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We analyzed the individual masses of non-radioactive isotopes of the chemical elements

with an extended version of the bipolar model of oscillations in a chain system. When

defining a small set of appropriate rules, the model is able to predict the isotope which

possesses the highest abundance. This information can be read out from the continued

fraction representations of the isotope masses. Isotopes with enhanced nuclear stability

due to a magic number of neutrons in the nucleus were frequently found as exceptions

from the model. The model is applicable to the di-, tri- and tetranuclidic chemical ele-

ments; it fails completely as soon as a chemical element is composed of 5 or more stable

isotopes. From this we conclude that the bipolar model of oscillations in a chain system

– in its present form – is not yet the final version; the model must still be extended.

1 Introduction

In a previous paper [1], the bipolar model of oscillations in a

chain system was applied to the standard atomic weights of

the chemical elements. The atomic weights of the 19 mono-

nuclidic elements and Helium, which have the lowest stan-

dard deviations, were expressed in continuous fraction form

without any outliers. This was the calibration (and determi-

nation oh the phase shift) of the model. It was then found

that the vast majority of atomic weights of the polynuclidic

elements could be reproduced through continued fractions as

well.

The underlying mathematical formalism worked as fol-

lows: the mean atomic weights were transformed into a con-

tinued fraction according to the equations

ln
m

melectron

= pe + S , ln
m

mproton

= pp + S , (1)

where p is the phase shift (it must hold pp = -pe) and S is the

continued fraction (e is Euler’s number)

S = n0 +
e

n1 +
e

n2 +
e

n3 + ...

. (2)

Numerically (if , 0), pp was found to be -1.7918229 for the

calibrating (low standard deviation) data set.

In this article we extend this previously established ver-

sion of the model and demonstrate how to predict with an ad-

equate set of rules, which isotope of a given chemical element

has the highest abundance.

2 Data sources and computational details

All masses and percentage abundances of isotopes were taken

from the web-site of the National Institute of Standards

(NIST). An isotope mass is understood as the mass of the

neutral atom in its nuclear and electronic ground state.

As in previous articles, the continued fraction representa-

tion p + S is abbreviated as [p; n0 | n1, n2, n3, . . . ], where the

free link n0 is allowed to be 0,±3,±6,±9,±12,±15 . . . and

all partial denominators ni can take the values e+1,−e−1,±6,

±9,±12,±15 . . . .

3 Results and discussion

3.1 Model extension

Within the originally presented form of the bipolar model

(eq. 1) it is not possible to express all the nuclide masses

through continued fractions within the accuracy of their stan-

dard deviations. Two adjustments are mandatory, one is re-

lated to the model itself, the other one to the data set.

First we introduce an additional phase shift δ, as it was

already done in a previous article dealing with the electron

density distribution in the Hydrogen atom [2]. We write

ln
m

melectron

= δe + pe + S , ln
m

mproton

= δp + pp + S . (3)

In the same manner as holds pp = -pe, must consequently hold

δp = −δe, which means the bipolarity is strictly conserved.

The only difference between δ and p is the fact that δ is a

small phase shift (, 0, with either positive or negative sign)

applying to all isotope masses, while the phase shift p varies

among the data points. Some of the masses are associated to

the phase shift zero, others to its non-zero value.

Second, in order to be able to express (almost) all the nu-

clide masses through continued fractions, we have to split the

data set of non-radioactive nuclide masses into groups:

Group zero is the set of 19 mononuclidic elements, which

was already analyzed in a previous article. Here the phase

shift p was determined (pp = -1.7918229) and a δ parameter

was not considered, which means δp = 0.

Group 1 is the set of dinuclidic elements. We require that

the phase shift p remains the same for all nuclides, so only δ
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must be adjusted in such a way that ideally all isotopes can be

expressed through a continued fraction.

Group 2 is composed of all stable isotopes of the set of

the trinuclidic chemical elements.

Analogously the remaining chemical elements can be

grouped. Every group of masses leads to the determination

of a different numerical value of the parameter δ.

The first task (before making any abundance prediction)

is the determination of δ, so that from the continued frac-

tion representations (ideally) every isotope mass can be re-

produced with a numerical error smaller than its standard de-

viation.

This means for every isotope mass we obtain 4 different

continued fraction representations (eq. 3): two of them inter-

pret the mass as a proton resonance and two others as electron

resonances. In the case of no outliers, at least one of these

continued fractions reproduces the mass value with an error

smaller than its standard deviation.

3.2 Prediction rules

The following simple rules lead to a prediction of nature’s

preference for the one or the other isotope.

Rule 1:

The electrons contribute very little to the isotope mass, there-

fore the electron resonances are not decisive and we express

the nuclide masses only as proton resonances, according to

the equations

ln
m(nuclide)

mproton

= δp + 0 + S 0

and

ln
m(nuclide)

mproton

= δp + (−1.7918229)+ S p.

This means we calculate two continued fractions S 0 and S p.

In all the fractions below, the number -1.7918229 is abbrevi-

ated as p.

Rule 2:

It is obvious that now, due to the elimination of the elec-

tron resonances, many nuclide masses cannot be expressed

anymore through a continued fraction with a numerical er-

ror smaller than the standard deviation. Consequently we ig-

nore the standard deviation criterion and consider continued

fractions leading to a numerical error up to 0.3 u as valid;

whenever this error is greater, the result is interpreted as “no

continued fraction found”.

The choice of 0.3 u as the allowed numerical error is not

fully arbitrary. It was adjusted in such a way to make it possi-

ble to express at least 95% of the masses through valid contin-

ued fractions. If the allowed error is too small, many masses

fall out of the model, so the model automatically does not

work for them. However, with increasing error also rises the

probability that the continued fraction has no physical rela-

tion to the mass.

Rule 3:

The priority rule for continued fractions with different phase

shifts: the fractions with phase shift zero have priority.

Rule 4:

Comparison rule: we can compare only continued fractions

(of different masses) which were calculated considering the

same phase shift.

Rule 5:

Abundant isotopes accumulate in nodes and sub-nodes with

high positive denominator.

Rule 6:

A nuclide mass which cannot be expressed through a contin-

ued fraction is not abundant.

3.3 Model verification

These rules are now applied to the different groups of iso-

tope masses. For simplicity, only the first four denominators

of the fractions are given, which is sufficient for comparison

purposes.

Group 1: dinuclidic chemical elements, δp = 0.002919.

1. Hydrogen:
1H: [0; 0 | -1146, e+1, -e-1, e+1], 99.9885%
2D: [0; 0 | e+1, 12, 9, 6], 0.0115%

Here we compare the first denominators: e+1 > -1146,

so the model predicts that the isotope 2D is more abun-

dant than the isotope 1H, which is not observed. The

reason for the failure of the model is simply the fact that

the isotope 1H is directly linked to the proton, the ref-

erence mass of the model, always more abundant than

any other nuclide mass.

2. Helium:
3He: [p; 3 | -24, 12, -e-1, -9], 0.000134%
4He: [p; 3 | 15, e+1, -e-1, e+1], 99.999866%

It is not possible to express the Helium isotope masses

through continued fractions with phase shift zero. Ac-

cording to the priority rule for phase shifts we now con-

sider the phase shifted fractions. As the first denomi-

nator (15) is higher than (-24), the isotope 4He should

be preferred by nature.

3. Lithium:
6Li: [p; 3 | e+1, e+1, -e-1, e+1], 7.59%
7Li: [p; 3 | e+1, 441, -6, -e-1], 92.41%

441 > e+1, therefore the isotope 7Li should have the

higher abundance, as observed. None of the Li isotope

masses can be expressed via a continued fraction with

phase shift zero.

4. Boron:
10B: [0; 3 | -e-1, -21, 18, -15], 19.9%
11B: [0; 3 | -e-1, -e-1, -150, 15], 80.1%

-e-1 > -21, therefore preference to 11B.
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5. Carbon:
12C: [0; 3 | -6, e+1, -6, -6], 98.93%
13C: [0; 3 | -6, -24, -e-1, e+1], 1.07%

e+1 > -24, therefore preference to 12C.

6. Nitrogen:
14N: [0; 3 | -6, -e-1, e+1, -e-1], 99.636%
15N: [0; 3 | -9, 1137, -e-1, e+1], 0.364%

-6 > -9, therefore preference to 14N.

7. Chlorine:
35Cl: [0; 3 | 6, -e-1, e+1, -e-1], 75.76%
37Cl: [0; 3 | e+1, e+1, -6, -e-1], 24.24%

6 > e+1, therefore preference to 35Cl.

8. Vanadium:
50V: [0; 3 | e+1, -e-1, -18, e+1], 0.25%
51V: [0; 3 | e+1, -e-1, 15, e+1], 99.75%

15 > -18, therefore preference to 51V.

9. Copper:
63Cu: [p; 6 | -36, 6, e+1, -e-1], 69.15%
65Cu: [p; 6 | -60, -9, 9, e+1], 30.85%

-36 > -60, therefore preference to 63Cu.

10. Gallium:
69Ga: [p; 6 | 186, -e-1, 6, -6], 60.108%
71Ga: [p; 6 | 63, -15, 30, 6], 39.892%

186 > 63, therefore preference to 69Ga.

11. Bromine:
79Br: [p; 6 | 18, 24, -27, 21], 50.69%
81Br: [p; 6 | 15, 6, -e-1, 6], 49.31%

18 > 15, therefore preference to 79Br.

12. Rubidium:
85Rb: [p; 6 | 12, 15, 6, -e-1], 72.17%
87Rb: [p; 6 | 12, -e-1, e+1, -e-1], 27.83%

15 > -e-1, therefore preference to 85Rb.

13. Silver:
107Ag: [p; 6 | 6, -375, 12, e+1], 51.839%
109Ag: [p; 6 | 6, -12, e+1, -9], 48.161%

As -12 > -375, the model predicts the higher abundance

for the isotope 109Ag, which is not observed. So the

element Silver is the first and only unexplained outlier

where our model fails.

It is completely impossible to express theses masses

through continued fractions with p = 0.

14. Indium:
113In: [p; 6 | 6, -e-1, -6, 54], 4.29%
115In: [p; 6 | 6, -e-1, 6, 18], 95.71%

6 > -6, preference to 115In, as observed.

15. Antimony:
121Sb: [p; 6 | e+1, e+1, -e-1, e+1], 57.21%
123Sb: [p; 6 | e+1, e+1, -e-1, -e-1], 42.79%

e+1 > -e-1, preference to 121Sb, as observed.

16. Lanthanum:
138La: [p; 6 | e+1, 24, -e-1, e+1], 0.09%

139La: [p; 6 | e+1, 33, 6, -e-1], 99.91%

33 > 24, preference to 139La, as observed.

17. Europium:
151Eu: [0; 6 | -e-1, e+1, -e-1, e+1], 47.81%
153Eu: [0; 6 | -e-1, e+1, -e-1, 6], 52.19%

6 > e+1, preference to 153Eu, as observed.

18. Lutetium:
175Lu: [0; 6 | -e-1, 6, -e-1, -e-1], 97.41%
176Lu: [0; 6 | -e-1, 6, -6, e+1], 2.59%

-e-1 > -6, preference to 175Lu, as observed.

19. Tantalum:
180Ta: [p; 6 | e+1, -e-1, e+1, -9], 0.012%
181Ta: [p; 6 | e+1, -e-1, e+1, -6], 99.988%

-6 > -9, preference to 181Ta, as observed.

20. Rhenium:
185Re: [0; 6 | -e-1, 9, e+1, -9], 37.40%
187Re: [0; 6 | -e-1, 12, -15, e+1], 62.60%

12 > 9, preference to 187Re, as observed.

21. Iridium:
191Ir: [0; 6 | -e-1, 21, -6, e+1], 37.3%
193Ir: [0; 6 | -e-1, 33, -27, -e-1], 62.7%

33 > 21, preference to 193Ir, as observed.

22. Thallium:
203Tl: [0; 6 | -e-1, -15, -396, -e-1], 29.52%
205Tl: [0; 6 | -e-1, -12, 6, e+1], 70.48%

-12 > -15, preference to 205Tl, as observed.

Group 2: trinuclidic chemical elements, δp = −0.016544.

Now we apply the same system to the set of 6 trinuclidic

chemical elements. We see that (with one magic number ex-

ception) the model identifies the most abundant isotope.

1. Oxygen:
16O: [0; 3 | -12, -6, -24, e+1], 99.757%
17O: [0; 3 | -18, e+1, -36, -e-1], 0.038%
18O: [0; 3 | -27, -33, -e-1, e+1], 0.205%

-12 > (-18 or -27), preference to 16O, as observed; how-

ever the model does not explain why the isotope 18O is

more abundant than 17O.

2. Neon:
20Ne: [0; 3 | 585, -15, 18, 6], 90.48%
21Ne: [0; 3 | 51, -12, -e-1, 21], 0.27%
22Ne: [0; 3 | 27, 15, -e-1, e+1], 9.25%

585 > (51 or 27), preference to 20Ne, as observed.

3. Magnesium:
24Mg: [0; 3 | 15, -6, -18, -e-1], 78.99%
25Mg: [0; 3 | 12, -48, 12, -e-1], 10.00%
26Mg: [0; 3 | 9, e+1, -e-1, e+1], 11.01%

15 > (12 or 9), preference to 24Mg, as observed.

4. Silicon:
28Si: [0; 3 | 9, -e-1, e+1, -e-1], 92.223%

A. Ries. Qualitative Prediction of Isotope Abundances with the Bipolar Model of Oscillations in a Chain System 185



Volume 11 (2015) PROGRESS IN PHYSICS Issue 2 (April)

29Si: no continued fraction found, 4.685%
30Si: [0; 3 | 6, e+1, 6, -e-1], 3.092%

9 > 6, preference to 28Si, as observed.

5. Argon:
36Ar: [0; 3 | e+1, e+1, -e-1, e+1], 0.3365%
38Ar: [0; 3 | e+1, 6, -6, 93], 0.0632%
40Ar: [0; 3 | e+1, 15, 39, 6], 99.6003%

15 > (6 or e+1), preference to 40Ar, as observed.

6. Potassium:
39K: [0; 3 | e+1, 9, -e-1, -12], 93.2581%
40K: [0; 3 | e+1, 15, 30, e+1], 0.0117%
41K: [0; 3 | e+1, 57, e+1, -6], 6.7302%

57 > (9 or 15), preference expected to 41K, which is

against the experimental observations. Reason: Potas-

sium is the element with atomic number 19. The iso-

tope 39K has 39 − 19 = 20 neutrons, which means a

magic number of neutrons. This explains the increased

abundance.

Group 3: tetranuclidic chemical elements, δp = 0.025770.

1. Sulfur:
32S: [0; 3 | 6, 9, 12, -429], 94.99%
33S: [0; 3 | 6, -21, -e-1, e+1], 0.75%
34S: [0; 3 | 6, -6, 9, -e-1], 4.25%
36S: [0; 3 | 6, -e-1, e+1, -e-1], 0.01%

9 is the highest denominator, preference to the isotope
32S, which is indeed observed.

2. Chromium:
50Cr: [0; 3 | e+1, -e-1, -e-1, -6], 4.345%
52Cr: [0; 3 | e+1, -e-1, 24, -15], 83.789%
53Cr: [0; 3 | e+1, -e-1, 6, e+1], 9.501%
54Cr: [0; 3 | e+1, -e-1, e+1, e+1], 2.365%

24 is the highest denominator, therefore preference to

the isotope 52Cr, as observed.

3. Iron:

When considering the phase shift zero, for both iso-

topes, 57Fe and 58Fe, no continued fraction is found.

This is the only case where two isotopes of a chemi-

cal element could not be expressed as proton resonance

simultaneously. A better description is found for the

phase shifted fractions, here only 54Fe turns out to be

an outlier. The model is correct when going down the

priority hierarchy and analyze these phase shifted frac-

tions:
54Fe: no continued fraction found, 5.845%
56Fe: [p; 6 | -12, -6, e+1, -6], 91.754%
57Fe: [p; 6 | -15, e+1, -e-1, e+1], 2.119%
58Fe: [p; 6 | -15, 48, 150, 12], 0.282%

-12 > -15, therefore 56Fe has the highest abundance.

4. Strontium:
84Sr: [p; 6 | 15, -e-1, -e-1, e+1], 0.56%
86Sr: [p; 6 | 12, e+1, -6, -e-1], 9.86%

87Sr: [p; 6 | 12, 18, -9, -6], 7.00%
88Sr: [p; 6 | 12, -6, -12, 9], 82.58%

15 > 12, so the model predicts the highest abundance

for the isotope 84Sr, which is not observed. Reason:

Strontium is the element with atomic number 38. The

most abundant nuclide 88Sr has 88 − 38 = 50, a magic

number of neutrons, which explains the failure of our

model.

5. Cerium:
136Ce: [p; 6 | e+1, 9, -e-1, e+1], 0.185%
138Ce: [p; 6 | e+1, 12, -e-1, e+1], 0.251%
140Ce: [p; 6 | e+1, 15, e+1, -e-1], 88.450%
142Ce: [p; 6 | e+1, 30, e+1, e+1], 11.114%

Our model predicts the highest abundance for the iso-

tope 142Ce. However, the most abundant isotope 140
58

Ce

has a magic number of 140 − 58 = 82 neutrons, so its

abundance is increased.

6. Lead:
204Pb: [0; 6 | -e-1, -33, 6, e+1], 1.4%
206Pb: [0; 6 | -e-1, -21, e+1, -e-1], 24.1%
207Pb: [0; 6 | -e-1, -18, e+1, -e-1], 22.1%
208Pb: [0; 6 | -e-1, -15, e+1, 6], 52.4%

-15 is the highest denominator, the model predicts the

highest abundance for 208Pb, as observed.

Higher groups: unfortunately, the model fails completely

when predicting the most abundant nuclide for all chemical

elements consisting of more than four isotopes. Despite the

fact that the grouping scheme still allows the expression of

the nuclide masses through continued fractions (with few out-

liers), no correlation between the maximum abundance and

the denominators is visible.

4 Conclusions

We have shown that a minor extension of the bipolar model of

oscillations in a chain system allows a satisfactory prediction

of the most abundant isotope for a given chemical element.

Most outliers occur when one of the isotopes has a magic

number of neutrons in the nucleus. From its total failure for

elements with 5 ore more stable isotopes, we conclude that

our model is still incomplete and must be extended.
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