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Physics of Transcendental Numbers Determines Star Distribution

Hartmut Müller
Rome, Italy.

E-mail: hm@interscalar.com

Transcendental ratios of physical quantities can provide stability in complex dynamic
systems because they inhibit the occurrence of destabilizing resonance between the el-
ements of the system. This approach leads to a fractal scalar field that affects any type
of physical interaction. In this paper we verify the model claims on the frequency dis-
tribution of interstellar distances in the solar neighborhood.

Introduction

Since the beginning of the past century astronomers began to
routinely measure stellar parallaxes. In 1957 this effort was
formalized with the publication [1] of 915 stars within 20 pc.
Various updates and extensions to larger distances produced
what became the Catalogue of Nearby Stars (CNS), including
3803 stars within 25 pc [2] released in 1991. Hipparcos [3] in-
creased the quantity and quality of the CNS content. In 1998
the CNS dataset went online and currently has 5835 entries,
but it is no longer updated. The most recent update [4] of
the CNS was to provide accurate coordinates taken from the
Two Micron Sky Survey (2MASS) [5]. Finally, the Gaia Cat-
alogue of Nearby Stars (GCNS) attempts to make a census of
all stars in the solar neighborhood using the Gaia results [6].
In the GCNS, the solar neighborhood is defined as a sphere
with a radius of 100 pc centered on the Sun.

In this paper, we will analyze the distribution of the num-
ber of stars in the solar neighborhood as function of their mu-
tual distances. This approach is not heliocentric and does not
deal with fixed reference points at all.

Conventional models expect an exponential increase of
the cumulative number of stars with the distance from a fixed
reference point, such as the Sun. As shown in [6], this actu-
ally appears to be the case.

We will show that the consideration of all possible pairs of
stars within a given range of interstellar distances leads to the
appearance of a stable scale-invariant pattern in the frequency
distribution of the number of stars as function of the distance
between them. This means that there are interstellar distances
preferred by the majority of stars in the solar neighborhood.
Furthermore, we will derive this scale-invariant pattern from
a number theoretic approach.

Methods

In [7] we have shown that the difference between rational,
irrational algebraic and transcendental numbers is not only a
mathematical task, but it is also an essential aspect of stability
in complex dynamic systems. For instance, integer frequency
ratios provide resonance interaction that can destabilize a sys-
tem [8]. Actually, it is transcendental numbers that define the
preferred ratios of quantities which avoid destabilizing res-

onance interaction [9]. In this way, transcendental ratios of
quantities sustain the lasting stability of periodic processes in
complex dynamic systems. With reference to the evolution
of a planetary system and its stability, we may therefore ex-
pect that the ratio of any two orbital periods should finally
approximate a transcendental number.

Among all transcendental numbers, Euler’s number e =

2.71828. . . is unique, because its real power function ex co-
incides with its own derivatives. In the consequence, Euler’s
number allows inhibiting resonance interaction regarding any
interacting periodic processes and their derivatives. Because
of this unique property of Euler’s number, complex dynamic
systems tend to establish relations of quantities that coincide
with values of the natural exponential function ex for integer
and rational exponents x.

Therefore, we expect that periodic processes in real sys-
tems prefer frequency ratios close to Euler’s number and its
rational powers. Consequently, the logarithms of their fre-
quency ratios should be close to integer 0,±1,±2, . . . or ratio-
nal values ±1/2,±1/3,±1/4, . . . In [10] we exemplified our
hypothesis in particle physics, astrophysics, cosmology, geo-
physics, biophysics and engineering.

Based on this hypothesis, we introduced a fractal model
of matter [11] as a chain system of harmonic quantum oscilla-
tors and could show the evidence of this model for all known
hadrons, mesons, leptons and bosons as well. In [12] we have
shown that the set of stable eigenstates in such systems is
fractal and can be described by finite continued fractions:

Fjk = ln (ω jk/ω00) = 〈n j0; n j1, n j2, . . . , n jk〉 (1)

where ω jk is the set of angular eigenfrequencies and ω00 is
the fundamental frequency of the set. The denominators are
integer: n j0, n j1, n j2, . . . , n jk ∈Z. The cardinality j ∈N of the
set and the number k ∈N of layers are finite. In the canoni-
cal form, all numerators equal 1. We use angle brackets for
continued fractions.

Any finite continued fraction represents a rational num-
ber [13]. Therefore, the ratios ω jk/ω00 of eigenfrequencies
are always irrational, because for rational exponents the natu-
ral exponential function is transcendental [14]. This circum-
stance provides for lasting stability of those eigenstates of a
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chain system of harmonic oscillators because it prevents res-
onance interaction [15] between the elements of the system.

The distribution density of stable eigenstates reaches local
maxima near reciprocal integers ±1/2,±1/3,±1/4, . . . that
are attractor points (fig. 1) in the fractal set Fjk of natural log-
arithms. Integer logarithms 0,±1,±2, . . . represent the most
stable eigenstates (main attractors).

In the case of harmonic quantum oscillators, the contin-
ued fractions Fjk define not only fractal sets of natural angu-
lar frequencies ω jk, angular accelerations a jk = c ·ω jk, oscil-
lation periods τ jk = 1/ω jk and wavelengths λ jk = c/ω jk of the
chain system, but also fractal sets of energies E jk = ~ ·ω jk and
masses m jk = E jk/c2 which correspond with the eigenstates of
the system. For this reason, we call the continued fraction Fjk

the Fundamental Fractal of stable eigenstates in chain sys-
tems of harmonic quantum oscillators.

Fig. 1: The distribution of stable eigenvalues of Fjk for k = 1 (above)
and for k = 2 (below) in the range -16Fjk 6 1.

The spatio-temporal projection of the Fundamental Frac-
tal Fjk of stable eigenstates is a fractal scalar field of tran-
scendental attractors, the Fundamental Field [16].

The connection between the spatial and temporal projec-
tions of the Fundamental Fractal is given by the speed of light
c = 299792458 m/s. The constancy of c makes both projec-
tions isomorphic, so that there is no arithmetic or geometric
difference. Only the units of measurement are different.

Figure 2 shows the linear 2D-projection exp (Fjk) of the
first layer of the Fundamental Field

Fj1 = 〈n j0; n j1〉 = n j0 +
1

n j1

in the interval −1 < Fj1 < 1. The upper part of figure 1 shows
the same interval in the logarithmic representation. The Fun-
damental Field is topologically 3-dimensional, a fractal set
of embedded spheric equipotential surfaces. The logarithmic
potential difference defines a gradient directed to the center
of the field that causes a central force of attraction. Because
of the fractal logarithmic hyperbolic metric of the field, every
equipotential surface is an attractor.

The Fundamental Field is of pure arithmetical origin, and
there is no particular physical mechanism required as field
source. It is all about transcendental ratios of frequencies [9]
that inhibit destabilizing resonance. Therefore, we postulate
the universality of the Fundamental Field that affects any type
of physical interaction, regardless of its complexity.

In fact, scale relations in particle physics [11] and astro-
physics [17] obey the same Fundamental Fractal (1), without
any additional or particular settings. The proton-to-electron
rest energy ratio approximates the first layer of the Funda-
mental Fractal that could explain their exceptional stability.

Fig. 2: The equipotential surfaces of the Fundamental Field in the
linear 2D-projection for k = 1.

In fact, the life-spans of the proton and electron top every-
thing that is measurable, exceeding 1029 years [18].

Property Electron Proton

E = mc2 0.5109989461(31) MeV 938.2720813(58) MeV

ω= E/~ 7.76344 · 1020 Hz 1.42549 · 1024 Hz

τ= 1/ω 1.28809 · 10−21 s 7.01515 · 10−25 s

λ= c/ω 3.86159 · 10−13 m 2.10309 · 10−16 m

Table 1: The basic set of the physical properties of the electron and
proton. Data from Particle Data Group [18]. Frequencies, oscillation
periods and wavelengths are calculated.

The proton-to-electron ratio (tab. 1) approximates the seventh
power of Euler’s number and its square root:

ln
(
λe

λp

)
= ln

(
3.86159 · 10−13 m
2.10309 · 10−16 m

)
' 7 +

1
2

= 〈7; 2〉

In the consequence of this potential difference of the proton
relative to the electron, the scaling factor

√
e = 1.64872. . .

connects attractors of proton stability with similar attractors
of electron stability in alternating sequence. The following
Diophantine equation describes the correspondence of proton
calibrated attractors np with electron calibrated attractors ne.
Non considering the signature, only three pairs (np, ne) of in-
tegers are solutions to this equation: (3, 6), (4, 4), (6, 3).

1
np

+
1
ne

=
1
2

Figure 3 demonstrates this situation on the first layer of the
Fundamental Fractal (1). Both, the attractors of proton and
electron stability are represented at the first layer, so we can
see clearly that among the integer or half, only the attractors
±1/3, ±1/4 and ±1/6 are common. In these attractors, proton
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stability is supported by electron stability and vice versa, so
we expect that they are preferred in real systems.

Fig. 3: The distribution of the attractors of proton (bottom) stability
in the range −1 < F < 1 of the attractors of electron (top) stability.
Natural logarithmic representation.

These unique properties of the electron and proton pre-
destinate their physical characteristics as fundamental units.
Table 1 shows the basic set of electron and proton units that
can be considered as a fundamental metrology (c is the speed
of light in a vacuum, ~ is the Planck constant). In [12] was
shown that the fundamental metrology (tab. 1) is completely
compatible with Planck units [19]. Originally proposed in
1899 by Max Planck, these units are also known as natural
units, because the origin of their definition comes only from
properties of nature and not from any human construct. Max
Planck wrote [20] that these units, “regardless of any particu-
lar bodies or substances, retain their importance for all times
and for all cultures, including alien and non-human, and can
therefore be called natural units of measurement”. Planck
units reflect the characteristics of space-time.

We assume that scale invariance according to the Funda-
mental Fractal (1), which is calibrated to the physical proper-
ties of the proton and the electron, is a universal characteristic
of organized matter and criterion of stability. This hypothesis
we have called Global Scaling [10].

In this paper we will show that the distribution of inter-
stellar distances in the solar neighborhood corresponds with
the distribution of attractors in the Fundamental Field.

Results

In [21] we applied the Fundamental Fractal (1) to macro-
scopic scales interpreting gravity as attractor effect of its sta-
ble eigenstates. Indeed, the orbital and rotational periods of
planets, planetoids and large moons of the solar system cor-
respond with attractors of electron and proton stability [12].
This is valid also for the planets [10] of the systems Trappist
1 and Kepler 20. Planetary and lunar orbits [17] correspond
with equipotential surfaces of the Fundamental Field.

Figure 4 shows the distribution of the number of exoplan-
ets with orbital periods in the range 5 d < T < 24 d that
corresponds with logarithms 59.2 < ln (T/2πτe) < 60.8 on
the horizontal axis. According with table 1, τe is the elec-
tron angular oscillation period. The histogram contains data
of 1430 exoplanets and shows clearly the maximum corre-
sponding with the main attractor F 〈60〉. Other maxima cor-
respond with the attractors F 〈59; 2〉 and F 〈60; 2〉; even the
subattractors F 〈60;−4〉 and F 〈60; 4〉 can be distinguished.

The histogram evidences that the majority of the 1430 ex-
oplanets [22] prefer orbital periods close to 10–11 days cor-

Fig. 4: The histogram shows the distribution of the number of ex-
oplanets with orbital periods in the range 5 d < T < 24 d. The
logarithms ln (T/2πτe) are on the horizontal axis. Corresponding
with table 1, τe is the electron angular oscillation period. Data of
1430 exoplanets are taken from [22].

responding with the main attractor F 〈60〉, as well as peri-
ods close to 6–7 days or close to 17–18 days corresponding
with the attractors F 〈59; 2〉 and F 〈60; 2〉. Because of the
logarithm 7+1/2 of the proton-to-electron ratio, the attractors
F 〈59; 2〉 and F 〈60; 2〉 of electron stability are actually the
main attractors F 〈67〉 and F 〈68〉 of proton stability.

Figure 5a shows the distribution of the number of stars as
function of their distances R from the Sun up to 25 light-years
that correspond with the logarithms ln (R/λe) < 68.6 on the
horizontal axis. According with table 1, λe is the Compton
wavelength of the electron. The histogram contains 192 dis-
tances and shows clearly the maxima corresponding with the
attractors F 〈67〉, F 〈67; 2〉, F 〈68〉 and F 〈68; 2〉.

Knowing the right ascension, declination and distances of
two stars from the Sun, it is not difficult to calculate the dis-
tance between them. In preparation of this paper, the mutual
distances between the 192 best measured stars including Vega
within a radius of 25 light-years around the Sun were calcu-
lated. The number of pairs of stars is given by the formula:

P = N(N − 1)/2

where N is the number of stars; P is the number of pairs. For
192 stars, we calculated P = 18, 336 interstellar distances.

Figure 5b shows the distribution of the number of stars as
function of their distances R from Sirius up to 33 light-years.
Also this histogram shows clearly the maxima correspond-
ing with the attractors F 〈67〉, F 〈67; 2〉, F 〈68〉 and F 〈68; 2〉.
The same F -pattern appears in the histograms of interstel-
lar distances measured from Barnard’s star (fig. 5b), Tau Ceti
(fig. 5d) and other stars in the 25-light-years solar neighbor-
hood. Only the expression of theF -pattern differs in strength.

Conclusion

Standard models expecting an exponential increase of the cu-
mulative number of stars with the distance from a fixed ref-
erence point, perhaps could interpret the local maxima in the
histograms as anomalies evidencing that the solar neighbor-
hood is still in transformation. Within our approach, on the
contrary, the coincidence of the maxima with attractors of the
Fundamental Field evidences that the solar neighborhood has
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Fig. 5: The histogram shows the distribution of the number of stars in the solar neighborhood as function of their distances R from the Sun
(a), Sirius (b), Barnard’s star (c) and Tau Ceti (d). The logarithms ln (R/λe) are on the horizontal axis. Corresponding with table 1, λe is the
Compton wavelength of the electron. Data of 192 stars are taken from [23].

already reached a certain level of stability. Moreover, we ex-
pect a continuous amplification of F -patterns in histograms
as trend of interstellar distances. Most likely, the appearance
of patterns corresponding with the Fundamental Fractal (1) is
a universal criterion of stability.

Since the Fundamental Fractal is of number theoretic ori-
gin, it determines the frequency distributions of interstellar
distances as well as the wavelengths of elementary particles.
Interscalar cosmology [10] bases on this approach.
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