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This paper introduces correct solutions for rotating black holes and electrically charged
rotating black holes. The solutions are based on the space metric of a rotating spher-
ical body approximated by a mass-point, which is a new metric to General Relativity
introduced and proved using Einstein’s equations in the previous paper (Progr. Phys.,
2014, v. 20, 79–99) as an extension of Schwarzschild’s mass-point metric. According
to the solutions, rotating black holes have the shape of an oblate spheroid, flattened at
the poles, where its radius is equal to the gravitational radius of the body, and thickened
at the equator. The introduced black hole solutions are mathematically and physically
correct, because they have no limitations, unlike Kerr’s solution and the Kerr-Newman
solution, which, since they are obtained using the tetrad formalism, are valid only in an
infinitely small vicinity of the surface of a rotating black hole.

1 Non-rotating black holes

Definition 1: A black hole is a type of cosmic body, the grav-
itational field of which is so strong that light cannot es-
cape from its surface.

This is the original definition of black holes according
to the founders of the black hole problem — the Reverend
John Michell, who in 1783 wrote his article in which he first
outlined his idea of such cosmic objects [1], and also Pierre-
Simon Laplace, who in 1796, independently of Michell, in
Chapter 6 of his Exposition du Système du Monde gave a def-
inition of black holes [2, p. 305], and then in 1799 provided a
mathematical justification for such objects in the framework
of Classical Mechanics [3].

See the 2009 study of the history of the black hole prob-
lem [4] and the papers [5–7] referred therein.

In the General Theory of Relativity, the geometric basis
is not a three-dimensional Euclidean space, as in Classical
Mechanics, but a four-dimensional pseudo-Riemannian space
(space-time), black holes are defined from the general for-
mula of the Riemannian space (space-time) metric*

ds2 = gαβ dxαdxβ =

= g00 dx0dx0 + 2 g0i dx0dxi + gik dxidxk, (1)

in which specific formulae for the components of the funda-
mental metric tensor gαβ determine the geometry and distri-
bution of matter of the particular Riemannian space (space-
time) that we are considering.

Usually, the definition of black holes in General Relativity
is given in terms of the zero (time) component

g00 =

(
1 −

w
c2

)2
(2)

of the fundamental metric tensor gαβ, based on the assertion
that the difference of g00 from 1 indicates the deviation of real

*Here α, β= 0, 1, 2, 3 are four-dimensional (space-time) indices, and
i, k= 1, 2, 3 are three-dimensional spatial indices.

time intervals dτ from ideal (unperturbed and homogeneous)
time intervals dt, which is determined only by the potential of
the acting gravitational field w = c2 (1 − √g00

)
.

This definition of black holes says:

Definition 2: A black hole is a type of cosmic body, on the
surface of which g00 = 0 and, hence its physical radius
is equal to the gravitational radius rg = 2GM/c2, calcu-
lated for its mass M. The entire mass of such a body
is under its gravitational radius, which means that this
body is in the state of gravitational collapse, i.e., the
body is a gravitational collapsar.

This definition of black holes originates from the mass-
point space metric introduced in 1916 by Karl Schwarzschild
[8], which is known as the Schwarzschild mass-point metric.
This metric†

ds2 =

(
1 −

rg
r

)
c2dt2 −

dr2

1 −
rg
r

− r2
(
dθ2 + sin2

θ dφ2
)

(3)

describes a spherically symmetric space filled with a gravita-
tional field created by a massive spherical island of substance,
which is approximated by a material point, where r is the ra-
dial distance from the barycentre of the massive island (which
is the coordinate origin), and rg = 2GM/c2 is the gravitational
radius of the island, calculated for its mass M. According
to this metric, the non-zero components of the fundamental
metric tensor gαβ of such a space are

g00 = 1 −
rg
r
, g11 = −

1

1 −
rg
r

g22 = −r2, g33 = −r2sin2
θ

 . (4)

According to the views commonly accepted in the 1920–
1930s among the scientists working in the field of General

†The commonly accepted mathematical form of this metric given above
was derived not by Schwarzschild himself, but immediately after his death in
1916 independently by Johannes Droste and David Hilbert [9, 10].
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Relativity, real time intervals dτ are expressed through ideal
(unperturbed, homogeneous) time intervals dt as

dτ =
√
g00 dt , (5)

see §84 on distances and time intervals in The Classical The-
ory of Fields by Landau and Lifshitz [11], the 1st edition of
which was published in 1939.

Since g00 = 1− rg
r = 0 on the surface of a gravitational col-

lapsar (r= rg), physically observable time stops (dτ= 0) on
its surface from the point of view of an external observer and,
hence, no signal can escape from this body. In other words,
this is a cosmic object called a black hole.

Some criticism to the black hole concept is based on the
fact that r in the formula of the Schwarzschild mass-point
metric is a radial coordinate (as in any space metric written in
spherical coordinates r, θ, φ), and not the physical radius of
the massive spherical island of substance creating the gravi-
tational field. For the details of this criticism, see [12,13] and
references therein. This is true, but this fact does not can-
cel the existence of a space breaking on a spherical surface
of the radius rg = 2GM/c2 from the barycentre of the massive
island (due to the breaking g00 = 0 in the space metric on this
surface). Of course, a spherical massive island that creates a
gravitational field described by the Schwarzschild mass-point
metric can have any radius R. But if its radius is equal to the
gravitational radius R= rg calculated for its mass M, then this
body is definitely a gravitational collapsar (black hole). See
my remarks [14] on the above criticism.

Gravitational collapsars are conceivable not only in the
form of a collapsed spherical body, i.e., they are associated
not only with the Schwarzschild mass-point metric. It can be
any cosmic body, the physical radius of which is equal to its
gravitational radius (and, therefore, g00 = 0 on its surface).
So, in 2010 Larissa Borissova introduced a new cosmological
model, according to which the entire observable Universe is a
de Sitter collapsar — a de Sitter space (this is a constant cur-
vature spherical space filled with the physical vacuum) in the
state of gravitational collapse: its radius (which is the same as
the curvature radius of space) is equal to its gravitational ra-
dius. She called this model the de Sitter bubble [15]. Also, in
our common monograph on the internal constitution of stars,
Inside Stars [16], we considered liquid black holes; the space
inside such a collapsar is determined by Schwarzschild’s met-
ric of the space inside a liquid sphere.

2 The complete formula for real time

As was mentioned above, the key point of the black hole solu-
tion in General Relativity is the stopping of real time (dτ= 0)
on the surface of a black hole, which is usually determined
from the formula for real time intervals dτ=

√
g00 dt, com-

monly accepted in the 1920–1930s [11, §84].
At the same time, the problem of determining real time

intervals is not trivial, and is a particular case of the general

problem of determining physically observable quantities in
the space-time of General Relativity.

Initially, only heuristic considerations were used for de-
termining physical observable quantities in General Relativ-
ity. For example, physically observable (real) time intervals
dτ were assumed to be the square root of the first (time) term
g00 dx0dx0 = g00 c2dt2 of the square of the four-dimensional
(space-time) interval ds2, i.e., dτ=

√
g00 dt. It was heuristi-

cally assumed that three-dimensional components of a four-
dimensional vector form a three-dimensional observable vec-
tor, and its time component is the observable potential of the
vector field. And so forth and so on, which generally does not
prove that these quantities can be actually observed.

Only in 1944 Abraham Zelmanov developed a versatile
mathematical method that unambiguously determined physi-
cally observable quantities in the space-time of General Rel-
ativity as the projections of four-dimensional quantities onto
the time line and the three-dimensional spatial section, associ-
ated with an observer. Such projections are invariant through-
out the spatial section of the observer (his observable three-
dimensional reference space), i.e., they are “chrono-metric in-
variants” in his reference frame and depend on the properties
of his reference space, such as the gravitational potential, ro-
tation, deformation, curvature, etc. For this reason, Zelmanov
called his mathematical method the theory of chronometric
invariants or the chronometrically invariant formalism.

Although Zelmanov presented his work in 1944 in his
lengthy doctoral dissertation and later in two short papers, one
of which was published in English in 1956 [17], his chrono-
metrically invariant formalism remained outside attention of
the scientific community over decades. His main works were
published in English only in the 2000s [18,19]. See the com-
prehensive survey of the Zelmanov formalism [20], where
I and Larissa Borissova collected almost everything that we
know on this subject personally from Zelmanov and based on
our own research studies.

In short, the chronometrically invariant projections of any
four-dimensional quantity are calculated using operators of
projection, which take the physical properties and geometric
structure of the observer’s physical space into account. Thus,
the four-dimensional displacement vector dxα (α = 0, 1, 2, 3),
projected onto the time line of an observer, represents the
physically observable (real) chr.inv.-time interval

dτ =
√
g00 dt −

1
c2 vi dxi, i = 1, 2, 3, (6)

and the projection of dxα onto the three-dimensional spatial
section associated with the observer is the physically observ-
able three-dimensional chr.inv.-displacement vector dxi.

Here g00 is expressed through the physically observable
chr.inv.-potential w of the gravitational field that fills the ob-
server’s space

w = c2 (
1 −
√
g00

)
,

√
g00 = 1 −

w
c2 , (7)
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and vi is the three-dimensional vector of the linear velocity of
rotation of the observer’s space

vi = −
cg0i
√
g00
, vi = −cg0i√g00 , vi = hik v

k. (8)

The square of the three-dimensional physically observ-
able chr.inv.-interval is determined as

dσ2 = hik dxidxk (9)

using the three-dimensional chr.inv.-metric tensor hik

hik = −gik +
1
c2 vi vk , hik = −gik, hi

k = δ
i
k , (10)

which is the chr.inv.-projection of the fundamental metric ten-
sor gαβ onto the spatial section associated with the observer
and possesses all properties of gαβ throughout the spatial sec-
tion (the observer’s three-dimensional space).

Thus, the square of the four-dimensional (space-time) in-
terval ds2 = gαβ dxαdxβ is expressed in terms of chronomet-
rically invariant (physically observable) quantities as

ds2 = c2dτ2 − dσ2. (11)

The above has aftermaths for the black hole solution. The
complete formula for physically observable (real) time inter-
vals dτ =

√
g00 dt− 1

c2 vi dxi (6) differs from dτ=
√
g00 dt (5)

given in §84 of The Classical Theory of Fields by the sec-
ond term, determined by the rotation of space. They coincide
only if space does not rotate. Therefore, since the stopping of
observable time (dτ= 0) defines black holes in General Rel-
ativity (dτ= 0 on the surface of a body means that no signal
can leave this body), the condition

dτ =
√
g00 dt −

1
c2 vi dxi = 0 (12)

which follows from the chronometrically invariant formalism
should give a black hole solution for rotating black holes.

3 The correct solution for a rotating black hole

It is obvious that a correct solution for a rotating black hole
should follow from the space metric of a rotating spherical
body, approximated by a mass-point. Such a metric was intro-
duced and proved using Einstein’s field equations in the pre-
vious paper [21].

This metric was derived on the basis of the Schwarzschild
mass-point metric (3) by assuming that the space rotates to-
gether with the body itself along the equatorial coordinate
axis φ, i.e., along the geographical longitudes of the body,
with the linear velocity v3=ωr2sin2

θ. In addition, it was as-
sumed that the rotation of space is stationary, i.e., the angular
velocity ω of this rotation is constant (ω= const). Since by
definition of vi (8) we have

v3 = ωr2sin2
θ = −

cg03
√
g00
, (13)

then the metric of a rotating spherical body approximated by
a mass-point has the form

ds2 =

(
1 −

rg
r

)
c2dt2 − 2ωr2sin2

θ

√
1 −

rg
r

dtdφ −

−
dr2

1 −
rg
r

− r2
(
dθ2 + sin2

θ dφ2
)
, (14)

where, as is seen from the above formula,

g00 = 1 −
rg
r
, g03 = −

ωr2sin2
θ

c

√
1 −

rg
r

g11 = −
1

1 −
rg
r

, g22 = −r2, g33 = −r2sin2
θ


, (15)

and, hence, non-zero lower-index components of the chr.inv.-
metric tensor hik (10) are

h11 =
1

1 − rg
r

, h22 = r2

h33 = r2sin2
θ

(
1 +
ω2r2sin2

θ

c2

)

, (16)

while its upper-index components hik, since the matrix hik is
strict diagonal, i.e., all of its non-diagonal components (for
which i, k) are zero, are hik = (hik)−1 just like the invertible
matrix components to any diagonal matrix.

To check the above rotating metric, we calculate v2= vi v
i

= hik v
iv k. Since v i= hikvk, we obtain the following

v2 = vi v
i =
ω2r2sin2

θ

1 + ω2r2sin2θ

c2

, v =
ωr sin θ√
1 + ω2r2sin2θ

c2

, (17)

therefore, the dimension of v is
[
cm/sec

]
as it should be. If

the space rotates slowly, then the above formula transforms
to v=ωr sin θ

[
cm/sec

]
as in Classical Mechanics.

In fact, the space metric (14) describes a spherically sym-
metric space, which is filled with the gravitational field cre-
ated by a rotating spherical island of substance (approximated
by a mass-point) and rotates together with this body.

The introduced and proved metric (14) is a new space
metric to General Relativity, which is a modern extension and
replacement of the Schwarzschild mass-point metric (3), be-
cause in the space of the Schwarzschild metric a massive
body creating gravitational field does not rotate. Moreover,
this metric is the basic space metric in the Universe, char-
acterizing the physically observable field of any real cosmic
body, be it a planet, star, galaxy or something else (since all
real cosmic bodies rotate).

Consider the black hole condition dτ= 0 in the space of
a rotating spherical body approximated by a mass-point, i.e.,
according to the space metric (14).
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Independently of the specific metric of space, the black
hole condition dτ= 0 (12) can be transformed to the form

dτ =
(
√
g00 −

1
c2 vi u

i
)

dt = 0 , ui =
dxi

dt
, (18)

where ideal (unperturbed, homogeneous) time intervals are
dt, 0 and, therefore,

√
g00 −

1
c2 vi u

i = 0 , (19)

while ui is the coordinate velocity of a source of signals (in
this case — along the surface, on which physically observable
time stops). Thus, the black hole condition dτ= 0 (12) took
its detailed form (19).

In the space of a rotating spherical body, approximated by
a mass-point, i.e., in the space of the metric (14), the obtained
detailed formula (19) of the black hole condition dτ= 0 takes
the particular form characteristic of this space metric√

1 −
rg
r
−

1
c2 v3 u3 = 0 . (20)

From this form of the black hole condition dτ= 0, since
rg = 2GM/c2 is the gravitational radius of the body, calculated
for its mass M,* we then derive the black hole solution, which
is a distance r= rc from the barycentre of the body at which
physically observable time for signals stops, i.e., the signals
disappear for an external observer.

So forth, assuming that the linear velocity with which the
space rotates together with the body itself v3=ωr2sin2

θ is
much less than the speed of light, and the source of signals
rests on the body’s surface, i.e., its coordinate velocity along
the equatorial axis φ is u3 =

dφ
dt =ω, we obtain the black hole

solution for a rotating black hole

rc =
rg

1 − 1
c4 ω

4r4sin4
θ

≃ rg

(
1 +

1
c4 ω

4r4sin4
θ

)
⩾ rg . (21)

According to the obtained black hole solution (21), since
sin θ= 0 at the poles of a rotating black hole (as in the previ-
ous paper [21] we assume that the θ coordinate is the polar
angle measured from the North Pole), the second term in the
brackets vanishes at the poles and has no effect. As a result,
the radius rc of a rotating black hole coincides with its gravi-
tational radius (rc = rg) at the North Pole and South Pole.

In contrast, sin θ= 1 at the equator and, hence, the equa-
torial radius of a rotating black hole is greater than its gravi-
tational radius rg by a length

∆r = rg
ω4r4

c4 , (22)

which is greater the faster the black hole rotates.

*At the distance rg = 2GM/c2 from its barycentre the space has a break-
ing, which manifests itself in the form of the condition g00 = 0.

Therefore, according to the black hole solution (21) that
we have obtained, we arrive at the conclusion:

Conclusion: Rotating black holes are not spheres, but have
the shape of an oblate spheroid, flattened at the poles,
where its radius is equal to the gravitational radius of
the body, and thickened at the equator, where its radius
exceeds the gravitational radius (due to rotation). The
faster a black hole rotates, the thicker its body is at the
equator compared to the poles.

This means that, according to the black hole solution ob-
tained above, signals arriving at the poles of a rotating grav-
itational collapsar disappear for an external observer when
they arrive at its gravitational radius (as in the case of a non-
rotating collapsar). However, if signals arrive at a rotating
gravitational collapsar at latitudes other than the poles, then
they disappear at a distance greater than its gravitational ra-
dius (this distance exceeding the gravitational radius is maxi-
mum at the equator).

For this reason, it is reasonable to reconsider the initial
definition of black holes in General Relativity, which is based
on the gravitational collapse condition g00 = 0 (see Defini-
tion 2 in the beginning of this article). Since, according to the
solution obtained above for rotating black holes, the equato-
rial radius of a rotating black hole exceeds its gravitational
radius, we must replace the initial definition of black holes
with a more general one, according to which black holes are
defined as objects, on the surface of which physically observ-
able time stops:

Definition 3: A black hole is a type of cosmic body, on the
surface of which time stops from the point of view of an
external observer (the interval of physically observable
time is zero dτ= 0 on its surface) and, hence, no one
signal can escape the surface of the body.

4 The correct solution for an electrically charged rotat-
ing black hole

Consider another case, where the considered spherical island
of substance (approximated by a mass-point) possesses an
electric charge q. In this case, the space of the mass-point
is filled with not only the gravitational field created by it,
but also a spherically symmetric electric (electromagnetic)
field, i.e., is filled with distributed matter. The space of an
electrically charged mass-point is described by the Reissner-
Nordström metric

ds2 =

1 −
rg
r
+

r2
q

r2

 c2dt2 −

−
dr2

1 −
rg
r +

r2
q

r2

− r2
(
dθ2 + sin2

θdφ2
)
, (23)

which is an extension of the Schwarzschild mass-point met-
ric, first considered in 1916 by Hans Reissner [22], and then,
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in 1918, by Gunnar Nordström [23]. The Reissner-Nordström
metric uses the same denotations as the Schwarzschild mass-
point metric, with an addition of

r2
q =

Gq2

4πε0c4 , (24)

where q is the electric charge of the massive island (source of
the gravitational field and the electromagnetic field), G is the
gravitational constant, and 1

4πε0
is Coulomb’s force constant.

We introduce the space metric of an electrically charged
rotating body (approximated by a mass-point) analogous to
the mass-point space metric of a rotating body (14), which to-
gether with its space stationary rotates with a constant angular
velocity ω= const and the linear velocity v3=ωr2sin2

θ along
the equatorial coordinate axis φ, i.e., along the geographical
longitudes of the body. The resulting space metric of an elec-
trically charged rotating soherical body approximated by a
mass-point has the form

ds2 =

1 −
rg
r
+

r2
q

r2

 c2dt2 −

− 2ωr2sin2
θ

√
1 −

rg
r
+

r2
q

r2 dtdφ −

−
dr2

1 −
rg
r +

r2
q

r2

− r2
(
dθ2 + sin2

θ dφ2
)
, (25)

where, as follows from the above formula,

g00 = 1 −
rg
r
+

r2
q

r2

g03 = −
ωr2sin2

θ

c

√
1 −

rg
r
+

r2
q

r2

g11 = −
1

1 −
rg
r +

r2
q

r2

g22 = −r2, g33 = −r2sin2
θ



, (26)

and, hence, non-zero lower-index components of the chr.inv.-
metric tensor hik (10) are

h11 =
1

1 −
rg
r +

r2
q

r2

, h22 = r2

h33 = r2sin2
θ

(
1 +
ω2r2sin2

θ

c2

)

, (27)

while its upper-index components are hik = (hik)−1 just like the
invertible matrix components to any diagonal matrix.

The introduced space metric (25) describes a spherically
symmetric space, which is filled with the gravitational field

and the electromagnetic field, which are created by a rotating
electrically charged spherical island of substance (approxi-
mated by a mass-point) and rotates together with this body.

The introduced metric (25) is a new space metric to Gen-
eral Relativity, which is a modern extension of the Schwarz-
schild mass-point metric (3), the recently introduced metric
of a rotating spherical body approximated by a mass-point
(14) and the Reissner-Nordström metric (23).

This metric is proved using Einstein’s field equations ab-
solutely analogous to the metric of a rotating spherical body
approximated by a mass-point, which was introduced and
proved in the recent paper [21], because it differs only by
one additional term in g00, which takes the electric charge
q into account. The only difference in the proof is that the
right-hand side of the Einstein equations in this case is non-
zero and contains physically observable components of the
energy-momentum tensor of the electromagnetic field, and
the Riemannian conditions for the metric take the electromag-
netic field into account. This proof is easy to repeat by any-
one, following with the recent paper [21]. We therefore omit
this proof in the present paper, since the main task here is to
obtain solutions for black holes.

In the space of the rotating Reissner-Nordström metric
(25) that we just introduced, the detailed general formula (19)
of the black hole condition dτ= 0 takes the form√

1 −
rg
r
+

r2
q

r2 −
1
c2 v3 u3 = 0 . (28)

From here, assuming that the effect created by the electro-
magnetic field of an electrically charged black hole (the third
term under the square root) is much weaker than the effect of
its gravitational field (the second term), which is a natural as-
sumption for a gravitational collapsar due to its super-strong
gravitational field, we then derive the black hole solution for
an electrically charged black hole, which is a distance from
its barycentre at which physically observable time for signals
stops (they disappear for an external observer).

As above in the case of a regular rotating black hole, we
assume that the linear velocity v3=ωr2sin2

θ with which the
space rotates together with the electrically charged body itself
is much less than the speed of light, and the source of signals
rests on the body’s surface (u3 =

dφ
dt =ω). Thus, we obtain the

formula of the black hole solution for an electrically charged
rotating black hole

rc =
rg

1 − 1
c4 ω

4r4sin4
θ +

r2
q

r2

≃

≃ rg

1 +
1
c4 ω

4r4sin4
θ −

r2
q

r2

 . (29)

According to the obtained black hole solution (29), the
radius of an electrically charged rotating black hole is shorter
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at its poles than the gravitational radius rg = 2GM/c2 calcu-
lated for its mass M, and is less thick at the equator than the
equatorial radius of a regular rotating black hole. In other
words, the electric charge (and the electromagnetic field) of
an electrically charged rotating black hole makes its shape
more flattened from the poles and less thick at the equator
than a regular rotating black hole

rc (poles) =
rg

1 + r2
q

r2

≃ rg

1 −
r2
q

r2

 < rg , (30)

rc (equator) =
rg

1 − ω
4r4

c4 +
r2
q

r2

≃ rg

1 +
ω4r4

c4 −
r2
q

r2

 . (31)

An electrically charged rotating black hole has a radius
equal to its gravitational radius rg at geographic latitudes in
the northern and southern hemispheres, where the sine of the
polar angle θ is

sin θ =
c
√

rq

ωr3/2 , r2
q =

Gq2

4πε0c4 . (32)

Finally, the obtained black hole solution for electrically
charged black holes (29) leads us at the conclusion:

Conclusion: Electrically charged rotating black holes are not
spheres, but have the shape of an oblate spheroid, flat-
tened at the poles, where its radius is shorter that the
gravitational radius of the body, and thickened at the
equator, where its radius exceeds the gravitational ra-
dius (due to rotation). The faster a black hole rotates,
the thicker its body is at the equator compared to the
poles. The greater its electric charge, the shorter its ra-
dius is at the poles compared to its gravitational radius
and the less thick its equatorial radius.

That is, according to the obtained black hole solution, sig-
nals arriving at the poles of an electrically charged rotating
gravitational collapsar disappear for an external observer at
an altitude less than its gravitational radius. But, if signals ar-
rive at such a collapsar at the equator, then they disappear at
a distance greater than its gravitational radius. Signals disap-
pear at a distance of the gravitational radius from the barycen-
tre of an electrically charged rotating gravitational collapsar
at geographic latitudes in the northern and southern hemi-
spheres, where the effect of the collapsar’s rotation is com-
pletely compensated by the effect of its electric charge.

P.S. It should be noted that the significance of the black hole
solutions obtained in the present paper contrasts with Kerr’s
solution and the Kerr-Newman solution.

Kerr’s solution for a rotating black hole [24] and the Kerr-
Newman solution for an electrically charged rotating black
hole [25] were introduced in the early 1960s, based on the
respective space (space-time) metrics that they derived using

a special version of the tetrad formalism called the Newman-
Penrose formalism [26]. In the tetrad formalism, all quanti-
ties given in the four-dimensional pseudo-Riemannian space
(space-time of General Relativity, which is generally curved,
inhomogeneous and anisotropic) are projected onto a tangen-
tial space, which is a four-dimensional flat, homogeneous and
isotropic space (space-time) tangential to the given Rieman-
nian space at the point where you are looking for a solution.
Thus, the tetrad formalism solves all problems of General
Relativity in this tangential flat space.

The advantage of this mathematical formalism is that in
the tangential flat homogeneous and isotropic space there are
no singularities (space discontinuities), and complicated pro-
blems of General Relativity are expressed in a simple math-
ematical form. On the other hand, the tetrad formalism has
a serious drawback that has prevented it from becoming the
main mathematical tool of the researchers working in the field
of General Relativity. Quantities associated with objects and
the geometric structure of the Riemannian space can be pro-
jected onto a tangential flat space only in an infinitely small
vicinity of the projection point (because they are absent in the
tangential flat space). Therefore, all calculation results ob-
tained using the tetrad formalism or any modification of it
are valid only in an infinitely small vicinity of the projection
point in the tangential flat space (and not in the Riemannian
space itself), and these results are not integrable to another
point of the Riemannian space.

Kerr’s solution and the Kerr-Newman solution were de-
rived using the Newman-Penrose formalism (a modification
of the tetrad formalism) in the tangential flat space, in which
objects of General Relativity do not actually exist. Therefore,
the physical reality of their theoretical results is questionable.
In addition, Kerr’s solution and the Kerr-Newman solution
have a serious limitation. Namely — these solutions are valid
only in an infinitely small vicinity of the surface of a rotating
black hole in the tangential flat space, and not in the Rieman-
nian space itself (in which all objects of General Relativity
exist, including gravitational collapsars).

In contrast, the solutions obtained here for rotating black
holes and electrically charged rotating black holes are math-
ematically and physically correct, since they were derived in
the Riemannian space itself, have no limitations, and are in-
tegrable over the entire space.

Submitted on December 19, 2024
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