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Gödel’s metric (1949) describes a homogeneous and rotating universe unveiling the ex-
istence of closed time-like curves (CTCs) which make it feasible to go on a journey
into one’s own past. In the first part of this paper we follow Gödel’s initial work and
its conclusions but we show that his metric as it stands does not represent a cosmolog-
ical model. Introducing a simple conformal factor readily induces a pressure term that
straightforwardly leads to a perfect fluid field equation. This term was wrongly inter-
preted by Gödel as the ad hoc cosmological constant he was forced to introduce in order
for his solution to satisfy Einstein’s field equations. The theory is now endowed with
a physical meaning and the dynamics no longer apply to the space but to a fluid which
can be acted upon. In the second part, we investigate the possibility of creating a time
machine materialized by a specific warp drive device travelling along a Gödel closed
curve. The third part is devoted to highlighting the properties resulting from our model
and some conjectures as to reversed CTCs.

Introduction

In the science fiction novel The Time Machine by H. G. Wells
(1895), an English scientist constructs a machine which al-
lows him to travel back and forth in time. He used this device
to visit the world far in the future but returned from his jour-
ney only a few hours after he has started it. The history of
the scientific controversy about the possibility of time travel
can be traced back to the ingenious logician Kurt Gödel. In
a paper published in 1949 to honour his close friend Albert
Eistein on the occasion of his 70th birthday, he described a
homogeneous and rotating universe unveiling the existence
of closed time-like curves (CTCs) which make it feasible to
go on a journey into one’s own past.

In the first part of this paper we follow Gödel’s initial
work and its conclusions but we show that his metric as it
stands does not represent a cosmological model. Introducing
a simple conformal factor readily induces a pressure term that
straightforwardly leads to a perfect fluid field equation. This
term was wrongly interpreted by Gödel as the ad hoc cosmo-
logical constant he was forced to introduce in order for his
solution to satisfy Einstein’s field equations. The theory is
now endowed with a physical meaning and the dynamics no
longer apply to the space but to a fluid which can be acted
upon. In the second part, we investigate the possibility of cre-
ating a time machine materialized by a specific warp drive
device traveling along a Gödel closed curve. The third part
is devoted to highlighting the properties resulting from our
model and some conjectures as to reversed CTCs.

Notations

Space-time indices: µ, ν = 0, 1, 2, 3;
Spatial indices: a, b = 1, 2, 3;
Space-time signature: −2 (unless otherwise specified);
Newton’s constant of gravitation: G.

Part I

1 The Gödel universe

1.1 General considerations

In his original paper [1], Kurt Gödel has derived an exact so-
lution to Einstein’s field equation which describes a homoge-
neous and non-isotropic universe where matter takes the form
of a shear free fluid. This metric exhibits a rotational symme-
try which allows for the existence of closed time-like curves
(previously called CTCs).

The Gödel space-time has a five dimensional group of
isometries (G5) which is transitive (an action of a group is
transitive on a manifold (M, g), if it can map any point of the
manifold into any other point of this manifold. It admits a five
dimensional Lie algebra of Killing vector fields generated by
a time translation ∂ct, two spatial translations ∂x,∂y plus two
further Killing vector fields

∂z − y∂y , 2ex∂c t + y∂z +

(
e2x −

1
2
y2∂y

)
.

The Weyl tensor of the standard Gödel solution has Petrov
type D

Cαβ
µν = Rαβ

µν +
1
3

Rδα[µδ
β
ν] + 2δ[α

[µRβ]
ν] .

The presence of the non-vanishing Weyl tensor prevents
the Gödel metric from being Euclidian, unlike the Friedmann-
Lemaı̂tre-Robertson-Walker metric, which can be shown to
reduced to a conformal euclidian metric implying that its
Weyl tensor is zero [2].

The Gödel model is dismissed because it has a cosmolog-
ical constant and also since its rotation would conflict with
observational data. In what follows we are able to relax our
demand that Gödel’s metric be the description of our actual
Universe which is expanding.
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1.2 Gödel’s metric

The classical Gödel line element is given in Cartesian coordi-
nates by

ds2 = a2
(
c2dt2 +

1
2

e2xdy2 − 2excdt dy − dx2 − dz2
)
, (1.1)

where a > 0 is a constant. The components of the metric
tensor gµν and gµν are, respectively,

gµν =


a2 0 a2ex 0

0 −a2 0 0

a2ex 0 1
2

a2e2x 0

0 0 0 −a2



gµν =


a−2 0 2a−2e−x 0

0 −a−2 0 0

2a−2e−x 0 −2a−2e−2x 0

0 0 0 −a−2





. (1.2)

Owing to the fact that only ∂1 g22 , 0 and ∂1g02 , 0, one
easily computes

Γ0
01 = 1 , Γ0

12 = Γ
1
02 =

1
2

ex,

Γ1
22 =

1
2

e2x, Γ2
01 = −e−x.

The Ricci tensor is very simplified

Rβγ = ∂1Γ
1
βγ + Γ

1
βγ − Γ

δ
αβΓ

α
δγ , (1.3)

the components of which are reduced to

R00 = 1 , R22 = e2x, R02 = R20 = ex,

therefore the Ricci scalar is

R =
1
a2 .

The normalized unit vector u of matter has components

uµ =
(
a−1, 0, 0, 0

)
, uµ = (a, 0, aex, 0) , (1.4)

thus the Ricci tensor takes the formulation

Rµν = uµuν a−2 (1.5)

and the Ricci scalar takes the form

R = uµuµ = a−2. (1.6)

Since R is a constant, the field equations (with the x0-lines
as world lines of matter)

Rµν −
1
2
gµνR =

8πG
c4 ρc2uµuν + Λgµν (1.7)

are satisfied (for a given value of the density ρ), if we put

a−2 =
8πGρ

c2 , (1.8)

Λ = −
1
2

R =
1

2a2 = −
4πGρ

c2 . (1.9)

The sign of the cosmological constant Λ here is the op-
posite of that occurring in Einstein’s field equations. Bearing
in mind that a is a constant, fine tuning the density of the
universe with the cosmological constant and the Ricci scalar
appears as a dubious result. It then becomes clear that such
cosmological constraints are physically irrelevant.

2 Rotation of Gödel’s model

As primarily assumed by Gödel, the stationary space-time of
his model is homogeneous. For every point A of the manifold
(M, g), there is a one-parameter group of transformations of
M carrying A into itself. In addition, the manifold (M, g) is
endowed with a rotational symmetry and the flow lines have
a vorticity magnitude ω orthogonal to u.

2.1 Vorticity vector

Let uα be a 4-unit vector everywhere tangent to the flow line
on (M, g). The covariant derivative uα;µ of this time-like vec-
tor may be expressed in a invariant manner in terms of ten-
sor fields which describe the kinematics of the congruence of
curves generated by the velocity vector field uα [3]

u(α;µ) = σαµ + ωσµ +
1
3
θhαµ + ∗u(αuµ) , (2.1)

where θ is the scalar expansion

θ = uα;α , (2.2)

and ∗uα is the 4-acceleration vector of the flow lines

∗uα = uα;µ uµ, (2.3)

while hµν is the projection tensor determined as

hµν = gµν − uµuν .

Besides ∗uα and θ, one can define the vorticity tensor

ωαµ = hσαhνµ
∗u[σ; ν] = u[α;µ] +

∗u[αuµ] , (2.4)

and also the quantity

σαµ = θµν −
1
3

hαµθ

which is the symmetric trace free shear tensor, where

θµν = hσαhνµu(σ; ν)

is the expansion tensor.
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Fig. 1: With increasing r > rG, the light cones continue to tip over and their opening angles increase until their
future parts reach negative values of t′. Thus ∂/∂ϕ becomes a timelike vector, and circles of constant r and t′

are closed time-like curves.

Thus the components of the 4-vorticity vector ω of the
flow lines tangent to uµ are expressed by

ωβ =
1
6
ηβγσρuγωσρ , (2.5)

where ηβγσρ is the Levi-Civita tensor indicator

ηβγσρ =
εβγσρ
√
g
.

The kinematic quantities ωσµ, ωµ and ∗uµ are completely
orthogonal to uµ, i.e.,

ωσµ uµ = ωµuµ = ∗uµuµ = hµνuµ = 0 .

In the Gödel model the shear tensor is zero, therefore

σαµ = u(α;µ) −
1
3
θhαµ − ωσµ − ∗u(αuµ) = 0 (2.5bis)

(shear free flows of a perfect fluid in relation with the Weyl
tensor have been extensively investigated by A. Barnes [4]).

Knowing that
√
g = a4

√
1
2

e2x, we compute the contra-
variant components of the 4-vorticity vector ω

ωα =

0, 0, 0,

√
2

a2

 (2.6)

and we find

ω =
√
gαβ ωαωβ =

√
2

a
. (2.7)

Taking into account (1.8) the magnitude of this vector is

ω =

√
1
2

(
8πG

c2

)
ρ . (2.8)

2.2 Closed time-like curves

Following Gödel we introduce cylindrical coordinates (t′, r, θ)

ex = cosh 2r + cosh ϕ sinh 2r ,

yex =
√

2 sinh ϕ sinh 2r ,

tan
1
2

[
ϕ +

(
ct −

2 t′

2
√

2

)]
= e−2r tan

ϕ

2

thus the Gödel metric reads now

ds2 = 4a2
[
dt′2 − dr2 +

(
sinh4r − sinh2r

)
dϕ2 +

+ 2
√

2 sinh2r dϕ dt′
] (2.9)

(with the inessential coordinate z suppressed).
In its original formulation, the Gödel universe describes a

set of masses (stars and planets) rotating about arbitrary axes.
The metric (2.9) manifests a rotational symmetry with respect
to the axis t′, and r = 0 since we clearly see that the compo-
nents of the metric tensor do not depend ϕ.

For r ⩾ 0, we have 0 ⩽ ϕ ⩽ 2π. If a curve rG is de-
fined by sinh r= 1 that is rG = log

(
1+
√

2
)
, then such a curve
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Fig. 2: The Gödel trajectory loops back in the past at p after crossing
a Cauchy-like “horizon”.

which materializes in the “plane” t′ = const is a closed light-
like curve. The radius rG referred to as the Gödel radius, thus
induces a closed null curve where the light cones are tangent
to the plane of constant t′.

With increasing r > rG, the light cones continue to tip
over and their opening angles increase until their future parts
reach negative values of t′. Thus ∂/∂ϕ becomes a timelike
vector, and circles of constant r and t′ are closed time-like
curves (see Fig. 1). Starting from the centre of the axis at q,
the Gödel trajectory loops back in the past at p after crossing
a Cauchy-like “horizon” (see Fig. 2).

3 The Gödel model as a homogeneous perfect fluid

3.1 Reformulation of the Gödel metric

In our publication [5], we assumed that a is slightly space-
time variable and we set

a2 = e2U . (3.1)

The positive scalar U (x) will be explained below. The
Gödel metric thus becomes

ds2 = e2U ×

×

(
c2dt2 +

1
2

e2xdy2 − 2ex cdt dy − dx2 − dz2
)
.

(3.2)

We see that it is conformal to the Gödel metric with the
constant a = 1(

ds2)
G = c2dt2 +

1
2

e2x dy2 − 2ex cdt dy − dx2 − dz2. (3.3)

It is clear that this solution retains the properties related
to CTCs of the initial Gödel metric (1.1).

3.2 Differential geodesic system

Let us consider the manifold (M, g) on which is defined a
vector tangent to the curve C

∗xα =
dxα

dζ
,

where ζ is an affine parameter. In these local coordinates,
we consider the scalar function f (xα, ∗xα), which is homoge-
neous and of first degree with respect to ∗xα. To the curve
C joining the points x1 and x2 one can always associate the
integralA such that

A =

∫ ζ2

ζ1

f (xα, ∗xα)dζ =
∫ x2

x1

f (xα, ∗xα)dxα. (3.3)

We now want to evaluate the variation of A with respect
to the points ζ1 and ζ2

δA = f δζ2 − f δζ1 −

∫ ζ2

ζ1

δdζ .

Classically we know that∫ ζ2

ζ1

δdζ =
(
∂ f
∂ ∗xα

)
δxα −

∫ ζ2

ζ1

Eα δxα dζ ,

where Eα is the first member of the Euler equation associated
with the function f .

With Eα as the components of E, we infer the expression

δA = [w(δ)]x2 − [w(δ)]x1 −

∫ ζ2

ζ1

E δx dζ , (3.5)

where w(δ) has the form

w(δ) =
∂ f
∂ ∗xα

δxα −
xα∂ f

∂ ∗xα − f
δζ .

Due to the homogeneity of f it reduces to

w(δ) =
∂ f
∂ ∗xα

δxα.

Let us apply the above results to the function

f = eU ds
dζ
= eU

√
gαβ ∗xα ∗xβ , (3.6)

where eU is defined everywhere on (M, g).
We first differentiate f 2 = e2U(

gαβ
∗xα ∗xβ

)
with respect to

∗xα and xα
f ∂ f
∂ ∗xα

= e2Ugαβ
∗xβ, (3.7)

f ∂ f
∂xα

= eU
√
gβµ ∗xβ ∗xµ ×

×

[
∂αeU

√
gβµ ∗xβ ∗xµ +

1
2

eU ∂α
(
gβµ
∗xβ ∗xµ

)]
.

(3.8)

We now choose s as the affine parameter ζ on the curve
C, so the vector ∗xβ is here regarded as the 4-unit vector uβ

tangent to C whose curvilinear abscissa is noted s. Equations
(3.7) and (3.8) then reduce to the following

∂ f
∂ ∗xβ

= eUuβ , (3.9)
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∂ f
∂xβ
= ∂β eU +

1
2

eU ∂βgαµ uαuµ =

= ∂β eU + eU Γαβ, µuαuµ ,

(3.10)

where Γαβ, µ denote here the Christoffel symbols of the first
kind. Expliciting the Euler equations f (xα, duα)

Eβ =
d
ds

∂ f
∂uβ
−
∂ f
∂xβ

, (3.11)

we obtain

Eβ =
d
ds

eUuβ − eUΓαβ, µ uαuµ − ∂β eU =

= eU
(
uµ∂µ uβ −Γαβ, µ uαuµ

)
− ∂α eU

(
δαβ − uαuβ

)
= eU

[(
uµ∇µuβ

)
− ∂βU − ∂αU

(
δαβ − uαuβ

)]
.

(3.12)

Equation (3.5) becomes

δA = [w(δ)]x2 − [w(δ)]x1 −

∫ x2

x1

⟨Eδx⟩ ds , (3.13)

where locally we have w(δ) = eUuαdxα. When the curve C
varies between two fixed points x1 and x2, the local variations
[w(δ)]x2 and [w(δ)]x1 vanish.

Applying the variation principle to (3.13) simply leads to

δA = −

∫ x2

x1

⟨Eδx⟩ ds = 0 , (3.14)

i.e., E = 0, and since eU , 0, we obtain

uµ∇µuβ −
(
δαβ − uαuβ

)
∂αU = 0 . (3.15)

The equation (3.15) is formally identical to the differential
system obeyed by the flow lines of a perfect fluid of density ρ
and pressure P with an equation of state ρ = f (P) and where

U (xµ) =
∫ P2

P1

dP
ρc2 + P

accounts for the fluid indice [6]. Pressure P1 and P2 are re-
ferred to x1 and x2 [7, 8]; see Appendix. The resulting field
equation is [9]

Rµν −
1
2
gµνR =

8πG
c4

[(
ρc2 + P

)
uµuν − Pgµν

]
. (3.16)

Here, the 4-unit vector uµ of the fluid is the real 4-velocity
defined in Gödel’s metric (3.3):

uµ = (1, 0, 0, 0) , uµ = (1, 0, ex, 0) . (3.17)

3.3 Fluid rotation in the framework of the Gödel model

The wave vector k µ = dxµ/dλ determines the propagation
of ligh rays tangent to the light cone (λ is a given parameter
varying along those rays). The equation of propagation is
here

dk µ

dλ
+ Γ

µ
αν kαkν = 0 .

Substituting ∂µψ (here ψ is the eikonal) in this expression,
one finds the eikonal equation

gµν∂µψ∂νψ = 0 .

Let us now examine the case of the light cone for closed
lines, when the Gödel radius is reached. To this effect, we
revert to the metric (2.9) which reads now

ds2 = 4e2U
[
dt′2 − dr2 +

(
sinh4r − sinh2r

)
dϕ2 +

+ 2
√

2 sinh2r dϕ dt′
]
.

(3.18)

The wave vectors k µ tangent to the light cone follow les
closed lines located to the plane orthogonal to the time axis
t′ = const: the integral U performed over the closed path has
no endpoints

U (r) =
∫

dP
ρc2 + P

+ const. (3.19)

Beyond rG, the fluid trajectory does not loop up at the
same point but in the past, and the magnitude of the time shift
will depend on the pressure difference ∆P.It is now easy to
compute the vorticity tensor ωµν which is derived from uµ

ωµν = ∂µ uν − ∂ν uµ . (3.20)

The components of the 4-vorticity vector ω of the fluid
flow lines are

ωβ =
1
6
ηβγσρuγωσρ .

For calculating the Levi-Civita tensor ηβγσρ = εβγσρ/
√
g,

the gµν determinant is now g = 1
2

e2x. A simple calculation
leads to the Gödel rotation which remains constant

ω =
√
gαβ ωαωβ =

√
2 . (3.21)

We note that the Kretschmann scalar is still invariant

RµναβRµναβ = 12ω.

Part II

4 Warp drive

4.1 The (3 + 1) formalism or ADM technique

Arnowitt, Deser and Misner (ADM) suggested a technique
which leads to decompose the space-time into a family of
spacelike hypersurfaces and parametrized by the value of an
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arbitrarily chosen time coordinate x0 [10]. This foliation dis-
plays a proper time element dτ between two nearby hypersur-
faces labeled

x0 = const, x0 + dx0 = const,

and the proper time element cdτ must be proportional to dx0,
thus we write

cdτ = N
(
xa, x0) dx0.

The line element corresponding to the hypersurfaces sep-
aration is therefore written in the form

(ds2)ADM = −N2 (dx0)2 +

+ gab
(
N adx0 + dxa)(N bdx0 + dxb) . (4.1)

In the ADM terminology, N is called the lapse function.
Let us now evaluate the 3-vector whose spatial coordinates
xa are lying in the hypersurface x0 = const, which is nor-
mal to it, on the second hypersurface x0 + dx0 = const, and
where these coordinates now become N adx0. The N a vector
is called the shift vector. The 4-metric tensor covariant and
contravariant components (gαβ)ADM and (gαβ)ADM are

(gαβ)ADM =

 −N 2 − Na Nb g
ab Nb

Na gab



(gαβ)ADM =


−N−2 N b

N 2

N a

N 2 gab −
N aN b

N2




. (4.2)

The line element corresponding to the hypersurfaces sep-
aration is therefore written as

(ds2)ADM =

= −N 2 (dx0)2 + gab
(
N adx0 + dxa)(N bdx0 + dxb)

= −N 2 + Na N a (dx0)2 + 2Nb dx0dxb + gab dxadxb,

(4.3)

where gab is the 3-metric of the hypersurfaces. As a result, the
hypersurfaces have a unit time-like normal with contravariant
components

uα = N−1(1,−N a) . (4.4)

If the universe is approximated to the Minkowski space
within an orthonormal coordinates frame of reference and
where the fundamental 3-tensor satisfies gab = δab, the metric
(4.3) becomes

(ds2)ADM = −
(
N 2−Na N a) c2dt2+2N adxcdt+dxadxb, (4.5)

(ds2)ADM = −N 2dt2 +
(
dx + N acdt

)2
+ dy2 + dz2. (4.5bis)

The Einstein action can be written in terms of the 4-metric
tensor (gαβ)ADM according to [11] as follows

S ADM =

∫
cdt

∫
N

(
(3)R − Ka

b Kb
a + K2

) √
(3)g d3x+

+ boundary terms,

where Ka
a Kb

b = K2, and (3)R is the 3-Ricci scalar and stands
for the intrinsic curvature of the hypersurface

x0 = const,√
(3)g =

√
det ∥gab∥ ←→

√
(4)−g = N

√
(3)g ,

while
Kab =

(
2N

)−1(
−Na; b − Nb; a + ∂0 gab

)
(4.6)

represents the extrinsic curvature, and as such describes the
manner in which the hypersurface x0 = const is embedded
in the surrounding space-time. The rate of change of the 3-
metric tensor gab with respect to the time label can be decom-
posed into “normal” and “tangential” contributions:

— The normal change is proportional to the extrinsic cur-
vature 2Kab/N of the hypersurface;

— The tangential change is given by the Lie derivative of
gab along the shift vector N a

LN gab = 2N(a; b) . (4.7)

With the choice of N a = 0, we have a particular coordi-
nate frame called normal coordinates according to which is
called an Eulerian gauge.

Inspection shows that

Kab = −ua;b , (4.8)

which is sometimes called the second fundamental form of
the 3-space. Six of the ten Einstein equations imply for Ka

b to
evolve according to

∂Ka
b

c∂t
LN Ka

b = ∇
a∇b N +

+N
[
Ra

b + Ka
a Ka

b + 4π (T −C) δa
b −

8πG
c4 T a

b

]
,

(4.9)

C = Tαβ uαuβ, (4.10)

where C is the matter energy density in the rest frame of nor-
mal congruence (time-like vector field) with T = T a

a .
With the Gauss-Codazzi relations [12] we can express the

Einstein tensor as a function of both the intrinsic and extrinsic
curvatures. At this stage it is convenient to introduce the 3-
momentum current density Ia = −ucT c

a . Thus, the remaining
four equations finally form the so-called constraint equations

H =
1
2

(
(3)R − Ka

b K b
a + K2

)
−

8πG
c4 C = 0 , (4.11)
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Hb = ∇a

(
Ka

b − K δa
b

)
−

8πG
c4 Ib = 0 . (4.12)

Therefore, another way of writing (4.10) eventually leads
to

C =
c4

16πG

(
(3)R − Kab Kab + K2

)
. (4.13)

4.2 Alcubierre’s theory

In 1994, M. Alcubierre showed that a superluminal velocity
can be achieved without violating the laws of General Rel-
ativity [13]. He considered a perturbed space-time region
likened to bubble (called “warp drive”) which could transport
a machine in a surfing mode: inside the bubble, the proper
time element dτ is the coordinate time element dt measured
by an external observer called “Eulerian”. The motion is only
achieved by the space wave, so that the occupant of the ma-
chine is at rest and would not suffer any acceleration nor time
dilation in the displacement. This process requires a front
contraction of the space and a rear expansion.

The distance of the machine centre located in the bubble

rs(t) =
√[

y − ys(t)
]2
+ x2 + z2

varies until Re, which is the external radius of the bubble.
With respect to the distant observer the apparent velocity of
the machine is

vs(t) =
dys(t)

dt
,

where ys(t) is the coordinate of the bubble’s trajectory along
the y-direction. Within the ADM formalism in the signature
+2, the Alcubierre metric is defined on a flat space-time thus
the lapse vectors and shift vectors reduce to

N = 1

N1 = −vs(t) f (rs, t)

N2 = N3 = 0

 . (4.14)

The shape of the function f (rs, t) induces both a volume
contraction and expansion ahead and behind of the bubble.
This can be checked by using the scalar expansion θ = uα;α

θ = vs
d f

(dy)Al
. (4.15)

Alcubierre chooses the following step function f (rs, t)

f (rs, t) =
tanh σ

(
rs + Re

)
− tanh σ

(
rs − Re

)
2 tanh (σRe)

, (4.16)

where Re > 0 is the external radius of the bubble, and σ is a
“bump”parameter used to tune the wall thickness of the bub-
ble: the larger the parameter σ, the greater the contained en-
ergy density, for its shell thickness decreases. Moreover, the

absolute increase of σ means a faster approach of the condi-
tion

lim
σ→∞

f (rs, t) = 1 for rs ∈
[
−Re,Re

]
and is 0 everywhere else.

Here the expansion scalar becomes

θ = ∂1 N1 = − trace Kab .

With (4.16) one finally gets

θ = vs
d f
drs

ys

rs
. (4.17)

The Natàrio warp drive evades the problem of contrac-
tion/expansion, by imposing the divergence free constraint to
the shift vector ∇

[
v2

s f 2(rs, t)
]
= 0 [14].

The distant observer is called Eulerian [15], and his 4-
velocity relative to the bubble has components

(uα)E =
[
c, vs c f (rs, t), 0, 0

]
, (4.18)

(uα)E = [−c, 0, 0, 0] . (4.18bis)

The Eulerian observer is a special type of observer which
refers to the Eulerian gauge defined above but with N1 , 0,
and as such, it follows timelike geodesic orthogonal to eu-
clidean hypersurfaces. Such an observer starts out just inside
the bubble shell at its first equator with zero initial velocity.

Once during his stay inside the bubble, this observer trav-
els along a time-like curve y = ys(t) with a constant velocity
nearing the machine local velocity vs = dys/dt. The Eule-
rian observer’s velocity will always be less than the bubble’s
velocity unless rs = 0, i.e. when this observer is at the cen-
tre of the machine located inside. After reaching the second
region’s equator, this observer decelerates and is left at rest
while going out at the rear edge of the bubble. The Eulerian
observer’s velocity is needed to evaluate the energy density
required to create the bubble (see below).

The Alcubierre metric is:

(ds2)Al = −c2dt2 +
[
dy − vs f (rs, t)cdt

]2
+ dx2 + dz2 (4.19)

or, in the framework of signature −2,

(ds2)Al = c2dt2−
[
dy − vs f (rs, t)cdt

]2
−dx2−dz2. (4.19bis)

Let us now write the Alcubierre metric in the equivalent
form which puts in evidence the covariant components of the
metric tensor

(ds2)Al =
[
(1 − v2

s f 2(rs, t)
]

c2dt2 +

+ 2vs f (rs, t)cdtdy − dx2 − dz2,
(4.20)

(g00)Al =
[
1 − v2

s f 2(rs, t)
]

(g01)Al = (g10)Al = 2vs f (rs, t)

(g11)Al = (g22)Al = (g33)Al = −1

 . (4.21)
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With the components (4.21) the Einstein-Alcubierre ten-
sor reads

(Gαβ)Al = (Rαβ)Al −
1
2

(gαβ)Al R , (4.22)

(T αβ)Al =
c4

8πG
(Gαβ)Al . (4.23)

The weak energy conditions stipulate

CAl = (T αβ)Al (uα)E (uβ)E ⩾ 0 . (4.24)

Considering (4.13), we see that in the Alcubierre space-
time (3)R = 0, hence

CAl =
c4

16πG

(
K2 − Kab Kab

)
, (4.25)

CAl =
c4

16πG
×

×
[
(∂1 N1)2 − (∂1 N1)2 − 2(∂2 N2)2 − 2(∂3 N1)2

]
,

(4.26)

(T 00)Al (u0)E (u0)E = (T 00)Al =

−
c4

32πG
v2

s

(∂ f
∂x

)2

+

(
∂ f
∂z

)2 < 0 .
(4.27)

Taking into account (4.16), one eventually finds the en-
ergy tensor:

(T 00)Al = −
c4

32πG
v2

s

(
∂ f
drs

)2 x2 + z2

r2
s

< 0 (4.28)

This expression is unfortunately negative as measured by
the Eulerian observer and therefore it violates the weak en-
ergy conditions (WEC) [16]. Notwithstanding this violation,
one is nevertheless forced to introduce a way to obtain a neg-
ative energy density. This possibility is examined below.

4.3 Nature of the negative energy

The machine has a shell whose thickness is: Re−Ri, where Re

is the external radius while Ri is the inner radius. Re coincides
with the Alcubierre bubble which thus constitutes the whole
machine contour. The mass has a charge µ circulating within
the shell thus giving rise of a 4-current density jα = µuα.
This current is coupled to a co-moving electromagnetic field
with the 4-potential Aα, which yields the interacting energy-
momentum tensor

(T αβ)elec =
1

4π

(
1
4
gαβFγδ F γδ + FανF ·βν·

)
+ gαβ jν Aν − jαAβ,

and the extracted energy density is

(T 00)elec =
1

4π

(
1
4

Fγδ F γδ + F 0νF ·0ν·

)
+ jν Aν − j0A0. (4.29)

Since we chose an orthonormal basis, we have

(T 00)elec =
1

8π

(
E2 + B2

)
+

1
4π
∆ (ΦE) , (4.30)

where E and B are respectively the electric and magnetic field
strengths derived from the Maxwell tensor

Fγδ = ∂γAδ − ∂δAγ

(we assume that the field potential Aα (Φ, A) is given in the
Lorentz gauge). The charge density is derived from

∆E = 4πµ, (4.31)

which is just the time component of the 4-current density in-
ferred from Maxwel’s equations

∇αFαβ =
4π
c

jβ. (4.32))

Therefore negative energy density may be shown explic-
itly by the interaction tensor

(T 00)elec−int =
1

4π
E∆Φ + µΦ , (4.33)

(T 00)elec−int =
1

4π

[
− ∆Φ −

1
c
∂t A

]
∆Φ + µΦ (4.34)

since E = −∆Φ − 1
c ∂t A.

In (4.34) the first term in the brackets is always negative.
As to the last term, it is made negative when the time varying
charge density µ and the scalar potential Φ are 180◦ out of
phase (method reached by the use of phasors).

We now assume that the positive free radiative energy
density

(T 00)elec−rad =
1

8π
(
E2 + B2) (4.35)

is confined within the machine, i.e., right to the inner side of
the shell wall.

The interacting tensor (T 00)elec−int is set so as to exhibit
its energy density part on the external side of the shell. Now,
we see that negative energy production can be achieved with
such a configuration. The higher the charge density and the
higher the scalar potential, then the most effective negative
energy density. The local field equations read

Gµβ =
8πG

c4

[(
ρc2 + P

)
uµuβ − Pgµβ + (Tµβ)elec

]
. (4.36)

The energy density level (T 00)elec−int is now remaining
and is anticipated to be very huge. There is however a possi-
ble drastic reduction which adequately exploits the contribu-
tion of the electromagnetic field interacting with the charges.

4.4 The energy required for the propulsion

The machine is externally charged surrounded by a comoving
electromagentic field. Thus, it follows the Finsler geodesic
[17] provided that the ratio µ/ρc2 remains constant along the
trajectory

(ds)shell = ds +
µ

ρc2 Aα dxα, ds =
√
ηαβ dxαdxβ . (4.37)
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Neglecting the non quadratic terms, the metric reads

(ds2)shell = ds2 +

(
µ

ρc2 Aα dxα
)2

. (4.38)

For the energy density of the machine, the spatial com-
ponents

(
µ/ρc2)Aα dxα in (4.38) do not come into play. The

interaction term reduces to its time component

µ

ρc2 A0 dx0 =
Φµ

ρc2 cdt , (4.39)

where Φ is the scalar potential.
If gαβ is approximated to the Minkowski tensor ηαβ, the

metric (4.38) reads

ds2 =

(
1 +
Φµ

ρc2

)2

c2dt2 − dz2 − dx2 − dy2.

In this case, we notice that the time component of the
metric tensor

g00 =

(
1 +
Φµ

ρc2

)2

(4.41)

formally corresponds to the expression of the ADM formal-
ism (signature −2)

M = (1 + N) , (4.42)

where the lapse function is defined as

N =
Φµ

ρc2 . (4.43)

The Alcubierre metric (4.20) is now

(ds2)Al =
[
M2 − v2

s f 2(rs)
]

c2dt2 +

+ 2vs f (rs)cdtdy − dx2 − dz2.
(4.44)

The interaction term should be only function of rs, Re,
σ, and of the thickness (Re − Ri), but not depending on the
velocity vs.

Fig. 3: 2D representation of the warped region propagating from left
(expansion) to right (contraction). The groove corresponds to the
shell thickness determined by the function N.

Here, our analysis is not too dissimilar to the approach
detailed in [18, 19].

From the metric (4.43), it is now easy to derive the com-
ponents of the Eulerian observer’s velocity. We write

c2 = c2
(
M2 − v2

s f 2
) ( dt

dτ

)2

+ 2vs f c
(

dt
dτ

)
uE − u2

E.

Travelling along a geodesic the observer “sees”

dt
dτ
= M−1, (4.45)

therefore

0 = u2
E 2vs f cM−1uE + v2

s f 2c2M−2. (4.46)

Hence we find the velocity

uE = vs f cM−1, (4.47)

the components of which are easy to compute

(uµ)E =
[
cM−1, vs f cM−1, 0, 0

]
, (4.48)

(uµ)E = [cM, 0, 0, 0] . (4.49)

By inserting M into (4.24), the expression

CAl = (u0)E (u0)E (T 00)Al (4.50)

leads to the new required energy density

(T 00)Al = −
c4

32πG
v2

s (x2 + z2)
M4r2

s

(
d f
drs

)2

. (4.51)

Therefore we may choose the factor N (thereby M) arbi-
trarily large so as to substantially reduce the required energy
density for the machine frame.

Looking at (4.43), the higher the charge and the potential,
the lower the energy requirement. In the closed volume V of
the machine shell one can inject a flow of electrons according
to the constant ratios

µ

ρ
=

∑
V e∑
V m

.

We see that the leptonic electron lightweight has the ca-
pacity to lower the negative energy even further.

The negative energy supply is fnally expressed by[
∆Φ +

1
c
∂t A

]
∆Φ+ µΦ =

c4

8G
v2

s (x2 + z2)(
1 +

Φµ

ρ c2

)4
r2

s

(
d f
drs

)2

. (4.52)

Part III

5 The generalized Gödel metric

5.1 Dynamics of the fluid

The splitting shell/inner part of the spacecraft frame, is really
the hallmark of the theory here. It implies that the proper time
τ of the inner part of the machine is not affected by the term
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N. We now set the machine to follow the trajectory ys(t) tan-
gential to a CTC beyond the Gödel radius rG. Hence, we may
write down the Gödel-Alcubierre metric that was generalized
(3.3) in the following form

ds2 = e2U (1− f )


(1 + Φµρ

)2

− v2
s f 2

 c2dt2 −

−

[
f −

1
2

(1 − f ) e2x
]

dy2 −

− 2
[
vs f + (1 − f ) ex ] cdt dy − dx2 − dz2

 .
(5.1)

The shell of the machine has a volume V and the total
energy required for the propulsion along y is

E = −
∫

V

c4

32πG
v2

s (x2 + z2)(
1 + Φµ

ρ c2

)4
r2

s

(
d f
drs

)2

. (5.2)

From the machine’s perspective, the space-time can be
regarded as globally hyperbolic since for f = 1, it is always
defined by the metric (4.43) and the occupant of the machine
will never know whether he moves along a CTC.

In the absence of charge, beyond Re (i.e., where R>Re

and R→∞), we have f = 0 implying M = 1 outside of the
machine and we thus retrieve Gödel’s original modified met-
ric (3.3) in this case.

It is now easy to determine the acceleration of the flow
lines carrying the machine.

Let us revert to equation (2.1bis)

σαµ = u(α;µ) −
1
3
θhαµ − ωσµ − ∗u(αuµ) = 0 , (5.3)

∗u(αuµ) = −
(
u[α;µ] +

∗u[αuµ]

)
−

1
3
θhαµ + uα;µ . (5.4)

In our case, the scalar expansion is

θ = vs
d f
drs

ys

rs
,

see (4.17). In the equation (A7), see Appendix, we found

∗uα = hαµ ∂µU,
therefore we have

∗uµhαµ∂µU = −
(
u[α;µ] +

∗u[αuµ]

)
−

−
1
3

hαµ vs
d f
drs

ys

rs
+ u(α;µ) .

(5.5)

This equation is fundamental: it displays all elements re-
lated to the dynamics of the fluid described by the Gödel-
Alcubierre metric (5.1): the pressure and density of the fluid
as function of its rotation along a flow line subjected to the
Alcubierre local deformation.

5.2 A thermodynamic aspect

Consider a fluid that consists of n particles in motion within
a given region. The primary variables are:

— The particle current

I µ = nuµ ; (5.6)

— The energy-momentum T µν and the entropy flux S µ.
These quantities are conserved

T µν
; ν = 0 , I µ;µ = 0 .

In a relativistic case, the second law of thermodynamics
requires

S µ
;µ ⩾ 0 . (5.7)

For equilibrium states we have

S µ = nsuµ, (5.8)

where s is the entropy per particle. Denoting Q as the chemi-
cal potential and T the heat quantity of the medium, the Euler
relation reads

n s =
ρ + P

T
−

Qn
T
, (5.9)

where ρ and P are respectively the density and pressure of the
medium.

We also have the fundamental thermodynamic equation
of Gibbs

Tds = ds
ρ

n
+ Pd

(
1
n

)
(5.10)

or
T nds = dρ −

ρ + P
n
+ dn . (5.11)

From (5.9), we get

S µ = −
QI µ

T
+

(ρ + P)uµ

T
. (5.12)

Since in the rest system, the matter energy flux must van-
ish, we have

uλT λµ = ρuµ (5.13)

and thus, we find the following expression for the entropy
vector in equilibrium

S µ = −
QI µ

T
+

uλT λµ

T
+

Puµ

T
. (5.14)

Let us consider our machine moving along a Gödel tra-
jectory. We obviously neglect the chemical potential of the
machine’s bodyframe as well as the pressure and the entropy
vector reduces to

S µ =
uλT λµ

T
. (5.15)

This vector must be measured by the Eulerian observer
which travels along the trajectory tangent to uλ and (5.15)
becomes

(S µ)E =
(uλ)E (T λµ)Al

T
. (5.16)
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Keeping in mind our definition of the Eulerian velocity

(uµ)E =
[
cM−1, vs f cM−1, 0, 0

]
, (5.17)

(uλ)E = [cM, 0, 0, 0] , (5.18)

and since we are interested in the entropy scalar part we have

(S 0)E =
(u0)E (T 00)Al

T
(5.19)

with

(T 00)Al = −
c4

32πG
v2

s (y2 + z2)
M4r2

s

(
d f
drs

)2

, (5.20)

(u0)E = cM . (5.21)

We clearly see that the entropy (S 0)E of the system at-
tached to the machine is seen negative with respect to the Eu-
lerian observer which measures a “negentropy”. While trav-
elling to the past, the occupant of the machine experiences a
positive entropy, i.e., he is ageing in his own proper time.

5.3 The voyage home

The above analysis has been extended to the backwards time
travel as initially detailed by Gödel. Once this voyage is com-
pleted, the machine should be able to return to its own epoch.
Therefore, the reversed oriented loop is obviously to be envis-
aged although it should be emphasized that it does not repre-
sent a future travel.

To this end it is useful to refer to our publication [20],
where we recalled that the Einstein tensor is derived from the
second Bianchi identity verified by the Riemann tensor Rαβνγ.
A particular form of the latter is described by the Landau-
Lifchitz superpotential

Hαβνγ = −g
(
gανgβγ − gβνgγα

)
(5.22)

The second order tensor

Hαβνγ
, βγ = ∂β

{
∂γ

[
−g

(
gανgβγ − gβνgγα

)]}
(5.23)

is a special choice of the Ricci tensor in which all first deriva-
tives of the metric tensor vanish at the considered point. The
corresponding field equations read

Hαβνγ
, βγ =

16πG
c4

[
−g

(
T αν + tανL−L

)]
, (5.24)

where T αν is the energy-momentum tensor of matter with its
gravitational field described by the Landau-Lifchitz energy-
momentum pseudo-tensor tανL−L

(−g) tανL−L =
c4

16πG

{
gαν, λ g

λµ
, µ − g

αλ
, λ g

νµ
, µ +

1
2
gανgλµ g

λθ
, ρ g

ρµ
, θ −

−
(
gαλgµθ g

νθ
, ρ g

µρ
, λ + g

νλgµθ g
αθ
, ρ g

µρ
, λ

)
+ gµλg

θρgαλ, θ g
νµ
, ρ +

+
1
8

(
2gαλgνµ − gαλgλµ

) (
2gθρgδτ − gρδgθτ

)
gθτ, λ g

ρδ
, µ

}
,

where gαν =
√
−g gαν.

In this way, the right hand side of (5.24) is conserved

∂ν
[
− g

(
T αν + tανL−L

)]
= 0 .

Besides equation (5.24), there exists a second field equa-
tion having the form

Hαβνγ
, γα =

16πG
c4

[
− g

(
T βν + t βνL−L

)]
. (5.25)

A quick inspection at (5.22), shows that field equations
(5.24) and (5.25) differ from a sign and are linked by a com-
mon index but they are not necessarily symmetrical. The in-
tertwined metrics are

ds2 = gµν dxµdxν, (5.26)

(−)ds2 = −gµλ dxµdxλ. (5.27)

In our case, the time coordinate x0 = ct′ is chosen to be
the cosmic time-axis of the expanding universe described by
the positive metric (5.26). It is then pertinent to identify x0

with the common index

ds2 = g0ν dx0dxν, (5.28)

(−)ds2 = −g0λ dx0dxλ. (5.29)

The Gödel solution (3.18) corresponding to (5.27) can be
expressed by

(−)ds2 = −4e2U
[
dt′ (2 sinh r − 1)2 − dr2+

+
(
sinh4r − sinh2r

)
dθ2 + 2

√
2 sinh2rdθdt′

]
.

(5.30)

One notices that t′ is negative which means that the tra-
jectory of the machine derived from (5.30) is reversed with
respect to the one resulting from the solution (3.18). Starting
from the point p (see Fig. 2 on page 19) the machine reaches
the Gödel radius rG for sinh r = 1, while it is still being gov-
erned by the equation (5.30). As soon as r = 0 after crossing
the plane containing rG, then ds2 becomes positive again and
reconnects to the cosmic time t′ at the departure point q. In
order to come back to its epoch, our machine can then legit-
imately exploit the second field equation whose solution is
given by (5.30).

Conclusions

When Gödel introduced his metric, he was led to introduce a
distinctive constant factor a in order to retranscript the field
equations with a cosmological constant along with additional
constraints. Our theory is free of all theses constraints and
moreover, it provides a physical meaning to the a term.

The Gödel space-time is no longer a cosmological model
but a limited domain wherein takes place the dynamics of
a physical fluid which retains all basic properties related to
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closed time-like curves. The modified Gödel metric can be
locally replicated and this fact naturally sheds new light on
time travel possibility.

Our theory, which relies on the Alcubierre metric propul-
sion, has some similarities with the one suggested by B. Tip-
pett and D. Tsang (University of British Columbia, Okanagal
and MacGill University, Montreal, respectively). The essence
of their paper is to describe an Alcubierre bubble which trav-
els backwards and forwards along a loop in flat space-time
[21]. In this geometry, the bubble is referred to as a Travers-
able Achronal Retrograd Domain in Space-Time or TARDIS,
in short. The TARDIS is also an acronym for Time and Rel-
ative Dimensions in Space, a fictional hybrid of a time ma-
chine and spacecraft that appears in the British science fic-
tion television series Doctor Who and its various spin-offs.
See also [22].

Historically, it seems that the first model exhibiting CTCs
was pioneered by the German mathematician C. Lanczos, as-
sistant to Einstein in 1924 [23] and later re-discovered in
1937 in an improved form by the Dutch physicist W. J. Van
Stockum [24].

A typical example of a time machine was first proposed in
1974 by the American F. J. Tipler, Prof. of Physics at the Tu-
lane University, New Orleans [25]. It describes an infinitely
long massive cylinder spinning along its longitudinal axis
which gives rise to the frame dragging effect. If the rota-
tion rate is fast enough the light cones of objects in cylinder’s
vicinity becomes tilted. Tipler claimed that a finite cylinder
could also produce CTCs which was objected by S. Hawking
who argued that any finite region would require negative en-
ergy and at the same time, vacuum fluctuation mechanism
would impede any attempts to travel in time [26]. Several
authors have however challenged this last conclusion and re-
jected Hawking’s statement [27, 28].

At the same time, travelling backwards in time highlights
many paradox problems. Among them is the well-known
grandfather paradox: a person travelling to the past and caus-
ing the death of his ancestor beforehand is thus never born and
it would not be possible for him to undertake such an act in
the first place. In fact, you can not fix your issues by travel-
ling back in time: you go back in time to prevent something
that happened in the past and arrive just before the event. You
race to stop it, yet in doing as such, directly or indirectly cause
it to happen in the first place. This can be illustrated by the
predestination paradox where a billiard ball is sent in the past
through the time machine:

In other words one cannot change the past (at least ma-
jor events): this is confirmed by the famous Self Consistency
Principle introduced in 1990 by the physicist I. Novikov [29].
The principle asserts that if an event exists that would cause a
paradox or any change to the past whatsoever, then the proba-
bility of that event is zero. This principle does not exclude the
predestined fate of our history if some actions from the future
would have marked the successive events of our evolution.

Fig. 4: The predestination paradox where a billiard ball is sent in the
past through the time machine.

A typical example is the so-called writer’s paradox, when
the inventor of the time machine sends his calculations to a se-
lected scientist in his own past. The question naturally arises:
who could be this scientist?

Fig. 5: Albert Einstein and Kurt Gödel at the Princeton Institute for
Advanced Study, Princeton, New Jersey, December 5, 1947. Photo
by Oskar Morgenstern.

Submitted on January 1, 2005
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Appendix

The 4-unit vector uµ is normalized on (M, g)

gµν uµuν = gµνuµuν = 1.

By differentiating it we get

uν ∇µuν = 0 . (A1)

Let us define the vector Lν by the relation

∇µ Pδµν = r Lν (A2)

having set r = ρc2 + P.
The conservation law for Tµν = ruµuν−Pgµν is expressed

by ∇µT µ
ν = 0 or

∇µ (ruµuν) = r Lν , ∇µ (ruµ) uν + ruµ∇µ uν = r Lν . (A3)

Multiplying through this relation with u ν and taking into
account (A1), after substituting it into (A3) and then dividing
by r, we obtain

uµ∇µuν =
(
gµν − uµuν

)
Lµ (A4)

or
∗uν = hµν Lµ. (A5)

Setting Lν = ∂νU, the equation (A5) takes the form ∗uν =
hµν∂µU and (A2) reads(

ρc2 + P
)

Lν = ∇µ Pδµν , Lν =
∂νP

ρc2 + P
.

As a result we find

U =
∫ P2

P1

dP
ρc2 + P

.

The flow lines of the fluid everywhere tangent to the vec-
tor uµ are determined by the differential system (3.15)

uµ∇µ uβ =
(
δαβ − uαuβ

)
∂αU .

These flow lines are time-like geodesics of the conformal
metric

A = s′ =
∫ S 2

S 1

eU ds . (A6)

The 4-vector
∗uν = hµν ∂µU (A7)

must be regarded as the 4-acceleration ∗uν of the flow lines
given by the pressure gradient orthogonal to those lines; see
[30, p. 70].
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