µ

)
.

Subcase 2.3. tµ = t, φµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2rµ

)
dt2 −

−


m∑

µ=1

(
1 − 2Gmµ

c2rµ

)−1
 dr2

µ −

−
m∑

µ=1

r2
µ

(
dθ2

µ + sin2 θµdφ2
)
.

Case 3. m̂ = 3, i.e., tµ = t, rµ = r and θµ = θ, or tµ = t, rµ = r
and φµ = φ, or tµ = t, θµ = θ and φµ = φ for 1 6 µ 6 m.

We consider three subcases following.

Subcase 3.1. tµ = t, rµ = r and θµ = θ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2r

)−1

dr2 −

− mr2dθ2 − r2 sin2 θ

m∑

µ=1

dφ2
µ .

Subcase 3.2. tµ = t, rµ = r and φµ = φ.
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In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2r

)−1

dr2 −

−r2
m∑

µ=1

(
dθ2

µ + sin2 θµdφ2
)
.

There subcases 3.1 and 3.2 can be only happen if the cen-
ters of these m fields are at a same point O in a space.

Subcase 3.3. tµ = t, θµ = θ and φµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2rµ

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2rµ

)−1

dr2
µ −

−
m∑

µ=1

rµ
(
dθ2 + sin2 θdφ2

)
.

Case 4. m̂ = 4, i.e., tµ = t, rµ = r, θµ = θ and φµ = φ for
1 6 µ 6 m.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2r

)−1

dr2 −

−mr2
(
dθ2 + sin2 θdφ2

)
.

Particularly, if mµ = M for 1 6 µ 6 m, we get that

ds2 =

(
1 − 2GM

c2r

)
mdt2 −

−
(
1 − 2GM

c2r

)−1

mdr2 −

−mr2
(
dθ2 + sin2 θdφ2

)
.

Define a coordinate transformation

(t, r, θ, φ)→ ( st, sr, sθ, sφ) = (t
√

m, r
√

m, θ, φ) .

Then the previous formula turns to

ds2 =

(
1 − 2GM

c2r

)
dst2 − dsr2

1 − 2GM
c2r

−

− sr2
(
dsθ

2 + sin2
sθdsφ

2
)

in this new coordinate system ( st, sr, sθ, sφ), whose geomet-
rical behavior likes that of the gravitational field.

3.4 Combinatorial Reissner-Nordström metric

The Schwarzschild metric is a spherically symmetric solu-
tion of the Einstein gravitational equations in conditions
E(µν)(στ) = 0. In some special cases, we can also find their
solutions for the case E(µν)(στ) , 0. The Reissner-Nordström
metric is such a case with

E(µν)(στ) =
1

4π

(
1
4
gµνFαβFαβ − FµαFα

ν

)

in the Maxwell field with total mass m and total charge e,
where Fαβ and Fαβ are given in Subsection 7.3.4. Its metrics
takes the following form:

gµν =



x11 0 0 0
0 x22 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ


,

where rs = 2Gm/c2, r2
e = 4Gπe2/c4, x11 = 1 − rs

r
+

r2
e

r2 and

x22 = −
(
1 − rs

r
+

r2
e

r2

)−1

. In this case, its line element ds is

given by

ds2 =

(
1 − rs

r
+

r2
e

r2

)
dt2 −

−
(
1 − rs

r
+

r2
e

r2

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
. (3.5)

Obviously, if e = 0, i.e., there are no charges in the grav-
itational field, then the equations (3.5) turns to that of the
Schwarzschild metric (3.4).

Now let (CG | t) be a combinatorial field of charged grav-
itational fields M1, M2, · · · , Mm with masses m1,m2, · · · ,mm

and charges e1, e2, · · · , em, respectively. Similar to the case
of Schwarzschild metric, we consider the case of nµ = 4 for
1 6 µ 6 m. We establish m spherical coordinate subframe
(tµ; rµ, θµ, φµ) with its originality at the center of such a mass
space. Then we know its a spherically symmetric solution by
(3.5) to be

ds2
µ =

1 −
rµs

rµ
+

r2
µe

r2
µ

 dt2
µ −

−
1 −

rµs

rµ
+

r2
µe

r2
µ


−1

dr2
µ −

− r2
µ

(
dθ2

µ + sin2 θµdφ2
µ

)
.

Likewise the case of Schwarzschild metric, we consider
combinatorial fields of charged gravitational fields dependent
on the intersection dimension m̂ following.
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Case 1. m̂ = 1, i.e., tµ = t for 1 6 µ 6 m.

In this case, by applying Theorem 3.1 we get the combi-
natorial metric

ds2 =

m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ

 dt2 −

−
m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ


−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2

µ + sin2 θµdφ2
µ

)
.

Case 2. m̂ = 2, i.e., tµ = t and rµ = r, or tµ = t and θµ = θ,
or tµ = t and φµ = φ for 1 6 µ 6 m.

Consider the following three subcases.

Subcase 2.1. tµ = t, rµ = r.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

−
m∑

µ=1

1 −
rµs

r
+

r2
µe

r2


−1

dr2 −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
µ

)
,

which can only happens if these m fields are at a same point O
in a space. Particularly, if mµ = M and eµ = e for 1 6 µ 6 m,
we find that

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
mdt2 −

− mdr2

1 − 2GM
c2r + 4πGe4

c4r2

−

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
µ

)
.

Subcase 2.2. tµ = t, θµ = θ.

In this subcase, by applying Theorem 3.1 we know that
the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ

 dt2 −

−
m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ


−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2 + sin2 θdφ2

µ

)
.

Subcase 2.3. tµ = t, φµ = φ.

In this subcase, we know that the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ

 dt2 −

−
m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ


−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2

µ + sin2 θµdφ2
)
.

Case 3. m̂ = 3, i.e., tµ = t, rµ = r and θµ = θ, or tµ = t, rµ = r
and φµ = φ, or or tµ = t, θµ = θ and φµ = φ for 1 6 µ 6 m.

We consider three subcases following.

Subcase 3.1. tµ = t, rµ = r and θµ = θ.

In this subcase, by applying Theorem 3.1 we obtain that
the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

−
m∑

µ=1

1 −
rµs

r
+

r2
µe

r2


−1

dr2 −

−
m∑

µ=1

r2
(
dθ2 + sin2 θdφ2

µ

)
.

Particularly, if mµ = M and eµ = e for 1 6 µ 6 m, then
we get that

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
mdt2 −

− mdr2

1 − 2GM
c2r + 4πGe4

c4r2

−

−
m∑

µ=1

r2
(
dθ2 + sin2 θdφ2

µ

)
.

Subcase 3.2. tµ = t, rµ = r and φµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

−
m∑

µ=1

1 −
rµs

r
+

r2
µe

r2


−1

dr2 −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)
.
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Particularly, if mµ = M and eµ = e for 1 6 µ 6 m, then
we get that

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
mdt2 −

− mdr2

1 − 2GM
c2r + 4πGe4

c4r2

−

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)
.

Subcase 3.3. tµ = t, θµ = θ and φµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ

 dt2 −

−
m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ


−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2 + sin2 θdφ2

)
.

Case 4. m̂ = 4, i.e., tµ = t, rµ = r, θµ = θ and φµ = φ for
1 6 µ 6 m.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

−
m∑

µ=1

1 −
rµs

r
+

r2
µe

r2


−1

dr2 −

− mr2
(
dθ2 + sin2 θdφ2

)
.

Furthermore, if mµ = M and eµ = e for 1 6 µ 6 m, we
obtain that

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
mdt2 −

− mdr2

1 − 2GM
c2r + 4πGe4

c4r2

−

− mr2
(
dθ2 + sin2 θdφ2

)
.

Similarly, we define the coordinate transformation

(t, r, θ, φ)→ ( st, sr, sθ, sφ) = (t
√

m, r
√

m, θ, φ).

Then the previous formula turns to

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
dst2 −

− dsr2

1 − 2GM
c2r + 4πGe4

c4r2

−

− sr2
(
dsθ

2 + sin2
sθdsφ

2
)

in this new coordinate system ( st, sr, sθ, sφ), whose geomet-
rical behavior likes a charged gravitational field.

4 Multi-time system

A multi-time system is such a combinatorial field (CG | t) con-
sisting of fields M1, M2, · · · , Mm on reference frames

(t1, r1, θ1, φ1), · · · , (tm, rm, θm, φm)

and there are always exist two integers κ, λ, 1 6 κ , λ 6 m
such that tκ , tλ. Notice that these combinatorial fields dis-
cussed in Section 3 are all with tµ = t for 1 6 µ 6 m, i.e.,
we can establish a time variable t for all fields in this com-
binatorial field. But if we can not determine all the behavior
of living things in the Universe implied in the weak anthropic
principle, we can not find such a time variable t for all fields.
If so, we need a multi-time system for describing the Uni-
verse.

Among these multi-time systems, an interesting case ap-
pears in m̂ = 3, rµ = r, θµ = θ, φµ = φ, i.e., beings live in the
same dimensional 3 space, but with different notions on the
time. Applying Theorem 3.1, we discuss the Schwarzschild
and Reissner-Nordström metrics following.

4.1 Schwarzschild multi-time system

In this case, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2
µ −

−
m∑

µ=1

(
1 − 2Gmµ

c2r

)−1

dr2 −

− mr2
(
dθ2 + sin2 θdφ2

)
.

Applying the projective principle to this equation, we get
metrics on gravitational fields M1, M2, · · · ,Mm following:

ds2
1 =

(
1 − 2Gm1

c2r

)
dt2

1 −

−
(
1 − 2Gm1

c2r

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

ds2
2 =

(
1 − 2Gm2

c2r

)
dt2

2 −

−
(
1 − 2Gm2

c2r

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · ,
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ds2
m =

(
1 − 2Gmm

c2r

)
dt2

m −

−
(
1 − 2Gmm

c2r

)−1

dr2 −

−r2
(
dθ2 + sin2 θdφ2

)
.

Particularly, if mµ = M for 1 6 µ 6 m, we then get that

ds2 =

(
1 − 2GM

c2r

) m∑

µ=1

dt2
µ −

−
(
1 − 2GM

c2r

)−1

mdr2 −

− mr2
(
dθ2 + sin2 θdφ2

)
.

Its projection on the gravitational field Mµ is

ds2
µ =

(
1 − 2GM

c2r

)
dt2
µ −

−
(
1 − 2GM

c2r

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

i.e., the Schwarzschild metric on Mµ, 1 6 µ 6 m.

4.2 Reissner-Nordström multi-time system

In this case, the combinatorial metric is

ds2 =

m∑

µ=1

1 −
2Gmµ

c2r
+

4πGe4
µ

c4r2

 dt2
µ −

−
m∑

µ=1

1 −
2Gmµ

c2r
+

4πGe4
µ

c4r2


−1

dr2 −

− mr2
(
dθ2 + sin2 θdφ2

)
.

Similarly, by the projective principle we obtain the met-
rics on charged gravitational fields M1, M2, · · · , Mm follow-
ing

ds2
1 =

1 − 2Gm1

c2r
+

4πGe4
1

c4r2

 dt2
1 −

−
1 − 2Gm1

c2r
+

4πGe4
1

c4r2


−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

ds2
2 =

1 − 2Gm2

c2r
+

4πGe4
2

c4r2

 dt2
2 −

−
1 − 2Gm2

c2r
+

4πGe4
2

c4r2


−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · ,

ds2
m =

(
1 − 2Gmm

c2r
+

4πGe4
m

c4r2

)
dt2

m −

−
(
1 − 2Gmm

c2r
+

4πGe4
m

c4r2

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
.

Furthermore, if mµ = M and eµ = e for 1 6 µ 6 m, we
obtain that

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

) m∑

µ=1

dt2 −

−
(
1 − 2GM

c2r
+

4πGe4

c4r2

)−1

mdr2 −

− mr2
(
dθ2 + sin2 θdφ2

)
.

Its projection on the charged gravitational field Mµ is

ds2
µ =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
dt2
µ −

−
(
1 − 2GM

c2r
+

4πGe4

c4r2

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

i.e., the Reissner-Nordström metric on Mµ, 1 6 µ 6 m.
As a by-product, these calculations and formulas mean

that these beings with time notion different from that of hu-
man beings will recognize differently the structure of our uni-
verse if these beings are intellectual enough to do so.

5 Discussions

5.1 Geometrical structure

A simple calculation shows that the dimension of the combi-
natorial gravitational field (C | t) in Section 3 is

dim (C | t) = 4m + (1 − m) m̂ . (5.1)

For example, dim (C | t) = 7, 10, 13, 16 if m̂ = 1 and
6, 8, 10 if m̂ = 1 for m = 2, 3, 4. In this subsection, we
analyze these geometrical structures with metrics appeared in
Section 3.

As we have said in Section 1, the visible geometry is the
spherical geometry of dimensional 3. That is why the sky
looks like a spherical surface. In this geometry, we can only
see the images of bodies with dim > 3 on our spherical sur-
face (see [1–2] and [4] in details). But the situation is a little
difference from that of the transferring information, which is
transferred in all possible routes. In other words, a geometry
of dimensional > 1. Therefore, not all information transfer-
ring can be seen by our eyes. But some of them can be felt by
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our six organs with the help of apparatus if needed. For exam-
ple, the magnetism or electromagnetism can be only detected
by apparatus. These notions enable us to explain the geo-
metrical structures in combinatorial gravitational fields, for
example, the Schwarzschild or Reissner-Nordström metrics.

Case 1. m̂ = 4.

In this case, by the formula (5.1) we get dim (C | t) = 4, i.e., all
fields M1, M2, · · · , Mm are in R4, which is the most enjoyed
case by human beings. We have gotten the Schwarzschild
metric

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2r

)−1

dr2 −

− mr2(dθ2 + sin2 θdφ2)

or the Reissner-Nordström metric

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

− dr2

m∑
µ=1

(
1 − rµs

r +
r2
µe

r2

) −

− mr2
(
dθ2 + sin2 θdφ2

)

for non-charged or charged combinatorial gravitational fields
in vacuum in Sections 3. If it is so, the behavior of Universe
can be realized finally by human beings. This also means that
the discover of science will be ended, i.e., we can established
the Theory of Everything finally for the Universe.

Case 2. m̂ 6 3.

If the Universe is so, then dim (C | t) > 5. In this case, we
know the combinatorial Schwarzschild metrics and combina-
torial Reissner-Nordström metrics in Section 3, for example,
if tµ = t, rµ = r and φµ = φ, the combinatorial Schwarzschild
metric is

ds2 =

m∑

µ=1

(
1 − rµs

r

)
dt2 −

m∑

µ=1

dr2
(
1 − rµs

r

) −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)

and the combinatorial Reissner-Nordström metric is

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

−
m∑

µ=1

dr2
(
1 − rµs

r +
r2
µe

r2

)−

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)
.

Particularly, if mµ = M and eµ = e for 1 6 µ 6 m, then
we get that

ds2 =

(
1 − 2GM

c2r

)
mdt2 − mdr2

(
1 − 2GM

c2r

) −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)

for combinatorial gravitational field and

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
mdt2 −

− mdr2
(
1 − 2GM

c2r + 4πGe4

c4r2

) −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)

for charged combinatorial gravitational field in vacuum. In
this case, the observed interval in the field MO where human
beings live is

dsO = a(t, r, θ, φ)dt2 − b(t, r, θ, φ)dr2 −
− c (t, r, θ, φ)dθ2 − d (t, r, θ, φ)dφ2 .

How to we explain the differences ds − dsO in physics?
Notice that we can only observe the line element dsO, a pro-
jection of ds on MO. Whence, all contributions in ds − dsO

come from the spatial direction not observable by human be-
ings. In this case, we are difficult to determine the exact be-
havior. Furthermore, if m̂ 6 3 holds, because there are infinite
combinations (CG | t) of existent fields underlying a connected
graph G, we can not find an ultimate theory for the Universe,
i.e., there are no a Theory of Everything for the Universe and
the science established by ours is approximate, holds on con-
ditions and the discover of science will be endless forever.

5.2 Physical formation

A generally accepted notion on the formation of Universe is
the Big Bang theory ([24]), i.e., the origin of Universe is from
an exploded at a singular point on its beginning. Notice that
the geometry in the Big Bang theory is just a Euclidean R3 ge-
ometry, i.e., a visible geometry by human beings. Then how
is it came into being for a combinatorial spacetime? Weather
it is contradicts to the experimental data? We will explain
these questions following.

Realization 5.1 Any combinatorial spacetime was formed by
|G| times Big Bang in an early space.

Certainly, if there is just one time Big Bang, then there
exists one spacetime observed by us, not a multiple or combi-
natorial spacetime. But there are no arguments for this claim.
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It is only an assumption on the origin of Universe. If it is not
exploded in one time, but in m > 2 times in different spatial
directions, what will happens for the structure of spacetime?

The process of Big Bang model can be applied for ex-
plaining the formation of combinatorial spacetimes. Assume
the dimension of original space is bigger enough and there
are m explosions for the origin of Universe. Then likewise the
standard process of Big Bang, each time of Big Bang brought
a spacetime. After the m Big Bangs, we finally get a multi-
spacetime underlying a combinatorial structure, i.e., a combi-
natorial spacetime (CG | t) with |G| = m, such as those shown
in Fig. 5.1 for G = C4 or K3.

E1

E4 E2

E3

(a) (b)

E1

E2 E3

Fig. 5.1

where Ei denotes ith time explosion for 1 ≤ i 6 4. In the pro-
cess of m Big Bangs, we do not assume that each explosion
Ei, 1 6 i 6 m was happened in a Euclidean space R3, but in
Rn for n > 3. Whence, the intersection Ei∩E j means the same
spatial directions in explosions Ei and E j for 1 6 i, j 6 m.
Whence, information in Ei or E j appeared along directions in
Ei ∩ E j will both be reflected in E j or Ei. As we have said in
Subsection 5.1, if dim Ei ∩ E j 6 2, then such information can
not be seen by us but only can be detected by apparatus, such
as those of the magnetism or electromagnetism.

Realization 5.2 The spacetime lived by us is an intersection
of other spacetimes.

This fact is an immediately conclusion of Realization 5.1.

Realization 5.3 Each experimental data on Universe ob-
tained by human beings is synthesized, not be in one of its
spacetimes.

Today, we have known a few datum on the Universe by
COBE or WMAP. In these data, the one well-known is the
2.7oK cosmic microwave background radiation. Generally,
this data is thought to be an evidence of Big Bang theory. If
the Universe is a combinatorial one, how to we explain it?
First, the 2.7oK is not contributed by one Big Bang in R3,
but by many times before 137 light years, i.e., it is a syn-
thesized data. Second, the 2.7oK is surveyed by WMAP, an
explorer satellite in R3. By the projective principle in Sec-
tion 3, it is only a projection of the cosmic microwave back-
ground radiation in the Universe on the space R3 lived by us.
In fact, all datum on the Universe surveyed by human beings
can be explained in such a way. So there are no contradiction

between combinatorial model and datum on the Universe al-
ready known by us, but it reflects a combinatorial behavior of
the Universe.
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The “Proton Spin Crisis” — a Quantum Query

Johan Hansson
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The “proton spin crisis” was introduced in the late 1980s, when the EMC-experiment
revealed that little or nothing of a proton’s spin seemed to be carried by its quarks.
The main objective of this paper is to point out that it is wrong to assume that the proton
spin, as measured by completely different experimental setups, should be the same in all
circumstances, an assumption explicitly made in all present theoretical treatments of the
“crisis”. As spin is a genuine quantum property, without any objective existence outside
its measuring apparatus context, proper account of quantum mechanical measurement
theory must be taken.

The “proton spin crisis” [1] essentially refers to the experi-
mental finding that very little of the spin of a proton seems
to be carried by the quarks from which it is supposedly built.
This was a very curious and unexpected experimental result
of the European Muon Collaboration, EMC [2] (later consol-
idated by other experiments), as the whole idea of the origi-
nal quark model of Gell-Mann [3] and Zweig [4] was to ac-
count for 100 percent of the hadronic spins, solely in terms of
quarks. Although “improved” parton models can just about
accomodate the experimental results, the purpose of this pa-
per is to point out that the “proton spin crisis” may be due
to a misinterpretation of the underlying, quantum mechanical
theory. As spin is a fundamentally quantum mechanical en-
tity, without any classical analog, special care must be taken
to treat it in a correct quantum mechanical manner.

According to Niels Bohr, the whole experimental setup
must be considered when we observe quantum mechanical
systems. It means that a quantal object does not “really exist”
independently of how it is observed. This notion was later
quantified by Bell [5], and verified experimentally by Clauser
and Freedman [6], Aspect, Dalibard and Roger [7] and oth-
ers. These experimentally observed violations of Bell’s the-
orem [5] are in accordance with quantum mechanics, but in-
compatible with a locally realistic world view, proving that
quantum objects do not have objective properties unless and
until they are actually measured∗. The quantum states are not
merely unknown, but completely undecided until measured.
It is important to stress that this is not merely a philosophi-
cal question, but an experimentally verified prediction based
upon the very foundations of quantum theory itself. To quote
John Wheeler: “No elementary quantum phenomenon is a
phenomenon until it is a registered (observed) phenomenon”
[8]. Unless a specific observable is actually measured, it re-
ally does not exist. This means that we should not a priori
assume that different ways of probing the system will give
the same results, as the system itself will change when we
change the method of observation.

∗To be exact, also the possibility exists of non-local “hidden variable”
theories, where objects do exist at all times. However, such theories mani-
festly break Lorentz-covariance.

To exemplify this for the spin of the proton, let us com-
pare two different experimental setups designed to measure it:

i) The Stern-Gerlach (SG) experiment, which uses an
inhomogeneous magnetic field to measure the proton
spin state;

ii) Deep inelastic scattering (DIS), which uses an elemen-
tary probe (electron or neutrino) that inelastically scat-
ters off the “proton” (actually elastically off partons).

We should at once recognize i) and ii) as different, or —
in the words of Bohr — “complementary”, physical setups.
If one measures the first, the other cannot be measured simul-
taneously, and vice versa. DIS disintegrates the proton and
produces “jets” of, often heavier, hadrons as the collision en-
ergy is much larger than the binding energy, so there is no
proton left to measure. Also, the very fact that the hard reac-
tion in DIS is describable in perturbation theory means that
we are dealing with a different quantum mechanical object
than an undisturbed proton.

In the case of using a SG apparatus to measure the spin,
the proton is intact both before and after the measurement,
potential scattering being by definition elastic. SG thus mea-
sures the total spin state of the proton, but does not resolve
any partons. It therefore seems natural to identify the spin of
an undisturbed proton with the result from a Stern-Gerlach
type of experiment.

As we have seen, i) and ii) simply do not refer to the same
physical system, but the “fundamental spin sum-rule”, always
assumed to hold in treatments of the spin crisis, explicitly
equates the spin of the proton, i), with the sum-total of the
measured partonic spins and orbital angular momenta, ii). In-
stead, it should generally read

Σ

2
+ Lq + LG + ∆G ,

1
2
, (1)

as the left hand side describes the measured spin of the par-
tons, while the right hand side describes the spin of the pro-
ton. (Remember that the left and right hand sides correspond
to different physical systems, as defined by the respective
complementary experimental setups used to measure them.)
The quantities above stand for: Σ = fraction of proton’s spin
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carried by the spin of quarks and anti-quarks, Lq = quark or-
bital angular momentum contribution, LG = gluon orbital an-
gular momentum contribution, ∆G = gluon spin contribution.

An additional complication is the following: While in
quantum electrodynamics (QED) an atomic wave function
can approximately be separated into independent parts due to
the weak interaction, and the spins of the constituents (nuclei
and electrons) can be measured separately as they can be stud-
ied in isolation∗, in quantum chromodynamics (QCD) it fails
as the interactions between fields in an undisturbed proton
are much stronger than in the QED case, making even an ap-
proximate separation impossible. Still worse, in QCD at low
momentum transfers†, like in an undisturbed proton, the par-
ticles “quarks” and “gluons” cannot even be defined [9] and
thus do not “exist” within the proton, even when disregard-
ing the quantum mechanical measurement process described
above. The simple parton model (with or without orbital an-
gular momenta) is simply not tenable in strong QCD.

However, even if we would assume, as is conventional,
that (“clothed”) partons within the proton are defined, the
proton wave function, Ψ, could not be factorized into sep-
arate valence quark spin wave functions (|χ1〉, |χ2〉, |χ3〉) as
this would not result in an eigenstate of the strongly spin-
dependent Hamiltonian, entering the energy eigenvalue equa-
tion

Hψn = Enψn. (2)

The proton wave function could as usual be written as a
superposition of energy eigenstates

Ψ =
∑

n

cnψn , (3)

but

ΨS G(x1, x2, x3, s1, s2, s3) , u (x1, x2, x3) |χ1〉| χ2〉| χ3〉, (4)

where s1, s2, s3 encodes the spin-dependence, and
u (x1, x2, x3) would be the space-part of a spin-independent
system. In reality the quarks would always be correlated
and the wave function could never be separated into product
states, except as an approximation if the interaction would be
sufficiently small, as in DIS

ΨDIS (x1, x2, x3, s1, s2, s3) ' u (x1, x2, x3) |χ1〉| χ2〉| χ3〉. (5)

Note that ΨS G ,ΨDIS as they describe different physical
systems, defined by their different modes of observation. In
SG there would be an intrinsic, unavoidable interference ef-
fect for the spin (much like in the famous double-slit experi-
ment for position) which is lost when DIS experiments mea-
sure spin structure functions of the “proton”. The DIS struc-
ture functions are proportional to cross sections, which by

∗Wigner’s classification of particles according to their mass and spin is
given by irreducible representations of the Poincaré group, i.e. noninteract-
ing fields.

†More precisely, the elementary quanta of QCD are defined only as the
momentum transfer goes to infinity.

necessity are classical quantities incapable of encoding quan-
tum interference. As each individual experimental data point
is a classical (non-quantum) result, structure functions are by
construction related to incoherent sums of individual prob-
ability distributions. Thus, even if we (wrongly) would as-
sume the parton model to be applicable in both cases i) and
ii), SG would result from adding spin amplitudes (taking full
account of quantum interference terms), while DIS would re-
sult from adding spin probabilities (absolute squares of am-
plitudes). However, we emphasize again that in the case of
SG the parton spins are not merely unknown, but actually un-
defined. An experiment like SG probes the spin state of the
proton, while an experiment like DIS probes the spin state of
the partons and the final (= observed) system is not a pro-
ton at all but “jets” of hadrons. These two experiments are
disjoint, or complementary in the words of Bohr, and do not
describe the same physical object.

In conclusion, we have explained why the “proton” tested
by different experimental setups in general cannot be consid-
ered as the same physical object. Rather, the whole experi-
mental situation must be taken into account, as quantum me-
chanical objects and observables do not have an objective ex-
istence unless measured. We should thus not enforce, by the
“spin sum-rule”, the same spin (1/2) for the “proton” when
measured by DIS as when it is directly measured on the pro-
ton as a whole, e.g. by SG. The “proton” as measured by
deep inelastic scattering is a different physical system than a
(virtually) undisturbed proton. There is no reason why spin
measurements on one should apply to the other. Especially,
there is no need for parton spins, as measured by DIS, to add
up to the polarized spin of an otherwise undisturbed proton,
just like the EMC-experiment [2] and its successors show. On
a more pessimistic note, DIS spin data can never directly un-
ravel the spin of the proton because the two are mutually in-
compatible. At best, DIS can only serve as an indirect test
of QCD by supplying asymptotic boundary conditions to be
used in future non-perturbative QCD calculations of the pro-
ton spin. If the result of those calculations does not come out
spin-1/2, QCD is not the correct theory of strong interactions.
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Is the Field of Numbers a Real Physical Field? On the Frequent Distribution
and Masses of the Elementary Particles
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Frequent distributions of the databases of the numerical values obtained by resolving
algorithms, which describe physical and other processes, give a possibility for bonding
the probability of that results the algorithms get. In the frequent distribution of the
fractions of integers (rational numbers), local maxima which meet the ratios of masses
of the elementary particles have been found.

Consider a general case of an arbitrary function F(x, y, z, . . . ).
Take under consideration a region of the values of this func-
tion, split into numerous intervals. Filling up the intervals
by item-by-item examination of the possible numerical val-
ues of the parameters x, y, z, . . . , expressed with integers, will
be non-uniform.

Any algorithm has its own individual frequent distribu-
tion. The distributions can be created∗ for any formula, which
has two or more free parameters (the distributions of the pa-
rameters can sometimes have unexpected or complicate form,
containing both minima and peaks of the probability).

Frequent distributions give a possibility for bonding the
probability of the appearance of numerical values of a func-
tion in the region of its existence. This is because the number
of the numerical values of the function, hitting into a respec-
tive interval, in by item-by-item examination of the possible
numerical values of the function’s arguments, is proportional
to the probability of an average numerical value of the func-
tion in the interval. The frequent distributions manifest the
reproductivity of numerical values of the function due to the
possible variations of its arguments. A frequent distribution
itself cannot provide exact numerical solutions. However, if
the object or process under consideration is described by not
a single function but a few ones, the frequent distributions
of these functions can logically be summarized or multiplied
in order to manifest, more clear, such regions wherein the
probability is high to that in the rest regions. Form of the
distribution depends on both the form of the function and the
dependencies among the positive integers; in the distribution
obtained as above, the properties of the integers become not
limited by the plain function of their item-by-item examina-
tion, but are more complicate thus an individualization of the
integers occurs.

Once sharp manifested maxima, attractors, or regions of
zero probability appear, it is important to find what peculiar-
ities the algorithm bears. This however can be done only
through respective analysis of a large number of the calcula-
tion results. In early years, this problem was unable to be con-
sidered in serious: processing so large numerical databases,

∗There is a ready-to-use function “frequency” in MS Excel; another soft-
ware can be applied as well.

and enforced extracting the probability from chaos, require
huge time of routine job; therefore this job became accessed
only due to the computer techniques.

It should be noted that the discrete nature of experimen-
tal results was discovered in the background of normal dis-
tribution of their numerical values (fine structure of the his-
tograms) in already many years ago, by experimental stud-
ies conducted, commencing in 1951, by Simon E. Shnoll and
his experimental team (see his monograph [1] and bibliogra-
phy therein). As a result, Shnoll suggested that form of the
histograms is connected with the mathematical algorithms,
which express the respective processes we measure.

Below are specific examples, which illustrate the connex-
ion of the frequent distributions and the real physical pro-
cesses and phenomena.

There is a very interesting property of the frequent dis-
tributions: several kinds of the distributions include the ra-
tios of masses of the elementary particles. This property is
attributed to the frequent distributions of the databases of nu-
merical values of the functions, constructed on fractions. We
found these are plain exponential functions Ax/y, where A is
presented by special numbers π= 3.1416 . . . , e = 2.17183 . . . ,
and the reverse fine structure constant α= 137.036 . . . In a
few cases (hyperons), we mean A the relative mass of the
proton mp/me = 1836.

In order to be sure in it, we should do follows. Collect a
database of numerical values of such a function in the frame-
work of the complete item-by-item examination of its argu-
ments x and y presented by integers, and in the scale which
is enough large for covering the necessary scale of masses of
the elementary particles (in the units of mass of the electron).
Then we should distribute the numerical values along the axis
of abscissas, covering numerous intervals by them. Once the
distribution done, we will see that it has local maxima (peaks)
in numerous locations of the scale, which meet the numerical
values of masses of the elementary particles. Peaks of the
distributions have a delta-like form.

Distributions of fractions along the numerical axis are
self-similar. They reproduce themselves in the peaks of the
first, the second and higher orders upto most small segments
of the scale. It is possible to see that there is a fractal struc-
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Fig. 1: Mass of the proton (938.27) in distribution 0.511 πx/y. Fig. 2: Mass of the neutron (939.57) in distribution 0.511 ax/y.

Fig. 3: Mass of the Σ+ (1189) particle in distribution 0.511 ex/y. Fig. 4: Masses of the Σ+ (1189.4), Σ0 (1192.5), Σ− (1197.3) parti-
cles in distribution 0.511 ax/y.

Fig. 5: Mass of the η (548.8) particle in 0.511 (mp/me)x/y distrib-
ution.

Fig. 6: Masses of the Ω−, Σ1 (1672, 1670) particles in distribution
0.511 (mp/me)x/y.
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Fig. 7: Mass of the Ξ−- (1321) particle in 0.511 (mp/me)x/y dist-
ribution.

Fig. 8: Mass of the Λ (1115) particle in distribution 0.511 ax/y.

Fig. 9: Mass of the π0 (134.9) particle in distribution 0.511 ax/y. Fig. 10: Mass of the µ− (105.7) particle in distribution 0.511 ex/y.

Fig. 11: Mass of the K0 (498.7) particle in distribution 0.511 ax/y. Fig. 12: Mass of the Λ4 (2100) particle in 0.511 (mp/me)x/y distri-
bution.
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Fig. 13: Masses of the b0
1, ∆1 (1233, 1232) particles in distribution

0.511 ax/y.
Fig. 14: Mass of the K∗ (892.2) particle in distribution 0.511 ax/y.

Fig. 15: Mass of the B (1230) particle in distribution 0.511 πx/y. Fig. 16: Mass of the ω (782.7) particle in distribution 0.511 ex/y.

Fig. 17: Masses of the ηc (2820), χ (3556) particles in distribution
0.511 ax/y.

Fig. 18: Mass of the ψ′′′ (4414) particle in distribution 0.511 ax/y.
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Fig. 19: Mass of the Y (9460) particle in distribution 0.511 ex/y. Fig. 20: Some main peaks correspond with masses of the D0

(1863), D∗0 (2006), Σ3 (2030), N4 (2190), Λ+
c (2260) particles in

distribution 0.511 ax/y.

Fig. 21: Main peaks correspond with masses of the τ− (1782),
Λ3, Ξ1 (1820, 1820), D+ (1868), S (1940) particles in distribution
0.511 πx/y.

Fig. 22: Main peaks correspond with masses of the f′, Λ2, N2

(1516, 1518, 1520), ρ′ (1600), ∆2 (1650), N3, g (1688, 1690) par-
ticles in distribution 0.511 ax/y.

Fig. 23: Mass of the f (1270) particle in distribution 0.511 ex/y. Fig. 24: Mass of the ρ (773) particle in distribution 0.511 πx/y.
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Fig. 25: Mass of the η′ (958) particle in distribution 0.511 πx/y. Fig. 26: Mass of the h (2020) particle in distribution 0.511 πx/y.

Fig. 27: Mass of the ϕ (1020) particle in distribution 0.511 ex/y. Fig. 28: Mass of the A (1310) particle in distribution 0.511 ax/y.

Fig. 29: Mass of the J/ψ (3096) particle in distribution 0.511 ax/y. Fig. 30: Mass of the W (82000) particle in distribution 0.511 ex/y.
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ture of the distribution, when compressing the scale of the
diagram by respective changing the variations by x and y
(with the same number of the interval unchanged). There-
fore, generally speaking, any arbitrary numerical value of the
mass could meet, in the diagram, a peak of the first or higher
orders. An objective criterion can be a relative error of the
calculation, which is the ratio of the error of our calculation
by the length of the respective local interval (or the distance
between the peaks of the same order; the peak heights differ
from each other as seen in Fig. 21 and Fig. 22). I checked
about 50 numerical values of the masses; the relative error of
the calculation was under a few percents only.

Figures 1–30 show specific examples of my calculations:
these are frequent distributions, local maxima of which meet
the relative masses of very different particles. The axis of
abscissas is given in MeV. The histograms are created in the
same way; they have 1000 numerical values distributed along
350 intervals.

It is probable, all the masses meet respective peaks in the
distributions. This is not a result of my “passion” to nu-
merology. This also does not mean that the masses of the
particles are expressed just by the same functions. Mean-
while, these correspondences appear with so high precision
and so often that they cannot be random, absolutely. On the
other hand, the numerical values of some masses meet not
the peaks, whose height is proportional to the number of the
pairs x and y producing the same fraction, but empty spaces
neighbouring the peaks (the spaces are presented by most rare
appeared ratios of the prime numbers). As is obvious, the
empty space neighbouring the peaks manifest minima of the
relative density of rational numbers in their distribution along
the numerical axis. Connexion of the spaces with the most
stable states of oscillation processes was shown by Kyril I.
Dombrowski [2, 3].

Is there a spectrum of masses of the elementary particles,
if we mean it as the presence of the cross-dependency of the
masses, and a possible algorithm of their calculation? I think
that not. This is despite we can suppose that the numerical
values of the masses constitute the “fine structure” of a distri-
bution according to an unknown algorithm.

It is likely as the numerical values of the masses have
a probabilistic origin, and are connected somehow with the
properties of the prime numbers. It is probable, a rôle is
played here by the fact that the prime number fractions or
ratios are more fundamental quantities than the prime num-
bers themselves. This is because each single fraction of the
infinite row is a result of ratios of infinite number of the pairs
of arbitrary prime numbers.

At present time, many elementary particles were experi-
mentally discovered. The particles have very different lifes-
pans. This fact and also the shape of distributions constructed
on fractions lead us to a conclusion that the first order masses
“create” the second order masses, the second order masses
“create” the third order masses, and so on to infinity. Such a

Fig. 31: Distribution on the function 100 exp
(
− ax (b – y)0.5

)
, where

a = 0.00147, b = 1000.

process is specific to a continuous non-viscous medium, when
perturbations appear in it. We cannot except that physical ex-
periments can produce infinite variety of the elementary par-
ticles.

Another example is provided by frequent distribution of
the exponent (Fig. 31)

100 exp
(
− ax (b – y)0.5

)
,

modelling the well-known formula which expresses the trans-
parency of the potential barrier of the tunnelling effect, where
x and y are variables characterizing mass and energy of the
particle. Shape of the distribution is very dependent on the
numerical coefficients a and b. Moreover, several numerical
values of the function are not realized at all. This form of his-
tograms is specific to those functions, which do not contain
ratios or fractions.

In this case, in item-by-item examination of the integers
x and y along an abstract scale from 1 to 100, there is about
10,000 numerical values of the exponent. The axis of ordi-
nates means the number of the coinciding numerical values
of the function along the interval.

As we found, the distribution of the exponent has the most
number of the intervals (nonzero numerical values of the or-
dinate, whose common number is as well dependent also on
the given length of the unit interval) with several specific nu-
merical values a and b. For instance, Fig. 31. With b = 1000
and a = 0.00147, difference between the neighboring intervals
(i.e. the relative length of the interval) is 0.003 of the current
numerical value f the function, while this is in the background
of 1124 nonzero intervals (the graph has 10,000 intervals to-
tally).

With these parameters, the term under the exponent ap-
proaches numerically to −1 independent from the “size” of
the database. On the other hand, the tunnelling effect appears
with the same condition in an analogous physical formula!
I also attempted to employ frequent distributions in order to
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explain the most brighty lines of the radiation spectra for dif-
ferent kinds of radiation [4].

Thus I suggest that, aside for the known physical fields,
the field of the positive integers exists as a physical field of the
Nature. Pattern of this field has concentrations (peaks) and
rarefractions of integers, which determine special numbers
such as e, π, and, probable, the fundamental physical con-
stants (the fine structure constant, the gravitational constant,
and the others). Physical phenomena process in the inhomo-
geneous background of this field; any function using the field
of integers (database of integers) produces surfs of probabil-
ity in it (a relative analogy). We should not except that the
stable orbits of the cosmic bodies originate from the prob-
abilistic frequent distributions in the gravitational field (the
field of the gravitational potential) of the attracting masses
they orbit.

It is obvious that the discrete distributions of experimen-
tal data, and also their connexion with the aforementioned
frequent distributions, are true for the microscales in the first
row. There in the microscales, physical quantities exist in the
boundary of their decay, thus the possibility of this solution
is due to the discrete origin of physical phenomena, which is
manifested in the microscales very much. On the other hand,
our conclusion are most probable true for a general case as
well: non-prime numbers can be represented as the ratios of
primes, so the aforementioned frequent distributions are still
true for even smallest intervals.

Are we lawful to claim that the parameters of physical or
other processes, which are described as above, have not only
the quantitative expression but also the probabilistic expres-
sion as just said before?

Should we, within the given dependencies which describe
some processes or phenomena, find out a possibility for the
prediction of the regions of the most probable solutions as
those most rational to the others, or for the prediction of those
intervals of numerical values, where the considered phenom-
enon processes most intense (all these not only in the mi-
croscales)?

If so, we get a possibility for solving the reverse prob-
lems, which target re-construction of the probabilistic distri-
bution of the primary experimental results on the basis of a
respective algorithm. This is related first of all to those prob-
lems, which are based on the discrete data (primes). This is,
for instance, industry or economics: the number of working
sections, workgroups, units of equipment, produced units, the
number of working personell, and so on.

If all that has been said above is true, and the results of
solving similar algorithms (in the case where the algorithms
are expressed by the functions whose arguments are more
than two) can bear not only a numerical meaning but also
a probabilistic meaning, this fact leads to important sequels.
There are many problems where numerous parameters are un-
known, or cannot be determined in exact. This is economics,
game theory, military, meteorology, and many others. In such

a case, given a respective algorithm, we could replace the un-
known parameters in it with the numbers taken in the respec-
tive interval then create frequent distributions thus obtaining
probabilistic solutions. Experimental tests are needed in this
direction.

Finally, I would like to attract attention of physicists to
this problem surveyed here. As is probable, this problem
draws that dialectic boundary where chaos meets order, and
chance meets regularity.
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The paper presents a fractal scaling model of a chain system of quantum harmonic
oscillators, that reproduces some systematic features in the mass distribution of hadrons,
leptons and gauge bosons.

1 Introduction

The origin of particle masses is one of the most important un-
solved problems of modern physics. Also the discrete char-
acter of the distribution of particle masses is untreated. In this
paper we won ’t discuss the current situation in the standard
theory. Based on a fractal scaling model [1] of natural oscil-
lations in chain systems of harmonic quantum oscillators we
will analyze the distributions of particles in dependence on
their masses to find out systematic features.

Fractal scaling models [2] of natural oscillations are not
based on any statements about the nature of the link or in-
teraction between the elements of the oscillating chain sys-
tem. Therefore the model statements are quite generally, what
opens a wide field of possible applications. Logarithmic scal-
ing is a well known property of inclusive distributions in high
energy particle reactions [3]. The quantity of secondary parti-
cles increases in dependence on the logarithm of the collision
energy.

In the framework of the standard theory, the electron is
stable because it ’s the least massive particle with non-zero
electric charge. Its decay would violate charge conservation.
The proton is stable, because it ’s the lightest baryon and the
baryon number is conserved. Therefore the proton is the most
important baryon, while the electron is the most important
lepton and the proton-to-electron mass ratio can be under-
stood as a fundamental physical constant. In the framework
of the standard theory, the W- and Z-bosons are elementary
particles that mediate the weak force. The rest masses of all
theses particles are measured with high precision. The masses
of other elementary or stable particles (quarks, neutrinos) are
unknown.

In the framework of our model [1], particles are resonance
states in chain systems of harmonic quantum oscillators and
the masses of fundamental particles are connected by the scal-
ing exponent 3

2 . For example, the proton-to-electron mass ra-
tio is 7 1

2 , but the W-boson-to-proton mass ratio is 4 1
2 . This

means, they are connected by the equation:

ln
(

mw

mp

)
= ln

(
mp

me

)
− 3 . (1)

Therefore the W-boson-to-electron mass ratio corre-
sponds to 4 1

2 + 7 1
2 = 12:

ln
(

mw

me

)
= 12. (2)

Already within the eighties the scaling exponent 3
2 was

found in the distribution of particle masses by Valery A.
Kolombet [4]. In addition, we have shown [2] that the masses
of the most massive celestial bodies in the Solar System are
connected by the same scaling exponent 3

2 . The scaling expo-
nent 3

2 arises as consequence of natural oscillations in chain
systems of similar harmonic oscillators [1]. If the natural fre-
quency of one harmonic oscillator is known, one can calculate
the complete fractal spectrum of natural frequencies of the
chain system, in which spectral nodes arise on the distance of
1 and 1

2 logarithmic units.
Near spectral nodes the spectral density reaches local

maximum and natural frequencies are distributed maximum
densely. The energy efficiency of natural oscillations is very
high. Therefore one can expect that spectral nodes represent
states of the oscillating chain system, which have the highest
degree of effectiveness. For this reason we suspect, that stable
particles correspond to main spectral nodes.

2 Methods

Based on the continued fraction method [5] we will search
the natural frequencies of a chain system of many similar har-
monic oscillators in this form:

f jk = f00 exp
(
Sjk

)
. (3)

f jk is a set of natural frequencies of a chain system of similar
harmonic oscillators, f00 is the natural oscillation frequency
of one oscillator, S jk is a set of finite continued fractions with
integer elements:

S jk = nj0 +
1

nj1+
1

nj2 + . . . + 1
njk

= [nj0; nj1, nj2, . . . , njk] , (4)

where nj0, nj1, nj2, . . ., njk ∈ Z, j = 0 , ∞. We investigate con-
tinued fractions (4) with a finite quantity of layers k, which
generate discrete spectra, because in this case all S jk represent
rational numbers. Therefore the free links nj0 and the partial
denominators nj1, nj2, . . ., njk can be interpreted as “quantum
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Particle Rest mass m, MeV/c2 [6] ln (m/m00) S d

electron (m00) 0.510998910 ± 0.000000013 0 [0] 0.000
proton 938.27203 ± 0.00008 7.515 [7; 2] 0.015
neutron 939.565346 ± 0.000023 7.517 [7; 2] 0.017
W-boson 80398 ± 25 11, 966 [12] −0.034
Z-boson 91187.6 ± 2.1 12.092 [12] 0,092

Table 1: The rest masses of well measured stable and fundamental particles and the S-values (4) of the nearest main spectral nodes for the
electron calibrated model spectrum. The deviation d = (ln (m/m00) − S ) is indicated.

numbers”. The present paper follows the Terskich [5] defi-
nition of a chain system, where the interaction between the
elements proceeds only in their movement direction. Model
spectra (4) are not only logarithmic-invariant, but also frac-
tal, because the discrete hyperbolic distribution of natural fre-
quencies f jk repeats itself on each spectral layer. The partial
denominators run through positive and negative integer val-
ues. Ranges of relative low spectral density (spectral gaps)
and ranges of relative high spectral density (spectral nodes)
arise on each spectral layer. In addition to the first spec-
tral layer, Fig. 1 shows the second spectral layer k = 2 with
|nj1|= 2 (logarithmic representation). Maximum spectral den-
sity areas (spectral nodes) arise automatically on the distance
of integer and half logarithmic units.

Fig. 1: The spectrum (4) on the first layer k = 1, for |nj0|= 0, 1 2, . . .
and |nj1|= 2, 3, 4, . . . and, in addition, the second spectral layer
k = 2, with |nj1|= 2 and |nj2|= 2, 3, 4, . . . (logarithmic representa-
tion).

Fractal scaling models of natural oscillations are not
based on any statements about the nature of the link or inter-
action between the elements of the oscillating chain system.
For this reason we assume that our model could be useful
also for the analysis of natural oscillations in chain systems
of harmonic quantum oscillators. We assume that in the case
of natural oscillations the amplitudes are low, the oscillations
are harmonic and the oscillation energy E depends only on
the frequency (h is the Planck constant):

E = h f . (5)

In the framework of our model (3) all particles are reso-
nances, in which to the oscillation energy (5) corresponds the
particle mass m:

m = f
h
c2 . (6)

In this connection the equation (6) means that quantum
oscillations generate mass. Under consideration of (3) now
we can create a fractal scaling model of the mass spectrum of
model particles. This mass spectrum is described by the same
continued fraction (4), for m00 = f00

h
c2 :

ln
(

m jk

m00

)
= [nj0; nj1, nj2, . . . , njk] . (7)

The frequency spectrum (4) and the mass spectrum (7)
are isomorphic. The mass spectrum (7) is fractal and con-
sequently it has a clear hierarchical structure, in which con-
tinued fractions (4) of the form [nj0] and [nj0; 2] define main
spectral nodes, as Fig. 1 shows.

3 Results

In the present paper we will compare the scaling model mass
spectrum (7) in the range of 100 KeV/c2 to 100 GeV/c2 with
the mass distribution of well-known particles — hadrons, lep-
tons and gauge bosons.

The model mass spectrum (7) is logarithmically symmet-
rical and the main spectral nodes arise on the distance of 1
and 1

2 logarithmic units, as fig. 1 shows. The mass m00 in
(7) corresponds to the main spectral node S00 = [0], because
ln (m00/m00) = 0. Let’s assume that m00 is the electron rest
mass 0.510998910(13) MeV/c2 [6]. In this case (7) describes
the mass spectrum that corresponds to the natural frequency
spectrum (4) of a chain system of vibrating electrons. Further
stable or fundamental model particles correspond to further
main spectral nodes of the form [nj0] and [nj0; 2]. Actually,
near the node [12] we find the W- and Z-bosons, but near the
node [7; 2] the proton and neutron masses, as Table 1 shows.

Theoretically, a chain system of vibrating protons gener-
ates the same spectrum (7). Also in this case, stable or fun-
damental model particles correspond to main spectral nodes
of the form [nj0] and [nj0; 2], but relative to the electron cal-
ibrated spectrum, they are moved by −7 1

2 logarithmic units.
Actually, if m00 is the proton rest mass 938.27203(8) MeV/c2

[6], then the electron corresponds to the node [−7;−2], but
the W- and Z-bosons correspond to node [4; 2].

Consequently, the core claims of our model don’t depend
on the selection of the calibration mass m00, if it is the rest
mass of a fundamental resonance state that corresponds to a
main spectral node. As mentioned already, this is why the
model spectrum (7) is logarithmically symmetrical.

Because a chain system of any similar harmonic oscil-
lators generates the spectrum (7), m00 can be much more
smaller than the electron mass. Only one condition has to
be fulfilled: m00 has to correspond to a main spectral node
of the model spectrum (7). On this background all particles
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Fig. 2: This histogram was built based on Table 2 and shows the
distribution of baryons (grey bars) and leptons (white bars) over 1

4
logarithmic units wide S-intervals in the range of the electron mass
(S = 0, white bar) to the W- and Z-bosons (S = 12, black bar).

Fig. 3: This histogram was built based on Table 3 and shows the
distribution of mesons (grey bars) and leptons (white bars) over 1

4
logarithmic units wide S-intervals in the range of the electron mass
(S = 0, white bar) to the W- and Z-bosons (S = 12, black bar).

can be interpreted as resonance states in a chain system of
harmonic quantum oscillators, in which the rest mass of each
single oscillator goes to zero. In the framework of our os-
cillation model this way can be understood the transition of
massless to massive states.

In our model massive particles don’t arise because of a
symmetry violation. Massive particles arise as resonance sta-
tes and their mass distribution is logarithmically symmetric.

Further we will investigate the distribution of hadrons
(baryons and mesons) in dependence on their rest masses. For
this we will split up the mass spectrum (7) into equal in size
logarithmic intervals and build histograms. To separate clear
the main spectral nodes [nj0] and [nj0; 2], we have to split up
the spectrum (7) into S-intervals of 1

4 logarithmic units.
Table 2 shows the measured masses of baryons, the cal-

culated S-intervals of 1
4 logarithmic units width and the cor-

responding calculated mass-intervals. Based on Table 2 a
histogram was built (Fig. 2) that shows the distribution of
baryons over the 1

4 logarithmic S-intervals. Based on Table 3,

Fig. 4: This histogram was built based on tables 2, 3, 4, 5 and shows
the distribution of baryons (dark grey bars), mesons (light grey bars)
and leptons (white bars) over 1

4 logarithmic units wide S-intervals
in the range of the electron mass (S = 0, white bar) to the W- and
Z-bosons (S = 12, black bar).

Figure 3 shows the distribution of mesons, but Figure 4 shows
the distribution of baryons, mesons, leptons and gauge bosons
over the 1

4 logarithmic S-intervals in the range of 0 to 12 log-
arithmic units.

All known baryons are distributed over an interval of
2 logarithmic units, of S = [7; 2] to S = [9; 2], as Figure 2
shows. Maximum of baryons occupy the logarithmic center
S = [8; 2] of this interval. Figure 3 shows that maximum of
mesons occupy the spectral node S = [8] that split up the in-
terval of S = [0] to S = [12] between the electron and the W-
and Z-bosons proportionally of 2

3 .
The mass distribution of leptons isn’t different of the

baryon and meson mass distributions, but follows them, as
Figure 4 shows. The mass of the most massive lepton (tauon)
is near the maximum of the baryon and meson mass distribu-
tions, as Figures 2–4 show.

4 Resume

In the framework of the present model discrete scaling mass
distributions arise as result of natural oscillations in chain sys-
tems of harmonic quantum oscillators. The observable mass
distributions of baryons, mesons, leptons and gauge bosons
are connected by the model scaling exponent 2

3 . In addition,
with high precision, the masses of known fundamental and
stable particles are connected by the model scaling exponent
3
2 . Presumably, the complete mass distribution of particles is
logarithmically symmetric and, possibly, massive particles
don’t arise because of a symmetry violation, but as resonance
states in chain systems of quantum oscillators.
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Table 2. The measured masses of baryons [6], the calculated S-intervals of
1
4 logarithmic units width and the corresponding calculated mass-intervals.

baryons measured mass mass interval S-interval S
MeV/c2 MeV/c2

N-baryons, S = 0, I = 1/2
proton 938.27203 ±

0.00008
815 – 1047 7.375 – 7.625 [7; 2]

neutron 939.565346 ±
0.000023

815 – 1047 7.375 – 7.625 [7; 2]

N(1440) 1420 – 1470 1344 – 1726 7.875 – 8.125 [8]
N(1520) 1515 – 1525 1344 – 1726 7.875 – 8.125 [8]
N(1650) 1645 – 1670 1344 – 1726 7.875 – 8.125 [8]
N(1675) 1670 – 1680 1344 – 1726 7.875 – 8.125 [8]
N(1680) 1680 – 1690 1344 – 1726 7.875 – 8.125 [8]
N(1710) 1680 – 1740 1344 – 1726 7.875 – 8.125 [8]
N(1720) 1700 – 1750 1344 – 1726 7.875 – 8.125 [8]
N(2190) 2100 – 2200 1726 – 2216 8.125 – 8.375 [8; 4]
N(2220) 2200 – 2300 2216 – 2846 8.375 – 8.625 [8; 2]
N(2250) 2200 – 2350 2216 – 2846 8.375 – 8.625 [8; 2]
N(2600) 2550 – 2750 2216 – 2846 8.375 – 8.625 [8; 2]
∆-baryons, S = 0, I = 1/2
∆(1232) 1231 – 1233 1047 – 1344 7.625 – 7.875 [8;−4]
∆(1600) 1550 – 1700 1344 – 1726 7.875 – 8.125 [8]
∆(1620) 1600 – 1660 1344 – 1726 7.875 – 8.125 [8]
∆(1700) 1670 – 1750 1344 – 1726 7.875 – 8.125 [8]
∆(1905) 1865 – 1915 1726 – 2216 8.125 – 8.375 [8; 4]
∆(1910) 1870 – 1920 1726 – 2216 8.125 – 8.375 [8; 4]
∆(1920) 1900 – 1970 1726 – 2216 8.125 – 8.375 [8; 4]
∆(1930) 1900 – 2020 1726 – 2216 8.125 – 8.375 [8; 4]
∆(1950) 1915 – 1950 1726 – 2216 8.125 – 8.375 [8; 4]
∆(2420) 2300 – 2500 2216 – 2846 8.375 – 8.625 [8; 2]
Λ-baryons, S = − 1, I = 0
Λ 1115.683 ± 0.006 1047 – 1344 7.625 – 7.875 [8;−4]
Λ(1405) 1406 ± 4 1344 – 1726 7.875 – 8.125 [8]
Λ(1520) 1519.5 ± 1.0 1344 – 1726 7.875 – 8.125 [8]
Λ(1600) 1560 – 1700 1344 – 1726 7.875 – 8.125 [8]
Λ(1670) 1660 – 1680 1344 – 1726 7.875 – 8.125 [8]
Λ(1690) 1685 – 1695 1344 – 1726 7.875 – 8.125 [8]
Λ(1800) 1720 – 1850 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(1810) 1750 – 1850 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(1820) 1815 – 1825 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(1830) 1810 – 1830 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(1890) 1850 – 1910 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(2100) 2090 – 2110 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(2110) 2090 – 2140 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(2350) 2340 – 2370 2216 – 2846 8.375 – 8.625 [8; 2]
Σ-baryons, S = − 1, I = 1
Σ+ 1189.37 ± 0.07 1047 – 1344 7.625 – 7.875 [8;−4]
Σ0 1192.642 ± 0.024 1047 – 1344 7.625 – 7.875 [8;−4]
Σ− 1197.449 ± 0.030 1047 – 1344 7.625 – 7.875 [8;−4]
Σ(1385)+ 1382.8 ± 0.4 1344 – 1726 7.875 – 8.125 [8]
Σ(1385)0 1383.7 ± 1.0 1344 – 1726 7.875 – 8.125 [8]
Σ(1385)− 1387.2 ± 0.5 1344 – 1726 7.875 – 8.125 [8]
Σ(1660) 1630 – 1690 1344 – 1726 7.875 – 8.125 [8]
Σ(1670) 1665 – 1685 1344 – 1726 7.875 – 8.125 [8]
Σ(1750) 1730 – 1800 1726 – 2216 8.125 – 8.375 [8; 4]
Σ(1775) 1770 – 1780 1726 – 2216 8.125 – 8.375 [8; 4]
Σ(1915) 1900 – 1935 1726 – 2216 8.125 – 8.375 [8; 4]
Σ(1940) 1900 – 1950 1726 – 2216 8.125 – 8.375 [8; 4]
Σ(2030) 2025 – 2040 1726 – 2216 8.125 – 8.375 [8; 4]
Σ(2250) 2210 – 2280 2216 – 2846 8.375 – 8.625 [8; 2]
Ξ-baryons, S = − 2, I = 1/2
Ξ0 1314.86 ± 0.20 1047 – 1344 7.625 – 7.875 [8;−4]
Ξ− 1321.71 ± 0.07 1047 – 1344 7.625 – 7.875 [8;−4]
Ξ(1530)0 1531.80 ± 0.32 1344 – 1726 7.875 – 8.125 [8]
Ξ(1530)− 1535.0 ± 0.6 1344 – 1726 7.875 – 8.125 [8]
Ξ(1690) 1690 ± 10 1344 – 1726 7.875 – 8.125 [8]
Ξ(1820) 1823 ± 5 1726 – 2216 8.125 – 8.375 [8; 4]
Ξ(1950) 1950 ± 15 1726 – 2216 8.125 – 8.375 [8; 4]
Ξ(2030) 2025 ± 5 1726 – 2216 8.125 – 8.375 [8; 4]
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baryons measured mass mass interval S-interval S
MeV/c2 MeV/c2

Ω-baryons, S = − 3, I = 0
Ω− 1672.45 ± 0.29 1344 – 1726 7.875 – 8.125 [8]
Ω(2250)− 2252 ± 9 2216 – 2846 8.375 – 8.625 [8; 2]
charmed baryons, C = + 1
Λ+

c 2286.46 ± 0.14 2216 – 2846 7.375 – 8.625 [8; 2]
Λc(2595)+ 2595.4 ± 0.6 2216 – 2846 7.375 – 8.625 [8; 2]
Λc(2625)+ 2628.1 ± 0.6 2216 – 2846 7.375 – 8.625 [8; 2]
Λc(2880)+ 2881.53 ± 0.35 2846 – 3654 8.625 – 8.875 [9;−4]
Λc(2940)+ 2939.3 ± 1.5 2846 – 3654 8.625 – 8.875 [9;−4]

Σc(2455)++ 2454.02 ± 0.18 2216 – 2846 8.375 – 8.625 [8; 2]
Σc(2455)+ 2452.9 ± 0.4 2216 – 2846 8.375 – 8.625 [8; 2]
Σc(2455)0 2453.76 ± 0.18 2216 – 2846 8.375 – 8.625 [8; 2]

Σc(2801)++ 2801 ± 6 2216 – 2846 8.375 – 8.625 [8; 2]
Σc(2800)+ 2792 ± 14 2216 – 2846 8.375 – 8.625 [8; 2]
Σc(2800)0 2802 ± 7 2216 – 2846 8.375 – 8.625 [8; 2]

Ξ+
c 2467.8 ± 0.6 2216 – 2846 8.375 – 8.625 [8; 2]

Ξ0
c 2470.88 ± 0.8 2216 – 2846 8.375 – 8.625 [8; 2]

Ξ
′+
c 2575.6 ± 3.1 2216 – 2846 8.375 – 8.625 [8; 2]

Ξ
′0
c 2577.9 ± 2.9 2216 – 2846 8.375 – 8.625 [8; 2]

Ξc(2645)+ 2645.9 ± 0.6 2216 – 2846 8.375 – 8.625 [8; 2]
Ξc(2645)0 2645.9 ± 0.5 2216 – 2846 8.375 – 8.625 [8; 2]

Ξc(2790)+ 2789.1 ± 3.2 2216 – 2846 8.375 – 8.625 [8; 2]
Ξc(2790)0 2791.8 ± 3.3 2216 – 2846 8.375 – 8.625 [8; 2]

Ξc(2815)+ 2816.6 ± 0.9 2216 – 2846 8.375 – 8.625 [8; 2]
Ξc(2815)0 2819.6 ± 1.2 2216 – 2846 8.375 – 8.625 [8; 2]

Ξc(2980)+ 2971.4 ± 3.3 2846 – 3654 8.625 – 8.875 [9;−4]
Ξc(2880)0 2968.0 ± 2.6 2846 – 3654 8.625 – 8.875 [9;−4]

Ξc(3080)+ 3077.0 ± 0.4 2846 – 3654 8.625 – 8.875 [9;−4]
Ξc(3080)0 3079.9 ± 1.4 2846 – 3654 8.625 – 8.875 [9;−4]

Ω0
c 2695.2 ± 1.7 2216 – 2846 8.375 – 8.625 [8; 2]

Ωc(2770)0 2765.9 ± 2.0 2216 – 2846 8.375 – 8.625 [8; 2]
bottom baryons, B = − 1
Λ0

b 5620.2 ± 1.6 4692 – 6025 9.125 – 9.375 [9; 4]

Σ+
b 5807.8 ± 2.7 4692 – 6025 9.125 – 9.375 [9; 4]

Σ−b 5815.2 ± 2.0 4692 – 6025 9.125 – 9.375 [9; 4]

Σ∗+b 5829.0 ± 3.4 4692 – 6025 9.125 – 9.375 [9; 4]
Σ∗−b 5836.4 ± 2.8 4692 – 6025 9.125 – 9.375 [9; 4]

Ξb 5792.4 ± 3.0 4692 – 6025 9.125 – 9.375 [9; 4]
Σ−b 6165 ± 16 6025 – 7736 9.375 – 9.625 [9; 2]

Table 3. The measured masses of mesons [6], the calculated S-intervals of
1
4 logarithmic units width and the corresponding calculated mass-intervals.

mesons measured mass mass interval S-interval S
MeV/c2 MeV/c2

light unflavored mesons S = C = B = 0
π± 139.57018 ±

0.00035
110 – 142 5.375 – 5.625 [5; 2]

π0 134.9766±0.0006 110 – 142 5.375 – 5.625 [5; 2]
η 547.853 ± 0.024 495 – 635 6.875 – 7.125 [7]
ρ(770) 775.49 ± 0.34 635 – 815 7.125 – 7.375 [7; 4]
ω(782) 782.65 ± 0.12 635 – 815 7.125 – 7.375 [7; 4]
ρ′(958) 957.78 ± 0.06 815 – 1047 7.375 – 7.626 [7; 2]
f0(980) 980 ± 10 815 – 1047 7.375 – 7.626 [7; 2]
a0(980) 980 ± 20 815 – 1047 7.375 – 7.626 [7; 2]

mesons measured mass mass interval S-interval S
MeV/c2 MeV/c2

φ(1020) 1019.455 ± 0.020 815 – 1047 7.375 – 7.626 [7; 2]
a0(980) 980 ± 20 815 – 1047 7.375 – 7.626 [7; 2]
φ(1020) 1019.455 ± 0.020 815 – 1047 7.375 – 7.626 [7; 2]
h1(1170) 1170 ± 20 1047 – 1344 7.626 – 7.875 [8;−4]
b1(1235) 1229.5 ± 3.2 1047 – 1344 7.626 – 7.875 [8;−4]
a1(1260) 1230 ± 40 1047 – 1344 7.626 – 7.875 [8;−4]
f2(1270) 1275.1 ± 1.2 1047 – 1344 7.626 – 7.875 [8;−4]
f1(1285) 1281.8 ± 0.6 1047 – 1344 7.626 – 7.875 [8;−4]
η(1295) 1294 ± 4 1047 – 1344 7.626 – 7.875 [8;−4]
h1(1170) 1170 ± 20 1047 – 1344 7.626 – 7.875 [8;−4]
b1(1235) 1229.5 ± 3.2 1047 – 1344 7.626 – 7.875 [8;−4]
a1(1260) 1230 ± 40 1047 – 1344 7.626 – 7.875 [8;−4]
f2(1270) 1275.1 ± 1.2 1047 – 1344 7.626 – 7.875 [8;−4]
f1(1285) 1281.8 ± 0.6 1047 – 1344 7.626 – 7.875 [8;−4]
η(1295) 1294 ± 4 1047 – 1344 7.626 – 7.875 [8;−4]
π(1300) 1300 ± 100 1047 – 1344 7.626 – 7.875 [8;−4]
a2(1320) 1318.3 ± 0.6 1047 – 1344 7.626 – 7.875 [8;−4]
f0(1370) 1200 – 1500 1344 – 1726 7.875 – 8.125 [8]
π1(1400) 1351 ± 30 1344 – 1726 7.875 – 8.125 [8]
η(1450) 1409.8 ± 2.5 1344 – 1726 7.875 – 8.125 [8]
f1(1420) 1426.4 ± 0.9 1344 – 1726 7.875 – 8.125 [8]
ω(1400) 1400 – 1450 1344 – 1726 7.875 – 8.125 [8]
a0(1450) 1474 ± 19 1344 – 1726 7.875 – 8.125 [8]
ρ(1450) 1465 ± 25 1344 – 1726 7.875 – 8.125 [8]
η(1475) 1476 ± 4 1344 – 1726 7.875 – 8.125 [8]
f0(1500) 1505 ± 6 1344 – 1726 7.875 – 8.125 [8]
f2(1525) 1525 ± 5 1344 – 1726 7.875 – 8.125 [8]
π1(1600) 1662 ± 15 1344 – 1726 7.875 – 8.125 [8]
η2(1645) 1617 ± 5 1344 – 1726 7.875 – 8.125 [8]
ω(1650) 1670 ± 30 1344 – 1726 7.875 – 8.125 [8]
ω3(1670) 1667 ± 4 1344 – 1726 7.875 – 8.125 [8]
π2(1670) 1672.4 ± 3.2 1344 – 1726 7.875 – 8.125 [8]
φ(1680) 1680 ± 20 1344 – 1726 7.875 – 8.125 [8]
ρ3(1690) 1688.8 ± 2.1 1344 – 1726 7.875 – 8.125 [8]
ρ(1700) 1720 ± 20 1344 – 1726 7.875 – 8.125 [8]
f0(1710) 1720 ± 6 1344 – 1726 7.875 – 8.125 [8]
π(1800) 1816 ± 14 1726 – 2216 8.125 – 8.375 [8; 4]
φ3(1850) 1854 ± 7 1726 – 2216 8.125 – 8.375 [8; 4]
π2(1880) 1895 ± 16 1726 – 2216 8.125 – 8.375 [8; 4]
f2(1950) 1944 ± 12 1726 – 2216 8.125 – 8.375 [8; 4]
f2(2100) 2011 ± 80 1726 – 2216 8.125 – 8.375 [8; 4]
a4(2040) 2001 ± 10 1726 – 2216 8.125 – 8.375 [8; 4]
f4(2050) 2018 ± 11 1726 – 2216 8.125 – 8.375 [8; 4]
f2(2300) 2297 ± 28 2216 – 2846 8.375 – 8.625 [8; 2]
f2(2340) 2339 ± 60 2216 – 2846 8.375 – 8.625 [8; 2]
strange mesons S = ± 1C = B = 0
K± 493.677 ± 0.016 385 – 495 6.625 – 6.875 [7;−4]
K0 497.614 ± 0.024 385 – 495 6.625 – 6.875 [7;−4]
K∗(892)± 891.66 ± 0.26 815 – 1047 7.375 – 7.625 [7; 2]
K∗(892)0 896.00 ± 0.25 815 – 1047 7.375 – 7.625 [7; 2]
K1(1270) 1272 ± 7 1047 – 1344 7.625 – 7.875 [8;−4]
K1(1400) 1403 ± 7 1344 – 1726 7.875 – 8.125 [8]
K∗(1410) 1414 ± 15 1344 – 1726 7.875 – 8.125 [8]
K∗0 (1430) 1425 ± 50 1344 – 1726 7.875 – 8.125 [8]
K∗2 (1430)± 1425.6 ± 1.5 1344 – 1726 7.875 – 8.125 [8]
K∗2 (1430)0 1432.4 ± 1.3 1344 – 1726 7.875 – 8.125 [8]
K∗(1680) 1717 ± 27 1344 – 1726 7.875 – 8.125 [8]
K2(1770)± 1773 ± 8 1726 – 2216 8.125 – 8.375 [8; 4]
K∗3 (1780) 1776 ± 7 1726 – 2216 8.125 – 8.375 [8; 4]
K2(1820) 1816 ± 13 1726 – 2216 8.125 – 8.375 [8; 4]
K∗4 (2045) 2045 ± 9 1726 – 2216 8.125 – 8.375 [8; 4]
charmed mesons S = ± 1
D± 1869.62 ± 0.20 1726 – 2216 8.125 – 8.375 [8; 4]
D0 1864.84 ± 0.17 1726 – 2216 8.125 – 8.375 [8; 4]
D∗(2007)0 2006.97 ± 0.19 1726 – 2216 8.125 – 8.375 [8; 4]
D∗(2010)± 2010.27 ± 0.17 1726 – 2216 8.125 – 8.375 [8; 4]
D1(2420)0 2423.3 ± 1.3 2216 – 2846 8.375 – 8.625 [8; 2]
D8

2(2460)0 2461.1 ± 1.6 2216 – 2846 8.375 – 8.625 [8; 2]
D8

2(2460)± 2460.1 ± 3.5 2216 – 2846 8.375 – 8.625 [8; 2]
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mesons measured mass mass interval S-interval S
MeV/c2 MeV/c2

charmed, strange mesons C = S = ± 1
D±S 1968.49 ± 0.34 1726 – 2216 8.125 – 8.375 [8; 4]
D∗±S 2112.3 ± 0.5 1726 – 2216 8.125 – 8.375 [8; 4]
D∗S 0(2317)± 2317.8 ± 0.6 2216 – 2846 8.375 – 8.625 [8; 2]
DS 1(2460)± 2459.6 ± 0.6 2216 – 2846 8.375 – 8.625 [8; 2]
DS 1(2536)± 2535.35 ± 0.34 2216 – 2846 8.375 – 8.625 [8; 2]
DS 2(2573)± 2572.6 ± 0.9 2216 – 2846 8.375 – 8.625 [8; 2]
bottom mesons B = ± 1
B± 5279.17 ± 0.29 4692 – 6025 9.125 – 9.375 [9; 4]
B0 5279.50 ± 0.3 4692 – 6025 9.125 – 9.375 [9; 4]
B∗ 5325.1 ± 0.5 4692 – 6025 9.125 – 9.375 [9; 4]
B1(5721)0 5723.4 ± 2.0 4692 – 6025 9.125 – 9.375 [9; 4]
B∗2(5747)0 5743 ± 5 4692 – 6025 9.125 – 9.375 [9; 4]
bottom, strange mesons B = ± 1, S = ± 1
B0

S 5366.3 ± 0.6 4692 – 6025 9.125 – 9.375 [9; 4]
B∗S 5415.4 ± 1.4 4692 – 6025 9.125 – 9.375 [9; 4]
bottom, charmed mesons B = S = ± 1
B±c 6277 ± 6 6025 – 7736 9.375 – 9.625 [9; 2]
cc-mesons B = S = ± 1
ηc(1S ) 2980.5 ± 1.2 2846 – 3654 8.625 – 8.875 [9;−4]
J/psi(1S ) 3096.916 ±

0.011
2846 – 3654 8.625 – 8.875 [9;−4]

Xc0(1P) 3414.75 ± 0.31 2846 – 3654 8.625 – 8.875 [9;−4]
Xc1(1P) 3510.66 ± 0.07 2846 – 3654 8.625 – 8.875 [9;−4]
hc(1P) 3525.67 ± 0.32 2846 – 3654 8.625 – 8.875 [9;−4]
Xc2(1P) 3556.20 ± 0.09 2846 – 3654 8.625 – 8.875 [9;−4]
ηc(2S ) 3637 ± 4 2846 – 3654 8.625 – 8.875 [9;−4]
ψ(2S ) 3686.09 ± 0.04 3654 – 4692 8.875 – 9.125 [9]
ψ(3770) 3772.92 ± 0.35 3654 – 4692 8.875 – 9.125 [9]
X(3872) 3872.3 ± 0.8 3654 – 4692 8.875 – 9.125 [9]
X(3945) 3916 ± 6 3654 – 4692 8.875 – 9.125 [9]
ψ(4400) 4039 ± 1 3654 – 4692 8.875 – 9.125 [9]
ψ(4160) 4153 ± 3 3654 – 4692 8.875 – 9.125 [9]
ψ(4260) 4263 ± 9 3654 – 4692 8.875 – 9.125 [9]
ψ(4415) 4421 ± 4 3654 – 4692 8.875 – 9.125 [9]
bb-mesons
Y(1S ) 9460.30 ± 0.26 7736 – 9933 9.625 – 9.875 [10;−4]
χb0(1P) 9859.44 ± 0.42 7736 – 9933 9.625 – 9.875 [10;−4]
χb1(1P) 9892.78 ± 0.26 7736 – 9933 9.625 – 9.875 [10;−4]
χb2(1P) 9912.21 ± 0.26 7736 – 9933 9.625 – 9.875 [10;−4]
Y(2S ) 10023.26 ±

0.31
9933 – 12754 9.875 – 10.125 [10]

χb0(2P) 10232.5 ± 0.4 9933 – 12754 9.875 – 10.125 [10]
χb1(2P) 10255.46 ±

0.22
9933 – 12754 9.875 – 10.125 [10]

χb2(2P) 10268.65 ±
0.22

9933 – 12754 9.875 – 10.125 [10]

Y(3S ) 10355.2 ± 0.5 9933 – 12754 9.875 – 10.125 [10]
Y(4S ) 10579.4 ± 1.2 9933 – 12754 9.875 – 10.125 [10]
Y(10860) 10865 ± 8 9933 – 12754 9.875 – 10.125 [10]
Y(11020) 11019 ± 8 9933 – 12754 9.875 – 10.125 [10]

Table 4. The measured masses of leptons [6], the calculated S-intervals of 1
4

logarithmic units width and the corresponding calculated mass-intervals.

leptons measured mass mass interval S-interval S
MeV/c2 MeV/c2

electron 0.510998910 ± 0.000000013 0 0 [0]
µ 105.658367 ± 0.000004 86 – 110 5.125 – 5.375 [5; 4]
τ 1776.84 ± 0.17 1726 – 2216 8.125 – 8.375 [8; 4]

Table 5. The measured masses of gauge bosons [6], the calculated S-
intervals of 1

4 logarithmic units width and the corresponding calculated
mass-intervals.

gauge bosons measured mass mass interval S-interval S
MeV/c2 MeV/c2

W 80398 ± 25 73395 – 94241 11.875 – 12.125 [12]
Z 91187, 6 ± 2.1 73395 – 94241 11.875 – 12.125 [12]
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In this article, we find out some analytical and numerical solutions to the problem of
barrier tunneling for cluster deuterium, in particular using Langevin method to solve the
time-independent Schrödinger equation.

1 Introduction

One of the most reported problem related to the CMNS (con-
densed matter nuclear science, or LENR), is the low probabil-
ity of Coulomb barrier tunneling. It is supposed by standard
physics that tunneling is only possible at high enough energy
(by solving Gamow function).

However, a recent study by Takahashi (2008, 2009) and
experiment by Arata etc. (2008) seem to suggest that it is
not impossible to achieve a working experiment to create the
CMNS process.

In accordance with Takahashi’s EQPET/TSC model
[1–3], the proposed study will find out some analytical and
numerical solutions to the problem of barrier tunneling for
cluster deuterium, in particular using Langevin method to
solve the time-independent Schrödinger equation. It is hoped
that the result can answer some of these mysteries.

One of the results of recent experiments is the lack of
signature of D-D reaction as in standard fusion process; this
is part of the reason to suggest that D-D fusion doesn’t take
place [1]. However, Takahashi suggests new possible reaction
in the context of cluster deuterium, called 4D fusion [1–3],
this mechanism seems to enable reaction at low temperature
(CMNS). His result (2009) can be summarized as follows:

“The ultimate condensation is possible only when the
double Platonic symmetry of 4D/TSC is kept in its dy-
namic motion. The sufficient increase (super screen-
ing) of barrier factor is also only possible as far as the
Platonic symmetric 4D/TSC system is kept. Therefore,
there should be always 4 deuterons in barrier penetra-
tion and fusion process, so that 4d simultaneous fusion
should take place predominantly. The portion of 2D
(usual) fusion rate is considered to be negligible”.

In this respect it can be noted that there are recent reports
suggesting that hydrogen cluster can get reaction at very low
temperature, forming the condition of superfluidity [4]. This
seems to happen too in the context of Takahashi TSC conden-
sate dynamics. Other study worth mentioning here is one that
discussed molecular chessboard dynamics of deuterium [5].

The difference between this proposed study and recent
work of Takahashi based on Langevin equation for clus-
ter deuterium is that we focus on solution of Schrödinger-

Langevin equation [6, 7] with PT-Symmetric periodic poten-
tial as we discussed in the preceding paper and its Gamow
integral. The particular implications of this study to deuteron
cluster will be discussed later.

Another differing part from the previous study is that in
this study we will also seek clues on possibility to consider
this low probability problem as an example of self-organized
criticality phenomena. In other words, the time required
before CMNS process can be observed is actually the time
required to trigger the critical phenomena. To our present
knowledge, this kind of approach has never been studied be-
fore, although self-organized criticality related to Schrödin-
ger equation approximation to Burger’s turbulence has been
discussed in Boldyrev [8]. Nonetheless there is recent study
suggesting link between diffusion process and the self-orga-
nized criticality phenomena.

The result of this study will be useful to better understand-
ing of anomalous phenomena behind Condensed matter nu-
clear science.

2 Schrödinger-Langevin equation

The Langevin equation is considered as equivalent and there-
fore has often been used to solve the time-independent Schrö-
dinger, in particular to study molecular dynamics.

Here we only cite the known Langevin equation [3, p. 29]

dXt = pt dt , (1)

dp = −∂xλ0(Xt)dt + K ptdt + dWt
√

2T K . (2)

Takahashi and Yabuuchi also used quite similar form of
the stochastic non-linear Langevin equation [7] in order to
study the dynamics of TSC condensate motion.

3 Schrödinger equation with PT-symmetric periodic po-
tential

Consider a PT-Symmetric potential of the form [9, 10]

V = K1 sin(br) , (3)

where

b =
|m|√−i − 1

. (4)
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Hence, the respective Schrödinger equation with this po-
tential can be written as follows

Ψ′′(r) = −k2(r) Ψ(r) , (5)

where

k(r) =
2m
~2 [E − V(r)] =

2m
~2

[
E − k1 sin(br)

]
. (6)

For the purpose of finding Gamow function, in area near
x=a we can choose linear approximation for Coulomb poten-
tial, such that

V(x) − E = −α(x − a) . (7)

Substitution to Schrödinger equation yields

Ψ′′ +
2mα
~2 (x − a) Ψ = 0 , (8)

which can be solved by virtue of Airy function.

4 Gamow integral

In principle, the Gamow function can be derived as foll-
ows [11]

d2y

dx2 + P(x)y = 0 . (9)

Separating the variables and integrating, yields
∫

d2y

y
=

∫
−P(x) dx (10)

or

ydy = exp
(
−

∫
P(x) dx + C

)
. (11)

To find solution of Gamow function, therefore the integral
below must be evaluated:

γ =

√
2m
~2 [V(x) − E] . (12)

For the purpose of analysis we use the same data from
Takahashi’s EQPET model [3,12], i.e. b = 5.6 fm, and r0 = 5
fm. Here we assume that E = Vb = 0.257 MeV. Therefore
the integral becomes

Γ = 0.218
√

m
∫ b

r0

√
k1 sin(br) − 0.257 dr . (13)

By setting boundary condition (either one or more of
these conditions)

(a) at r = 0 then V0 = −Vb − 0.257MeV;

(b) at r = 5.6 f m then V1 = k1 sin(br)−0.257 = 0.257MeV,
therefore, one can find estimate of m;

(c) Using this procedure solution of the equation (11) can
be found.

The interpretation of this Gamow function is the tunnel-
ing rate of the fusion reaction of cluster of deuterium (for the
given data) corresponding to Takahashi data [12], with the
difference that here we consider a PT-symmetric periodic po-
tential.

The numerical study will be performed with standard
package like Maxima etc. Some plausible implications in
cosmology modeling should also be discussed in the future.

Submitted on January 20, 2010 / Accepted on March 04, 2010

References
1. Takahashi A. Basics of the deuteron-cluster dynamics by Langevin

equation. In: Low-Energy Nuclear Reactions and New Energy Tech-
nologies Sourcebook, v. 2, 2010, Chapter 11, 193–217, (ACS Sympo-
sium Series, v. 1029).

2. Takahashi A. and Yabuuchi N. Study on 4D/TSC condensate motion us-
ing non-linear Langevin equation. In: Low-Energy Nuclear Reactions
Sourcebook, 2008, Chapter 4, 57–83 (ACS Symposium Series, v. 998).

3. Takahashi A. Dynamic mechanism of TSC condensation motion. Proc.
Intern. Conf. of Condensed Matter Nuclear Science, Washington DC,
2008.

4. Mezzacapo F. and Boninsegni M. Structure, superfluidity and quantum
melting of hydrogen clusters. arXiv: cond-mat/0611775.

5. Calvert C.R., et al. Quantum chessboards in the deuterium molecular
ion. arXiv: quantph/08062253.

6. Zsepessy A. Stochastic and deterministic molecular dynamics de-
rived from the time independent Schrödinger equation. arXiv: cond-
mat/0812.4338.

7. Rusov V.D. et al. Schrödinger-Chetaev equation. arXiv: 0810.2860.

8. Boldyrev S. arXiv: hep-th/9610080.

9. Christianto V. and Smarandache F. On PT-symmetric periodic potential,
quark confinement, and other impossible pursuits. Progress in Physics,
2009, v. 1.

10. Christianto V. and Smarandache F. Numerical solution of biquaternion
radical Klein-Gordon equation. Progress in Physics, 2008, v. 1; also in:
Smarandache F. and Christianto V. (eds.) Hadron models and related
new energy issues. InfoLearnQuest Publ., USA, 2008.

11. Coddington E. A. and Levinson N. Theory of ordinary differential equa-
tions. Mc Graw-Hill, New York, 1955.

12. Takahashi A. Summary of condensed matter nuclear reactions. J. Cond.
Matter Nuclear Science, 2007, v. 1.

68 V. Christianto and F. Smarandache. Schrödinger-Langevin Equation and its Application to Deuteron Cluster



July, 2010 PROGRESS IN PHYSICS Volume 3

Smarandache’s Cevian Triangle Theorem in The Einstein Relativistic Velocity
Model of Hyperbolic Geometry

Cătălin Barbu
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In this note, we present a proof of Smarandache’s cevian triangle hyperbolic theorem in
the Einstein relativistic velocity model of hyperbolic geometry.

1 Introduction

Hyperbolic geometry appeared in the first half of the 19th cen-
tury as an attempt to understand Euclid’s axiomatic basis for
geometry. It is also known as a type of non-Euclidean geom-
etry, being in many respects similar to Euclidean geometry.
Hyperbolic geometry includes such concepts as: distance, an-
gle and both of them have many theorems in common.There
are known many main models for hyperbolic geometry, such
as: Poincaré disc model, Poincaré half-plane, Klein model,
Einstein relativistic velocity model, etc. The hyperbolic ge-
ometry is a non-Euclidian geometry. Here, in this study, we
present a proof of Smarandache’s cevian triangle hyperbolic
theorem in the Einstein relativistic velocity model of hyper-
bolic geometry. Smarandache’s cevian triangle theorem states
that if A1B1C1 is the cevian triangle of point P with respect to
the triangle ABC, then PA

PA1
· PB

PB1
· PC

PC1
= AB·BC·CA

A1 B·B1C·C1A [1].
Let D denote the complex unit disc in complex z - plane,

i.e.
D = {z ∈ C : |z| < 1}.

The most general Möbius transformation of D is

z→ eiθ z0 + z
1 + z0z

= eiθ(z0 ⊕ z) ,

which induces the Möbius addition ⊕ in D, allowing the Mö-
bius transformation of the disc to be viewed as a Möbius left
gyrotranslation

z→ z0 ⊕ z =
z0 + z
1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D,
and z0 is the complex conjugate of z0. Let Aut(D,⊕) be the
automorphism group of the grupoid (D,⊕). If we define

gyr : D × D→ Aut(D,⊕) , gyr[a, b] =
a ⊕ b
b ⊕ a

=
1 + ab
1 + ab

,

then is true gyrocommutative law

a ⊕ b = gyr[a, b](b ⊕ a) .

A gyrovector space (G,⊕,⊗) is a gyrocommutative gy-
rogroup (G,⊕) that obeys the following axioms:

(1) gyr[u, v]a·gyr[u, v]b = a·b for all points a,b,u, v ∈ G;

(2) G admits a scalar multiplication, ⊗, possessing the fol-
lowing properties. For all real numbers r, r1, r2 ∈ R and
all points a ∈ G:

G1 1 ⊗ a = a,

G2 (r1 + r2) ⊗ a = r1 ⊗ a ⊕ r2 ⊗ a,

G3 (r1r2) ⊗ a = r1 ⊗ (r2 ⊗ a),

G4 |r|⊗a
‖r⊗a‖ = a

‖a‖ ,

G5 gyr[u, v](r ⊗ a) = r ⊗ gyr[u, v]a,

G6 gyr[r1 ⊗ v, r1 ⊗ v] = 1;

(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖
of onedimensional “vectors”

‖G‖ = {± ‖a‖ : a ∈ G} ⊂ R
with vector addition ⊕ and scalar multiplication ⊗, such
that for all r ∈ R and a,b ∈ G:

G7 ‖r ⊗ a‖ = |r| ⊗ ‖a‖,
G8 ‖a ⊕ b‖ 6 ‖a‖ ⊕ ‖b‖.

Theorem 1 The Hyperbolic Theorem of Ceva in Einstein
Gyrovector Space Let a1, a2, and a3 be three non-gyrocolli-
near points in an Einstein gyrovector space (Vs,⊕,⊗). Fur-
thermore, let a123 be a point in their gyroplane, which is off

the gyrolines a1a2, a2a3, and a3a1. If a1a123 meets a2a3 at a23,
etc., then

γ	a1⊕a12 ‖	a1 ⊕ a12‖
γ	a2⊕a12 ‖	a2 ⊕ a12‖ ·

γ	a2⊕a23 ‖	a2 ⊕ a23‖
γ	a3⊕a23 ‖	a3 ⊕ a23‖ ×

× γ	a3⊕a13 ‖	a3 ⊕ a13‖
γ	a1⊕a13 ‖	a1 ⊕ a13‖ = 1,

(here γv = 1√
1− ‖v‖2

s2

is the gamma factor). (See [2, pp. 461].)

Theorem 2 The Hyperbolic Theorem of Menelaus in Ein-
stein Gyrovector Space Let a1, a2, and a3 be three non-gyro-
collinear points in an Einstein gyrovector space (Vs,⊕,⊗). If
a gyroline meets the sides of gyrotriangle a1a2a3 at points
a12, a13, a23, then

γ	a1⊕a12 ‖	a1 ⊕ a12‖
γ	a2⊕a12 ‖	a2 ⊕ a12‖ ·

γ	a2⊕a23 ‖	a2 ⊕ a23‖
γ	a3⊕a23 ‖	a3 ⊕ a23‖ ×

× γ	a3⊕a13 ‖	a3 ⊕ a13‖
γ	a1⊕a13 ‖	a1 ⊕ a13‖ = 1.
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(See [2, pp. 463].) For further details we refer to A. Ungar’s
recent book [2].

2 Main result

In this section, we present a proof of Smarandache’s cevian
triangle hyperbolic theorem in the Einstein relativistic veloc-
ity model of hyperbolic geometry.

Theorem 3 If A1B1C1 is the cevian gyrotriangle of gyropoint
P with respect to the gyrotriangle ABC, then

γ|PA| |PA|
γ|PA1 | |PA1 |

· γ|PB| |PB|
γ|PB1 | |PB1 |

· γ|PC| |PC|
γ|PC1 | |PC1 |

=
γ|AB| |AB| · γ|BC| |BC| · γ|CA| |CA|

γ|AB1 | |AB1 | · γ|BC1 | |BC1 | · γ|CA1 | |CA1 |
.

Proof If we use a theorem 2 in the gyrotriangle ABC (see
Figure), we have

γ|AC1 | |AC1 |·γ|BA1 | |BA1 |·γ|CB1 | |CB1 |=γ|AB1 | |AB1 |·γ|BC1 | |BC1 |·γ|CA1 | |CA1 |. (1)

If we use a theorem 1 in the gyrotriangle AA1B, cut by the
gyroline CC1, we get

γ|AC1 | |AC1 | ·γ|BC| |BC| ·γ|A1P| |A1P| = γ|AP| |AP| ·γ|A1C| |A1C| ·γ|BC1 | |BC1 |. (2)

If we use a theorem 1 in the gyrotriangle BB1C, cut by the
gyroline AA1, we get

γ|BA1 | |BA1 | ·γ|CA| |CA| ·γ|B1P| |B1P| = γ|BP| |BP| ·γ|B1A| |B1A| ·γ|CA1 | |CA1 |. (3)

If we use a theorem 1 in the gyrotriangle CC1A, cut by the
gyroline BB1, we get

γ|CB1 | |CB1 | ·γ|AB| |AB| ·γ|C1 P| |C1P| = γ|CP| |CP| ·γ|C1 B| |C1B| ·γ|AB1 | |AB1 |. (4)

We divide each relation (2), (3), and (4) by relation (1),
and we obtain

γ|PA| |PA|
γ|PA1 | |PA1 |

=
γ|BC| |BC|
γ|BA1 | |BA1 |

·
γ|B1A| |B1A|
γ|B1C| |B1C|

, (5)

γ|PB| |PB|
γ|PB1 | |PB1 |

=
γ|CA| |CA|
γ|CB1 | |CB1 |

·
γ|C1 B| |C1B|
γ|C1A| |C1A|

, (6)

γ|PC| |PC|
γ|PC1 | |PC1 |

=
γ|AB| |AB|
γ|AC1 | |AC1 |

·
γ|A1C| |A1C|
γ|A1 B| |A1B|

. (7)

Multiplying (5) by (6) and by (7), we have

γ|PA| |PA|
γ|PA1| |PA1 |

· γ|PB| |PB|
γ|PB1| |PB1 |

· γ|PC| |PC|
γ|PC1| |PC1 |

=

=
γ|AB| |AB| ·γ|BC| |BC| ·γ|CA| |CA|

γ|A1 B| |A1 B| ·γ|B1C| |B1C| ·γ|C1 A| |C1A|
·
γ|B1A| |B1A| ·γ|C1 B| |C1 B| ·γ|A1C| |A1C|

γ|A1 B| |A1 B| ·γ|B1C| |B1C| ·γ|C1A| |C1A|
.

(8)

From the relation (1) we have

γ|B1 A| |B1A| · γ|C1 B| |C1B| · γ|A1C| |A1C|
γ|A1 B| |A1B| · γ|B1C| |B1C| · γ|C1A| |C1A|

= 1, (9)

so

γ|PA| |PA|
γ|PA1 | |PA1 |

· γ|PB| |PB|
γ|PB1 | |PB1 |

· γ|PC| |PC|
γ|PC1 | |PC1 |

=
γ|AB| |AB| · γ|BC| |BC| · γ|CA| |CA|

γ|AB1 | |AB1 | · γ|BC1 | |BC1 | · γ|CA1 | |CA1 |
.
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Formation of Singlet Fermion Pairs in the Dilute Gas of Boson-Fermion Mixture
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We argue the formation of a free neutron spinless pairs in a liquid helium -dilute neutron
gas mixture. We show that the term, of the interaction between the excitations of the
Bose gas and the density modes of the neutron, meditate an attractive interaction via
the neutron modes, which in turn leads to a bound state on a spinless neutron pair. Due
to presented theoretical approach, we prove that the electron pairs in superconductivity
could be discovered by Frölich earlier then it was made by the Cooper.

1 Introduction

In 1938, the connection between the ideal Bose gas and su-
perfluidity in helium was first made by London [1]. The
ideal Bose gas undergoes a phase transition at sufficiently
low temperatures to a condition in which the zero-momentum
quantum state is occupied by a finite fraction of the atoms.
This momentum-condensed phase was postulated by London
to represent the superfluid component of liquid 4He. With
this hypothesis, the beginnings of a two- fluid hydrodynamic
model of superfluids was developed by Landau [2] where he
predicted the notation of a collective excitations so- called
phonons and rotons.

The microscopic theory most widely- adopted was first
described by Bogoliubov [3], who considered a model of a
non-ideal Bose-gas at the absolute zero of temperature. In
1974, Bishop [4] examined the one-particle excitation spec-
trum at the condensation temperature Tc.

The dispersion curve of superfluid helium excitations has
been measured accurately as a function of momentum [5]. At
the lambda transition, these experiments show a sharp peak
inelastic whose neutron scattering intensity is defined by the
energy of the single particle excitations, and there is appear-
ing a broad component in the inelastic neutron scattering in-
tensity, at higher momenta. To explain the appearance of
a broad component in the inelastic neutron scattering inten-
sity, the authors of papers [6–7] proposed the presence of col-
lective modes in superfluid liquid 4He, represented a density
excitations. Thus the collective modes are represent as den-
sity quasiparticles [8]. Such density excitations and density
quasiparticles appear because of the remaining density oper-
ator term that describes atoms above the condensate, a term
which was neglected by Bogoliubov [3].

Previously, the authors of ref [9] discovered that, at the
lambda transition, there was scattering between atoms of the
superfluid liquid helium, which is confirmed by the calcula-
tion of the dependence of the critical temperature on the inter-
action parameter, here the scattering length. On other hand, as
we have noted, there are two types of excitation in superfluid
helium at lambda transition point [5]. This means it is neces-
sary to revise the conditions that determine the Bose-Einstein
condensation in the superfluid liquid helium. Obviously, the

peak inelastic neutron scattering intensity is connected with
the registration of neutron modes in a neutron-spectrometer
which, in turn, defines the nature of the excitations. So we
may conclude that the registration of single neutron modes or
neutron pair modes occurs at the lambda transition, from the
neutron-spectrometer.

In this letter, we proposed new model for Bose-gas by ex-
tending the concept of a broken Bose-symmetry law for bo-
sons in the condensate within applying the Penrose-Onsager
definition of the Bose condensation [10]. After, we show
that the interaction term between Boson modes and Fermion
density modes is meditated by an effective attractive interac-
tion between the Fermion modes, which in turn determines
a bound state of singlet Fermion pair in a superfluid Bose
liquid- Fermion gas mixture.

We investigate the problem of superconductivity present-
ed by Frölich [11]. Hence, we also remark the theory of su-
perconductivity, presented by Bardeen, Cooper and Schrieffer
[12], and by Bogoliubov [13] (BCSB). They asserted that the
Frölich effective attractive potential between electrons leads
to shaping of two electrons with opposite spins around Fermi
level into the Cooper pairs [14]. However, we demonstrate the
term of the interaction between electrons and ions of lattice
meditates the existence of the Frölich singlet electron pairs.

2 New model of a superfluid liquid helium

First, we present new model of a dilute Bose gas with strongly
interactions between the atoms, to describe the superfluid liq-
uid helium. This model considers a system of N identical in-
teracting atoms via S-wave scattering. These atoms, as spin-
less Bose-particles, have a mass m and are confined to a box
of volume V . The main part of the Hamiltonian of such sys-
tem is expressed in the second quantization form as:

Ĥa =
∑

~p,0

p2

2m
â+
~p â~p +

1
2V

∑

~p,0

U~p%̂~p%̂
+
~p . (1)

Here â+
~p and â~p are, respectively, the “creation” and “an-

nihilation” operators of a free atoms with momentum ~p; U~p
is the Fourier transform of a S-wave pseudopotential in the
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momentum space:

U~p =
4πd~2

m
, (2)

where d is the scattering amplitude; and the Fourier compo-
nent of the density operator presents as

%̂~p =
∑

~p1

â+
~p1−~p â~p1 . (3)

According to the Bogoliubov theory [3], it is necessary to
separate the atoms in the condensate from those atoms filling
states above the condensate. In this respect, the operators â0
and â+

0 are replaced by c-numbers â0 = â+
0 =
√

N0 within the
approximation of the presence of a macroscopic number of
condensate atoms N0 � 1. This assumption leads to a broken
Bose-symmetry law for atoms in the condensate state. To ex-
tend the concept of a broken Bose-symmetry law for bosons
in the condensate, we apply the Penrose-Onsager definition
of Bose condensation [10]:

lim
N0,N→∞

N0

N
= const. (4)

This reasoning is a very important factor in the micro-
scopic investigation of the model non-ideal Bose gas because
the presence of a macroscopic number of atoms in the con-
densate means new excitations in the model Bose-gas for su-
perfluid liquid helium:

N~p,0

N0
= α � 1 ,

where N~p,0 is the occupation number of atoms in the quan-
tum levels above the condensate; α is the small number. Ob-
viously, conservation of the total number of atoms suggests
that the number of the Bose-condensed atoms N0 essentially
deviates from the total number N:

N0 +
∑

~p,0

N~p,0 = N ,

which is satisfied for the present model. In this context,

α =
N − N0

N0
∑
~p,0 1

→ 0 ,

where
∑
~p,0 1→ ∞.

For futher calculations, we replace the initial assumptions
of our model by the approximation

lim
N0→∞

N~p

N0
≈ δ~p,0 (5)

The next step is to find the property of operators
â+
~p1−~p√

N0
,

â~p1−~p√
N0

by applying (5). Obviously,

lim
N0→∞

â+
~p1−~p√
N0

= δ~p1,~p (6)

and

lim
N0→∞

â~p1−~p√
N0

= δ~p1,~p . (7)

Excluding the term ~p1 = 0, the density operators of bo-
sons %̂~p and %̂+

~p take the following forms:

%̂~p =
√

N0

(
â+
−~p +

√
2 ĉ~p

)
(8)

and
%̂+
~p =

√
N0

(
â−~p +

√
2 ĉ+

~p

)
(9)

where ĉ~p and ĉ+
~p are, respectively, the Bose-operators of

density-quasiparticles presented in reference [8], which in
turn are the Bose-operators of bosons used in expressions (6)
and (7):

ĉ~p =
1√
2N0

∑

~p1,0

â+
~p1−~p â~p1 =

1√
2

∑

~p1,0

δ~p1,~p â~p1 =
â~p√

2
(10)

and

ĉ+
~p =

1√
2N0

∑

~p1,0

â+
~p1

â~p1−~p =
1√
2

∑

~p1,0

δ~p1,~p â+
~p1

=
â+
~p√
2
. (11)

Thus, we reach to the density operators of atoms %̂~p and
%̂+
~p , presented by Bogoliubov [3], at approximation N0

N =const,
which describes the gas of atoms 4He with strongly interac-
tion via S-wave scattering:

%̂~p =
√

N0

(
â+
−~p + â~p

)
(12)

and
%̂+
~p =

√
N0

(
â−~p + â+

~p

)
(13)

which shows that the density quasiparticles are absent.
The identical picture is observed in the case of the density

excitations, as predicted by Glyde, Griffin and Stirling [5–7]
proposing %̂~p in the following form:

%̂~p =
√

N0

(
â+
−~p + â~p + %̃~p

)
(14)

where terms involving ~p1 , 0 and , ~p1 , ~p are written sepa-
rately; and the operator %̃~p describes the density-excitations:

%̃~p =
1√
N0

∑

~p1,0,~p1,~p

â+
~p1−~p â~p1 . (15)

After inserting (6) and (7) into (15), the term, representing
the density-excitations vanishes because %̃~p = 0.

Consequently, the Hamiltonian of system, presented in (1)
with also (12) and (13), represents an extension of the Bogoli-
ubov Hamiltonian, with the approximation N0

N = const, which
in turn does not depend on the actual amplitude of interac-
tion. In the case of strongly interacting atoms, the Hamilto-
nian takes the following form:

Ĥa =
∑

~p,0

(
p2

2m
+mv2

)
â+
~p â~p +

mv2

2

∑

~p,0

(
â+
−~p â+

~p + â~p â−~p
)
, (16)
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where v =

√
U~pN0

mV =

√
4πd~2N0

m2V is the velocity of sound in
the Bose gas, and which depends on the density atoms in the
condensate N0

V .
For the evolution of the energy level, it is a necessary to

diagonalize the Hamiltonian Ĥa which is accomplished by in-
troduction of the Bose-operators b̂+

~p and b̂~p by using of the
Bogoliubov linear transformation [3]:

â~p =
b̂~p + L~p b̂+

−~p√
1 − L2

~p

, (17)

where L~p is the unknown real symmetrical function of a mo-
mentum ~p.

Substitution of (17) into (16) leads to

Ĥa =
∑

~p

ε~p b̂+
~p b̂~p (18)

hence we infer that b̂+
~p and b̂~p are the “creation” and “annihi-

lation” operators of a Bogoliubov quasiparticles with energy:

ε~p =

[( p2

2m

)2

+ p2v2
]1/2

. (19)

In this context, the real symmetrical function L~p of a mo-
mentum ~p is found

L2
~p =

p2

2m + mv2 − ε~p
p2

2m + mv2 + ε~p
. (20)

As is well known, the strong interaction between the he-
lium atoms is very important and reduces the condensate frac-
tion to 10 percent or N0

N = 0.1 [5], at absolute zero. However,
as we suggest, our model of dilute Bose gas may be valuable
in describing thermodynamic properties of superfluid liquid
helium, because the S-wave scattering between two atoms,
with coordinates ~r1 and ~r2 in coordinate space, is represented
by the repulsive potential delta-function U~r =

4πd~2δ~r
m from

~r = ~r1−~r2. The model presented works on the condensed frac-
tion N0

N � 1 and differs from the Bogoliubov model where
N0
N ≈ 1.

3 Formation singlet spinless neutron pairs

We now attempt to describe the thermodynamic property of
a helium liquid-neutron gas mixture. In this context, we con-
sider a neutron gas as an ideal Fermi gas consisting of n
free neutrons with mass mn which interact with N interact-
ing atoms of a superfluid liquid helium. The helium-neutron
mixture is confined in a box of volume V . The Hamiltonian of
a considering system Ĥa,n consists of the term of the Hamil-
tonian of Bogoliubov excitations Ĥa in (18) and the term of
the Hamiltonian of an ideal Fermi neutron gas as well as the

term of interaction between the density of the Bogoliubov ex-
citations and the density of the neutron modes:

Ĥa,n =
∑
~p,σ

p2

2mn
â+
~p,σ â~p,σ+

+
∑

~p

ε~p b̂+
~p b̂~p +

1
2V

∑

~p,0

U0 %̂~p %̂−~p,n ,
(21)

where â+
~p,σ and â~p,σ are, respectively, the operators of cre-

ation and annihilation for free neutron with momentum ~p, by
the value of its spin z-component σ =+

−
1
2 ; U0 is the Fourier

transform of the repulsive interaction between the density of
the Bogoliubov excitations and the density modes of the neu-
trons:

U0 =
4πd0~

2

µ
, (22)

where d0 is the scattering amplitude between a helium atoms
and neutrons; µ = m·mn

m+mn
is the relative mass.

Hence, we note that the Fermi operators â+
~p,σ and â~p,σ sat-

isfy to the Fermi commutation relations [· · ·]+ as:
[
â~p, σ, â+

~p′ , σ′

]
+

= δ
~p, ~p′

δσ,σ′ , (23)

[â~p,σ, â ~p′ ,σ′
]+ = 0 , (24)

[â+
~p,σ, â

+
~p′ ,σ′

]+ = 0 . (25)

The density operator of neutrons with spin σ in momen-
tum ~p is defined as

%̂~p,n =
∑

~p1,σ

â+
~p1−~p,σ â~p1,σ , (26)

where %̂+
~p,n = %̂−~p,n.

The operator of total number of neutrons is
∑

~p,σ

â+
~p,σ â~p,σ = n̂; (27)

on other hand, the density operator, in the term of the Bo-
goliubov quasiparticles %̂~p included in (21), is expressed by
following form, to application (17) into (12):

%̂~p =
√

N0

√
1 + L~p
1 − L~p

(
b̂+
−~p + b̂~p

)
. (28)

Hence, we note that the Bose- operator b̂~p commutates
with the Fermi operator â~p,σ because the Bogoliubov excita-
tions and neutrons are an independent.

Now, inserting of a value of operator %̂~p from (28) into
(21), which in turn leads to reducing the Hamiltonian of sys-
tem Ĥa,n:

Ĥa,n =
∑
~p,σ

p2

2mn
â+
~p,σ â~p,σ +

∑
~p ε~p b̂+

~p b̂~p +

+
U0
√

N0

2V

∑

~p

√
1 + L~p
1 − L~p

(
b̂+
−~p + b̂~p

)
%̂−~p,n .

(29)

Vahan Minasyan and Valentin Samoilov. Formation of Singlet Fermion Pairs in the Dilute Gas of Boson-Fermion Mixture 5



Volume 4 PROGRESS IN PHYSICS October, 2010

Hence, we note that the Hamiltonian of system Ĥa,n in
(29) is a similar to the Hamiltonian of system an electron gas-
phonon gas mixture which was proposed by Frölich at solving
of the problem superconductivity (please, see the Equation
(16) in Frölich, Proc. Roy. Soc. A, 1952, v.215, 291–291 in
the reference [11]), contains a subtle error in the term of the
interaction between the density of phonon modes and the den-
sity of electron modes which represents a third term in right
side of Equation (16) in [11] because the later is described
by two sums, one from which goes by the wave vector ~w but
other sum goes by the wave vector ~k. This fact contradicts to
the definition of the density operator of the electron modes %̂~w
(please, see the Equation (12) in [11]) which in turn already
contains the sum by the wave vector ~k, and therefore, it is
not a necessary to take into account so-called twice summa-
tions from~k and ~w for describing of the term of the interaction
between the density of phonon modes and the density of elec-
tron modes Thus, in the case of the Frölich, the sum must be
taken only by wave vector w, due to definition of the density
operator of electron modes with the momentum of phonon ~w.

To allocate anomalous term in the Hamiltonian of system
Ĥa,n, which denotes by third term in right side in (29), we
apply the Frölich approach [11] which allows to do a canoni-
cal transformation for the operator Ĥa,n within introducing an
operator H̃:

H̃ = exp
(
Ŝ +

)
Ĥa,n exp

(
Ŝ
)
, (30)

which is decayed by following terms:

H̃ = exp
(
Ŝ +

)
Ĥa,n exp

(
Ŝ
)

=

= Ĥa,n −
[
Ŝ , Ĥa,n

]
+

1
2

[
Ŝ ,

[
Ŝ , Ĥa,n

]]
− · · · ,

(31)

where the operators represent as:

Ŝ + =
∑

~p

ˆS +
~p (32)

and
Ŝ =

∑

~p

ˆS ~p (33)

and satisfy to a condition Ŝ + = −Ŝ .
In this respect, we assume that

ˆS ~p = A~p

(
%̂~p,nb̂~p − %̂+

~p,nb̂+
~p

)
, (34)

where A~p is the unknown real symmetrical function from a
momentum ~p. In this context, at application ˆS ~p from (34) to
(33) with taking into account %̂+

−~p,n = %̂~p,n, then we obtain

Ŝ =
∑

~p

ˆS ~p =
∑

~p

A~p %̂~p,n
(
b̂=~p − b̂+

~p

)
. (35)

In analogy manner, at %̂+
−~p,n = %̂~p,n, we have

Ŝ + =
∑
~p

ˆS +
~
p =

∑
~p A~p %̂

+
~p,n

(
b̂+
~p − b̂−~p

)
=

= −
∑

~p

A~p %̂~p,n
(
b̂−~p − b̂+

~p

)
.

(36)

To find A~p, we substitute (29), (35) and (36) into (31).
Then,

[
Ŝ , ˆHa,n

]
= 1

V
∑
~p A~p U0

√
N0

√
1+L~p
1−L~p

%̂~p,n %̂−~p,n +

+
∑

~p

A~p ε~p
(
b̂+
~p + b̂−~p

)
%̂−~p,n ,

(37)

1
2

[
Ŝ ,

[
Ŝ , Ĥa,n

]]
=

∑

~p

A2
~p ε~p %~p,n %̂−~p,n (38)

and [Ŝ , [Ŝ , [Ŝ , Ĥa,n]]] = 0 within application a Bose commu-
tation relations as [%~p1,n, %̂~p2,n] = 0 and [â+

~p1,σ
â~p1,σ, %̂~p2,n] = 0.

Thus, the form of new operator H̃ in (31) takes a follow-
ing form:

H̃ =
∑
~p ε~p b̂+

~p b̂~p +
∑
~p,σ

p2

2mn
â+
~p,σ â~p,σ +

+
1

2V

∑

~p

U0
√

N0

√
1 + L~p
1 − L~p

(
b̂+
−~p + b̂~p

)
%̂−~p,n −

−
∑

~p

A~p ε~p
(
b̂+
−~p + b̂~p

)
%̂−~p,n +

∑

~p

A2
~p ε~p %̂~p,n %̂−~p,n −

− 1
V

∑

~p

A~pU0
√

N0

√
1 + L~p
1 − L~p

%̂~p,n %̂−~p,n .

(39)

The transformation of the term of the interaction between
the density of the Bogoliubov modes and the density neu-
tron modes is made by removing of a second and fifth terms
in right side of (39) which leads to obtaining of a quantity
for A~p:

A~p =
U0
√

N0

2ε~pV

√
1 + L~p
1 − L~p

. (40)

In this respect, we reach to reducing of the new Hamilto-
nian of system (39):

H̃ =
∑
~p ε~p b̂+

~p b̂~p +
∑
~p,σ

p2

2mn
â+
~p,σâ~p,σ−

− 1
V

∑

~p

A~pU0
√

N0

√
1 + L~p
1 − L~p

%̂~p,n %̂−~p,n+

+
∑

~p

A2
~p ε~p %̂~p,n %̂−~p,n .

(41)

As result, the new form of Hamiltonian system takes a
following form:

H̃ =
∑

~p

ε~p b̂+
~p b̂~p + Ĥn , (42)
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where Ĥn is the effective Hamiltonian of a neutron gas which
contains an effective interaction between neutron modes:

Ĥn =
∑

~p,σ

p2

2mn
â+
~p,σ â~p,σ +

1
2V

∑

~p

V~p %̂~p,n %̂−~p,n , (43)

where V~p is the effective potential of the interaction between
neutron modes which takes a following form at substituting a
value of A~p from (40) into (41):

V~p = −2A~pU0
√

N0

√
1+L~p
1−L~p

+ 2A2
~p ε~pV =

= −
U2

0 N0

(
1 + L~p

)

Vε~p
(
1 − L~p

) .

(44)

In this letter, we consider following cases:
1. At low momenta atoms of a helium p � 2mv, the

Bogoliunov’s quasiparticles in (19) represent as the phonons
with energy ε~p ≈ pv which in turn defines a value L2

~p ≈
1− p

mv
1+

p
mv
≈

(
1 − p

mv

)2
in (20) or L~p ≈ 1 − p

mv . In this context, the
effective potential between neutron modes takes a following
form:

V~p ≈ −
2mU2

0 N0

V p2 = −4π~2e2
1

p2 . (45)

The value e1 is the effective charge, at a small momenta
of atoms:

e1 =
U0

~

√
mN0

2Vπ
.

2. At high momenta atoms of a helium p � 2mv, we
obtain ε~p ≈ p2

2m + mv2 in (19) which in turn defines L~p ≈ 0
in (20). Then, the effective potential between neutron modes
presents as:

V~p ≈ −
mU2

0 N0

V p2 = −4π~2e2
2

p2 , (46)

where e2 is the effective charge, at high momenta of atoms:

e2 =
U0

2~

√
mN0

Vπ
.

Consequently, in both cases, the effective scattering be-
tween two neutrons is presented in the coordinate space by a
following form:

V(~r) =
1
V

∑

~p

V~p ei ~p~r~ = −e2
∗
r
, (47)

where e∗ = e1, at small momenta of atoms; and e∗ = e2, at
high momenta.

The term of the interaction between two neutrons V(~r) in
the coordinate space mediates the attractive Coulomb inter-
action between two charged particles with mass of neutron

mn, having the opposite effective charges e∗ and −e∗, which
together create a neutral system. Indeed, the effective Hamil-
tonian of a neutron gas in (43) is rewrite down in the space of
coordinate by following form:

Ĥn =

n
2∑

i=1

Ĥi = − ~2

2mn

n∑

i=1

∆i −
∑

i< j

e2
∗

| ~ri − ~r j | , (48)

where Ĥi is the Hamiltonian of system consisting two neutron
with opposite spin which have a coordinates ~ri and ~r j:

Ĥi = − ~2

2mn
∆i − ~2

2mn
∆ j −

e2
∗

| ~ri − ~r j | . (49)

The transformation of considering coordinate system to
the relative coordinate ~r = ~ri −~r j and the coordinate of center
mass ~R =

~ri+~r j

2 , we have

Ĥi = − ~2

4mn
∆R − ~2

mn
∆r − e2

∗
r
. (50)

In analogy of the problem Hydrogen atom, two neutrons
with opposite spins is bound as a spinless neutron pair with
binding energy:

En = − mne4
∗

4~2n2 = −const
n2

(N0

V

)2

, (51)

where n is the main quantum number which determines a
bound state on a neutron pair, at const > 0.

Thus, a spinless neutron pair with mass m0 = 2mn is cre-
ated in a helium liquid-dilute neutron gas mixture.

4 Formation of the Frölich electron pairs in supercon-
ductivity

We now attempt to describe the thermodynamic property of
the model a phonon-electron gas mixture confined in a box
of volume V . In this context, we consider an electron gas
consisting of n free electrons with mass me which interact
with phonon modes of lattice by constancy interaction [11].
The Frölich Hamiltonian has a following form:

Ĥ = Ĥ0 + Ĥ1 + Ĥ2 (52)

with
Ĥ0 =

∑

~k,σ

ε~k d̂+
~k,σ

d̂~k,σ , (53)

Ĥ1 =
∑

~w

~ws b̂+
~w b̂~w , (54)

Ĥ2 = i
∑

~w

Dw

(
b̂~w %̂+

~w − b̂+
~w %̂~w

)
, (55)

where d̂+
~k,σ

and d̂~k,σ are, respectively, the Fermi operators of
creation and annihilation for free electron with wave-vector
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~k and energy ε~k = ~2k2

2me
, by the value of its spin z-component

σ =+
−

1
2 ; s is the velocity of phonon; b̂+

~w,σ
and b̂~w,σ are, respec-

tively, the Bose operators of creation and annihilation for free
phonon with wave-vector ~w and energy~ws; Dw is the con-
stant of the interaction between the density of the phonon ex-
citations and the density modes of the electrons which equals

to Dw =

√
α~ws

V (where α = C”2

2Ms2 n
V

is the constant characteriz-

ing of the metal; C” is the constant of the interaction; M is the
mass of ion); %̂~w is the density operator of the electron modes
with wave vector ~w which is defined as:

%̂~w =
∑

~k,σ

d̂+
~k−~w,σd̂~k,σ (56)

and
%̂+
~w =

∑

~k,σ

d̂+
~k,σ

d̂~k−~w,σ , (57)

where %̂+
~w

= %̂−~w.
Hence, we note that the Fermi operators d̂+

~k,σ
and d̂~k,σ sat-

isfy to the Fermi commutation relations [· · ·]+ presented in
above for neutrons (23–25).

Obviously, the Bose- operator b̂~w commutates with the
Fermi operator d̂~k,σ because phonon excitations and electron
modes are an independent.

Now, we introduce new transformation of the Bose-
operators of phonon modes b̂+

~w
and b̂~w by the new Bose -

operators of phonon excitations ĉ+
~w

and ĉ~w which help us to
remove an anomalous term:

b̂~w = −iĉ~w (58)

and
b̂+
~w = iĉ+

~w . (59)

Then, Ĥ1 in (56) and Ĥ2 in (57) take following forms:

Ĥ1 =
∑

~w

~ws ĉ+
~wĉ~w , (60)

Ĥ2 =
∑

~w

Dw

(
ĉ~w %̂+

~w + ĉ+
~w %̂~w

)
=

∑

~w

Dw %̂~w
(
ĉ~w + ĉ+

~w

)
. (61)

To allocate anomalous term in the Hamiltonian of system
Ĥ in (54), presented by the term in (63), we use of the canon-
ical transformation for the operator Ĥ presented by formulae
(30). Due to this approach, we obtain new form for operator
Hamiltonian H̃:

H̃ =
∑

~w

~ws b̂+
~w b̂~w + Ĥe , (62)

where

Ĥe =
∑

~k,σ

ε~k d̂+
~k,σ

d̂~k,σ +
1

2V

∑

~w

V~w %̂~w %̂−~w , (63)

hence V~w is the effective potential of the interaction between

electron modes, which at taking into account Dw =

√
α~ws

V ,
has the form:

V~w = −2D2
wV

~ws
= −2α . (64)

Consequently, the effective scattering between two elec-
trons in the coordinate space takes a following form:

V(~r) =
1
V

∑

~w

V~w ei~w~r = −2αδ(~r) (65)

at using of 1
V

∑
~w ei~w~r = δ(~r).

Using of the relative coordinate ~r = ~ri − ~r j and the coor-
dinate of center mass ~R =

~ri+~r j

2 , we reach to the Hamiltonian
of system consisting two electron with opposite spins:

Ĥi = − ~2

4me
∆R − ~2

me
∆r + V(~r) . (66)

To find the binding energy E < 0 of electron pair, we
search the solution of the Schrödinger equation with intro-
duction of wave function ψ(~r):

Ĥi ψs(~r) = Eψs(~r) .

In this respect, we have a following equation

− ~
2

me
∆rψs(~r) + V(~r)ψs(~r) = Eψ(~r) (67)

which may determine the binding energy E < 0 of electron
pair, if we claim that the condition p f d

~
� 1 always is fulfilled.

This reasoning implies that the effective scattering between
two electrons is presented by the coordinate space:

V(~r) =
1
V

∑

~w

V~w ei~w~r = 4π
∫ w f

0
V~w w

2 sin(wr)
wr

dw , (68)

where we introduce a following approximation as sin(wr)
wr ≈

1 − w2r2

6 at conditions w ≤ w f and w f d � 1 (w f =
(

3π2n
V

) 1
3 is

the Fermi wave number). The later condition defines a state
for distance r between two neighboring electrons which is a

very small r � 1
w f

=
(

V
3π2n

) 1
3 where

4πw3
f

3 = n
2V . Then,

V(~r) ≈ −αn
V

+ α
( n
V

) 5
3

r2. (69)

Thus, the effective interaction between electron modes
V(~r) = −2αδ(~r), presented in (65) is replaced by a screen-
ing effective scattering presented by (69). This approximation
means that there is an appearance of a screening character in
the effective scattering because one depends on the density
electron modes. Now, denoting E = Es, and then, we arrive
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to an important equation for finding a binding energy Es of
singlet electron pair:

[
− ~

2

me
∆r − nα

V
+ α

( n
V

) 5
3

r2
]
ψs(r) = Es ψs(r) , (70)

which we may rewrite down as:

d2ψs(r)
dr2 +

(
λ − θ2r2

)
ψs(r) = 0 , (71)

where we take θ = −
√

meα
~2

(
n
V

) 5
3 , and λ =

meEs
~2 − αmen

~2V .

Now, introducing the wave function ψs(r) via the Chebi-
shev-Hermit function Hs(it) from an imaginary number as ar-
gument it [15] (where i is the imaginary one; t is the real
number; s = 0; 1; 2; . . . ), the equation (71) has a following
solution:

ψs(~r) = e−θ·r
2
Hs

(√
θ r

)
,

where

Hs(it) = ise−t2 dset2

dts

at θ < 0, where

λ = θ

(
s +

1
2

)
.

Consequently, the quantity of the binding energy Es of
electron pair with mass m0 = 2me takes a following form:

Es = −
√
α~2

me

( n
V

) 5
3
(
s +

1
2

)
+
αn
V

< 0 (72)

at s = 0; 1; 2; . . . .
The normal state of electron pair corresponds to quantity

s = 0 which defines maximal binding energy of electron pair:

E0 = −
√
α~2

me

( n
V

) 5
3

+
αn
V

< 0 . (73)

This fact implies that the formation of the superconduct-
ing phase in superconductor is appeared by condition for den-
sity of metal n

V :

n
V
>

(
C2me

2Ms2~2

) 3
2

.

At choosing C ≈ 10 eV [11]; M ≈ 5×10−26 kg; s ≈ 3×103

m, we may estimate density of electron n
V > 1027 m−3 which

may represent as superconductor.
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First, we predict an existence of transverse electromagnetic field formed by supersonic
transverse wave in solid. This electromagnetic wave acquires frequency and speed of
sound, and it propagates along of direction propagation of supersonic wave. We also
show that own frequency of ion-dipole depends on frequency of supersonic transverse
wave.

1 Introduction

In our latest paper [1], we investigated the light diffraction
by supersonic longitudinal waves in crystal. In this respect,
we predicted an existence of transverse electromagnetic field
created by supersonic longitudinal waves in solid. This elec-
tromagnetic wave with frequency of ultrasonic field is moved
by speed of supersonic field toward to direction propagation
of sound. There was shown that the average Poynting vector
of superposition field involves the intensities of the transverse
electromagnetic and the optical fields which form the inten-
sity of light diffraction. We considered a model of solid as
lattice of ions and gas of free electrons. Each ion of lattice
coupled with a point of lattice knot by spring, creating of ion
dipole. The knots of lattice define a position dynamical equi-
librium of each ion which is vibrated by own frequency Ω0.
Hence, we may argue that the presented new model of solid
leads to the same results which may obtain for solid by one
dimensional model of single atomic crystal representing as
model of continuum elastic medium which is described by
chain of ions [2]. The vibration of ion occurs near position of
equilibrium corresponding to minimum of potential energy
(harmonic approximation of nearing neighbors).

Thus, the existence of transverse electromagnetic field is
an important factor for correction so called the Raman-Nath
theory [3] and the theory of photo-elastic linear effect [4]
which were based on a concept that acoustic wave generates
a periodical distribution of refractive index in the coordinate-
time space.

In this letter, we attempt to investigate a property of solid
by under action of supersonic transverse wave. In this con-
text, we find dispersion law for own frequency of ion-dipole
which depends on frequency of supersonic transverse wave.

2 Formation of transverse electromagnetic field

Let’s consider the coupled ions with points of lattice knots.
These ions are vibrated by own frequency Ω0 into ion-dipoles.
We note that ion-dipole is differ from electron-ion dipole
which was discussed within elementary dispersion theory [5].
Hence, we assume that property of springs of ion dipole and
ion-electron one are the same. This assumption allows us to

obtain a connection between own frequencies of electron ω0

and ion Ω0 by condition Ω0 =

√
q
M = ω0

√ m
M where q is the

rigidity of spring; m is the mass of electron.
By under action of transverse acoustic wave, there is an

appearance of vector displacement ~u of each ions in solid.
Consider the propagation of an ultrasonic transverse plane

traveling wave in cubic crystal. Due to laws of elastic field
for solid [6], the vector displacement ~u satisfies to condition
which defines property of transverse supersonic field

div~u = 0 (1)

and is defined by wave-equation

∇2~u − 1
c2

t

d2~u
dt2 = 0 , (2)

where ct is the velocity of a transverse ultrasonic wave
which is determined by elastic coefficients.

The simple solution of (2) in respect to ~u has a following
form

~u = ~u0 sin (Kx + Ωt) , (3)

where ~u0 is the amplitude of vector displacement; K =
Ω
√
ε

c
is the wave number of transverse electromagnetic wave.

Thus each ion acquires the dipole moment of ion ~p =

−e~u. Now, we may argue that there is a presence of transverse
electromagnetic field with vector of electric field ~E due to
displacement of ion:

M
d2~u
dt2 + q~u = −e~E , (4)

where ~E is the vector electric field which is induced by trans-
verse ultrasonic wave; M is the mass of ion; the second term
q~u in left part represents as changing of quasi-elastic force
which acts on ion.

Using of the operation div of the both part of (4) together
with (1), we obtain a condition for Transverse electromag-
netic wave

div ~E = 0 . (5)

Now, substituting solution ~u from (3) in (4), we find the
vector transverse electric wave

~E = ~E0 sin (Kx + Ωt) , (6)
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where

~E0 =
M

(
Ω2

0 −Ω2
)
~u0

e
(7)

is the amplitude of transverse electric field which acts on ion
into ion dipole.

The ion dipole acquires a polarizability α, which is deter-
mined via total dipole moment:

~P = Nα ~E . (8)

where N is the concentration of ion dipoles.
In the presented theory, the vector electric induction ~D is

determined as
~D = 4π~P + ~E , (9)

and
~D = ε~E , (10)

where ~P=N0~p is the total polarization created by ion-dipoles.
It is easy to find the dielectric respond ε of acoustic med-

ium which takes a following form

ε = 1 + 4πNα = 1 +
4πN e2

M
(
Ω2

0 −Ω2
) , (11)

This formulae is also obtained by model of ions chain [2].
The dielectric respond ε of acoustic medium is similar to

optical one, therefore,

√
ε =

c
ct
, (12)

where c is the velocity of electromagnetic wave in vacuum.
Thus, we found that transverse electric wave with fre-

quency Ω is propagated by velocity ct of ultrasonic transverse
wave in the direction OX.

Furthermore, we present the Maxwell equations for elec-
tromagnetic field in acoustic medium with a magnetic permit-
tivity µ = 1:

curl ~E +
1
c

d ~H
dt

= 0 , (13)

curl ~H − 1
c

d ~D
dt

= 0 , (14)

div ~H = 0 , (15)

div ~D = 0 (16)

where ~E = ~E (~r, t) and ~H = ~H (~r, t) are the vectors of local elec-
tric and magnetic fields in acoustic medium; ~D = ~D (~r, t) is the
local electric induction in the coordinate-time space; ~r is the
coordinate; t is the current time in space-time coordinate sys-
tem.

We search a solution of Maxwell equations by introducing
the vectors of magnetic and electric fields by following way

~H = curl ~A , (17)

where

~E = −d~A
cdt

, (18)

where ~A is the vector potential of electromagnetic wave.
After simple calculation, we reach to following equation

for vector potential ~A of transverse electromagnetic field

∇2~A − ε

c2

d2~A
dt2 = 0 (19)

with condition of plane transverse wave

div ~A = 0 . (20)

The solution of (24) and (25) may present by plane trans-
verse wave with frequency Ω which is moved by speed ct

along of direction of unit vector ~s:

~A = ~A0 cos (Kx + Ωt) , (21)

and
~A · ~s = 0 , (22)

where K =
Ω
√
ε

c is the wave number of transverse electro-
magnetic wave; ~s is the unit vector in direction of wave nor-
mal; ~A0 is the vector amplitude of vector potential. In turn,
at comparting (23) and (6), we may argue that the vector of
wave normal ~s is directed along of axis OX (~s = ~ex), because
the vector electric transverse wave ~E takes a form presented
in (6):

~E = ~E0 sin (Kx + Ωt) , (23)

where

~E0 =
Ω ~A0

c
.

To find a connection between vector amplitude of electric
field ~E0 and vector amplitude of acoustic field ~u0, we use of
the law conservation energy. The average density energy wa

of ultrasonic wave is transformed by one wt of transverse elec-
tromagnetic radiation. In turn, there is a condition wa = wt

where Thus,

wa = M N Ω2u2
0 limT→∞ 1

2T

∫ T
−T cos2 (Kx + Ωt) dt =

=
M N Ω2u2

0

2
,

(24)

In analogy manner,

wt =
ε

4π
E2

0 lim
T→∞

1
2T

∫ T

−T
sin2 (Kx + Ωt) dt =

ε

8π
E2

0 . (25)

Thus, at comparing (24) and (25), we arrive to an impor-
tant expression which leads to foundation of dispersion law
for own frequency of ion-dipole:

ε

4π
E2

0 = M NΩ2u2
0 , (26)
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where introducing meanings of ~E0 and ε from (7) and (11)
into Eq.(26), we obtain a dispersion equation:

(
Ω2

0 −Ω2
)2

+ 2Ω2
p

(
Ω2

0 −Ω2
)
−Ω2

pΩ2 = 0 , (27)

where Ωp =

√
4πN e2

M = ωp
√ m

M is the classic plasmon fre-
quency of ion but ωp is the plasmon frequency of electron.
For solid ωp ∼ 1016 s−1, therefore, at

√ m
M ∼ 10−2), it follows

Ωp ∼ 1014 s−1.
The solution of Eq.(27) in regard to own frequency of ion

Ω0 take following forms:
1. At Ω0 > Ω

Ω0 =

√
Ω2 −Ω2

p +

√
Ω4

p + Ω2
p Ω2 . (28)

2. At Ω0 6 Ω

Ω0 =

√
Ω2 −Ω2

p −
√

Ω4
p + Ω2

p Ω2 . (29)

Now, consider following solutions of above presented
equations:

1. At Ω � Ωp, Ω0 > Ω, we obtain Ω0 ≈
√

3
2 Ω but

at Ω0 6 Ω, it follows Ω0 ≈
√

1
2 Ω. This condition implies

that we may consider model of solid as ideal gas of atoms at
smaller Ω. 2. At Ω � Ωp, Ω0 > Ω we obtain Ω0 ≈ Ω +

Ωp

2

but at Ω0 6 Ω, it follows that Ω0 ≈ Ω − Ωp

2 . 3. At Ω ≈ Ωp,
Ω0 ≈ 2

1
4 Ωp.

In conclusion, we may note that the action of ultrasonic
transverse wave in solid leads to new property as determina-
tion of own frequency of ion-dipole. This fact is useful be-
cause in the case of action of ultrasonic longitudinal wave in
solid, the own frequency of ion-dipole can not be determined.
However, knowledge of value of own frequency of ion-dipole
allows us to calculate the intensity of sound by formulae (26)
(at known meaning of intensity of transverse electromagnetic
field excited by ultrasonic longitudinal wave in solid). In turn,
it determines the resonance frequency ω0 of optical light in

solid because ω0 = Ω0

√
M
m due to condition that the rigidity

of spring is the same for ion-dipole and electron-ion dipole.
Thus, the action of ultrasonic transverse wave on solid may
change an optical property of solid.
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Eight predictions of high energy experimental results are presented. The predictions
contain the Σ+ charge radius and results of two kinds of experiments using energetic
pionic beams. In addition, predictions of the failure to find the following objects are
presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched
by their direct interaction with charges and the Higgs boson. The first seven predictions
rely on the Regular Charge-Monopole Theory and the last one relies on mathematical
inconsistencies of the Higgs Lagrangian density.

1 Introduction

A person who studies a well established physical theory be-
comes acquainted with its mathematical structure and with re-
sults of key experiments that are consistent with it. Here one
generally does not pay much attention to the historical order
of the development of theory and experiment. The situation
is different in the case of a theory which has not yet passed
the test of time. In the case of such a theory, one generally
compares its conclusions with already known experimental
results. However, in this situation, experiments that have not
yet been performed play a specific role and one is generally
inclined to be convinced of the theory’s merits, if it predicts
successfully experimental results that are obtained later.

This work describes eight predictions of high energy ex-
perimental results. All but one of the predictions rely on the
Regular Charge-Monopole Theory (RCMT) [1, 2] and on its
application to hadronic structure and processes [3]. From this
point of view, the prediction of the failure to find a genuine
Higgs boson makes an exception, because it relies on the in-
herently problematic structure of the Higgs Lagrangian den-
sity [4]. Some of the predictions refer to experiments that
have not yet been carried out, whereas others refer to ex-
periments that are performed for decades and failed to de-
tect special objects. The second set contains the search for a
monopole by means of its direct interaction with charge, glue-
balls, pentaquarks, nuggets of Strange Quark Matter (SQM)
and the Higgs boson. In spite of a long list of experimental
attempts that have ended in vain, searches for these objects
still continue. The predictions made herein state that genuine
particles of these kinds will not be found.

The second section presents a detailed phenomenological
calculation that yields a prediction of the charge radius of the
Σ+ baryon. This outcome is higher than that of a QCD based
prediction that has been published recently [5]. All other pre-
dictions are derived briefly or have already been published
elsewhere. The third section contains a list of short descrip-
tions of each of these predictions. Concluding remarks are
included in the last section.

2 The Σ+ charge radius

The prediction of the Σ+ charge radius relies on phenomeno-

Particle Mass (MeV) 〈ρr2〉 〈r〉 Error

p 938.3 0.766 0.875
n 939.6 −0.116

Σ− 1197.4 −0.61 0.78 0.15
π+ 139.6 0.452 0.672
k+ 493.7 0.314 0.56

Table 1: Known mean square charge radius (〈ρr2〉) and charge radius
(〈r〉) of hadrons.

logical estimates of expectation value of spatial variables of
baryonic quarks. Here the RCMT indicates a similarity be-
tween electrons in an atom and quarks in a baryons [3]. Ap-
propriate phenomenological assumptions are explained and it
is shown how their application yields the required prediction
of the Σ+ charge radius. The procedure used herein relies on
the currently known data of the proton, the neutron and the
Σ− baryons [6]. The π and the k meson data are used as a
justification for the calculations.

Table 1 contains the presently known data of the mean
square charge radius (〈ρr2〉) and of the corresponding charge
radius of several hadrons, written in units of fm.

Remarks: The experimental error refers to 〈ρr2〉. Here the
error of the Σ− data is much larger than that of the other
baryons. Therefore, only the Σ− error is mentioned. The π−

and k− are antiparticles of their respective positively charged
counterparts and have the same spatial data.

The three valence quarks of baryons make an important
contribution to the quantities described in Table 1. Beside
these quarks, it is well known that pairs of q̄q are found in
baryons. The graphs of Fig. 1 describe the distribution of
quarks and antiquarks in the proton. Two physically impor-
tant properties of the proton (and of all other baryons) are
inferred from the data of Fig. 1.

A. Antiquarks (namely, additional q̄q pairs) are explicitly
seen in baryons and their probability is not negligible.

B. The x-width of antiquarks is much smaller than that of
quarks. This property also proves that the Fermi motion
of antiquarks is much smaller than that of quarks. Us-
ing the Heisenberg uncertainty principle, one finds that,
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Fig. 1: The quantity xq(x) is describes qualitatively as a function of
x (q(x) denotes quark/antiquark distribution, respectively). The solid
line represents quarks and the broken line represents antiquarks.
(The original accurate figure can be found on [7, see p. 281]).

in a baryon, the volume of antiquarks is much larger
than that of quarks.

These conclusions are called below Property A and Property
B, respectively.

Property B is consistent with the RCMT hadronic model
[3]. Indeed, in this model baryons have a core. The model
assigns three positive monopole units to the baryonic core and
one negative monopole unit to every quark. Now, by analogy
with the electronic structure of atoms, one infers that, at the
inner baryonic region, the potential of the baryonic core is not
completely screened by quarks. For this reason, antiquarks,
whose monopole unit has the same sign as that of the baryonic
core, are pushed out to the baryonic external region and are
enclosed inside a larger volume. (Property B is not discussed
in QCD textbooks.)

An evaluation of experimental data of the proton indicates
that the u, d quark flavors make the dominant contribution to
the q̄q pairs and that, in the proton, the ratio between the prob-
ability of these kinds of quarks is [8]

〈d̄〉
〈ū〉 ' 3/2. (1)

This ratio is used later in this work. Obviously, isospin
symmetry shows that this ratio is reversed for the neutron.
The excess of the additional d̄d quark pairs in the proton is
consistent with the Pauli exclusion principle, which RCMT
ascribes to the spin-1/2 quarks. Indeed, a proton contains uud
valence quarks. Hence, it is energetically easier to add a d̄d
pair than a ūu pair.

The following assumption relies on Property A of Fig. 1.
I. It is assumed that, on the average, a baryon contains

one additional q̄q pair. Thus, in the discussion carried
out below, baryons contain four quarks and one anti-
quark. In particular, a proton contains an additional
0.6 d̄d fraction of a pair and 0.4 ūu fraction of a pair.
Isospin symmetry indicates that for a neutron, the cor-
responding quantities are reversed.

The calculation of the baryonic charge radius is not very
sensitive to the accuracy of Assumption I. Indeed, each mem-
ber of a q̄q has an opposite electric charge and their contri-
butions partially cancel each other. Moreover, the ud quarks
carry charge of opposite sign. This property further reduces
the effect of the additional pairs. The discussion of the neu-
tron data, which is carried out later, illustrates these issues.

The baryonic mean square charge radius is obtained be-
low as a sum of the contribution of the baryon’s individual
quarks. Thus, the following notation is used for a quark q and
a baryon b

R2(qi, b) ≡
∫

r2ψ†i ψi d3x, (2)

where ψ†i ψi represents the single particle density of a qi quark.
(Below, ψ is not used explicitly, and the value of R2(q, b) is
derived phenomenologically from the data of Table 1.) Thus,
R2(u, p) denotes the value of (2) for one of the proton’s u
quarks. Analogous expressions are used for other quark fla-
vors and for other baryons. It follows that the contribution
of each quark to the baryonic mean square charge radius is
obtained as a product QR2(q, b), where Q denotes the charge
of the respective quark. Relying on isospin symmetry, one
defines Assumption II:

R2(u, p) = R2(d, p) = R2(u, n) = R2(d, n) ≡ R2, (3)

where the last symbol is used for simplifying the notation.
As explained above, both the data depicted in Fig. 1 and

the RCMT model of hadrons [3], indicate that the volume of
baryonic antiquarks is larger than that of the corresponding
quarks (herein called Property B). Therefore, by analogy of
(3), the following definition is used for the proton/neutron
antiquarks

R2(ū, p) = R2(d̄, p) = R2(ū, n) = R2(d̄, n) = λR2, (4)

where λ > 1 is a numerical parameter.
The foregoing arguments and the data of Table 1 enable

one to equate the experimental value of the proton’s mean
square charge radius with the quantities defined above

0.766=2
2
3

R2− 1
3

R2−0.4 (λ−1)
2
3

R2 +0.6 (λ−1)
1
3

R2 =

=R2−0.2 (λ−1)
1
3

R2. (5)

The terms on the right hand side of the first line of (5) are
defined as follows. The first term represents the contribution
of the two uu valence quarks; the second term is for the single
d quark; the third term is for the ūu pair; the last term is for
the d̄d pair.

An analogous treatment is applied to the neutron and the
result is

− 0.116=
2
3

R2−2
1
3

R2−0.6 (λ−1)
2
3

R2 +0.4 (λ−1)
1
3

R2 =

=−0.8 (λ−1)
1
3

R2. (6)
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Here one sees once again the merits of the RCMT model
of hadrons [3]. Thus, the fact that the proton’s antiquarks vol-
ume is larger than that of its quarks means that λ > 1, as seen
in (4). Obviously, the final result of (6) proves that this rela-
tion is mandatory for explaining the sign of the experimental
value of the neutron’s mean square charge radius. It is also
evident that the contribution of the quark-antiquark pair to R2

is small.
The neutron relation (6) enables the removal of the λ pa-

rameter from (5). Thus, one finds that

R2 = 0.766 + 0.116/4 = 0.795. (7)

This value of R2 will be used in the derivation of the pre-
diction for the charge radius of the Σ+ baryon.

Let us turn to the Σ− baryon whose valence quarks are
dds. The u, d quarks of the previous discussion are regarded
as particles having (practically) the same mass and a different
electric charge. This is the underlying basis of isospin sym-
metry. It is also agreed that the s quark is heavier. Indeed, the
following data support this statement. Thus, the experimental
mass difference (in MeV) of the k, π mesons is [6]

M(k+) − M(π+) = 493.7 − 139.6 = 354.1 (8)

and the difference between the isospin average of the Σ± and
the nucleons is

1
2

(
M(Σ+) + M(Σ−) − M(p) − M(n)

)
=

=
1
2

(1197.4 + 1189.4 − 938.3 − 939.6) = 254.5. (9)

In each of the previous relations, the mass difference be-
tween two hadrons, where an s quark replaces a u (or d) quark
is positive. This outcome indicates that the s quark is indeed
heavier than the u quark.

The RCMT model of baryons and mesons [3] is analo-
gous to the atomic structure of electrons and to the positron-
ium, respectively. The results of (8) and (9) show that replac-
ing a u (or d) quark by an s quark in a nucleon yields more
binding energy than doing it in a pion. This outcome is con-
sistent with the RCMT model. Indeed, in a meson, an s quark
is attracted just by the field of one antiquark that carries one
monopole unit. On the other hand, in a nucleon, the s quark
is attracted by the baryonic core that carries three monopole
units. Like in the atomic case, the field of the core is not com-
pletely screened by the other quarks. (A QCD explanation of
this phenomenon is certainly less obvious.)

Let us turn to the problem of the s quark single particle
radial distribution. Thus, if a u (or d) quark is replaced by the
heavier s quark, then the s quark mean radius will be smaller
than that of the u quark. This conclusion is supported both by
the mass dependence of the radial function of a Dirac solution
of the Hydrogen atom (see [9, see p. 55] and by a comparison

of the experimental k and π radii of Table 1. For this reason,
it is defined here that

R2(s,Σ−) = ηR2, (10)

where 0 < η < 1 is a yet undefined parameter.
By analogy with the case of atomic electrons, one should

expect that the negative monopole of the s quark, which is
closer to the core, partially screens the potential of the posi-
tive monopole at the baryonic core. Therefore, one may ex-
pect a somewhat larger size for the d quarks of the Σ− baryon

R2(d,Σ−) = ξR2, (11)

where ξ > 1 is another undefined parameter.
Like the neutron, whose valence quarks are udd, the Σ−

valence quarks dds contains a pair of d quarks. Hence, it is
assumed here that the contribution of a quark-antiquark pair
to the Σ− mean square charge radius is the same as that of the
neutron (6). (As shown above, the contribution of this effect is
relatively small, and the final result is not sensitive to a small
change of this quantity.) Taking the experimental value of the
Σ− from Table 1, one uses (6), (7), (10), and (11) and writes the
following relation for the two undetermined parameters ξ, η

−0.61 ± δ = −2
1
3

0.795 ξ − 1
3

0.795 η − 0.116, (12)

where δ is related to the error assigned to the measurement of
the mean square charge radius of the Σ− baryon (see Table 1).

Taking into account the constraint on ξ, η, one finds that
relation (12) does not hold for δ = 0. Table 2 describes some
pairs of values of the parameters ξ, η and their relation to
δ. It is shown below how each pair of the ξ, η parameters
of Table 2 yields a prediction of the Σ+ mean square charge
radius.

The Σ+ baryon contains the uus valence quarks and it is
the isospin counterpart of the Σ− baryon. Hence, the spa-
tial properties of its u quarks are the same as those of the d
quarks of the Σ− baryon. Also the s quark of these baryons is
assumed to have the same spatial properties. The small effect
of the quark-antiquark pairs is equated to that of the proton,
because both have a pair of uu valence quarks. Thus, the phe-
nomenological formula for the mean square charge radius of
the Σ+ baryon is

R2(Σ+) = 2
2
3

0.795 ξ − 1
3

0.795 η − 0.029, (13)

where R2(b) denotes the mean square charge radius of the
baryon b. Substituting the values of each pair of the parame-
ters ξ, η into (13), one obtains a predictions for R2(Σ+). It is
clear from the details of the discussion presented above that
a prediction of R2(Σ+) must carry the estimated experimental
error of the mean square charge radius of the Σ− baryon and
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δ ξ η

−15 1.0 0.43
−15 1.05 0.33
−15 1.1 0.23
−10 1.12 0.0
−5 1.03 0.0

Table 2: Several values of ξ and η of (12).

the uncertainties of the assumptions used herein. Thus, the
final prediction is given (in f m2):

0.85 6 R2(Σ+) 6 1.17. (14)

The prediction for the charge radius (in f m) is

0.91 6 R(Σ+) 6 1.12. (15)

The range of these predictions is higher than that of a
QCD dependent prediction which has been published re-
cently [5].

3 The other seven high energy predictions

This section presents seven predictions of high energy exper-
imental results.

• High Energy pion beams exist. Thus, in principle, the
experiment described here can be performed in the near
future. The RCMT basis for a prediction of the elas-
tic π − π cross section is explained. Unlike protons
(see [10] and references therein), pions are character-
ized by a pair of quark-antiquark and they do not have
inner quark shells. Moreover, in a deep inelastic e − p
experiment, the electron collides with one quark at a
time. This property should also hold for the quark-
quark interaction in a π−π collision. Therefore, relying
on RCMT, where quarks carry one monopole unit, the
π − π elastic cross section is analogous to the elastic
cross section of colliding charges. It is well known that
this cross section decreases with the increase of the col-
lision energy (see chapter 6 of [7]).
Prediction: Unlike the proton case, where the elastic
cross section increases for collision energy which is
greater than that of point C of Fig. 2, a decrease of
the elastic cross section is predicted for a π − π scat-
tering. Hence, its graph will not increase for energies
which are not too close to a resonance. In particular, no
similar effect like the rise of the p − p cross section on
the right hand side of point C will be found in a π − π
collision. By the same token, for a very high energy
π − π scattering, the ratio of the elastic cross section to
the total cross section will be much smaller then that of
the p − p cross section of Fig. 2, which is about 1/6.

• The problem of the portion of the pion’s momentum
carried by quarks. The deep inelastic e − p scatter-
ing data are used for calculating the relative portion of

Fig. 2: A qualitative description of the pre-LHC proton-proton cross
section versus the laboratory momentum P. Axes are drawn in a log-
arithmic scale. The solid line denotes the elastic cross section and
the broken line denotes the total cross section. (The accurate figure
can be found in [6].)

the proton’s momentum carried by quarks, as seen in a
frame where the proton’s momentum is very very large.
It turns out that for a proton, the overall quarks’ portion
is about one half of the total momentum. The RCMT
proves that baryons have a core and that this is the rea-
son for the effect. Mesons are characterized as a bound
q̄q pair and they do not have a core. This is the basis
for the following prediction:
Unlike the proton case, it is predicted that an analogous
experiment of deep inelastic e− π scattering will prove
that in this case the pion’s quarks carry all (or nearly
all) the pion’s momentum.

• Several decades ago, claims concerning the existence
of glueballs have been published by QCD supporters
(see [11], p. 100). RCMT describes the strong interac-
tions as interactions between monopoles that satisfy the
RCMT equations of motion. Here, no gluon exist. A
fortiori, a genuine glueball does not exist. On April 14,
2010, Wikipedia says that glueballs ”have (as of 2009)
so far not been observed and identified with certainty.”

• Several decades ago, claims concerning the existence
of pentaquarks have been published by QCD support-
ers [12, 13]. Pentaquarks are supposed to be strongly
bound states of a baryon and a meson. RCMT clearly
contradicts the existence of these kinds of objects. In-
deed, like nucleons, all hadrons are neutral with re-
spect to monopoles. Hence, like the nuclear force, a
hadron-hadron interaction has residual features. In a
deuteron the proton-neutron binding energy is about
2.2 MeV. Let us compare this value to what is expected
for a baryon-meson binding energy. For each flavor,
the lightest meson, which is the best candidate for as-
sembling a pentaquark, is a spin-0 particle, which re-
sembles a noble gas. Hence, the binding energy of a
nucleon with this kind of meson should be even smaller
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than the 2.2 MeV binding energy of the deuteron. For
this reason, strongly bound pentaquarks should not ex-
ist. Experimental results are consistent with this theo-
retical conclusion [14].

• Several decades ago, claims concerning the existence
of SQM have been published by QCD supporters [15].
RCMT clearly contradicts the existence of this kind of
matter. Indeed, an SQM is a nugget of Λ baryons. Now
the mass of a Λ baryon is greater than the nucleon mass
by more than 170 MeV. On the other hand, the Λ bind-
ing energy in an SQM should be similar to the nucleon
binding energy in a nucleus, which is about 8 MeV
per nucleon. This very large difference between energy
values proves that the SQM is unstable and will disinte-
grate like a free Λ. Experimental results are consistent
with this theoretical conclusion [16].

• RCMT proves that there is no direct charge-monopole
interaction. Radiation fields (namely, real photons) in-
teract with charges and with monopoles. As of today,
experimental attempts to detect monopoles rely on a di-
rect interaction of the monopole fields with charges of
the measuring device. As stated above, such an interac-
tion does not exist. Hence, no genuine monopole will
be detected. This prediction has been made about 25
years ago [17]. In spite of a very long search, all at-
tempts to detect monopoles have ended in vain [6, see
p. 1209]. Monopole search continues [18].

• A genuine Higgs boson will not be found. For a the-
oretical discussion, see the first four sections of [4].
This conclusion relies on inherent inconsistencies of
the Higgs Lagrangian density.

4 Concluding remarks

A physical theory is tested by its consistency with experimen-
tal results that belong to the theory’s domain of validity. A
second kind of test is the demand that the examined theory
has a solid mathematical structure. However, one does not
really think that a theory having an erroneous mathematical
structure can fit all experimental data. Therefore, one may
argue that a test of the theory’s mathematical structure plays
an auxiliary role. On the other hand, an analysis of the math-
ematical structure can provide convincing arguments for dis-
qualifying incorrect theories. The present work concentrates
on the examination of the fit of high energy theories to the
data.

In undertaking this task, one realizes that the historical
order of formulating the theory’s predictions and carrying
out the required experiments bears no fundamental meaning.
Thus, at this point, one may state that making a prediction
that is later found to be successful is at least as good as deriv-
ing a theoretical result that fits a known measurement. This is
certainly an incomplete description of the problem. Indeed,

many predictions depend on numerical value of adjustable pa-
rameters that yield the required quantity. Therefore, in the
case of a theory that is not fully established, a successful
prediction that is later confirmed by measurement provides
a significantly better support for it. This aspect is one of the
motivations for writing the present work which contains eight
different predictions. Let us wait and see what will come out
of the experimental work.
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Neutrosophic Diagram and Classes of Neutrosophic Paradoxes
or to the Outer-Limits of Science
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These paradoxes are called “neutrosophic” since they are based on indeterminacy (or
neutrality, i.e. neither true nor false), which is the third component in neutrosophic
logic. We generalize the Venn diagram to a Neutrosophic Diagram, which deals with
vague, inexact, ambiguous, illdefined ideas, statements, notions, entities with unclear
borders. We define the neutrosophic truth table and introduce two neutrosophic oper-
ators (neuterization and antonymization operators) give many classes of neutrosophic
paradoxes.

1 Introduction to the neutrosophics

Let <A> be an idea, or proposition, statement, attribute, the-
ory, event, concept, entity, and <non A> what is not <A>.

Let <anti A> be the opposite of <A>. We have introduced
a new notation [1998], <neut A>, which is neither <A> nor
<anti A> but in between. <neut A> is related with <A> and
<anti A>.

Let’s see an example for vague (not exact) concepts: if
<A> is “tall” (an attribute), then <anti A> is “short”, and
<neut A> is “medium”, while <non A> is “not tall” (which
can be “medium or short”). Similarly for other <A>,
<neut A>, <anti A> such as: <good>, <so so>, <bad>, or
<perfect>, <average>, <imperfect>, or <high>, <medium>,
<small>, or respectively <possible>, <sometimes possible
and other times impossible>, <impossible>, etc.

Now, let’s take an exact concept / statement: if <A> is the
statement “1 + 1 = 2 in base 10” , then <anti A> is “1 + 1 , 2
in base 10”, while <neut A> is undefined (doesn’t exist) since
it is not possible to have a statement in between “1 + 1 = 2
in base 10” and “1 + 1 , 2 in base 10” because in base 10
we have 1+1 is either equal to 2 or 1+1 is different from 2.
<non A> coincides with <anti A> in this case, <non A> is
“1 + 1 , 2 in base 10”.

Neutrosophy is a theory the author developed since 1995
as a generalization of dialectics. This theory considers ev-
ery notion or idea <A> together with its opposite or negation
<anti A>, and the spectrum of “neutralities” in between them
and related to them, noted by <neut A>.

The Neutrosophy is a new branch of philosophy which
studies the origin, nature, and scope of neutralities, as well as
their interactions with different ideational spectra.

Its Fundamental Thesis:
Any idea <A> is T% true, I% indeterminate (i.e. neither true
nor false, but neutral, unknown), and F% false.

Its Fundamental Theory:
Every idea <A> tends to be neutralized, diminished, balanced
by <non A> ideas (not only by <anti A> as Hegel asserted)
— as a state of equilibrium.

In between <A> and <anti A> there may be a continu-
ous spectrum of particular <neut A> ideas, which can balance
<A> and <anti A>.

To neuter an idea one must discover all its three sides:
of sense (truth), of nonsense (falsity), and of undecidability
(indeterminacy) — then reverse/combine them. Afterwards,
the idea will be classified as neutrality.

There exists a Principle of Attraction not only between
the opposites <A> and <anti A> (as in dialectics), but also
between them and their neutralities <neut A> related to them,
since <neut A> contributes to the Completeness of Knowl-
edge.

Hence, neutrosophy is based not only on analysis of op-
positional propositions as dialectic does, but on analysis of
these contradictions together with the neutralities related to
them.

Neutrosophy was extended to Neutrosophic Logic, Neu-
trosophic Set, Neutrosophic Probability and Neutrosophic
Statistics, which are used in technical applications.

In the Neutrosophic Logic (which is a generalization of
fuzzy logic, especially of intuitionistic fuzzy logic) every log-
ical variable x is described by an ordered triple x = (T, I, F),
where T is the degree of truth, F is the degree of falsehood,
and I the degree of indeterminacy (or neutrality, i.e. neither
true nor false, but vague, unknown, imprecise), with T, I, F
standard or non-standard subsets of the non-standard unit in-
terval ]−0, 1+[. In addition, these values may vary over time,
space, hidden parameters, etc.

Neutrosophic Probability (as a generalization of the clas-
sical probability and imprecise probability) studies the chance
that a particular event <A> will occur, where that chance is
represented by three coordinates (variables): T% chance the
event will occur, I% indeterminate (unknown) chance, and
F% chance the event will not occur.

Neutrosophic Statistics is the analysis of neutrosophic
probabilistic events.

Neutrosophic Set (as a generalization of the fuzzy set,
and especially of intuitionistic fuzzy set) is a set such that
an element belongs to the set with a neutrosophic probability,
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i.e. T degree of appurtenance (membership) to the set, I de-
gree of indeterminacy (unknown if it is appurtenance or non-
appurtenance to the set), and F degree of non-appurtenance
(non-membership) to the set.

There exist, for each particular idea: PRO parameters,
CONTRA parameters, and NEUTER parameters which in-
fluence the above values.

Indeterminacy results from any hazard which may occur,
from unknown parameters, or from new arising conditions.
This resulted from practice.

2 Applications of neutrosophics

Neutrosophic logic/set/probability/statistics are useful in ar-
tificial intelligence, neural networks, evolutionary program-
ming, neutrosophic dynamic systems, and quantum mechan-
ics.

3 Examples of neutrosophy used in Arabic philosophy
(F. Smarandache and S. Osman)

• While Avicenna promotes the idea that the world is
contingent if it is necessitated by its causes, Averroes
rejects it, and both of them are right from their point of
view.
Hence <A> and <anti A> have common parts.

• Islamic dialectical theology (kalam) promoting crea-
tionism was connected by Avicenna in an extraordinary
way with the opposite Aristotelian-Neoplatonic tradi-
tion.
Actually a lot of work by Avicenna falls into the frame
of neutrosophy.

• Averroes’s religious judges (qadis) can be connected
with atheists’ believes.

• al-Farabi’s metaphysics and general theory of emana-
tion vs. al-Ghazali’s Sufi writings and mystical trea-
tises [we may think about a coherence of al-Ghazali’s
“Incoherence of the Incoherence” book].

• al-Kindi’s combination of Koranic doctrines with
Greek philosophy.

• Islamic Neoplatonism + Western Neoplatonism.
• Ibn−Khaldun’s statements in his theory on the cyclic

sequence of civilizations, says that:
Luxury leads to the raising of civilization (because the
people seek for comforts of life) but also Luxury leads
to the decay of civilization (because its correlation with
the corruption of ethics).

• On the other hand, there’s the method of absent−by−
present syllogism in jurisprudence, in which we find
the same principles and laws of neutrosophy.

• In fact, we can also function a lot of Arabic aphorisms,
maxims, Koranic miracles (Ayat Al- Qur’an) and
Sunna of the prophet, to support the theory of neutros-
ophy.

Take the colloquial proverb that “The continuance of state
is impossible” too, or “Everything, if it’s increased over its
extreme, it will turn over to its opposite”!

4 The Venn diagram

In a Venn diagram we have with respect to a universal set U
the following:

Fig. 1: Venn diagram

Therefore, there are no common parts amongst <A>,
<neut A>, and <anti A>, and all three of them are (com-
pletely) contained by the universal set U. Also, all borders
of these sets <A>, <neut A>, <anti A>, and U are clear, ex-
act. All these four sets are well−defined.

While <neut A> means neutralities related to <A> and
<anti A>, what is outside of <A>U <neut A>U <anti A> but
inside of U are other neutralities, not related to <A> or to
<anti A>.

Given <A>, there are two types of neutralities: those re-
lated to <A> (and implicitly related to <anti A>), and those
not related to <A> (and implicitly not related to <anti A>)

5 The neutrosophic diagram, as extension of the Venn
diagram

Yet, for ambiguous, vague, not-well-known (or even un-
known) imprecise ideas / notions / statements / entities with
unclear frontiers amongst them the below relationships may
occur because between an approximate idea noted by <A>
and its opposite <anti A> and their neutralities <neut A>
there are not clear delimitations, not clear borders to distin-
guish amongst what is <A> and what is not <A>. There are
buffer zones in between <A> and <anti A> and <neut A>,
and an element x from a buffer zone between <A> and
<anti A> may or may not belong to both <A> and <anti A>
simultaneously. And similarly for an element y in a buffer
zone between <A> and <neut A>, or an element z in the
buffer zone between <neut A> and <anti A>. We may have a
buffer zone where the confusion of appurtenance to <A>, or
to <neut A>, or to <anti A> is so high, that we can consider
that an element w belongs to all of them simultaneously (or
to none of them simultaneously).

We say that all four sets <A>, <neut A>, <anti A>, and
the neutrosophic universal set U are illdefined, inexact, un-
known (especially if we deal with predictions; for example
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if <A> is a statement with some degree of chance of occur-
ring, with another degree of change of not occurring, plus an
unknown part). In the general case, none of the sets <A>,
<neut A>, <anti A>, <non A> are completely included in U,
and neither U is completely known; for example, if U is the
neutrosophic universal set of some specific given events, what
about an unexpected event that might belong to U? That’s
why an approximate U (with vague borders) leaves room for
expecting the unexpected.

The Neutrosophic Diagram in the general case is the fol-
lowing (Fig. 2): the borders of <A>, <anti A>, and <neut A>
are dotted since they are unclear.

Fig. 2: Neutrosophic Diagram

Similarly, the border of the neutrosophic universal set U is
dotted, meaning also unclear, so U may not completely con-
tain <A>, nor <neut A> or <anti A>, but U “approximately”
contains each of them. Therefore, there are elements in <A>
that may not belong to U, and the same thing for <neut A>
and <anti A>. Or elements, in the most ambiguous case, there
may be elements in <A> and in <neut A> and in <anti A>
which are not contained in the universal set U.

Even the neutrosophic universal set is ambiguous, vague,
and with unclear borders.

Of course, the intersections amongst <A>, <neut A>,
<anti A>, and U may be smaller or bigger or even empty de-
pending on each particular case.

See below an example of a particular neutrosophic dia-
gram (Fig. 3), when some intersections are contained by the
neutrosophic universal set:

Fig. 3: Example of a particular neutrosophic diagram

A neutrosophic diagram is different from a Venn diagram
since the borders in a neutrosophic diagram are vague. When
all borders are exact and all intersections among <A>,
<neut A>, and <anti A> are empty, and all <A>, <neut A>,
and <anti A> are included in the neutrosophic universal set
U, then the neutrosophic diagram becomes a Venn diagram.

The neutrosophic diagram, which complies with the neu-
trosophic logic and neutrosophic set, is an extension of the
Venn diagram.

6 Classes of neutrosophic paradoxes

The below classes of neutrosophic paradoxes are not simply
word puzzles. They may look absurd or unreal from the clas-
sical logic and classical set theory perspective. If <A> is a
precise / exact idea, with well-defined borders that delimit it
from others, then of course the below relationships do not oc-
cur.

But let <A> be a vague, imprecise, ambiguous, not-well-
known, not-clear-boundary entity, <non A> means what is
not<A>, and<anti A>means the opposite of<A>. <neut A>
means the neutralities related to <A> and <anti A>, neutrali-
ties which are in between them.

When <A>, <neut A>,<anti A>,<non A>, U are uncer-
tain, imprecise, they may be selfcontradictory. Also, there
are cases when the distinction between a set and its elements
is not clear.

Although these neutrosophic paradoxes are based on
“pathological sets” (those whose properties are considered
atypically counterintuitive), they are not referring to the the-
ory of Meinongian objects (Gegenstandstheorie) such as
round squares, unicorns, etc. Neutrosophic paradoxes are not
reported to objects, but to vague, imprecise, unclear ideas or
predictions or approximate notions or attributes from our ev-
eryday life.

7 Neutrosophic operators

Let’s introduce for the first time two new Neutrosophic Oper-
ators:

1. An operator that “neuterizes” an idea. To neuterize
[neuter+ize, transitive verb; from the Latin word neuter
= neutral, in neither side], n(.), means to map an entity
to its neutral part. [We use the Segoe Print for “n(.)”.]
“To neuterize” is different from “to neutralize” [from
the French word neutraliser] which means to declare
a territory neutral in war, or to make ineffective an en-
emy, or to destroy an enemy.
n(<A>) = <neut A>. By definition n (<neut A>) =

<neut A>.
For example, if <A> is “tall”, then n(tall) = medium,
also n(short) = medium, n(medium) = medium.
But if <A> is “1 + 1 = 2 in base 10” then n (<1 + 1 =

2 in base 10>) is undefined (does not exist), and simi-
larly n (<1 + 1 , 2 in base 10>) is undefined.
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2. And an operator that “antonymizes” an idea. To anto-
nymize [antonym+ize, transitive verb; from the Greek
work antōnymia = instead of, opposite], a (.), means to
map an entity to its opposite. [We use the Segoe Print
for a (.)] a(<A>) = <anti A>.
For example, if <A> is “tall”, then a(tall) = short,
also a (short) = tall, and a (medium) = tall or short .
But if <A> is “1 + 1 = 2 in base10” then a(<1 + 1 =

2 in base10>) = <1+1 , 2 in base 10> and reciprocal-
ly a (<1 + 1 , 2 in base 10>) = <1 + 1 = 2 in base 10>.

The classical operator for negation / complement in logics
respectively in set theory, “to negate” (¬), which is equivalent
in neutrosophy with the operator “ to nonize” (i.e. to non+ize)
or nonization (i.e. non+ization), means to map an idea to its
neutral or to its opposite (a union of the previous two neutro-
sophic operators: neuterization and antonymization):
¬<A> = <non A> = <neut A> ∪ <anti A> = n (<A>) ∪
a(<A>).

Neutrosophic Paradoxes result from the following neu-
trosophic logic / set connectives following all apparently im-
possibilities or semi-impossibilities of neutrosophically con-
necting <A>, <anti A>, <neut A>, <non A> , and the neu-
trosophic universal set U.

8 Neutrosophic truth tables

For <A> = “tall”:

<A> a(<A>) n(<A>) ¬<A>
tall short medium short or medium
medium short or tall medium short or tall
short tall medium tall or medium

To remark that n (<medium>) , medium. If <A> = tall,
then <neut A> = medium, and <neut(neut A)>=<neut A>,
or n(<n(<A>)>) = n(<A>).

For <A> = “1 + 1 = 2 in base 10” we have <anti A> =

<non A> = “1 + 1 , 2 in base 10”, while <neut A> is unde-
fined (N/A) — whence the neutrosophic truth table becomes:

<A> a(<A>) n(<A>) ¬<A>
True False N/A False
False True N/A True

In the case when a statement is given by its neutrosophic
logic components <A> = ( T, I, F), i.e. <A> is T% true,
I% indeterminate, and F% false, then the neutrosophic truth
table depends on the defined neutrosophic operators for each
application.

9 Neutrosophic operators and classes of neutrosophic
paradoxes

a) Complement/Negation
¬<A> , <non A> and reciprocally ¬<non A> , <A>.

¬( ¬<A>) , <A>
¬( ¬<anti A>) , <anti A>
¬( ¬<non A>) , <non A>
¬( ¬<neut A>) , <neut A>
¬( ¬U) , U, where Uis the neutrosophic universal
set. ¬( ¬<∅>) , <∅>, where <∅> is the neutrosophic
empty set.

b) Neuterization
n(<A>) , <neut A>
n(<anti A>) , <neut A>
n(<non A>) , <neut A>
n(n(<A>)) , <A>

c) Antonymization
a(<A>) , <anti A>
a(<anti A>) , <A>
a(<non A>) , <A>
a(a(<A>)) , <A>

d) Intersection/Conjunction
<A> ∩ <non A> , ∅ (neutrosophic empty set) [sym-
bolically (∃x)(x ∈ A ∧ x ∈ ¬A) ],
or even more <A> ∩ <anti A> , ∅ [symbolically (∃x)
(x ∈ A ∧ x ∈ a(A)) ],
similarly <A>∩<neut A>,∅ and <anti A>∩<neut A>
, ∅,
up to <A> ∩ <neut A> ∩ <anti A> , ∅.
The symbolic notations will be in a similar way.
This is Neutrosophic Transdisciplinarity, which means
to find common features to uncommon entities.
For examples:
There are things which are good and bad in the same
time.
There are things which are good and bad and medium
in the same time (because from one point of view they
may be god, from other point of view they may be bad,
and from a third point of view they may be medium).

e) Union / Weak Disjunction
<A> ∪ <neut A> ∪ <anti A> , U.
<anti A> ∪ <neut A> , <non A>.
Etc.

f) Inclusion/Conditional
<A> ⊂ <anti A>
(∀x)(x ∈ A→ x ∈ a(A))
All is <anti A>, the <A> too.
All good things are also bad.
All is imperfect, the perfect too.

<anti A> ⊂ <A>
(∀x)(x ∈ a(A)→ x ∈ A)
All is <A>, the <anti A> too.
All bad things have something good in them [this is
rather a fuzzy paradox].
All is perfect things are imperfect in some degree.
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<non A> ⊂ <A>
(∀x)(x ∈ ¬A→ x ∈ A)
All is <A>, the <non A> too.
All bad things have something good and something
medium in them [this is a neutrosophic paradox, since
it is based on good, bad, and medium].
All is perfect things have some imperfectness and medi-
ocrity in them at some degree.
<A> ⊂ <neut A>
(∀x)(x ∈ A→ x ∈ n(A))
All is <neutA>, the <A> too.

<non A> ⊂ <neutA> [partial neutrosophic paradox of
inclusion]
(∀x)(x ∈ ¬A→ x ∈ n(A))
All is <neutA>, the <non A> too.
<non A> ⊂ <antiA> [partial neutrosophic paradox of
inclusion]
(∀x)(x ∈ ¬A→ x ∈ a(A))
All is <antiA>, the <non A> too.
<antiA> ⊂ <neut A>
(∀x)(x ∈ a(A)→ x ∈ n(A))
All is <neut A>, the <anti A> too.
<A> ∪ <anti A> ⊂ <neut A>
(∀x)((x ∈ A ∨ x ∈ a(A))→ x ∈ n(A))
All is <neutA>, the <A> and <antiA> too.

Paradoxes of some Neutrosophic Arguments
<A>⇒ <B>
<B>⇒ <anti A>
∴ <A>⇒ <anti A>
Example: too much work produces sickness; sickness
produces less work (absences from work, low efficien-
cy); therefore, too much work implies less work (this is
a Law of Self-Equilibrium).
<A>⇒ <B>
<B>⇒ <non A>
∴ <A>⇒ <non A>

<A>⇒ <B>
<B>⇒ <neut A>
∴ <A>⇒ <neut A>

g) Equality/Biconditional
Unequal Equalities
<A> , <A>
which symbolically becomes (∃x)(x ∈ ¬A↔ x < ¬A)
or even stronger inequality (∀x)(x ∈ ¬A↔ x < ¬A).
Nothing is <A>, nor even <A>.
<anti A> , <anti A>
which symbolically becomes (∃x)(x ∈ A↔ x < A)
or even stronger inequality (∀x)(x ∈ A↔ x < A).

<neut A> , <neut A>
which symbolically becomes (∃x)(x ∈ vA↔ x < vA)
or even stronger inequality (∀x)(x ∈ vA↔ x < vA).

<non A> , <non A>
which symbolically becomes (∃x)(x ∈ ¬A↔ x < ¬A)
or even stronger inequality (∀x)(x ∈ ¬A↔ x < ¬A).

Equal Inequalities
<A> = <anti A>
(∀x)(x ∈ A↔ x ∈ a(A))
All is <A>, the <anti A> too; and reciprocally, all is
<anti A>, the <A> too. Or, both combined implica-
tions give: All is <A> is equivalent to all is <anti A>.

And so on:
<A> = <neut A>
<anti A> = <neut A>
<non A> = <A>

Dilations and Absorptions
<anti A> = <non A>,
which means that <anti A> is dilated to its neutrosoph-
ic superset <non A>, or <non A> is absorbed to its neu-
trosophic subset <anti A>.
Similarly for:
<neut A> = <non A>
<A> = U
<neut A> = U
<anti A> = U
<non A> = U

h) Combinations of the previous single neutrosophic op-
erator equalities and/or inequalities, resulting in more
neutrosophic operators involved in the same expres-
sion.
For examples:
<neut A> ∩ (<A> ∪ <anti A>) , ∅ [two neutrosophic
operators].
<A>∪<anti A> , ¬<neut A> and reciprocally ¬(<A>
∪<anti A>) , <neut A>.
<A> ∪ <neut A> , ¬<anti A> and reciprocally.
¬(<A> ∪ <neut A> ∪ <anti A>) , ∅ and reciprocally.
Etc.

i) We can also take into consideration other logical con-
nectors, such as strong disjunction (we previously used
the weak disjunction), Shaffer’s connector, Peirce’s
connector, and extend them to the neutrosophic form.

j) We may substitute <A> by some entities, attributes,
statements, ideas and get nice neutrosophic paradoxes,
but not all substitutions will work properly.

10 Some particular paradoxes

Quantum Semi-Paradox
Let’s go back to 1931 Schrödinger’s paper. Saul Youssef
writes (flipping a quantum coin) in arXiv.org at quant-ph/

9509004:
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“The situation before the observation could be describ-
ed by the distribution (1/2,1/2) and after observing
heads our description would be adjusted to (1,0). The
problem is, what would you say to a student who then
asks: ”Yes, but what causes (1/2,1/2) to evolve into
(1,0)? How does it happen?”

It is interesting. Actually we can say the same for any proba-
bility different from 1: If at the beginning, the probability of
a quantum event, P(quantum event) = p, with 0<p<1, and if
later the event occurs, we get to P(quantum event) = 1; but if
the event does not occur, then we get P(quantum event) = 0,
so still a kind of contradiction.

Torture’s paradox
An innocent person P, who is tortured, would say to the tor-
turer T whatever the torturer wants to hear, even if P doesn’t
know anything.

So, T would receive incorrect information that will work
against him/her. Thus, the torture returns against the torturer.

Paradoxist psychological behavior
Instead of being afraid of something, say <A>, try to be afraid
of its opposite <anti A>, and thus− because of your fear −
you’ll end up with the <anti<anti A>>, which is <A>.

Paradoxically, negative publicity attracts better than posi-
tive one (enemies of those who do negative publicity against
you will sympathize with you and become your friends).

Paradoxistically [word coming etymologically from para-
doxism, paradoxist], to be in opposition is more poetical and
interesting than being opportunistic.
At a sportive, literary, or scientific competition, or in a war,
to be on the side of the weaker is more challenging but on
the edge of chaos and, as in Complex Adoptive System, more
potential to higher creation.

Law of Self-Equilibrium
(Already cited above at the Neutrosophic Inclusion/Condit-
ional Paradoxes) <A> → <B> and <B> → <anti A>, there-
fore <A>→ <anti A> !
Example: too much work produces sickness; sickness pro-
duces less work (absences from work, low efficiency); there-
fore, too much work implies less work.
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17. Smarandache F., Osman S. Neutrosophy in Arabic philosophy.
Renaissance High Press (Ann Arbor), 2007.

18. Smarandache F. Mathematical fancies and paradoxes. The Eu-
gene Strens Memorial on Intuitive and Recreational Mathemat-
ics and its History, University of Calgary, Alberta, Canada, 27
July — 2 August, 1986.

19. Tilton H.B. Smarandache’s paradoxes. Math Power, Tucson
(AZ), 1996, v.2, no.9, 1–2.

Florentin Smarandache. Neutrosophic Diagram and Classes of Neutrosophic Paradoxes or to the Outer-Limits of Science 23



Volume 4 PROGRESS IN PHYSICS October, 2010

Five Paradoxes and a General Question on Time Traveling

Florentin Smarandache
Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA. E-mail: smarand@unm.edu

These are five paradoxes on time traveling, which come from Neutrosophy and Neutro-
sophic Logics applied to the theory of relativity.

1 Traveling to the past

Joe40, who is 40 years old, travels 10 years back to the past
when he was 30 years old. He meets himself when he was 30
years old, let’s call this Joe30.

Joe40 kills Joe30.
If so, we mean if Joe died at age 30 (because Joe30 was

killed), how could he live up to age 40?

2 Traveling to the future

Joe30, who is 30 years old, travels 10 years in the future and
meats himself when he will be 40 years old, let’s call him
Joe40.

Joe40 kills Joe30.
At what age did Joe die, at 30 or 40?
If Joe30 died, then Joe40 would not exist.

3 Traveling pregnant woman

a) A 3-month pregnant woman, Jane3, travels 6 months to the
future where she gives birth to a child Johnny3.
b) Then she returns with the child back, and after 1 month
she travels 5 months to the future exactly at the same time as
before.

Then how is it possible to have at exactly the same time
two different situations: first only the pregnant woman, and
second the pregnant woman and her child?

4 Traveling in the past before birth

Joe30, who is 30 years old, travels 40 years in the past, there-
fore 10 years before he was born.

How is it possible for him to be in the time when he did
not exist?

5 Traveling in the future after death

Joe30, who is 30 years old, travels 40 years in the future, 10
years after his death. He has died when he was 60 years old,
as Joe60.

How is it possible for him to be in the time when he did
not exist any longer?

6 A general question about time traveling

When traveling say 50 years in the past [let’s say from year
2010 to year 1960] or 50 years in the future [respectively from
year 2010 to year 2060], how long does the traveling itself
last?

If it’s an instantaneous traveling in the past, is the time
traveler jumping from year 2010 directly to year 1960, or is
he continuously passing through all years in between 2010
and 1960? Similar question for traveling in the future.

If the traveling lasts longer say, a few units (seconds, min-
utes, etc.) of time, where will be the traveler at the second unit
or third unit of time? I mean, suppose it takes 5 seconds to
travel from year 2010 back to year 1960; then in the 1st sec-
ond is he in year 2000, in the 2nd second in year 1990, in the
3rd second in year 1980, in the 4st second in year 1970, and
in the 5st second in year 1960? So, his speed is 10 years per
second?

Similar question for traveling in the future.
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Do the Uncertainty Relations Really have Crucial Significances for Physics?

Spiridon Dumitru

Department of Physics (retired), Transilvania University, B-dul Eroilor 29, 500036 Braşov, Romania
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It is proved the falsity of idea that the Uncertainty Relations (UR) have crucial signif-
icances for physics. Additionally one argues for the necesity of an UR-disconnected
quantum philosophy.

1 Introduction

The Uncertainty Relations (UR) enjoy a considerable popu-
larity, due in a large measure to the so called Conventional
(Copenhagen) Interpretation of UR (CIUR). The mentioned
popularity is frequently associated with the idea (which per-
sist so far) that UR have crucial significances for physics (for
a list of relevant references see [1–3]). The itemization of the
alluded idea can be done through the following more known
Assertions (A):
• A1 : In an experimental reading the UR are crucial sym-

bols for measurement characteristics regarding Quantum Me-
chanics (QM) in contrast with non-quantum Classical Physics
(CP). The pointed characteristics view two aspects: (i) the
so called “observer effect” (i.e. the perturbative influence of
“observation”/measuring devices on the investigated system),
and (ii) the measurement errors (uncertainties). Both of the
alluded aspects are presumed to be absolutely notable and un-
avoidable in QM contexts respectively entirely negligible and
avoidable in CP situations.
• A2 : From a theoretical viewpoint UR are essential dis-

tinction elements between the theoretical frameworks of QM
and CP. This in sense of the supposition that mathematically
UR appear only in QM pictures and have not analogues in the
CP representations.
• A3 : In both experimental and theoretical acceptions the

UR are in an indissoluble connection with the description
of uncertainties (errors) specific for Quantum Measurements
(QMS).
• A4 : As an esential piece of UR, the Planck’s constant

~, is appreciated to be exclusively a symbol of quanticity (i.e.
a signature of QM comparatively with CP), without any kind
of analogue in CP.
• A5 : UR entail [4] the existence of some “impossibility”

(or “limitative”) principles in foundational physics.
• A6 : UR are regarded [5] as expression of “the most

important principle of the twentieth century physics”.
To a certain extent the verity of the idea itemized by as-

sertions A1 − A6 depends on the entire truth of CIUR. That is
why in the next section we present briefly the CIUR untruths
which trouble the mentioned verity. Subsequently, in Sec-
tion 3, we point out a lot of Observations (O) which invalidate
completely and irrefutably the items A1 − A6. The respective
invalidation suggests a substitution of UR-subordinate quan-

tum philosophy with an UR-disconnected conception. Such
a suggestion is consolidated by some additional Comments
(C) given in Section 4. So, in Section 5, we can conclude our
considerations with: (i) a definitely negative answer to the
inquired idea, respecively (ii) a pleading for a new quantum
philosophy. Such conclusions argue for the Dirac’s intuitional
guess about the non-survival of UR in the physics of future.

2 Shortly on the CIUR untruths

In its essence the CIUR doctrine was established and dissem-
inated by the founders and subsequent partisans of Copen-
hagen School in QM. The story started from the wish to give
out an unique and generic interpretation for the thought-
experimental (te) formula

∆teA · ∆teB > ~ (1)

(A and B being conjugated observables) respectively for the
QM theoretical formula

∆ψA · ∆ψB >
1
2

∣∣∣∣
〈[

Â, B̂
]〉
ψ

∣∣∣∣ (2)

(where the notations are the usual ones from usual QM —
see also [3]). Both the above two kind of formulas are known
as UR.

The alluded doctrine remains a widely adopted concep-
tion which, in various manners, dominates to this day the
questions regarding the foundation and interpretation of QM.
However, as a rule, a minute survey of the truths-versus-
untruths regarding its substance was (and still is) underesti-
mated in the main stream of publications (see the literature
mentioned in [1, 2]). This in spite of the early known opin-
ions like [6]: “the idea that there are defects in the founda-
tions of orthodox quantum theory is unquestionable present
in the conscience of many physicists”.

A survey of the mentioned kind was approached by us
in the report [3] as well as in its precursor papers [7–15]
and preprints [16]. Our approaches, summarized in [3], dis-
close the fact that each of all basic elements (presumptions)
of CIUR are troubled by a number of insurmountable short-
comings (unthruths). For that reason we believe that CIUR
must be wholly abandoned as a wrong construction which, in
its substance, has no noticeable value for physics. The dis-
closures from [3] were carried out by an entire class of well
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argued remarks (R). From the mentioned class we compile
here only the following ones:
• Ra : Formula (1) is mere provisional fiction without

any durable physical significance. This because it has only
a transitory/temporary character, founded on old resolution
criteria from optics (introduced by Abe and Rayleigh). But
the respective criteria were surpassed by the so called super-
resolution techniques worked out in modern experimental
physics.
Then, instead of CIUR formula (1), it is possible to imagine
some “improved relations” (founded on some super-
resolution thought-experiments) able to invalidate in its very
essence the respective formula.
• Rb : From a theoretical perspective the formula (2) is

only a minor and deficient piece, resulting from the genuine
Cauchy-Schwarz relation

∆ψA · ∆ψB >
∣∣∣∣
(
δψÂψ, δψB̂ψ

)∣∣∣∣ (3)

written in terms of usual QM notations (see [3]).
As regards their physical significance the formulas (2) and (3)
are nothing but simple (second order) fluctuations relations
from the same family with the similar ones [3, 7–9, 12, 15]
from the statistical CP.
• Rc : In a true approach the formulas (1) and (2) as well

as their “improvised adjustments” have no connection with
the description of QMS.
• Rd : The Planck’s constant ~ besides its well-known

quanticity significance is endowed also [3, 12] with the qual-
ity of generic indicator for quantum randomness (stochas-
ticity) — i.e. for the random characteristics of QM observ-
ables. Through such a quality ~ has [3, 12] an authentic ana-
logue in statistical CP. The respective analogue is the Boltz-
mann’s constant kB which is an authentic generic indicator
for thermal randomness. Note that, physically, the random-
ness of an observable is manifested through its fluctuations
[3, 7–9, 12, 15].
• Re : The formula (2) is not applicable for the pair of

(conjugated) observables t − E (time-energy). In other words
[3] a particularization of (2) in the form

∆ψt · ∆ψE >
~

2
(4)

gives in fact a wrong relation. This because in usual QM
the time t is a deterministic variable but not a random one.
Consequently for any QM situation one finds the expressions
∆ψt ≡ 0 respectively ∆ψE = a f inite quantity.
Note that in a correct mathematical-theoretical approach for
the t−E case it is valid only the Cauchy Schwarz formula (3),
which degenerate into trivial relation 0 = 0.

Starting from the above remarks Ra−Re in the next section
we add an entire group of Observations (O) able to give a just
estimation of correctness regarding the assertions A1 − A6.

3 The falsity of assertions A1 − A6

The above announced estimation can be obtained only if the
mentioned remarks are supplemented with some other no-
table elements. By such a supplementation one obtains a
panoramic view which can be reported through the whole
group of the following Observations (O) :
• O1 : The remark Ra, noted in previous section, shows

irrefutably the falsity of the assertion A1. The same falsity
is argued by the fact that the referred “observer effect” and
corresponding measuring uncertainties can be noticeable not
only in QMS but also in some CP measurements (e.g. [17] in
electronics or in thermodynamics)
• O2 : On the other hand the remark Rb points out the

evident untruth of the assertion A2.
•O3 : Furthermore the triplet of remarks Ra−Rc infringes

the essence of the assertion A3.
• O4 : The exclusiveness feature of Planck’s constant ~,

asserted by A4, is evidently contradicted by the remark Rd.
• O5 : Assertion A5 was reinforced and disseminated re-

cently [4] thrugh the topic:

“What role do ‘impossibility’ principles or
other limits (e.g., sub-lightspeed signaling,
Heisenberg uncertainty, cosmic censorship, the
second law of thermodynamics, the holographic
principle, computational limits, etc.) play in
foundational physics and cosmology?”.

Affiliated oneself with the quoted topic the assertion A5 im-
plies two readings: (i) one which hints at Measuring Limits
(ML), respectively (ii) another associated with the so called
“Computational Limits” (CL).
• O6 : In the reading connected with ML the assertion A5

presumes that the QMS accuracies can not surpass “Heisen-
berg uncertainties” (1) and (2). Such a presumption is per-
petuated until these days through sentences like: “The uncer-
tainty principle of quantum mechanics places a fundamental
limitation on what we can know” [18].
Now is easy to see that the above noted remarks Ra and Rc

reveal beyond doubt the weakness of such a presumption. Of
course that, as a rule, for various branches of physics (even
of CP nature such are [17] those from electronics or ther-
modynamics), the existence of some specific ML is a reality.
The respective existence is subordinate to certain genuine el-
ements such are the accuracy of experimental devices and the
competence of the theoretical approaches. But note that as
it results from the alluded remarks the formulas (1) and (2)
have nothing to do with the evaluation or description of the
ML (non-performances or uncertainties) regarding QMS.
• O7 : The reading which associate the UR with CL sems

to refer mainly to the Bremermann’s limit (i.e. to the maxi-
mum computational speed of a self-contained system in the
universe) [19, 20]. But it is easy to see from [19, 20] that the
aludded association is builded in fact on the wrong relations
(1) and (4) written for the observables pair t − E. Conse-
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quently such an association has not any real value for appre-
ciation of UR significance as CL. Add here the remark that,
nevertheless, the search [20] for finding the ultimate physical
limits of computations remains a subject worthy to be investi-
gated. This because, certainly, that what is ultimately permis-
sible in practical computational progresses depends on what
are the ultimate possibilities of real physical artifacts (expe-
riences). However, from our viewpoint, appraisals of the al-
luded possibilities do not require any appeal to the relations
(1, 2, 4).
• O8 : For a true judgment regarding the validity of asser-

tion A6 can be taken into account the following aspects:

(i) In its essence A6 prove oneself to be nothing
but an unjustifiable distortion of the real truths.
Such a proof results directly from the above re-
marks Ra−Rc. According to the alluded remarks
in reality the UR (1) and (2) are mere provisional
fictions respectively minor (and restricted) QM
relations. So it results that, in the main, UR are
insignificant things comparatively with the true
important principles of the 20th century physics
(such are the ones regarding Noether’s theorem,
mass-energy equivalence, partricle-wave duality
or nuclear fission).
(ii) It is wrongly to promote the assertion A6
based on the existent publishing situation where,
in the mainstream of QM text-books, the UR (1)
and/or (2) are amalgamated with the basic quan-
tum concepts. The wrongness is revealed by the
fact that the alluded situation was created
through an unjustified perpetuance of the writing
style done by the CIUR partisans.
(iii) The assertion A6 must be not confused with
the history confirmed remark [21] : UR “are
probably the most controverted formulae in the
whole of the theoretical physics”. With more
justice the respective remark has to be regarded
as accentuating the weakness of concerned asser-
tion.

Together the three above noted aspects give enough reasons
for an incontestable incrimination of the assertion under di-
cussion.

The here detailed observations O1 − O8 assure sufficient
solid arguments in order to prove the indubitable incorrect-
ness for each of the assertions A1 − A6 and, consequently,
the falsity of the idea that UR really have crucial signifi-
cances for physics. But the alluded proof conflicts with the
UR-subordinate quantum philosophy in which the interpreta-
tional questions of QM and debates about QMS description
are indissolubly associated with the formulas (1) and/or (2).
The true (and deep) nature of the respective conflict suggests
directly the necesity of improvements by substituting the al-
luded philosophy with another UR-disconnected conception.

Of course that the before-mentioned substitution necessi-
tates further well argued reconsiderations, able to gain the
support of mainstream scientific communities and publica-
tions. Note that, in one way or other, elements of the UR-
subordinate philosophy are present in almost all current QM
interpretations [22]. We think that among the possible mul-
titude of elements belonging to the alluded reconsiderations
can be included the additional group of comments from the
next section.

4 Some additional comments

The Comments (C) from the foregoing announced group, able
to suggest also improvements in quantum philosophy, are the
following ones:
• C1 : Firstly we note that the substance of above pre-

sented remarks Ra−Rb respectively observations O1−O3 can
be fortified by means of the following three our views:

(i) In its bare and lucrative framework, the usual
QM offers solely theoretical models for own
characteristics of the investigated systems (mi-
croparticles of atomic size).
(ii) In the alluded framework QM has no connec-
tion with a natural depiction of QMS.
(iii) The description of QMS is an autonomous
subject, investigable in addition to the bare theo-
retical structure of usual QM.

We think that, to a certain extent, our above views find some
support in the Bell’s remark [23]: “the word (measurement)
has had such a damaging efect on the discussions that . . .
it should be banned altogether in quantum mechanics”. (It
happened that, in a letter [24], J.S.Bell comunicated us early
the essence of the alluded remark together with a short his
personal agreement with our incipient opinions about UR and
QMS).
• C2 : In its substance the view (i) from C1 regards the

bare QM as being nothing but an abstract (mathematical)
modeling of the properties specific to the atomic-size sytems
(microparticles). For a given system the main elements of
the alluded modeling are the wave functions ψα, respectively
the quantum operators Â j. On the one hand ψα describes
the probabilistic situation of the system in α state. Mathe-
matically ψα is nothing but the solution of the corresponding
Schrodinger equation. On the other hand each of the oper-
ators Â j ( j = 1, 2, . . . , n) is a generalised radom variable
associated to a specific observable A j (e.g. coordinate, mo-
mentum, angular momentum or energy) of the system. Then
in a probabilistic sense the global characterization of the ob-
servables A j is given by the expected parameters:
(i) the mean values

〈
A j

〉
ψ

=
(
ψ, Â jψ

)
wherre ψ ≡ ψα while

( f , g) denotes the scalar product of functions f and g,
(ii) the (r + s)-order correlations

Kψ (i, j; r, s) =
((
δψÂi

)r
ψ,

(
δψÂ j

)s
ψ
)

,
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with δψÂ j = Â j −
〈
A j

〉
ψ

and r + s > 2.
So the definitions of parameters 〈Aa〉ψ and Kψ (i, j; r, s) appeal
to the usual notations from QM texts (see [3, 25, 26]).

• C3 : The before mentioned QM entities are completely
similar with the known things from statistical CP (such are the
phenomenological theory of fluctuations [27,28] respectively
the classical statistical mechanics [29,30]). So the wave func-
tions ψα correspond to the probability distributions wα while
the operators Â j are alike the macroscopic random observ-
ables A j. Moreover the QM probabilistc expected parame-
ters 〈Aa〉ψ and Kψ (i, j; r, s) are entirely analogous with the
mean values respectively the second and higher order fluc-
tuations correlations regarding the macroscopic observables
A j [3, 7–10, 12, 15, 27–31]

• C4 : It is interesting to complete the above comment
with the following annotations. Undoubtedly that, mathemat-
ically, the QM observables have innate characteristics of ran-
dom variables. But similar characteristics one finds also in
the case of statistical CP observables. Then it is surprisingly
that the two kinds of random observables (from QM and CP)
in their connection with the problem of measurements are ap-
proached differently by the same authors [25, 29] or teams
[26, 30]. Namely the alluded problem is totally neglected in
the case of CP observables [29,30], respectively it is regarded
as a capital question for QM observables [25, 26]. Note that
the mentioned differentiation is not justified [25,26,29,30] by
any physical argument. We think that, as regard the descrip-
tion of their measurements, the two kinds of random observ-
ables must be approached in similar manners.
In the context of above annotations it is interesting to mention
the following very recent statement [32]: “To our best current
knowledge the measurement process in quantum mechanics is
non-deterministic”. The inner nature of the mentioned state-
ment strengthens our appreciation [3] that a measurement of
a (random) quantum observable must be understood not as
a single trial (which give a unique value) but as a statistical
sampling (which yields a spectrum of values). Certainly that
in such an understanding the concept of “wave function col-
lapse” [33] becomes an obsolete thing.

• C5 : A credible tentative in approaching similarly the
description of measurements regarding random observables
from both QM and CP was promoted by us in [3, 34]. Our
approach was done according the views (ii) and (iii) noted
in the above comment C1. Mainly the respective approach
aims to obtain a well argued (and consequently credible) de-
scription of QMS. So, in papers [3, 34], a QMS was depicted
as a distortion of the information about the measured sys-
tem. For a given system the respective distortion is described
(modeled) as a process which change linearly the probabil-
ity density and current (given in terms of wave function) but
preserve the mathematical expressions of QM operators re-
garded as generalised random variables. Note that an anal-
ogous description of measurements concerning the random

observables from CP was done by us formerly in [35].
•C6 : Other open question of quantum philosophy regards

the deterministic subjacency of QM randomness. The ques-
tion, of great interest [36], aims to clarify if the respective
randomness has an irreducible nature or otherwise it derives
from the existence of some subjacent hidden variables of de-
terministic essence. Then it appears as a notable aspect the
fact that, in so reputable report [36] about the alluded ques-
tion, the possible involvement of UR (1) and/or (2) is com-
pletely omited. Such a remarkable omission show clearly that
the UR (1) and/or (2) do not present any interest for one of the
most thought-provoking subject regarding quantum philoso-
phy.
•C7 : Here is the place to refer comparatively to the deter-

ministic subjacency regarding CP kind of randomness. The
respective kind is associated (both theoretically and experi-
mentally) with a class of subjacent deterministic variables,
specific to the molecular and atomic motions [27–30]. The
important feature of the alluded CP subjacency is the fact
that it does not annul at all the corresponding randomness.
Namely the respective deterministic subjacency do not revoke
at all the random entities such are the probability distributions
wα and macroscopic observables A j , mentioned above in C3.
The respective entities keep the essence of the CP randomness
revealed physically through the corresponding global fluctu-
ations of macroscopic observables.
We think that the noted classical feature must be taken as a
reference element in managing the discussions regarding the
deterministic subjacency of QM (i.e. the question of hid-
den variables — versus — QM randomness) and, generally
speaking, the renovation of quantum philosophy. More ex-
actly it is of direct interest to see if the existence of hidden
variables removes or keeps the QM randomness incorporated
within the wave functions ψα and operators Â j. We dare to
believe that the alluded QM randomness will persist, even if
the existence of some subjacent hidden variables would be
evidenced (first of all experimentally).
• C8 : Now some other words about the question of “im-

possibility” principles in foundational physics, discussed
above in observations O5 − O7. The respective principles
were mentioned in connection with questions like: ’ What
is Ultimately Possible in Physics?’ (see [4]). To a deeper
analysis the alluded connection calls attention to ’the fron-
tier of knowledge’. In scrutinizing the respective frontier it
was acknowledged recently [32] that: “Despite long efforts,
no progress has been made. . . for . . . the understanding of
quantum mechanics, in particular its measurement process
and interpretation”. What is most important in our opinion is
the fact that, in reality, for the sought “progress” the UR (1)
and (2) are of no interest or utility.

By ending this section it is easy to see that the here added
comments C1 −C8 give supports to the before suggested pro-
posal for a UR-disconnected quantum philosophy.
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5 Conclusions

A survey, in Section 3, of the observations O1 − O8 discloses
that in fact the UR (1) and (2) have not any crucial signifi-
cance for physics. Additionally, in Section 4, an examination
of the comments C1 − C8 provides supporting elements for a
UR-disconnected quantum philosophy.

So we give forth a class of solid arguments which come
to advocate and consolidate the Dirac’s intuitional guess [37]
that : “uncertainty relations in their present form will not
survive in the physics of future”.
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Ulrich E. Bruchholz
Wurzen, Germany. E-mail: Ulrich.Bruchholz@t-online.de; http://www.bruchholz-acoustics.de

In the APOLLO test, a speed of light was found, which seemingly supports a Galileian
addition theorem of velocities [1]. However, the reported difference of 200 ± 10 m/s is
based on a simple error. The correct evaluation of this test leads to the known value of c
within the given precision. This correction does not mean an impossibility of detecting
spatial anisotropies or gravitational waves.

The Apache Point Lunar Laser-ranging Operation
(APOLLO) provides a possibility of directly testing the in-
variance of light speed [1,2]. Gezari [1] reported a difference
of 200±10 m/s to the known value (c = 299, 792, 458 m/s ac-
cording to [1]), which is in accordance with the speed of the
observatory on the earth to the retro-reflector on the moon.
That would support rather a Galileian addition theorem of ve-
locities than the local invariance of light speed. Let us follow
up the path of light, Figure 1.

The way from the Apache Point Observatory (APO) to
the retro-reflector and back to APO assumed by Gezari (see
also Figure 2 in [1]) is DLB + DBR (dotted lines). Gezari [1]
wrote:

Note that the Earth and Moon are moving to-
gether as a binary system at ∼ 30 km/s in that
frame, as the Earth orbits the Sun, and relative
to each other at much smaller speeds of order
∼ 10 m/s due to the eccentricity of the lunar orbit.

This “much smaller speed” may be the vertical speed of the
moon relative to the earth. However, the moon moves irreg-
ularly in the used frame. This motion is not straight-line,
that means, there is no relativity of motion between earth and
moon. Therefore, we have to consider the horizontal speed
(speed of revolution) of vhor ≈ 1 km/s. In the test constella-
tion, the moon covers smaller distances parallel to the earth
than the earth itself, Figure 1. It is false to set a unitary veloc-
ity of the “binary system” of ∼ 30 km/s. If we define a “binary
system” with power (what is an unfortunate step), this unitary
velocity becomes here smaller.

Therefore, the path of light from APO to retro-reflector
is shorter than assumed by Gezari. It is now D

′
LB (full line),

because the earth takes another position in the chosen frame
at launch, see Figure 1. — The elapsed time tLB + tBR was
measured correctly but the calculation of the light speed gave
a false (greater) value. As well, the way back via DBR does
not differ from that reported by Gezari. With it, the difference
of the path of light is (Figure 1)

DLB − D
′
LB ≈ ∆l cos θ (1)

with
∆l = vhor tLB sin θ , (2)

Fig. 1: Corrected path of light.

i.e.
DLB − D

′
LB ≈

1
2
vhor tLB sin 2θ , (3)

with the numerical values

DLB − D
′
LB <

1
2

km/s × 1.3 s ≈ 650 m . (4)

This difference becomes maximal with θ = 45◦.
The reported value of the light speed c has to be corrected

for a difference (with the ratio of path difference to whole
path)

∆c <
300000 km/s × 650 m

780000 km
≈ 250 m/s . (5)

We get the reported difference of 200 m/s for θ = 27◦ and
for θ = 63◦. That means a coincidence within a tolerance
of ±20%. — Thus, we have to take this result as negative
regarding a verification of a violation of local invariance of c.

This from now on negative result does not rule out the
possible existence of spatial anisotropies, as dependences of
stochastic processes on direction [3] or measurements with
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gas interferometers [2] demonstrate. The observed effects
like anisotropic light speed in gas could be based on aniso-
tropic material properties, which come from anisotropic met-
rics. The reason is explained in [4]:

The universal (according to author’s opinion) field equa-
tions as quoted in [4, 5] (Eq. (1),(2),(3) in [5]) involve 10 in-
dependent equations for 14 components of metrics and elec-
tromagnetic vector potential. If one considers only gravi-
tation, that become 6 independent equations for 10 compo-
nents of metrics. This means, four components of metrics are
ambiguous in first order. Since our existence is time-like,
these ambiguous components are space-like. For example
in central-symmetric and time-independent solutions, verti-
cal metric (first order) results according to

γ(vert) = +
κ m
4π r

, (6)

which comes from Eq. (35) in [4], during horizontal metrics
can have any value, i.e. Eq. (35) in [4] is correct only for
γ(vert). On the earth is γ(vert) ≈ 1.5×10−9 , but γ(hor) could be
just zero. — An upgrade APOLLO equipment could be suited
for direct detection of such differences in metrics, if exist.
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Demonstrating Gravitational Repulsion
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In previous papers we showed that a classical model of gravitation explains present
gravitational phenomena. This paper deals with gravitational repulsion and it shows
how it manifests in black holes and particle pair production. We also suggest a labora-
tory experiment to demonstrate gravitational repulsion.

1 Introduction

In previous papers [1–5] we showed that a Lagrangian

L = −m0(c2 + v2) exp R/r, (1)

where

m0 = gravitational rest mass of a test body mov-
ing at velocity v in the vicinity of a mas-
sive, central body of mass M,

γ = 1/
√

1 − v2/c2,
R = 2GM/c2 is the Schwarzschild radius of the

central body.

gives rise to the following conservation equations:

E = mc2eR/r = total energy = constant , (2)
L = eR/rM, (3)
L = magnitude of L = constant, (4)

Lz = MzeR/r = eR/rm0r2 sin2 θφ̇, (5)
= z component of L = constant,

where
m = m0/γ

2, (6)

is a variable gravitational mass and

M = (r × m0v), (7)

is the total angular momentum of the test body. Eqs. (3) and
(4) are amendments to the equations in the previous articles.

The above equations give rise to equations of motion that
satisfy all tests for present gravitational phenomena.

2 Gravitational repulsion

Eq. (2) shows that gravitational repulsion occurs between
bodies when their masses m are increased by converting radi-
ation energy into mass. This conversion occurs according to
the photoelectric effect,

hν→ mc2. (8)

This is the reverse of what occurs during nuclear fission.
In a previous paper [4, §3] we proposed that this accounts

for the start of the Big Bang as well as the accelerating ex-
pansion of the universe. We now consider other effects.

2.1 Black holes

With black holes the reverse of repulsion occurs. Accord-
ing to (2) and (6) matter is converted into radiation energy
(v → c) as r → 0. Conversely, as radiation is converted into
mass, matter should be expelled from a black hole. This phe-
nomenon has been observed [6].

In this regard our model of a black hole differs from that
of general relativity (GR) in that our model does not approach
a mathematical singularity as r → 0, whereas GR does ap-
proach one as r → R.

2.2 Pair production

¸

U

e−

e+

E = hν

p = hν/c M

Fig. 1: A high-energy gamma ray passing near matter can create an
electron-positron pair.

In pair production a gamma ray converts into a positron
and an electron, with both particles moving away from one
another. Pair production only occurs in the presence of a
heavy mass. The explanation for the required presence of the
mass is generally given in texts as:

The process as we have assumed it to occur is
impossible. This is because energy and momen-
tum cannot simultaneously be conserved in free
space in this process. . . .
However, if the high-energy gamma ray passes
near a very heavy particle, then the heavy particle
can soak up all the momentum without carrying
away a significant amount of energy [7, §5.6].

We aver that the explanation is contrived. The last sen-
tence is too inexact for a rigorous mathematical formulation.
Although we do not submit a formulation at this stage, we
suggest that repulsion occurs between the particles and the
heavy mass.

32 Pieter Cornelius Wagener. Demonstrating Gravitational Repulsion



October, 2010 PROGRESS IN PHYSICS Volume 4

2.3 Laboratory demonstration

It should be possible to demonstrate gravitational repulsion in
a laboratory. A suggestion on how to do this is provided by
Jennison and Drinkwater [8]. Their experiment was not de-
signed to demonstrate gravitational repulsion, but to demon-
strate how the properties of mass, or inertia, are simulated by
phase-locked standing waves in a microwave transmitter/re-
ceiver system mounted on a frictionless air track. It should
be possible to modify their experiment to show that gravita-
tional repulsion would occur if the frequencies of the standing
waves were increased. As a prototype we propose a modifi-
cation of their experimental setup as depicted in Fig. 2. Two
microwave transmitters/receivers lock a standing wave of fre-
quency ν near a large mass M. Increasing the frequency of
the standing wave should push it away from M.

From (2) and (8) an increase of ∆ν will cause a separation
of the microwave system from M equal to

∆r = A/(B − ln h∆ν), (9)

where A, B are constants.

mc2 = hν
Repulsion-¾

M

µ µ µ
I I I

∆ν ∆r

Fig. 2: Repulsion of a trapped wave. Repulsion ∆r =A/(B− ln ∆mc2)
where A, B = constant and ∆m = h∆ν/c2.

The repulsive effect can also be measured by a sensitive
gravimeter placed between M and the standing wave system.

Setting up the above experiment could be cumbersome on
a macro scale. The author is investigating demonstrating the
repulsive effect at nano scales.

3 Conclusion

The success of the proposed theory to explain present gravita-
tional phenomena supports the above proposal to demonstrate
gravitational repulsion.
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This short paper examines the Relativity Principle in light of the emerging Planck Vac-
uum (PV) theory and shows that Special and General Relativity are based physically on
the Relativity Principle and the dynamics of the PV.

The idea that absolute motion through space is undetectable
has been around for a long time, spanning the work of Galileo
and Newton, and the Special and General theories of Relativ-
ity [1]. The Relativity Principle asserts that the cosmos is so
constituted that it is impossible to detect absolute motion by
any type of experiment whatsoever, or in more modern terms,
that the equations of physics must be fundamentally covari-
ant [2]. It is important to note, however, that this principle
does not imply that a fundamental reference frame does not
exist. In fact, the following discussion indicates that there
may be a hierarchy of reference frames that are hidden from
our view.

The PV theory views the cosmos as consisting of an om-
nipresent, negative-energy, degenerate collection of Planck
particles known as the PV; and free space which is the void
of classical physics [3]. Uniformly spread throughout this
free space is the quantum vacuum [4] which consists of an
omnipresent field of virtual photons and massive virtual par-
ticles whose source is the PV [5]. The free-space vacuum
state is not empty, but as Davies puts it, “[this living vac-
uum] holds the key to a full understanding of the forces of
nature” [6, p.104]. How the PV and free space manage to
coexist is not known, but the equations of modern physics
strongly suggest that some type of active vacuum state does
indeed exist, when Newton’s gravitational constant, Planck’s
constant, and the fine structure constant are replaced by their
more fundamental counterparts

G =
e2
∗

m2∗
~ =

e2
∗
c

α =
e2

e2∗
(1)

in those equations. The universality of this suggestion can be
seen by combining the relationships in (1) to yield the string
of equalities

m2
∗G = c~ =

e2

α
(2)

where e∗ and m∗ are the charge and mass of the Planck par-
ticles making up the PV. These equations imply that gravita-
tional physics (m2

∗G), quantum physics (c~), and electromag-
netics (e2/α) belong to a single physics, and their arrange-
ment in the string suggests the central position occupied by
the quantum theory in uniting mass and charge. The latter
suggestion is realized in the equality between the two particle

forces that perturb the PV

mc2

r
=

e2
∗

r2 at r = rc (3)

leading to the particle’s Compton radius rc (= e2
∗/mc2) [3],

where mc2/r and e2
∗/r

2 are the curvature force (a gravitational
force) and the polarization force (an electrical force) the par-
ticle exerts on the PV. That mc2/r is a gravitational type of
force can be seen from Newton’s expression for the gravi-
tational force between two masses m and M separated by a
distance r

mMG
r2 =

(mc2/r)(Mc2/r)
(m∗c2/r∗)

(4)

where c4/G = m∗c2/r∗ is used to remove G from the left
side of the equation. The ratios mc2/r and Mc2/r are the
curvature forces the masses m and M exert on the PV, while
m∗c2/r∗ = e2

∗/r
2
∗ is the maximum force sustainable by the PV.

One of the e∗s in the product e2
∗ comes from the charge on

the free particle and the other represents the charge on the
individual Planck particles within the PV.

The reaction of the PV to the uniform motion of a free
charge is such that an iterative process taking place between
‘the magnetic and Faraday fields produced by the PV’ and the
charge results in the well known relativistic electric and mag-
netic fields commonly ascribed to the charge as a single entity
[3, Sec. 4]. Since these magnetic and Faraday fields emerge
from the PV, it is reasonable to suggest that the Maxwell
equations themselves must owe their existence to a perturbed
PV. If it is then assumed that the tensor forms of the Maxwell
equations are the covariant equations for electromagnetics,
the corresponding coordinate transformation that leaves these
equations covariant is the coordinate transformation that sat-
isfies the Relativity Principle. This will be the Lorentz trans-
formation assuming the result is unique. With this transfor-
mation in hand, the constancy of the speed of light can be
deduced and the Michelson-Morley experiments [7] satisfied.
From that point on relativistic kinematics can be derived in
the usual way [2, p.9]. Special Relativity is now based on (1)
relativity and (2) the dynamics of the PV state, rather than the
standard postulates including (1) relativity and (2) the con-
stancy of the speed of light. In this PV formulation of Special
Relativity the constancy of the speed of light is a derived re-
sult, not a postulate.
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The presence of the PV in the kinematic picture causes
a mix-up in the classical position and time coordinates (r, t),
resulting in the differential interval

ds2 = c2dt2 − dr2 (5)

between the two events in spacetime at (r, t) and (r+dr, t+dt).
However, with the PV in the picture: the mixing of space and
time is no longer the mystery that it is in the pre-PV formal-
ism where the equations in (1) are unknown; and (r, t) is still
just the bookkeeping entry it is in pre-relativistic physics.

The mixing of coordinates and time in Special Relativity
is necessarily carried over into the equations of General Rel-
ativity to insure covariance of those equations. But now the
effects of a mass perturbing the PV show up in the equations.
For a point mass the force perturbation is mc2/r and the re-
sulting differential-interval equation is the Schwarzschild line
element [8]

ds2 = (1 − 2nr) c2dt2 − dr2

(1 − 2nr)
(6)

where

nr ≡ mc2/r
m∗c2/r∗

(7)

is the relative curvature force the mass m exerts on the PV.
If there were no perturbing mass (m = 0), the line element
would reduce to that of the Special Relativity result in (5) as
it should.

Expressing the Einstein field equation in the following
way [9]

Gµν =
8πG
c4 Tµν → Gµν/6

1/r2∗
=

Tµν
ρ∗

(8)

shows that it, and those equations like (6) that follow from
it, owe their existence to the PV as implied by the presence
of the Planck-particle Compton radius r∗ (= e2

∗/m∗c
2) and the

energy density

ρ∗ =
m∗c2

4πr3∗/3
=

e2
∗/r∗

4πr3∗/3
(9)

in the final equation of (8). The ratio 1/r2
∗ in (8) is the Gaus-

sian curvature of a spherical volume of the PV
equal to 4πr3

∗/3.
Although it is accepted knowledge that absolute motion

through free space is undetectable, such motion is clearly sug-
gested by the equations of modern physics as seen above. The
assumed existence of the PV implies that extra-free-space
(XFS) reference frames must exist, at least those reference
frames that describe the dynamics taking place within the
PV for example. From this point it is easy to speculate that
some XFS frames might be associated with levels of real-
ity more fundamental than both the free-space and the PV

frames. Thus the picture emerges of a cosmos possibly oc-
cupied by successive sets of XFS reference frames, in addi-
tion to the free-space frames in which we live, that belong to
deeper levels of reality yet to be discovered.

The coexistence of the free-space and PV reference
frames on top of each other is easily seen in equation (4),
where the Newtonian force on the LHS belongs to the free-
space frame and the three PV-curvature forces on the RHS to
the PV reference frame. The reference frame for both sides of
equations (5) through (9) is the PV reference frame. The pres-
ence of the PV frame in the equations indicates that, although
it may be impossible to detect an absolute frame experimen-
tally, there is abundant evidence that at least XFS reference
frames do exist.

Finally, it is worth noting that there may exist only one
reference frame (the absolute frame) in which there are suc-
cessively more complicated states of existence figuratively
“piled on top of each other like the skins of an onion” with
the free-space state at the top of the pile.
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Finding the Fine Structure of the Solutions of Complicate Logical Probabilistic
Problems by the Frequent Distributions
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E-mail: belyakov.lih@gmail.com

The Author suggests that frequent distributions can be applied to the modelling the in-
fluences of stochastically perturbing factors onto physical processes and situations, in
order to look for most probable numerical values of the parameters of the complicate
systems. In this deal, very visual spectra of the particularly undetermined complex prob-
lems have been obtained. These spectra allows to predict the probabilistic behaviour of
the system.

Normal distribution, also known as the Gauss distribution, is a
distribution of the probabilities ruling physical quantities and
any other parameters in general, if the parameters are affected
by a large number of purely stochastic processes. The normal
distribution plays a highly important rôle in many fields of
knowledge and activity of the Mankind. This is because of
all distributions, which may be met in the Nature, the most
frequent is the normal distribution. In particular, the nor-
mal distribution sets up the law of the Brownian motion —
the fluctuations of Brownian particles being affected by the
probabilistically perturbing factors such as the heat motion of
molecules. In these fluctuations, the consecutive changes of
the particles’ location are independent from the last events in
them, and their any current location can be assumed to be the
initially start-point.

As an example of another sort, a simplest situation of the
theory of games can be provided. In this example, an initially
rate S 0 increases proportionally to the progression coefficient
q1 with a probability of p1, or decreases proportionally the
progression coefficient q2 with a probability of p2. As is obvi-
ous, the pair of these numerical values are connected to each
other here: these are the current and past values connected as
S i+1 = S i qi.

However in the core of this problem, the examples are a
manifestation of the same situation, because S 0 can be meant
as any parameter under consideration in a process being af-
fected by perturbing factors.

It is clear that, having duration of the process unbounded,
the numerical value of the parameter S 0 will vary near an
average value, then filling, step-by-step, the arc of the normal
distribution.

The current value S i should return back to this average
value each time after a number of the steps passed in the
ways of different lengthes under stochastic alternating q1 and
q2. Therefore, concerning the parameters of the perturbing
effects in the perturbation series, the set of the current numer-
ical values of the parameters is different in the cases of both
sequent and parallel observations. Thus, it seems that there
should not be “spectra” or “non-uniformities” in the Gauss
arc. On the other hand, the Gauss distribution is a particu-

lar case of more complicate distributions, where the smooth
form of the Gauss distribution is only an idealisation of those.
Because some numerical values can meet each other in the se-
ries of the observations, the frequent distribution∗ of the sum
of all numerical values registered in many series manifests
the preferred numerical values of S i thus producing by this
its own specific spectrum.

Note that the discrete nature of normal distributions was
experimentally discovered in different physical processes in
already the 1950’s by S. E. Shnoll [1].

Figures 1–3 show examples of the frequent spectra which
came from the normal distributions being affected by two,
three, and four perturbing factors (the progression coeffi-
cients qi). The ordinate axis shows the number of coinci-
dent numerical values. The axis of abscissas shows the cur-
rent values of S i in doles of the initially value. These nu-
merical values were given, for more simple and convenient
comparing the histograms, in the same interval of abscissas
from 0.0001 to 10000, while the initially parameters were as-
sumed to be such that the axis of the distribution crosses the
initially sum S 0. The diagrams were obtained by summing
500 series of 500 steps in each (so the common number of
the values is 500× 500 = 250000). The relative length of the
current interval g was assumed 10−6 of the current value S i.
The algorithmic language C++ was used in the calculation.

This is a fragment of a computer program

for ( int t = 1; t < 500; t ++ ) {

double Si = 1;

for ( int u = 1; u < 500; u ++ ) {

if ( a >= b && a >= c ) {qi = q1 ; goto nn ; }

if ( b >= a && b >= c ) {qi = q2 ; goto nn ; }

if ( c >= a && c >= b ) {qi = q3 ; goto nn ; }

nn: Si = Si*qi ;

if ( Si < 10000 && Si > 0.0001 )

i++ , m[ i ] = Si ; }

}

∗Frequent distributions provide a possibility for bonding the probability
of the appearance of numerical values of a function in the area where it ex-
ists. That is, the frequent distributions show the reproducibility of numerical
values of the function due to allowed varying its arguments. There is a ready-
to-use function “frequency” in MS Excel; any other software can be applied
as well.
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Fig. 1: Frequent distribution obtained with q1 = 1.5, q2 = 0.5,
p1 = 0.555, p2 = 0.444; number of steps in the series is 500,
number of the series is 500; number of the numerical values in
the scale 190,000 (of those, nonzero intervals are 8,000).

Fig. 2: Frequent distribution obtained with q1 = 1.5, q2 = 0.5,
q3 = 1.37, p1 = 0.333, p2 = 0.333, p3 = 0.333; number of the
steps in the series is 500, number of the series is 500; number of
the numerical values in the scale is 180,000 (of those, nonzero
intervals are 62,000).

Fig. 3: Frequent distribution obtained with q1 = 1.5, q2 = 0.5,
q3 = 19.3, q4 = 0.047, p1 = 0.294, p2 = 0.235, p3 = 0.235,
p4 = 0.235; number of the steps in the series is 500, number of
the series is 500; number of the numerical values in the scale is
67,000 (of those, nonzero intervals are 28,000).

Fig. 4: Frequent distribution obtained with g = 0.1 from the cur-
rent numerical value S i; here q1 = 1.5, q2 = 0.5, p1 = 0.555,
p2 = 0.444; number of the steps in the series is 100, number of
the series is 500; number of the numerical values in the scale is
48,000 (of those, nonzero intervals are 173).

modelling the change of the parameter S i and the set of a
massive data of S i, in look for the frequent distributions ob-
tained due to three perturbing factors q1, q2, q3. Here a, b,
c are prime numbers which stochastically change (the com-
puter program contains a function which generates random
numbers), in each single cycle of the observation, along the
intervals whose length is proportional to their probabilities
p1, p2, p3.

The graphs manifest that fact that, in the common back-
ground of the numerical values of the current parameters,
there is only minor number of those whose probability ex-
ceeds the average value in many times. Besides that, the
exceeding numerical values depend on the numerical values
of the progression coefficients, but are independent from the
length of the series (the number of the steps). Increasing
the number of the perturbing factors does not make the non-
uniform distribution more smooth, as it should be expected.
Contrary, the non-uniformity of the distribution increases: in
this process the allowed current values S i occupy more square

of the graph, while their number in the given section of the
axis x decreases. Therefore a small probability of that the cur-
rent values S i will valuable shift from their average positions
appear due to the appearance of the long chains of the co-
multipliers which have the progression coefficients larger (or
lesser) than unit. If the progression coefficients differ valu-
able from each other, the histogram manifest distributions of
high orders (see Figure 3).

Consider an ultimate case where all perturbing factors, i.e.
the progression coefficients qi, differ from each other by the
numerical values, and there is not their coinciding numerical
values in the series. This situation can easy be modelled, if
setting up in the computer program that the progression co-
efficients have a connexion with the counters of the cycles t
and u, or that they are varied by any other method. In this
case, in a limit, the amplitude of the numerical values in the
histogram will never exceed unit, nowhere, while the frequent
non-uniformity will still remain in the distribution. Therefore,
even if extending the length of the unit interval, the same dis-
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Fig. 5: Non-symmetric frequent distribution obtained according
to the data of Fig. 2; number of the numerical values in the scale
is 22,000 (of those, nonzero intervals are 2,400).

Fig. 6: Frequent distribution of the solutions of the quadratic
equation x2 − 2Bx + C = 0 with q1 = 1.33, q2 = 0.71, q3 = 1.33,
q4 = 0.71; here p1 = p2 = p3 = p4 = 0.25; number of the steps in
the series is 300, number of the series is 300; number of nonzero
intervals is 16,000. All geometric coefficients of the progression
are independent from each other.

Fig. 7: Frequent distribution of the solutions of the quadratic
equation x2− 2Bx + C = 0 with q1 = 0.71, q2 = −0.71, q3 = 0.71,
q4 = −0.71; here p1 = p2 = p3 = p4 = 0.25; number of the
steps in the series is 250, number of the series is 250, number of
nonzero intervals is 1,800. All arithmetic coefficients of the pro-
gression are independent from each other.

Fig. 8: Frequent distribution of the solutions of the quadratic
equation x2−2Bx+C = 0 with q1 = 0.127, q2 = 1.13; p1 = 0.465,
p2 = 0.535; number of the steps in the series is 500, number of
the series is 10,000; number of the numerical values in the scale
is 27,000, number of nonzero intervals is 1,350. All arithmetic
coefficients of the progression are dependent on each other.

tribution takes the amplitudal discrete shape again. Finally,
under truncating the number of the intervals (this, generally
speaking, means analysis of the given process with a lower
precision), the graph takes a shape of almost the smooth nor-
mal distribution (see Figure 4).

It is possible to suppose that the discreteness of normal
distributions (and, as is obvious, any other distributions as
well) is their core property originated from that the rational
numbers are distributed with different density along the axis
of numbers [2, 3].

Shapes of the histograms depend on specific parameters;
they may be very spectacular. So, in the bit of the computer
program that was given above, each perturbing factor realizes
itself independent from the others. If however, for instance in
the first condition, one replaces the logical “and” with the
logical “or”, the distribution changes its shape very much
(see Figure 5).

So forth, Figures 6–9 show illustrative examples of the
versions of the frequent distributions of one of the solutions
of a quadratic equation x2 − 2 B x + C = 0, where we see iter-
rationally correcting two parameters B and C whose initially
numerical values are units.

In the example shown in Figure 6, the progression coef-
ficients are geometric, and are independent from each other.
The parameter B is under a correction by the coefficients q1
and q2, while the parameter C is under a symmetrical correc-
tion by the coefficients q3 and q4. Specific to the graph is that,
somewhere left from the main distribution, in the background
of many dense numerical values whose probabilities are very
small, a small number of the numerical values having a very
high probability appear (they experience a shift to the side of
small numerical values of the function).

In the other examples shown in Figures 7 and 8, the pro-
gression coefficients are arithmetic. In the distribution shown
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Fig. 9: A fragment of the frequent distrinution according to the
data of Fig. 8; number of the numerical values in the scale is 5,300
(of those, nonzero intervals are 220).

in Figure 7, four progression coefficients are present; they are
symmetric. The histogram is built by a set of the Gauss arcs of
the first, second, and higher orders which fill the side of neg-
ative numerical values. The distance between the arcs, and
their shape depend on the numerical value of the progression
coefficients. In Figure 8, we give a part of the quadratic func-
tion distribution in the region of negative numerical values of
its solutions taken under two coefficients q1 and q2, where the
parameters B and C are additionally connected to each other,
and their correction is produced commonly for them. The
respective bit of the algorithm has the form:

for ( int t = 1; t < 10000; t ++ ) {

double B = C = 1;

for ( int u = 1; u < 500; u ++ ) {

if ( a >= b ) B = B + q1 , C = C - sqrt(q2) ;

if ( b >= a ) C = C + q2 , B = B - q1 ;

if ( B*B - C > 0 )

Si = B - sqrt ( B*B - C ) ;

i++ , m[ i ] = Si ; }

}

Here, as well as in the example shown in Figure 7 (but
with more obvious visibility), that fact is manifested that the
overwhelming number of the numerical values, i.e. the prob-
able solutions of the function obtained under the variation of
the parameters B and C, have an infinitesimally small prob-
ability in the scale, while the probability of the solutions is
concentrated in a very small number of the solutions where
it thus is very high. In the fragment of the histogram taken
in a semi-logarithmic scale (Figure 9), is is clearly seen that
the peaks of the maxima “grow up” from the frequent con-
centrations of the numerical values of the functions in the
axis x. Should this mean that, in the case of similar distri-
butions of a macroscopic system having an arbitrary number
of solutions (degrees of freedom), the macroscopic system
under a specific set of the parameters acting in it can be in
selected special discrete (quantum) states, i.e. the system can
have discrete solutions?

It is absolutely obvious that, first, such maximally proba-

ble solutions are mostly interested in processes and phenom-
ena we study. Finding these solutions by some other methods
that the method given above would be very complicate. Of
course, in formulating algorithms for similar problems (ob-
taining the massive of the required values and their distribu-
tion by the algorithm) it is expedient to introduce reasonable
limitations on the intervals of the parameters, their relations,
etc., in order to excluse some extra calculations non-useful in
the problems.

The simple examples we considered here show that the
logical mathematical models similar to those we considered
can contain actually unbounded number (with a limit pro-
vided by the computer techniques only) of both stochastic
influences (the parameters qi) and the conditions of their ap-
pearance (the logical and other relations between the coeffi-
cients qi and also the parameters of the system). In the same
way, very complicate complex influences of very different
stochastic factors affecting any processes we study (not only
physical processes) can be modelled if their formalization is
possible. Moreover, it is probably we can set up the proba-
bilistic system or process to be into a small number of stable
states, which are necessary to our needs in the problem, by
respective choice of the parameters affecting it.

Concerning the Brownian motion as a particular case of
normal distributions, it can be also analysed if we know the
spectrum of the factors perturbing it (the dole of each factor
in their common sum, and the goal of each factor into the
commonly perturbing influence). Concentration of the Brow-
nian molecules and their momentum can be such factors in
the problem.

Generalizing all that has been presented in this paper, I
would like to say that frequent distributions provide a pos-
sibility for bonding the reaction of different parameters of a
complicate system being affected by stochastic factors of the
surrounding world, and also finding most probable states of
the system thus predicting its behaviour. Having any problem,
both those of physics, industry, economics, game, and others
where numerous parameters are unknown, non-sufficiently
determined, or are affected by stochastic changes, the method
that presented in the paper leads to a spectrum of the most
probable solutions of the problem.
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It is shown how the properties of different elements of the Periodic System of Elements
can be obtained using the properties of the theoretically predicted heaviest element
No.155 (it draws the upper principal limit of the Table, behind which stable elements
cannot exist). It is suggested how the properties of element No.155 can be used in the
synthesis of superheavy elements. An analysis of nuclear reactions is also produced on
the same basis.

1 Introduction

At the present time, we know about 20 lists of chemical el-
ements (representing their most important properties such as
atomic mass and radius, density, temperatures of melting and
boiling, energy of ionization, etc.), which were suggested by
their authors as periodic tables of the elements. These data
were however obtained for, mainly, stable isotopes and nu-
merous other radioactive isotopes that makes further inter-
polation of these properties onto superheavy elements quite
complicate.

This is most important for planning further experiments
whose task is synthesis new superheavy elements which ap-
proach to the recently predicted heaviest element No.155,
whose atomic mass is 411.66 (the upper limit of elements in
Mendeleev’s Table of Elements behind which stable elements
cannot exist). Thus, using the parameters of element 155 in
the analysis of other elements, we will see in this paper how
the properties of the elements behave with increasing their
number in the Table.

2 Some peculiarities of the dependency between atomic
mass of the elements and their numbers in the Table
of Elements

Consider the dependency between atomic mass of the ele-
ments and their number in the Table of Elements. This de-
pendency is well known in science and industry and is pre-
sented as numerous lists and tables. As is seen in Fig. 1, this
dependency is well described by the exponential equation of
the line of the trend. However, if we take more attention to
this figure, we find numerous areas which destroy the com-
mon picture. Approximately smooth line continues from the
origin of coordinates to almost the end of Period 6 (No.83,
208.98, Bismuth). This is the last stable isotope, after whom
all elements of the Table have an artificial (radioactive) origin,
except of Thorium (No.90, 232.038), Protactinium (No.91,
231.036) and Uranium (No.92, 238.029). This is their order
in the family of actinides. Period of half-decay of these natu-
ral elements consists many thousand years. It is easy to find
in the figure that valuable deviations from the line of the trend
are present in the region from Bismuth to element 104, then

to element 119 where the deviations from the line of the trend
are high (especially — in the region of the already synthe-
sized superheavy elements 104–118).

This is seen more obvious in Fig. 2, where the absolute
deviations of the atomic masses are presented. These are de-
viations between the data of the Table of elements and the
result obtained after the equation

y = 1.6143 x1.0981, R2 = 0.9969, (1)

where y is the atomic mass, while x is the number in the Table
of Elements.

It should be noted that mass number is an integer equal to
the common number of nucleons in the nucleus. Mass num-
ber of an isotope is equal to the numerical value of its mass,
measured in atomic mass units (a.m.u.) and approximated to
a near integer. A difference between the mass numbers of
different isotopes of the same element is due to the different
number of neutrons in their nuclei.

It is seen in the figure that this difference does not exceed
4 a.m.u. in the first five periods and in lanthanides. This ten-
dency still remain upto Bismuth after whom the deviations of
actinides experience a positive shift: this means that the nu-
merical values of the atomic masses presented in the Periodic
Table are overstated for the region.

Then, after actinides, a region of the atomic masses of the
elements of Period 7 (elements 104–118) is located. These
elements were obtained as a result of nuclear reactions. As
is seen, all deviations in this region are negative: this can
mean a large deficiency of the numerical values of the atomic
masses obtained in the nuclear synthesis producing these el-
ements, incorrect calculations, or a lack of neutrons in the
nuclei. All these in common resulted large deviations of the
atomic masses upto 10–12 a.m.u.

Look at Fig. 1 and Fig. 2 again. Section of the line of the
trend in the interval No.119–155 is manifested in Fig. 1 as a
very straight line without any deviation, while the same sec-
tion in Fig. 2 manifests deviations from 0.63 to 1.28. Once
we get a ratio of the difference between the table and calcu-
lated numerical values of the atomic masses to the respec-
tive a.m.u., we obtain Fig. 3 which shows the respective de-
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viations in percents. As is seen in the figure, most valuable
deviations are located in the left side (upto the first 20 num-
bers). This is because the respective elements of the Table of
Elements bear small atomic masses under high difference of
a.m.u., i.e. the larger numerator results the larger ratio. It is
necessary to note that the results presented in this figure are
within 3–5%. Most lower results are located in the scale from
element 104 to element 118: according to our calculation, the
deviations are only 0.2–0.3% there.

In order to exclude any influence of our calculations onto
the creation of the line of the trend, we study the dependency
“atomic mass — number in the Table” in the scale from ele-
ment 1 to element 118 according to the equation

y = 1.6153 x1.0979, R2 = 0.9966. (2)

As a result we obtain that the general shape of the devia-
tions and their numerical values are actually the same as the
results obtained due to equation (1). So forth, the next partic-
ular equations were taken under analysis:

elements 1–54: y = 1.6255 x1.0948, R2 = 0.9922, (3)
elements 55–118: y = 1.8793 x1.0643, R2 = 0.9954, (4)
elements 119–155: y = 1.5962 x1.1009, R2 = 1.0 . (5)

These sections gave no any substantial change to the pre-
vious: the ultimate high difference of the deviations taken in
3 points of 120 was 0.7% for element 111, 0.95% for element
118, and 1.5% for element 57.

3 Why one third of the elements of the Table of Elements
is taken into square brackets?

94 chemical elements of 118 already known elements are nat-
ural substances (contents of several of them consists, how-
ever, of only traces). Rest 24 superheavy elements were ob-
tained artificially as a result of nuclear reactions. Atomic
mass of an element in Table of Elements is presented by the
average atomic mass of all stable isotopes of the element with
taking their content in the lithosphere. This average mass is
presented in each cell of the Table, and is used in calculations.

If an elements has not stable isotopes, it is taken into
square brackets that means the atomic mass of most long liv-
ing isotope or the specific isotope contents. There are 35 such
elements. Of those 35, elements from 93 to 118 are actinides
and artificially synthesized superheavy elements. Hence, one
third of 118 elements (known in science at the present time)
bears undetermined atomic masses.

Fig. 4 shows common number of isotopes of all elements
of the Table of Elements. Location of all elements can be de-
scribed by the equation of parabola with a high coefficient of
real approximation. As is seen, the descending branch of the
parabola manifest that fact that the heavier element in the Ta-
ble (the larger is its number) the lesser number of its isotopes.
This tendency lads to decreasing the number of isotopes upto
1 at element 118.

4 Synthesis of superheavy elements and the upper limit
of the Periodic Table

Because number of the isotopes reduces to 1 in the end of
Period 7, the possibility of Period 8 and Period 9 (each con-
sisting of 50 elements) in the Table of Elements suggested
earlier by Seaborg and Goldanskii [1, 2] seems non-real. At
the same time, Seaborg suggested a possibility of the synthe-
sis of a “magic nucleus” consisting of 114 protons and 184
neutrons: according to his suggestion, this nucleus should be
the centre of a large “island of stability” in the sea of spon-
taneous decay. Goldanskii told that the “isthmus of stability”
may be a region where isotopes of the elements bearing nu-
clear charges 114, 126, and even 164 may be located. Flerov
[3], when analysed studies on the synthesis of superheavy el-
ements, claimed that the elements should give us a possibility
for answering the question: are the elements bearing nuclear
charges 100–110 located at the real end of the Table of Ele-
ments, or more heavy nuclei exist in the Nature? There are
many studies of the conditions of nuclear reactions. For in-
stance, in already 1966, Strutinski [4] theoretically predicted
a valuable increase of stability of nuclei near the “magic num-
bers” Z = 114 and N = 184. His calculation was based on
the shell model of nucleus (this model won Nobel Prize in
physics in 1963 [5, 6, 7]).

In 1973, Oganesyan in Dubna (Russia) and a group of
German scientists in Darmstadt (Germany) first used cold
synthesis, where the “magic nuclei” were used as both a tar-
get and bombing particles [8]. In 1973, Oganesyan claimed
that elements with atomic numbers 160 and, maybe, 170, are
hypothetically possible. However only two years later, he
claimed that the properties of an element with number 400
and bearing 900 neutrons in its nucleus were theoretically dis-
cussed [9].

In addition to the indeterminacy of atomic masses in the
synthesis of superheavy elements, Oganesyan also told, in his
papers, that we do not know limits in the Table of Elements
behind whom superheavy elements cannot exist. According
to his own words, “the question about limits of the existence
of the elements should be addressed to nuclear physics” [10].
A few years later, in 2005, Oganesyan claimed “this ques-
tion is still open: where is the limit of chemical elements?”
[11]. In 2006, in his interview to Moscow News, he set up the
questions again: “is a limit there?” and “how many elements
can exist?”. So forth, he tells in the interview: “We use mod-
elling instead a theory. Each models approaches this system
in a form of those known to us in analogy to the macroscopic
world. However we still do not understand what is nuclear
substance. Thus the question asked about a limit of the Peri-
odic System is still open for discussion” [12].

In January 20–21, 2009, in Dubna, the international sym-
posium celebrating the 175th birthday of Dmitri Mendeleev
set up the question about limits of the Table of Elements,
and the complete number of elements in it again. Some-
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one suggested even a possibility of the synthesis of elements
with numbers 150–200 [13]. However a few weeks later, in
February 09, at a press-conference in Moscow, the partici-
pants claimed that “at present the scientists discuss a theoret-
ical possibility of extending Mendeleev’s Periodic Table upto
150 elements” [14].

In April 07, 2010, the world press claimed about the end
of an experiment in which element 117 was synthesized (this
experiment continued from July 27, 2009, until February 28,
2010). During these seven months, the experimentalists reg-
istered six cases where nuclei of the new element were born.
This experiment was also based on the supposition that there
is an “island of stability” near an element bearing parameters
Z = 114 and N = 184. Lifespan of this island should be a few
million years. However this target was not reached in the ex-
periment. The research group of experimentalists in Dubna
prepares next experiments which target synthesis of element
119 and element 120 [15].

In this connexion it is interesting those words said by Sig-
urd Hofman (the GSI Helmholtz Centre for Heavy Ion Re-
search, Darmstadt), where he claimed about filling the Table
of Elements upto its end in the close time. According to his
opinion, atomic nuclei heavier than No.126 cannot exist, be-
cause they should have not the shell effect [16].

5 Discussion of the results

1. The considered dependency of atomic masses of the ele-
ments on their numbers in the Table of Elements cannot an-
swer the question “where is the upper limit of the Table”.

Despite the coefficient of the line of the trend is very close
to unit, it is easy to see that there are large deviations of the
data, especially starting from the numbers of actinides and
then so forth. Because all actinides bear similar chemical
properties, selecting a segregate element in this group is quite
complicate task. Besides, the possibility of different isotopic
content in samples of the elements leads to a large deviation
of the calculated atomic masses from the atomic masses given
by the Table of Elements. This is related to one third part of
all elements of the Table.

2. Next elements to actinides, i.e. a group of elements
104–118, were synthesized as a result of nuclear reactions, in
a very small portions (only segregate atoms were produced).
The way how the elements were produced makes a problem in
the identification of them, and the large deviations of the data
of the Table of Elements from the line of the trend. Hence,
atomic masses attributed to these numbers in the Table of El-
ements, are determined very approximate. The line of the
trend, which includes element 155, gives a possibility to ex-
clude the deviations of the atomic masses.

3. Section 4 gave a survey of opinions on the structure of
the Table of Elements, its limits, superheavy elements (their
synthesis and the products of the synthesis), the search for
an “island of stability”, and the technical troubles with the

nuclear reactions.
Many questions could be removed from discussion, if my

recommendations suggested in [17], where I suggested the
last (heaviest) element of the Table of Elements as a reference
point in the nuclear reactions, would be taken into account.
This survey manifests that the quantum mechanical approach
does not answer the most important question: where is the
limit of the Periodic Table of Elements? Only our the-
ory gives a clear answer to this question, commencing in the
pioneering paper of 2005, where the hyperbolic law — a
new fundamental law discovered in the Table of Elements —
was first claimed. This theory was never set up under a sub-
stantially criticism.

It should be noted that the word “discovery” is regularly
used in the press when telling on the synthesis of a new el-
ement. This is incorrect in the core, because “discovery”
should mean finding new dependencies, phenomena, or prop-
erties, while the synthesis of a new element is something like
an invention in the field of industry, where new materials are
under development.

4. Taking all that has been said above, I suggest to IUPAC
that they should produce a legal decision about the use of el-
ement 155, bearing atomic mass 411.66, as a reference point
in the synthesis of new superheavy elements, and as an instru-
ment correcting their atomic masses determined according to
the Table of Elements.

My theory I used in the calculations differs, in principle,
from the calculations produced by the quantum mechanical
methods, which were regularly used for calculations of the
stability of elements. The theory was already approved with
the element Rhodium that verified all theoretical conclusions
produced in the framework of the theory with high precision
to within thousandth doles of percent. Therefore there is no a
reason for omiting the theory from scientific consideration.

6 Conclusions

Having all that has been said above as a base, I suggest an
open discussion of the study Upper Limit in Mendeleev’s
Periodic Table — Element No.155 at scientific forums with
participation of the following scientific organizations:

— International Union of Pure and Applied Chemistry
(IUPAC);

— International Council for Science (ICSU);
— American Physical Society (APS).

This step should allow to give a correct identification to the
chemical elements and substances, and also to plan new re-
actions of nuclear reactions with a well predicted result. In
this deal, financial spends on the experimental research in nu-
clear reactions could be substantially truncated, because the
result would be well predicted by the theory. The experi-
mental studies of nuclear reactions could be continued as a
verification of the theory, and aiming the increase of the ex-
perimental techniques. Thus, according to the last data of the
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Fig. 1: Dependency between the atomic mass of the elements and their number in the Table of Elements (including element 155).

Fig. 2: Absolute deviations of atomic masses of the elements from the line of the trend (including element 155).
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Fig. 3: Relative deviation of the atomic masses from the line of the trend, in percents.

Fig. 4: Dependency between the number of the isotopes (3180) and the number of element in the Table of Elements. Location of the stable
isotopes (256) is also shown. The data of Brookhaven National Laboratory, National Nuclear Data Center.
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Fig. 5: Empirical dependency between the radius of the nuceus (fm) and the number of the nucleons.

Fig. 6: Dependency beween the critical energy of the electrons and the nuclear charge, according to formula T = 800/Z.
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Fig. 7: Dependency between the coupling energy of the nuclei and the mass number (number of nucleons).

Fig. 8: Dependency between the number of neutrons and the number of protons in the atomic mass, for all elements of the Table of
Elements. Our calculation data are given beginning from element 104.
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Fig. 9: Dependency between the ionization potential and the number of the elements (nuclear charge), for the neutral atoms of the elements
ending the periods of the Table of Elements (including calculated element 118 and element 155).

Fig. 10: Dependency between the atomic radius and the number of the elements in all periods of the Table of Elements, including the
calculated elements No.188 in Period 7 and No.155 in Period 8.
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Fig. 11: Change of the numerical value of the atomic radius in each period with increasing number in the Table of Elements.

Fig. 12: Dependency between the specific energy of ther coupling in an atomic nuclei and the number of the nucleons in it.
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List of Chemical Elements (on April 08, 2010), Ununseptium
(No.117) bears atomic mass [295], while atomic mass of Un-
uoctium (No.118) is [294]. According to the calculation, pro-
duced in the framework of my theory, these quantities should
be 301.95 and 304.79 respectively.

As was shown the theoretical studies according to the the-
ory, and its comparing to the experimental data, the element
bearing number 155 and atomic mass 411.66 a.m.u. answers
all conditions necessary for including it into the Periodic Ta-
ble of Elements.

Appendix I

As was already noted above, we took much attention to the
dependency between atomic mass of the elements and their
number in the Table of Elements. It was shown that the line of
the trend continued upto No.155 provides obtaining very cor-
rect results. In verification of this fact, additional dependen-
cies concerning the last element No.155 were studied [18].

Fig. 5 shows an empirical dependency between the radius
of a nucleus and the number of nucleons in it (mass number).
This graph manifests that this dependency is true upto ele-
ment 155: the arc has the same shape without deviation along
all its length.

Fig. 6 shows an arc, which manifests critical energies of
the electrons for all elements of the Table of Elements, in-
cluding No.155. A critical is that energy with whom energy
loss for ionization and radiation become equal to each other.
Formula for the critical energy is Tcrit = 800/Z, where Z is the
charge the nucleus (in units of the charge of the electron). As
is seen from the graph, this formula is applicable to all ele-
ments of the Table of Elements.

Fig. 7 gives calculations of the coupling energy in nuclei.
This graph shows that minimally energy required for destruc-
tion of the nucleus into its nucleons. It is seen, from the graph,
that this dependency is strictly straight along all Table of El-
ements, including element 155.

Dependency between the number of the neutrons and the
charge of the nucleus is shown in Fig. 8. As is seen, equa-
tion of the line of the trend describes, with a high level of
probability (R2 = 0.9997), the polynomial of the fourth order
presented in the graph. This equation covers a large region
along the axis x, from element 1 upto element 155 including.
This dependency was also calculated, in order to compare it
with the previous result, for a truncated region of the protons
from element 1 upto element 104:

Y = 4E − 0.7 x4 + 2 E − 0.5 x3 + 0.007 x2 +

+ 1.0014 x − 0.2176,
(6)

where R2 = 0.999.
As is seen, certainty the level of the approximation differs

only in 0.0007 from the previous. This manifests that fact that
this dependency is as well true for the elements heavier than
No.104, including element 155.

Appendix II

At the present time there are many versions of the periodic
tables of elements, where each cell contains a property of a
respective element (such as atomic radius, volume, density,
first ionization potential, etc.). This information can also be
obtained from the regular lists of the properties of chemical
elements. This information has, however, a substantially lack:
most data end in the beginning or the middle of Period 7.

Here we target continuing the list of numerous properties
of the elements upto element 155, and also the compatibility
of the properties with the reference data.

Fig. 9 shows a dependency between the ionization poten-
tial of the neutral atoms of the elements and the change of
their nuclei. Each point corresponds to the last element of the
period, from Period 1 to Period 6. The end of Period 7 and
that of Period 8 were calculated according to the equation of
the trend. As is seen, the points corresponding element 118
and element 155 are completely correlated with the initially
data.

An important characteristic of atomic nucleus is the nu-
merical value of its radius (see Fig. 10). This graph was cre-
ated on the basis of the reference data known at the present
time. This dependency between the atomic radius and the
number of the last element in the period was created for all
periods of the Table of Elements where it was possible. Co-
ordinates of the points for Period 7 and Period 8 were calcu-
lated according to the equation of the line of the trend. As is
easy to see, even the point of Period 6 meets the calculated
data in complete.

Fig. 11 shows how the atomic radii change from period to
period and inside each period of the Table of Elements (i.e.
in the columns of the Table from up to down, and along the
horizontal line). The upper maxima represent the beginning
of the periods, while the lower points represent their ends. It
should be noted that in lanthanides, which are No.57–No.71,
a linear dependency between the radius and the number is
observed. Further study of the correlation shows that there
is a change of the linearity upto No.80 (Mercury). Another
very interesting detail is that fact that, in the transfer from the
alkaline to the alkaline earth elements, a valuable lowering
the numerical values of the radii (for 0.3Å on the average) is
observed in the periods.

In the calculations of nuclear reactions, the information
about the stability of the nuclei as the systems consisting of
protons and neutrons has a valuable maning. The forces join-
ing the partcles altogether are known as nuclear forces; they
exceed the forces of electrostatic and gravitational interac-
tions in many orders.

The “resistance” of a nucleus can be bond by their cou-
pling energy which shows the energy required for destroying
the nucleus into its consisting nucleons (their number in the
nucleus is equal to the mass number A expressed in atomic
units of mass, a.m.u.). It is known that the sum of the masses
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Fig. 13: Dependency between the specific energy of ther coupling in an atomic nuclei and the number of the nucleons in it.

of the free nucleons is already larger than the mass of the nu-
cleus they consist. The difference of the masses is known
as the mass defect, according to which Einstein’s formula
E = ∆mc2 gives a possibility for calculating the coupling en-
ergy of the nucleus, thus the specific energy in it per one nu-
cleon.

Fig. 12 shows an arc, created according to the table data,
which manifests the dependency between the specific energy
of the coupling in a nucleus and the number of nucleons in
it [19]. The left side of the graph shows several isotopes of
Hydrogen and the nucleus of several light elements, which
bear close numerical values of the specific energy of the cou-
pling and, thus, a large deviation of the data. The arc become
more smooth with increasing the number of the nucleons. The
maximum is reached in a region of A = 50–60, then the falls
slow down. The main advantage of this graph is that we pro-
duced the calculation beyond element 118 (at which the table
data ended): we showed that the results of our calculation
completely meet the table data known from the reference lit-
erature. Decreasing the specific energy of the coupling in the
region of heavy nuclei is explained by increasing the number
of protons that leads to increasing the Coulomb forces thus
the need of additional neutrons apprears.

This is well manifested in Fig. 13. The arc described by
the quadratic three-term equation has the numerical value of
real approximation R2 = 1. In the region of the nuclei consist-
ing about 120 nucleons, this dependency is actually linear.
Then this dependency transforms into an arc of a very large
curvature radius. Data bofore the point of the nuclear charge
118 (203, 2072.582) were taken from the previous Fig. 12,

then the calculation was produced on the basis of the coordi-
naters of the suggested last element No.155. As is seen, the
arc approaches the horizontal location, where the number of
nucleons in a nucleus is not affected by its coupling energy.
Accordimng to our calculation, this happens in a region of the
coordinates (530, 2670) — (550, 2673) — (600, 2659). This
is the ultimate high energy of the coupling of nuclei. If a nu-
cleus has a higher coupling energy, is becomes instable: even
a small external influence is needed in order to destry it.

Therefore, Oganesyan’s claim that the theoretical physi-
cists discuss the properties of an element with number 400
and bearing 900 neutrons in its nucleus [9] has not any ground
or reason.

Submitted on May 01, 2010 / Accepted on May 21, 2010
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An Experimental Proposal for Demonstration of Macroscopic Quantum Effects
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An experiment is proposed, whose purpose is to determine whether quantum indeter-
minism can be observed on a truly macroscopic scale. The experiment involves using a
double-slit plate or interferometer and a macroscopic mechanical switch. The objective
is to determine whether or not the switch can take on an indeterminate state.

1 Introduction

Since the founding of quantum theory in the last century,
there has been the question of what limit, if any, there is to the
quantum effects which may be observed, in terms of size or
number of particles of a system under observation. By quan-
tum effects, it is meant in particular, phenomena such as en-
tanglement or indeterminism. The most famous gedankenex-
periment in quantum theory, Schrödingers cat, concerns this
macroscopic question. This cat paradox argument was used
by Schrödinger to ridicule the Copenhagen interpretation of
quantum theory. [1]. Another well-known paradox was that
of Einstein, Podolsky and Rosen [2] commonly referred to
as the EPR paradox. This gedankenexperiment was also an
attempt to discredit the Copenhagen interpretation, but for a
different reason than that of the cat paradox.

Regrettably, there are few known experiments that de-
monstrate whither the macroscopic question, unlike with the
EPR paradox. A recent experiment [3] has shown that quan-
tum effects i.e. entanglement, can occur between systems
of O(1012) particles. Although these results are encourag-
ing, such a system can hardly be termed macroscopic in spite
of the title of the article in which it appears. Here, we con-
sider a macroscopic system to be one clearly visible to the
naked eye and in the solid state, such as Schrödingers cat.
Another experiment, of Schmidt [4], seems to demonstrate
that bits on a computer disk, even printouts of ones and ze-
ros concealed in an envelope, take on indeterminate states.
However, the desire remains for further proof of macroscopic
quantum effects, in particular, absent of paranormal phenom-
ena and resulting complications [5]. Perhaps the reason that
evidence of macroscopic quantum effects is so few and far
between is because macroscopic analogs to experiments such
as the double-slit experiment are difficult to design. One can-
not simply shoot cats through a double slit and expect to see
an interference pattern!

Instead of shooting Schrödingers cat through the double
slit, suppose the cat is kept in its box, but a large double slit
plate is also placed inside the box. Things are arranged so
that the cat in the alive state obstructs one slit, and the cat in
the dead state obstructs the other. All in the box is concealed
from the observer and also, many cats would need to be used.
See Figure 1. Now the question arises: will an interference

Fig. 1: An experiment with Schrödingers cat and a double slit. The
experiment is designed so that if the cat is in the alive state, it ob-
structs slit a and if the cat is in the dead state it obstructs slit b.
Many cats are needed for the experiment. If the cats remain unob-
served and individual photons are transmitted through the double-slit
and box, the question is: would an interference pattern be observed
on the screen, and further, does this signify that the cats were in a
superposition of alive and dead states?

pattern be observed on the screen if individual photons are
transmitted through the double slit and box, one by one? If
interference is observed, would this indicate that the cats were
in an alive-dead state? The answer is in the affirmative; for
if the cats were each definitely either alive or dead when the
photons passed through, then no interference pattern should
be observed.

In the next section, a more realizable (and cat-friendly)
experimental set-up than the previous is proposed. This ex-
periment will aid in answering the question of macroscopic
indeterminism, as the accompanying calculations show. Al-
though the set-up is quite simple by todays standards, it is not
the intention of the author, a theorist, to carry out the experi-
ment. Rather, it is hoped that an experimentalist is willing to
carry out the necessary work.
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Fig. 2: The apparatus in Figure 1 is now modified so that a flap takes
the place of Schrödingers cat. The flap position is controlled by an
indeterministic random number generator, in order to put the flap in
an indeterminate state with regard to which slit it covers. If measures
are taken to destroy information about the flaps position before the
photons reach the screen, the individual photons passing through the
double slit apparatus should build up an interference pattern on the
screen.

2 Double-slit experiment

Consider a set-up with a double slit, as in Figure 2. The differ-
ence between this set-up and the previous is that a flap takes
the place of the cat. The flap covers either one slit or the
other, and alternates between the two positions, controlled by
a random-number generator.

The random number generator, flap and double-slit are
concealed from the observer. The random number generator
should be of the indeterministic type such as the one devel-
oped by Stipčević and Rogina [6]. The purpose of this is to
put the flap into an indeterminate state. The set-up in Fig-
ure 2 is similar to one proposed by Mandel [7] which was
carried out by Sillitto and Wykes [8]. However in that ex-
periment, photons were not transmitted individually. So it
is likely that the experiment was not free of photon-photon
interference, whereas in the experiment under consideration
here, such interference must be eliminated. Also, it is unclear
if the electro-optic shutter used in that experiment could be
said to be in an indeterminate state or to even be a mechani-
cal macroscopic object.

Assuming that the flap in Figure 2 can be put into an in-
determinate state, the flap can be represented by the equation

|ψ〉 =
1√
2

(
|a f 〉 + |b f 〉

)
, (1)

where |a f 〉, |b f 〉 are the basis states representing the flap f

covering slits a and b, respectively. Now if a single photon
p passes through the double-slit, say it passes through slit b,
then the flap must be covering slit a, and vice versa. Thus,
each photon passing through the double-slit is entangled to-
gether with the flap, and the flap-photon entangled state is:

|ψ〉 =
1√
2

(
|a f 〉|bp〉 + |b f 〉|ap〉

)
, (2)

where |ap〉, |bp〉 are the basis states for photon p. Equation
(2) indicates that each photon passing through the double-slit
takes on an indeterminate state with regards to which slit it
passes through. Individual photons in the state (2) will build
up an interference pattern if certain precautions are taken.
Rather than using equation (2) to calculate the pattern which
results from the set-up in Figure 2, we look at a variation of
this experiment, for which it is easier to calculate interfer-
ence. The apparatus is shown in Figure 3, in the next section.

3 Mach-Zehnder interferometer experiment

The set-up in Figure 3 essentially involves the same experi-
ment as that shown in Figure 2, except that the isolated pho-
tons traverse a Mach-Zehnder interferometer (MZ) instead of
a double-slit, and a moveable mirror (rm) replaces the flap.
The rotation of the mirror rm switches the photon trajectory
between two possible paths through MZ. The two different
configurations are shown in the figure, top and bottom. Simi-
lar to the previous experiment, rm is to be put into an indeter-
minate state by controlling it with an indeterministic random
number generator concealed from the observer (not shown in
figure), and isolated photons can only be allowed to enter MZ
through a gate. Further, position information of rm must be
destroyed before each time a photon reaches the detectors.
After such precautions are taken, the photons should each
take an indeterminate path through MZ. Interference patterns
of photon counts vs. relative length or phase between paths,
the same observed by Aspect, Grangier and Roger [9] will
then be seen. We next calculate these interference patterns.

Suppose first, rm is in the down position (upper diagram
in Figure 3). This causes the photon to take the lower (–) path
through MZ. Conversely, if the mirror is in the up position
(lower diagram in Figure 3), the photon will take the upper
(+) path through MZ. If rm can be prepared in an indetermi-
nate state between up and down positions, then what results is
the following entangled state between photon and mirror [cf.
equation (2)]:

|ψ〉 =
1√
2

(|rm up〉| + 〉 + |rm down〉| − 〉) , (3)

where |rm up〉, |rm down〉 are the two possible basis states for
the moveable mirror rm and | + 〉, | − 〉 are the resultant basis
states of the photon traversing MZ.

Let φ be the phase shift between arms of MZ, due to the
presence of a phase shifter, or to a variation in the arms rel-
ative lengths. Using the rotation transformation equations
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Fig. 3: A Mach-Zehnder (MZ) interferometer instead of the double
slit of Figure 2. The moveable mirror rm acts as the former flap. The
devices labeled m are fixed mirrors, bs, a beam splitter and d1, d2
are detectors. When rm is in the horizontal (down) position as at top,
the photon takes the lower (–) path of mz (solid line with arrows).
When rm is in the 45-degree position (up) as at bottom, then the
photon takes the upper (+) path. If rm can take on an indeterminate
state between these two configurations, then the photon paths will
also be indeterminate, and thus interference patterns will result in
d1 and d2, as variations of photon counts vs. relative length or phase
φ between the two paths.

| + 〉 = sin φ|d1〉 + cos φ|d2〉, | − 〉 = cos φ|d1〉 − sin φ|d2〉
to put state (3) into the basis |d1〉, |d2〉 of the detectors, we
obtain:

|ψ〉 =
1√
2

(
sin φ|rm up〉|d1〉 + cos φ|rm up〉|d2〉 +

+ cos φ|rm down〉|d1〉 − sin φ|rm down〉|d2〉) .
(4)

If rm is successfully put into an indeterminate state, then
the detector probabilities will be, using equation (4):

p (d1) = | < rm up, d1|ψ〉+ < rm down, d1|ψ〉|2 =

=
1
2

(1 + sin 2φ)
(5)

and
p(d2) =

1
2

(1 − sin 2φ) . (6)

That is, interference fringes will be observed as oppositely-
modulated signal intensity (∝ probability) as a function of
relative phase φ. These interference patterns; i.e. the inter-
ference patterns predicted by equations (5) and (6) are the

same observed by Aspect and co-workers [9] using a similar
set-up.

On the other hand, if rm remains in a determinate state,
then no interference fringes will be observed; i.e. the signal
intensity vs. phase-shift φ will be flat:

p (d1) = | < rm up, d1|ψ〉|2 + | < rm down, d1|ψ〉|2 =
1
2

(7)

and
p (d2) =

1
2
. (8)

Thus we have that: the interference patterns (5), (6) result if
and only if rm is in an indeterminate state. Presence of the
interference patterns (5), (6) is therefore proof of macroscopic
indeterminism, since the moveable mirror rm is a macroscop-
ic object.

It is emphasized again that it is important for the exper-
imenter to take care that any information about the position
of moveable mirror rm during the experiment is destroyed.
This means that the random number generator should reset
rm after each time an individual photon exits MZ, prior to the
photon reaching detectors d1 or d2; otherwise in principle at
least, the experimenter could discover which path the photon
passed through, by uncovering rm. In that case, no interfer-
ence [i.e. equations (7) and (8)] will be observed. Additional
time to allow resetting rm can be obtained by placing d1 and
d2 at some distance beyond the half-silvered mirror bs.

The experimental set-up of Figure 3 is similar to one pro-
posed by Žukowski et al. [10], except that they propose to use
a pair of electro-optical switches (one for each arm of MZ),
instead of a moveable mirror before the arms. This is be-
cause the object of their proposal is to demonstrate whether
or not the individual photons traverse MZ using both paths
when the photon wave packet is cut in two using the switches
as it passes though MZ. Their aim is to determine which of
several interpretations of quantum theory is correct [11]. The
purpose of that experiment is not to determine if the electro-
optical switches take on an indeterminate state, even if again,
such switches could be called mechanical and macroscopic.

4 Conclusion

An experiment involving individual photons passing through
a double-slit plate or Mach-Zehnder interferometer apparatus
has been proposed. Rather than keep both paths in the plate or
apparatus open at all times however, one path or the other is
kept closed by a macroscopic mechanical switch, controlled
by an indeterministic device. The purpose of this is to deter-
mine whether the macroscopic switch can take on an indeter-
minate state: such indeterminism is detectible, dependent on
whether an interference pattern results.
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Here, we use our new metric tensor exterior to homogeneous oblate spheroidal mass
distributions to study gravitational spectral shift of light in the vicinity of the Sun, Earth
and other oblate spheroidal planets. It turns out most profoundly that, this experimen-
tally verified phenomenon holds good in the gravitational field exterior to an oblate
spheroid using our approach. In approximate gravitational fields, our obtained theo-
retical value for the Pound-Rebka experiment on gravitational spectra shift along the
equator of the Earth (2.578×10−15) agrees satisfactorily with the experimental value of
2.45×10−15. We also predict theoretical values for the Pound-Rebka experiment on the
surface (along the equator) of the Sun and other oblate spheroidal planets.

1 Introduction

According to the General Theory of Gravitation, the rate of a
clock is slowed down when it is in the vicinity of a large grav-
itating mass. Since the characteristic frequencies of atomic
transitions are, in effect, clocks, one has the result that the
frequency of such a transition occurring, say, on the surface
of the Sun, should be lowered by comparison with a similar
transition observed in a terrestrial laboratory. This manifests
itself as a gravitational red shift in the wavelengths of spec-
tral lines [1]. It has been experimentally and astrophysically
observed that there is an increase in the frequency of light
(photon) when the source or emitter is further away from the
body than the receiver. The frequency of light will increase
(shifting visible light towards the blue end of the spectrum)
as it moves to lower gravitational potentials (into a gravity
well). Also, there is a reduction in the frequency of light
when the source or emitter is nearer the body than the re-
ceiver. The frequency of light will decrease (shifting visi-
ble light towards the red end of the spectrum) as it moves
into higher gravitational potentials (out of a gravity well).
This was experimentally confirmed in the laboratory by the
Pound-Rebka experiment in 1959 (they used the Mossbauer
effect to measure the change in frequency in gamma rays as
they travelled from the ground to the top of Jefferson Labs at
Havard University) [2]. This gravitational phenomenon was
later confirmed by astronomical observations [3]. In this ar-
ticle, we verify the validity of our metric tensor exterior to
a massive homogeneous oblate spheroid by studying gravi-
tational spectral shift in the vicinity of the Sun, Earth and
other oblate spheroidal planets. Basically, we assume that
these gravitational sources are time independent and homo-
geneous distributions of mass within spheroids, characterized
by at most two typical integrals of geodesic motion, namely,
energy and angular momentum. From an astrophysical point
of view, such an assumption, although not necessary, could,

however, prove useful, because it is equivalent to the assump-
tion that the gravitational source is changing slowly in time
so that partial time derivatives are negligible compared to the
spatial ones. We stress that the mass source considered is
not the most arbitrary one from a theoretical point of view,
but on the other hand, many astrophysically interesting sys-
tems are usually assumed to be time independent (or static
from another point of view) and axially symmetric continu-
ous sources.

2 Covariant metric tensor exterior to a massive homo-
geneous oblate spheroid

The covariant metric tensor in the gravitational field of a ho-
mogeneous oblate spheroid in oblate spheroidal coordinates
(η, ξ, φ) has been obtained [4, 5] as;

g00 =

(
1 +

2
c2 f (η, ξ)

)
, (2.1)

g11 = − a2

1+ξ2−η2

η2
(
1+

2
c2 f (η, ξ)

)−1

+
ξ2(1+ξ2)
(1−η2)

 , (2.2)

g12 ≡ g21 = − a2ηξ

1 + ξ2 − η2

1 −
(
1 +

2
c2 f (η, ξ)

)−1 , (2.3)

g22 = − a2

1+ξ2 − η2

ξ
2
(
1+

2
c2 f (η, ξ)

)−1

+
η2(1−η2)
(1+ξ2)

 , (2.4)

g33 = −a2(1 + ξ2)(1 − η2) , (2.5)

f (η, ξ) is an arbitrary function determined by the mass or
pressure distribution and hence possesses all the symmetries
of the latter, a priori. Let us now recall that for any gravita-
tional field [4–7]

g00 � 1 +
2
c2 Φ (2.6)
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where Φ is Newton’s gravitational scalar potential for the field
under consideration. Thus we can then deduce that the un-
known function in our field equation can be given approxi-
mately as

f (η, ξ) � Φ (η, ξ) , (2.7)

where Φ (η, ξ) is Newton’s gravitational scalar potential ex-
terior to a homogeneous oblate spheroidal mass. It has been
shown that [8];

Φ (η, ξ) = B0Q0 (−iξ) P0 (η) + B2Q2 (−iξ) P2 (η) , (2.8)

where Q0 and Q2 are the Legendre functions linearly inde-
pendent to the Legendre polynomials P0 and P2 respectively;
B0 and B2 are constants given by

B0 =
4πGρ0 a2ξ0

3∆1

and

B2 =
4πGρ0 a2ξ0

9∆2

[
d
dξ

P2(−iξ)
]

ξ=ξ0

,

where ∆1 and ∆2 are defined as

∆1 =

[
d
dξ

Q0(−iξ)
]

ξ=ξ0

and

∆2 = Q0

[
d
dξ

P2(−iξ)
]

ξ=ξ0

− P2(−iξ)
[

d
dξ

Q2(−iξ)
]

ξ=ξ0

,

G is the universal gravitational constant, ρ0 is the uniform
density of the oblate spheroid and a is a constant parameter.

In a recent article [9], we obtained a satisfactory approxi-
mate expression for equation (2.8) as;

Φ(η, ξ) ≈ B0

3ξ3

(
1+3ξ2

)
i− B2

30ξ3

(
7+15ξ2

) (
3η2−1

)
i (2.9)

with

Φ(η, ξ) ≈ B0

3ξ3

(
1 + 3ξ2

)
i +

B2

30ξ3

(
7 + 15ξ2

)
i

and

Φ(η, ξ) ≈ B0

3ξ3

(
1 + 3ξ2

)
i − B2

15ξ3

(
7 + 15ξ2

)
i

as the respective approximate expressions for the gravitation-
al scalar potential along the equator and pole exterior to ho-
mogeneous oblate spheroidal bodies. These equations were
used to compute approximate values for the gravitational
scalar potential exterior to the Sun, Earth and other oblate
spheroidal planets [9].

Fig. 1: Emission and reception space points of light (photon).

3 Gravitational spectral shift exterior to oblate sphero-
idal distributions of mass

Here, we consider a beam of light moving from a source or
emitter at a fixed point in the gravitational field of the oblate
spheroidal body to an observer or receiver at a fixed point in
the same gravitational field. Einstein’s equation of motion
for a photon is used to derive an expression for the shift in
frequency of a photon moving in the gravitational field of an
oblate spheroidal mass.

Now, consider a beam of light moving from a source or
emitter (E) at a fixed point in the gravitational field of an
oblate spheroidal body to an observer or receiver (R) at a fixed
point in the field as shown in Fig. 1.

Let the space time coordinates of the emitter and receiver
be (tE , ηE , ξE , φE) and (tR, ηR, ξR, φR) respectively. It is well
known that light moves along a null geodesic given by

dτ = 0 . (3.1)

Thus, the world line element for a photon (light) takes the
form

c2g00 dt2 = g11 dη2 + 2g12 dηdξ + g22 dξ2 + g33 dφ2. (3.2)

Substituting the covariant metric tensor for this gravita-
tional field in equation (3.2) gives

c2
(
1 +

2
c2 f (η, ξ)

)
dt2 = − a2

1 + ξ2 − η2 ×

×
η2

(
1 +

2
c2 f (η, ξ)

)−1

+
ξ2

(
1 + ξ2

)
(
1 − η2)

 dη2 −

− 2a2ηξ

1 + ξ2 − η2

1 −
(
1 +

2
c2 f (η, ξ)

)−1 dη dξ −

− a2

1 + ξ2 − η2

ξ2
(
1 +

2
c2 f (η, ξ)

)−1

+
η2

(
1 − η2

)
(
1 + ξ2)

 dξ2 −

− a2
(
1 + ξ2

) (
1 − η2

)
dφ2. (3.3)
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Now, let u be a suitable parameter that can be used to
study the motion of a photon in this gravitational field. Then
equation (3.3) can be written as

c2
(
1 +

2
c2 f (η, ξ)

) (
dt
du

)2

= − a2

1 + ξ2 − η2 ×

×
η2

(
1 +

2
c2 f (η, ξ)

)−1

+
ξ2

(
1 + ξ2

)
(
1 − η2)

 dη2 −

− 2a2ηξ

1 + ξ2 − η2

1 −
(
1 +

2
c2 f (η, ξ)

)−1
(

dη
du

dξ
du

)
−

− a2

1 + ξ2 − η2

ξ2
(
1 +

2
c2 f (η, ξ)

)−1

+
η2

(
1 − η2

)
(
1 + ξ2)

×

×
(

dξ
du

)2

− a2
(
1 + ξ2

) (
1 − η2

) (dφ
du

)2

. (3.4)

Equation (3.4) can be equally written as

dt
du

=
1
c

(
1 +

2
c2 f (η, ξ)

)− 1
2

ds , (3.5)

where ds is defined as

ds2 = − a2

1 + ξ2 − η2 ×

×
η2

(
1 +

2
c2 f (η, ξ)

)−1

+
ξ2

(
1 + ξ2

)
(
1 − η2)

 dη2 −

− 2a2ηξ

1 + ξ2 − η2

1 −
(
1 +

2
c2 f (η, ξ)

)−1
(

dη
du

dξ
du

)
−

− a2

1 + ξ2 − η2

ξ2
(
1 +

2
c2 f (η, ξ)

)−1

+
η2

(
1 − η2

)
(
1 + ξ2)

×

×
(

dξ
du

)2

− a2
(
1 + ξ2

) (
1 − η2

) (dφ
du

)2

. (3.6)

Integrating equation (3.5) for a signal of light moving
from emitter E to receiver R gives

tR − tE =
1
c

∫ uR

uE


(
1 +

2
c2 f (η, ξ)

)− 1
2

ds

 du . (3.7)

The time interval between emission and reception of all
light signals is well known to be the same for all light signals
in relativistic mechanics (constancy of the speed of light) and
thus the integral on the right hand side is the same for all light
signals. Consider two light signals designated 1 and 2 then

t1
R − t1

E = t2
R − t2

E (3.8)
or

t2
R − t1

R = t2
E − t1

E . (3.9)

Thus,
∆tR = ∆tE . (3.10)

Hence, coordinate time difference of two signals at the
point of emission equals that at the point of reception. From
our expression for gravitational time dilation in this gravita-
tional field [10], we can write

∆τR =

(
1 +

2
c2 fR(η, ξ)

) 1
2

∆tR . (3.11)

Equations (3.9), (3.10) and (3.11) can be combined to
give

∆τR

∆τE
=


1 + 2

c2 fR(η, ξ)

1 + 2
c2 fE(η, ξ)


1
2

. (3.12)

Now, consider the emission of a peak or crest of light
wave as one event. Let n be the number of peaks emitted in
a proper time interval ∆τE , then, by definition, the frequency
of the light relative to the emitter, νE , is given as

νE =
n

∆τE
. (3.13)

Similarly, since the number of cycles is invariant, the fre-
quency of light relative to the receiver, νR, is given as

νR =
n

∆τR
. (3.14)

Consequently,

νR

νE
=

∆τE

∆τR
=

(
1 +

2
c2 fE(η, ξ)

) 1
2
(
1 +

2
c2 fR(η, ξ)

)− 1
2

(3.15)

or
νR

νE
≈

(
1 +

2
c2 fE(η, ξ)

) (
1 − 2

c2 fR(η, ξ)
)

(3.16)

or
νR

νE
− 1 ≈ 1

c2

[
fE(η, ξ) − fR(η, ξ)

]
(3.17)

to the order of c−2. Alternatively, equation (3.17) can be writ-
ten as

z ≡ ∆ν

νE
≡ νR − νE

νE
≈ 1

c2

[
fE(η, ξ) − fR(η, ξ)

]
. (3.18)

It follows from equation (3.18) that if the source is nearer
the body than the receiver then fE(η, ξ) < fR(η, ξ) and hence
∆ν < 0. This indicates that there is a reduction in the fre-
quency of light when the source or emitter is nearer the body
than the receiver. The light is said to have undergone a red
shift (that is the light moves toward red in the visible spec-
trum). Otherwise (source further away from body than re-
ceiver), the light undergoes a blue shift. Now, consider a
signal of light emitted and received along the equator of the
homogeneous oblate spheroidal Earth (approximate gravita-
tional field where f (η, ξ) ≈ Φ(η, ξ). The ratio of the shift
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Emi Pt Recep pt z (×10−10) Type of shift

ξ0 ξ0 0 none
2ξ0 ξ0 3.454804 blue
3ξ0 ξ0 4.603165 blue
4ξ0 ξ0 5.176987 blue
5ξ0 ξ0 5.521197 blue
6ξ0 ξ0 5.750643 blue
7ξ0 ξ0 5.914522 blue
8ξ0 ξ0 6.037426 blue
9ξ0 ξ0 6.133016 blue

10ξ0 ξ0 6.209486 blue

Fig. 2: Ratio of the shift in frequency of light to the fre-
quency of the emitted light at points along equator and
received on the surface of the Earth on the equator.

Emi Pt Recep pt z (×10−10) Type of shift

ξ0 ξ0 0 none
ξ0 2ξ0 −3.454804 red
ξ0 3ξ0 −4.603165 red
ξ0 4ξ0 −5.176987 red
ξ0 5ξ0 −5.521197 red
ξ0 6ξ0 −5.750643 red
ξ0 7ξ0 −5.914522 red
ξ0 8ξ0 −6.037426 red
ξ0 9ξ0 −6.133016 red
ξ0 10ξ0 −6.209486 red

Fig. 3: Ratio of the shift in frequency of light to the fre-
quency of the emitted light at points along equator and
received on the surface of the Earth on the equator.

Body Radial dist. (km) ξ at pt ΦE (Nmkg−1) ΦR (Nmkg−1) Predicted shift

Sun 700, 022.5 241.527 −1.9375791×1011 −1.9373218×1011 −2.85889×10−21

Earth 6, 378.023 12.010 −6.2079113×107 −6.2078881×107 −2.57800×10−15

Mars 3, 418.5 9.231 −1.2401149×107 −1.2317966×107 −9.24256×10−20

Jupiter 71, 512.5 2.641 −1.4968068×109 −1.4958977×109 −1.010111×10−20

Saturn 60, 292.5 1.971 −4.8486581×108 −4.8484869×108 −1.902222×10−21

Uranus 25, 582.5 3.994 −2.1563913×108 −2.1522082×108 −4.647889×10−20

Neptune 24, 782.5 4.304 −2.5243240×108 −2.5196722×108 −5.168667×10−20

Fig. 4: Predicted Pound-Rebka shift in frequency along the equator for the Sun, Earth and the other oblate spheroidal
planets.

in frequency to the frequency of the emitted light at various
points along the equator and received on the equator at the
surface of the homogeneous oblate spheroidal Earth can be
computed using equation (3.18). This yields Table 1. Also,
the ratio of the shift in frequency of light to the frequency of
the emitted light on the equator at the surface and received at
various points along the equator of the homogeneous oblate
spheroidal Earth can be computed. This gives Table 2.

Tables 1, thus confirms our assertion above that there is an
increase in the frequency of light when the source or emitter is
further away from the body than the receiver. The frequency
of light will increase (shifting visible light toward the blue
end of the spectrum) as it moves to lower gravitational poten-
tials (into a gravity well). Table 2, also confirms our assertion
above that there is a reduction in the frequency of light when
the source or emitter is nearer the body than the receiver. The
frequency of light will decrease (shifting visible light toward
the red end of the spectrum) as it moves to higher gravita-
tional potentials (out of a gravity well). Also, notice that the
shift in both cases increases with increase in the distance of
separation between the emitter and receiver. The value of the
shift is equal in magnitude at the same separation distances
for both cases depicted in Tables 1 and 2.

Now, suppose the Pound-Rebka experiment is performed
at the surface of the Sun, Earth and other oblate spheroidal
planets on the equator. Then, since the gamma ray frequency
shift was observed at a height of 22.5m above the surface, we

model our theoretical computation and calculate the theoreti-
cal value for this shift. This computation yields Table 3.

With these predictions, experimental astrophysicists and
astronomers can now attempt carrying out similar experi-
ments on these bodies. Although, the prospects of carrying
out such experiments on the surface of some of the planets
and Sun are less likely (due to temperatures on their surfaces
and other factors); theoretical studies of this type helps us to
understand the behavior of photons as they leave or approach
these astrophysical bodies. This will thus aid in the devel-
opment of future instruments that can be used to study these
heavenly bodies.

4 Conclusion

The practicability of the findings in this work is an encourag-
ing factor. More so, that in this age of computational preci-
sion, the applications of these results is another factor.
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Microwave Spectroscopy of Carbon Nanotube Field Effect Transistor
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The quantum transport property of a carbon nanotube field effect transistor (CNTFET)
is investigated under the effect of microwave radiation and magnetic field. The photon-
assisted tunneling probability is deduced by solving Dirac equation. Then the current
is deduced according to Landauer-Buttiker formula. Oscillatory behavior of the cur-
rent is observed which is due to the Coulomb blockade oscillations. It was found, also,
that the peak heights of the dependence of the current on the parameters under study are
strongly affected by the interplay between the tunneled electrons and the photon energy.
This interplay affects on the sidebands resonance. The results obtained in the present
paper are found to be in concordant with those in the literature, which confirms the cor-
rectness of the proposed model. This study is valuable for nanotechnology applications,
e.g., photo-detector devices and solid state quantum computing systems and quantum
information processes.

5 Introduction

Carbon Nanotubes (CNTs) have been discovered by Sumio
Iijim of the NEC Tsukuba Laboratory in HRTEM study of
carbon filaments [1]. Carbon-based materials, clusters and
molecules are unique in many ways [2]. One distinction re-
lated to the many possible configurations of the electronic
states of carbon atom, which is known as the hybridization
of atomic orbital. Electrical conductivity of carbon nanotube
depending on their chiral vector carbon nanotube with a small
diameter is metallic or semiconducting [2,3]. The differences
in conducting properties are caused by the molecular struc-
ture that results in a difference band structure and thus a dif-
ferent band gap. The quantum electronic transport properties
of carbon nanotubes have received much attention in recent
years [4, 5]. This is due to the very nice features of the band
structure of these quasi-one dimensional quantum systems.
The quantum mechanical behavior of the electronic trans-
port in carbon nanotubes has been experimentally and the-
oretically investigated by many authors [6, 7]. According to
these investigations, the authors showed that carbon nanotube
sandwiched between two contacts behaves as coherent quan-
tum device. A microwave field with frequency, ω, can induce
additional tunneling process when electrons exchange energy
by absorbing or emitting photons of energy, ~ω. This kind
of tunneling is known as the photon-assisted tunneling [8].
The aim of the present paper is to investigate the quantum
transport characteristics of a CNTFET under the microwave
irradiation and the effect magnetic field.

6 CNTFET

A carbon nanotube field effect transistor (CNTFET) is mod-
eled as: two metal contacts are deposited on the carbon nan-
otube quantum dot to serve as source and drain electrodes.
The conducting substance is the gate electrode in this three-
terminal device. Another metallic gate is used to govern the

electrostatics and the switching of the carbon nanotube chan-
nel. The substrates at the nanotube quantum dot /metal con-
tacts are controlled by the back gate. The tunneling through
such device is induced by an external microwave field of dif-
ferent frequencies of the form V = Vac cos(ωt) where Vac

is the amplitude of the field and ω is its angular frequency,
that is the photon-assisted tunneling process is achieved. One
of the measurable quantities of the transport characteristic is
the current which may be expressed in terms of the tunneling
probability by the following Landauer-Buttiker formula [9]:

I =

(
4e
h

)∫ [
fFD(s)(E)− fFD(d)(E − eVsd)

]
Γn(E)dE (1)

where Γ(E) is the photon-assisted tunneling probability,
fFD(s/d) are the Fermi-Dirac distribution function correspond-
ing to the source (s) and drain (d) electrodes, while e and h
are electronic charge and Planck’s constant respectively. The
tunneling probability Γn(E) might be calculated by solving
the following Dirac equation [7]

[
iνF~

(
0 ∂x − ∂y

∂x − ∂y 0

)
− eVsd + (2)

+ (e~B) (2m)−1 + eVB + eVsd cos (ωt)
]
ψ e

~
= i~

∂ψ e
~

∂E

where vF is the Fermi velocity corresponding to Fermi-energy
EF ,Vg is the gate voltage, Vsd is source-drain voltage, B is the
applied magnetic field, m∗ is the effective mass of the charge
carrier, ~ is the reduced Planck ′s constant, ω is the frequency
of the applied microwave field with amplitude Vac and Vb is
the barrier height. The index e/h refers to electron like (with
the energy > 0 with respect to the Dirac point) and hole-like
(with energy < 0 with respect to the Dirac point) solutions to
the eigenvalue differential equation (2).
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The solution of equation (2) is given by [7]:

Ψ
(ac)
+,n (x, t) =

∑
Jn

(eVac

~ω

)
Ψac

0,e/h (x, t) e(−inωt) (3)

where
Ψ

(in)
0,e/h (x, t) = Ψ

(ac)
0,e/h (x) e∓iEt/h . (4)

Accordingly equation (2) will take the following form.
[
iνF~

(
0 ∂x−∂y

∂x−∂y 0

)
−ε

]
Ψac

0.e/h = ±EΨ0.e/h (5)

where the letter ε denotes the following

ε = EF + eVg + eVsd +

(
e~B
2m∗

)
+ Vb + eVac cosωt . (6)

In Eq. (3), Jn is the nth order Bessel function. Since in
ballistic transport from one region of quantum dot to another
one, charge carriers with a fixed energy (which can be either
positive or negative with respect to the Dirac point) are trans-
mitted and their energy is conserved. The desired state repre-
sents a superposition of positive and negative solution to the
eigenvalue problem Eq. (5). The solution must be generated
by the presence of the different side-bands, n, which come
with phase factors exp(−inωt) that shift the center energy of
the transmitted electrons by integer multiples of ~ω [8]. The
complete solution of Eq. (5) is given by [7]:

(i) The incoming eigenfunction

Ψ
(ac)
icome (x, t)=

∞∑

n=−∞
Jn

(eVac

~ω

)
× (7)

×Ψac
0,+ exp (i (ε + E + n~ω) t/h)

(ii) The reflected eigenfunction

Ψα
r (x, t) =

∞∑

n=−∞
Rn (E) Jn

(eVac

~ω

)
× (8)

×Ψac
0,− exp (i (ε + E + n~ω) t/h)

where Rn(E) is the energy-dependent reflection coefficient.
(iii) The transmitted eigenfunction

Ψac
tr (x, t) =

∞∑

n=−∞
Γn (E) Jn

(eVac

~ω

)
× (9)

×Ψin
+,n exp (i (ε + E + n~ω) t/h)

where Ψ
(ac)
0,+ ,Ψ

(ac)
0,− are respectively given by

Ψ
(ac)
0,+ =

eiqny+ikn x

√
cosαac



exp
(
−αac

2

)

− exp
(
αac

2

)


(10)

and

Ψ
(ac)
0,− =

eiqny−ikn x

√
cosαac



exp
(
αac

2

)

− exp
(
−αac

2

)


(11)

Ψ
(in)
+,n in Eq. (9) is expressed as

Ψ
(in)
+,n =

eiq,y−ik,x

√
cosαin,n



exp
(
−αin,n

2

)

exp
(αin,n

2

)


. (12)

In equations (10, 11, 12), the symbols αac, αin,n are

αac = sin−1
(
~νqn

ε

)
(13)

and

αin,n = sin−1
(
~νqn

ε + n~ω

)
(14)

where
qn =

nπ
W

(n = 1, 2, 3, . . .) (15)

where W is the dimension of the nanotube quantum dot. The
parameter kn in Eqs. (10, 11, 12) is given by

k2
n =


Vb + eVg + eVsd + ~eB

m∗

~ω



2

− q2
n. (16)

In order to get an explicit expression for the tunneling
probability Γn(E + n~ω) this can be achieved by applying
the matching condition for the spatial eigenfunctions at the
boundaries x = 0 and x = L. So, the tunneling probability
Γn(E +n~ω) will take the following form after some algebraic
procedures, as

Γn (E + n~ω) = (17)

=

∣∣∣∣∣∣∣∣∣∣∣∣

kn

kn cos (knL)+i
(

eVg+eVsd +(~eB/2m∗)
~ω

)
sin(knL)

∣∣∣∣∣∣∣∣∣∣∣∣

2

.

The complete expression for the tunneling probability
with the influence of the microwave field is given by [8]:

Γwithphoton (E) =
∑

J2
n

(eVac

~ω

)
×

× fFD

(
E − Cg

C
eVg − n~ω − eVcd

)
Γ (E − n~ω) (18)

where Cg is the quantum capacitance of the nanotube quan-
tum dot and C is the coupling capacitance between the nan-
otube quantum dot and the leads.
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Fig. 1: The current as a function of the applied magnetic field (a)
photon energy (b) gate voltage in energy units(c) source drain volt-
age in energy units.

7 Results and Discussions

Numerical calculations were performed according to the fol-
lowing:

(i) The electron transport through the present investigated
device is treated as a stochastic process, so that the tunneled
electron energy has been taken as a random number relative
to the Fermi-energy of the carbon nanotube. The calculations
had been conducted previously by the authors [9, 11].

(ii) The value of the quantum capacitance, Cg, is 0.25 nF.
(iii) The coupling capacitance between carbon nanotube

quantum dot and the leads is calculated in the Coulomb block-
ade regime and in the charging energy of the quantum dot [9,
11]. Its value is found to be approximately equals ∼ 0.4 nF.
The value of the Fermi energy, EF is calculated using the val-
ues of the Fermi velocity, νF , and it was found to be approx-
imately equals ∼ 0.125 eV. This value of the Fermi energy,
EF , was found to be consisted with those found in the liter-
ature [12, 13]. The effective mass of the charge carrier was
taken as 0.054 me [12, 13].

The variation of the current, I, with the applied magnetic
field, B, at difference values of the photon energy, E, gate
voltage, Vg, and different values of the bias voltage, Vsd, is
shown in Figs. (1a,b,c). It is known that the influence of an
external magnetic field, B, will lead to a change in the energy
level separation between the ground state and the first excited
state [14] in the carbon nanotube quantum dot. We notice that
the current dependence on the magnetic field oscillates with
a periodicity of approximately equals ∼ 0.037 T. This value
corresponds roughly to the addition of an extra flux quantum
to the quantum dot. These results have been observed by the
authors [12, 15]. The peak heights are different due the in-
terplay between the tunneled electrons and the applied pho-
tons of the microwave field and also this flux quantum will

affect on the photon–assisted tunneling rates between elec-
tronic states of the carbon nanotube quantum dot. The results
obtained in the present paper are, in general, found to be in
concordant with those in the literature [12–20].

8 Conclusion

We conclude from the present analysis of the proposed ccc
theoretically and numerically that the present device could be
used as photo-detector device for very wide range of frequen-
cies. Some authors suggested that such mesoscopic device,
i.e. cccc could be used for a solid state quantum computing
system. Recently the investigation of the authors [20] shows
that such carbon nanotubes (CNT’s) could find applications
in microwave communications and imaging systems.
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On the Geometry of the Periodic Table of Elements
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The presented analytical research manifests a geometrical connexion existing among the
elements of the Periodic Table of Elements, in addition to the known physical chemical
connexion.

Despite the spectacular versions of the periodic tables of ele-
ments were suggested by the scientists, no one person did not
state the following problem: how the elements are geometri-
cally connected among each other in the groups and periods?
As is known, the element are located in the cells, which are
joined into 18 groups along the vertical axis in the Table of
Elements, and into 7 periods (I suggested recently that 8 peri-
ods, see [1] and references therein) along the horizontal axis.
Number of the elements rises from left to right in the peri-
ods, and from up to down in the groups. The periods begin
with the elements of Group 1, and end with the elements of
Group 18. Each column determines the main physical chem-
ical properties of the elements, which change both from up
to down and from left to right. For example, the elements
of Group 1 are alkaline metals (the very active chemical ele-
ments), while Group 18 consists of inert gases which manifest
a very low chemical activity under the regular physical con-
ditions. In the end of the 20th century, IUPAC suggested a
long period form of the Table of Elements, where Period 1
consists of 2 elements, Periods 2 and 3 consist of 8 elements
in each, Periods 4 and 5 consist of 18 elements in each, while
Periods 6 and 7 consist of 32 elements in each. Finally, Pe-
riod 8 consisting of 37 elements was suggested on the basis
of my theoretical studies [1].

This short study targets a search for the geometrical con-
nexion among the elements of the Periodic Table.

Figure 1 in Page 65 shows that the elements of Group 18
are concentrated along the upper broken line, which is split
into three straight lines joining three elements (four elements
in the end) in each. The numbers indicate the periods and
elements. Period 8, containing element No.155, is also shown
here. Each straight section of these can easily be described by
a straight line equation.

The lower broken line presents Group 1 (as seen accord-
ing to the numbers of the elements). The space between the
upper and lower straight lines is filled with the straight line
of Group 13. It consists of Periods 2–4, 4–6, and 6–8 (Pe-
riod 1 was omitted from the graph for simplicity). Besides,
the points 6,67; 6,81; and 7, 99 which are related to actinides
and lanthanides are shown inside the boundaries. Hence, we
can suppose that the plane bounded by the lines of Group 1
and Group 18, and also by the points 8,155 and 8,119 on right
and the points 1,2; 1,1 on left (and 2,3 of course) contains all
known and unknown elements of the Periodic Table. Thus,

this figure obtained as a result of the purely geometrical con-
structions, allows us to make the following conclusions:

• The Periodic Table should necessary contain Period 8,
which begins with No.119 and ends by No.155;

• No elements can exists outside this figure;
• A strong geometrical connexion exists among the

groups and periods.

Thus, this short study hints at a geometrical connection
among the elements of the Table of Elements, which exists
in addition to the known physical chemical properties of the
elements. Note that the geometrical connexion manifests it-
self per se in the study, without any additional suggestions or
constructions. Therefore, this does not change the form of the
Periodic Table of Elements, which remains the same.
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Fig. 1: Locations of the elements opening the Periods (the lower line) and those closing the Periods (the upper line).
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On the Source of the Systematic Errors in the Quatum Mechanical Calculation
of the Superheavy Elements

Albert Khazan
E-mail: albkhazan@gmail.com

It is shown that only the hyperbolic law of the Periodic Table of Elements allows the
exact calculation for the atomic masses. The reference data of Periods 8 and 9 manifest
a systematic error in the computer software applied to such a calculation (this systematic
error increases with the number of the elements in the Table).

Most scientists who worked on the problems of the Periodic
Table of Elements (G. T. Seaborg, J. T. Bloom, V. I. Goldan-
skii, F. W. Giacobbe, M. R. Kibler, J. A. Rihani et al.) attempt-
ed to construct new models of the Table with the use of quan-
tum mechanical calculations. In this process, they used a
complicate mathematical apparatus of Quantum Mechanics,
and introduced additional conditions such as the periods, the
number of the elements, and so on. In other word, they first
set up a problem of introducing Periods 8 and 9 into the Table
of Elements (50 elements in each), and predict the respec-
tive interior of the cells of the Table and the interior of the
atoms. Only then, on the basis of the above data, they calcu-
late the atomic mass and the number of the neutrons. How-
ever the main task — obtaining the exact numerical values
of the atomic mass, corresponding to the numbers of the ele-
ments higher than period 8 — remains unsolved.

The core of my method for the calculation is the law of
hyperbolas discovered in the Periodic Table [1]. Using the
law, we first calculated the atomic mass of the upper (heavi-
est) element allowed in the Periodic Table (411.663243), then
its number (155) was also calculated. According to the study
[1], this element should be located in Group 1 of Period 8.
The main parameters of the chemical elements were obtained
in our study proceeding from the known data about the ele-
ments, not from the suggestions and the use of the laws spe-
cific to the microscale.

Figure 1 in Page 67 shows two dependencies. The first is
based on the IUPAC 2007 data for elements 80–118 (line 1).
The second continues upto element 224 (line 2). As is seen,
there is a large deviation of the data in the section of the num-
bers 104–118. This is obviously due to the artificial synthesis
of the elements, where the products o the nuclear reactions
were not measured with necessary precision. Line 2 is strictly
straight in all its length except those braking sections where
it is shifted up along the ordinate axis. Is is easy to see that
at the end of line 1, in the numbers 116–118, the atomic mass
experiences a shift for 17 units. These shifts increase their
value with the number of the elements: the next shift rises the
line up for 20 units, and the last shift — for 25 units. In or-
der to find the numerical values of the shifts more precisely,
Figure 2 was created (see Page 67): this is the same broken
line (the initially data) compared to itself being averaged by

the equation of the line of trend (whose data were compared
to the initial data). Hence, the difference between these lines
should give the truly deviation of the numerical values f the
atomic masses between the FLW Inc. data and our data (our
data deviate from the equation of the line of trend for nothing
but only one hundredth of 1 atomic mass unit). Figure 3 in
Page 68 shows a shift of the atomic mass just element 104,
before Period 8: in element 118 the atomic mass is shifted for
11 units; in Period 9 the shift exceeds 15 units, and then it
increases upto 21 units. The respective data for Period 8 are
shown in Figure 4.

These data lead to only a single conclusion. Any software
application, which targets the quantum mechanical calcula-
tion for the atomic mass of the elements, and is constructed
according to the suggested law specific to the microscale, not
the known data about the chemical elements, will make errors
in the calculation. The theory [1] referred herein manifested
its correctness in many publications, and met no one negative
review.
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Fig. 1: Dependency between the atomic mass of the elements and their number in the Table of Elements. The IUPAC data and the FLW
Inc. data begin from number 80, for more visibility of the dependency.

Fig. 2: Dependency between the atomic mass of the elements and their number in the Table of Elements. Black dots are the FLW Inc. data.
Small circles — the averaged results according to the FLW Inc. data.
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Fig. 3: Dependency between the atomic mass, calculated according to our theory and the FLW Inc. data, and their number in the Table of
Elements.

Fig. 4: Dependency between the atomic mass of the elements and their number in the Table of Elements, shown for Period 8. Black dots
are the FLW Inc. data. Small triangles — the data according to our calculations.
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The Dirac Electron in the Planck Vacuum Theory

William C. Daywitt

National Institute for Standards and Technology (retired), Boulder, Colorado, USA.
E-mail: wcdaywitt@earthlink.net

The nature of the Dirac electron (a massive point charge) and its negative-energy solu-
tions are examined heuristically from the point of view of the Planck vacuum (PV) the-
ory [1,2]. At the end of the paper the concept of the vacuum state as previously viewed
by the PV theory is expanded to include the massive-particle quantum vacuum [3, 4].

1 The Dirac equation

When a free, massless, bare charge travels in a straight line
at a uniform velocity v, its bare Coulomb field e∗/r2 per-
turbs (polarizes) the PV. If there were no PV, the bare field
would propagate as a frozen pattern with the same velocity.
However, the PV responds to the perturbation by producing
magnetic and Faraday fields [1, 5] that interact with the bare
charge in a iterative fashion that leads to the well-known rel-
ativistic electric and magnetic fields [6] that are ascribed to
the charge as a single entity. The corresponding force per-
turbing the PV is e2

∗/r
2, where one of the charges e∗ in the

product e2
∗ belongs to the free charge and the other to the in-

dividual Planck particles making up the degenerate negative-
energy PV. By contrast, the force between two free elemen-
tary charges observed in the laboratory is e2/r2 (= αe2

∗/r
2),

where e is the observed electronic charge and α is the fine
structure constant.

In the Dirac electron, where the bare charge has a mass
m, the response of the PV to the electron’s uniform motion is
much more complicated as now the massive charge perturbs
the PV with two forces, the polarization force e2

∗/r
2 and the

attractive curvature force mc2/r [1]. The radius at which the
magnitudes of these two forces are equal

mc2

r
=

e2
∗

r2 at r = rc (1)

is the electron’s Compton radius rc (= e2
∗/mc2). The string of

Compton relations [4]

rc mc2 = r∗m∗ c2 = e2
∗ = c~ (2)

tie the electron (rcmc2) to the Planck particles (r∗m∗ c2) within
the PV, where r∗ and m∗ are the Compton radius and mass
of those particles. The charges in the product e2

∗ of (2) are
assumed to be massless point charges.

The Dirac equation for the electron is [3, 7]
(
c α̂ p̂ + βmc2

)
ψ = Eψ , (3)

where the momentum operator and energy are given by

p̂ = ~∇/i and E = ±(m2c4 + c2 p2)1/2 (4)

and where α̂ and β are defined in the references. The rela-
tivistic momentum is p (= mv/

√
1 − v2/c2).

As expressed in (3), the physics of the Dirac equation is
difficult to understand. Using (2) to replace ~ in the momen-
tum operator and inserting the result into (3), reduces (3) to

(
α̂

e2
∗∇

imc2 + β

)
ψ =

E
mc2 ψ , (5)

where the charge product e2
∗ suggests the connection in (2)

between the free electron and the PV. It is significant that nei-
ther the fine structure constant nor the observed electronic
charge appear in the Dirac equation, for it further suggests
that the bare charge of the electron interacts directly with the
bare charges on the individual Planck particles within the PV,
without the fine-structure-constant screening that leads to the
Coulomb force e2/r2 in the first paragraph. Equation (5) leads
immediately to the equation

(
α̂

rc∇
i

+ β

)
ψ =

E
mc2 ψ (6)

with its Del operator

rc ∇ =

3∑

n=1

x̂n
∂

∂xn/rc
(7)

being scaled to the electron’s Compton radius.
Through (2), (5), and (6), then, the connection of the

Dirac equation to the PV is self evident — the Dirac equation
represents the response of the PV to the two perturbations
from the uniformly propagating electron. As an extension of
this thinking, the quantum-field and Feynman-propagator for-
malisms of quantum electrodynamics are also associated with
the PV response.

2 The Klein paradox

The “hole” theory of Dirac [7] that leads to the Dirac vacuum
will be presented here along with the Klein paradox as the
two are intimately related. Consider an electrostatic potential
of the form

eφ =


0 for z < 0 (Region I)
V0 for z > 0 (Region II)

(8)

acting on the negative-energy vacuum state (corresponding to
the negative E in (4)) with a free electron from z < 0 being
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scattered off the potential step at z = 0, beyond which V0 >
E + mc2 > 2mc2. This scattering problem leads to the Klein
paradox that is reviewed below.

The scattering problem is readily solved [8, pp.127–131].
For the free electron in Region I, E2 = m2c4 + c2 p2; and for
Region II, (E − V0)2 = m2c4 + (cp′)2, where E is the total
electron energy in Region I, and p and p′ are the z-directed
electron momenta in Regions I and II respectively.

The Dirac equation (with motion in the z-direction) for
z < 0 is (

cαz p̂z + βmc2
)
ψ = Eψ (9)

and for z > 0 is
(
cαz p̂z + βmc2

)
ψ = (E − V0)ψ . (10)

The resulting incident and reflected electron wavefunc-
tions are

ψI = A



1
0
cp

E+mc2

0


eipz/~ (11)

and

ψR = B



1
0
−cp

E+mc2

0


e−ipz/~ (12)

respectively, where cp =
√

E2 − m2c4. The transmitted wave
turns out to be

ψT = D



1
0

cp′

V0−E−mc2

0


eip′z/~ , (13)

where cp′ =
√

(V0 − E)2 − m2c4. It should be noted that the
imaginary exponent in (13) represents a propagating wave
which results from V0 > E + mc2; in particular, the parti-
cle motion in Region II is not damped as expected classically
and quantum-mechanically when V0 < E + mc2.

The constants A, B, and D are determined from the conti-
nuity condition

ψI + ψR = ψT (14)

at z = 0 and lead to the parameter

Γ ≡
(

V0 − E + mc2

V0 − E − mc2

E + mc2

E − mc2

)1/2
> 1 . (15)

The particle currents are calculated from the expectation
values of

jz(x) = cψ†(x)αzψ(x) (16)

and yield jI , jR, and jT for the incident, reflected, and trans-
mitted currents respectively. The resulting normalized reflec-
tion and transmission currents become

jR
jI

= −
(

1 + Γ

1 − Γ

)2
, (17)

jT
jI

= − 4Γ

(1 − Γ)2 . (18)

Since Γ is positive, (17) gives
∣∣∣∣∣

jR
jI

∣∣∣∣∣ − 1 > 0 (19)

for the excess reflected current; i.e., the reflected current is
greater than the incident current! This seemingly irrational
result is known as the Klein paradox.

The most natural and Occam’s-razor-consistent conclu-
sion to be drawn from (19), however, is that the excess elec-
tron (or electrons) in the reflected current is (are) coming from
the right (z > 0) of the step at z = 0 and proceeding in the neg-
ative z direction away from the step. Furthermore, the minus
sign on the normalized transmission current in (18) implies
that no electrons are entering Region II — the total electron
current (reflected plus “transmitted”) travels in the negative z
direction away from the step. Then, given the experimental
fact of electron-positron pair creation, it is reasonable to con-
clude that the incident free electron creates such pairs when
it “collides” with the stressed portion of the vacuum (z > 0),
the positrons (Dirac “holes”) proceeding to the right into the
vacuum after the collision [8, fig. 5.6]. That is, positrons (like
neutrinos [9]) travel within the vacuum, not free space!

The evidence of the created positrons is felt in free space
as the positron fields, analogous to the zero-point fields whose
source is the zero-point agitation of the Planck particles
within the PV. The curving of the positrons in a laboratory
magnetic field is due to that field permeating the PV and act-
ing on the “holes” within. (In the PV-theory view of things,
the free electron is not seen as propagating within the vac-
uum state — only the electron force-fields (e2

∗/r
2 and mc2/r)

permeate that vacuum; consequently, the electron is not col-
liding with the negative-energy Planck particles making up
the vacuum.)

3 Summary and comments

The total r-directed perturbing force the electron exerts on the
PV is

Fe =
e2
∗

r2 −
mc2

r
=

e2
∗

r2

(
1 − r

rc

)
, (20)

where the force vanishes at the electron’s Compton radius rc.
For r > rc the force compresses the vacuum and for r < rc

the vacuum is forced to expand. Ignoring the second term in
(20) for convenience and concentrating on the region r < rc,
the lessons from the preceding section can be applied to the
internal electron dynamics.

Recalling that the bare charge of the free electron inter-
acts directly with the individual Planck particles in the PV,
the electron-Planck-particle potential (e2

∗/r) in the inequality
e2
∗/r > E + mc2 leads to

r <
e2
∗

E + mc2 =
rc

1 + E/mc2 <
rc

2
, (21)
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where the positive and negative energy levels in (4) now over-
lap, and where any small perturbation to the PV can result in
an electron-positron pair being created (the electron travel-
ing in free space and the positron in the PV). The smaller the
radius r, the more sensitive the PV is to such disruption.

The electron mass results from the massless bare charge
being driven by ultra-high-frequency photons of the zero-
point electromagnetic vacuum [4, 10]; so the bear charge of
the electron exhibits a small random motion about its center-
of-motion. The resulting massive-charge collisions with the
sensitized PV produce a cloud of electron-positron pairs
around that charge. The massive free charge then exhibits
an exchange type of scattering [3, p.323] with some of the
electrons in the pairs, increasing the free electron’s apparent
size in the process.

In the current PV theory it is assumed that the total quan-
tum vacuum, which consists of the electromagnetic vacuum
and the massive-particle vacuum [3, 4], exists in free space
as virtual particles. However, the simple picture presented
in the previous paragraphs and in Section 2 concerning pair
creation modifies that view significantly. It is the massive-
particle quantum vacuum that overlaps the positive energy
levels of the free-space electron in the previous discussion.
Thus, as the appearance of this latter vacuum in free space
requires a sufficiently stressed vacuum state (in the above re-
gion r < rc/2 e.g.), it is more reasonable to assume that the
massive-particle component of the quantum vacuum does not
exist in free space except under stressful conditions.

Consequently, it seems reasonable to conclude that the PV
is a composite state patterned, perhaps, after the hierarchy of
Compton relations

remec2 = rpmpc2 = · · · = r∗m∗c2 = e2
∗ , (22)

where the products reme, rpmp, and r∗m∗ refer to the electron,
proton, and Planck particle respectively. The dots between
the proton and Planck-particle products represent any number
of heaver intermediate-particle states. The components of this
expanded vacuum state correspond to the sub-vacua associ-
ated with these particles; e.g., the electron-positron Dirac vac-
uum (remec2) in the electron case. If these assumptions are
correct, then the negative-energy states in (4) no longer end in
a negative-energy infinity — as the energy decreases it passes
through the succession of sub-vacuum states, finally ending
its increasingly negative-energy descent at the Planck-particle
stage r∗m∗c2. In summary, the PV model now includes the
massive-particle quantum vacuum which corresponds to the
collection of sub-vacuum states in (22).
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IN MEMORIAM OF NIKIAS STAVROULAKIS

On the Field of a Spherical Charged Pulsating Distribution of Matter

Nikias Stavroulakis∗

In the theory of the gravitational field generated by an isotropic spherical mass, the
spheres centered at the origin of R3 are non-Euclidean objects, so that each of them
possesses a curvature radius distinct from its Euclidean radius. The classical theory
suppresses this distinction and consequently leads to inadmissible errors. Specifically,
it leads to the false idea that the field of a pulsating source is static. In a number of
our previous publications (see references), we have exposed the inevitable role that
the curvature radius plays and demonstrated that the field generated by a pulsating not
charged spherical course is dynamical. In the present paper we prove that the curvature
radius plays also the main role in the description of the gravitational field generated by
a charged pulsating source.

1 Introduction

The manifold underlying the field generated by an isolated
spherical distribution of matter is the space R × R3, consid-
ered with the product topology of four real lines. In fact, the
distribution of matter is assumed to be located in a system
represented topologically by the space R3 and moreover to
every point of R3 there corresponds the real line described by
the time coordinate t (or rather ct). In the general case, the in-
vestigation of the gravitational field by means of the Einstein
equations is tied up with great mathematical difficulty. In or-
der to simplify the problem, we confine ourselves to the case
when the spherical distribution of matter is isotropic. The
term “isotropic” refers classically to the action of the rota-
tion group SO(3) on R3 and the corresponding invariance of
a class of metrics on R3. But in our case we have to deal with
a space-time metric on R × R3, so that its invariance must be
conceived with respect to another group defined by means of
SO(3) and acting on R × R3. This necessity leads to the in-
troduction of the group SΘ(4), which consist of the matrices

(
1 0H

0V A

)

∗Professor Dr. Nikias Stavroulakis, born on the island of Crete on Octo-
ber 6, 1921, passed away in Athens, Greece, on December 20, 2009. A hand-
written manuscript of this paper was found on his desk by his daughter Eleni,
who gave it to Dr. Ioannis M. Roussos, Professor of Mathematics at Ham-
line University, Saint Paul, Minnesota, compatriot scientific collaborator and
closed friend of her father, to fill in some gaps, rectify some imperfections ex-
isting in the manuscript and submit it for publication to Progress in Physics.
At this point Dr. I. M. Roussos wishes to express that he considers it a great
honor to himself the fact that his name will remain connected with this great
and original scientist. This is a continuation of the 5 most recent research
papers that have appeared in this journal since 2006, but as we shall see at
the end of this paper, very unfortunately Professor Stavroulakis has left it un-
finished. Some of the claimed final conclusions are still pending. We believe
that an expert on this subject matter and familiar with the extensive work
of Professor Stavroulakis, on the basis of the material provided here and in
some of his previous papers, will be able to establish these claims easily.
No matter what, these 6 papers make up his swan-song on his pioneering
research on gravitation and relativity.

with 0H = (0, 0, 0), 0V =


0
0
0

 and A ∈ SO(3). It is also

convenient to introduce the larger group Θ(4) consisting of
the matrices of the same form for which A ∈ O(3).

From the general theory [10] of the SΘ(4)-invariant and
Θ(4)-invariant tensor fields on R×R3, we deduce the explicit
form of an SΘ(4)-invariant space-time metric to be

ds2 =
[
f (t, ‖x‖) dt + f1 (t, ‖x‖) (xdx)

]2 − l21(t, ‖x‖)dx2 −

− l2 (t, ‖x‖) − l21 (t, ‖x‖)
‖x‖2 (xdx)2

and the condition l(t, 0) = l1(t, 0) is satisfied, which is also
Θ(4)-invariant. The functions that appear in it, result from
the functions of two variables

f (t, u) , f1(t, u) , l(t, u) , l1(t, u) ,

assumed to be C∞ on R×[0,+∞[, if we replace u by the norm

‖x‖ =

√
x2

1 + x2
2 + x2

3.

However, since the norm ‖x‖ is not differentiable at the
origin of R3, the functions

f (t, ‖x‖) , f1(t, ‖x‖) , l(t, ‖x‖) , l1(t, ‖x‖)

are not either. So, without appropriate conditions on these
functions in a neighborhood of the origin, the curvature ten-
sor and hence the gravitational field, will present a singularity
at the origin of R3, which would not have any physical mean-
ing. In order to avoid the singularity, our functions must be
smooth functions of the norm in the sense of the following
definition:
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Definition 1. Let φ(t, u) be a function C∞ on R × [0,∞[.
(This implies that the function φ (t, ‖x‖) is C∞ with respect to
the coordinates t, x1, x2, x3 onR×

[
R3 ×

(
R3 − {(0, 0, 0)}

)]
.)

Then the function φ(t, u) will be called smooth function of
the norm, if every derivative

∂p0+p1+p2+p3 φ (t, ‖x‖)
∂tp0∂xp1

1 ∂xp2
2 ∂xp3

3

at the point (t, x) ∈ R3 ×
(
R3 − {(0, 0, 0)}

)
tends to a definite

value, as (x1, x2, x3)→ (0, 0, 0) .
The following Theorem characterizes the smooth func-

tions of the norm:

Theorem 1. Let φ(t, u) be a C∞ function on R× [0,∞[. Then
φ (t, ‖x‖) is a smooth function of the norm if and only if the
right derivatives of odd order

∂2s+1φ (t, u)
∂u2s+1

∣∣∣∣∣
u=0

vanish for every value of t.
We will not need this theorem in the sequel, because we

confine ourselves to the gravitational field outside the spher-
ical source, so that we have to do exclusively with functions
whose restrictions to a compact neighborhood of the origin of
R3 are not taken into account.

This is why we also introduce two important functions on
account of their geometrical and physical significance. Na-
mely:

h (t, ‖x‖) = ‖x‖ f1 (t, ‖x‖)
and

g (t, ‖x‖) = ‖x‖ l1 (t, ‖x‖) ,
although, considered globally on R×R3, they are not smooth
functions of the norm. Then if we set ‖x‖ = ρ, we can conve-
niently rewrite the space-time metric in the form

ds2=

[
f dt+

h
ρ

(xdx)
]2

−
(
g

ρ

)2

dx2− 1
ρ2

l2−
(
g

ρ

)2 (xdx)2 (1)

under the condition |h| 6 l, as explained in [4]. We recall,
[2], that with this metric, the field generated by a spherical
charged, pulsating in general, distribution of matter, is deter-
mined by the system of equations

Q00 +
v2

g4 f 2 = 0 , (2)

Q01 +
v2

g4

f h
ρ

= 0 , (3)

Q11 +
v2

g2ρ2 = 0 , (4)

Q11 + ρ2Q22 +
v2

g4 (−l2 + h2) = 0 , (5)

where v2 = k
c4 ε

2, ε being the charge of the source.
Regarding the function Q00 , Q01 , Q11 , Q22 , they occur

in the definition of the Ricci tensor Rαβ related to (1) and are
given by:

R00 = Q00 , R0i = Ri0 = Q01xi ,

Rii = Q11 + Q22x2
i , Ri j = Q22xix j ,

where i, j = 1, 2, 3 and i , j.
This been said, before dealing with the solutions of the

equations of gravitation, we have to clarify the questions re-
lated to the boundary conditions at finite distance.

Let S m be the sphere be the sphere bounding the mat-
ter. S m is an isotropic non-Euclidean sphere, characterized
therefore by its radius and its curvature-radius, which, in the
present situation, are both time dependent. Let us denote
them by σ(t) and ζ(t) respectively. Since the internal field
extends to the external one through the sphere S m, the non-
stationary (dynamical) states outside the pulsating source are
brought about by the radial deformations of S m, which are
defined by the motions induced by the functions σ(t) and
ζ(t). Consequently these functions are to be identified with
the boundary conditions at finite distance.

How is the time occurring in the functions σ(t) and ζ(t)
defined? Since the sphere S m is observed in a system of ref-
erence defined topologically by the space R3, the time t must
be conceived in the same system. But the latter is not known
metrically in advance (i.e., before solving the equations of
gravitation) and moreover it is time dependent. Consequently
the classical method of special relativity is not applicable to
the present situation. It follows that the first principles re-
lated to the notion of time must be introduced axiomatically
in accordance to the very definition of SΘ(4)-invariant met-
ric. Their physical justification will be sought a-posteriori on
the basis of results provided by the theory itself.

This been said, the introduction of the functions σ(t) and
ζ(t) is implicitly related to another significant notion, namely
the notion of synchronization in S m. If S 1 denotes the unit
sphere

S 1 = { α ∈ R3 | ‖α‖ = 1} ,
the equation of S m at each distance t is written as

x = ασ(t) .

So the assignment of the value t at every point of S m de-
fines both the radius σ(t) and the “simultaneous events”

{ [t, ασ(t)] | α ∈ S 1 } .

What do we mean exactly by saying that two events A
and B in S m are simultaneous? The identity of values of time
at A and B does not imply by itself that we have to do with
simultaneous events. The simultaneity is ascertained by the
fact that the value of time in question corresponds to a definite
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position of the advancing spherical gravitational disturbance
which is propagated radially and isotropically according to
the very definition of the SΘ(4)-invariant metric.

If σ′(t) = ζ′(t) = 0 on a compact interval of time [t1, t2],
no propagation of gravitational disturbances takes place in the
external space during [t1, t2] (at least there is no diffusion of
disturbances), so that the gravitational radiation outside the
matter depends on the derivatives σ′(t) and ζ′(t) . It follows
that we may identify the pair [σ′(t) , ζ′(t)] with the gravi-
tational disturbance emitted radially from the totality of the
points of S m at the instant t. We assume that this gravitational
disturbance is propagated as a spherical wave and reaches the
totality of any of the spheres

S ρ = { x ∈ R3 | ‖x‖ = ρ > σ(t) }

outside the matter, in consideration, at another instant.

2 Propagation function and canonical metric

A detailed study of the propagation process appears in the
paper [2]. It is shown that the propagation of gravitation from
a spherical pulsating source is governed by a function π(t, ρ),
termed propagation function, such that

∂π(t, ρ)
∂t

> 0 ,
∂π(t, ρ)
∂ρ

6 0 , ρ > σ(t) , π[t, σ(t)] = t .

If the gravitational disturbance reaches the sphere

S ρ = { x ∈ R3 | ‖x‖ = ρ > σ(t) }

at the instant t, then

τ = π(t, ρ)

is the instant of its radial emission from the totality of the
sphere S m.

Among the infinity of possible choices for π(t, ρ), we dis-
tinguish principally the one obtained in the limit case where
h = l. Then π(t, ρ) reduces to the time coordinate, denoted
by τ, in the sphere that bounds the matter and the space-time
metric takes the so-called canonical form

ds2 =

[
f (t, ρ)dτ + l(τ, ρ)

(xdx)
ρ

]2

− (6)

−

[
g(τ, ρ)
ρ

]2

dx2 +

l2(τ, ρ) −
[
g(τ, ρ)
ρ

]2
(xdx)2

ρ2

 .

Any other Θ(4)-invariant metric is derived from (6) if we
replace τ by a conveniently chosen propagation function
π(t, ρ). It follows that the general form of a Θ(4)-invariant

metric outside the matter can be written as follows:

ds2 =

[
f
[
π(t, ρ), ρ

] ∂π(t, ρ)
∂t

dt +

+

(
f
[
π(t, ρ), ρ

] ∂π(t, ρ)
∂t

+ l
[
π(t, ρ), ρ

]) (xdx)
ρ

]2
− (7)

−
[ (
g[π(t, ρ), ρ]

ρ

)2

dx2 +

+

l2[π(t, ρ), ρ] −
(
g[π(t, ρ), ρ]

ρ

)2
(xdx)2

ρ2

]
.

We do not need to deal with the equations of gravitation
related to (7). Their solution follows from that of the equa-
tions of gravitation related to (6), if we replace in it τ by the
general propagation function π(t, ρ). Each permissible prop-
agation function is connected with a certain conception of
time, so that, the infinity of possible propagation functions
introduces an infinity of definitions of time with respect to
(7). So, the notion of time involved in (7) is not quite clear.

Our study of the gravitational field must begin necessarily
with the canonical form (6). Although the conception of time
related to (6) is unusual, it is easily definable and understand-
able. The time in the bounding the matter sphere S m as well
as in any other sphere S ρ outside the matter is considered as a
time synchronization according to what has been said previ-
ously. But of course this synchronization cannot be extended
radially. Regarding the time along the rays, it is defined by
the radial motion of photons. The motion of a photon emitted
radially at the instant τ0 from the sphere S m will be defined by
the equation τ = τ0. If we label this photon with indication τ0,
then as it travels to infinity, it assigns the value of time τ0 to
every point of the corresponding ray. The identity values of
τ along this ray does not mean “synchronous events”. This
conception of time differs radically from the one encountered
in special relativity.

3 The equations related to (2.1)

Since h = l the equations (2), (3), (4) and (5) are greatly
simplified to:

Q00 +
v2

g4 f 2 = 0 , (8)

ρQ01 +
v2

g4 f l = 0 , (9)

ρ2Q11 +
v2

g2 = 0 , (10)

Q11 + ρ2Q22 = 0 . (11)

Regarding the functions Q00, Q01, Q11 and Q22, they are
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already known, [3], to be:

Q00 =
1
l
∂2 f
∂τ∂ρ

− f
l2
∂2 f
∂ρ2 +

f
l2

∂2l
∂τ∂ρ

+
2
g

∂2g

∂τ2 −

− f
l3
∂l
∂τ

∂l
∂ρ

+
f
l3
∂ f
∂ρ

∂l
∂ρ

+
2 f
l2g

∂l
∂τ

∂g

∂ρ
− 2 f

l2g
∂ f
∂ρ

∂g

∂ρ
− (12)

− 2
fg
∂ f
∂τ

∂g

∂τ
− 2

lg
∂l
∂τ

∂g

∂τ
+

2
lg
∂ f
∂ρ

∂g

∂τ
− 1

f l
∂ f
∂τ

∂ f
∂ρ

,

ρQ01=
∂

∂τ

[
1
f l
∂( f l)
∂ρ

]
− ∂
∂ρ

(
1
l
∂ f
∂ρ

)
+

2
g

∂2g

∂τ∂ρ
− 2

lg
∂ f
∂ρ

∂g

∂ρ
, (13)

ρ2Q11 = −1 − 2g
f l

∂2g

∂τ∂ρ
+
g

l2
∂2g

∂ρ2 −
2
f l
∂g

∂τ

∂g

∂ρ
−

− g
l3
∂l
∂ρ

∂g

∂ρ
+

1
l2

(
∂g

∂ρ

)2

+
g

f l2
∂ f
∂ρ

∂g

∂ρ
, (14)

Q11 + ρ2Q22 =
2
g

[
∂2g

∂ρ2 −
∂g

∂ρ

1
f l
∂( f l)
∂ρ

]
. (15)

From (8) and (9) we deduce the equation

lQ00 − fρQ01 = 0 , (16)

which is easier to deal with than (8) on account of the identity

lQ00 − fρQ01 =
2l
g

∂2g

∂τ2 +
2 f
lg

∂l
∂τ

∂g

∂ρ
− 2l

fg
∂ f
∂τ

∂g

∂τ
− (17)

− 2
g

∂l
∂τ

∂g

∂τ
+

2
g

∂ f
∂ρ

∂g

∂τ
− 2 f

g

∂2g

∂τ∂ρ

which follows from (12) and (13).
On account of (15), the equation (11) gives

∂

∂ρ

(
1
f l
∂g

∂ρ

)
= 0

whence
1
f l
∂g

∂ρ
= β = function of τ

and, more explicitly,

∂g(τ, ρ)
∂ρ

= β(τ) f (τ, ρ) l(τ, ρ) .

We contend that the function β(τ) cannot vanish. In fact,
if β(τ0) = 0 for some value τ0 of τ, then

∂g(τ0, ρ)
∂ρ

= 0

from which it follows that

g(τ0, ρ) = constant .

This condition is un-physical: Since a photon travel-
ing radially to infinity, assigns the values of time τ0 to every
point of a ray, this condition implies that the curvature radius
g(τ0, ρ) is constant outside the matter at the instant τ0. Con-
sequently β(τ) , 0 , so that

either β(τ) > 0 or β(τ) < 0 for every value of τ .

But, since f (τ, ρ) > 0 and l(τ, ρ) > 0 , the condition
β(τ) < 0 implies

∂g(τ, ρ)
∂ρ

< 0

and so the curvature radius g(τ, ρ) is a strictly decreasing
function of ρ. This last conclusion is also un-physical.

Consequently β(τ) > 0 for every τ, so that we can define
the positive function

α = α(τ) =
1
β(τ)

and write
f l = α

∂g

∂ρ

and so
f =

α

l
∂g

∂ρ
. (18)

Consequently

∂ f
∂ρ

= −α
l2
∂l
∂ρ

∂g

∂ρ
+
α

l
∂2g

∂ρ2 (19)

and inserting this expression into (14) we obtain

ρ2Q11 = −1 − 2g

α ∂g
∂ρ

∂2g

∂τ∂ρ
+

2g
l2
∂2g

∂ρ2 −

− 2
α

∂g

∂τ
− 2g

l3
∂l
∂ρ

∂g

∂ρ
+

1
l2

(
∂g

∂ρ

)2

.

On account of (10), we can deduce that

0 =

(
ρ2Q11 +

v2

g2

)
∂g

∂ρ
=

= −∂g
∂ρ
− 2g
α

∂g2

∂τ∂ρ
+

2g
l2
∂2g

∂ρ2

∂g

∂ρ
− 2
α

∂g

∂τ

∂g

∂ρ
−

−2g
l3
∂l
∂ρ

(
∂g

∂ρ

)2

+
1
l2

(
∂g

∂ρ

)3

+
v2

g2

∂g

∂ρ
=

=
∂

∂ρ

−g −
2g
α

∂g

∂τ
+
g

l2

(
∂g

∂ρ

)2

− v
2

g

 ,
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whence

−g − 2g
α

∂g

∂τ
+
g

l2

(
∂g

∂ρ

)2

− v
2

g
= −2µ = function of τ

and so
∂g

∂τ
=
α

2

−1 +
2µ
g
− v2

g2 +
1
l2

(
∂g

∂ρ

)2 . (20)

To continue our discussion we need the following deriva-
tives obtained by direct computation:

∂2g

∂τ∂ρ
=α

−
µ

g2

∂g

∂ρ
+
v2

g3

∂g

∂ρ
− 1

l3
∂l
∂ρ

(
∂g

∂ρ

)2

+
1
l2
∂g

∂ρ

∂2g

∂ρ2

 , (21)

∂3g

∂τ∂ρ2 =α


2µ
g3

(
∂g

∂ρ

)2

− µ
g2

∂2g

∂ρ2−
3v2

g4

(
∂g

∂ρ

)2

+
v2

g3

∂2g

∂ρ2 +

+
3
l4

(
∂l
∂ρ

)2 (
∂g

∂ρ

)2

− 1
l3
∂2l
∂ρ2

(
∂g

∂ρ

)2

− 4
l3
∂l
∂ρ

∂l
∂ρ

∂2g

∂ρ2 +

+
1
l2

(
∂2g

∂ρ2

)2

+
1
l2
∂g

∂ρ

∂3g

∂ρ3

 . (22)

Consider now the equation (9). Since

∂

∂τ

[
1
f l
∂( f l)
∂ρ

]
=

∂

∂τ


∂2g
∂ρ2

∂g
∂ρ

 =

∂g
∂ρ

∂3g
∂τ∂ρ2 − ∂2g

∂ρ2
∂2g
∂τ∂ρ(

∂g
∂ρ

)2

by taking into account (21) and (22), we find after some com-
putations

∂

∂τ

[
1
f l
∂( f l)
∂ρ

]
= α

[2µ
g3

∂g

∂ρ
− 3v2

g4

∂g

∂ρ
+

3
l4

(
∂l
∂ρ

)2
∂g

∂ρ
−

− 3
l3
∂l
∂ρ

∂2g

∂ρ2 −
1
l3
∂2l
∂ρ2

∂g

∂ρ
+

1
l2
∂g3

∂ρ3

]
.

On the other hand (19) leads to the relation

∂

∂ρ

[
1
l
∂ f
∂ρ

]
=α


3
l4

(
∂l
∂ρ

)2
∂g

∂ρ
− 1

l3
∂2l
∂ρ2

∂g

∂ρ
− 3

l3
∂l
∂ρ

∂2g

∂ρ2 +
1
l2
∂3g

∂ρ3

 .

Moreover by (21)

2
g

∂2g

∂τ∂ρ
=α

−
2µ
g3

∂g

∂ρ
+

2v2

g4

∂g

∂ρ
− 2

l3g
∂l
∂ρ

(
∂g

∂ρ

)2

+
2

l2g
∂g

∂ρ

∂2g

∂ρ2



and

2
lg
∂ f
∂ρ

∂g

∂ρ
= α

−
2

l3g
∂l
∂ρ

(
∂g

∂ρ

)2

+
2

l2g
∂g

∂ρ

∂2g

∂ρ2

 .

Inserting these expressions into (13) we find, after cance-
lations,

ρQ01 = −α v
2

g4

∂g

∂ρ

so that

ρQ01 +
v2

g4 f l = −α v
2

g4

∂g

∂ρ
+
v2

g4 α
∂g

∂ρ
= 0 .

Consequently the equation (9) is verified.
It remains to examine the equation (16), which amounts

to transform the expression (17). In principle, we need the
derivatives

∂2g

∂τ2 and
∂ f
∂τ

expressed by means of l and g.
First we consider the expression of ∂2g

∂τ2 resulting from the
derivative of (20) with respect to τ and then replace in it the
∂g
∂τ

and ∂2g
∂τ∂ρ

, given by their expressions (20) and (21). We get:

2
∂2g

∂τ2 =
dα
dτ

−1+
2µ
g
− v

2

g2 +
1
l2

(
∂g

∂ρ

)2 +

+α

−
2
l3
∂l
∂τ

(
∂g

∂ρ

)2

+
2
g

dµ
dτ

 +

+α2


µ

g2−
2µ2

g3 +
3µv2

g4 −
3µ

l2g2

(
∂g

∂ρ

)2

− v
2

g3−
v4

g5 +

+
3v2

l2g3

(
∂g

∂ρ

)2

− 2
l5

(
∂g

∂ρ

)3
∂l
∂ρ

+
2
l4

(
∂g

∂ρ

)2
∂2g

∂ρ2

 .

On the other hand taking the derivative of

f =
α

l
∂g

∂ρ

with respect to τ and then, in the resulting expression, replace
the expression of ∂2g

∂τ∂ρ
given by equation (21) , we obtain

∂ f
∂τ

=
dα
dτ

1
l
∂g

∂ρ
−α

l2
∂l
∂τ

∂g

∂ρ
+

+
α2

l

−
µ

g2

∂g

∂ρ
+
v2

g3

∂g

∂ρ
− 1

l3
∂l
∂ρ

(
∂g

∂ρ

)2

+
1
l2
∂g

∂ρ

∂2g

∂ρ2

 .

So, we have already obtained f , ∂ f
∂τ

, ∂ f
∂ρ

, ∂2g
∂τ∂ρ

, ∂2g
∂τ2 , by

means of l and g. Inserting them into (21), we get after some
computations and several cancelations the relation

lQ00 − fρQ01 =
2αl
g2

dµ
dτ

,

so that the equation (16) is written as

2αl
g2

dµ
dτ

= 0

which implies
dµ
dτ

= 0
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and so µ is a constant.
Later on we will prove that this constant is identified with

the mass that produces the gravitational field. . . ∗
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The spin dependent conductance of mesoscopic device is investigated under the ef-
fect of infrared and ultraviolet radiation and magnetic field. This device is modeled as
Aharonov-Casher semiconducting ring and a quantum dot is embedded in one arm of
the ring. An expression for the conductance is deduced. The results show oscillatory
behavior of the conductance. These oscillations might be due to Coulomb blockade
effect and the interplay of Rashba spin orbit coupling strength with the induced pho-
tons of the electromagnetic field. The present device could find applications in quantum
information processing (qubit).

1 Introduction

Advances in nanotechnology opened the way for the syn-
thesis of artificial nanostructures with sizes smaller than the
phase coherence length of the carriers [1]. The electronic
properties of these systems are dominated by quantum ef-
fects and interferences [2]. One of the goals of semiconductor
spintronics [3,4] is to realize quantum information processing
based on electron spin. In the last decades, much attention is
attracted by many scientists to study the spin-dependent trans-
port in diverse mesoscopic systems, e.g., junctions with fer-
romagnetic layers, magnetic semiconductors, and low-dimen-
sional semiconducting nanostructures [5, 6]. Coherent oscil-
lations of spin state driven by a microwave field have been
studied extensively [7–11].

Many authors investigated the spin transport through
quantum rings [12–18]. These rings are fabricated out of two
dimensional electron gas formed between heterojunction of
III–V and II–VI semiconductors. Spin-orbit interaction (SOI)
is crucial in these materials. The purpose of the present pa-
per is to investigate the quantum spin transport in ring made
of semiconductor heterostructure under the effect of infrared
and ultraviolet radiations.

2 Theoretical treatment

In order to study the quantum spin characteristics of a meso-
scopic device under the effect of both infrared (IR) and ultra-
violet (UV) radiation, we propose the following model:

A semiconductor quantum dot is embedded in one arm
of the Aharonov-Casher ring with radius comparable with
the Fermi-wavelength of semiconductor heterostructure. This
ring is connected to two conducting leads. The form of the
confining potential is modulated by an external gate electrode
allowing for direct control of the electron spin-orbit interac-
tion. By introducing an external magnetic field, we also cal-
culate the combined Aharonov-Casher, and Aharonov-Bohm
conductance modulations. The conductance G for the present

investigated device will be calculated using Landauer for-
mula [17–19] as:

G =
2e2

h
sin φ

∑

µ=1,2

dE
(
−∂ jFD

∂E

) ∣∣∣Γµ,with photon (E)
∣∣∣2 , (1)

where fFD is the Fermi-Dirac distribution function, e is the
electron charge, h is Planck’s constant, φ is the electron phase
difference propagating through the upper and lower arms of
the ring, and

∣∣∣Γµ,with photon (E)
∣∣∣2 is the tunneling probability

induced by the external photons.
Now, we can find an expression for the tunneling proba-

bility
∣∣∣Γµ,with photon (E)

∣∣∣2 by solving the following Schrodinger
equation and finding the eigenfunctions for this system as fol-
lows:

( P2

2m∗
+ Vd + eVg + EF + eVac cos (ωt) +

+
~eB
2m∗

+ ĤS oc + eVS d

)
ψ = Eψ , (2)

where Vd is the barrier height, Vg is the gate voltage, m∗ is the
effective mass of electrons, EF is the Fermi-energy, B is the
applied magnetic field, and Vac is the amplitude of the applied
infrared, and ultraviolet electromagnetic field with frequency
ω. In (2) ĤS oc is the Hamiltonian due to the spin-orbit cou-
pling which is expressed as:

ĤS oc =
~2

2m∗a2

(
− i

∂

∂φ
− ΦAB

2π
− ωS ocm∗a2

~
σr

)
, (3)

where ωS oc = α/ (~a) and it is called the frequency associated
with the spin-orbit coupling,α is the strength of the spin-orbit
coupling, a is the radius of the Aharonov-Casher ring, and σr

is the radial part of the Pauli matrices which expressed in the
components of Pauli matrices σx, σy as:

σr = σx cos φ + σy sin φ,
σφ = σy cos φ − σx sin φ . (4)
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Due to the application of magnetic field B, normal to the
plane of the device, the Aharonov-Bohm phase will be picked
up by an electron which encircling the following magnetic
flux ΦAB, see Eq. (3), as:

ΦAB =
πeBa2

~
. (5)

Now, the solution of Eq. (2) will consist of four eigen-
functions [17, 18, 20], where ψL (x) is the eigenfunction for
transmission through the left lead, ψR (x) for the right lead,
ψup (θ) for the upper arm of the ring, and ψlow (θ) for the lower
arm of the ring. Their expressions are:

ψL (x, t) =
∑

σ

∞∑

n=−∞
Jn

(eVac

~ω

) [
Aeikx+Be−ikx

]
χσ (π) e−inωt, (6)

χ ∈ [−∞, 0]

ψR (x, t) =
∑

σ

∞∑

n=−∞
Jn

(eVac

~ω

) [
Ceik′x+De−ik′x

]
χσ (0) e−inωt, (7)

χ ∈ [0,∞] ,

ψup (θ, t) =
∑

σ,µ

∞∑

n=−∞
Jn

(eVac

~ω

)
Fµein′σµ φe−inωtχσ (φ) , (8)

φ ∈ [0, π] ,

ψlow (θ, t) =
∑

σ,µ

∞∑

n=−∞
Jn

(eVac

~ω

)
Gµeinσµ φe−inωtχσ (φ) , (9)

φ ∈ [π, 2π]

were Jn (eVac/ (~ω)), Eqs. (6–9), is the nth order Bessel func-
tion. The solutions, Eqs. (6–9), must be generated by the pres-
ence of the different side-bands n, which come with phase
factor exp (−inωt). The parameter χσ (φ) is expressed as:

χ1
n (φ) =

(
cos (θ/2)

eiφ sin (θ/2)

)
(10)

and

χ2
n (φ) =

(
sin (θ/2)

−eiφ cos (θ/2)

)
(11)

where the angle θ [17, 18, 21] is given by

θ = 2 tan−1


Ω −

√
Ω2 + ω2

S oc

ωS oc

 (12)

in which Ω is given by

Ω =
~

2m∗a2 . (13)

Also, the parameters n′σµ and nσµ expressed respectively
as:

n′σµ = µk′a − φ +
ΦAB

2π
+

Φσ
AC

2π
, (14)

nσµ = µka − φ +
ΦAB

2π
+

Φ
µ
AC

2π
, (15)

in which µ = ±1 corresponding to the spin-up, and spin-down
of the transmitted phase, expressed as [17, 18, 20]:

Φ
µ
AC = π

1 +
(−1)µ

(
ω2

S oc + Ω2
)1/2

Ω

 . (16)

The wave numbers k′ and k are given respectively by

k′ =

√
2m∗ (E + n~ω)

~2 , (17)

and

k =

√
2m∗

~2

(
Vd + eVg +

N2e2

2C
+ EF + n~ω − E

)
, (18)

where Vd is the barrier height, Vg is the gate voltage, N is the
number of electrons entering the quantum dot, C is the total
capacitance of the quantum dot, e is the electron charge, EF

is the Fermi energy, m∗ is the effective mass of electrons with
energy E, and ~ω is the photon energy of both infrared and
ultraviolet electromagnetic field.

Now, the tunneling probability
∣∣∣Γµ,with photon (E)

∣∣∣2 could be
obtained by applying the Griffith boundary condition [15, 17,
18, 20, 21] to Eqs. (6–9). The Griffith boundary condition
states that the eigenfunctions, Eqs. (6–9), are continuous and
their current density is conserved at each intersection. Ac-
cordingly therefore, the expression for the tunneling proba-
bility is given by:
∣∣∣Γµ with photons (E)

∣∣∣2 = (19)

=
∑

n

J2
n



8i cos
(
ΦAB+Φ

µ
AC

2

)
sin (πka)

4 cos (2πk′a) +4 cos
(
ΦAB + Φ

µ
AC

)
+4 sin (2πk′a)



2

.

Now, substituting
∣∣∣Γµ with photons (E)

∣∣∣2, into Eq. (1), we get
a full expression for the conductance G, which will be solved
numerically as will be seen in the next section.

3 Result and discussion

Numerical calculations are performed for the conductance G
as function of the gate voltage Vg, magnetic field B, and func-
tion of ωS oc frequency due to spin-orbit coupling at specific
values of photon energies, e.g., energies of infrared and ul-
traviolet radiations. The values of the following parameters
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Fig. 1: The variation of the conductance G with the gate voltage Vg

at different photon energy EIR and EUV .

Fig. 2: The variation of the conductance G with the magnetic field
B at different photon energy EIR and EUV .

have been found previous by the authors [22–24]. The val-
ues of C ∼ 10−16 F and Vd ∼ 0.47 eV. The value of the number
of electrons entering the quantum dot was varied as random
number.

We use the semiconductor heterostructures as In Ga As/
In Al As. The main features of our obtained results are:

1. Fig. (1), shows the dependence of the conductance G,
on the gate voltage Vg, at both photon energy of in-
frared (IR), and ultraviolet (UV) radiations. Oscillatory
behavior is shown. For the case of infrared radiation,
the peak height strongly increases as gate voltage in-
creases from –0.5 to 1. But for the case ultraviolet, this
increase in peak height is so small.

2. Fig. (2), shows the dependence of the conductance G,
on the applied magnetic field B, at both the photon en-
ergies considered (IR and UV). A periodic oscillation
is shown for the two cases, the periodicity equals t̃he
quantum flux h/e.

Fig. 3: The variation of the conductance G with the frequency ωS oc

at different photon energy EIR and EUV .

3. The dependence of the conductance G, on the frequen-
cy associated with the spin-orbit coupling, ωS oc. at dif-
ferent values of the investigated applied photon ener-
gies is shown in Fig. 3.

The obtained results might be explained as follows: The
oscillatory behavior of the conductance is due to spin-sensi-
tive quantum interference effects caused by the difference in
the Aharonov-Casher phase accumulated by the opposite spin
states. The Aharonov-Casher phase arises from the propaga-
tion of the electron in the spin-orbit coupling. The quantum
interference effect appears due to photon spin-up, and spin-
down subbands coupling. Our results are found concordant
with these in the literature [15, 16, 25].

4 Conclusion

The Aharonov-Casher, and Aharonov-Bohm effects are stud-
ied, taking into consideration the influence of both infrared
(IR), and ultraviolet (UV) electromagnetic field. This could
be realized by proposing a semiconducting quantum dot em-
bedded in one arm of semiconducting ring. Spin filtering, and
spin pumping due to the effect of photons are studied by de-
ducing the spin transport conductance. The present results are
valuable for the application in the field of quantum informa-
tion processing (qubit) quantum bit read out, and writing.
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A numerical analysis of elementary particle masses on the logarithmic number line
revealed systematic mass gaps of 2e, e, e

2 , e
4 , e

8 and e
16 . Also in abundance data of

the chemical elements, a repeated abundance gap of e
2 could be detected. This lead

us to modify a fractal scaling model originally published by Müller in this journal,
interpreting elementary particles as proton resonances. We express a set of 78 accurately
determined particle masses on the logarithmic scale in a continued fraction form where
all numerators are Euler’s number.

1 Introduction

Recently in three papers of this journal, Müller [1–3] has pro-
posed a chain of similar harmonic oscillators as a new model
to describe the fractal properties of nature. For a specific pro-
cess or data set, this model treats observables such as ener-
gies, frequencies, lengths and masses as resonance oscillation
modes and aims at predicting naturally preferred values for
these parameters. The starting point of the model is the fact
that hydrogen is the most abundant element in the universe
and therefore the dominant oscillation state. Consequently,
Müller calculates the spectrum of eigenfrequencies of a chain
system of many proton harmonic oscillators according to a
continued fraction equation [2]

f = fp exp S , (1)

where f is any natural oscillation frequency of the chain sys-
tem, fp the oscillation frequency of one proton and S the con-
tinued fraction corresponding to f . S was suggested to be in
the canonical form with all partial numerators equal 1 and the
partial denominators are positive or negative integer values

S = n0 +
1

n1 +
1

n2 +
1

n3 + . . .

. (2)

Particularly interesting properties arise when the nomina-
tor equals 2 and all denominators are divisible by 3. Such
fractions divide the logarithmic scale in allowed values and
empty gaps, i.e. ranges of numbers which cannot be ex-
pressed with this type of continued fractions. He showed that
these continuous fractions generate a self-similar and discrete
spectrum of eigenvalues [1], that is also logarithmically in-
variant. Maximum spectral density areas arise when the free
link n0 and the partial denominators ni are divisible by 3.

This model was applied to the mass distribution of ce-
lestial bodies in our solar system [2] as well as to the mass
distribution of elementary particles such as baryons, mesons,

leptons and gauge bosons [3]. The masses were found to be
located at or close to spectral nodes and definitively not ran-
dom.

In this article we investigated the properties of masses
in the micro-cosmos on the logarithmic scale by a graphi-
cal analysis with particular interest in detection of periodic
trends. We analyzed abundance data of the chemical ele-
ments, atomic masses and the masses of elementary particles.
Then we applied a slightly modified version of Müller’s frac-
tal model and demonstrate that there is a hidden structure in
the masses of elementary particles.

2 Data sources and computational details

Solar system abundance data of chemical elements (with un-
certainties of around 10%) were taken from reference [4].
High accuracy nuclide masses are given in an evaluation by
Audi [5]. Relative isotope abundances for a selected chemi-
cal element can be found in the CRC Handbook of Chemistry
and Physics [6]. Accurate masses of elementary particles are
given in Müller’s article [3] and were used for the calcula-
tion of continued fractions. In order to avoid machine based
rounding errors, numerical values of continued fractions were
always calculated using the the Lenz algorithm as indicated
in reference [7].

3 Results

Figure 1 shows the relative abundance of the chemical ele-
ments in a less usual form. In textbooks or articles these data
are normally presented as log10(abundance) versus atomic
number on a linear scale. Here we adopted Müller’s formal-
ism and present the abundance data as a function of the nat-
ural logarithm of the atomic masses (here mean values from
a periodic table were used) which were previously divided
by the lowest atomic weight available (hydrogen). As can be
seen, there is a general trend of decreasing abundance with
increasing atomic mass, but the plot has a few remarkable
extremities.
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Fig. 1: Solar system abundance data of the chemical elements on a
logarithmic scale. H and He omitted for clarity.

Nuclide ln m (nuclide)
m (H) multiples of e

2

1
1H 0.0 0.0 × e

2

4
2He 1.379 1.015 × e

2

16
8 O 2.764 2.034 × e

2

56
26Fe 4.016 2.955 × e

2

208
82 Pb 5.330 3.921 × e

2

Table 1: ln m(nuclide)
m(H) of element abundance maxima expressed in mul-

tiples of e
2 .

Elements marking very clear maxima or minima are la-
beled with symbols. The most relevant maxima in graph are
elements O, Fe and Pb. Of course, H and He, the most abun-
dant elements in the universe (not shown in Fig. 1) must also
be interpreted as maxima in the figure. From Figure 2 it be-
comes directly clear that these abundance maxima occur in
almost equal distances on the logarithmic number line. The
simple calculation ln m(4

2He)
m(1

1H) −ln m(1
1H)

m(1
1H) = 1.37 reveals that these

distance seems to be e
2 , where e is Euler’s number. When

drawing a sine function with period e, f (x) = sin( 2πx
e ) on the

logarithmic number line, the abundance maxima are closely
located to the zeros of this function.

Table 1 summarizes the numerical deviations from multi-
ples of e

2 . The calculations were performed for the naturally
most abundant isotope of the considered element.

Figure 2 has some analogy to Kundt’s famous experiment
with standing sound waves in a tube. It seems as a standing
wave on the logarithmic number line supporting an accumula-
tion of naturally preferred mass particles in the nodes, which
are multiples of e

2 . On the other hand these preferred masses
are not exactly located in the notes, more evidently the less
abundant chemical elements (Li, Be, B, F) are more distant

Fig. 2: Abundance maxima and minima of chemical elements on the
logarithmic number line.

Fig. 3: Stable isotopes on the logarithmic scale in the range 0 to e.

from the bulges than H, He, O, Fe and U from the nodes. Pm
and Tc are even completely absent in the abundance data due
to their radioactivity.

Within the first period of the sine function in Fig. 2, very
few stable isotopes are found. So it is possible to analyze the
location of their isotope masses in relation to nodes of the pre-
viously constructed sine function including higher harmonics.
Figure 3 displays the logarithmic axis from zero to e with a
sine function of period e and two corresponding (2nd and 4th)
higher harmonics defined through repeated frequency dou-
bling. The location (= ln mnuclide

mproton
) of all existing stable isotopes

in that range is indicated. From this, similar wave stabiliza-
tions regarding these light isotopes can be obtained:

1. Deuterium is a stable, but hardly abundant hydrogen
isotope. It seems to be stabilized by the second har-
monics with period e

2 due to location in the node (tri-
tium does not fit in a node of this wave). Possibly hy-
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drogen isotopes are principally governed by the basic
wave with period e and the influence of higher harmon-
ics is greatly reduced, which explains the low abun-
dance.

2. Why is the isotope 4He (99.999%) much more abun-
dant than 3He (0.0001%)? Assuming that He is prin-
cipally governed as H by the wave with period e, the
isotope 4He is closer to the node than 3He. In this case
the higher stability of 4He can also explained with the
magic numbers for both, protons and neutrons.

3. Lithium is composed of 92.5% 7Li and 7.5% 6Li. The
isotope 7Li is more abundant and clearly closer to a
node of the second harmonic (it has also a little higher
bonding energy per nucleon than 6Li ).

4. The isotope 11B is exactly located in the node of the
third harmonic with period e

4 . It is much more abundant
(80.1%) than 10B (19.9%).

5. The isotope 12C is closer to the node of the fourth har-
monics than 13C. This is in agreement with the abun-
dances of 98.0% for 12C and 1.1% for 13C.

6. Nitrogen is composed of 99.63% 14N and 0.36% 15N.
The isotope 15N is almost in the node of the basic wave
and all higher harmonics. Here the model fails to pre-
dict the correct abundance order, but the isotope 15N
has the higher stability, which can be readily confirmed
by the magic number of 8 neutrons in this nuclide. For
a certain reason, the nuclide stability does not go along
with the corresponding abundance. For an explanation
of this fact must be considered that elements heavier
than He cannot be built up in our sun or similar present-
day (second generation) stars [8]. This is due to the fact
that for all nuclei lighter than carbon, a nuclear reaction
with a proton leads to the emission of an alpha particle
disintegrating the original nucleus. So the heavier el-
ements in stars must already have existed prior to the
second generation star formation. Bethe [8] investi-
gated possible nuclear reactions of both nitrogen iso-
topes and found that 15N can give a p − α reaction

15N + 1H→ 4He + 12C

while 14N can only capture a proton
14N + 1H→ 15O + γ.

According to Bethe, such a p − α reaction is always
more probable than a radiative capture. So we theo-
rize that without existence of the above mentioned nu-
clear reaction, the abundance data would show an ex-
cess of 15N.

A nuclear reaction also explains why lead is the element
with the highest deviation from such a node (Fig. 2). We
believe that Pb does actually not present its true abundance
value as existed through stellar element formation, its abun-
dance is increased since it is the end product of the 3 most

Fig. 4: Accumulation of particle masses on the logarithmic scale.

important decay chains (thorium series, uranium series, ac-
tinium series). There are no stable isotopes between Pb and
238U, which has a long half-life. The element uranium lies
much more close to a node than Pb, and also because of its
long half-life, we believe that this nuclide could be a former
abundance maximum.

In order to find similar regularities for elementary parti-
cles we selected according to some physics textbooks a set of
commonly discussed particles. Their importance was mainly
justified by the relatively long lifetimes (> 10−19 s). We be-
lieve that nature’s preferred masses are the more stable parti-
cles and particularly for these masses some regularities could
be expected. Table 2 presents the considered set of particles,
their rest masses and positions on the logarithmic scale. It
was found that the particles produce an interesting set of mass
distances on the logarithmic number line: 2e, e, e

2 , e
4 , e

8 and
e

16 . These mass gaps are listed in Table 3. There is, however,
no standing wave analogy on the logarithmic scale that can
be applied to all particles, consequently here, another model
must be applied, which lead us to modify Müller’s contin-
ued fraction term in an empirical way. However, the standing
wave analogy is not completely absent. Müller [3] has shown
that the majority of baryon and meson masses is in the range
of 1300–8600 MeV/c2. When scaling according to ln mparticle

melectron
,

this range translates to 8–8.5 on the logarithmic scale and it
becomes clear that this range and as well as the masses of the
electron, muon, pion and gauge bosons are in proximity of the
zeros of the above considered sine function (see Figure 4).

Considering the framework of Müller’s fractal scaling
model, we interpret these numerical regularities as follows:
Masses in nature are in relation to proton resonance states.
Nature can realize various masses, only when they are close
to proton resonance states, they are preferred masses. For
stable particles such as nuclides, the term “preferred mass”
translates to more abundance. For unstable particles, “pre-
ferred mass” translates to more realization probability. Un-
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Particle Rest mass m
[MeV/c2]

ln m (particle)
m (proton)

Leptons:
Electron 0.511 −7.515
µ 105.658 −2.183
τ 1776.84 0.638

Mesons:
π± 139.57 −1.905
π0 134.9766 −1.939
K± 493.677 −0.642
K0

S ,K
0
L 497.614 −0.634

η 547.853 −0.538
ρ± 770 −0.198
ρ0 775.5 −0.191
ω 782.6 −0.181
η0 957.8 0.021
K∗± 891.7 −0.051
K∗0 896.0 −0.046
φ 1019.5 0.083
D±,D0 1869.6 0.689
D±s 1968.5 0.741
J/Ψ 3096.9 1.194
B±, B0 5279.2 1.727
Y 9460.3 2.311

Baryons:
p 938.272 0
n 939.56 0.001
Λ0 1115.6 0.173
Σ+ 1189.4 0.237
Σ0 1192.5 0.240
Σ− 1197.3 0.244
∆±,∆++,∆0 1232 0.272
Ξ0 1314.9 0.337
Ξ− 1321.3 0.342
Ω 1672 0.578
Λ+

C 2281 0.888
Λ0

b 5624 1.791
Ξ−b 5774 1.817
Ξ−∗,Ξ0∗ 15300 2.792

Table 2: Selected particles with rest masses and values on the loga-
rithmic number line.

Particle Rest mass difference Numerical
mass step on logarithmic scale result

Mass gap 2e (= 5.436):

Electron→ µ | − 7.515 − −2.183| 5.332

Mass gap e (= 2.718):

p→ Ξ−∗,Ξ0∗ |0 − 2.792| 2.792

Mass gap e
2 (= 1.359):

π0 → K± | − 1.939 − −0.642| 1.297
Ξ0 → B±, B0 |0.337 − 1.727| 1.390
Λ+

C → Y |0.888 − 2.311| 1.423

Mass gap e
4 (= 0.68):

K0
S ,K

0
L → p | − 0.634 − 0| 0.634

Λ0 → Λ+
C |0.173 − 0.888| 0.715

p→ D±,D0 |0 − 0.689| 0.689
p→ D±s |0 − 0.741| 0.741
p→ τ |0 − 0.638| 0.638

Mass gap e
8 (= 0.34):

η→ ρ± | − 0.538 − −0.198| 0.340
p→ Ξ0 |0 − 0.337| 0.337
p→ Ξ− |0 − 0.342| 0.342
η→ ρ0 | − 0.538 − −0.191| 0.347
η→ ρ± | − 0.538 − −0.198| 0.340
Σ+ → Ω |0.237 − 0.578| 0.341
Σ0 → Ω |0.240 − 0.578| 0.338
Σ− → Ω |0.244 − 0.578| 0.334
Λ+

C → J/Ψ |0.888 − 1.194| 0.306
Ω→ Λ+

C |0.578 − 0.888| 0.310

Mass gap e
16 (= 0.17):

ω→ p | − 0.181 − 0| 0.181
ρ± → p | − 0.198 − 0| 0.198
ρ0 → p | − 0.191 − 0| 0.191
p→ Λ0 |0 − 0.173| 0.173
Λ0 → Ξ0 |0.173 − 0.337| 0.164
Λ0 → Ξ− |0.173 − 0.342| 0.169
Ω→ D±s |0.578 − 0.741| 0.163
D±s → Λ+

C |0.741 − 0.888| 0.147
D±,D0 → Λ+

C |0.689 − 0.888| 0.199

Table 3: Mass gaps between elementary particles on the logarithmic
scale.
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Particle Particle mass with standard deviation.
Continued fraction representation

N-baryons (S=0, I=1/2):

p 938.27203 ±0.00008
[0; 0]

n 939.565346 ±0.000023
[0; 0 | 1973]

Λ-baryons (S=−1, I=0):

Λ 1115.683 ±0.006
[0; 0 | 15, e+1, 15, −6]

Λ(1520) 1519.5 ±1.0
[0; 0 | 6, −9, e+1, −e−1, ***]

Σ-baryons (S=−1, I=1):

Σ+ 1189.37 ±0.07
[0; 0 | 12, −6, e+1, −e−1, 6]

Σ0 1192.642 ±0.024
[0; 0 | 12, −e−1, −9, e+1, −e−1, ***]

Σ− 1197.449 ±0.03
[0; 0 | 12, −e−1, 6, −e−1, e+1, −e−1]

Σ(1385)+ 1382.8 ±0.4
[0; 0 | 6, e+1, −e−1, ***]

Σ(1385)0 1383.7 ±1.0
[0; 0 | 6, e+1, −e−1, e+1, −e−1]

Σ(1385)− 1387.2 ±0.5
[0; 0 | 6, e+1, −e−1, e+1, e+1]

Ξ-baryons (S=−2, I=1/2):

Ξ0 1314.86 ±0.2
[0; 0 | 9, −e−1, e+1, −6]

Ξ− 1321.71 ±0.07
[0; 0 | 9, −e−1, e+1, ***]

Ξ(1530)0 1531.8 ±0.32
[0; 0 | 6, −6]

Ξ(1530)− 1535.0 ±0.6
[0; 0 | 6, −6, 9]

Ω-baryons (S=−3, I=0):

Ω− 1672.45 ±0.29
[0; 0 | e+1, e+1, −e−1, e+1, −e−1, −e−1]
[1.5; 0 | −e−1, e+1, −15, 6]

charmed baryons (C = +1):

Λ+
C 2286.46 ±0.14

[1.5; 0 | −e−1, −e−1, 45, −15]

ΛC(2595)+ 2595.4 ±0.6
[1.5; 0 | −6, 6, e+1, −e−1, ***]

ΛC(2625)+ 2628.1 ±0.6
[1.5; 0 | −6, 12, 6]

ΛC(2880)+ 2881.53 ±0.35
[1.5; 0 | −6, −e−1, e+1, ***]

Table 4: Continued fraction representation of particle masses ac-
cording to equation (4).

Particle Particle mass with standard deviation.
Continued fraction representation

charmed baryons (C = +1):

ΣC(2455)++ 2454.02 ±0.18
[1.5; 0 | −6, e+1, −e−1, e+1, e+1, −e−1, e+1]

ΣC(2455)+ 2452.9 ±0.4
[1.5; 0 | −6, e+1, −e−1, e+1, e+1]

ΣC(2455)0 2453.76 ±0.18
[1.5; 0 | −6, e+1, −e−1, e+1, e+1, −e−1]

Ξ+
c 2467.8 ±0.6

[0; 0 | e+1, −e−1, e+1, 60]
[1.5; 0 | −6, e+1, −e−1, −15]

Ξ0
c 2470.88 ±0.8

[0; 0 | e+1, −e−1, e+1, −162]
[1.5; 0 | −6, e+1, −e−1, −6]

Ξc(2645)+ 2645.9 ±0.6
[1.5; 0 | −6, 21, −6]

Ξc(2645)0 2645.9 ±0.5
[1.5; 0 | −6, 21, −6]

Ξc(2815)+ 2816.6 ±0.9
[1.5; 0 | −6, −e−1, 12]

Ξc(3080)+ 3077.0 ±0.4
[1.5; 0 | −9, 9, 18]

light unflavored mesons (S = C = B = 0):

π± 139.57018 ±0.00035
[1.5; −3 | −6, −e−1, 18, −e−1, e+1, −e−1, e+1]

π0 134.9766 ±0.0006
[1.5; −3 | −6, −15, e+1, −e−1, −33]

η 547.853 ±0.024
[0; 0 | −6, e+1, −e−1, 6, −e−1, 12]
[1.5; −3 | e+1, −e−1, e+1, 9, −e−1, −e−1]

ρ (770) 775.49 ±0.34
[0; 0 | −15, −e−1]

ω (782) 782.65 ±0.12
[0; 0 | −15]

ρ′(958) 957.78 ±0.06
[0; 0 | 132]

φ (1020) 1019.455 ±0.02
[0; 0 | 33, −12, e+1]

f1(1285) 1281.8 ±0.6
[0; 0 | 9, −9, −6]

a2(1320) 1318.3 ±0.6
[0; 0 | 9, −e−1, e+1, −e−1, e+1, −e−1]

f1(1420) 1426.4 ±0.9
[0; 0 | 6, 6, −6]

strange mesons (S =±1, C = B = 0):

K± 493.667 ±0.016
[0; 0 | −e−1, −6, e+1, 39]

K0 497.614 ±0.024
[1.5; −3 | e+1, −e−1, −e−1, e+1, −e−1]
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Particle Particle mass with standard deviation.
Continued fraction representation

strange mesons (S =±1, C = B = 0):

K∗(892)± 891.66 ±0.26
[0; 0 | −54, e+1]

K∗(892)0 896.00 ±0.25
[0; 0 | −60, e+1]

charmed mesons (S =±1):

D± 1869.62 ±0.2
[0; 0 | e+1, 12, 24]

D0 1864.84 ±0.17
[0; 0 | e+1, 12, −e−1, −e−1]

D∗(2007)0 2006.97 ±0.19
[0; 0 | e+1, −18, −e−1, e+1, −e−1]
[1.5; 0 | −e−1, 63]

D∗(2010)± 2010.27 ±0.17
[0; 0 | e+1, −18, −216]
[1.5; 0 | −e−1, 78]

charmed, strange mesons (C = S =±1):

D±s 1968.49 ±0.34
[0; 0 | e+1, −54]

D∗±s 2112.3 ±0.5
[1.5; 0 | −e−1, −12, 15]

D∗S 0(2317)± 2317.8 ±0.6
[0; 0 | e+1, −e−1, −27]
[1.5; 0 | −e−1, −e−1, 6, −e−1, −e−1]

DS 1(2460)± 2459.6 ±0.6
[0; 0 | e+1, −e−1, e+1, 12]
[1.5; 0 | −6, e+1, −e−1, 9]

DS 1(2536)± 2535.35 ±0.34
[0; 0 | e+1, −e−1, e+1, −e−1, e+1, e+1]
[1.5; 0 | −6, e+1, e+1, e+1]

DS 2(2573)± 2572.6 ±0.9
[1.5; 0 | −6, 6, −15]

bottom mesons (B =±1):

B± 5279.17 ±0.29
[1.5; 0 | 12, −54]

B0 5279.5 ±0.3
[1.5; 0 | 12, −51]

B∗ 5325.1 ±0.5
[1.5; 0 | 12, −6, 6]

bottom, strange mesons (S = B =±1):

B0
S 5366.3 ±0.6

[1.5; 0 | 12, −e−1, 6, −e−1]

cc-mesons (S = B =±1):

J/Ψ(1S) 3096.916 ±0.011
[1.5; 0 | −9, 24]

Xc0(1P) 3414.75 ±0.31
[1.5; 0 | 12, −e−1, e+1, ***]

Xc1(1P) 3510.66 ±0.07
[1.5; 0 | −15, −45]

hc(1P) 3525.67 ±0.32
[1.5; 0 | −15, −6, −6]

Particle Particle mass with standard deviation.
Continued fraction representation

cc-mesons (S = B =±1):

Xc2(1P) 3556.20 ±0.09
[1.5; 0 | −15, −e−1, e+1, ***]

Ψ(2S) 3686.09 ±0.04
[1.5; 0 | −21, 9, −e−1, e+1, ***]

Ψ(3770) 3772.92 ±0.35
[1.5; 0 | −24, −e−1, e+1, ***]

X(3872) 3872.3 ±0.8
[1.5; 0 | −33]

Y(1S) 9460.3 ±0.26
[0; 3 | −e−1, −12, −87]

Xb0(1P) 9859.44 ±0.42
[0; 3 | −e−1, −6, 9, −15]
[1.5; 0 | e+1, −6, e+1, −6, e+1, −e−1]

Xb1(1P) 9892.78 ±0.26
[1.5; 0 | e+1, −6, e+1, −e−1, e+1, −9]

Xb2(1P) 9912.21 ±0.26
[0; 3 | −e−1, −6, e+1, 15, −e−1]

Y(2S) 10023.76 ±0.31
[0; 3 | −e−1, −e−1, −e−1, −e−1]
[1.5; 0 | e+1, −e−1, −e−1, e+1, 12, −e−1]

Xb0(2P) 10232.5 ±0.4
[0; 3 | −e−1, −e−1, 327]
[1.5; 0 | e+1, −e−1, −6, −e−1, e+1, −e−1]

Xb1(2P) 10255.46 ±0.22
[0; 3 | −e−1, −e−1, 30, 6]

Xb2(2P) 10268.65 ±0.22
[0; 3 | −e−1, −e−1, 21, −e−1]
[1.5; 0 | e+1, −e−1, −9, 6, 6]

Y(3S) 10355.2 ±0.5
[0; 3 | −e−1, −e−1, 6, e+1, 6]
[1.5; 0 | e+1, −e−1, −18, 9]

leptons:

Electron 0.510998910 ±0.000000013
[1.5; −9 | −177]

µ 105.658367 ±0.000004
[0; −3 | e+1, −6, −e−1, e+1, ***]

τ 1776.84 ±0.17
[0; 0 | e+1, 6, −e−1, e+1, −e−1, −e−1]

gauge bosons:

W 80398 ±25
[1.5; 3 | −54, −e−1, e+1]

Z 91187.6 ±2.1
[1.5; 3 | 36, −6, e+1]
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fortunately, these simple graphs do not provide information
to distinguish between stable and unstable particles. The re-
peatedly occurring mass gaps from 2e to e

16 strongly support
the idea that masses in the micro-cosmos are not random and
have a self-similar, fractal structure. However, we empha-
size that this fractal behavior is only a statistical influence
with low priority, since we know for instance that nature real-
izes with the chemical elements easily the whole logarithmic
mass range from 0 to 2e without significant mass gaps. Also
it should be noted that the logarithmic mass differences in Ta-
ble 3 are always approximately multiples of the fractions of e.
This means the fractal property provides only a signature of
regularities, becoming visible only on the logarithmic number
line.

Due to the fact that frequently mass distances occur which
are close, but not exactly a fraction of e, we decided to modify
Müller’s continued fractions (given in equation(2)). Specifi-
cally we abandon the canonical form and change all partial
numerators to Euler’s number. Furthermore we follow results
published by Müller in one of his patents [9] and introduce a
phase shift p in equation (2). According to [9] the phase shift
can only have the values 0 or ±1.5. So we write

ln
particle mass
proton mass

= p + S , (3)

where S is the continued fraction

S = n0 +
e

n1 +
e

n2 +
e

n3 + . . .

. (4)

We abbreviate p + S as [p; n0 | n1, n2, n3, . . . ]. Provided
that our initial assumption is correct, and the particles are res-
onance states, their masses should be located in the maximum
spectral density areas. Consequently we must require that the
free link n0 and the partial denominators ni are integers divis-
ible by 3. For convergence reason, we have to include |e + 1|
as allowed partial denominator. This means the free link n0
is allowed to be 0,±3,±6,±9 . . . and all partial denominators
ni can take the values e + 1,−e − 1,±6,±9,±12 . . . In order
to test the model very critically for a more extended set of
particles we followed Müller’s article [3] and selected all el-
ementary particles which have their masses determined with
a standard deviation 6 1 MeV/c2 and included additionally
the gauge bosons due to their special importance (78 parti-
cles altogether). For the calculation of the continued frac-
tions we assumed first that the mass values were without any
measurement error. This means, equation (3) does not hold
and one ideally obtains a continued fraction with an infinite
number of partial denominators. For practical reasons we de-
termined only 18 partial denominators. Next we calculated
repeatedly the particle mass from the continued fraction, ev-
ery time considering one more partial denominator. As soon
as the calculated mass value (on the linear scale) was in the

interval “mass±standard deviation”, we stopped considering
further denominators and gave the resulting fraction in Table
4. In special cases, where the particle mass is much more ac-
curately determined than the proton mass (e.g. electron) the
standard deviation was set to that of the proton.

It was found that the great majority of the particle masses
could be expressed by a continued fraction, which means that
they are localized in nodes or sub-nodes. Only 10 particles
were found to be localized in a gap. In such a case the con-
tinued fraction turns into an alternating sequence of −e− 1
and e + 1 without any further significant approximation to the
mass value. In Table 4, this sequence was then abbreviated
by three stars. It should be noted that the particle mass cal-
culated from such a fraction is still close to the experimental
value, but has a difference from the experimental value higher
than the standard deviation. For around 50% of the particles,
it was required to set the phase shift to 1.5 in order to get the
masses located in a node or sub-node. For 14 particles, their
masses can even be located in sub-nodes for both phase shifts
(0 and 1.5). If so, both continued fractions were indicated in
Table 4. As can be seen, the continued fractions have seldom
more than 5 partial denominators, they can be even shortened
abandoning the standard deviation requirement and accept-
ing a small percentage error on the logarithmic scale as it was
done in Müller’s article [2].

There are, however some general questions open. It is
clear that the continued fraction analysis provides a new sys-
tem to put the particles in groups regarding the length of the
fraction (fractal layers), the phase shift, value of the free link
and the value of the numerator. Which of these parameters
have physical meaning and which ones are just mathematics?

Especially regarding the physical significance of the nom-
inator, more research must be done. We believe that is not co-
incidence that most of the masses become localized in nodes
or sub-nodes when calculating the fractal spectrum with nom-
inator e, similar calculations have shown that the numerators
2 or the golden ratio do not work in this manner. This how-
ever, was here found empirically, to the best of our knowledge
there is no way to calculate directly which nominator repro-
duces best the fractal distribution. It must still be done by trial
and error combined with intuition. Anyway, we suggest to
abandon the canonical form of the continued fractions when-
ever possible, since with numerator 1, actually some physi-
cal information of the fractal distribution is lost. It is known
that continued fractions with arbitrary numerator , 1 can be
transformed into fractions with numerator equal to 1, via Eu-
ler equivalent transformation.

From the presented numerical results, some ideas can be
derived:

1. The three most stable here considered particles are the
electron, proton and neutron with half-life of around
11 minutes. Their continued fraction representations
are quite short, consisting only of the free link and one
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partial denominator. Possibly short continued fractions
indicate stability. Furthermore the very high values of
the first partial denominators n1 indicate two facts: a
proximity to the node n0 and an irrelevance of any fur-
ther partial denominator which can change the value
of the fraction only insignificantly. This means a high
value of n1 might also be considered as a criterion for
stability.

2. According to reference [1], in a node, there is a change
from spectral compression to spectral decompression,
which means that with a certain probability a change
in process trend can be observed. This statement is
in agreement with the continued fraction representa-
tions of the electron and the neutron. The electron [1.5;
−9 | −177] lies with a negative first partial denominator
closely before the principal node [1.5; −9], whereas the
neutron [0; 0 | 1973] is positioned right after the prin-
cipal node [0; 0] due to its positive denominator. This
means the electron in the compression range is stable
whereas the neutron is in a decompression range and
already exhibits decay property.

4 Resume

Numerical investigation of particle masses revealed that 87%
of the considered elementary particles can be interpreted as
proton resonance states. We cannot expect that all particle
masses are only governed by proton resonance properties,
other natural laws apply as well. The here presented math-
ematical model can be modified in various ways and future
research should concentrate on identifying fractal properties
in other data sets such as half-lifes of radioactive nuclides or
mass defects, utilizing either our or similarly modified contin-
ued fractions. Only when multiple fractal data sets are known,
the possible numerical values of the numerator or the phase
shift can be adequately interpreted and maybe attributed to a
physical property.

Acknowledgements

The authors greatly acknowledge the financial support from
the Brazilian governmental funding agencies FAPESQ and
CNPq.

Submitted on July 21, 2010 / Accepted on August 11, 2010

References
1. Müller H. Fractal scaling Models of resonant oscillations in chain sys-

tems of harmonic oscillators. Progress in Physics, 2009, v. 2, 72–76.

2. Müller H. Fractal scaling models of natural oscillations in chain sys-
tems and the mass distribution of the celestial bodies in the solar sys-
tem. Progress in Physics, 2010, v. 1, 62–66.

3. Müller H. Fractal scaling models of natural oscillations in chain sys-
tems and the mass distribution of particles. Progress in Physics, 2010,
v. 3, 61–66.

4. Anders E., Grevesse N. Abundances of the elements — meteoritic and
solar. Geochimica et Cosmochimica Acta, 1989, v. 53, 197–214.

5. Audi G., Wapstra A. H., Thibault C. The AME2003 atomic mass eval-
uation (II). Tables, graphs and references. Nuclear Physics A, 2003,
v. 729, 337–676.

6. Lide D. R. (Editor) CRC Handbook of Chemistry and Physics. CRC
Press, Boca Raton, 2005.

7. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. Numerical
recipes in C. Cambridge University Press, Cambridge, 1992.

8. Bethe H. A. Energy production in stars. Physical Review, 1939, v. 55,
434–456.

9. Otte R., Müller H. German patent No. DE102004003753A1, date:
11.08.2005.

A. Ries, M.V. L. Fook. Fractal Structure of Nature’s Preferred Masses: Application of the Model of Oscillations in a Chain System 89



Volume 4 PROGRESS IN PHYSICS October, 2010

Charge of the Electron, and the Constants of Radiation According
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This study suggests a mechanical interpretation of Wheller’s model of the charge. Ac-
cording to the suggested interpretation, the oppositely charged particles are connected
through the vortical lines of the current thus create a close contour “input-output” whose
parameters determine the properties of the charge and spin. Depending on the energetic
state of the system, the contour can be structurized into the units of the second and thirs
order (photons). It is found that, in the framework of this interpretation, the charge is
equivalent to the momentum. The numerical value of the unit charge has also been cal-
culated proceeding from this basis. A system of the relations, connecting the charge to
the constants of radiation (the Boltzmann, Wien, and Stefan-Boltzmann constants, and
the fine structure constant) has been obtained: this give a possibility for calculating all
these constants through the unit charge.

William Thomson (Baron Kelvin), the prominent physicist of
the 19th century, said: “we can mean a phenomenon to be
clearly understood only if a mechanical model of it has been
constructed”. It would be fine if the famous phrase would be
actual in the nowadays as well. This however meets some
difficulties, in particular — in the case of the electron, despite
its spin has the dimension of mechanical angular momentum,
and the charge is not (at least) a special “entity” or “electric
substance”.

In order to explain the properties of the electric charge,
John A. Wheeler suggested his own concept of geometrody-
namics. According to the concept, the charged micro-
particles are special points in the three-dimensional spatial
surface of our world, connected to each other through “worm-
holes” — vortical tubes analogous to the lines of current
working according to the “input-output” (“source-drain”)
principle, but in an additional dimension of space.

Is the fourth dimension still necessary in this case?
Suppose that the world, being an entity in the limits of

the three-dimensional continuum, is a really surface which is
topologically non-unitary coherent and fractalized upto the
parameters of the micro-world bearing a fraction dimension
of the numerical value upto three. In this case, it is easy to see
that the Wheeler vortical tube is located “under the surface”
of our world, thus is “invisible” to us, the fragments of the
fractalized surface.

Meanwhile numerous specific properties of the micro-
world do not manifest themselves into it, or are manifested
being distorted, as if they were projected into our world from
an “additional” dimension. In particular, this should be true in
the charge and spin of the electron, which can be considered
according to the mechanistic scheme as the respective mo-
mentum of the vortical tube and the angular momentum with
respect to its longitudinal axis. So forth we will consider, for
brevity, the close contour crossing the surface X of the our
world in the points, say, p+ and e−. In the framework of this

scheme, a free charged particle is presented as a section of the
open contour, or as a single-pole curl directed along the “ad-
ditional” direction; the electron can be presented as an object
activating the motion of the medium (electric current).

Let S be the sinus of an angle determining the projection
of the momentum onto the surface X, and also the projection
of the circulation velocity v (this is also, in the same time,
the velocity of the rotation around the longitudinal axis of
the contour) onto the chosen direction, say the axis p+− e−.
In this case, S i characterizes the ratio of the projection of
the velocity to the velocity itself (i = 1, 2, 3 depending on the
orientation of the velocity vector).

Let, according to our initially suggestion, the charge be
equivalent to the momentum, thus be Coulomb = kg×m/sec.
Replace the elementary charge with the ultimate momentum
of the electron, me c, in the formulae of Coulomb and Am-
pere. With taking this into account, in order to arrive at the
numerical coincidence with the electric and magnetic forces
(determined by the classical formulae), it is sufficient to in-
troduce new formulae for the electric and magnetic contants,
ε0 and µ0, as follows

ε0 =
me

re
= 3.233×10−16 [

kg/m
]
, (1)

µ0 =
1

c2 ε0
= 0.0344 [N−1] , (2)

where me is the mass of the electron, while c is the velocity
of light. The quantity re means the classical radius of the
electron, which is, in SI units,

re =
10−7 e2

0

me
, (3)

where e0 is the charge of the electron.
Thus, these constants get a clear physical meaning now.

They characterize the vortical tube, because ε0 has a dimen-
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sion of its density per meter, while µ0 is the quantity recipro-
cal to the centrifugal force which appears when the element
of the vortical tube, whose mass is me, rotates with the radius
re with the linear velocity c.

The contour’s length can vary, depending on the energetic
state of the system. Assume that its increase, according to the
well-known analogy to hydrodynamics, results the decrease
of the tube’s radius upto an arbitrary numerical value r, and
also the creation of the secondary and tertiary spiral struc-
tures, which fill the toroidal volume (the section of the torus
is the same as the classical radius of the electron re).

Thus, the charge of a particle can be characterized by the
projection of the longitudinal component of the momentum
Mv onto the surface X, where the mass of the vortical tube
(contour) is proportional to the tube’s length, and is

M = ε0 R = εn2Rb , (4)

where n is the leading quantum number, Rb =α2 re is the Bohr
1st radius, while α is the reciprocal fine structure constant
which is 137.036 (it will be shown below that α is also deter-
mined according to the suggested model).

Among the possible contours characterized by different
masses and velocities, there is such a contour in which the
energy of the unit charge (electron) reaches the maximal nu-
merical value. We take into account that a potential, in the
framework of the mechanistic “coulombless” system, corre-
sponds to a velocity. Thus, in the case of this contour, we can
write down

e v = me c2 = Emax , (5)

where e is the common charge, which is identical to the mo-
mentum (in contrast to its projection, the observed charge e0).
In this contour, we determine the standard unit of the potential
(velocity) as follows

v =
me v

2

e
= 1 [m/sec] . (6)

Thus we obtain, from (5) and (6),

v = c2/3
p v , (7)

where the dimensionless velocity of light cp = c
v has been in-

troduced, and also

e = M v = me c2/3
p c2/3

p v . (8)

In other word, we see that the mass M of the contour is
the same as mec2/3

p = 4.48×105 me that is close to the summary
mass of the bosons W+, W−, Z0.

We will refer to the contour as the standard contour. In
it, the maximal energy of the “point-like” electron, me c2, is
the same as that of the current tube, M v2. The numerical val-
ues of the charge and spin remain unchanged for any contour,
and have a common component — the contour’s momentum

M v. It should be noted that, despite the dimension of elec-
tric charge corresponds to the dimension of momentum, it is
not common to both entities, thus cannot be divided by the
dimensions of mass and velocity.

The projection of the momentum, which is the observed
charge, is

e0 = me c4/3
p S iv , (9)

where, as is obvious, i = 1, while the complete momentum of
the vortical tube (the Planck constant h) reduced to the radius
of the electron can be determined as the vector recovered, on
the basis of the projection, in the general way where i = 3.
Thus

h
re

= 2παme c =
e0

S 3 . (10)

Taking e0 from (9), we obtain, through (10),

S =
c1/6

p√
2πα

= 0.881, (11)

thus the projective angle is 61.82◦, while the obtained numer-
ical value of the observed charge e0 = 1.61×10−19 kg/m×sec
differs from the exact value (standard numerical value ob-
tained in the experiments) for doles of the percent.

The charge of the “point-like” electron in the region X, we
will denote as ex, is substituted into the formulae of Coulomb
and Ampere: under ε0 and µ0 assumed in the model, it consist
a very small part of e0, which is

ex = me c =
e0

c1/3
p S

=
e0

590
. (12)

The main standard quantum number can be expressed
through the mass M of the contour and its density per one
meter (the electric constant ε0)

ns =

√
me c2/3

p

ε0 Rb
=

c1/3
p

α
= 4.884; (13)

the contour’s size is Rs = n2
s Rb = 1.26×10−9 m.

The number of the ordered structural units z of the con-
tour (we will refer to them as photons, for brevity) is deter-
mined, for an arbitrary quantum number, by the ratio between
the full length of the contour and the length of the wave λ

z =
n2 Rb

(
re
r

)

λ
, (14)

where

λ =
W
R∞

, (15)

Rydberg’s constant is expressed as

R∞ =
1

4πα3re
, (16)
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while Balmer’s formula is

W =
m2n2

m2 − n2 , (17)

where n,m = 1, 2, . . . Here the ratio of the radii re
r takes into

account the increase of the length of the “stretched” contour
in the case where the spiral structures of the second and third
orders are created. Because ε0 = const and µ0 = const, in the
case of arbitrary r and v the formulae (1) and (2) lead to

re

r
=

(c
v

)2
. (18)

We obtain the velocity v and radius r of the vortical tube
of the contour, in the general case, from the condition of con-
stancy of the momentum which is true for any contour having
an arbitrary quantum number n. We obtain

M v = me c4/3
p v = n2Rb ε0 v , (19)

wherefrom, substituting the extended formulae of Rb and ε0,
and taking (18) into account, we obtain

v =
c1/3

p c

(αn)2 , (20)

r =
c2/3

p re

(αn)4 . (21)

As a result, with (15) and (16) taken into account, and
having the velocity v replaced with its projection vS i, we ob-
tain the number of the photons in the arbitrary contour

z =
n6α3

4πW c2/3
p S 2i

. (22)

In particular, consider the standard contour (denote it by
the index s). In the unitary transfer in it from ns to ns + 1,
we obtain: Ws = 76.7, λs = 7.0×10−6 m, vs = 4.48×105 m/sec,
rs = 6.3×10−21 m, while the number of the photos zs being cal-
culated under i = 2 is close to α= 137.

Thus, given a “standard” photon, the following relation

Rs

re
=

re

rs
= c2/3

p = 448000 (23)

is reproduced (that is specific to an atom).
The Boltzmann, Wien, and Stefan-Boltzmann constants,

k, b, and σ, can be determined connecting the energy of the
section of the contour in the region X taken per one photon,
Ez, i.e. the energy of the structural unit, with the energy of the
heat motion Et (the average energy of the radiating oscillator)
in the case of a specific particular conditions.

We express Ez and Et as follows

Ez =
ex vS

z
, (24)

Et = k T . (25)

The numerical value of Ez decreases with the increase of
the quantum number so that, with a numerical value of n, it
becomes equal Et taken with the wavelength λ of the photon
emitted by a black body whose temperature is that of the scale
unit

Ez = Et under T = 1◦ [K] . (26)

With decreasing n, the numerical value of Ez increases
faster than Et. Assume that, with taking (23) into account,
the following ratio

(Ez)s = zEt under T = Ts (27)

is true for the standard contour.
Using (12), (20), and (22), we modify (24) then re-write

(26) and (27) for n and ns assuming that the most large con-
tour has been contracted into a tertiary structure

AW
n8 = k T , i = 3, T = 1◦ [K] , (28)

AsWs

n8
s

= k Ts z , i = 2. (29)

where A = 4πS 2in5
s e0 v. Taking into account that A

As
= S 2 and

also

1◦ [K] =
bR∞
W

, (30)

Ts =
bR∞
Ws

(31)

where Wien’s constant is

b = Tλ , (32)

we obtain, from the common solution of (28) and (29),

n4

W
=

S z1/2n4
s

Ws
. (33)

Assume z = zs = 137. Taking (17) into account, we cal-
culate, for the transfer from n to n+ 1: n = 39.7, W = 32470,
λ= 0.0030 m, Wien’s constant b = 0.0030 m×K. From (28),
we obtain Boltzmann’s constant k = 1.38×10−23 J/K. Accord-
ing (22), we obtain the number of the photons of the contour:
z = 117840 under i = 3.

The number of the photons z of the given contour is very
close to the numerical value of 2πα2. This result does not
follow from the initially assumptions, thus is absolutely inde-
pendent. So, the presence of the secondary and tertiary struc-
tures has been confirmed. That is, there are three specific con-
tours: the contour of the 1st order (the Bohr 1st radius, n = 1;
the contour of the 2nd order (the standard contour, n = 4.884,
containing α structural units, the photons); and the contour of
the 3rd order (n≈ 40, containing 2πα2 photons).
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Fig. 1: Dependency of Wien’s constant b on the reciprocal value
of the fine structure constant α.

Fig. 2: Results of the numerical differentiation of the function
b (α) in the region of the second singular point (inflection of the
b (α) arc). The ordinate axis means the speed of the change of the
parameter b.

Boltzmann’s constant can be expressed also through the
parameters of the standard contour

k =
ns e0 v
αTs

= 1.38×10−23 [J/K] , (34)

where Ts = b
λs

= 414.7◦K.
Formula (34) can be transformed so that

k T
ns

= me

(
c2/3

p v
)2 S
α
, (35)

i.e. given the standard contour, the energy of the radiating
oscillator per the contour’s quantum number is equal to the
energy of the internal rotation of the “point-like” electron
taken per the number of the structural units of the contour.

It is interesting to compare the Planck entropy of the pho-
ton, S h, to the entropy of the part of the contour related to the
single photon, S z, within the region X. The Planck entropy
remains constant

S h =
Eh

T
=

hc
λT

=
hc
b

= 6.855×10−23 [J/K] , (36)

while S z decreases rapidly with the increase of the leading
quantum number

S z =
Ez

T
=

AW
n8 T

=
AW2

n8 bR∞
. (37)

Equalizing S h to S z, and expanding the formulae for h,
R∞, and A for the case of the ionization of the atom (that
means the transfer from n to m→∞ under W→∞), we ob-
tain, under i = 1 . . . 3,

n∞ =
4
√

8πn3
s S 2i+1 = 6.7 . . . 5.9 . (38)

Because the common direction of the physical processes
to the increase of entropy, thermodynamics prefers, with

n> 6.7, that the structural units of the contour exist separately
from each other, i.e. are the photons. It is probably, this re-
sult verifies the identity of the contour’s structural units to
the photons, and also manifests one of the causes of that the
stable atoms have no more electronic shells than 6 or 7.

The Stefan-Boltzmann constant can be expressed as the
projection of the unit energy of the heat motion per one pho-
ton and the unit square of the standard contour, i.e. as
k∆TS/(αn4

s R2
b), where ∆T =1◦K, and reduced to the unit of

time and the unit of temperature (in the respective exponent).
As a result, we obtain σ= 5.56×10−8 [W/m2K4].

The obtained formulae (34), (35), and (39) are actually
definitions. They completely confirm the existence of the spe-
cial standard contour.

Despite the fine structure constant was used in the cal-
culation (the constant itself is meant to be derived from e0
and h), the calculation was processed in independent way.
Besides, assuming that α and all other quantities dependent
on it (re, S , e0, ns, z, k, b) are variables, we can determine the
numerical value of α according to the location of the second
singular point (inflection of the b(α) arc in Fig. 1), where the
change of b is proportional to the quantum number. Numer-
ical differentiation, Fig. 2, manifest the numerical value of α
within the boundaries 137–140 and, hence, it manifests the
numerical values of all other parameters (for instance, k and
z in Fig. 3 and Fig. 4 respectively). That is, finally, in order
to calculate all the parameters we only need: the mass of the
electron, the velocity of light, the units of velocity and tem-
perature, and the assumption that Ez is proportional to Et in
the standard contour.

It is interesting that more precise numerical value of α ar-
rives under the condition that m and n approach to infinity in
the function b(α) and Balmer’s formula (17). Thus Balmer’s
formula becomes W = n3

2 under infinite large distance between
the charges, that meets the determination of the textbook nu-
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Fig. 3: Dependency of Boltzmann’s constant k on the reciprocal
value of the fine structure constant α.

Fig. 4: Dependency of the number of the photons z of the standard
contour on the reciprocal value of the fine structure constant α.

merical value of α. In the same time, we can obtain the exact
numerical value of the charge from formula (1), by substitut-
ing α determined from the function b(α), Fig. 2.

Note that the validity of the suggested model is confirmed
by that significant fact that the quantity kT , which is the unit
of the work done by the structural unit of an ideal gas (this
quantity is also interpreted, in the theory of heat radiation, as
the energy of an elementary oscillator), is connected here with
the charge of the electron. A connexion between Planck’s
constant and the quantity kT was found, as is known, in al-
ready a century ago by Max Planck, through the formula of
the blackbody radiation. This formula is proportional to

1
λ

1
λ

1
λ
(
eC/λ − 1

) ,

where C is a constant. Taking all that has been obtained in our
study, we understand follows. The first term here manifests
the decrease of the intensity of the radiation with the increase
of the wavelength of the photon. The second term manifests
the decrease of the number of the photons per the unit of the
full length of the contour. The third term manifests the change
of the length of the contour itself, which reaches a contant
with the increase of λ thus the Planck formula transforms into
the Rayleigh-Jeans formula. With small numerical values of
λ, the contour compresses upto the size of the photon. This
gives an explanation to the decrease of the radiation power on
high frequencies.

In the end, it should be noted that the properties of the
charge are, of course, not limited by Wheeler’s model in its
mechanistic interpretation suggested here. Meanwhile, the
unexpected relation between the charge of the electron and
the molecular kinetic properties of the atoms and molecules
manifests additional connexions between the elementary par-
ticles and macro-particles, thus this fact needs to be more
studied in the future.

Submitted on July 24, 2010 / Accepted on August 17, 2010
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LETTERS TO PROGRESS IN PHYSICS

Scientific Community of Valentin N. Samoilov
(On the Occasion of His 65th Birthday Anniversary)

Dmitri Rabounski
E-mail: rabounski@ptep-online.com

In this letter we celebrate the 65th birthday anniversary of Prof. Valentin N. Samoilov,
a man of the Soviet scientific ancestry in the nuclear and space research, who is a pupil
and follower of the famous Soviet engineer Sergey P. Korolev and the prominent Soviet
nuclear physicist Michael G. Mescheryakov.

Prof. Valentin N. Samoilov. The back wall of his cabinet is cur-
tained with photo portrait of Michael G. Mescheryakov.

On behalf of the Editorial Board of Progress in Physics, in
April 25, 2010, I am pleased to celebrate the 65th birthday an-
niversary of Professor Valentin Nikolaevich Samoilov, ScD,
Director of Scientific Centre of Applied Research, Joint Insti-
tute for Nuclear Research (JINR), Dubna, Russia. His more
than 45 years of the successful work on science rose from that
fact that he started his scientific activity being of a pupil of
two famous persons of the Soviet scientific ancestry: Sergey
P. Korolev, the engineer and rocket designer who headed the
pioneering cosmic flights in the USSR, and Prof. Michail G.
Mescheryakov, the nuclear physicist an close co-labour of

Igor V. Kurchatov in the construction and launch of the first
cyclotronic accelerator of particles in Leningrad, 1938–1940.
According to the testament of his teachers, Prof. Samolilov
spends his life in scentific research. He is still full of energy
and creative scentific ideas until the present day.

In the row of Prof. Samoilov’s scientific achievements,
which are many, I would like to emphasize four fundamental
discoveries in physics of solids and particles he did in com-
mon with Dr. Vahan N. Minasyan (reportas about these were
published recently in Progress in Physics [4–7]). In these pa-
pers, they presented a new and very original approach to in-
vestigation of the excitation processes of electromagnetic sur-
face shape resonances in lamellar metallic gratings by light,
from the visible to near-infrared scale, based on the surface
plasmon–polaritons, where they first argued that the smooth
metal-air interface should be regarded as a distinct dielec-
tric medium, the skin of the metal. They predicted the ex-
istence of light quasi-particles bearing spin equal to 1, and
a finite effective mass m = 2.5×10−5 me (where me is the
mass of the electron); these light quasi-particles should excite
two type surface polaritons in the nanoholes in metal films.
They also found, theoretically, that a transverse electromag-
netic field should exist being formed by supersonic longitu-
dinal and transverse waves in solids which acquire the fre-
quency and the speed of sound. According to their theory, the
transverse electromagnetic field should propagate along the
direction the forming supersonic wave travels. In this con-
text, another very interesting result obained in the paper [6]
should also be noted: there they first proved that the property
of the lambda-point of superliquid helium is determined by
registering the single neutron modes or neutron pair modes in
the neutron-spectrometer.

In addition to his scientific research, Prof. Valentin N.
Samoilov is known as a successful organizer of science, and
also as a designer of the space flight complexes and their
segregate components. He was granted by the honorary title
Merit Creator of Cosmical Techniques (2006) and by the in-
ternational order Tsciolkovski Star (2002). He also was con-
ferred with the order Beneficence, Honor and Glory (2006),
Tsiolkovski Medal (2004), and Korolev Medal (2005). Due to
his activity in astro-biology research, in 2005 he was elected
to the International Academy of Information, Communica-
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tion, Control, in Engineering, Nature, and Society (Pasadena,
California, USA). Aside for these, during the last 15 years
Prof. Samoilov governs numerous common scientific projects
on the nuclear safety between JINR and DOE, which include
close communications with the US National Laboratories
such as BNL, SNL and PNNL. Also, during the last 20 years
he governs communications between JINR and European Sci-
entific Nuclear Research Centre in Geneva (CERN), in the
framework of the scientific projects LHC, CMS, ATLAS,
COMPASS, and CLIC. By governing of him, a joint scien-
tific community is working amongst JINR, Institute of Par-
ticle and Nuclear Studies, and High Energy Accelerator Re-
search Organization (Japan). Due to his international activ-
ity, connecting research scientists throughout the world, Prof.
Samoilov was conferred with Order of People Friendship
which was decorated upon him in 2006 by Vladimir V. Putin,
President of Russia.

Prof. Valentin N. Samoilov authored two scientific mono-
graphs, Technology Modeling of the Complicated Processes
[1] and Theoretical Informational Analysis of the Compli-
cated Systems [2], and co-authored seven other scientific
books. During his long term and successful scientific carrier,
he also authored about 300 scientific publications, 20 regis-
tered inventions certified by patents, and 30 software applica-
tion [3]. For several of these achievements, he was confered
wth A. S. Popov Silver Medal (2006).

The decades of distinguished leadership and mutual co-
operation in the field of nuclear material protection control
and accountability between Russia and the USA are greatly
recognized as his contribution to the global security. In the
present time, Prof. Valentin N. Samoilov is still engaged for
the nuclear and cosmic safety as an experienced veteran of
the atomic industry.

I would like to wish Prof. Samoilov for long life and suc-
cess in the future.

Submitted on April 29, 2010 / Accepted on April 30, 2010
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LETTERS TO PROGRESS IN PHYSICS

Nikias Stavroulakis (1921–2009). In Memoriam

Ioannis M. Roussos
Dept. of Mathematics, Hamline University, 1536 Hewitt Avenue, Saint Paul, Minnesota 55104-1284, USA

E-mail: iroussos@gw.hamline.edu

This paper was written by Dr. Ioannis M. Roussos, Professor of Mathematics, Ham-
line University at Saint Paul, Minnesota, in honor and memoriam of the late Dr. Nikias
Stavroulakis, Professor of Mathematical Physics. The included information is partic-
ularly based on the publications of the late professor, and was particularly collected
through the various types of communication (personal visits with lengthy and exten-
sive discussions, professional meetings, letters, telephone-calls, words of relatives and
friends, etc.) Dr. Roussos had with and about him in the last 14 years. Dr. Roussos
first met Dr. Stavroulakis in the 3rd Panhellenic Congress of Geometry, University of
Athens, Greece, May 1996, and they became friends ever since.

Prof. Nikias Stavroulakis, Limoges, France, 1980.

Nikias Stavroulakis was born at the village Thronos Rethym-
nes of the Island of Crete, Greece, on October 2, 1921. In
1938 he finished high school (Lyceum) and then entered the
National Technical University (E. M. Polytechnion), Athens,
Greece, where he studied Civil Engineering.

Although World War II interrupted the smooth course of
his studies, destroyed his country, and he escaped execution
by the Nazis on account of their defeat and hasty retreat for
a time-span of just a few days, he managed to continue his
studies after the war was over, in 1945. He graduated from the
National Technical University (E. M. Polytechnion), Athens,
Greece, in 1947.

During the years 1949–1963 he worked as a civil engi-
neer in Greece. His work, as civil engineer, was done under
extremely trying and bad conditions, civil war, imprisonment,
great difficulties and political turmoil, struggle and pressure.

The year 1963, he was released from a Greek prison in
which he was kept because of ideological believes and po-

litical reasons, and went to Paris, France, to pursue gradu-
ate studies in mathematics. He eventually received Doctorat
d’Etat from Faculté des Sciences of Paris in 1969. His advi-
sor was the famous professor Charles Ehresmann. His disser-
tation was entitled Substructure of Differentiable Manifolds
and Riemannian Spaces with Singularities.

Then, he was immediately hired as a professor of math-
ematics by the University of Limoges, France, from which
he retired the year 1990. On his retirement he returned to
Athens, Greece, where he mainly stayed and continued his
research until the end of his life.

He is the author of numerous papers related to the sub-
jects of: Geometry, algebraic topology, differential geometry,
optimization problems, mathematical physics and general rel-
ativity. His scientific work and contributions were recognized
internationally from the beginning.

Although he had retired for several years, he continued
his scientific and mathematical research up to the end of his
life in December 2009 at the ages of 88. His main purpose
was to restore the theory of gravitational field by pointing
out the misunderstandings and correcting the mathematical
errors committed by relativists since the inception of general
relativity and thus rejecting them right from the beginning of
his carrier.

Unfortunately he died on the 20th of December 2009, due
a chronic aneurism in the abdominal area. At that time he was
working on several papers, but his untimely death left them
unfinished. As he had told me, among other things, he was
planning to write a few things about the use of the polar coor-
dinates beyond those he had already exposed in his already
published papers, write some expository papers and above
all to finish especially the important paper On the Filed of
a Spherical Charged Pulsating Distribution of Matter, which
will appear (as he left it unfinished), as his sixth publication
in the journal Progress in Physics. He will be greatly missed
from his friends and scientific collaborators.

Ioannis M. Roussos. Nikias Stavroulakis (1921–2009). In Memoriam L3



Volume 4 PROGRESS IN PHYSICS October, 2010

Nikias Stavroulakis at the age of 4
years, outside his house at the village
Thronos, Crete, Greece, 1925.

Nikias Stavroulakis (center, 6th from the left in the middle row), with his classmates and
teachers of the last grade of Lyceum of Rethymno, Crete, Greece, 1938.

Nikias Stavroulakis and Salomi in their wedding, Athens, Greece, 1958. Prof. Nikias Stavroulakis on the 10th International
Conference on General Relativity and Gravitation
in Padova, Italy, July 4–9, 1983.
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He was married to Salomi, who died four years earlier,
with whom he had a daughter, Eleni.

Besides being a great, well published, voluminous and
original scientist, Nikias Stavroulakis was always the polite
man of principle and humility; seeking the truth and never
being afraid to say “we do not know yet”, when something
was unknown, elusive or simply surmised.

Dr. Nikias Stavroulakis was Professor at Université de
Limoges, Département de Mathématique, France, and Mem-
ber of Faculté des Sciences de Limoges, U. E. R. des Sciences
de Limoges and then Emeritus during his time of research
in relativity and gravitation. He made an extensive and ad-
vanced contribution in:

1) the Birkhoff theorem in General Relativity;
2) the indiscriminate use of the polar coordinates, before

knowing what the manifold in which we work is;
3) the static and dynamical field of a pulsating spherical

mass;
4) the theory of black holes and the Big Bang theory.

Nikias Stavroulakis’ publications on mathematical phys-
ics and General Relativity

1. A statical smooth extension of Schwarzschild’s metric. Lettere al
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