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In this paper we review scale-invariant models of natural oscillations in chain systems of
harmonic quantum oscillators and derive measurable consequences. Basic model claims
are verified in terms of fundamental particles, the cosmic microwave background and
the solar system. The cosmological significance of some model statements is discussed.

Introduction

In the last 40 years many studies [1] were published which
show that scale invariance (scaling) is a widely distributed
phenomenon discovered in high energy physics [2–4], seis-
mology [5,6], biology [7–9] and stochastic processes of vari-
ous nature [10].

As a property of power laws, scale invariance can be gen-
erated by very different mechanisms. The origin of power law
relations and efforts to observe and validate them is a topic of
research in many fields of science. However, the universal-
ity of scaling may have a mathematical origin that does not
depend on the actual mechanism of manifestation.

In [11] we have shown that scale invariance is a funda-
mental property of natural oscillations in chain systems of
similar harmonic oscillators. In [12] we applied this model
on chain systems of harmonic quantum oscillators. In the
case of a chain of protons as fundamental oscillators, particle
rest masses coincide with the eigenstates of the system. This
is valid not only for hadrons, but for mesons and leptons as
well. Because of scale invariance, chains of electrons produce
similar sets of natural frequencies.

In [13] Andreas Ries has shown that the complete descrip-
tion of elementary particle masses by the model of oscilla-
tions in chain systems is only possible if considering both,
chains of protons and electrons. Furthermore, in [14] he was
able to show that this model allows the prediction of the most
abundant isotope for a given chemical element.

The core claims of scale-invariant models do not depend
on the selection of the fundamental oscillator. Therefore, the
rest mass of the fundamental oscillator can be even smaller
than the electron mass. Consequently, all elementary parti-
cles can be interpreted as eigenstates in a chain system of
harmonic quantum oscillators, in which the rest mass of each
single oscillator goes to zero. This is how the transition of
massless to massive states can be explained [15].

In [16] we have shown that scale-invariant models of nat-
ural oscillations in chain systems of protons also describe the
mass distribution of large celestial bodies in the solar system.

The intention of this article is an adjustment of the basic
claims of our model and an additional verification on funda-
mental particles, the cosmic microwave background and the

solar system. Furthermore, we discuss the cosmological sig-
nificance of some model claims.

1 Methods

Kyril Dombrowski [17] mentioned that oscillating systems
– having the peculiarity to change their own parameters be-
cause of interactions inside the systems – have a tendency to
reach a stable state where the individual oscillator frequen-
cies are interrelated by specific numbers – namely minima of
the rational number density on the number line.

Viktor and Maria Panchelyuga [18] showed that reso-
nance phenomena appear more easily if they belong to max-
ima in the distribution of rational numbers, while maxima in
the distribution of irrational numbers correspond with a high
stability of the system, minimal interaction between parts of
the system and minimal interaction with the surroundings.

In [11] we have shown that in the case of harmonic os-
cillations in chain systems, the set of natural frequencies is
isomorphic to a discrete set of natural logarithms whose val-
ues are rational numbers.

Each real number (rational or irrational) has a biunique
representation as a simple continued fraction. In addition, any
rational number can be represented as a finite continued frac-
tion and any finite continued fraction represents a rational
number [19].

Consequently, the set of natural frequencies of a chain
system of harmonic oscillators corresponds with a set of finite
continued fractions F , which are natural logarithms:

ln (ω jk/ω00)= n j0 +
z

n j1 +
z

n j2 + . . .
+

z
n jk

=

= [z, n j0; n j1, n j2, . . . , n jk]=F ,

(1)

where ω jk is the set of angular frequencies and ω00 is the fun-
damental frequency of the set. The denominators are integer
numbers: n j0, n j1, n j2, . . . , n jk ∈Z, the cardinality j ∈N of the
set and the number k ∈N of layers are finite. In the canonical
form, the numerator z is equal 1.

However, by means of the Euler equivalent transforma-
tion [20] every continued fraction with partial numerators
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z, 1 can be changed into a continued fraction in the canonical
form with z= 1.

Therefore, we will call the set F of finite continued frac-
tions (1) with z= 1 the “Fundamental Fractal” of natural fre-
quencies in chain systems of harmonic oscillators.

For rational exponents the natural exponential function is
transcendental [21]. Therefore, F is a set of transcenden-
tal numbers that is isomorphic to the set of rational numbers
represented by finite continued fractions. The function of iso-
morphism is the natural logarithm.

It seems that this transcendence and consequently the ir-
rationality of F provides the high stability of the oscillating
chain system because it avoids resonance interaction between
the elements of the system.

2 Projections of the Fundamental Fractal

All elements of the continued fractions F are integers and
can therefore be represented as unique products of prime fac-
tors. Consequently, we can distinguish classes of finite con-
tinued fractions (classes of rational numbers) in dependency
on the divisibility of the numerators and denominators by
prime numbers, as we have shown in [11]. Based on this,
different projections of F can be studied.

Figure 1 demonstrates the formation of the canonical pro-
jection (z= 1). Each vertical line represents a rational number
that is the logarithm of a natural frequency of a chain system
of harmonic oscillators.

Fig. 1: The formation of the canonical projection (z= 1) of the F
on the first layer k= 1 (natural logarithmic representation).

The distribution density increases hyperbolically with
|n j1|. In the range 1< |n j1|< 2 the distribution density is min-
imum. Figure 2 shows that for finite continued fractions (1),
ranges of high distribution density (nodes) arise near recipro-
cal integers 1, 1/2, 1/3, 1/4, . . . which are the attractor points
of the distribution.

All the denominators of the continued fractions F are
(positive and negative) integers. Therefore, the canonical pro-
jection is logarithmically symmetric, as figures 3 and 4 show.

Fig. 2: The canonical projection of the F in the range 0⩽ |n j0|⩽ 1
for k= 2 (natural logarithmic representation).

Fig. 3: The canonical projection of the F in the range 1⩽ |n j1|<∞
for k= 2 (natural logarithmic representation).

Fig. 4: The canonical projection of the F in the range −2⩽ S ⩽ 2
for k= 2 (natural logarithmic representation).

In the following we investigate continued fractions (1)
which meet the Markov [22] convergence condition |n|⩾|z|+1.

Figure 5 illustrates different projections generated by con-
tinued fractions (1) with denominators divisible by 2, 3, 4, . . .
and the corresponding numerators z= 1, 2, 3, . . .

Fig. 5: Different projections generated by continued fractions (1)
with denominators divisible by 2, 3, 4, . . . and corresponding numer-
ators z= 1, 2, 3, . . . .

Figure 5 shows the nodes on the first layer j= 1 and also
the borders of the node ranges, so the gaps are clearly visible.
The borders of the gaps are determined by the alternating con-
tinued fractions [z, 0; z+ 1,− z− 1, z+ 1,− z− 1, . . . ]= 1 and
[z, 0; z− 1,− z+ 1, z− 1,− z+ 1, . . . ]=− 1, for z⩾ 1.

Denominators that are divisible by 3 with z= 2 build the
class of continued fractions (1) that generates the projection
with the smallest gaps. These gaps remain empty even if the
number of layers k increases infinitely.

In the 2/3-projection, free links n j0 of the continued frac-
tions (1) that are divisible by 3 designate the main nodes, de-
nominators divisible by 3 designate subnodes while all the
other denominators designate the borders of gaps (see Fig-
ure 6 and 7).
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Fig. 6: The 2/3-projection of (1) with z= 2, divisible by 3 |n j0|= 3l, (l= 0, 1, 2, . . . ) and denominators divisible by 3 |n jk |= 3d, (d = 1, 2, . . . )
in the range of −4⩽F ⩽ 4).

Fig. 7: The same 2/3-projection like in fig. 6, but in the range of −1⩽F ⩽ 1.

In [23] we have shown that in the 2/3-projection, ranges
of gaps are connected with stochastic properties of natural
oscillations in chain systems of protons. In the current paper
we apply the canonical projection only.

3 Harmonic Scaling

Based on (1), we can now calculate the complete set ω jk of
natural angular frequencies of a chain system of similar har-
monic oscillators, if the fundamental frequency ω00 or any
other natural frequency of the set ω jk is known:

ω jk = ω00 exp (F ) . (2)

Here and in the following, F is considered in its canonical
projection with z= 1. The natural angular oscillation period τ
is defined as the reciprocal of the angular frequency:

τ jk = 1/ω jk . (3)

The complete set of natural angular scale oscillation periods:

τ jk = τ00 exp (F ) . (4)

In [12] we have shown that our model (1) can be applied also
in the case of natural oscillations in chain systems of har-
monic quantum oscillators where the oscillation energy E de-
pends only on the frequency (ℏ being the Planck constant):

E jk = ℏω jk . (5)

Consequently, the natural frequency set and the correspond-
ing set of natural energies are isomorphic, so that chain sys-
tems of harmonic quantum oscillators generate discrete expo-
nential energy series:

E jk = E00 exp (F ) , (6)

where E00 = ℏω00 is the fundamental energy. Because of the
mass-energy equivalence,

m jk = E jk/c2 (7)

the set of natural energies and the corresponding set of natu-
ral masses are isomorphic, so that chain systems of harmonic

quantum oscillators generate discrete exponential series of
masses:

m jk = m00 exp (F ) , (8)

where m00 =ω00 · ℏ/c2 is the fundamental mass.
Finally, the set of natural frequencies corresponds to an

isomorphic set of natural wavelengths (c being the speed of
light in vacuum),

λ jk = c/ω jk (9)
so that chain systems of harmonic quantum oscillators gener-
ate discrete exponential series of natural wavelengths:

λ jk = λ00 exp (F ) , (10)

where λ00 = c/ω00 is the fundamental wavelength.
As a consequence of (3) and (9), the set of natural wave-

lengths and the set of natural oscillation periods in chain sys-
tems of harmonic quantum oscillators coincide with an iso-
morphic set of natural velocities:

v jk = λ jk/τ jk . (11)

Therefore, chain systems of harmonic quantum oscillators
generate discrete exponential series of natural velocities as
well:

v jk = v00 exp (F ) , (12)

where the fundamental velocity v00 = c is the speed of light in
a vacuum.

In relation to the anticipated harmonic exponential series
of wavelengths, velocities, energies and masses as a conse-
quence of harmonic oscillations in chain systems, we propose
the term “harmonic scaling”.

The natural exponential function of a real argument x is
the unique nontrivial function that is its own derivative

d
dx

ex = ex

and therefore its own anti-derivative as well. Because of the
self-similarity of the natural exponential function regarding
its derivatives, any real number, being the result of a mea-
surement, can be thought of as a natural logarithm or as the
logarithm of a logarithm. Therefore, harmonic scaling is not
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limited to exponentiation, but can be extended to tetration,
pentation and other hyperoperations as well. In this case we
will use the term “hyperscaling”.

4 Harmonic Scaling of Fundamental Particles

In [12] we have shown that physical properties of fundamen-
tal particles, for example the proton-to-electron mass ratio or
the vector boson-to-electron mass ratio, can be derived from
eigenstates in chain systems of harmonic quantum oscillators.

In fact, the natural logarithm of the proton/neutron to elec-
tron mass ratio is close to [7; 2] and the logarithm of the
W/Z-boson to proton mass ratio is near [4; 2], so we can as-
sume the equation:

ln (mwz/mpn) = ln (mpn/me) − 3 .

Consequently, the logarithm of the W/Z-boson to electron
mass ratio is 4 1

2 + 7 1
2 = 12:

ln (mwz/me)= 12 ,

where me, mpn, mwz, are the electron, proton/neutron and
W/Z-boson rest masses. As table 1 shows, fundamental parti-
cle rest mass ratios correspond to attractor nodes of F . Here
and in the following we consider the continued fractions (1) in
the canonical form, with the numerator z= 1 and write them
in square brackets.

Table 1: Fundamental particle rest masses and the corresponding
attractor nodes of F , with the electron mass as fundamental. Data
taken from Particle Data Group.

particle particle rest mass m, MeV/c2 F ln(m/me) ln(m/me)−F
H-
boson

125090± 240 [12;2] 12.408 -0.092

Z-
boson

91187.6± 2.1 [12;∞] 12.092 0.092

W-
boson

80385± 15 [12;∞] 11.966 -0.034

neutron 939.565379± 0.000021 [7;2] 7.517 0.017
proton 938.272046± 0.000021 [7;2] 7.515 0.015
electron 0.510998928± 0.000000011 [0;∞] 0.000 0.000

As table 1 shows, the logarithms of fundamental particle
mass ratios are close to integer or half values that are rational
numbers with the smallest possible numerators and denomi-
nators.

However, the natural logarithm of the W/Z-boson to
proton mass ratio is not exactly 4.5, but between 11.966−
− 7.515= 4.451 and 12.092− 7.515= 4.577 that approxi-
mates exp (3/2)= 4.4817. Thus, the properties of fundamen-
tal particle masses (table 1) also support our model of hyper-
scaling.

5 Fundamental Metrology and Planck Units

The electron and the proton are exceptionally stable and
therefore accessible anywhere in the universe. Their lifespan
tops everything that is measurable, exceeding 1029 years for

protons and 1028 years for electrons [24]. In the framework of
the standard theory of particle physics, the electron is stable
because it is the least massive particle with non-zero elec-
tric charge. Its decay would violate charge conservation [25].
The proton is stable, because it is the lightest baryon and the
baryon number is conserved as well. Therefore, the proton-
to-electron mass ratio can be understood as a fundamental
physical constant.

These unique properties of electrons and protons predes-
tinate their physical characteristics as fundamental units. Ta-
ble 2 shows the basic set of electron and proton units that can
be considered as a fundamental metrology (c is the speed of
light in a vacuum, ℏ is the Planck constant, kB is the Boltz-
mann constant).

Table 2: The basic set of physical properties of the electron and pro-
ton. Data taken from Particle Data Group. Frequencies, oscillation
periods, temperatures and the proton wavelength are calculated.

property electron proton

mass m 9.10938356(11) · 10−31 kg 1.672621898(21) · 10−27 kg
energy E =mc2 0.5109989461(31) MeV 938.2720813(58) MeV
angular frequency
ω= E/ℏ

7.76344071 · 1020 Hz 1.42548624 · 1024 Hz

oscillation period
τ= 1/ω

1.28808867 · 10−21s 7.01515 · 10−25 s

wavelength
λ= c/ω

3.8615926764(18) · 10−13 m 2.1030891 · 10−16 m

temperature
T =mc2/kB

5.9298 · 109 K 1.08881 · 1013 m

In [15] we have shown that the Planck scale corresponds
to a main attractor node of F and consequently, Planck units
[26] are completely compatible with the fundamental metrol-
ogy (tab. 2).

Originally proposed in 1899 by Max Planck, these units
are also known as natural units, because the origin of their
definition comes only from properties of nature and not from
any human construct.

Max Planck wrote [27] that these units, “regardless of any
particular bodies or substances, retain their importance for all
times and for all cultures, including alien and non-human, and
can therefore be called natural units of measurement”. Planck
units are based only on the properties of space-time.

In fact, the logarithm of the Planck-to-proton mass ration
is near the node [44;∞] of the F :

ln
(

mPlanck

mproton

)
= ln

(
2.17647 · 10−8

1.6726219 · 10−27

)
= 44.012. (13)

This fact does not only support our model (1), but allows us
to derive the proton rest mass from the fundamental physical
constants c, ℏ, G:

mproton = exp(−44)(ℏc/G)1/2 . (14)

In 1899, Max Planck noted that with his discovery of the
quantum of action, sufficient fundamental constants were now
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Fig. 8: The correspondence between electron-calibrated attractor nodes [m j0] and proton-calibrated attractor nodes [n j0] of F in its canon-
ical projection.

Fig. 9: The correspondence of electron-calibrated subnodes [m j0; m j1] to proton-calibrated subnodes [n j0; n j1] on the first layer of F in the
canonical projection.

Fig. 10: The correspondence of the electron-calibrated F (above) to the proton-calibrated F (below) in the 2/3-projection.

known to define universal units for length, time, mass, and
temperature.

This equation (14) may well be of cosmological signif-
icance, because it means that the values of proton and the
electron rest masses are equally fundamental properties of
space-time as are the speed of light, the Planck constant and
the gravitational constant.

6 Cosmic Microwave Background

CMB data is critical to cosmology since any proposed model
of the universe must explain this radiation. Within our model,
the CMB can be understood as an eigenstate in a chain system
of oscillating protons, because the black body temperature of
the CMB corresponds to the main attractor node [−29;∞] of
the F calibrated on the proton temperature (table 2):

ln
(

TCMB

Tproton

)
= ln

(
2.726 K

1.08881 · 1013 K

)
= −29.016. (15)

7 Global Scaling

We hypothesise that harmonic scaling is a global pheno-
menon and continues in all scales, following the fundamen-
tal fractal (1) that is calibrated by this fundamental metrol-
ogy (table 2). This hypothesis we have called ‘Global Scal-
ing’ [23].

8 Calibration of the Fundamental Fractal

Table 1 shows that the natural logarithm of the proton-to-
electron mass ratio is approximately 7.5 and consequently,
the F calibrated on the proton will be shifted by 7.5 logarith-
mic units relative to the F calibrated on the electron. Figure 8
demonstrates this situation in the canonical projection.

As a consequence, all integer logarithms (n j1 =∞) of the
proton F correspond to half logarithms (m j1 =± 2) of the
electron F and vice versa. In addition, the Diophantine equa-
tion (18) describes the correspondence of proton-calibrated
subnodes [n j0; n j1] with electron-calibrated subnodes [m j0;
m j1] on the first layer k= 1 of F :

1
n j1
+

1
m j1
=

1
2
. (16)

Only three pairs (n j1, m j1) of integers are solutions to this
equation: (4, 4), (3, 6) and (6, 3). Figure 9 demonstrates this
correspondence.

In fact, if a process property corresponds to a half loga-
rithm (m j1 = ± 2) of the electron calibrated F it also corre-
sponds to an integer logarithm (n j1 = ∞) of the proton cali-
brated F . Consequently, we must treat half logarithms and
integer logarithms with equal (highest) priority. Furthermore,
subnodes that satisfy the equation (16) are of high signifi-
cance because the subnodes m j1=±3, m j1=±4 and m j1=±6
of the electron F coincide with the subnodes n j1=±6, n j1=±4
and n j1 =± 3 of the proton F . It is likely that this correspon-
dence amplifies the attractor effect of these subnodes.

As figure 10 shows, in the 2/3-projection, the electron-
based F (above) fills the empty intervals 3l + 1 ⩽ S ⩽ 3l + 2
(l = 0, 1, 2, . . . ) in the proton-based F (below). Furthermore,
in the intervals 3l+ 1/2⩽ S ⩽ 3l+ 1 (l= 0, 1, 2, . . . ) the pro-
ton F overlaps with the electron F . In the 2/3-projection,
the subnodes [2, n j0; 3,−6] and [2, n j0;−3, 6] in the logarith-
mic center of the overlapping area are the only nodes that are
common to both the proton-based and electron-based F .

In [23] we have applied the 2/3-projection on the Solar
system. In the following, we will test our hypothesis of global
scaling on the Solar system applying the canonical projection.
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9 Applying Global Scaling on the Solar System

In 2010 we have shown [16] that the masses of large celes-
tial bodies in the Solar system continue the scale-invariant
sequence of fundamental particle rest masses (see table 1),
corresponding with main attractor nodes of the fundamental
fractal (1).

If we consider the Solar system as still evolving – at least
in terms of small body collisions and matter exchanges with
neighbouring systems – the expected attractor effect of nodes
suggests applying F for the prediction of evolutionary trends.

Yet, the existence of stable orbits and large celestial bod-
ies with stable rotation periods suggests testing our hypothe-
sis of global scaling on the Solar system. Let us begin with
the most noticeable examples.

The Sun

The current amount of the Solar mass supports our hypothesis
of global scaling, because it corresponds to a main attractor
node of the electron-calibrated F (8). In fact, the natural log-
arithm of the Sun-to-electron mass ratio is close to an integer
number:

ln
(

MSun

melectron

)
= ln

(
1.9884 · 1030 kg

9.10938356 · 10−31 kg

)
= 138.936.

Also, the Solar radius corresponds to a main attractor node of
the electron F (10):

ln
(

RSun

λelectron

)
= ln

(
6.96407 · 108 m

3.8615926764 · 10−13 m

)
= 48.945.

The Solar sidereal rotation period is in between τmin = 24.5
days at the equator and τmax = 34.4 days at the poles. The
canonical projection of the electron F (4) shows that the
Solar rotation period varies between the main attractor node
[63;∞] and its nearest significant subnode [63;−3]:

ln
(
τmax

τelectron

)
= ln

(
34.4 · 86164 s

1.28808867 · 10−21 s

)
= 63.003 ,

ln
(
τmin

τelectron

)
= ln

(
24.5 · 86164 s

1.28808867 · 10−21 s

)
= 62.664 .

Jupiter

Let’s start with Jupiter’s body mass:

ln
(

MJupiter

melectron

)
= ln

(
1.8986 · 1027 kg

9.10938356 · 10−31 kg

)
= 131.981

we can see that the Jupiter body mass corresponds to the main
attractor node [132; ∞] of the electron F (8) and within our
model, the body mass of Jupiter MJupiter can be calculated
from the Solar Mass MSun, by simply dividing it seven times
by the Euler number e= 2.71828 . . . :

MJupiter =
MSun

exp (7)
. (17)

Jupiter’s body radius corresponds to the significant subnode
[47;−3] of the electronF (10):

ln
(

RJupiter

λelectron

)
= ln

(
7.1492 · 107 m

3.8615926764 · 10−13 m

)
= 46.668 .

The sidereal rotation period of Jupiter is 9.925 hours and cor-
responds with the main attractor node [66;∞] of the proton
F (4):

ln
(
τJupiter

τproton

)
= ln

(
9.925 · 3600 s

7.01515 · 10−25 s

)
= 66.100 .

In contrast to rotation as angular movement, the location of a
celestial body in the Solar system in orbital movement
changes permanently. Furthermore, in the case of non-zero
eccentricity, the angular velocity of orbital movement is not
constant. Therefore, we expect that the orbital periods coin-
cide with attractor nodes of the F (4) with the electron oscil-
lation period 2πτe as the fundamental. For example, Jupiter’s
orbital period of 4332.59 days fulfils the conditions of global
scaling very precisely:

ln
(

TJupiter

2πτelectron

)
= ln

(
4332.59 · 86164 s

8.0932998 · 10−21 s

)
= 66.001.

When the logarithm of the sidereal rotation period of Jupiter
slows down to [66;∞], the orbital-to-rotation period ratio of
Jupiter can be described by the equation:

TJupiter

τJupiter
= 2π

τelectron

τproton
. (18)

The orbital velocity of Jupiter is between vmin = 12.44 and
vmax=13.72 km/s. This velocity clearly approximates the main
attractor node [−10;∞] of the F calibrated on the speed of
light (12):

ln
(
vmax

c

)
= ln

(
13720 m/s

299792458 m/s

)
= −9.992,

ln
(
vmin

c

)
= ln

(
12440 m/s

299792458 m/s

)
= −10.090.

Consequently, the orbital distance of Jupiter between Peri-
helion= 4.95029 and Aphelion= 5.45492 astronomical units
approximates the main attractor node [56;∞] of the electron-
calibrated F (10):

ln
(

AJupiter

λelectron

)
= ln

(
5.45492 · 149597870700 m

3.8615926764 · 10−13 m

)
= 56.011,

ln
(

PJupiter

λelectron

)
= ln

(
4.95029 · 149597870700 m

3.8615926764 · 10−13 m

)
= 55.914.

By the way, the masses of Jupiter’s largest moons fulfil the
condition of global scaling as well. For example, the body

194 Hartmut Müller. Scale-Invariant Models of Natural Oscillations in Chain Systems and their Cosmological Significance



Issue 4 (October) PROGRESS IN PHYSICS Volume 13 (2017)

mass of Ganymede fits perfectly with the main node [115;∞]
of the proton F (8):

ln
(

MGanymede

mproton

)
= ln

(
1.4819 · 1023 kg

1.672621 · 10−27 kg

)
= 115.009.

On the other hand, the body mass of Io corresponds with the
significant subnode [114; 2]:

ln
(

MIo

mproton

)
= ln

(
8.9319 · 1022 kg

1.672621 · 10−27 kg

)
= 114.502.

Venus

The morning star is another impressive example of global
scaling. Like the Sun or Jupiter, the body mass of Venus cor-
responds to a main attractor node of the electron F (8):

ln
(

MVenus

melectron

)
= ln

(
4.8675 · 1024 kg

9.10938356 · 10−31 kg

)
= 126.015.

Although the rotation of Venus is reverse, its rotation pe-
riod of 5816.66728 hours fits perfectly with the main attractor
node [65;∞] of the electron calibrated F (4):

ln
(
τVenus

τelectron

)
= ln

(
5816.66728 · 3600 s
1.28808867 · 10−21 s

)
= 64.958.

The sidereal orbital period of Venus of 224.701 days fulfils
the condition of global scaling as well:

ln
(

TVenus

2πτelectron

)
= ln

(
224.701 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 63.042.

The orbital velocity of Venus (vmin = 34.79 and vmax =

= 35.26 km/s) corresponds well to the main attractor node
[−9;∞] of the speed of light calibrated F (12):

ln
(
vmax

c

)
= ln

(
35260 m/s

299792458 m/s

)
= −9.048,

ln
(
vmin

c

)
= ln

(
34790 m/s

299792458 m/s

)
= −9.062.

The orbital distance of Venus (Perihelion=0.71844 and Aphe-
lion= 0.728213 astronomical units) corresponds precisely to
the main attractor node [54;∞] of the electron calibrated
F (10):

ln
(

AVenus

λelectron

)
= ln

(
0.728213 · 149597870700 m

3.8615926764 · 10−13 m

)
= 53.997,

ln
(

PVenus

λelectron

)
= ln

(
0.718440 · 149597870700 m

3.8615926764 · 10−13 m

)
= 53.984.

The current body radius of Venus corresponds with the sub-
node [44; 5] of the electron F (10):

ln
(

RVenus

λelectron

)
= ln

(
6.053 · 106 m

3.8615926764 · 10−13 m

)
= 44.199.

However, its vicinity to the significant subnode [44; 4] gives
reason to expect that Venus is still growing.

Mars

Again, the body mass of Mars corresponds to a main attractor
node of the electron F (8):

ln
(

MMars

melectron

)
= ln

(
6.4171 · 1023 kg

9.10938356 · 10−31 kg

)
= 123.989.

The sidereal rotation period of Mars is 24.62278 hours and
coincides perfectly to the main node [67;∞] of the proton
F (4):

ln
(
τMars

τproton

)
= ln

(
24.62278 · 3600 s
7.01515 · 10−25 s

)
= 67.008.

The orbital velocity of Mars is between 21.97 and 26.50 km/s,
approximating the subnode [−9;−2] of the speed of light cal-
ibrated F (12):

ln
(
vmax

c

)
= ln

(
26500 m/s

299792458 m/s

)
= −9.334,

ln
(
vmin

c

)
= ln

(
21970 m/s

299792458 m/s

)
= −9.521.

In addition, the orbital period of Mars 686.971 days meets
precisely the condition of global scaling:

ln
(

TMars

2πτelectron

)
= ln

(
686.971 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 65.997.

The orbital distance of Mars (Perihelion= 1.3814 and Aphe-
lion= 1.6660 astronomical units) approximates the signifi-
cant subnode [55;−4] of the electron F (10):

ln
(

AMars

λelectron

)
= ln

(
1.6660 · 149597870700 m
3.8615926764 · 10−13 m

)
= 54.825,

ln
(

PMars

λelectron

)
= ln

(
1.3814 · 149597870700 m
3.8615926764 · 10−13 m

)
= 54.637.

The current body radius of Mars is close to the significant
subnode [44;−3] of the F (10):

ln
(

RMars

λelectron

)
= ln

(
3.396 · 106 m

3.8615926764 · 10−13 m

)
= 43.621.

It is therefore likely that Mars, too, is still growing. From this
point of view, the large Martian canyon (Valles Marineris) can
be interpreted as a sign of crustal swelling [28].

Earth

The current mass of the Earth corresponds to the significant
subnode [126; 4] of the electron F (8):

ln
(

MEarth

melectron

)
= ln

(
5.97237 · 1024 kg

9.10938356 · 10−31 kg

)
= 126.220.

Hence, we can expect that the Earth is slightly increasing its
mass.
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The body radius of the Earth approximates precisely the
significant subnode [44; 4] of the electron F (10):

ln
(

REarth equator

λelectron

)
= ln

(
6.378 · 103 m

3.8615926764 · 10−13 m

)
= 44.251,

ln
(

REarth pole

λelectron

)
= ln

(
6.357 · 103 m

3.8615926764 · 10−13 m

)
= 44.248.

The sidereal rotation period of the Earth is 23.93444 hours
and is located very close to the main node [67;∞] in the pro-
ton F (4):

ln
(
τEarth

τproton

)
= ln

(
23.93444 · 3600 s
7.01515 · 10−25 s

)
= 66.980,

Therefore, we can expect that the rotation period of the Earth
is also slightly increasing. Empirical studies [29] confirm the
correlation between body mass and rotation period.

Earth’s orbital period of 365.256363 days is close to the
main attractor node [71] of the proton-based F (4):

ln
(

TEarth

2πτproton

)
= ln

(
365.256363 · 86164 s
2π · 7.01515 · 10−25 s

)
= 71.043.

Earth’s orbital velocity is between vmin = 29.29 and vmax =

= 30.29 km/s, approximating the significant subnode [−9; 4]
of the speed of light-based F (12):

ln
(
vmax

c

)
= ln

(
30290 m/s

299792458 m/s

)
= −9.200,

ln
(
vmin

c

)
= ln

(
29290 m/s

299792458 m/s

)
= −9.234,

The orbital distance of the Earth (Perihelion = 0.9832687 and
Aphelion = 1.01673 astronomical units) corresponds to the
significant subnode [54; 3] of the electron-based F (10):

ln
(

AEarth

λelectron

)
= ln

(
1.0167300 · 149597870700 m

3.8615926764 · 10−13 m

)
= 54.331,

ln
(

PEarth

λelectron

)
= ln

(
0.9832687 · 149597870700 m

3.8615926764 · 10−13 m

)
= 54.297.

Mercury

Mercury’s body mass is close to the significant subnode
[123; 3] of the electron F (8):

ln
(

MMercury

melectron

)
= ln

(
3.3011 · 1023 kg

9.10938356 · 10−31 kg

)
= 123.324.

Its body radius is close to the significant subnode [43; 3] of
the electron F (10):

ln
(

RMercury

λelectron

)
= ln

(
2.44 · 103 m

3.8615926764 · 10−13 m

)
= 43.290.

So we can expect that Mercury is slightly increasing its mass
and size. The sidereal rotation period of Mercury is 1407.5
hours and corresponds to the main attractor node [71;∞] of
the proton F (4):

ln
(
τMercury

τproton

)
= ln

(
1407.5 · 3600 s

7.01515 · 10−25 s

)
= 71.054.

The sidereal orbital period of Mercury of 87.9691 days is
close to the main attractor node [62;∞] of the electron F (4):

ln
(

TMercury

2πτelectron

)
= ln

(
87.9691 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 62.104.

The orbital velocity of Mercury oscillates between the main
attractor node [−9;∞] and the significant subnode [−9; 2] of
the speed of light calibrated F (12):

ln
(
vmax

c

)
= ln

(
58980 m/s

299792458 m/s

)
= −8.534,

ln
(
vmin

c

)
= ln

(
38860 m/s

299792458 m/s

)
= −8.951.

Mercury’s Aphelion corresponds to the main attractor node
[61;∞] of the proton calibrated F (10):

ln
(

AMercury

λproton

)
= ln

(
0.466697 · 149597870700 m

2.1030891 · 10−16 m

)
= 61.067.

Saturn

Saturn’s body mass is close to the significant subnode [131;
−4] of the electron calibrated F (8),

ln
(

MSaturn

melectron

)
= ln

(
5.6836 · 1023 kg

9.10938356 · 10−31 kg

)
= 130.776

so we suspect that Saturn is actually losing mass and that its
ring system is part of the loss process.

The sidereal rotation period of Saturn is 10.55 hours and
corresponds to the significant subnode [59;−3] of the electron
F (4):

ln
(
τSaturn

τelectron

)
= ln

(
10.55 · 3600 s

1.28808867 · 10−21 s

)
= 58.646.

Therefore, we may expect that Saturn is slightly slowing
down its rotation. The orbital period of Saturn of 10759.22
days corresponds to the main attractor node [67;∞] of the
electron F (4):

ln
(

TSaturn

2πτelectron

)
= ln

(
10759.22 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 66.911.

Therefore, we may predict that Saturn is slightly increasing
its orbit.
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The current orbital velocity of Saturn is between 9.09 and
10.18 km/s, approximating the significant subnode [−10; 3]
of the speed of light calibrated F (12):

ln
(
vmax

c

)
= ln

(
10180 m/s

299792458 m/s

)
= −10.290,

ln
(
vmin

c

)
= ln

(
9090 m/s

299792458 m/s

)
= −10.404.

The orbital distance of Saturn is between Perihelion= 9.024
and Aphelion=10.086 astronomical units, oscillating between
the significant subnodes [57;−2] and [57;−3] of the electron
F (10):

ln
(

ASaturn

λelectron

)
= ln

(
10.086 · 149597870700 m
3.8615926764 · 10−13 m

)
= 56.625,

ln
(

PSaturn

λelectron

)
= ln

(
9.024 · 149597870700 m
3.8615926764 · 10−13 m

)
= 56.514.

Saturn’s equatorial body radius is very close to the significant
subnode [46; 2] of the electron F (10):

ln
(

RSaturn

λelectron

)
= ln

(
6.0268 · 107 m

3.8615926764 · 10−13 m

)
= 46.497

and consequently, to the main attractor node [54;∞] of the
proton F (10) as well:

ln
(

RSaturn

λproton

)
= ln

(
6.0268 · 107 m

2.1030891 · 10−16 m

)
= 54.012.

Furthermore, Titan’s body mass is near the main node [115;
∞] of the proton F (8):

ln
(

MTitan

mproton

)
= ln

(
1.3452 · 1023 kg

1.672621 · 10−27 kg

)
= 114.912.

Uranus

To reach the nearby main attractor node [129;∞] of the elec-
tron-based F (8), Uranus must increase its body mass by ap-
prox. 1/10 logarithmic units:

ln
(

MUranus

melectron

)
= ln

(
8.681 · 1025 kg

9.10938356 · 10−31 kg

)
= 128.897.

The orbital period of Uranus of 30688.5 days corresponds to
the main attractor node [68;∞] of the electron-based F (4):

ln
(

TUranus

2πτelectron

)
= ln

(
30688.5 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 67.959,

Like Neptune, the body radius of Uranus is close to the sig-
nificant subnode [46;−3] of the electron F (10):

ln
(

RUranus

λelectron

)
= ln

(
2.5559 · 107 m

3.8615926764 · 10−13 m

)
= 45.639.

We may therefore expect that Uranus, like Neptune, is slightly
swelling.

The orbital distance of Uranus (Perihelion= 18.33 and
Aphelion= 20.11 astronomical units) approximates the sig-
nificant subnode [57; 4] of the electron F (10):

ln
(

AUranus

λelectron

)
= ln

(
20.11 · 149597870700 m
3.8615926764 · 10−13 m

)
= 57.315,

ln
(

PUranus

λelectron

)
= ln

(
18.33 · 149597870700 m
3.8615926764 · 10−13 m

)
= 57.223.

The orbital velocity of Uranus is between 6.49 and 7.11 km/s,
approximating the significant subnode [−11; 3] of the speed
of light calibrated F (12):

ln
(
vmax

c

)
= ln

(
7110 m/s

299792458 m/s

)
= −10.741,

ln
(
vmin

c

)
= ln

(
6490 m/s

299792458 m/s

)
= −10.649.

The sidereal rotation period of Uranus is 17.24 hours and
corresponds to the significant subnode [67;−3] of the proton
F (4):

ln
(
τUranus

τproton

)
= ln

(
17.24 · 3600 s

7.01515 · 10−25 s

)
= 66.652.

Therefore,we can expect that Uranus is slightly slowing
down its rotation.

Neptune

Neptune’s body mass corresponds to the main attractor node
[129;∞] of the electron calibrated F (8):

ln
(

MNeptune

melectron

)
= ln

(
1.0243 · 1026 kg

9.10938356 · 10−31 kg

)
= 129.062.

The sidereal rotation period of Neptune is 16.11 hours and
coincides perfectly with the main attractor node [59;∞] of
the electron-calibrated F (4):

ln
(
τNeptune

τelectron

)
= ln

(
16.11 · 3600 s

1.28808867 · 10−21 s

)
= 59.069.

The orbital velocity of Neptune is between 5.37 and 5.50
km/s, close to the main node [−11;∞] of the speed of light
calibrated F (12):

ln
(
vmax

c

)
= ln

(
5500 m/s

299792458 m/s

)
= −10.930,

ln
(
vmin

c

)
= ln

(
5370 m/s

299792458 m/s

)
= −10.906.

Hartmut Müller. Scale-Invariant Models of Natural Oscillations in Chain Systems and their Cosmological Significance 197



Volume 13 (2017) PROGRESS IN PHYSICS Issue 4 (October)

Neptune’s current orbital distance (Perihelion= 29.81 and
Aphelion= 30.33 astronomical units) corresponds to the sig-
nificant subnode [58;−4] of the electron-calibrated F (10):

ln
(

ANeptune

λelectron

)
= ln

(
30.33 · 149597870700 m
3.8615926764 · 10−13 m

)
= 57.726,

ln
(

PNeptune

λelectron

)
= ln

(
29.81 · 149597870700 m
3.8615926764 · 10−13 m

)
= 57.709.

Because of the assumed attractor effect of the main node
[−11;∞] of the F (12), we can expect that the logarithm of
Neptune’s orbital velocity should decrease by nearly 1/10. At
the same time, the logarithm of Neptune’s orbital distance
should increase by almost 1/20 due to the attractor effect of
the significant subnode [58;−4] of the F (10). This trend
forecast agrees with the Kepler laws: for circular Solar or-
bits, the orbital velocity of a planet changes with the square
root of its orbital distance.

In addition, Neptune’s orbital period of 60182 days is
close to the significant subnode [69;−3] of the electron F (4):

ln
(

TNeptune

2πτelectron

)
= ln

(
60182 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 68.632.

This value supports our trend estimation that Neptune’s orbit
is slightly growing.

The current body radius of Neptune is close to the signif-
icant subnode [46;−3] of F (10):

ln
(

RNeptune

λelectron

)
= ln

(
2.4764 · 107 m

3.8615926764 · 10−13 m

)
= 45.607.

And so, we can expect that Neptune is still swelling.

Pluto

Although Pluto is no longer considered a planet, its body
mass corresponds well with the main attractor node [120;∞]
of the electron F (8):

ln
(

MPluto

melectron

)
= ln

(
1.305 · 1022 kg

9.10938356 · 10−31 kg

)
= 120.094.

The orbital period of Pluto of 90560 days corresponds to the
main attractor node [69;∞] of the electron F (4):

ln
(

TPluto

2πτelectron

)
= ln

(
90560 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 69.044.

The sidereal rotation period of Pluto is 152.87496 hours and
corresponds to the significant subnode [61; 3] of the electron-
calibrated F (4):

ln
(
τPluto

τelectron

)
= ln

(
152.87496 · 3600 s

1.28808867 · 10−21 s

)
= 61.319.

Therefore, we can expect that Pluto is slightly slowing down
in its rotation.

The orbital velocity of Pluto oscillates between 3.71 and
6.10 km/s, approximating the main attractor node [−11;∞] of
the speed of light calibrated F (12):

ln
(
vmax

c

)
= ln

(
6100 m/s

299792458 m/s

)
= −10.803,

ln
(
vmin

c

)
= ln

(
3710 m/s

299792458 m/s

)
= −11.300.

The orbital distance of Pluto (Perihelion= 29.656 and Aphe-
lion= 49.319 astronomical units) approximates the main at-
tractor node [58;∞] of the electron-calibrated F (10):

ln
(

APluto

λelectron

)
= ln

(
49.319 · 149597870700 m
3.8615926764 · 10−13 m

)
= 58.212,

ln
(

PPluto

λelectron

)
= ln

(
29.656 · 149597870700 m
3.8615926764 · 10−13 m

)
= 57.704.

The body radius of Pluto 1187± 7 km is close to the signifi-
cant subnode [42; 2] of the electron-calibrated F (10),

ln
(

RPluto

λelectron

)
= ln

(
1187 · 106 m

3.8615926764 · 10−13 m

)
= 42.570,

which is also close to the main attractor node [50;∞] of the
proton-calibrated F (10):

ln
(

RPluto

λproton

)
= ln

(
1187 · 106 m

2.1030891 · 10−16 m

)
= 50.085.

Hence, we can expect that Pluto is slightly shrinking. This
prognosis matches with new findings of surface-atmosphere
interactions and mass wasting processes [30] on Pluto.

By the way, also Charon’s body mass fits with the main
node [118;∞] of the electron F (8):

ln
(

MCharon

melectron

)
= ln

(
1.587 · 1021 kg

9.10938356 · 10−31 kg

)
= 117.944.

In conclusion, table 3 gives an overview of the current posi-
tions in the electron calibrated F (4), (8), (10), and (12) of the
Sun and the planets (including Pluto) regarding their masses,
sizes, rotation, orbital distances, periods and velocities.

Table 3 shows that our model (1) allows to see a connec-
tion between the stability of the Solar system and the stability
of electron and proton. Jupiter, Neptune, Venus and Pluto oc-
cupy mostly main attractor nodes of the electron calibrated
fundamental fractal F and therefore they can be understood
as electron determined factors of stability in the Solar sys-
tem. It is interesting that also the Sun occupies main nodes
of the electron F . Considering the coincidence of half log-
arithms in the electron F with integer logarithms (main at-
tractor nodes) of the proton F , the stability of Earth’s rota-
tion and orbit seems connected with the stability of the pro-
ton. Furthermore, Earth’s mass and radius occupy the subn-
ode n1 = 4 that is maximum distant from any main attractor
node of the F . This position could be connected with some
optimum of flexibility, if we consider the main nodes as is-
lands of stability.
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Table 3: The current positions in the electron calibrated F (4), (8),
(10) and (12) of the largest bodies regarding their masses, sizes, ro-
tation, orbital distances, periods and velocities. In the cases of large
eccentricity∗, the logarithmically average position is indicated.

celestial
body

mass in
F (8)

radius in
F (10)

rotation
period
inF (4)

orbital
period in
inF (4)

orbital
distance
inF (10)

orbital
velocity
inF (12)

Sun [139;∞] [49;∞] [63;∞]
Jupiter [132;∞] [47; −3] [58; 2] [66;∞] [56;∞] [−10; ∞]
Saturn [131;−4] [46; 2] [59; −3] [67;∞] [56; 2] [−10; −3]
Neptune [129;∞] [46; -3] [59; ∞] [69; −3] [58; −4] [−11; ∞]
Uranus [129;∞] [46; -3] [59; 6] [68;∞] [57; 4] [−11; 3]
Earth [126; 4] [44; 4] [59; 2] [63; 2] [54; 3] [−9; −4]
Venus [126;∞] [44; 4] [65;∞] [63;∞] [54;∞] [-9;∞]
Mars [124;∞] [44; −3] [59; 2] [64; 6] [55; −4] [−9; −2]
Mercury [123; 3] [43; 3] [63; 2] [62; 6] [53; 3]∗ [−9; 3]∗

Pluto [120;∞] [42; 2] [61; 3] [69;∞] [58;∞]∗ [−11;∞]∗

Resume

Properties of fundamental particles, for example the proton-
to-electron mass ratio or the vector boson-to-electron mass
ratio (table 1), support our scale-invariant model (1) of eigen-
states in chain systems of harmonic quantum oscillators and
have allowed us to derive the proton rest mass from funda-
mental physical constants (14). In addition, the cosmic mi-
crowave background can be interpreted as an eigenstate of a
chain system of oscillating protons (15).

In our scale-invariant model, physical properties of ce-
lestial bodies such as mass, size, rotation and orbital period
can be understood as macroscopic quantized eigenstates of
chain systems of oscillating protons and electrons. This un-
derstanding can be applied to evolutionary trend prognosis of
the Solar system but may be of cosmological significance as
well. Conceivably, the observable exponential expansion of
the universe is a consequence of the scale-invariance of the
fundamental fractal (1).
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