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A numerical analysis of elementary particle masses on the logarithmic number line
revealed systematic mass gaps of 2e, e, e

2 , e
4 , e

8 and e
16 . Also in abundance data of

the chemical elements, a repeated abundance gap of e
2 could be detected. This lead

us to modify a fractal scaling model originally published by Müller in this journal,
interpreting elementary particles as proton resonances. We express a set of 78 accurately
determined particle masses on the logarithmic scale in a continued fraction form where
all numerators are Euler’s number.

1 Introduction

Recently in three papers of this journal, Müller [1–3] has pro-
posed a chain of similar harmonic oscillators as a new model
to describe the fractal properties of nature. For a specific pro-
cess or data set, this model treats observables such as ener-
gies, frequencies, lengths and masses as resonance oscillation
modes and aims at predicting naturally preferred values for
these parameters. The starting point of the model is the fact
that hydrogen is the most abundant element in the universe
and therefore the dominant oscillation state. Consequently,
Müller calculates the spectrum of eigenfrequencies of a chain
system of many proton harmonic oscillators according to a
continued fraction equation [2]

f = fp exp S , (1)

where f is any natural oscillation frequency of the chain sys-
tem, fp the oscillation frequency of one proton and S the con-
tinued fraction corresponding to f . S was suggested to be in
the canonical form with all partial numerators equal 1 and the
partial denominators are positive or negative integer values

S = n0 +
1

n1 +
1

n2 +
1

n3 + . . .

. (2)

Particularly interesting properties arise when the nomina-
tor equals 2 and all denominators are divisible by 3. Such
fractions divide the logarithmic scale in allowed values and
empty gaps, i.e. ranges of numbers which cannot be ex-
pressed with this type of continued fractions. He showed that
these continuous fractions generate a self-similar and discrete
spectrum of eigenvalues [1], that is also logarithmically in-
variant. Maximum spectral density areas arise when the free
link n0 and the partial denominators ni are divisible by 3.

This model was applied to the mass distribution of ce-
lestial bodies in our solar system [2] as well as to the mass
distribution of elementary particles such as baryons, mesons,

leptons and gauge bosons [3]. The masses were found to be
located at or close to spectral nodes and definitively not ran-
dom.

In this article we investigated the properties of masses
in the micro-cosmos on the logarithmic scale by a graphi-
cal analysis with particular interest in detection of periodic
trends. We analyzed abundance data of the chemical ele-
ments, atomic masses and the masses of elementary particles.
Then we applied a slightly modified version of Müller’s frac-
tal model and demonstrate that there is a hidden structure in
the masses of elementary particles.

2 Data sources and computational details

Solar system abundance data of chemical elements (with un-
certainties of around 10%) were taken from reference [4].
High accuracy nuclide masses are given in an evaluation by
Audi [5]. Relative isotope abundances for a selected chemi-
cal element can be found in the CRC Handbook of Chemistry
and Physics [6]. Accurate masses of elementary particles are
given in Müller’s article [3] and were used for the calcula-
tion of continued fractions. In order to avoid machine based
rounding errors, numerical values of continued fractions were
always calculated using the the Lenz algorithm as indicated
in reference [7].

3 Results

Figure 1 shows the relative abundance of the chemical ele-
ments in a less usual form. In textbooks or articles these data
are normally presented as log10(abundance) versus atomic
number on a linear scale. Here we adopted Müller’s formal-
ism and present the abundance data as a function of the nat-
ural logarithm of the atomic masses (here mean values from
a periodic table were used) which were previously divided
by the lowest atomic weight available (hydrogen). As can be
seen, there is a general trend of decreasing abundance with
increasing atomic mass, but the plot has a few remarkable
extremities.
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Fig. 1: Solar system abundance data of the chemical elements on a
logarithmic scale. H and He omitted for clarity.

Nuclide ln m (nuclide)
m (H) multiples of e

2

1
1H 0.0 0.0 × e

2

4
2He 1.379 1.015 × e

2

16
8 O 2.764 2.034 × e

2

56
26Fe 4.016 2.955 × e

2

208
82 Pb 5.330 3.921 × e

2

Table 1: ln m(nuclide)
m(H) of element abundance maxima expressed in mul-

tiples of e
2 .

Elements marking very clear maxima or minima are la-
beled with symbols. The most relevant maxima in graph are
elements O, Fe and Pb. Of course, H and He, the most abun-
dant elements in the universe (not shown in Fig. 1) must also
be interpreted as maxima in the figure. From Figure 2 it be-
comes directly clear that these abundance maxima occur in
almost equal distances on the logarithmic number line. The
simple calculation ln m(4

2He)
m(1

1H) −ln m(1
1H)

m(1
1H) = 1.37 reveals that these

distance seems to be e
2 , where e is Euler’s number. When

drawing a sine function with period e, f (x) = sin( 2πx
e ) on the

logarithmic number line, the abundance maxima are closely
located to the zeros of this function.

Table 1 summarizes the numerical deviations from multi-
ples of e

2 . The calculations were performed for the naturally
most abundant isotope of the considered element.

Figure 2 has some analogy to Kundt’s famous experiment
with standing sound waves in a tube. It seems as a standing
wave on the logarithmic number line supporting an accumula-
tion of naturally preferred mass particles in the nodes, which
are multiples of e

2 . On the other hand these preferred masses
are not exactly located in the notes, more evidently the less
abundant chemical elements (Li, Be, B, F) are more distant

Fig. 2: Abundance maxima and minima of chemical elements on the
logarithmic number line.

Fig. 3: Stable isotopes on the logarithmic scale in the range 0 to e.

from the bulges than H, He, O, Fe and U from the nodes. Pm
and Tc are even completely absent in the abundance data due
to their radioactivity.

Within the first period of the sine function in Fig. 2, very
few stable isotopes are found. So it is possible to analyze the
location of their isotope masses in relation to nodes of the pre-
viously constructed sine function including higher harmonics.
Figure 3 displays the logarithmic axis from zero to e with a
sine function of period e and two corresponding (2nd and 4th)
higher harmonics defined through repeated frequency dou-
bling. The location (= ln mnuclide

mproton
) of all existing stable isotopes

in that range is indicated. From this, similar wave stabiliza-
tions regarding these light isotopes can be obtained:

1. Deuterium is a stable, but hardly abundant hydrogen
isotope. It seems to be stabilized by the second har-
monics with period e

2 due to location in the node (tri-
tium does not fit in a node of this wave). Possibly hy-
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drogen isotopes are principally governed by the basic
wave with period e and the influence of higher harmon-
ics is greatly reduced, which explains the low abun-
dance.

2. Why is the isotope 4He (99.999%) much more abun-
dant than 3He (0.0001%)? Assuming that He is prin-
cipally governed as H by the wave with period e, the
isotope 4He is closer to the node than 3He. In this case
the higher stability of 4He can also explained with the
magic numbers for both, protons and neutrons.

3. Lithium is composed of 92.5% 7Li and 7.5% 6Li. The
isotope 7Li is more abundant and clearly closer to a
node of the second harmonic (it has also a little higher
bonding energy per nucleon than 6Li ).

4. The isotope 11B is exactly located in the node of the
third harmonic with period e

4 . It is much more abundant
(80.1%) than 10B (19.9%).

5. The isotope 12C is closer to the node of the fourth har-
monics than 13C. This is in agreement with the abun-
dances of 98.0% for 12C and 1.1% for 13C.

6. Nitrogen is composed of 99.63% 14N and 0.36% 15N.
The isotope 15N is almost in the node of the basic wave
and all higher harmonics. Here the model fails to pre-
dict the correct abundance order, but the isotope 15N
has the higher stability, which can be readily confirmed
by the magic number of 8 neutrons in this nuclide. For
a certain reason, the nuclide stability does not go along
with the corresponding abundance. For an explanation
of this fact must be considered that elements heavier
than He cannot be built up in our sun or similar present-
day (second generation) stars [8]. This is due to the fact
that for all nuclei lighter than carbon, a nuclear reaction
with a proton leads to the emission of an alpha particle
disintegrating the original nucleus. So the heavier el-
ements in stars must already have existed prior to the
second generation star formation. Bethe [8] investi-
gated possible nuclear reactions of both nitrogen iso-
topes and found that 15N can give a p − α reaction

15N + 1H→ 4He + 12C

while 14N can only capture a proton
14N + 1H→ 15O + γ.

According to Bethe, such a p − α reaction is always
more probable than a radiative capture. So we theo-
rize that without existence of the above mentioned nu-
clear reaction, the abundance data would show an ex-
cess of 15N.

A nuclear reaction also explains why lead is the element
with the highest deviation from such a node (Fig. 2). We
believe that Pb does actually not present its true abundance
value as existed through stellar element formation, its abun-
dance is increased since it is the end product of the 3 most

Fig. 4: Accumulation of particle masses on the logarithmic scale.

important decay chains (thorium series, uranium series, ac-
tinium series). There are no stable isotopes between Pb and
238U, which has a long half-life. The element uranium lies
much more close to a node than Pb, and also because of its
long half-life, we believe that this nuclide could be a former
abundance maximum.

In order to find similar regularities for elementary parti-
cles we selected according to some physics textbooks a set of
commonly discussed particles. Their importance was mainly
justified by the relatively long lifetimes (> 10−19 s). We be-
lieve that nature’s preferred masses are the more stable parti-
cles and particularly for these masses some regularities could
be expected. Table 2 presents the considered set of particles,
their rest masses and positions on the logarithmic scale. It
was found that the particles produce an interesting set of mass
distances on the logarithmic number line: 2e, e, e

2 , e
4 , e

8 and
e

16 . These mass gaps are listed in Table 3. There is, however,
no standing wave analogy on the logarithmic scale that can
be applied to all particles, consequently here, another model
must be applied, which lead us to modify Müller’s contin-
ued fraction term in an empirical way. However, the standing
wave analogy is not completely absent. Müller [3] has shown
that the majority of baryon and meson masses is in the range
of 1300–8600 MeV/c2. When scaling according to ln mparticle

melectron
,

this range translates to 8–8.5 on the logarithmic scale and it
becomes clear that this range and as well as the masses of the
electron, muon, pion and gauge bosons are in proximity of the
zeros of the above considered sine function (see Figure 4).

Considering the framework of Müller’s fractal scaling
model, we interpret these numerical regularities as follows:
Masses in nature are in relation to proton resonance states.
Nature can realize various masses, only when they are close
to proton resonance states, they are preferred masses. For
stable particles such as nuclides, the term “preferred mass”
translates to more abundance. For unstable particles, “pre-
ferred mass” translates to more realization probability. Un-
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Particle Rest mass m
[MeV/c2]

ln m (particle)
m (proton)

Leptons:
Electron 0.511 −7.515
µ 105.658 −2.183
τ 1776.84 0.638

Mesons:
π± 139.57 −1.905
π0 134.9766 −1.939
K± 493.677 −0.642
K0

S ,K
0
L 497.614 −0.634

η 547.853 −0.538
ρ± 770 −0.198
ρ0 775.5 −0.191
ω 782.6 −0.181
η0 957.8 0.021
K∗± 891.7 −0.051
K∗0 896.0 −0.046
φ 1019.5 0.083
D±,D0 1869.6 0.689
D±s 1968.5 0.741
J/Ψ 3096.9 1.194
B±, B0 5279.2 1.727
Y 9460.3 2.311

Baryons:
p 938.272 0
n 939.56 0.001
Λ0 1115.6 0.173
Σ+ 1189.4 0.237
Σ0 1192.5 0.240
Σ− 1197.3 0.244
∆±,∆++,∆0 1232 0.272
Ξ0 1314.9 0.337
Ξ− 1321.3 0.342
Ω 1672 0.578
Λ+

C 2281 0.888
Λ0

b 5624 1.791
Ξ−b 5774 1.817
Ξ−∗,Ξ0∗ 15300 2.792

Table 2: Selected particles with rest masses and values on the loga-
rithmic number line.

Particle Rest mass difference Numerical
mass step on logarithmic scale result

Mass gap 2e (= 5.436):

Electron→ µ | − 7.515 − −2.183| 5.332

Mass gap e (= 2.718):

p→ Ξ−∗,Ξ0∗ |0 − 2.792| 2.792

Mass gap e
2 (= 1.359):

π0 → K± | − 1.939 − −0.642| 1.297
Ξ0 → B±, B0 |0.337 − 1.727| 1.390
Λ+

C → Y |0.888 − 2.311| 1.423

Mass gap e
4 (= 0.68):

K0
S ,K

0
L → p | − 0.634 − 0| 0.634

Λ0 → Λ+
C |0.173 − 0.888| 0.715

p→ D±,D0 |0 − 0.689| 0.689
p→ D±s |0 − 0.741| 0.741
p→ τ |0 − 0.638| 0.638

Mass gap e
8 (= 0.34):

η→ ρ± | − 0.538 − −0.198| 0.340
p→ Ξ0 |0 − 0.337| 0.337
p→ Ξ− |0 − 0.342| 0.342
η→ ρ0 | − 0.538 − −0.191| 0.347
η→ ρ± | − 0.538 − −0.198| 0.340
Σ+ → Ω |0.237 − 0.578| 0.341
Σ0 → Ω |0.240 − 0.578| 0.338
Σ− → Ω |0.244 − 0.578| 0.334
Λ+

C → J/Ψ |0.888 − 1.194| 0.306
Ω→ Λ+

C |0.578 − 0.888| 0.310

Mass gap e
16 (= 0.17):

ω→ p | − 0.181 − 0| 0.181
ρ± → p | − 0.198 − 0| 0.198
ρ0 → p | − 0.191 − 0| 0.191
p→ Λ0 |0 − 0.173| 0.173
Λ0 → Ξ0 |0.173 − 0.337| 0.164
Λ0 → Ξ− |0.173 − 0.342| 0.169
Ω→ D±s |0.578 − 0.741| 0.163
D±s → Λ+

C |0.741 − 0.888| 0.147
D±,D0 → Λ+

C |0.689 − 0.888| 0.199

Table 3: Mass gaps between elementary particles on the logarithmic
scale.
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Particle Particle mass with standard deviation.
Continued fraction representation

N-baryons (S=0, I=1/2):

p 938.27203 ±0.00008
[0; 0]

n 939.565346 ±0.000023
[0; 0 | 1973]

Λ-baryons (S=−1, I=0):

Λ 1115.683 ±0.006
[0; 0 | 15, e+1, 15, −6]

Λ(1520) 1519.5 ±1.0
[0; 0 | 6, −9, e+1, −e−1, ***]

Σ-baryons (S=−1, I=1):

Σ+ 1189.37 ±0.07
[0; 0 | 12, −6, e+1, −e−1, 6]

Σ0 1192.642 ±0.024
[0; 0 | 12, −e−1, −9, e+1, −e−1, ***]

Σ− 1197.449 ±0.03
[0; 0 | 12, −e−1, 6, −e−1, e+1, −e−1]

Σ(1385)+ 1382.8 ±0.4
[0; 0 | 6, e+1, −e−1, ***]

Σ(1385)0 1383.7 ±1.0
[0; 0 | 6, e+1, −e−1, e+1, −e−1]

Σ(1385)− 1387.2 ±0.5
[0; 0 | 6, e+1, −e−1, e+1, e+1]

Ξ-baryons (S=−2, I=1/2):

Ξ0 1314.86 ±0.2
[0; 0 | 9, −e−1, e+1, −6]

Ξ− 1321.71 ±0.07
[0; 0 | 9, −e−1, e+1, ***]

Ξ(1530)0 1531.8 ±0.32
[0; 0 | 6, −6]

Ξ(1530)− 1535.0 ±0.6
[0; 0 | 6, −6, 9]

Ω-baryons (S=−3, I=0):

Ω− 1672.45 ±0.29
[0; 0 | e+1, e+1, −e−1, e+1, −e−1, −e−1]
[1.5; 0 | −e−1, e+1, −15, 6]

charmed baryons (C = +1):

Λ+
C 2286.46 ±0.14

[1.5; 0 | −e−1, −e−1, 45, −15]

ΛC(2595)+ 2595.4 ±0.6
[1.5; 0 | −6, 6, e+1, −e−1, ***]

ΛC(2625)+ 2628.1 ±0.6
[1.5; 0 | −6, 12, 6]

ΛC(2880)+ 2881.53 ±0.35
[1.5; 0 | −6, −e−1, e+1, ***]

Table 4: Continued fraction representation of particle masses ac-
cording to equation (4).

Particle Particle mass with standard deviation.
Continued fraction representation

charmed baryons (C = +1):

ΣC(2455)++ 2454.02 ±0.18
[1.5; 0 | −6, e+1, −e−1, e+1, e+1, −e−1, e+1]

ΣC(2455)+ 2452.9 ±0.4
[1.5; 0 | −6, e+1, −e−1, e+1, e+1]

ΣC(2455)0 2453.76 ±0.18
[1.5; 0 | −6, e+1, −e−1, e+1, e+1, −e−1]

Ξ+
c 2467.8 ±0.6

[0; 0 | e+1, −e−1, e+1, 60]
[1.5; 0 | −6, e+1, −e−1, −15]

Ξ0
c 2470.88 ±0.8

[0; 0 | e+1, −e−1, e+1, −162]
[1.5; 0 | −6, e+1, −e−1, −6]

Ξc(2645)+ 2645.9 ±0.6
[1.5; 0 | −6, 21, −6]

Ξc(2645)0 2645.9 ±0.5
[1.5; 0 | −6, 21, −6]

Ξc(2815)+ 2816.6 ±0.9
[1.5; 0 | −6, −e−1, 12]

Ξc(3080)+ 3077.0 ±0.4
[1.5; 0 | −9, 9, 18]

light unflavored mesons (S = C = B = 0):

π± 139.57018 ±0.00035
[1.5; −3 | −6, −e−1, 18, −e−1, e+1, −e−1, e+1]

π0 134.9766 ±0.0006
[1.5; −3 | −6, −15, e+1, −e−1, −33]

η 547.853 ±0.024
[0; 0 | −6, e+1, −e−1, 6, −e−1, 12]
[1.5; −3 | e+1, −e−1, e+1, 9, −e−1, −e−1]

ρ (770) 775.49 ±0.34
[0; 0 | −15, −e−1]

ω (782) 782.65 ±0.12
[0; 0 | −15]

ρ′(958) 957.78 ±0.06
[0; 0 | 132]

φ (1020) 1019.455 ±0.02
[0; 0 | 33, −12, e+1]

f1(1285) 1281.8 ±0.6
[0; 0 | 9, −9, −6]

a2(1320) 1318.3 ±0.6
[0; 0 | 9, −e−1, e+1, −e−1, e+1, −e−1]

f1(1420) 1426.4 ±0.9
[0; 0 | 6, 6, −6]

strange mesons (S =±1, C = B = 0):

K± 493.667 ±0.016
[0; 0 | −e−1, −6, e+1, 39]

K0 497.614 ±0.024
[1.5; −3 | e+1, −e−1, −e−1, e+1, −e−1]
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Particle Particle mass with standard deviation.
Continued fraction representation

strange mesons (S =±1, C = B = 0):

K∗(892)± 891.66 ±0.26
[0; 0 | −54, e+1]

K∗(892)0 896.00 ±0.25
[0; 0 | −60, e+1]

charmed mesons (S =±1):

D± 1869.62 ±0.2
[0; 0 | e+1, 12, 24]

D0 1864.84 ±0.17
[0; 0 | e+1, 12, −e−1, −e−1]

D∗(2007)0 2006.97 ±0.19
[0; 0 | e+1, −18, −e−1, e+1, −e−1]
[1.5; 0 | −e−1, 63]

D∗(2010)± 2010.27 ±0.17
[0; 0 | e+1, −18, −216]
[1.5; 0 | −e−1, 78]

charmed, strange mesons (C = S =±1):

D±s 1968.49 ±0.34
[0; 0 | e+1, −54]

D∗±s 2112.3 ±0.5
[1.5; 0 | −e−1, −12, 15]

D∗S 0(2317)± 2317.8 ±0.6
[0; 0 | e+1, −e−1, −27]
[1.5; 0 | −e−1, −e−1, 6, −e−1, −e−1]

DS 1(2460)± 2459.6 ±0.6
[0; 0 | e+1, −e−1, e+1, 12]
[1.5; 0 | −6, e+1, −e−1, 9]

DS 1(2536)± 2535.35 ±0.34
[0; 0 | e+1, −e−1, e+1, −e−1, e+1, e+1]
[1.5; 0 | −6, e+1, e+1, e+1]

DS 2(2573)± 2572.6 ±0.9
[1.5; 0 | −6, 6, −15]

bottom mesons (B =±1):

B± 5279.17 ±0.29
[1.5; 0 | 12, −54]

B0 5279.5 ±0.3
[1.5; 0 | 12, −51]

B∗ 5325.1 ±0.5
[1.5; 0 | 12, −6, 6]

bottom, strange mesons (S = B =±1):

B0
S 5366.3 ±0.6

[1.5; 0 | 12, −e−1, 6, −e−1]

cc-mesons (S = B =±1):

J/Ψ(1S) 3096.916 ±0.011
[1.5; 0 | −9, 24]

Xc0(1P) 3414.75 ±0.31
[1.5; 0 | 12, −e−1, e+1, ***]

Xc1(1P) 3510.66 ±0.07
[1.5; 0 | −15, −45]

hc(1P) 3525.67 ±0.32
[1.5; 0 | −15, −6, −6]

Particle Particle mass with standard deviation.
Continued fraction representation

cc-mesons (S = B =±1):

Xc2(1P) 3556.20 ±0.09
[1.5; 0 | −15, −e−1, e+1, ***]

Ψ(2S) 3686.09 ±0.04
[1.5; 0 | −21, 9, −e−1, e+1, ***]

Ψ(3770) 3772.92 ±0.35
[1.5; 0 | −24, −e−1, e+1, ***]

X(3872) 3872.3 ±0.8
[1.5; 0 | −33]

Y(1S) 9460.3 ±0.26
[0; 3 | −e−1, −12, −87]

Xb0(1P) 9859.44 ±0.42
[0; 3 | −e−1, −6, 9, −15]
[1.5; 0 | e+1, −6, e+1, −6, e+1, −e−1]

Xb1(1P) 9892.78 ±0.26
[1.5; 0 | e+1, −6, e+1, −e−1, e+1, −9]

Xb2(1P) 9912.21 ±0.26
[0; 3 | −e−1, −6, e+1, 15, −e−1]

Y(2S) 10023.76 ±0.31
[0; 3 | −e−1, −e−1, −e−1, −e−1]
[1.5; 0 | e+1, −e−1, −e−1, e+1, 12, −e−1]

Xb0(2P) 10232.5 ±0.4
[0; 3 | −e−1, −e−1, 327]
[1.5; 0 | e+1, −e−1, −6, −e−1, e+1, −e−1]

Xb1(2P) 10255.46 ±0.22
[0; 3 | −e−1, −e−1, 30, 6]

Xb2(2P) 10268.65 ±0.22
[0; 3 | −e−1, −e−1, 21, −e−1]
[1.5; 0 | e+1, −e−1, −9, 6, 6]

Y(3S) 10355.2 ±0.5
[0; 3 | −e−1, −e−1, 6, e+1, 6]
[1.5; 0 | e+1, −e−1, −18, 9]

leptons:

Electron 0.510998910 ±0.000000013
[1.5; −9 | −177]

µ 105.658367 ±0.000004
[0; −3 | e+1, −6, −e−1, e+1, ***]

τ 1776.84 ±0.17
[0; 0 | e+1, 6, −e−1, e+1, −e−1, −e−1]

gauge bosons:

W 80398 ±25
[1.5; 3 | −54, −e−1, e+1]

Z 91187.6 ±2.1
[1.5; 3 | 36, −6, e+1]
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fortunately, these simple graphs do not provide information
to distinguish between stable and unstable particles. The re-
peatedly occurring mass gaps from 2e to e

16 strongly support
the idea that masses in the micro-cosmos are not random and
have a self-similar, fractal structure. However, we empha-
size that this fractal behavior is only a statistical influence
with low priority, since we know for instance that nature real-
izes with the chemical elements easily the whole logarithmic
mass range from 0 to 2e without significant mass gaps. Also
it should be noted that the logarithmic mass differences in Ta-
ble 3 are always approximately multiples of the fractions of e.
This means the fractal property provides only a signature of
regularities, becoming visible only on the logarithmic number
line.

Due to the fact that frequently mass distances occur which
are close, but not exactly a fraction of e, we decided to modify
Müller’s continued fractions (given in equation(2)). Specifi-
cally we abandon the canonical form and change all partial
numerators to Euler’s number. Furthermore we follow results
published by Müller in one of his patents [9] and introduce a
phase shift p in equation (2). According to [9] the phase shift
can only have the values 0 or ±1.5. So we write

ln
particle mass
proton mass

= p + S , (3)

where S is the continued fraction

S = n0 +
e

n1 +
e

n2 +
e

n3 + . . .

. (4)

We abbreviate p + S as [p; n0 | n1, n2, n3, . . .]. Provided
that our initial assumption is correct, and the particles are res-
onance states, their masses should be located in the maximum
spectral density areas. Consequently we must require that the
free link n0 and the partial denominators ni are integers divis-
ible by 3. For convergence reason, we have to include |e + 1|
as allowed partial denominator. This means the free link n0
is allowed to be 0,±3,±6,±9 . . . and all partial denominators
ni can take the values e + 1,−e − 1,±6,±9,±12 . . . In order
to test the model very critically for a more extended set of
particles we followed Müller’s article [3] and selected all el-
ementary particles which have their masses determined with
a standard deviation 6 1 MeV/c2 and included additionally
the gauge bosons due to their special importance (78 parti-
cles altogether). For the calculation of the continued frac-
tions we assumed first that the mass values were without any
measurement error. This means, equation (3) does not hold
and one ideally obtains a continued fraction with an infinite
number of partial denominators. For practical reasons we de-
termined only 18 partial denominators. Next we calculated
repeatedly the particle mass from the continued fraction, ev-
ery time considering one more partial denominator. As soon
as the calculated mass value (on the linear scale) was in the

interval “mass±standard deviation”, we stopped considering
further denominators and gave the resulting fraction in Table
4. In special cases, where the particle mass is much more ac-
curately determined than the proton mass (e.g. electron) the
standard deviation was set to that of the proton.

It was found that the great majority of the particle masses
could be expressed by a continued fraction, which means that
they are localized in nodes or sub-nodes. Only 10 particles
were found to be localized in a gap. In such a case the con-
tinued fraction turns into an alternating sequence of −e− 1
and e + 1 without any further significant approximation to the
mass value. In Table 4, this sequence was then abbreviated
by three stars. It should be noted that the particle mass cal-
culated from such a fraction is still close to the experimental
value, but has a difference from the experimental value higher
than the standard deviation. For around 50% of the particles,
it was required to set the phase shift to 1.5 in order to get the
masses located in a node or sub-node. For 14 particles, their
masses can even be located in sub-nodes for both phase shifts
(0 and 1.5). If so, both continued fractions were indicated in
Table 4. As can be seen, the continued fractions have seldom
more than 5 partial denominators, they can be even shortened
abandoning the standard deviation requirement and accept-
ing a small percentage error on the logarithmic scale as it was
done in Müller’s article [2].

There are, however some general questions open. It is
clear that the continued fraction analysis provides a new sys-
tem to put the particles in groups regarding the length of the
fraction (fractal layers), the phase shift, value of the free link
and the value of the numerator. Which of these parameters
have physical meaning and which ones are just mathematics?

Especially regarding the physical significance of the nom-
inator, more research must be done. We believe that is not co-
incidence that most of the masses become localized in nodes
or sub-nodes when calculating the fractal spectrum with nom-
inator e, similar calculations have shown that the numerators
2 or the golden ratio do not work in this manner. This how-
ever, was here found empirically, to the best of our knowledge
there is no way to calculate directly which nominator repro-
duces best the fractal distribution. It must still be done by trial
and error combined with intuition. Anyway, we suggest to
abandon the canonical form of the continued fractions when-
ever possible, since with numerator 1, actually some physi-
cal information of the fractal distribution is lost. It is known
that continued fractions with arbitrary numerator , 1 can be
transformed into fractions with numerator equal to 1, via Eu-
ler equivalent transformation.

From the presented numerical results, some ideas can be
derived:

1. The three most stable here considered particles are the
electron, proton and neutron with half-life of around
11 minutes. Their continued fraction representations
are quite short, consisting only of the free link and one
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partial denominator. Possibly short continued fractions
indicate stability. Furthermore the very high values of
the first partial denominators n1 indicate two facts: a
proximity to the node n0 and an irrelevance of any fur-
ther partial denominator which can change the value
of the fraction only insignificantly. This means a high
value of n1 might also be considered as a criterion for
stability.

2. According to reference [1], in a node, there is a change
from spectral compression to spectral decompression,
which means that with a certain probability a change
in process trend can be observed. This statement is
in agreement with the continued fraction representa-
tions of the electron and the neutron. The electron [1.5;
−9 | −177] lies with a negative first partial denominator
closely before the principal node [1.5; −9], whereas the
neutron [0; 0 | 1973] is positioned right after the prin-
cipal node [0; 0] due to its positive denominator. This
means the electron in the compression range is stable
whereas the neutron is in a decompression range and
already exhibits decay property.

4 Resume

Numerical investigation of particle masses revealed that 87%
of the considered elementary particles can be interpreted as
proton resonance states. We cannot expect that all particle
masses are only governed by proton resonance properties,
other natural laws apply as well. The here presented math-
ematical model can be modified in various ways and future
research should concentrate on identifying fractal properties
in other data sets such as half-lifes of radioactive nuclides or
mass defects, utilizing either our or similarly modified contin-
ued fractions. Only when multiple fractal data sets are known,
the possible numerical values of the numerator or the phase
shift can be adequately interpreted and maybe attributed to a
physical property.
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