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The paper introduces a scale-invariant model of matter as fractal chain system of oscil-
lating protons and electrons that is applied to the analysis of the solar system and extra-
solar planetary systems. Based on global scaling, an explanation of the large number of
coincident metric characteristics in different planetary and moon systems is proposed.

Introduction

The formation and evolution of the solar system is caused
by very different processes and it is a complex field of re-
search that considers electromagnetic, thermodynamic, hy-
drodynamic, nuclear physical and chemical factors in their
complex interaction. Advanced models were developed [1–5]
in the last century which explain essential features of the so-
lar system formation. Gravity is treated as dominant force at
macroscopic scales that forms the shape and trajectory (orbit)
of astronomical bodies including stars and galaxies. Indeed,
if numerous bodies are gravitationally bound to one another,
classic models predict long-term highly unstable states that
contradict with the astrophysical reality in the solar system.

Furthermore, many metric characteristics of the solar sys-
tem are not predicted in standard models. A remarkably large
number of coincidences are considered to be casual and are
not even topics of theoretical research. For example, Mars
and Mercury, but also Uranus and Venus have the same sur-
face gravity acceleration. Such dissimilar bodies like Jupiter
and Ceres, but also Earth, Mars and Eris have similar rotation
periods. Various moons of very different planets in the solar
system have the same orbital periods as have various planets
in different extrasolar systems like Trappist 1 or Kepler 20.

In this paper we apply our scale-invariant model [6–8] of
matter as fractal chain system of oscillating protons and elec-
trons to the analysis of the solar system and extrasolar plan-
etary systems. Based on our hypothesis of global scaling we
propose an explanation of the large number of coincidences
of the metric characteristics of the systems.

Methods

As result of measurement, real numbers build the bridge that
connects theoretical models with the physical reality [9]. The
classification of real numbers, in particular the difference be-
tween rational and irrational numbers is not only a mathemat-
ical task. It is also an essential aspect of stability in real sys-
tems. Parameter relations corresponding to rational numbers
of small quotients support resonance interactions inside the
system and make the system unstable. On the contrary, irra-
tional relations correspond to minimum resonance interaction
inside the system and to its stability [10].

Indeed, this stability can be lasting only if a given irra-
tional relation cannot be transformed into a rational by ele-

mentary arithmetic operations. In the case of algebraic num-
bers, an irrational relation of wavelengths can lead to rational
relations of surfaces, volumes, masses or energies and never-
theless can make the system unstable.

Transcendental numbers cannot be represented as roots
of algebraic equations. Therefore, no elementary arithmetic
operation like addition or multiplication can transform a tran-
scendental number into a rational. This is not valid for ir-
rational, but non transcendental numbers, including the so-
called golden number ϕ = (

√
5+1)/2.

It is remarkable that only continued fractions deliver bi-
unique representations of all real numbers, rational and ir-
rational. Finite continued fractions represent always ratio-
nal numbers, whereas infinite continued fractions represent
irrational numbers. That is why any irrational number can
be approximated by finite continued fractions - the conver-
gents which deliver always the best and quickest approxima-
tion [11]. It is notable that the best rational approximation
of an irrational number by a finite continued fraction is not
a task of computation, but only an act of termination of the
fractal recursion.

Alas, transcendental numbers can be approximated ex-
ceptionally well by rational numbers, because their contin-
ued fractions contain large denominators and can be truncated
with minimum loss of precision. For instance, the fourth de-
nominator in the simple continued fraction of π = [3; 7, 15, 1,
292, ...] = 3.1415927... is quite big, so that the ratio 355/113
≈ 3.1415929 delivers a very good approximation. Euler’s
number e = 2.71828... is also transcendental and can be repre-
sented as continued fraction with quickly increasing denom-
inators, so that already the ratio 193/71 ≈ 2.71831 gives a
good approximation.

In the consequence, transcendental numbers define the
preferred relations of parameters which sustain the stability
of a complex system. In this way, the system avoids destabi-
lizing resonance. At the same time, a good rational approx-
imation can be induced quickly, if resonance interaction is
required. Furthermore, if stability is provided concerning all
derivatives of a process, Euler’s number is the only choice,
because of the self-similarity of the natural exponential func-
tion regarding its derivatives:

d
dx

ex = ex.
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Property Electron Proton

rest mass m 9.10938356(11) · 10−31 kg 1.672621898(21) · 10−27 kg

energy E=mc2 0.5109989461(31) MeV 938.2720813(58) MeV

angular frequency ω=E/ℏ 7.76344071 · 1020 Hz 1.42548624 · 1024 Hz

angular oscillation period τ= 1/ω 1.28808867 · 10−21 s 7.01515 · 10−25 s

angular wavelength λ= c/ω 3.8615926764(18) · 10−13 m 2.1030891 · 10−16 m

angular acceleration a= c/ω 2.327421 · 1029 ms−2 4.2735 · 1032 ms−2

Table 1: The basic set of physical properties of the electron and proton. (c is the speed of light in a vacuum, ℏ is the reduced Planck
constant, kB is the Boltzmann constant). Data taken from Particle Data Group [20]. Frequencies, oscillation periods, accelerations and the
proton wavelength are calculated.

Fig. 1: The distribution of eigenvalues of F for k= 1 (above) and
for k= 2 (below) in the range -1⩽F ⩽ 1.

In [12] we have shown that the set of natural frequencies
(eigenstates) of a fractal chain system of harmonic oscillators
can be described as set (1) of finite continued fractions F ,
which are natural logarithms:

F = ln (ω jk/ω00)= [n j0; n j1, n j2, . . . , n jk] (1)

where ω jk is the set of angular frequencies and ω00 is the fun-
damental frequency of the set. The denominators are integer:
n j0, n j1, n j2, . . . , n jk ∈Z, the cardinality j ∈N of the set and the
number k ∈N of layers are finite. In the canonical form, all
numerators equal 1.

Any finite continued fraction represents a rational num-
ber. Therefore, all frequency ratios ω jk/ω00 in (1) are irra-
tional, because for rational exponents the natural exponential
function is transcendental [13]. This circumstance provides
for high stability of the eigenstates (1) of a chain system of
harmonic oscillators because it prevents resonance interac-
tion between the elements of the system. In [14–16] we have
applied continued fractions of the type (1) as criterion of sta-
bility in engineering.

In the canonical form, the distribution density of eigen-
values of finite continued fractions reaches maxima near re-
ciprocal integers 1, 1/2, 1/3, 1/4, . . . which are the attractor
points in the fractal set F of natural logarithms (fig. 1).

Shorter continued fractions (1) with smaller denominators
correspond with more stable eigenstates of the chain system,
because the logarithmic distance between their eigenvalues is
maximum. Considering the existence of two complementary
fractals on the sets of rational and irrational numbers accord-
ingly [17], the probability that small variations (fluctuations)

lead to coincidences between irrational and rational numbers
of small quotients is minimum. Therefore, integer and half
logarithms represent the most stable eigenstates.

Already in 1950 Gantmacher and Krein [18] have demon-
strated that continued fractions are solutions of the Euler-
Lagrange equation for low amplitude harmonic oscillations in
simple chain systems. Terskich [19] generalized this method
for the analysis of oscillations in branched chain systems.
In [6] the continued fraction method was extended to the anal-
ysis of chain systems of harmonic quantum oscillators.

In the case of harmonic quantum oscillators, the contin-
ued fractions (1) define not only fractal sets of natural angu-
lar frequencies ω jk, angular accelerations a jk = c ·ω jk, oscil-
lation periods τ jk = 1/ω jk and wavelengths λ jk = c/ω jk of the
chain system, but also fractal sets of energies E jk = ℏ ·ω jk and
masses m jk =E jk/c2 which correspond with the eigenstates of
the system [8].

In this way, the continued fractions (1) generate the funda-
mental fractal F of eigenstates in chain systems of harmonic
quantum oscillators.

As the cardinality and number of layers of the continued
fractions (1) are finite but not limited, in each point of the
space-time occupied by the chain system of harmonic quan-
tum oscillators the scalar F is defined. Therefore, any chain
system of harmonic quantum oscillators can be seen as source
of the fractal scalar field F , the fundamental field of the sys-
tem. The scalar potential difference∆F of sequent equipo-
tential surfaces at a given layer k is defined by the difference
of continued fractions (1). In the canonical form:

∆F=F (j,k)−F (j+1,k) =
= [n j0; n j1, n j2, . . . , n jk]− [n j0; n j1, n j2, . . . , n j+1,k].

In [7] we have introduced a scale-invariant model of mat-
ter as fractal chain system of harmonically oscillating protons
and electrons that generates the fundamental field F . Normal
matter is formed by nucleons and electrons because they are
exceptionally stable quantum oscillators. In the concept of
isospin, proton and neutron are viewed as two states of the
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same quantum oscillator. Furthermore, they have similar rest
masses. However, a free neutron decays into a proton, an
electron and antineutrino within 15 minutes while the life-
spans of the proton and electron top everything that is mea-
surable, exceeding 1029 years [20].

The exceptional stability of electron and proton predesti-
nate their physical characteristics as fundamental units. Ta-
ble 1 shows the basic set of electron and proton units that can
be considered as a fundamental metrology. In [8] was shown
that it is compatible with Planck units [21].

Within our model, the proton-to-electron ratio (tab. 1) is
caused by the fundamental field F . In fact, the natural loga-
rithm is close to rational:

ln
938.2720813 MeV
0.5109989461 MeV

≈ 7 +
1
2
.

As a consequence, the fundamental field of the proton is
complementary to that of the electron, because integer loga-
rithms of the proton F correspond to half logarithms of the
electron F and vice versa, so that the scaling factor

√
e con-

nects similar equipotential surfaces of the proton field with
those of the electron field in alternating sequence [8].

We hypothesize that scale invariance of the fundamental
field F calibrated on the physical properties of the proton and
electron (tab. 1) is a universal characteristic of organized mat-
ter and criterion of stability. This hypothesis we have called
Global Scaling [22].

Results

Within our scale-invariant model of matter [7], atoms and
molecules emerge as eigenstates of stability in fractal chain
systems of harmonically oscillating protons and electrons.

Andreas Ries [23] demonstrated that this model allows
for the prediction of the most abundant isotope of a given
chemical element. From this point of view, any physical body,
being solid, liquid or gas can be seen as fractal chain system
of oscillating molecules, atoms, ions, protons and electrons
that follows the fundamental field F .

Therefore, in the framework of our fractal model of mat-
ter, the fundamental field F affects any type of physical inter-
action, regardless of its complexity.

In [24] we applied our model to the analysis of gravimet-
ric and seismic characteristics of the Earth and could show
that our estimations [25] correspond well with established
empiric models of the Earth interior.

In [26] we did demonstrate that the vertical sequence of
stable atmospheric layers corresponds with the sequence of
main spatial equipotential surfaces of the fundamental field
F , not only at Earth, but also at Venus, Mars and Titan.

In [27] was demonstrated that the mass distribution in the
solar system and the mass distribution of elementary particles
follow the same scaling law. In [8] was shown that the dis-
tribution of rotation and orbital periods in the solar system

corresponds with main temporal equipotential surfaces of the
fundamental field F .

For verification of Global Scaling in this paper we con-
sider only direct measurements and refer on data that should
not contain systematic errors. As such data we consider the
rotation and orbital periods, but also the majority of estimated
body radii and orbital distances in the solar system.

Fig. 2 shows the correspondence of orbital periods for
planets and planetoids of the solar system with equipotential
surfaces of the fundamental field F . Tab. 2 contains the cor-
responding data. Integer numbers in the bottom of the graphic
are natural logarithms of main equipotential surfaces [n0;∞]
of the fundamental field F calibrated on the proton (bold) and
electron (thin). For example, Jupiter’s orbital period [28] cor-
responds with the main temporal equipotential surface [66;
∞] of the fundamental field F calibrated on the oscillation
period of the electron:

ln
(

T Jupiter

τelectron

)
= ln

(
4332.59 · 86400 s

2π · 1.28808867 · 10−21 s

)
= 66.00

The logarithmic scale in fig. 2 covers a range of 79 to
235000 days ≈ 640 years.

Fig. 3 shows the correspondence of orbital periods for
moons of the solar system and planets of the systems Trap-
pist 1 [29] and Kepler 20 [30] with temporal equipotential
surfaces of the fundamental field F . Tab. 3 and 4 contain the
corresponding data. It is remarkable that the orbits of Trappist
1b, c, d and e correspond with main equipotential surfaces of
the fundamental field F . This is also valid for Kepler 20b, c,
d and e and for many other exoplanetary systems we did not
include in this paper.

Because of the complementarity of the fundamental field
of the proton to that of the electron, equipotential surfaces
of the type [n j0;±2] coincide always with complementary

body orbital period T, d ln (T/2π τe) F
Eris (P) 203830 69.86 [70; -6]

Pluto (P) 90560 69.04 [69;∞]

Neptune 60182 68.64 [69; -3]

Uranus 30688.5 67.96 [68;∞]

Saturn 10759.22 66.91 [67;∞]

Jupiter 4332.59 66.00 [66;∞]

Ceres (P) 1681.63 65.06 [65;∞]

Mars 686.971 64.16 [64; 6]

Earth 365.256363 63.53 [63; 2]

Venus 224.701 63.04 [65;∞]

Mercury 87.9691 62.12 [62; 6]

Table 2: Natural logarithms of the orbital period-to-electron oscilla-
tion period ratios for planets and heaviest planetoids (P) of the solar
system and the corresponding equipotential surfaces of the funda-
mental field F . Data: [28]
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Fig. 2: Correspondence of orbital periods of planets and planetoids of the solar system with temporal equipotential surfaces of the fun-
damental field F . Integers in the bottom of the graphic are natural logarithms of main equipotential surfaces [n j0;∞] of the fundamental
field F calibrated on the proton (bold) and electron (thin). The logarithmic scale covers a range of 79 to 235 000 days ≈ 640 years. Tab. 2
contains the corresponding data.

Fig. 3: Correspondence of orbital periods of moons of the solar system and planets of the systems Trappist 1 and Kepler 20 with temporal
equipotential surfaces of the fundamental field F . The logarithmic scale covers a range of 0.5 to 220 days. Tab. 3 and 4 contain the
corresponding data.

Fig. 4: Correspondence of metric characteristics of large structures in the solar system with spatial equipotential surfaces of the fundamental
field F . The logarithmic scale covers a range of 670 km to 295 AU. The width of the arrows is a measure of data dispersion or eccentricity
of an orbit. Grey arrows and descriptions are hypothetical. The corresponding data are published in [8, 25].
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Fig. 5: Correspondence of rotation periods of planets and some planetoids of the solar system with temporal equipotential surfaces of the
fundamental field F . The logarithmic scale covers a range of 9 to 6000 hours. Tab. 5 contains the corresponding data.

main equipotential surfaces [n j0;∞], so that the remaining or-
bits correspond mostly with equipotential surfaces of the type
[n j0;±3]. This distribution is a consequence of the fractal hi-
erarchy 1/2, 1/3, 1/4, ... of stability layers (see fig. 1) given
by the continued fraction (1) of natural logarithms.

Fig. 4 shows the correspondence of metric characteristics

moon of orbital period T, d ln (T/2π τe) F
EARTH

Moon 27.321661 60.94 [61;∞]

JUPITER
Callisto 16.689 60.45 [60; 2]

Ganymede 7.1546 59.61 [60; -3]

Europa 3.5512 58.91 [60;∞]

Io 1.7691 58.21 [58; 4]

SATURN

Iapetus 79.3215 62.00 [62;∞]

Titan 15.945 60.41 [60; 2]

Rhea 4.5182 59.14 [59; 6]

Dione 2.7369 58.65 [59; -3]

Tethys 1.8878 58.26 [58; 4]

Enceladus 1.3702 57.95 [58;∞]

Mimas 0.942 57.57 [57; 2]

URANUS

Oberon 13.4632 60.24 [60; 4]

Titania 8.7062 59.78 [60; -4]

Umbriel 4.144 59.05 [59;∞]

Ariel 2.52 58.54 [58; 2]

Miranda 1.4135 57.98 [58;∞]

NEPTUNE

Nereid 360.1362 63.52 [63; 2]

Triton 5.877 59.41 [59; 2]

Proteus 1.1223 57.75 [58; -4]

Larissa 0.555 57.04 [57;∞]

Table 3: Natural logarithms of the orbital period-to-electron oscil-
lation period ratios for the largest moons of in the solar system and
the corresponding equipotential surfaces of the fundamental field F .
Data: [31]

of large structures in the solar system with spatial equipoten-
tial surfaces of the fundamental field F . The corresponding
data are published in [8, 25]. For example, the visible equa-
torial radius of Saturn [32] corresponds with the main spatial
equipotential surface [54;∞] of the fundamental field F cal-
ibrated on the wavelength of the proton (tab. 1):

ln
(

rSaturn

λproton

)
= ln

(
6.0268 · 107 m

2.1030891 · 10−16 m

)
= 54.01

The logarithmic scale in fig. 4 covers a range of 670 km
to 295 AU. In general, the width of the arrows is a measure of
data dispersion or eccentricity of an orbit. Grey arrows and
descriptions are hypothetical.

Fig. 4 shows that the orbits of Venus, Jupiter, Saturn and
Pluto correspond with main equipotential surfaces [n j0;∞] of
the fundamental field F .

It is notable that Jupiter’s orbit represents the logarithmic
mean between the orbits of Venus and Pluto. The orbits of

planet of orbital period T, d ln (T/2π τe) F
TRAPPIST 1

H 18.767953 60.56 [60; 2]

G 12.354473 60.15 [60; 6]
F 9.205585 59.86 [60;∞]

E 6.099615 59.45 [59; 2]

D 4.04961 59.03 [59;∞]

C 2.4218233 58.51 [58; 2]

B 1.51087081 58.04 [58;∞]

KEPLER 20

D 77.61130017 61.98 [62;∞]

G 34.94 61.17 [61; 6]

F 19.57758478 60.61 [61; -3]

C 10.85409089 60.01 [60;∞]
E 6.09852281 59.45 [59; 2]

B 3.69611525 58.94 [59;∞]

Table 4: Natural logarithms of the orbital period-to-electron oscilla-
tion period ratios for exoplanets of the systems Trappist 1 and Kepler
20 with the corresponding equipotential surfaces of the fundamental
field F . Data: [29, 30]
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body rotation period τ, h ln (τ/τp) F
Venus 5816.66728 72.48 [72; 2]

Mercury 1407.5 71.05 [71;∞]

Sun 823.346 70.51 [70; 2]

Pluto (P) 152.87496 68.83 [69; -6]

Eris (P) 25.9 67.06 [67;∞]

Mars 24.62278 67.01 [67;∞]

Earth 23.93444 66.98 [67;∞]

Uranus 17.24 66.66 [67; -3]

Neptune 16.11 66.57 [66; 2]

Saturn 10.55 66.16 [66; 6]

Jupiter 9.925 66.09 [66;∞]

Ceres (P) 9.07417 66.01 [66;∞]

Table 5: Natural logarithms of the rotation period-to-proton oscilla-
tion period ratios for planets and heaviest planetoids (P) of the solar
system and the corresponding equipotential surfaces of the funda-
mental field F . Data: [28].

Mercury, Earth, Mars, Ceres correspond all with equipoten-
tial surfaces of the type [n j0;±3]. This is valid also for the or-
bits of Ganymede, Rhea, Dione and the Moon. The orbits of
Uranus and Neptune correspond with equipotential surfaces
[n j0;±4].

The orbits of Callisto, Europa, Io and Titan correspond
with main equipotential surfaces [n j0;∞]. This is also valid
for the orbits of Tethys, Umbriel, Titania and Iapetus.

The radius of the photosphere of the Sun and the visible
radius of Saturn correspond with main spatial equipotential
surfaces [n j0;∞].

The visible radii of Jupiter, Uranus and Neptune, but also
the radii of the solid bodies Mars, Mercury, Ganymede, Titan,
Callisto, Europa and Ceres correspond all with equipotential
surfaces of the type [n j0;±3]. Only the radii of Earth and
Venus correspond with equipotential surfaces [n j0;±4]. The
radii of Io, the Moon, Pluto and Eris correspond with main
equipotential surfaces [n j0;∞].

It is remarkable that the orbit of Europa coincides with
the radius of the Sun (boundary of the photosphere), the or-
bit of Galatea (Neptune VI) coincides with Saturn’s radius
(stratopause) and the orbit of Larissa (Neptune VII) with the
radius of Jupiter.

Fig. 5 shows the correspondence of rotation periods of
planets and large planetoids of the solar system with tempo-
ral equipotential surfaces of the fundamental field F . The
logarithmic scale in fig. 5 covers a range of 9 to 6000 hours.
Tab. 5 contains the corresponding data.

The rotation periods of Venus, Mercury, the Sun, Earth,
Mars, Eris, Neptune, Jupiter and Ceres coincide with main
equipotential surfaces while the rotation periods of Saturn,
Uranus and Pluto correspond with temporal equipotential sur-
faces of the type [n j0;±3].

Although the rotation of Venus [31] is retrograde, its rota-
tion period of 5816.66728 hours fits perfectly with the main
temporal equipotential surface [65;∞] of the electron F :

ln
(
τVenus

τelectron

)
= ln

(
5816.66728 · 3600 s
1.28808867 · 10−21 s

)
= 64.96

Concluding our analysis of the solar system and exoplan-
etary systems we assume that planetary systems preferentially
occupy main equipotential surfaces of the fundamental field
F . This circumstance makes possible the calculation of re-
maining orbits in exoplanetary systems.

Conclusion

The logarithmic projection of the fundamental field F reveals
the remarkable scale symmetry of the solar system and sug-
gests that it could hardly be the consequence of random col-
lisions. Within our cosmological hypothesis of Global Scal-
ing [8], the formation of the solar system as well as exoplan-
etary systems can be understood in terms of harmonic oscil-
lations in chain systems.

Movement along equipotential surfaces requires no work.
That’s why stable orbits correspond with equipotential sur-
faces of the fundamental field F and orbital eccentricity is
always limited by neighboring equipotential surfaces [8].

Equipotential surfaces of the fundamental field F define
not only stable planetary orbits, but also the metric charac-
teristics of stratification layers in planetary atmospheres [26]
and lithospheres [25]. From this point of view, metric charac-
teristics of stable structures origin from the same fundamental
field F and different only in scale.

The conceptual core of our model are harmonic oscilla-
tions in chain systems. These oscillations remain stable only
if resonance interaction inside the system can be avoided. As
solution survives a logarithmically fractal set (1) of transcen-
dental frequency ratios. Note it is not a simple power law.

We suppose that basic power rules like the Titius-Bode
[33], Dermott’s rule [34] as well as the discovered golden
number [35] and Fibonacci ratios [36] in solar planetary and
satellite systems and in exoplanetary systems reflect a local
feature of the fundamental field F , because

√
e = 1,648... is

close to the golden number ϕ = 1.618... and for small ex-
ponents, the rounded up powers of the square root of Euler’s
number deliver the sequence of Fibonacci numbers.

Another essential aspect of our cosmological model [8]
is Global Scaling, the hypothesis that in the universe there is
only one global fundamental field F . In fact, it was demon-
strated that scale relations in particle physics [6, 7, 37] and
nuclear physics [23, 38, 39], astrophysics [8, 27, 40–43], geo-
physics [25, 26] and biophysics [44, 45] follow always the
same fundamental field F calibrated on the proton and elec-
tron, without any additional or particular settings. The uni-
versality and unity of the fundamental field F might signify
that everything in the universe is part of one giant oscillating
chain system.
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13. Hilbert D. Über die Transcendenz der Zahlen e und π. Mathematische
Annalen, 1893, v. 43, 216–219.

14. Müller H. The general theory of stability and objective evolutionary
trends of technology. Applications of developmental and construction
laws of technology in CAD. Volgograd, VPI, 1987 (in Russian).

15. Müller H. Superstability as a developmental law of technology. Tech-
nology laws and their Applications. Volgograd-Sofia, 1989.

16. Müller H., Otte R. Verfahren zur Stabilisierung von technischen
Prozessen. PCT, WO 2005/071504 A2.

17. Panchelyuga V. A., Panchelyuga M. S. Resonance and Fractals on the
Real Numbers Set. Progress in Physics, 2012, no. 4, 48–53.

18. Gantmacher F.R., Krein M.G. Oscillation matrixes, oscillation cores
and low oscillations of mechanical systems. Leningrad, 1950.

19. Terskich V.P. The continued fraction method. Leningrad, 1955.

20. Olive K.A. et al. (Particle Data Group), Chin. Phys. C, 2016, v. 38,
090001. Patrignani C. et al. (Particle Data Group), Chin. Phys. C, 2016,
v. 40, 100001.
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