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The curse of dimensionality is a well-discussed issue in mathematics. Physicists also
require n-dimensional space but because of the phase space choice, there is no need to
worry about its consequences. This issue connected with dimensionality and related
problems are discussed in this paper.

1 Introduction

We live in a 3-dimensional world and any dimension beyond
this is called hyper-dimension. In the early decades of the
19th century, many articles were published listing works on
“hyper-volume and surface” n-dimensional geometry. Swiss
mathematician Ludwig Schlafli wrote a treatise on the subject
in the early 1850’s [1]. In 1858, a short description of this
was translated into English by Arthur Cayley which gives the
volume formula for an n-ball, commenting that it was deter-
mined long ago. In this paper, there were footnotes citing pa-
pers published in 1839 and 1841 [2] by the mathematician Eu-
gene Catalan regarding descriptive geometry, number theory,
etc. Though the earliest works encountered problems in com-
putations, it was William Kingdon Clifford who published a
solution in 1866 [3]. In the 1897 thesis, Heyl derived formu-
las for both volume and surface area and gives a clear idea
of multidimensional geometry [4]. In 1911, Duncan Som-
merville published a bibliography of non-Euclidean and n-
dimensional geometry [5] giving the details on the works on
hyper-sphere volumes. A book An Introduction to the Ge-
ometry of N Dimensions [6], by Duncan Sommerville, was
published in 1929 which explains the n-ball formula and has
a table of values for dimensions 1 to 7. In this paper, in
the first section, we will give the formula for hyper-volume
whose derivation is available in many statistical mechanics
textbooks [7, 8]. In the other sections, we will discuss the so
called “curse of dimensionality” and its consequences.

2 Hyper-volume

The n-dimensional volume of an Euclidean ball of radius R in
n-dimensional Euclidean space [9] is

Vn(R) =
π

n
2

Γ
(

n
2 + 1

) Rn , (1)

where Γ is Euler’s gamma function. The gamma function ex-
tends the factorial function to non-integer arguments. The
volume of an n-dimensional sphere depends on the radius of
the sphere (if we are considering the momentum space, the
radius will be momentum) and the number of degrees of free-
dom. Now we want to know how the variation in n and R

affects volume. For that, in the next section, we will numer-
ically evaluate the variation of hyper-volume with increasing
n for different radius.

3 The curse of dimensionality

We are all accustomed to live in low dimension spaces, mostly
up to three dimensions. But relativity says we live in four
dimensions [10] where the fourth dimension is time. String
theory uses about ten dimensions [11,12]. Our intuition about
space can be misleading in high dimensions, rather more sur-
prises awaits us there. Consider the case of an n dimensional
sphere, and let us evaluate the volume for different dimen-
sions for radius R = 1 and R = 1.5 which are given in Table
1. Initially an increase in volume is observed but later, vol-
ume decreases dramatically and almost approaches to zero at
higher and higher dimensions. This effect is called the “curse
of dimensionality” [13], often described as a phenomenon
that arises when studying and using high-dimensional spaces.
For R = 1, we can see that after reaching 5.26 the volume
decreases, whereas for R = 1.5, after reaching 177.22, the
volume decreases. These numbers depend on how the ratio
π

n
2 /Γ( n

2 + 1) changes with n. Richard Bellman was the one
who coined the term in 1957 [14,15] when considering prob-
lems in dynamic programming.

In Fig. 1, we plot a graph with n along the x-axis and vol-
ume along the y-axis for (R = 1, 1.05, 1.10, 1.15, 1.20). In
the graph, we can see that the volume first increases with n,
reaches a maximum value for a particular value of n, called
nmax. If we increase n further, the volume decreases. We can
see that nmax shifts towards the right when R increases. All
plots show that the volume of the n-ball vanishes to nothing
as n approaches infinity.

4 What is really happening to the volume for large n?

First, we will check how the dimension will be influenced by
the radius R. Taking the logarithm of the expression for the
n-dimensional volume and applying Stirling’s approximation
in (1), we get

ln Vn(R) '
n
2

ln π + n ln R −
n
2

ln
n
2

+
n
2
. (2)
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Dimension n Vn for R = 1 Vn for R = 1.5
0 1 1
1 2 3
2 3.14 7.06
3 4.19 14.13
4 4.94 24.98
5 5.26 39.97
6 5.17 58.86
7 4.73 80.72
8 4.06 104.02
9 3.30 126.80

10 2.55 147.05
11 1.88 162, 97
12 1.33 173.24
13 0.91 177.22
14 0.59 174.94
15 0.38 167.03

Table 1: Values of hyper-volumes for R = 1 and R = 1.5.

Fig. 1: A graph between n and volume for R = 1, 1.05, 1.10, 1.15,
1.20.

To find when the volume will decrease for different R, we take
the derivative with respect to n of the above equation which
gives

1
Vn(R)

dVn(R)
dn

'
1
2

ln π + ln R −
1
2

ln
n
2
. (3)

In order for the volume to be a maximum, dVn(R)
dn must be zero

for a particular n. Hence we obtain

nmax ' 2πR2 . (4)

This relation of nmax for various R has a parabolic-type de-
pendence which means the radius has no role in the decrease

of volume. Next, we will find out what is happening to the
volume for large n. There are arguments to show that data
confined in the volume will be spreading to an outer shell for
large n [16, 17]. Let us check whether this is true or not. For
a sphere with radius ∆R less than R, the volume will be

Vn(R) =
π

n
2

Γ
(

n
2 + 1

) (R − ∆R)n . (5)

The volume of the shell will be given by subtracting (1)−(5).
We calculated the volumes of n-dimensional spheres and
shells for different n which is given in Table 2. A graph is also
plotted with n along the x-axis and volumes of n-dimensional
sphere and shell along the y-axis as in Fig. 2.

Dimension n Vn(R) Vn(∆R)
4 4.93 1.69
5 5.26 2.15

10 2.55 1.66
15 0.38 0.30
20 0.02 0.02
99 9.47 ×10−40 9.47 ×10−40

100 2.36 ×10−40 2.36 ×10−40

Table 2: Values of volumes of n-dimensional sphere and shell for
different n.

Fig. 2: A graph between n and volumes of n-dimensional sphere and
shell.

Initially the volume of the shell is much less than the vol-
ume of the sphere. As n increases, both volumes decrease and
become equal. We also found the percentage change in vol-
ume of the sphere to shell. The fraction of volume contained
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in the shell with thickness ∆R will be equal to

Fractional volume =

π
n
2

Γ( n
2 +1)Rn − π

n
2

Γ( n
2 +1) (R − ∆R)n

π
n
2

Γ( n
2 +1)Rn

.

On simplification,

Fractional volume = 1 −
(
1 −

∆R
R

)n

. (6)

For R = 1,∆R = 0.1 and R = 2,∆R = 0.1, the fractional
volumes in percentage are given in Table 3. All these show
that the popular concept that the volume content is spread-
ing into the surface area is not correct. Hence the curse of
dimensionality remains unchanged.

Dimension R = 1 R = 2
1 10 5
5 40.95 22.62

10 65.13 40.12
15 79.41 53.67
20 87.84 64.15
299 100 99.99
300 100 99.99

Table 3: Values of percentage of fractional volume for different n.

5 How Physicists overcome the curse using Statistical
Mechanics

Statistical Mechanics (SM) provides the basis for many im-
portant branches of physics, including atomic and molecular
physics, solid state physics, biophysics, astrophysics, envi-
ronmental and socioeconomic physics. In statistical mechan-
ics, we are interested in finding the thermodynamic properties
of a system using n-dimensional space [18, 19]. It involves
number of particles of the order of 1023 which are in continu-
ous movement and hence have a continuous transformation in
their position and momenta. So in order to predict the prop-
erties, we need to have information about all the possible val-
ues of position and momentum. For this, we construct a new
space called a “phase space” which is a fusion of momen-
tum and position spaces which is a six-dimensional space for
N particles. In this space, the bridging equation to find the
properties was given by Boltzmann [20, 21] as

S = k ln Ω (7)

where S is the entropy, k is the Boltzmann constant and Ω is
the number of available states in phase space which is given
by [7, 22]

Ω =
V

n
3 π

n
2

hn Γ
(

n
2 + 1

) Rn, (8)

where V is the spatial volume and h is Planck’s constant. Mo-
mentum volume of 3N-dimension is [7, 22]

Vn = V3N =
π

3N
2 R3N

Γ
(

3N
2 + 1

) =
π

n
2 Rn

Γ
(

n
2 + 1

) . (9)

In SM, we never have V3N alone. We have both spatial vol-
ume V and momentum volume V3N such that the total volume

VTotal = VNV3N . (10)

But SM requires only Ω, the number of micro-states. Substi-
tuting for VTotal, we find the number of micro-states as

Ω =
VTotal

h3N N!
=

VNV3N

h3N N!
=

VNπ
3N
2 R3N

h3N N!Γ
(

3N
2 + 1

) (11)

where N! is used to avoid Gibbs paradox [7]. Simple cal-
culations show that the number of micro-states (Ω) goes to
infinity even for N just above 3 (Ω is of the order of 101000

for N = 100). But because of the bridging equation, we re-
quire only ln Ω and for that we carry out the following steps.
Let us consider non-relativistic classical particles with energy
E = p2/2m. Then we have the radius of the momentum
sphere R = p =

√
2mE and we get

Ω =

(
V
h3

)N
(2πmE)

3N
2

N! Γ
(

3N
2 + 1

) . (12)

Applying Stirling’s approximation and carrying out suitable
simplifications we arrive at

ln Ω ' N ln
V
λ3 − N ln N +

5
2

N (13)

where λ is the de Broglie wavelength. So we plot a graph
between ln Ω and N as in Fig. 3. The first graph shows a
nonlinear variation because our choice of V/λ3 is not realistic.
In practice V/λ3 will be always greater than 1025 and hence
ln Ω will be always proportional to N. This shows that in SM
there is no need to worry about the decrease in volume of the
n-dimensional space and we are not affected by the curse of
dimensionality.

6 Conclusion

In statistical mechanics, in micro-canonical ensembles, we
use the hyper-dimensional space to find the thermodynamic
properties of a system. There are much literature [16, 17, 23,
24] showing that hyper-dimensional volume vanishes at large
dimension or for large N. But this does not affect the prop-
erties of a system, which remains a paradox for physicists.
This paradox is resolved in this paper. In SM, the classical
particles are always in motion and hence to specify them we
require both position and momentum simultaneously, which
results in the phase space. We showed that because of the
choice of the phase space, the curse of hyper-dimension is
not affecting the properties and calculations in SM.
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Fig. 3: A graph between ln Ω and N for different V/λ3.

Acknowledgements

During the preparation of the paper, the authors have been
in constant discussions with Prof. K. P. N. Murthy, a great
teacher of Physics from India, who died recently. As a to-
ken of respect to his inspiring comments, we wish to dedi-
cate this paper to him. The authors also wish to thank Gau-
tham Dathatreyan, Department of Science, Amrita Vishwa
Vidyapeetham, Coimbatore for the computations using
Python.

Received on August 18, 2021

References
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