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Just like the rest of the Laws of Thermodynamics, the First Law of Thermodynamics
(FLT) is an empirical law firmly anchored on the unshakeable fertile soils of verifiable
experimental philosophy. Be that as it may, this law (FLT) does not have a fundamental
theoretical basis on which it is founded or rests upon. In the present paper, we demon-
strate that Liouville’s Theorem (in physics) can be cast or can be seen as an expression
of the FLT. In this way, one can thus envisage Liouville’s Theorem as a fundamental
theoretical basis for the FLT.

A theory is the more impressive the greater the sim-
plicity of its premises [are], the more different kinds of
things it relates, and the more extended is its area of
applicability . . . Classical Thermodynamics . . . is the
only physical theory of universal content concerning
which I am convinced that within the framework of
the applicability of its basic concepts, it will never be
overthrown . . . Albert Einstein (1879-1955). Adapted
from [1, p. 227].

1 Introduction

The First Law of Thermodynamics (FLT) is a version of the
General Empirical Law of Conservation of Energy (GELCE)
applicable to thermodynamic systems. The GELCE states
that the total energy of an isolated system is a constant of
time; energy can only be transformed from one form to an-
other, but can never be created nor destroyed. The FLT is
often stated as follows:

d̄Q = d̄U + d̄W , (1)

where d̄Q, d̄U and d̄W are the change in the heat content of a
thermodynamic system that accompanies a change in the in-
ternal energy d̄U of the system, for an amount of work d̄W
performed on the system. Simple stated: the heat content of a
thermodynamic system d̄Q, equals the change in the internal
energy d̄U, plus the amount of work d̄W done by the system
on its surroundings. The FLT is an empirical law founded and
strongly anchored on the fertile soils of experimental philoso-
phy. There is no theoretical furnishment of this law. This pa-
per makes an endeavour to proffer a theoretical justification
of this law on the basis of Liouville’s theorem [2], i.e. we
demonstrate that Liouville’s theorem can be viewed or can be
seen as a statement of the FLT.

2 Liouville’s theorem

In physics, Liouville’s theorem [2], named after the great
French mathematician Joseph Liouville (1809-1882), is a key

theorem in classical statistical thermodynamics and in Hamil-
tonian mechanics∗. The theorem asserts that the probability
density function %, is a time-constant along the trajectories
describing the system – in other words, the density of states
in an ensemble of many identical states with different initial
conditions is constant along every trajectory in phase space.
This time-independent density of states is in statistical me-
chanics known as the classical “a priori probability” where
an “a priori probability” is a probability that is derived purely
from deductive reasoning.

The probability density function (or phase space distribu-
tion function) % is assumed to depend on position (~r = ~r(t))
and momentum (~p = ~p(t)), i.e. % = %(~r, ~p), and this prob-
ability density function is constant along the trajectories of
the system – i.e. the density of states of the system points in
the vicinity of a given system point traversing through phase
space remains constant through the passage of time. Liou-
ville’s theorem succinctly summarizes this through the equa-
tion:

d%
dt

=
∂%

∂t
+

N∑
j=1

~̇r j ·
∂%

∂~r j
+

N∑
j=1

~̇p j ·
∂%

∂~p j
= 0 . (2)

Writing ~̇r j = ~v j and ~̇p j = ~F j, the above can be written as:

−
∂%

∂t︸︷︷︸
Term (I)

=

N∑
j=1

~v j ·
∂%

∂~r j︸       ︷︷       ︸
Term (II)

+

N∑
j=1

~F j ·
∂%

∂~p j︸         ︷︷         ︸
Term (III)

, (3)

where~v j and ~F j, are the velocity and resultant force acting on
the jth particle respectively. The task of the present paper is
to identify Terms (I), (II) and (III) of (3) with d̄Q, d̄U and d̄W,
appearing in (1), respectively. In order for us to achieve this,
it will require us to justly define – in an explicit manner – the

∗There is also in complex analysis, Liouville’s theorem, named after
the same Joseph Liouville, and this theorem states that every bounded entire
function (i.e., integral function) must be constant.
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probability density function %, thereby resulting in Liouville’s
theorem being nothing more (albeit – very insightful) than a
statement of the FLT. Before we can do this, we need to set
up in the next section, a theory that can explain or describe
the evolution of thermodynamic fluctuations.

3 Theory of thermodynamic fluctuations

In our theory of thermodynamic fluctuations, we begin in Sec-
tion 3.1 by defining what these fluctuations really are and hav-
ing done that, we proceed in Section 3.2 to define the phase
space on which the evolution of these thermodynamic fluctu-
ations is defined.

3.1 Definition of thermodynamic fluctuations

That fluctuations are an intrinsic and inherent part and parcel
of physical and natural reality is – indeed – common knowl-
edge. Every observable (say, O) is – one way or the other –
associated with some kind of random fluctuation (here-and-
after denoted, δO). These fluctuations that we are talking
about are different from the fluctuations in the measurement
induced by random statistical human error. These are fluc-
tuations that will manifest even when the impossible feat of
reducing the intrinsic and inherent random statistical human
error to zero.

In deeper terms, these fluctuations are no ordinary fluc-
tuations encountered in statistics, but are intrinsic and inher-
ent Statistical Random Thermodynamic Fluctuations (SRTF),
they can not be eliminated even in the most idea of situ-
ations. These thermodynamic fluctuations are the quantum
mechanical fluctuations that Niels Henrik David Bohr (1885-
1962) and his followers in Copenhagen, Denmark envisaged
(or dreamt of) in their historic, spirited and concerted effort to
finding a meaningful, perdurable and lasting interpretation of
Schrödinger’s seemingly arcane quantum mechanical wave-
function Ψ.

About these thermodynamic fluctuations, we must hasten
and categorically state that while there exists theories that at-
tempt to explain the evolution of thermodynamic systems (in
Γ-space), there does not exist similar attempts to describe the
evolution of these SRTFs though some structured space as
phase space. The present section makes an endeavour at such
a feat.

3.2 Definition of the δΓ-space

Now, we shall promulgate three postulates that form the ba-
sis of our theory of thermodynamic fluctuations. In the first
postulate, we shall set up an arena where these fluctuations
are defined. In the second postulate, we shall propose a gov-
erning equation that describes the evolution of these fluctua-
tions on the space on which they are defined, and lastly, in the
third postulate, we set up some rules that define how changes
in these fluctuations relate to changes in their corresponding
canonical variables.

1. Postulate (I): Just as there exists the six-dimensional Γ-space
(Γ = Γ(x, y, z; px, py, pz)) on which the trajectory of a ther-
modynamic system can be traced via their evolution through
this space as dictated to and governed by Liouville’s theorem,
there exists a corresponding six-dimensional space (which
for our purposes, we shall call δΓ-space) on which the tra-
jectory of the statistical random thermodynamic fluctuations
(δx, δy, δz; δpx, δpy, δpz) can be traced.

2. Postulate (II): The dynamic and spatial evolution of these
random statistical thermodynamic fluctuations (δx, δy, δz;
δpx, δpy, δpz) on δΓ-space is governed by Liouville’s equa-
tion d (δ%) /d (δt) = 0, i.e.:

∂ (δ%)
∂ (δt)

+

N∑
j=1

δ~v j ·
∂ (δ%)

∂
(
δ~r j

) +

N∑
j=1

δ~̇p j ·
∂ (δ%)

∂
(
δ~p j

) = 0 . (4)

3. Postulate (III): The partial differential elements of the cano-
nical four-position (∂x, ∂y, ∂z, ∂t) and that of the canonical
four-momentum (∂px, ∂py, ∂pz, ∂E) are equal to the corre-
sponding partial differential elements of the statistical random
thermodynamic fluctuations (∂ (δx) , ∂ (δy) , ∂ (δz) , ∂ (δt)) for
the four-position and (∂ (δpx) , ∂

(
δpy

)
, ∂ (δpz) , ∂ (δE))for the

four-momentum – i.e. written explicitly:

∂t = ∂ (δt)
∂x = ∂ (δx)
∂y = ∂ (δy)
∂z = ∂ (δz)
∂E = ∂ (δE)
∂px = ∂ (δpx)
∂py = ∂

(
δpy

)
∂pz = ∂ (δpz) .

(5)

With these three postulates (rules), we will go on to show that
the Liouville Eq. (4) yields the FLT.

4 Derivation – First Law of Thermodynamics

With the theory governing the SRTFs having been set up in
the previous section, we realise that if we are to set δ% so that
it is defined:

δ% = exp
(
δSTD

~

)
, (6)

where ~ is Planck’s normalized constant and:

δSTD =

N∑
j=1

(
δ~p j · δ~r j − δE j δt j

)
, (7)

is the thermodynamic phase (or thermodynamic action) de-
fined on δΓ-space, then one can very easily demonstrate that
Liouville’s theorem as defined in (4), is actually a subtle state-
ment of the FLT. This thermodynamic phase has been de-
fined along the lines of the space of a particle in the Hamil-
ton–Jacobi theory (e.g. [3, pp. 490-491]) of particles where
the energy E and momentum ~p of a partial are related to the
particle’s phase S (or action) via the equation E = −∂S/∂t
and ~p = ~∇S . These Hamilton–Jacobi definitions of E and ~p
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are the defining equations in the de Broglie-Bohm Pilot Wave
Theory [4–7] of Quantum Mechanics (QM).

Now, with the idea in mind that δSTD is the thermody-
namic phase (action) similar to a particle’s phase (action) in
the Hamilton–Jacobi theory, it is clear from the explicit defi-
nition of δSTD given in (7), that:

−
∂ (δ%)
∂ (δt)

=

N∑
j=1

δE j = δE , (8)

∂ (δ%)

∂
(
δ~r j

) = δ~p j , (9)

∂ (δ%)

∂
(
δ~p j

) = δ~r j . (10)

From these equations – i.e. (8), (9) and (10), it follows that∗:

N∑
j=1

δ~v j ·
∂%

∂(δ~r j)
=

N∑
j=1

~v j ·
∂%

∂(δ~r j)
=

N∑
j=1

~v j · δ~p j . (11)

At this point before we can proceed, we must ask the ques-
tion: What does the term ~v j · δ~p j represent? For a clue, let us
consider the classical expression for the kinetic energy of par-
ticle K j = p2

j/2m . Clearly dK j = p dp/m = v j dp j = ~v j · d~p j.
Therefore, the expression ~v j · δ~p j represents that thermody-
namic induced fluctuations in the kinetic energy of the jth

particle constituting the thermodynamic system under con-
sideration. These thermodynamic induced fluctuations in the
kinetic energy ~v j · δ~p j constitute what we normally call or re-
fer to as the internal energy δU of a thermodynamic system,
hence:

δU =

N∑
j=1

δ~v j ·
∂%

∂~r j
=

N∑
j=1

δU j . (12)

Further, we have:

N∑
j=1

δ ~F j ·
∂%

∂(δ~p j)
=

N∑
j=1

δ ~F j · δ~r j =

N∑
j=1

~F j · δ~r j . (13)

Clearly, the expression† ~F j · δ~r j, needs no explanation as it
represents the work δW j done on the jth particle by the ran-
dom thermodynamic fluctuations of position and forces, i.e.:

δW =

N∑
j=1

δ ~F j ·
∂%

∂~p j
=

N∑
j=1

δW j . (14)

From all this, it follows that:

δE = δU + δW . (15)

∗The “δ” in δ~v j in (11) is removed via the definitions given in (5).
†The “δ” in δ ~F j is removed via the definitions given in (5).

What (15) is telling us that while the fluctuations are random,
they are correlated.

Now, for a system that moves from an initial state (i) to a
final state ( f ), where the changes in the thermodynamic fluc-
tuations (δE, δU, δW) are to be defined:

d̄Q = δE f − δEi

d̄U = δU f − δUi

d̄W = δW f − δWi ,
(16)

where d̄Q, d̄U and d̄W, are to have the same meaning as they
have in (1), it follows from this that we will have the FLT, the
meaning of which is that Liouville’s theorem (4) is, in this
way, a subtle expression of the FLT.

5 Discussion

As far as we can tell, the FLT is taken as an inviolable exper-
imental fact. There has not been – at least in our survey of
the literature, a similar attempt as that presented here where a
fundamental theoretical basis is made to furnish the founda-
tions of this law, hence, this work is without precedent insofar
as its nature and goal is concerned. We believe the attempt
presented herein is important for our deeper insight and un-
derstanding of the Science of Thermodynamics. The follow-
up work (briefly discussed in Section 7) that we will present
soon will attest to this.

For example, one may ask: What drives thermodynamics,
it is the direct changes in the canonical values of the internal
energy U and the work W, or there – perhaps – is something
else different from this? If what we have presented is to be
believed, then the answer is that thermodynamics is driven by
the changes in the associated SRTFs in the canonical values
of the internal energy U and the work W, that is to say, by

d̄(δU) = δU f − δUi and d̄(δW) = δW f − δWi. In a nutshell, it
is the SRTFs that drive thermodynamics, and not the changes
dU and dW.

6 Conclusion

Assuming the acceeptability of what has herein been pre-
sented, we hereby set the following as our conclusion:

1. From a fundamental theoretical standpoint, the First Law of
Thermodynamics may very well be an expression to the ef-
fect that the Thermodynamic Evolution Probability Density
Function δ% is – in accordance with Liouville’s theorem –
an explicit time-constant along the phase-space trajectory for
any thermodynamic system.

2. Liouville’s Theorem can be viewed as (or may very well be)
an expression of the First Law of Thermodynamics.

7 Follow-up work

In order for the effectiveness in its mission to deliver the core
message it seeks to deliver, it is always prudent to keep a pa-
per focused on the point on which it seeks to deliver – of
which, the present has been to demonstrate that Liouville’s
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theorem can be shown to be a casting of the FLT. As always
happens, there will always be follow-ups. At present, we have
three immediate follow-up papers that we hope will be pub-
lished in the present journal. These follow-up papers give fur-
ther credence to the ideas that we have herein crafted and used
to demonstrate that Liouville’s theorem can be envisaged as a
casting of the FLT.

1. In the first follow-up paper, we demonstrate that if δ%
is assumed to be a thermodynamic probability measure,
then one can derive – with relative ease – Heisenberg
(1927)’s quantum mechanical uncertainty principle [8].

2. In the second paper, which is a follow-up on our recent
work presented in [9] on “A Simple Proof of the Sec-
ond Law of Thermodynamics (SLT)”, we demonstrate
that – if δ% is assumed to be the thermodynamic prob-
ability that derives entropy changes in thermodynamic
systems, then for a Universe with a unidirectional for-
ward arrow of time, the SLT directs that energyandtime
fluctuations (δE, δt) are what derives thermodynamics.

3. Lastly, in the third paper, within the framework of the
de Broglie-Bohm Pilot WaveTheory[4–7] of QM,com-
monly referred to as Bohmian Mechanics (BM), we set
the square-root of the Schrödinger [10–12] quantum
mechanical probability amplitude Ψ∗Ψ = |Ψ|2 so that it
equals δ%, i.e. δ% = |Ψ|, in which event, we demonstrate
that all the criticism that has been levelled against BM
– since its inception in 1952 – can easily be overcome.
The importance of this is that it allows for a realistic
interpretation of QM. This is good for the philosophy
of QM.

We believe that all the above mentioned future works give
seminality to the ideas here set forth.
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