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The philosophical idea of a bipolar nature (the Chinese “Yin and Yang”) is combined
with the mathematical formalism of a fractal scaling model originally published by
Müller in this journal. From this extension new rules for the calculation of proton and
electron resonances via continued fractions are derived. The set of the 117 most accu-
rately determined elementary particle masses (all with error< 0.13%) was expressed
through this type of continued fractions. Only one outlier was found, in all other cases
the numerical errors were smaller than the standard deviation. Speaking in terms of
oscillation properties, the results suggest that the electron is an inverted or mirrored
oscillation state of the proton and vice versa. A complete description of elementary
particle masses by the model of oscillations in a chain system is only possible when
considering both, proton and electron resonances.

1 Introduction

The mass distribution of elementary particles is still an un-
solved mystery of physics. According tho the Standard
Model, mass is given by arbitrary variable couplings to the
Higgs boson, and the coupling is then adequately adjusted to
reproduce the experimentally observed mass.

However, the particle mass spectrum is not completely
chaotic, and some groupings are clearly visible. Several at-
tempts have already been made to obtain equations to de-
scribe regularities in the set of elementary particle masses.

For instance Greulich [1] calculated the masses of all fun-
damental elementary particles (those with a lifetime> 10−24

seconds) with an inaccuracy of approximately 1% using the
equation

mparticle

melectron
=

N
2α
,

whereα is the fine structure constant (= 1/137.036), and N is
an integer variable.

Paasch [2] assigned each elementary particle mass a posi-
tion on a logarithmic spiral. As a result, particles then accu-
mulate on straight lines.

A study from India [3] revealed a tendency for succes-
sive mass differences between particles to be close to an in-
teger multiple or integer fraction of 29.315 MeV. The value
29.315 MeV is the mass difference between a muon and a
neutral pion.

Even more recently Boris Tatischeff published a series of
articles [4–8] dealing with fractal properties of elementary
particle masses. He even predicted tentatively the masses of
some still unobserved particles [5].

An other fractal scaling model was used in a previous
article of the present author [9], and a set of 78 accurately
measured elementary particle masses was expressed in the

form of continued fractions. This underlying model was orig-
inally published by M̈uller [10–12], and its very basic idea
is to treat all protons as fundamental oscillators connected
through the physical vacuum. This leads to the idea of a chain
of equal harmonic proton oscillators with an associated loga-
rithmic spectrum of eigenfrequencies which can be expressed
through continued fractions. Particle masses are interpreted
as proton resonance states and expressed in continued fraction
form. However, the results obtained in reference [9] were not
completely satisfying since around 14% of the masses were
outliers, i.e. could not be reproduced by this model.

A more recent article [13] revealed that electron reso-
nance states exist analogously which serves now as the basis
for further extensions of M̈uller’s model. From this starting
point, the present article proposes a new version of the model
developed with the objective to reproduce all elementary par-
ticle masses.

2 Data sources and computational details

Masses of elementary particles (including the proton and
electron reference masses) were taken from the Particle Data
Group website [14] and were expressed in GeV throughout
the whole article. An electronic version of these data is avail-
able for downloading. Quark masses were eliminated from
the list because it has not been possible to isolate quarks.

Some of the listed particle masses are extremely accurate
and others have a quite high measurement error. Figure 1
shows an overview of the particle masses and their standard
deviations (expressed in % of the particle mass). It can be
roughly estimated that more or less 60% of the particles have
a standard deviation (SD) below 0.13%; this set of excellent
measurements consists of 117 particles and only this selection
of very high quality data was used for the numerical analysis
and extension of M̈uller’s model.
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Fig. 1: Overview of particle masses on the logarithmic number line
together with their standard deviations expressed in % of the mass.
Note that a few particles with very low or high mass or percentage
error were omitted for clarity (e.g. electron, muon, proton, gauge
bosons).

For consistency with previous articles on this topic, the
following abbreviations and conventions for the numerical
analysis hold:

Calculation method:
The considered particle mass is transformed into a continued
fraction according to the equations

ln
mparticle

melectron
= p+ S, ln

mparticle

mproton
= p+ S,

wherep is the phase shift and S is the continued fraction (e is
Euler’s number)

S = n0 +
e

n1 +
e

n2 +
e

n3 + ...

. (1)

The continued fraction representationp+S is abbreviated
as [p; n0 | n1,n2,n3, . . . ], where the free linkn0 is allowed to
be 0,±3,±6,±9 . . . and all partial denominatorsni can take
the valuese+1,−e−1,±6,±9,±12. . . . In the tables these ab-
breviations were marked with P or E, in order to indicate pro-
ton or electron resonance states.

For practical reasons only 18 partial denominators were
determined. Next, the particle mass was repeatedly calculated
from the continued fraction, every time considering one more
partial denominator. As soon as the calculated mass value
(on the linear scale) was in the interval “mass± standard de-
viation”, no further denominators were considered and the
resulting fractions are displayed in the tables. In some rare
cases, this procedure provides a mass value just a little in-
side the interval and considering the next denominator would

Table 1: Continued fraction representations of the lepton masses
(x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s) error [GeV]

electron 5.10998910× 10−4 ± 1.3× 10−11

P [x; -6 | 12, -6] 1.21× 10−15

μ− 1.05658367× 10−1 ± 4.0× 10−9

P [x; 0 | -6, -9, -e-1, 12, -6, -15] 2.45× 10−10

E [-x; 3 | e+1, e+1, -e-1, e+1, 9, -48,
e+1, -e-1] 3.06× 10−9

τ− 1.77682± 1.6× 10−4

P [0; 0 | e+1, 6, -e-1, e+1, -e-1, -e-1] 4.52× 10−5

P [x; 3 | -e-1, -e-1, 231] 2.50× 10−6

E [0; 9 | -e-1, 6, -e-1, -e-1, -6] 6.81× 10−5

E [-x; 6 | 6, e+1, -45] 1.92× 10−5

Table 2: Continued fraction representations of the boson masses
(x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s)error [GeV]

W+ 8.0399× 101 ± 2.3× 10−2

E [0; 12 | -81, e+1, (24)] 3.23× 10−5

Z0 9.11876× 101 ± 2.1× 10−3

P [x; 6 | 9, -e-1, -15, -e-1, e+1] 1.01× 10−3

E [0; 12 | 30, -6, (12)] 7.23× 10−4

match the measured value almost exactly. In such cases this
denominator is then additionally given in brackets.

The numerical error is always understood as the absolute
value of the difference between the measured particle mass
and the mass calculated from the corresponding continued
fraction representation.

In order to avoid machine based rounding errors, numer-
ical values of continued fractions were always calculated us-
ing the the Lenz algorithm as indicated in reference [15].
Outliers:
A particle mass is considered as an outlier (i.e. does not fit
into the here extended M̈uller model) when its mass, as cal-
culated from the corresponding continued fraction represen-
tation provides a value outside the interval “particle mass±
standard deviation”.

3 Results and discussion

3.1 Fundamental philosophical idea

Chinese philosophy is dominated by the concept of “Yin and
Yang” describing an indivisible whole of two complementary
effects (male–female, day–night, good–bad, etc.). This means
that everything has two opposite poles, and both poles are
necessary to understand the whole thing (e.g. male can only
be understood completely because female also exists as the
opposite).
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Table 3: Continued fraction representations of the light unflavored
mesons (x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s)error [GeV]

π+ 1.3957018× 10−1 ± 3.5× 10−7

P [x; 0 | -18, 6, 6, (-117)] 7.67× 10−10

E [0; 6 | -6, -e-1, e+1, -e-1, 48] 1.68× 10−7

π0 1.349766× 10−1 ± 6.0× 10−7

E [0; 6 | -6, -6, -6, 6, -e-1] 2.49× 10−7

η0 5.47853× 10−1 ± 2.4× 10−5

P [0; 0 | -6, e+1, -e-1, 6, -e-1, 12] 6.52× 10−7

E [0; 6 | e+1, -e-1, e+1, -6, -e-1,
e+1, (24)] 2.51× 10−7

ρ(770)0,+ 7.7549× 10−1 ± 3.4× 10−4

P [0; 0 | -15, e+1, (-174)] 1.73× 10−7

ω(782)0 7.8265× 10−1 ± 1.2× 10−4

P [0; 0 | -15, (243)] 2.10× 10−7

E [-x; 6 | -6, -6, e+1, -9, (135)] 4.51× 10−11

η′(958)0 9.5778× 10−1 ± 6.0× 10−5

P [0; 0 | 132, (30)] 6.81× 10−7

E [-x; 6 | -12, -e-1, -6, (-24)] 4.66× 10−7

φ(1020)0 1.019455± 2.0× 10−5

P [0; 0 | 33, -12, e+1] 4.92× 10−6

f2(1270)0 1.2751± 1.2× 10−3

P [0; 0 | 9, -21] 3.84× 10−4

P [x; 3 | -e-1, e+1, -6, (36)] 1.87× 10−5

E [-x; 6 | 39, -e-1] 3.78× 10−4

f1(1285)0 1.2818± 6.0× 10−4

P [0; 0 | 9, -9, -6] 2.46× 10−5

P [x; 3 | -e-1, e+1, -6, -e-1, e+1] 9.88× 10−5

E [-x; 6 | 36, -6] 1.20× 10−4

a2(1320)0,+ 1.3183± 5.0× 10−4

P [0; 0 | 9, -e-1, e+1, -e-1, e+1,
-e-1, e+1] 4.50× 10−4

P [x; 3 | -e-1, e+1, 186] 5.66× 10−6

E [-x; 6 | 27, -e-1, e+1, -e-1] 2.98× 10−4

f1(1420)0 1.4264± 9.0× 10−4

P [0; 0 | 6, 6, -6, (-39)] 1.64× 10−6

P [x; 3 | -e-1, 6, 24] 9.34× 10−5

E [-x; 6 | 15, -15] 3.29× 10−5

ρ3(1690)0,+ 1.6888± 2.1× 10−3

P [0; 0 | e+1, e+1, -e-1, (-51)] 1.95× 10−5

P [x; 3 | -e-1, -6, -e-1, e+1] 5.29× 10−4

E [0; 9 | -e-1, e+1, 12] 8.78× 10−4

In physics we can find a number of analogous dualities,
for instance: positive and negative charges, north and south
magnetic poles, particles and antiparticles, emission and ab-
sorption of quanta, destructive and constructive interference
of waves, nuclear fusion and fission, and in the widest sense
also Newton’s principle “action= reaction”.

From these observations an interesting question arises:
does such a duality also exist in the model of oscillations in a
chain system, and how must this model be extended to make
the “Yin-Yang” obvious and visible?

Applying this idea to M̈uller’s model, it must be claimed

Table 4: Continued fraction representations of masses of the strange
mesons (x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s)error [GeV]

K+ 4.93677× 10−1 ± 1.6× 10−5

P [0; 0 | -e-1, -6, e+1, 45] 5.65× 10−7

E [0; 6 | e+1, -e-1, -e-1, 15, -e-1] 6.96× 10−6

E [-x; 6 | -e-1, e+1, e+1, 6, e+1, -6] 4.04× 10−6

K0, K0
S, K0

L 4.97614× 10−1 ± 2.4× 10−5

E [-x; 6 | -e-1, e+1, e+1, -e-1, -e-1,
e+1, e+1] 4.73× 10−6

K*(892)+ 8.9166× 10−1 ± 2.6× 10−4

P [0; 0 | -54, e+1] 6.63× 10−5

E [-x; 6 | -9, -6, 6] 6.13× 10−5

K*(892)0 8.9594× 10−1 ± 2.2× 10−4

P [0; 0 | -60, e+1, -e-1] 1.47× 10−4

E [-x; 6 | -9, -e-1, -6] 5.48× 10−5

K2*(1430)+ 1.4256± 1.5× 10−3

P [0; 0 | 6, 6, -6] 7.56× 10−4

P [x; 3 | -e-1, 6, 30] 1.08× 10−4

E [-x; 6 | 15, -21] 1.40× 10−4

K2*(1430)0 1.4324± 1.3× 10−3

P [0; 0 | 6, 6, 6] 3.72× 10−4

P [x; 3 | -e-1, 6, 9, (-e-1)] 6.31× 10−4

E [-x; 6 | 15, -6, e+1, (36)] 5.37× 10−7

that the fundamental spectrum of proton resonances must
have an opposite, an anti-oscillation or inverted oscillation
spectrum. What could it be?

We know that these proton master-oscillations are stable,
so the theorized counter-oscillations must belong to a particle
with similar lifetime than the proton. Consequently the elec-
tron is the only particle that could be a manifestation of such
an inverted oscillation.

Now the concept of an inverted oscillation must be trans-
lated into a mathematical equation. According to Müller’s
standard model, we can express the electron mass as a proton
resonance and the proton mass as an electron resonance:

ln
melectron

mproton
= p+ Sp,

ln
mproton

melectron
= p+ Se,

where p is the phase shift (with value 0 or 1.5) and S the
continued fraction as discussed in previous papers (given in
equation (1)). Obviously forp , 0, Sp , Se, and this is the
starting point for the further modification of the model. We
have to adjust the phase shift (when different from zero) in
such a way that both continued fractions become opposite in
the sense of oscillation information. This means that the de-
nominators of Sp and Se must be the same, but with opposite
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sign. If

Sp = n0 +
e

n1 +
e

n2 +
e

n3 + ...

,

then must hold for Se:

Se = −n0 +
e

−n1 +
e

−n2 +
e

−n3 + ...

.

Mathematically it is now obvious that one equation must
be modified by a minus sign and we have to write:

ln
melectron

mproton
= p+ Sp, (2)

ln
mproton

melectron
= −p+ Se, (3)

However, this is not yet a complete set of rules to find new
continued fraction representations of the proton and electron;
in order to arrive at a conclusion, it is absolutely necessary to
develop further physical ideas.

Idea 1 – Length of continued fractions
The resulting continued fractions Sp and Se should be short.
A previous article already suggested that short fractions are
associated with stability [9]. However, the fractions must not
be too short. The fundamental oscillators must be represented
by the simplest variant of a chain of oscillators. This is a sin-
gle mass hold via two massless flexible strings between two
motionless, fixed walls. This setup leads to 3 parameters de-
termining the eigenfrequency of the chain, the mass value and
the two different lengths of the strings. Consequently the con-
tinued fraction also should have 3 free parameters (the free
link and two denominators). This idea solves the conceptual
problem of a “no information oscillation”. When express-
ing the electron mass as a proton resonance, then lnmelectron

mproton
=

p + S, andp must not have values determiningS as zero or
any other integer number (±3,±6,±9...). In such a case no
continued fraction can be written down, and the oscillation
would not have any property.

Idea 2 – Small denominators
According to M̈uller’s theory, a high positive or negative de-
nominator locates the data point in a fluctuating zone. Conse-
quently the considered property should be difficult to be kept
constant. From all our observations, it is highly reasonable
to believe that proton and electron masses are constant even
over very long time scales. Therefore their masses cannot be
located too deep inside a fluctuation zone. In this study, the
maximum value of the denominators was tentatively limited
to ±18.

Idea 3 – The free link
The calculation

ln
melectron

mproton
≈ −7.51

Table 5: Continued fraction representations of masses of the
charmed, and charmed strange mesons (x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s)error [GeV]

D+ 1.86957± 1.6× 10−4

P [0; 0 | e+1, 12, 27] 2.92× 10−5

E [0; 9 | -e-1, 9, 39] 5.45× 10−6

E [-x; 6 | 6, -213] 1.95× 10−8

D0 1.86480± 1.4× 10−4

P [0; 0 | e+1, 12, -e-1, -6] 1.03× 10−4

E [0; 9 | -e-1, 9, -12, e+1] 1.29× 10−4

E [-x; 6 | 6, 129] 6.40× 10−6

D*(2007)0 2.00693± 1.6× 10−4

P [0; 0 | e+1, -18, -e-1, e+1, -e-1] 8.59× 10−5

P [x; 3 | -6, 6, 15] 7.91× 10−5

E [0; 9 | -e-1, -78] 3.94× 10−5

E [-x; 6 | 6, -e-1, 6, e+1, 6] 2.21× 10−5

D*(2010)+ 2.01022± 1.4× 10−4

P [0; 0 | e+1, -18, (-102)] 4.53× 10−7

P [x; 3 | -6, 6, 6, (-21)] 5.72× 10−6

E [0; 9 | -e-1, -63, (6)] 3.23× 10−7

E [-x; 6 | 6, -e-1, 6, -12] 1.62× 10−4

D1(2420)0 2.4213± 6.0× 10−4

P [0; 0 | e+1, -e-1, 6, -e-1, 6] 4.56× 10−4

P [x; 3 | -9, -102] 3.68× 10−6

E [0; 9 | -6, e+1, -e-1, 9, -e-1] 4.37× 10−4

E [-x; 6 | e+1, 27, e+1, -e-1, e+1] 4.10× 10−4

D2*(2460)0 2.4626± 7.0× 10−4

P [0; 0 | e+1, -e-1, e+1, 18, -9] 5.21× 10−6

E [0; 9 | -6, e+1, -15] 9.58× 10−5

E [-x; 6 | e+1, 348] 1.02× 10−5

D2*(2460)+ 2.4644± 1.9× 10−3

P [0; 0 | e+1, -e-1, e+1, 24] 7.45× 10−5

P [x; 3 | -9, -e-1, -e-1, (e+1, 18)] 2.40× 10−6

E [0; 9 | -6, e+1, -18] 1.14× 10−4

E [-x; 6 | e+1, 663] 1.95× 10−6

D+
s 1.96845± 3.3× 10−4

P [0; 0 | e+1, -54, (-e-1, -15)] 3.13× 10−7

P [x; 3 | -6, e+1, 6, (-63)] 6.81× 10−7

E [0; 9 | -e-1, 42, e+1, -e-1] 2.34× 10−4

E [-x; 6 | 6, -e-1, -e-1, -6] 2.00× 10−4

Ds*+ 2.1123± 5.0× 10−4

P [x; 3 | -6, -12, -e-1] 4.00× 10−4

E [0; 9 | -e-1, -9, 6, -e-1, (-18, -45)] 3.42× 10−9

E [-x; 6 | e+1, e+1, -e-1, e+1, -e-1,
e+1, -e-1] 4.70× 10−4

Ds0*(2317)+ 2.3178± 6.0× 10−4

P [0; 0 | e+1, -e-1, -27] 4.57× 10−4

E [0; 9 | -e-1, -e-1, e+1, -e-1, -39] 1.50× 10−5

Ds1(2460)+ 2.4595± 6.0× 10−4

P [0; 0 | e+1, -e-1, e+1, 12, (15)] 1.19× 10−6

P [x; 3 | -9, -6, e+1, (-9)] 5.71× 10−5

E [0; 9 | -6, e+1, -12, e+1, (12)] 4.66× 10−6

E [-x; 6 | e+1, 189] 5.06× 10−5

Ds1(2536)+ 2.53528± 2.0× 10−4

P [0; 0 | e+1, -e-1, e+1, -e-1, e+1,
e+1, -6] 3.89× 10−5

E [0; 9 | -6, 6, -36] 1.87× 10−5

E [-x; 6 | e+1, -21, e+1, -e-1, (-e-1)] 1.88× 10−5

Ds2*(2573)+ 2.5726± 9.0× 10−4

P [x; 3 | -12, e+1, 15] 8.95× 10−5

E [0; 9 | -6, 9, 6] 2.24× 10−4
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Table 6: Continued fraction representations of masses of the
bottom mesons (including strange and charmed mesons) (x=

-1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s) error [GeV]

B+ 5.27917± 2.9× 10−4

P [x; 3 | 6, -9, 6, 6] 8.81× 10−5

B0 5.27950± 3.0× 10−4

P [x; 3 | 6, -9, 6, (33)] 4.56× 10−6

B*0,+ 5.3251± 5.0× 10−4

P [x; 3 | 6, -6, -6, e+1, e+1] 1.09× 10−4

B2*(5747)0,+ 5.743± 5.0× 10−3

E [0; 9 | 9, -e-1, -12] 2.95× 10−4

B0
s 5.3663± 6.0× 10−4

P [x; 3 | 6, -6, e+1, e+1, (9)] 4.93× 10−6

Bs*0 5.4154± 1.4× 10−3

P [x; 3 | 6, -e-1, -e-1, 12] 2.19× 10−5

Bs2*(5840)0 5.8397± 6.0× 10−4

P [x; 3 | e+1, e+1, -e-1, e+1, -9, (-6)] 4.08× 10−5

B+
c 6.277± 6.0× 10−3

P [x; 3 | e+1, 6, -153] 1.21× 10−5

E [0; 9 | 6, 6, -e-1, e+1, (63)] 1.71× 10−6

leads to a value between the principal nodes -6 and -9. From
this is follows that in the continued fractions, the free linkn0

can only take the values±6 and±9.

Idea 4 – Effect of canceling denominators
Elementary particles can be divided in two groups: the vast
majority with an extremely short half-life, and a small set
with comparable longer lifetime. When analyzing the more
stable particles with M̈uller’s standard model, already a strik-
ing tendency can be discovered that especially the sum of the
free link and the first denominators tends to be zero.
Examples:
Theτ can be interpreted as proton resonance and the full con-
tinued fraction representation, as calculated by the computer
is: P [0; 0| e+1, 6, -e-1, e+1, -e-1, -e-1, (6)]. Note that in the
end, every determination of a continued fraction results in an
infinite periodical alternating sequence of the denominators
e+1 and -e-1, which is always omitted here. Without signifi-
cantly changing the mass value, the fraction can be rewritten:
P [0; 0 | e+1, 6, -e-1, e+1, -e-1, -e-1, (e+1, -6)], and then the
sum of all denominators equals zero.

The full continued fraction for the charged pion is:
E [0; 6 | -6, -e-1, e+1, -e-1, 48, (-e-1, 6, -24, e+1, -e-1, 12)].
It can be seen that the free link and the first 3 denominators
cancel successively. Then this changes. A minimal manipu-
lation leads to:
E [0; 6 | -6, -e-1, e+1, -e-1, 48, (-e-1, 6, -48, e+1, -6, e+1)].

The full continued fraction for the neutral pion is:
E [0; 6 | -6, -6, -6, 6, -e-1, (12, -12, e+1, -e-1, e+1, 45, 6)].
Here we have only to eliminate the 11th denominator (45) and

Table 7: Continued fraction representations of masses of thecc
mesons (x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s) error [GeV]

ηc(1S)0 2.9803± 1.2× 10−3

P [x; 3 | -30, e+1, -e-1] 6.56× 10−5

E [0; 9 | -9, e+1, (-216)] 7.34× 10−7

E [-x; 6 | e+1, -e-1, 18, -e-1, e+1] 8.84× 10−4

J/ψ(1S)0 3.096916± 1.1× 10−5

E [-x; 6 | e+1, -e-1, e+1, 6, -e-1, e+1, 6,
e+1, (-18)] 1.19× 10−8

χc0(1P)0 3.41475± 3.1× 10−4

P [x; 3 | 63, e+1, (57)] 6.99× 10−8

E [0; 9 | -15, e+1, -e-1, (-12)] 9.48× 10−6

χc1(1P)0 3.51066± 7.0× 10−5

no continued fraction found outlier

hc(1P)0 3.52541± 1.6× 10−4

P [x; 3 | 36, 6, (-24)] 1.94× 10−6

χc2(1P)0 3.55620± 9.0× 10−5

P [x; 3 | 33, -9, e+1, -e-1, e+1] 7.52× 10−5

E [0; 9 | -18, 21, -e-1] 5.36× 10−5

ηc(2S)0 3.637± 4.0× 10−3

E [0; 9 | -21, (66)] 5.00× 10−6

ψ(2S)0 3.68609± 4.0× 10−5

E [0; 9 | -24, e+1, e+1, e+1, e+1] 6.30× 10−6

ψ(3770)0 3.77292± 3.5× 10−4

E [0; 9 | -30, e+1, (-12)] 5.90× 10−5

χc2(2P)0 3.9272± 2.6× 10−3

P [x; 3 | 15, -27] 1.47× 10−4

E [0; 9 | -51, -9, e+1] 1.10× 10−4

ψ(4040)0 4.0390± 1.0× 10−3

P [x; 3 | 12, e+1, -e-1, (495)] 3.14× 10−8

E [0; 9 | -108, -e-1] 5.66× 10−4

ψ(4160)0 4.1530± 3.0× 10−3

P [x; 3 | 12, -e-1, -e-1, (6)] 1.88× 10−5

E [0; 9 | 915] 1.36× 10−5

ψ(4415)0 4.421± 4.0× 10−3

P [x; 3 | 9, 81] 4.82× 10−5

E [0; 9 | 42, -6] 3.64× 10−4

the sum equals zero.

The full continued fraction for theη0 is:
P [0; 0 | -6, e+1, -e-1, 6, -e-1, 12, (-9, -12, -e-1, e+1, -e-1,
-e-1, e+1, -e-1, e+1, e+1)].
Again the first 4 denominators form a zero sum, then the 7th

denominator (-9) interrupts this canceling. Without signif-
icant change of the numerical value, this fraction could be
shortened and rewritten: P [0; 0| -6, e+1, -e-1, 6, -e-1, 12,
(-12, e+1)].

When interpretingη0 as electron resonance, again adding
the free link to the first 5 denominators gives zero:
E [0; 6 | e+1, -e-1, e+1, -6, -e-1, e+1, (24)]. We can add and
rewrite: E [0; 6| e+1, -e-1, e+1, -6, -e-1, e+1, (24, -e-1, -24)].

A completely different case is the neutron; here the con-
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Table 8: Continued fraction representations of masses of thebb
mesons (x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s) error [GeV]

Υ(1S)0 9.46030± 2.6× 10−4

P [0; 3 | -e-1, -12, -87] 1.02× 10−5

E [-x; 9 | -e-1, e+1, -12, -63] 9.33× 10−6

χb0(1P)0 9.8594± 5.0× 10−4

E [0; 9 | e+1, -e-1, -e-1, e+1, -9, -e-1] 1.96× 10−4

E [-x; 9 | -e-1, e+1, 6, -e-1, 6, e+1] 3.40× 10−4

χb1(1P)0 9.8928± 4.0× 10−4

E [0; 9 | e+1, -e-1, -e-1, 6, (-75)] 4.52× 10−6

E [-x; 9 | -e-1, e+1, e+1, e+1, -12] 3.00× 10−4

χb2(1P)0 9.9122± 4.0× 10−4

P [0; 3 | -e-1, -6, e+1, 15, -e-1] 8.26× 10−5

E [0; 9 | e+1, -e-1, -e-1, 12, -6] 1.07× 10−5

E [-x; 9 | -e-1, e+1, e+1, 6] 2.21× 10−6

Υ(2S)0 1.002326× 101 ± 3.1× 10−4

P [0; 3 | -e-1, -e-1, -e-1, e+1, -75] 1.86× 10−6

E [0; 9 | e+1, -e-1, -6, e+1, e+1,
e+1, (-18)] 1.28× 10−6

E [-x; 9 | -e-1, e+1, e+1, -e-1, 6, -e-1,
e+1, -e-1, e+1] 2.49× 10−4

χb0(2P)0 1.02325× 101 ± 6.0× 10−4

P [0; 3 | -e-1, -e-1, 327] 1.29× 10−6

E [0; 9 | e+1, -e-1, -30] 9.85× 10−5

E [-x; 9 | -e-1, 6, -e-1, -e-1, -e-1, -e-1] 2.80× 10−4

χb1(2P)0 1.02555× 101 ± 5.0× 10−4

P [0; 3 | -e-1, -e-1, 30] 2.78× 10−4

E [0; 9 | e+1, -e-1, -54] 4.85× 10−4

E [-x; 9 | -e-1, 6, -6, e+1, -e-1, -6] 8.02× 10−5

χb2(2P)0 1.02686× 101 ± 5.0× 10−4

P [0; 3 | -e-1, -e-1, 21, -e-1, 9] 1.11× 10−5

E [0; 9 | e+1, -e-1, -93] 2.07× 10−5

E [-x; 9 | -e-1, 6, -6, 9, (-12)] 4.33× 10−6

Υ(3S)0 1.03552× 101 ± 5.0× 10−4

P [0; 3 | -e-1, -e-1, 6, e+1, 6] 3.94× 10−5

E [-x; 9 | -e-1, 6, -30, -e-1] 1.75× 10−4

Υ(4S)0 1.05794× 101 ± 1.2× 10−3

P [0; 3 | -e-1, -e-1, e+1, -e-1, e+1, -15] 9.28× 10−5

E [0; 9 | e+1, -e-1, 6, e+1, 21] 4.37× 10−5

Υ(10860)0 1.0876× 101 ± 1.1× 10−2

E [0; 9 | e+1, -e-1, e+1, 24] 8.32× 10−5

Υ(11020)0 1.1019× 101 ± 8.0× 10−3

P [0; 3 | -6, e+1, -e-1, 6, e+1] 3.60× 10−3

E [0; 9 | e+1, -e-1, e+1, -6, (-18)] 3.89× 10−5

tinued fraction is: P [0; 0| 1974, -e-1, -e-1, (-24)]. As the
first denominator is very high, the following denominators
can make only minor changes of the numerical value of the
fraction. So here it would be easily possible adding denom-
inators to force the sum to be zero. Actually many particle
representations fall in that category, so from looking only at
these examples, the fundamental idea of a vanishing sum of
denominators does not come out at all.

Hypothesis:
From all these examples we can theorize that for a perma-
nently stable particle such as the proton and electron, the sum
of the free link and all partial denominators must be zero.

3.2 Rules for constructing continued fractions

With these physical ideas, we can express the proton and elec-
tron through a very limited set of 10 pairs of continued frac-
tions (Table 12), which can all be written down. For every
continued fraction, the phase shift p can be calculated, so that
equations (2) and (3) hold. Then, new rules for the interpre-
tation of elementary particle masses can be derived. First, a
mass can be either a proton or an electron resonance, and sec-
ond, this newly found phase shift must now be considered.

When interpreting particle masses as proton resonance
states we write (x is the new phase shift):

ln
mparticle

mproton
= (0 or x)+ S (4)

and for electron resonances holds:

ln
mparticle

melectron
= (0 or −x) + S. (5)

The basic rule that the phase shift can be zero, is funda-
mental and will not be changed.

Now for every of these 10 different phase shifts, the new
model must be checked. We have to find out to what extent
other elementary particles are compatible to one of these 10
new versions of the model and still accumulate in spectral
nodes. There is a set of 18 particle masses, which cannot be
expressed as proton or electron resonances with phase shift
zero; these are:μ−, K0, B+, B0, B*0,+, B0

s, Bs*0, Bs2*(5840)0,
J/ψ(1S)0, χc1(1P)0, hc(1P)0, Λ(1520)0, Σ0, Σ(1385)+, Ξ−, Λ+

c ,
Σb*0,+ andΣb*−. The question is now: which of the 10 possi-
ble phase shifts can reproduce these 18 masses best, with the
lowest number of outliers?

By trial and error it was found that there is indeed such a
“best possibility”, providing only one outlier:

ln
melectron

mproton
= x + (−6)+

e

12+
e
−6

(6)

ln
mproton

melectron
= −x + 6+

e

−12+
e
6

. (7)

The phase shift x equals -1.75083890054 and the numer-
ical errors are very small (see Tables 1 and 9).

Tables 1 to 11 show the continued fraction representa-
tions for the considered data set (117 particles, 107 different
masses) All possible fractions are given for both, proton and
electron resonances with the phase shifts 0 and±x. For com-
pleteness, Table 12 displays the 10 alternative continued frac-
tion representations together with the calculated phase shifts
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and the number of outliers when trying to reproduce the afore-
mentioned set of 18 masses.

A single outlier is a very satisfying result when comparing
to 14% outliers, which have been found with the standard ver-
sion of Müller’s model [9]. Since the spectra of electron and
proton resonances overlap, most particles can even expressed
as both, proton and electron resonances. This demonstrates
that it makes only sense to analyze high accuracy data, other-
wise easily a continued fraction representation can be found.

As expected, the principle of “Yin and Yang” has not been
found anymore in this set of particles. There are no other
pairs of particles with opposite oscillation information. It
seems to be that this fundamental concept is only applicable
to longterm stable systems or processes. Further research on
other data sets should confirm this.

3.3 Model discussion

Is the principle of “Yin and Yang” really necessary to obtain
continued fraction representations for most elementary par-
ticle masses? The critical reader could argue that alone the
additional consideration of electron resonances greatly en-
hances the chances to express particle masses via standard
continued fractions (with phase shift 0 and 3/2). This is true,
however, the author has found that the 14% outliers were very
little reduced when considering such additional electron res-
onances. So another phase shift is definitively required.

But, are the electron resonances really necessary? Would
it not be possible to write only

ln
mparticle

mproton
= (0 or p)+ S (8)

where p is just any other phase shift different from the stan-
dard value 3/2 (between 0 and±3)? This was exactly the
author’s first attempt to modify M̈uller’s model. It was found
that such phase shift does not exist.

For that reason the problem can only be solved through
a new physical or philosophical idea. Every good physical
theory consists of two parts, equivalent to a soul and a body.
The soul represents a fundamental physical law or a philo-
sophical principle, while always mathematics is the body.

From this viewpoint the author is particularly satisfied
having found the “Yin-Yang” principle as an adequate exten-
sion of the proton resonance concept. It clearly justifies the
importance of electron resonances and distinguishes the
model from numerology.

Regarding the selection of the appropriate phase shift, a
very critical reader could note that there is only one outlier
difference between

ln
melectron

mproton
= [x1;−9 | − 9,18] (2 outliers)

and the best variant

ln
melectron

mproton
= [x2;−6 | 12,−6], (1 outlier)

Table 9: Continued fraction representations of masses of the N,Δ,
Λ, Σ, Ξ andΩ baryons (x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s) error [GeV]

p+ 9.38272013× 10−1 ± 2.3× 10−8

E [-x; 6 | -12, 6] 2.22× 10−12

n0 9.39565346× 10−1 ± 2.3× 10−8

P [0; 0 | 1974, -e-1, -e-1, (-24)] 7.85× 10−11

Δ(1232)−,0,+,++ 1.2320± 1.0× 10−3

P [0; 0 | 9, e+1, -e-1, e+1] 4.29× 10−4

P [x; 3 | -e-1, e+1, -e-1, 6, e+1, -e-1] 7.12× 10−4

E [-x; 6 | 75] 8.61× 10−4

Λ0 1.115683± 6.0× 10−6

P [0; 0 | 15, e+1, 15, -6] 9.92× 10−8

Λ(1405)0 1.4051± 1.3× 10−3

P [0; 0 | 6, e+1] 2.50× 10−5

P [x; 3 | -e-1, 6, -e-1, -e-1] 6.44× 10−4

Λ(1520)0 1.5195± 1.0× 10−3

P [x; 3 | -e-1, 15, e+1] 5.71× 10−4

E [-x; 6 | 12, -e-1, e+1, -e-1] 4.36× 10−4

Σ+ 1.18937± 7.0× 10−5

P [0; 0 | 12, -6, e+1, -e-1, 6] 5.70× 10−6

Σ0 1.192642± 2.4× 10−5

E [-x; 6 | 606] 1.24× 10−5

Σ− 1.197449± 3.0× 10−5

P [0; 0 | 12, -e-1, 6, -e-1, e+1,
-e-1, (93)] 5.89× 10−9

E [-x; 6 | 321, -e-1] 1.22× 10−5

Σ(1385)+ 1.3828± 4.0× 10−4

E [-x; 6 | 18, -15 (-e-1)] 8.96× 10−5

Σ(1385)0 1.3837± 1.0× 10−3

P [0; 0 | 6, e+1, -e-1, e+1, -e-1] 6.88× 10−4

E [-x; 6 | 18, -12, (e+1, 60)] 2.95× 10−8

Σ(1385)− 1.3872± 5.0× 10−4

P [0; 0 | 6, e+1, -e-1, e+1, e+1] 3.03× 10−4

E [-x; 6 | 18, -6, e+1] 1.66× 10−4

Ξ0 1.31486± 2.0× 10−4

P [0; 0 | 9, -e-1, e+1, -6] 1.42× 10−4

P [x; 3 | -e-1, e+1, -93] 2.86× 10−5

E [-x; 6 | 27, -9, e+1] 1.53× 10−4

Ξ− 1.32171± 7.0× 10−5

P [x; 3 | -e-1, e+1, 45, e+1] 5.35× 10−5

Ξ(1530)0 1.53180± 3.2× 10−4

P [0; 0 | 6, -6, (165)] 1.35× 10−6

E [0; 9 | -e-1, e+1, -e-1, e+1, -e-1,
-e-1, -e-1] 5.19× 10−5

Ξ(1530)− 1.5350± 6.0× 10−4

P [0; 0 | 6, -6, 9, (-12)] 1.09× 10−5

P [x; 3 | -e-1, 21, 6] 1.01× 10−4

E [0; 9 | -e-1, e+1, -e-1, e+1,
-6, (-54)] 1.18× 10−6

Ω− 1.67245± 2.9× 10−4

P [0; 0 | e+1, e+1, -e-1, e+1, -e-1,
-e-1] 1.09× 10−4

P [x; 3 | -e-1, 9, e+1, -9] 1.50× 10−4

E [0; 9 | -e-1, e+1, 48] 1.23× 10−4
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Table 10: Continued fraction representations of masses of the
charmed baryons (x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s) error [GeV]

Λ+
c 2.28646± 1.4× 10−4

E [-x; 6 | e+1, 6, 9, -e-1, (-e-1)] 8.64× 10−6

Λc(2595)+ 2.5954± 6.0× 10−4

P [x; 3 | -12, 9, e+1] 5.64× 10−4

E [0; 9 | -6, 15, (66)] 1.23× 10−6

E [-x; 6 | e+1, -12, e+1, -9] 1.13× 10−4

Σc(2455)++ 2.45403± 1.8× 10−4

P [x; 3 | -9, -6, -39] 8.51× 10−7

E [0; 9 | -6, e+1, -9, e+1, -e-1] 2.02× 10−5

E [-x; 6 | e+1, 105] 7.84× 10−5

Σc(2455)+ 2.4529± 4.0× 10−4

P [0; 0 | e+1, -e-1, e+1, 6, e+1, -e-1,
e+1] 2.84× 10−4

P [x; 3 | -9, -6, -9] 1.07× 10−4

E [-x; 6 | e+1, 96] 1.02× 10−4

Σc(2455)0 2.45376± 1.8× 10−4

P [x; 3 | -9, -6, -24] 3.06× 10−5

E [0; 9 | -6, e+1, -9, e+1, -e-1, e+1] 1.48× 10−4

E [-x; 6 | e+1, 102, (e+1)] 8.05× 10−5

Σc(2520)++ 2.5184± 6.0× 10−4

P [0; 0 | e+1, -e-1, e+1, -e-1, -18] 1.44× 10−4

E [0; 9 | -6, 6, -e-1, e+1, (18)] 1.05× 10−5

E [-x; 6 | e+1, -27, e+1, (6)] 1.68× 10−5

Σc(2520)+ 2.5175± 2.3× 10−3

P [0; 0 | e+1, -e-1, e+1, -e-1, -15, e+1] 1.01× 10−4

E [0; 9 | -6, 6, -e-1, e+1, (-6)] 7.02× 10−5

E [-x; 6 | e+1, -27] 4.20× 10−4

Σc(2520)0 2.5180± 5.0× 10−4

P [0; 0 | e+1, -e-1, e+1, -e-1, -15] 2.46× 10−4

E [0; 9 | -6, 6, -e-1, e+1, (-21)] 8.75× 10−6

E [-x; 6 | e+1, -27, 6] 2.10× 10−5

Ξ+
c 2.4678± 4.0× 10−4

P [0; 0 | e+1, -e-1, e+1, 60] 5.29× 10−5

P [x; 3 | -9, -e-1, -e-1, e+1, e+1] 2.82× 10−4

E [0; 9 | -6, e+1, -33] 8.89× 10−6

E [-x; 6 | e+1, -933] 1.45× 10−6

Ξ0
c 2.47088± 3.4× 10−4

P [0; 0 | e+1, -e-1, e+1, -162] 2.87× 10−7

P [x; 3 | -9, -e-1, -9, (-9)] 1.73× 10−5

E [0; 9 | -6, e+1, -141] 6.33× 10−6

E [-x; 6 | e+1, -294] 5.91× 10−6

Ξ′+c 2.5756± 3.1× 10−3

P [x; 3 | -12, e+1, 6] 4.33× 10−4

E [0; 9 | -6, 9, e+1] 1.02× 10−3

E [-x; 6 | e+1, -12, -e-1, e+1] 1.40× 10−3

Ξ′0c 2.5779± 2.9× 10−3

P [x; 3 | -12, e+1, e+1] 5.26× 10−4

E [-x; 6 | e+1, -12, -e-1] 8.16× 10−4

Ξc(2645)0,+ 2.6459± 5.0× 10−4

P [x; 3 | -12, -e-1, 9] 7.47× 10−6

E [0; 9 | -6, -39, (-330)] 1.13× 10−8

E [-x; 6 | e+1, -9, e+1, 6] 2.50× 10−4

Ω0
c 2.6952± 1.7× 10−3

P [x; 3 | -15, e+1, -e-1, e+1] 6.84× 10−4

E [0; 9 | -6, -9, e+1, (-12)] 3.15× 10−6

E [-x; 6 | e+1, -6, e+1] 9.61× 10−4

Ωc(2770)0 2.7659± 2.0× 10−3

E [0; 9 | -6, -e-1, (93)] 9.99× 10−6

E [-x; 6 | e+1, -6, e+1, e+1] 3.47× 10−4

Table 11: Continued fraction representations of masses of the bot-
tom baryons (x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s)error [GeV]

Λ0
b 5.6202± 1.6× 10−3

P [x; 3 | 6, e+1, -e-1, e+1, 9] 1.25× 10−4

E [0; 9 | 9, -27] 3.49× 10−4

Σ+b 5.8078± 2.7× 10−3

E [0; 9 | 9, -e-1, e+1, -e-1, (-27)] 2.47× 10−6

Σ−b 5.8152± 2.0× 10−3

E [0; 9 | 9, -e-1, e+1, -e-1, e+1,
(-e-1, 24)] 4.30× 10−6

Σb*+, Σb*0 5.8290± 3.4× 10−3

P [x; 3 | e+1, e+1, -e-1, e+1] 8.39× 10−4

Σb*− 5.8364± 2.8× 10−3

P [x; 3 | e+1, e+1, -e-1, e+1, -6] 7.39× 10−5

Ξ
−,0
b 5.7905± 2.7× 10−3

E [0; 9 | 9, -e-1, e+1, 9] 2.20× 10−4

Table 12: List of the 10 possible continued fraction representations
of the electron mass when considering the rules that denominators
must be small and their sum including the free link equals zero, to-
gether with their associate phase shifts and the number of outliers
when considering the following set of 18 particles:μ−, K0, B+, B0,
B*0,+, B0

s, Bs*0, Bs2*(5840)0, J/ψ(1S)0, χc1(1P)0, hc(1P)0, Λ(1520)0,
Σ0, Σ(1385)+, Ξ−, Λ+

c , Σb*0,+ andΣb*−

Continued fraction representation phase shift number of
for ln melectron

mproton
= x + S x outliers

P [x; -9 | 15, -6] 1.29770965366 3

P [x; -9 | -6, 15] 1.95172884111 5

P [x; -9 | 18, -9] 1.33097940724 4

P [x; -9 | -9, 18] 1.79175802145 2
μ−, Σ0

P [x; -6 | -6, 12] -1.04460536299 6

P [x; -6 | 12, -6] -1.75083890054 1
χc1(1P)0

P [x; -6 | -9, 15] -1.20718990898 6

P [x; -6 | 15, -9] -1.70037040878 6

P [x; -6 | 18, -12] -1.66836807753 3

P [x; -6 | -12, 18] -1.2860171871 4

so one single outlier might not be sufficiently significant to
make a clear decision. Here it is now worth looking at the
outlier particles. In the first case, the two outliers are the
muon and theΣ0. The muon has a comparatively long mean
lifetime of 2.2μs. So it is fare more stable than the average
elementary particle. Therefore it is reasonable to request that
the muon mass is reproduced by the model, i.e. the muon
must not be an outlier.

4 Conclusions

The here presented bipolar version of Müller’s continued
fraction model is so far the best description of elementary
particle masses. It demonstrates two facts: first, electron and
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proton can be interpreted as a manifestation of the “Yin and
Yang” principle in nature. They both can be interpreted as
fundamental reference points in the model of a chain of har-
monic oscillations. Second, the proton resonance idea alone
is an incomplete concept and we have to recognize that elec-
tron resonances also play an important role in the universe.

These results can be obtained only when strictly consider-
ing the individual measurement errors of the particles and all
similar future analyses should be based on the most accurate
data available.

Until now, this bipolar version of M̈uller’s model has re-
produced only one data set. It is obvious that this alone can-
not be considered as a full proof of correctness of this model
variant and much more data should be analyzed.
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