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According to the numerical-relational approach to physics proposed here, fundamental
conservative forces such as gravity can be understood as a consequence of the logarith-
mic symmetry of fractal scalar fields of transcendental numerical attractors that arise in
systems of coupled harmonic quantum oscillators.

Introduction

Modern physics attempts to explain every observed physical
phenomenon by fundamental forces: gravitation, electromag-
netism, the weak interaction, and the strong interaction. Each
of the fundamental interactions can be described mathemat-
ically as a field. In the Standard Model [1] of fundamen-
tal interactions, matter consists of fermions, like electrons or
protons, which carry fundamental properties called charges.
They are thought to be field sources, which attract or repel
each other by exchanging bosons. However, the origin of the
charges and particles, and thus also the fields and forces is
still poorly understood. So defining electric charge [2] as a
fundamental property of matter that exhibits electrical attrac-
tion or repulsion in the presence of other electrically charged
matter is essentially circular reasoning.

The explanation of observed physical phenomena by as-
suming the existence of elementary particles with charges that
represent simply the physical properties required for interac-
tion is a typical feature of the current paradigm. In this case,
the question about the origin of the observed physical phe-
nomena is only redirected, because also the question about
the origin of the assumed particles and charges remains with-
out answer. Basically, such relay-race-like explanation, in
which the question is never answered but is passed like a stick
from one model object to another, cannot satisfy the scientific
mind in the long term.

Apropos, despite the appreciated success of the Standard
Model in describing subatomic processes, the gravitational
interaction defies this paradigm – already over more than 50
years. In my opinion, this circumstance indicates less the
specificity of the gravitational interaction than the conceptual
limitations of the paradigm.

In this context, the history of Newton’s law of gravitation
is quite revealing. In accordance with the historical legend,
only 100 years after Newton, in 1797, Henry Cavendish came
up with the idea to measure the mutual attraction of two bod-
ies of known mass in an experiment with a sensitive rotating
balance. Cavendish’s measuring device is similar to the tor-
sion balance that was invented by the geologist John Michell
and used by Charles Augustin de Coulomb in 1785 to inves-
tigate electrostatic attraction and repulsion. Actually, until
the second half of the 19th century, Newton’s law of gravi-
tation was described only in the form of proportionalities, no

gravitational constant. In the explicit form that is used today,
it was formulated 200 years after Newton in 1873 by Alfred
Cornu and Jean-Baptist Baille, whose competence lay in the
field of optics and electricity. Actually, they were inspired
by Coulomb’s law of electrostatic interaction, with the idea
that gravitation must be something similar to electrostatic at-
traction, where the masses of the involved bodies act like the
charges in Coulomb’s law. In this way, Coulomb’s law served
as conceptional model of the current form of Newton’s law of
gravitation.

Electrostatic forces and gravitational forces actually share
some fundamental properties: both are central, conservative,
and obey an inverse-square law. Furthermore, the electro-
static and gravitational fields both act instantaneously.

In fact, it is well known that if a charged source moves at
a constant velocity, the electric field experienced by a test par-
ticle points toward the source’s instantaneous position rather
than its retarded position.

Also in astronomical calculations of star and planetary
movements, it is traditionally assumed that the effect of grav-
ity occurs instantaneously. In fact, gravitation shows no aber-
ration [3], such as the light of the stars. It is certainly true,
although perhaps not widely enough appreciated, that obser-
vations are incompatible with gravitation having a light-speed
propagation delay. Orbits in the solar system would shift sub-
stantially on a time scale on the order of a hundred years. By
analyzing the motion of the Moon, Pierre Simon Laplace [4]
concluded in 1805 that the speed of gravitation must be at
least 7 · 106 times higher than 300.000 km/s. Using modern
astronomical observations, Thomas Van Flandern [5] raised
this limit to 2 · 1010 c.

The theoretical problem is that instantaneity contradicts
the Standard Model, which considers fundamental interac-
tions as mediated by force carrier particles limited by the
speed of light in vacuum.

Actually, besides instantaneity, there is still a more seri-
ous problem: The hypothesis that G is a fundamental constant
of physics is generally accepted, although it has not yet been
experimentally confirmed [6]. In fact, Newton’s law of grav-
itation cannot be verified in the scale of a planetary system,
because the mass of a planet cannot be measured. By the way,
the widely quoted claim that the orbit of the planet Neptune
was discovered by calculation based on Newton’s law of grav-
ity is obviously false [7]. Apropos, Kepler’s laws of planetary
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motion contain neither masses nor the G, and hence, they do
not require Newton’s law of gravitation for their derivation.
Moreover, while Newton’s theory of gravitation leads to in-
consistencies already in the case of three interacting bodies,
Kepler’s laws of planetary motion do not have any N-body
problem. However, despite perturbation models and paramet-
ric optimization, the stability of planetary systems is still a
theoretical problem. In general, the stability of systems of a
large number of coupled periodical processes is still a funda-
mental problem in physics [8].

In particular, there is no way to derive the current con-
figuration of the solar system from Kepler’s laws of plane-
tary motion, and certainly not from Newton’s law of universal
gravitation, because there are infinitely many pairs of orbital
periods and distances that fulfill Kepler’s laws. Newer mod-
els of modified Newtonian dynamics have not changed this
situation. Einstein’s field equations do not reduce the theo-
retical variety of possible orbits, but increases it even more.
General relativity does not provide solutions of the mentioned
problems, because in the normal case of weak gravity and low
velocities, Einstein’s field equations obey the correspondence
principle and reduce to Newton’s law of gravitation.

Perhaps the concept of gravitation itself requires a revi-
sion. Obviously, it is not about details, but an important part
of the hole is missing.

In previous publications [9, 10] I have applied a numeric-
relational approach to the analysis of the ratios of the orbital
and rotational periods of the planets and planetoids of the so-
lar system and thousands of exoplanets [7], which led me to
the hypothesis that the avoidance of orbital and rotational res-
onances by approximation of transcendental ratios is a basic
forming factor and stabilizer of planetary systems [11].

In this article, I indent to show that this numeric-relational
approach leads to a new understanding of gravitation based on
fractal scalar fields of transcendental numerical attractors.

Theoretical Approach

It is well known [12] that orbital resonance can destabilize a
planetary system. However, resonance is often confused with
synchronization that occurs when coupled oscillators lock to
a common period or phase. Once they are synchronized, they
behave as one large oscillator. In either case, the frequencies
of the coupled periodical processes coincide, or are related
by a ratio of small integers like 1:2 or 2:3. However, only if
the frequency of synchronization coincides with the natural
frequency of an oscillator involved, resonance amplification
occurs and can destabilize the system. For instance, asteroids
cannot maintain orbits that are unstable because of their res-
onance with Jupiter [13]. These orbits form the Kirkwood
gaps that are areas in the asteroid belt where asteroids are ab-
sent. In a similar way, resonances with the orbital motion of
Saturn’s inner moons give rise to gaps in the rings of Saturn.

In contrast to these cases, the 1:2:4 orbital synchroniza-

tion of the moons Io, Europa and Ganymede does not desta-
bilize the Jupiter system. There are many moons in the solar
system that approximate orbital synchronization, for exam-
ple, Enceladus-Dione = 1:2, Titan-Hyperion = 3:4, Phobos-
Deimos = 1:4. Cases of extrasolar planets close to orbital
synchronization are also fairly common. For instance, the 6
known exoplanets (b, c, d, e, f, g) of HD110067 approximate
54:36:24:16:12:9 synchronization ratios [14].

By the way, most known exoplanetary systems are similar
in scale to the lunar system of Jupiter, because the predomi-
nantly used transit photometry method can detect only planets
with short enough orbital periods in the range of days. This
circumstance can create the impression that in their majority,
exoplanetary systems are very small, and our solar system is
quite exotic. Indeed, in contrast to moon systems and small
exoplanetary systems, the planets of our solar system avoid
orbital synchronization and resonances by approximation of
transcendental ratios [10] of orbital periods.

Synchronization requires irreversibility, as is the case of
dissipative, self-excited non-conservative oscillators, whose
energy is not a conserved quantity. Their oscillations con-
verge towards certain attractors, which are independent of
initial values and are determined by a dynamic balance of
energy supply and dissipation [15]. Even a weak coupling
is enough to accelerate or slow down the oscillation phase.
Therefore, even small periodic stimuli are able to adjust os-
cillations and frequencies, and oscillators can adjust their pe-
riods through weak interaction. Hence, synchronization can
occur even with any weak interaction.

Coupled oscillators with slightly different frequencies ex-
hibit a transition to equal period oscillations once the cou-
pling strength exceeds a critical value that is proportional to
the frequency difference. However, for frequency differences
larger than some threshold, phase locking is not possible [16].
If the frequencies do not almost match, higher-order synchro-
nization is possible, in which the oscillators lock into a ratio-
nal frequency ratio. Simple cases with small integers usually
occur. For example, oscillations can synchronize by exciting
them with double or half frequency. As a rule, a larger exci-
tation force or stronger coupling is required for higher-order
synchronization.

The physical reason of synchronization is sharing energy
between the oscillators according to Hamilton’s principle in
order to minimize the energy dissipation of the system. Syn-
chronization requires feedback and self-regulation and can, in
a sense, be viewed as a type of intelligent behavior.

Avoiding resonance is another type of intelligent behavior
of real systems of coupled oscillators. The physical reason
is lasting stability as strategy of survival. Already in 1799,
Laplace [17] concluded that the solar system can be stable
under periodic perturbations only if the ratios between the or-
bital parameters approximate irrational numbers. Irrational
frequency ratios allow to avoid resonances [18, 19]. Res-
onance can be viewed as a special case of synchronization

Hartmut Müller. Fundamental Forces in Physics of Numerical Relations 11



Volume 21 (2025) PROGRESS IN PHYSICS Issue 1 (June)

when the common oscillation frequency matches the natural
frequency of an oscillator involved. The natural frequency
can be defined as the rate at which a conservative free har-
monic oscillator tends to oscillate with minimal excitation.
In a certain range, this frequency does not depend on the ex-
citation energy, but is determined by the physical properties
of the oscillator, by its mass, size, atomic structure etc.

From the arithmetic point of view, coupled oscillators can
avoid resonance by maintaining frequencies that are in ir-
rational ratios to their natural frequencies. However, alge-
braic irrational numbers, being real roots of algebraic equa-
tions, can be converted to rational numbers by multiplication.
Therefore, only frequency ratios that approximate transcen-
dental numbers can prevent resonance in systems of coupled
harmonic oscillators and sustain their stability [9].

Among all transcendental numbers, Euler’s number e =
2.71828. . . is unique, because the real exponential function
is its own derivative. For rational exponents, the natural ex-
ponential function is always transcendental [20]. This is why
Euler’s number and its rational powers allow avoiding mutual
parametric resonance between any coupled harmonic periodic
processes including their derivatives.

Integer and rational powers of Euler’s number form a frac-
tal scalar field of transcendental attractors – the Euler field, as
I have shown in [10]:

E = eF

The Euler field E is a k-dimentional projection of its funda-
mental fractal F that is given by finite canonical continued
fractions of integer attractors n0, n1, n2, . . . , nk:

F = ⟨n0; n1, n2, . . . , nk⟩ = n0 +
1

n1 +
1

n2 + · · · +
1
nk

Figure 1 shows the first and the second layer of F in compar-
ison. As we can see, reciprocal integers ±1/2,±1/3,±1/4, . . .
are the attractor points of the fractal. In these points, the
attractor distribution density reaches local maxima. Integer
logarithms 0,±1,±2, . . . define the main attractors having the
widest ranges. Half logarithms ±1/2 form smaller attractor
ranges, third logarithms ±1/3 form the next smaller attractor
ranges and so forth.

Fig. 1: Two layers k= 1 (above) and k= 2 (below) of the fundamen-
tal fractal F in the range -1⩽F ⩽ 1.

These attractors are islands of stability in the sense that they
define the frequency ratios which allow to avoid destabilizing
parametric resonance in systems of coupled harmonic oscilla-
tors. For instance, two coupled harmonic periodical processes

A and B with the angular frequencies ωA and ωB can avoid
parametric resonance, if they obey the condition:

ln (ωA/ωB) = F

In other words, coupled harmonic oscillators can avoid mu-
tual parametric resonance, if the ratios of their natural fre-
quencies approximate attractors of the Euler field. In the case
of harmonic quantum oscillators [21], the same is valid for
the ratio of their natural wavelengths λ = c/ω, and energies
E = ℏω, where c is the speed of light in vacuum, and ℏ is the
Planck constant.

The spatial projection of the Euler field E of coupled har-
monic quantum oscillators is a fractal set of embedded spher-
ical equipotential surfaces. The logarithmic scalar potential
difference∆F of sequent equipotential surfaces:

∆F = ⟨n0; n1, . . . , nk⟩ − ⟨n0; n1, . . . , nk + 1⟩

defines a gradient [7] always directed to the center of the at-
tractor nk−1 of the next higher level that finally creates the
effect of an existing field source (charge) at the center of the
Euler field. However, the Euler field is of pure arithmetic ori-
gin, and there is no particular physical mechanism required
as field source.

Since the frequency ratio x = ωA/ωB is always a real
number, the first derivative of ln x equals the reciprocal of
its argument:

d
dx

ln x =
1
x

Therefore, the larger the frequency ratio x = ωA/ωB, the
slower the velocity of its change. Consequently, the veloc-
ity of change of the frequency ratio x increases always in the
direction to an attractor of the Euler field E. In this way, the
logarithmic symmetry of the Euler field causes an accelera-
tion of the frequency ratio x in the direction to the center of
the field. In fact, the 2nd derivative of ln x equals the negative
reciprocal square of its argument:

d2

dx2 ln x = −
1
x2

If we substitute x = EA/EB we can realize that the energy of
the coupled quantum oscillators increases in the direction to
an attractor of the Euler field. Therefore, the physical reason
of the accelerated free fall of coupled quantum oscillators to
the center of the Euler field is to gain energy from the field.

Now we can recapitulate the behavior of coupled har-
monic quantum oscillators caused by the Euler field: In order
to reach collective stability, coupled harmonic quantum oscil-
lators adjust the ratios of their frequencies in a way that they
approximate numerical attractors of the Euler field. Then,
by approximating an attractor, the quantum oscillators expe-
rience a frequency blueshift that allows them to gain energy
from the field. In this way, the numerical Euler field turns
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out to be an energy source, and fundamental interactions like
gravity or electromagnetism could turn out to be physical ef-
fects caused by numerical attractors.

In their famous experiment of 1959, Robert Pound and
Glen Rebka [22] verified the gravitational frequency shift.
Sending gamma rays over a vertical distance of ∆h = 22.56 m,
they measured a blueshift of ∆ f / f = 2.46 · 10−15 that corre-
sponds precisely with Earth’s surface gravity 9.81 m/s2.

∆ f
f
= g
∆h
c2

However, because of the fractal logarithmic hyperbolic metric
of the Euler field E, every equipotential surface is an attractor
where potential differences decrease and processes can gain
stability. While integer logarithms F define main equipoten-
tial surfaces at k = 0, rational logarithms define equipotential
surfaces at deeper layers k > 0. Therefore, one can expect that
gravity does decrease parabolically fractal with the distance
to an attractor of the Euler field. The closer to an attractor,
the more evident this effect of fractal inhomogeneity of the
gravity field becomes. The strongest inhomogeneities are ex-
pected near the main attractor in the center of the field.

In fact, Stacey, Tuck, Holding, Maher and Morris [23,24]
reported anomalous measures of the gravity acceleration in
deep mines and boreholes. In [25] Frank Stacey writes that
“geophysical measurements indicate a 1% difference between
values at 10 cm and 1 km (depth); if confirmed, this observa-
tion will open up a new range of physics.”

In [26] was shown that the Euler field reproduces the 2D
profile of the Earth’s interior confirmed by seismic explo-
ration. Also the stratification layers in planetary atmospheres
correspond with equipotential surfaces of the Euler field [27].

Exemplary Applications

Compared to the majority of known particles, electron and
proton are exceptionally stable quantum oscillators. Indeed,
their life-spans top everything that is measurable, exceeding
1028 years [28]. This is why normal matter is formed by nu-
cleons and electrons. For this reason, in a previous publi-
cation [11] I introduced a model of matter as fractal chain
system of oscillating protons and electrons.

In order to be bound in atoms, the proton and the elec-
tron must avoid mutual resonance. This is why the proton-
to-electron frequency ratio approximates an integer power of
Euler’s number and its square root:

ln
(
τe

τp

)
= ln

(
1.28809 · 10−21 s
7.01515 · 10−25 s

)
≃ 7 +

1
2
= E⟨7; 2⟩

τe = λe/c = 1.28809 · 10−21 s is the angular oscillation period
of the electron, λe is the Compton wavelength of the electron,
c is the speed of light in vacuum, and τp = 7.01515 ·10−25 s is
the angular oscillation period of the proton. In order to avoid
proton and electron resonance, also planetary systems have to

obey the Euler field. In [10] I have shown that Venus’ distance
from Sun approximates the main equipotential surface E⟨54⟩
of the Euler field of the electron that equals the 54th power of
Euler’s number multiplied by the Compton wavelength of the
electron λe. The aphelion 0.728213 AU = 1.08939 · 1011 m
delivers the upper approximation of E⟨54⟩:

ln
(

A(Venus)
λe

)
= ln

(
1.08939 · 1011 m
3.86159 · 10−13 m

)
= 54.00

The perihelion 0.718440 AU = 1.07477 · 1011 m delivers the
lower approximation:

ln
(

P(Venus)
λe

)
= ln

(
1.07477 · 1011 m
3.86159 · 10−13 m

)
= 53.98

This means that Venus’ orbit derives from the Euler field of
the electron. In other words, Venus’ orbit is of subatomic
origin. This is not a random coincidence. Jupiter’s distance
from Sun approximates the main equipotential surface E⟨56⟩
of the Euler field of the electron. The aphelion 5.45492 AU =
8.160444 · 1011 m delivers the upper approximation of E⟨56⟩:

ln
(

A(Jupiter)
λe

)
= 56.01

The perihelion 4.95029 AU = 7.405528 · 1011 m delivers the
lower approximation:

ln
(

P(Jupiter)
λe

)
= 55.91

This fact suggests that quantumness is conserved in macro-
scopic scales up to planetary systems. Indeed, in [29] the
quantumness of macroscopic large masses was verified, in
particular, the mass-independent irreducible quantumness of
harmonic oscillator systems.

Also Jupiter’s orbital period 4332.59 days derives from
the Euler field of the electron. In fact, it equals the 66th power
of Euler’s number multiplied by the oscillation period 2π · τe

of the electron:

ln
(

T (Jupiter)
2π · τe

)
= ln

(
4332.59 · 86400 s

2π · 1.28809 · 10−21 s

)
= 66.00

The same is valid for the orbital period 686.98 days (1.88
years) of the planet Mars that equals the 66th power of Euler’s
number multiplied by the angular oscillation period τe of the
electron:

ln
(

T (Mars)
τe

)
= ln

(
686.98 · 86400 s
1.28809 · 10−21 s

)
= 66.00

Consequently, the ratio of the orbital periods of Jupiter and
Mars equals 2π:

T (Jupiter) = 2π · T (Mars)
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This transcendental ratio allows Mars to avoid parametric or-
bital resonance with Jupiter and evidences that Jupiter and
Mars are not planets of different systems, but bound together
in the same conservative system (the solar system).

In [10] I introduced the Archimedes field A = πF and
have shown how it connects orbital periods with rotational
periods. Stable orbital speeds [30] derive from the speed of
light divided by integer and reciprocal integer powers of e
or π. This circumstance drastically reduces the diversity of
preferred orbits, orbital periods, and speeds, increasing the
likelihood of matches in different planetary or lunar systems.
Furthermore, it indicates a transcendental duality of Euler-
and Archimedes-orbits in the solar system.

In the Jupiter lunar system, we can observe both strategies
of stabilization, avoidance of resonance and synchronization.
The orbital period of the Galilean moon Io approximates the
attractor E⟨60⟩ of the Euler field of the electron:

ln
(

T (Io)
τe

)
= ln

(
1.7691378 · 86400 s

1.28809 · 10−21 s

)
= 60.03

Simultaneously, it approximates also the attractor E⟨59⟩ of
the Archimedes field of the proton:

lp
(

T (Io)
τp

)
= lp

(
1.7691378 · 86400 s

7.01515 · 10−25 s

)
= 59.01

τp is the angular oscillation period of the proton. We use the
symbol “lp” for the logarithm to the base π = 3.14159 . . .

lp(x) =
ln(x)
ln(π)

The Galilean moons Europa and Ganymede are in 1:2:4 or-
bital synchronization with Io in order to save orbital kinetic
energy. Callisto is not synchronized with the other Galilean
moons, but avoids proton resonance by approximation of the
attractor E⟨68⟩ of the Euler field:

ln
(

T (Callisto)
2π · τp

)
= ln

(
16.689 · 86400 s

2π · 7.01515 · 10−25 s

)
= 67.96

and the attractor E⟨61⟩ of the Archimedes field of the proton:

lp
(

T (Callisto)
τp

)
= lp

(
16.689 · 86400 s
7.01515 · 10−25 s

)
= 60.97

Obviously, in order to reach the centers of these attractors,
Callisto still has to extend its orbital period by half a day. This
prediction is consistent with alternative approaches [31].

However, not only Euler’s number e = 2.71828 . . . and
Archimedes’ number π = 3.14159 . . . define fractal scalar
fields of their integer and rational powers, but in general,
every prime, irrational and transcendental number does it.
While the fundamental fractal F is always the same distribu-
tion of rational logarithms, the structure of the corresponding

Fig. 2: The 2D projection of the first layer (k = 1) of equipotential
surfaces of the Euler Field E = eF (left), and the Archimedes Field
A = πF (right). The fields are shown to the same scale.

fundamental field changes with the logarithmic base. Here it
is important to notice that no fundamental field can be trans-
formed in another by stretching, because loga(x) – logb(x) is a
nonlinear function of x. In this way, every prime, irrational or
transcendental number generates a unique fundamental field
of its own integer and rational powers that causes physical ef-
fects which are typical for that number. Figure 2 shows the
Euler field and the Archimedes field in comparison.

Conclusion

According to our numeric-physical approach presented in this
paper, numeric fields like A,E are primary. When formed in
systems of coupled harmonic quantum oscillators, they define
numerical attractors that act as islands of stability and avoid
destabilizing mutual resonances.

In order to reach collective stability, coupled harmonic
quantum oscillators adjust the ratios of their frequencies in
a way that they approximate transcendental attractors of the
numeric fields.

Then, in order to gain more energy from the numeric field
by approaching always more powerful attractors, the coupled
harmonic quantum oscillators are forced to move in the direc-
tion of the center of the numeric field.

Since the fractal scalar fields of transcendental numerical
attractors are logarithmically symmetric, locally this move-
ment appears as accelerated free fall caused by a conservative
central force that obeys an inverse-square law.

However, because of the fractal logarithmic hyperbolic
metric of the numeric field, every equipotential surface is
an attractor, so that the closer to an attractor, the more evi-
dent the effect of fractal inhomogeneity of the numeric field
becomes. These inhomogeneities appear as local deviations
from the inverse-square law of free fall. In this way, no addi-
tional (fifth) force or physical field is required to explain the
observed violations [24] of Newton’s gravity in depth.

We are aware that no physical principle can explain the
origin of energy, because every physical process presupposes
the existence of another physical process that serves as its en-
ergy source. This non ending chain of energy converters sug-
gests that the imperishability of motion and interaction, and
the inexhaustibility of energy must have a non-physical cause.
On the one hand, our approach seems to draw on Pythagoras,
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but on the other hand, it is intended to encourage us to break
the vicious circle of the current paradigm.

Within the presented here approach, fundamental physi-
cal forces are caused by numerical relations. This approach
allows to derive physical effects from non-physical i.e. nu-
merical relations. In particular, this approach leads us to the
conclusion that motion and interaction, including energy as
well as other constants of motion are caused by attractors of
numeric fields. Perhaps a new relational paradigm could lead
us to a deeper understanding of physics and help us overcome
our current inability to invent new energy sources.
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comètes par la résistance des milieux qu’elles traversent, et par la trans-
mission successive de la pesanteur. Traité de mécanique céleste. Partie
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