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This article discusses the astronomical observations of instant transmission of signals
from stars (long-range action), performed in 1977–1979 by Prof. N. A. Kozyrev. It is
shown that stopping physically observable time, which is a necessary condition for
instant transmission of a signal, is impossible in the Minkowski space (which is the
space-time of Special Relativity) due to its geometric structure, i.e., the very structure
of the Minkowski space does not allow long-range action. On the other hand, this is
possible in the space-time of General Relativity due to the presence of the gravitational
field potential or the rotation of space (due to the non-orthogonality of time lines to
the three-dimensional spatial section), or both of these factors presented together. Thus,
Kozyrev’s astronomical observations of instant transmission of signals from stars (long-
range action) find their explanation in the space-time of General Relativity.

1 Experimental results

Nikolai A. Kozyrev (1908, St. Petersburg — 1983, ibid.) was
one of the most productive astronomers of the 20th century,
best known due to his discovery of volcanism on the Moon
in 1958 [1] and the atmosphere of Mercury in 1963 [2]. For
the discovery of lunar volcanism, Kozyrev was awarded the
gold medal of the International Academy of Astronautics, en-
crusted with seven diamonds in the form of stars of the con-
stellation Ursa Major (Paris, 1969). Prof. Kozyrev worked at
the Pulkovo Astronomical Observatory near St. Petersburg.
Read about him in the Encyclopaedia Britannica [3] and in
a detailed biography for his 100th birthday [4].

In addition to his studies in astronomy, Kozyrev in 1958
introduced the “causal or asymmetrical mechanics” [5] that
takes the physical properties of time into account. Continu-
ing this research, he described his many years of experimental
research on this topic [6, 7]. In particular, Kozyrev arrived at
the conclusion about the possibility of astronomical observa-
tions using the physical properties of time [8].

The apotheosis of this research were the astronomical ob-
servations using the 50-inch reflecting telescope of the Cri-
mean Astronomical Observatory, during which in 1977–1979
Kozyrev registered the effect of long-range action, i.e., the
instant transmission of signals from stars [9, 10].* His astro-
nomical observations were then reproduced and successfully
confirmed in 1989 [11,12] by a group of scientists, headed by
Irène A. Eganova and Michael M. Lavrent’ev from the Sobo-
lev Institute of Mathematics (Novosibirsk).

Since the original two papers [9, 10] in which Kozyrev
reported the instant transmission of signals from stars were

*In these papers, Prof. Kozyrev, who usually did not have co-authors in
publications, had added the name of his laboratory engineer Victor V. Nas-
sonov (1931–1986) in recognition of his many years of assistance.

published in Russian, and the reports [11, 12] confirming his
results are only short communications from the USSR Acad-
emy of Sciences (in English), we must first explain the details
of Kozyrev’s astronomical observations.

Based on his previous research into the causal or asym-
metric mechanics [5], Kozyrev concluded that time has differ-
ent speeds at different points of space depending on the active
processes of destruction or creation (increase or decrease in
the level of entropy) at these points.† Kozyrev considered the
field of distribution of time speeds around active processes
of destruction or creation as one of the physical properties
of time, which he called the field of time density [6, 7]. By
this he meant that time is not just the fourth coordinate of
space-time, but a real physical field, the non-uniformity of
which can affect physical bodies and the processes occurring
in them. Therefore, Kozyrev concluded, around any star there
must be a field of time speeds (a field of time density) due
to the active processes of destruction (loss of organization of
stellar substance) occurring in it.

Since time does not spread, Kozyrev reasoned, but ap-
pears instantly throughout the entire three-dimensional space
of the Universe (which is an instant three-dimensional section
of space-time at the moment of observation), therefore the or-
ganization lost by stars can be transmitted from them by the
field of time density instantly over any distance. The effect of
this transmission must decrease inversely proportional to the
square of the distance between the points of departure (a star)
and arrival (a detector), i.e., inversely proportional to the area
of a sphere as it should be in a space of three dimensions.

As a result, Kozyrev expected that the field of time den-
†This is similar to how, in the space-time of General Relativity, the inter-

vals of physically observable time are shortened (compared to the intervals
of time in unperturbed space) depending on the potential of the gravitational
field that fills the space and on the speed of rotation of the space itself.
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sity created by any star can instantly initiate microprocesses
of creation (organization) in a physical detector placed at the
focus of a reflector telescope.*

This idea was confirmed by the astronomical observations
performed by him in 1977–1979 (with the assistance of his
laboratory engineer Nassonov) on the 50-inch reflecting tele-
scope of the Crimean Astronomical Observatory [9, 10].

As a detector, Kozyrev used a metal-film resistor built into
a Wheatstone bridge (and later — a thermocouple) installed
in the focal plane of the telescope directly behind the narrow
slit usually intended for a spectrograph, parallel to the slit.
The slit was sawn in a 1-cm thick aluminum plate. Its width
was 0.25 mm = 2′′ in the sky. To increase the angular resolu-
tion of the observations, the slit (and detector) were oriented
perpendicular to the daily motion of the celestial sphere. The
detector and the entire measuring system were reliably iso-
lated by a 1-cm thick aluminum case from external tempera-
ture influences, as well as from the influences of various pro-
cesses in the telescope tower and beyond, so that random fluc-
tuations from external influences registered by the detector
were rare and did not affect the planned astronomical observa-
tions. The light from the observed astronomical objects was
reliably shielded by a shutter made of black dense cardboard
used in the packs of photographic plates, installed together
with a thin glass plate in front of the slit (the thin glass plate
covered the slit to prevent air circulation from the telescope
into the measuring system).

Once the telescope was pointed at a point in the sky in
front of a star, close to its visible position, Kozyrev slowed
down the telescope’s guiding mechanism slightly, causing the
slit (and detector) installed in the focal plane of the telescope
to slowly “scan” the sky in front of the visible star toward it
along the right ascension.

Kozyrev proposed this method of observation, because his
target was the true position of the visible stars at the moment
of observation, which could be registered by the detector only
in the case of instant transmission of signals through the field
of time density. Whereas the visible position of a star in the
sky is in the past, at the moment of time when the star emitted
the light signal that we see in the form of its visible image.
In other words, the visible position of a star “lags” relative
to its true position in the sky, which is ahead of it, by the
angular distance travelled by the star in the sky (due to its
own motion relative to other stars) until the light emitted by
the star reached an observer on the Earth and thereby created
the visible image of the star.

The true position of a star can be calculated relative to its
visible position, knowing the tangential velocity of the star
relative to the Solar System (and the Earth) and the distance to
the star, calculated based on its trigonometric parallax†. These

*Since the glass of lenses, like any amorphous material, should absorb
this effect, a refractor telescope is not applicable for this task.

†This is the very small angle at which the radius of the Earth’s orbit is
seen from the star. If you measure the position of a star relative to other stars

data, obtained through astrometric observations over the past
two centuries, can be found in astronomical catalogues and
yearbooks.

The first series of astronomical observations according to
the mentioned “scanning” method was performed by Kozy-
rev and Nassonov in October 1977. They immediately found
that the detector responded reliably to the true position of the
observed stars. The results were published in the paper [9].

In addition, the detector also responded to the visible po-
sition of the stars (where they are visible in the sky), de-
spite the fact that it was reliably shielded from their light (see
above). The difference in angular distance between the true
and visible positions of the stars measured using the detector
∆αob and ∆αc calculated from astronomical catalogues (both
along the right ascension α) was in the range of 1′′ to 4′′,
which is comparable to the slit in front of the detector (it se-
lected 2′′ on the celestial sphere, see above).

Table 1 shows the results of these astronomical obser-
vations. In Table 1, in addition to ∆αob and ∆αc explained
above, ∆α⊙ is the angular distance between the true and vis-
ible positions of the stars, corrected for the value Aα of their
annual aberration‡ along the right ascension

∆α⊙ = ∆α − Aα ,

and the parallax π of each star is calculated based on its own
annual angular displacement µα with respect to other stars and
the celestial coordinates along the right ascension

π = 3.26
µα
∆α⊙

.

Besides the stars, they observed Jupiter, Mars, and Venus.
Jupiter showed no effect on the detector. Mars showed the
same effect as Venus (see Table 1).

An anomaly was the star ι Per, for which the observations
yielded an abnormally large value of ∆αob−∆αc = +28′′ that
most likely corresponded to another faint object located near
this star.

The value of ∆α⊙ = ∆α − A and the parallax π calculated
from the measured distances ∆αob for three stars having small
unknown parallaxes are given in square brackets.

It is interesting that the detector responded to both the true
and visible positions of the stars even when the telescope’s
main mirror was covered by a shutter that reliably screened
the light. In this case, the magnitude of the registered effect
was weakened to the same extent for both the true and visible
positions of the stars. “Consequently, the influence of the vis-
ible image [in this experiment] is not related to the light, but
only coincides with its direction” — Kozyrev wrote [9].

in the sky several times during one year, when the Earth is at different points
in its orbit around the Sun, the star will appear slightly offset relative to the
other stars. Half of this apparent angular displacement of the star over the
course of a year is called its trigonometric parallax.

‡Annual stellar aberration A is the observed displacement of stars from
their actual positions on the celestial sphere, caused by the Earth’s motion
along its orbit around the Sun.
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Star
Stellar

magnitude
Spectral

class π µα ∆α⊙
Date

of observation

β Tri 3.08 A5 0′′.012 +0′′.150 +39′′ 12 October 1977

λ Tau 3.8 – 4.1 B3 −0′′.009 −0′′.006 ? 23 October 1977

α Tau 1.1 K5 0′′.048 +0′′.069 +5 22 and 23 October 1977

γ Psc 3.85 K0 0′′.025 +0′′.756 +95 22 October 1977

ω Psc 4.03 F5 0′′.012 +0′′.147 +15 22 October 1977

Table 2: Four stars that had no effect on the detector, and also the star α Tauri, whose effect
was found to be variable. October, 1977. Quoted from the original publication [9].

Four of the observed stars had no effect on the detector,
most likely due to the low sensitivity of the signal registering
system used in the observations. They are listed in Table 2.

In addition, Kozyrev concluded that the star α Tau most
likely emits a variable time density. This explained the fact
that, as is seen from Table 1 and Table 2, this star produced
a very strong effect on October 8, then its influence on the
detector halved on October 13, and there was no influence on
October 22 and 23.

In the second series of the astronomical observations, Ko-
zyrev and Nassonov increased the sensitivity of the signal
registering system by almost one order of magnitude, and
also extended the area of the sky subject to “scanning” near
each observed star. The latter was due to the fact that, as Ko-
zyrev reasoned, since the detector responded to the signals
transmitted instantly through the field of time density from
the true position of the star (where it is at the present mo-
ment of time) and from its visible position in the past (along
the trajectory of the light coming from it), then the field of
time density should also instantly transmit the signals com-
ing from the star and along the “reverse trajectory of light”,
along which the position of the Earth at the present moment
of time is visible from the star located in the future.

In other words, the detector must respond to the signals
transmitted instantly through the field of time density from
three points in the sky associated with each observed star:

1. The visible (past) position of the star, where it was in
the past when it emitted the light signal that we see at
present as its visible image in the sky;

2. The true position of the star, where it actually is at the
present moment of time;

3. The position of the star in the future, symmetric to its
visible position in the past with respect to its true posi-
tion in the sky.

The signals coming instantly through the field of time
density from the first position of a star (its visible position
in the past) indicate that the star not only exists at the present
moment of time, but in fact continues to exist as a real object
in the past. Whereas the third position of the star (in the fu-

ture) makes it possible to instantly observe the future of the
star as an already existing reality.

This second series of the astronomical observations was
performed during the spring and autumn of 1978, and also in
May 1979, using the same 50-inch reflecting telescope. The
results were published in the paper [10]. They are shown here
in Table 3, where ∆1αob means the observed angular distance
between the true position of the star (where it is at the present
moment of time) and its visible position (in the past), while
∆2αob is the observed distance between the symmetrical po-
sition of the star in the future and its visible position (theoret-
ically, it should be ∆2αob = 2∆1αob).

The detector responded to all three mentioned positions
of each observed star (except only ι Persei).

As previously in 1977, in the first series of the observa-
tions, ι Persei showed an anomaly: the detector did not re-
spond to its true position (in the middle between its positions
in the past and in the future), but reliably detected its position
in the future ∆2αob =+59′′. Most likely this star has variable
activity and was weakened during the season of these obser-
vations.

Since the values of the stellar aberration A differ in spring
and autumn (due to the Earth moving in different directions in
its orbit), the values of A for α Lyrae differ greatly in spring
and autumn (A even changes its sign). This also led to a corre-
sponding change in the sign of the measured values of ∆1αob
and ∆2αob, in full agreement with the theory.

In addition to the stars, the aforementioned “scanning”
method of astronomical observations was also used to ob-
serve extended astronomical objects: the globular cluster M2
in Aquarius, the globular cluster M13 in Hercules, and the
galaxy M31 (Andromeda Nebula). Since these are not point-
like objects (unlike stars) and they are not uniform, then scan-
ning each one creates three non-uniform profiles of it, corre-
sponding to its past, present and future, which are superim-
posed on each other. As a result, in the scan of each of the ex-
tended astronomical objects, the hills of maximum influence
on the detector were split into three peaks corresponding to
the past, present and future. These scanned profiles, which
were non-uniform in structure, also showed a decrease in the
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Star
Stellar

magnitude
Spectral

class π µα ∆α⊙ Aα ∆αc ∆1αob ∆2αob
Date

of observation

10 UMa 4.1 F5 0′′.071± 5 −0′′.436 −20′′ −9′′ −29′′± 1 −28′′ −57′′ 13 April 1978

α Leo 1.3 B8 0′′.039± 7 −0′′.248 −20′′ −12′′ −32′′± 4 −35′′ −70′′ 7 April 1978
−4′′ −24′′± 4 −26′′ −50′′ 8 May 1979

γ Boo 3.0 F0 0′′.016± 7 −0′′.115 −23′′ −20′′ −43′′± 7 −50′′ −97′′ 24 April 1978

ε Boo 2.7 K0 0′′.013± 7 −0′′.049 −12′′ −20′′ −32′′± 6 −35′′ −67′′ 13 May 1979

α Lyr 0.14 A0 0′′.123± 5 +0′′.200 +5′′ −2′′ +3′′± 0 +5′′ 20 October 1977
−18′′ −13′′± 0 −12′′ −23′′ 14 May 1979

ι Per 4.2 G0 0′′.084± 5 +1′′.266 +48′′ −17′′ +31′′± 2 no +59′′ 22–23 October 1977

τ Per 4.1 G8, A5 0′′.012± 5 0′′.000 0 −20′′ +20′′± 0 −27′′ −46′′ 3 November 1978

ξ2 Aqr 4.4 F2 0′′.013± 5 +0′′.204 +50′′ −11′′ +39′′± 13 +42′′ 23 October 1977
+38′′ +80′′ 29 October 1978

β Peg 2.1 – 3.0 M0 0′′.015± 5 +0′′.188 +39′′ −14′′ +25′′± 13 +26′′ 20 October 1977
+35′′ +60′′ 29 October 1978

Table 3: Results of the second series of Kozyrev’s astronomical observations. The detector responded to three positions of each
observed star (except ι Persei): its position in the past (visible position), in the present (its true position), and in the future symmetrical
to its visible position in the past. Spring and autumn 1978, and also May 1979. The values of ∆1αob measured in the first series of the
astronomical observations (October 1977, see Table 1) are given as a reference. Quoted from the original publication [10].

Star π µα ∆α⊙ Aα ∆αc ∆αob

β Peg 0′′.015± 5 0′′.217 47′′.16 +33′′.52 +13′′.6 +12′′.6± 1′′.3

β And 0′′.043± 5 0′′.220 16′′.72 +41′′.58 −24′′.9 −25′′.4± 1′′.7

δ And 0′′.024± 6 0′′.162 22′′.00 +39′′.51 −17′′.5 −20′′.2± 2′′.5

Table 4: Results of the testing astronomical observations conducted by Eganova
and Lavrent’ev. 13 October 1989. Quoted from the original publication [11].

magnitude of the effect near the centre of each extended as-
tronomical object: Kozyrev explained this by the supposition
that where the stellar density is very high, there is a strong
absorption of the field of time density [10].

It should be noted that although we unfortunately were
not personally acquainted with Prof. Kozyrev (we read these
publications already after his death), one of the authors of this
paper, Dmitri Rabounski, visited Victor Nassonov twice at his
apartment in St. Petersburg in 1985 shortly before his sudden
death (at that time, Nassonov headed a laboratory at an indus-
trial company). Nassonov demonstrated the recordings of an
automatic recorder used in the last series of the astronomical
observations (instead of the pointer galvanometer used at the
initial stage). The recorded tapes clearly indicated three peaks
of the signals, recorded for each of the observed stars and
corresponding to its successive positions in the past, present
and future on the celestial sphere.

It is no wonder that other scientists also took notice of
these astronomical observations. In 1989, Irène A. Eganova
and Michael M. Lavrent’ev, Director of the Sobolev Insti-

tute of Mathematics (Novosibirsk) and a Fellow of the USSR
Academy of Sciences, decided to reproduce Kozyrev’s astro-
nomical observations. Their collaborators at the Institute in
Novosibirsk reproduced Kozyrev’s experimental setup, then
Eganova and Lavrent’ev, together with their research group,
performed testing astronomical observations according to
Kozyrev’s method on the same 50-inch reflecting telescope
of the Crimean Astronomical Observatory. To be more confi-
dent in the result, they scanned the area of the sky near each
observed star not only in one direction (as Kozyrev did), but
also in two directions (there and back). Excerpts from their
testing observations of the stars β Pegasi, β Andromedae and
δ Andromedae are shown in Table 4, quoted from their first
short report [11].

In their second short report [12], Eganova and Lavrent’ev
reported the registration of signals coming from the true po-
sition of the Sun preceding the visible one by 2◦4′.6 (four
visible diameters of the Sun) — the angular distance travelled
by the Sun in 8.3 minutes, during which the light emitted by
it reaches the Earth. The detector was installed in the focal
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plane of a small 4-inch reflecting telescope, the main mirror
of which was reliably shielded from the light coming from the
Sun, and the signal registering system was protected from so-
lar thermal effects. The detector in one series of the observa-
tions was a metal-film resistor built into a Wheatstone bridge
as before. According to the records of scanning the near-solar
space, the resistor responded to both the true and visible po-
sitions of the Sun, as when observing the stars. In the second
series, it was a container with Escherichia coli bacteria in the
state of anabiosis, which they exposed to the true position of
the Sun for 3 minutes, while a control container with bacteria
of the same brood remained in the laboratory. It was found
that after exposure to the true position of the Sun, the number
of viable cells increased by 1.2 –3 times (depending on the
specific brood).

“Not a single fact was found that contradicted Kozyrev’s
observations, however, further research is required to confirm
his conclusions regarding the properties of the observed ef-
fect” — they concluded [11].*

Indeed, one cannot but agree with this conclusion. Yes,
the effect discovered by Prof. Kozyrev was weak and his as-
tronomical observations were difficult to reproduce. On the
other hand, this was not a single unique experiment. The dis-
covered effect was registered on many stars over several years
and was confirmed by astronomical observations of an inde-
pendent group of scientists.

We must therefore carefully search for a theoretical basis
that could explain the instant transmission of signals in the
framework of modern theoretical physics. A theory of this ef-
fect could determine the key physical factors of this process,
and, accordingly, determine methods for enhancing these fac-
tors in order to create a new industrial technology of commu-
nication and transport.

This was one of the reasons why we started our own the-
oretical research on this topic in the mid-1980s and why we
are now writing this article.

2 Theoretical explanation

In fact, Kozyrev’s astronomical observations showed that sig-
nals from each star in the real space-time are instantly trans-
mitted to the observer from its three positions in the sky: its
visible position in the past (along the trajectory of light), its
true position at the moment of observation and its position in
the future (along the “reverse trajectory of light”).

Kozyrev originally believed [13] that the results of his
astronomical observations could be interpreted in the frame-
work of the four-dimensional Minkowski space (which is the
space-time of Special Relativity). He proceeded from the fact
that the four-dimensional metric (four-dimensional distance

*Their reports [11,12] were published in the short communications from
the USSR Academy of Sciences, known as Doklady Akademii Nauk SSSR,
which is a highly influential and prestigious scientific journal, intended only
for the Academy Fellows (or for the communications personally recom-
mended by them) and published in English since 1956.

between two adjacent points) in the Minkowski space is ex-
pressed in the form

ds2 = c2dt2 − dx2 − dy2 − dz2 = c2dt2
(
1 −

v2

c2

)
,

where v is the velocity of a signal in the three-dimensional
space. Kozyrev argued that the four-dimensional distance in
the Minkowski space, say, between a star and an observer, is
zero ds= 0 along three world lines. The line dt= 0, coincid-
ing with the three-dimensional space of the observer, indi-
cates the true position of the star, where we would see it if
light travelled instantly. The line v=+c indicates the posi-
tion of the star in the past, when it emitted the light signal
that we see as its image in the sky. The line v=−c indicates
the position of the star in the future, symmetrical to its visible
position in the past (with respect to its true position), when
the light signal emitted from the Earth reaches it.

However, this statement by Kozyrev does not correspond
to the geometry of the Minkowski space (Kozyrev was an out-
standing astronomer of the 20th century, but was not familiar
with Riemannian geometry). Below we show why and how
the instant transmission of signals is explained in the space-
time of General Relativity.

Definition: Instant transmission of a signal means that the
interval of physically observable time, registered by the
observer between the sending of the signal and its ar-
rival, is zero. In other words, the physically observable
time of an instantly transmitted signal, registered by the
observer, stops.

Physically observable quantities in the four-dimensional
pseudo-Riemannian space (the space-time of General Rela-
tivity, a particular case of which is the Minkowski space) are
defined as the projections of four-dimensional generally co-
variant quantities onto the three-dimensional spatial section
and the time line associated with an observer. Such physically
observable projections are invariant throughout the observer’s
spatial section (his observable three-dimensional space), de-
pend on its geometric and physical properties, and are, there-
fore, called chronometric invariants [14–17].

Thus, the interval of physically observable time dτ regis-
tered by an observer is the projection of the four-dimensional
displacement vector xα (α = 0, 1, 2, 3) onto his time line

dτ =
√
g00 dt −

1
c2 vi dxi,

where dt is the interval of coordinate time, which would be
counted by the observer in the absence of disturbing factors,
the time (zero) component g00 of the fundamental metric ten-
sor gαβ is expressed with the potential w of the gravitational
field that fills the space of the observer

√
g00 = 1 −

w
c2 , w = c2 (

1 −
√
g00

)
,
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and vi is the three-dimensional vector of the linear velocity of
rotation of the observer’s space

vi = −
cg0i
√
g00
, vi = −cg0i√g00 ,

which is caused by g0i , 0 (meaning that the observer’s spatial
section is non-orthogonal to his time line) and therefore it
cannot be eliminated by coordinate transformations along the
spatial section of the observer.

The physically observable three-dimensional interval dσ
is determined as

dσ2 = hik dxidxk,

where

hik = −gik +
1
c2 vi vk , hik = −gik, hi

k = δ
i
k

is the physically observable three-dimensional metric tensor,
which is the projection of the fundamental metric tensor gαβ
onto the spatial section of the observer and possesses all its
properties throughout his spatial section (three-dimensional
observable space). Thus, the square of the four-dimensional
(space-time) interval ds2 = gαβ dxαdxβ expressed in terms of
physically observable quantities has the form

ds2 = c2dτ2 − dσ2.

In the Minkowski space, as is seen from the Minkowski
metric that above, g00 = 1 that means the absence of gravi-
tational fields (the gravitational potential is w= 0), and also
g0i = 0 meaning that the three-dimensional space (spatial sec-
tion) is everywhere orthogonal to the time lines piercing it,
and, hence, it does not rotate (vi = 0). Therefore, the interval
of physically observable time dτ, which is registered by an
observer in the Minkowski space, is always

dτ = dt .

This fact, in particular, means that in the Minkowski space
(the space-time of Special Relativity) there are no geometric
or physical disturbing factors that could cause stopping phys-
ically observable time. In such a space, the concept of stop-
ping time is essentially absent: according to the geometry
of the Minkowski space, the physically observable time co-
ordinate registered by the observer is dx0 = cdτ= cdt, i.e., it
changes absolutely uniformly throughout the space along the
directrices of the light cone of the observer at a speed equal
to ±c (the plus sign takes place when counting time into the
future, and the minus sign — when counting time into the
past). The physically observable time interval in the Minkow-
ski space is zero dx0 = cdt= 0 only at the space-time point,
where the vertices of the light cones of his past and future
converge (i.e., only at the point of his observation), but not
along any three-dimensional path between him and another
object in space (say, a star). Consequently:

Since stopping physically observable time in the Min-
kowski space is in principle impossible due to the fact
that its geometric structure does not contain disturbing
factors that could stop time, the geometric structure of
the Minkowski space itself does not allow instant trans-
mission of a signal.

On the other hand, despite the error in Kozyrev’s theoret-
ical explanation [13], the results of his astronomical observa-
tions indicate that instant transmission of signals from stars is
an ordinary phenomenon in the real space-time.

Another case — the space-time of General Relativity, be-
cause it allows all conceivable disturbing factors character-
istic of pseudo-Riemannian spaces due to their Riemannian
geometry.

We considered the conditions for stopping physically ob-
servable time in the space-time of General Relativity in our
works on the theory of non-quantum teleportation, which we
began in the late 1980s and continue to this day. Everything
that follows is based on the theoretical background, published
in 2001 in our research monograph [18], and then — in our
subsequent papers [19–21].

Derive the physical conditions that stop observable time.
From the definition of the interval of physically observable
time dτ in the space-time of General Relativity (see above),
we obtain that the physically observable time stops for an ob-
served object (dτ= 0) under the physical conditions

w + vi ui = c2,

determining the necessary combination of the potential w of
the gravitational field that fills the space, the linear velocity vi
with which the space rotates, and also the coordinate velocity
ui = dx i

dt of the object with respect to the observer.
These physical conditions at first glance seem exotic for a

regular laboratory: an extremely strong gravitational potential
and speeds close to the speed of light. However, these condi-
tions that stop observable time are realized inside every phys-
ical body in the range from elementary particles to planets
and stars. And we will now show why.

Since every physical body possesses mass, its gravita-
tional field has a breaking at a distance from its barycentre,
which is equal to its gravitational radius rg = 2GM/c2 calcu-
lated for its mass M. For instance, at r= rg from the barycen-
tre, the zero (time) component g00 of the fundamental metric
tensor of the Schwarzschild mass-point metric

ds2 =

(
1 −

rg
r

)
c2dt2 −

dr2

1 −
rg
r

− r2
(
dθ2 + sin2

θ dφ2
)
,

which describes the space of a massive spherical body appro-
ximated by a material point, is zero

g00 = 1 −
rg
r
= 0 .
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Therefore, the potential of the gravitational field of every
physical body on a spherical surface of the radius rg around
its barycentre is

w = c2 (
1 −
√
g00

)
= c2,

which is the same in the space of a rotating massive spherical
body, because the component g00 has the same formula for
these two spaces. You can see this from the space metric of a
massive spherical body that rotates along its equatorial coord-
inate axis φ with a constant angular velocity ω= const, which
was introduced and proved in [22]

ds2 =

(
1 −

rg
r

)
c2dt2 − 2ωr2sin2

θ

√
1 −

rg
r

dtdφ −

−
dr2

1 −
rg
r

− r2
(
dθ2 + sin2

θ dφ2
)
.

Such a tiny spherical surface, we concluded in our previ-
ous paper [23], exists around the barycentre deep inside ab-
solutely every physical body simply because physical bodies
possess mass.

The condition w= c2 means stopping physically observ-
able time dτ= 0, which is also the condition for instant trans-
mission of signals, if the body does not rotate (vi = 0). This
means that the condition for instant transmission of signals
(dτ= 0) is satisfied on the spherical surface r= rg around the
barycentre of every non-rotating body. For rotating bodies,
dτ= 0 is satisfied under w+ viui = c2 (see above). Therefore,
since dτ= 0 in this case is satisfied at a lower value of the
gravitational potential w due to the second term caused by
the rotation of space, the condition for instant transmission
of signals is satisfied inside every rotating body on a sphere
enveloping its barycentre slightly above the radius rg.

Thus, we arrive at the conclusion:

According to General Relativity, the condition of in-
stant transmission of signals is satisfied on a tiny spher-
ical surface of the gravitational radius (for non-rotating
bodies) or slightly above it (for rotating bodies), exist-
ing around the barycentre deep inside absolutely every
physical body in the range from elementary particles to
planets and stars.

The path along which signals can be instantly transmitted
in the pseudo-Riemannian space is determined by the condi-
tion of instant signal transmission (dτ= 0) and is described
by the obvious equation

τ = const ,

which describes trajectories along the three-dimensional spa-
tial section of the observer (his observable three-dimensional
real physical space), which is generally non-uniform, curved,
rotating and deformable. Along such trajectories, neither the
four-dimensional (space-time) interval ds nor the physically

observable three-dimensional interval dσ between the points
of departure and arrival of the instantly transmitted signal are
not equal to zero

c2dτ2 = 0 , ds2 = c2dτ2 − dσ2 = −dσ2 , 0 .

The resulting equation of trajectories for instant signal
transmission, together with the previous conclusion about the
location of the conditions for stopping observable time, lead
us to the conclusion:

The spherical surfaces, enveloping the barycentres of
all physical bodies at their gravitational radius (for non-
rotating bodies) and slightly above it (for rotating bod-
ies), on which physically observable time stops, are
all connected to each other by trajectories of stopping
observable time. Signals, instantly transmitted along
these trajectories, instantly connect all physical bodies
in the Universe.

Trajectories of this type instantly connect any ob-
server with stars and indicate the middle (true) position
of stars, which was registered in Kozyrev’s astronomi-
cal observations.

Note that, as we have already mentioned above, this type
of trajectories for signals do not take place in the Minkowski
space of Special Relativity (where there is no disturbing fac-
tors that could cause stopping observable time). Such trajec-
tories take place only in the space-time of General Relativity
(since it allows all disturbing factors that are conceivable due
to its Riemannian geometry).

Let us now find the trajectories that indicate the instant
transmission of signals from the visible (past) position of stars
and their position in the future (symmetrical to their visible
position) in Kozyrev’s astronomical observations. Presum-
ably, these should be trajectories on the surface of the light
cone: on its half (for signals coming to the observer from the
visible position of the star in the past) and on the upper half
(for signals coming from the symmetrical position of the star
in the future). Therefore, we will first check this assumption
by considering the light cone equation.

The light cone equation is the equation of trajectories ly-
ing on the surface of the light cone in the four-dimensional
pseudo-Riemannian space (which is the space-time of Gen-
eral Relativity). It is determined according to the definition
of the light cone by the condition

ds2 = c2dτ2 − dσ2 = 0 , c2dτ2 = dσ2 , 0 ,

which means that the four-dimensional intervals on its sur-
face (i.e., along its directrices) are zero, while the intervals
of physically observable time and the physically observable
three-dimensional spatial intervals are equal to each other, but
not equal to zero. Substituting the definitions of dτ and dσ
(see above) into the light cone condition c2dτ2 = dσ2 and re-
ducing similar terms, we obtain the light cone equation in the
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pseudo-Riemannian space

g00 c2dt2 − 2
√
g00 vi dxidt + gik dxidxk = 0 .

In the Minkowski space metric (see it in the very begin-
ning), we have g00 = 1, g0i = 0 (and, hence, vi = 0), and also
gik =−1. Substituting these values into the general formula
of the light cone equation above, and since dt, 0 (as we have
already explained, observable time cannot be stopped in the
Minkowski space, because its geometric structure does not
contain disturbing factors that could stop time), we obtain the
light cone equation in the Minkowski space(

1 +
1
c2 gik uiuk

)
dt2 = 0 , dt , 0 ,

where ui = dx i

dt is the coordinate velocity of a signal. Because
g00 = 1 and vi = 0 in the Minkowski space, (vi = 0), we have

dτ =
√
g00 dt −

1
c2 vi dxi = dt ,

hik = −gik +
1
c2 vi vk = −gik ,

and, therefore, the square of the physically observable veloc-
ity of the signal vi = dx i

dτ has the form v2 = hik vivk =−gik uiuk.
As a result, the light cone equation in the Minkowski space
has the form (

1 −
v2

c2

)
dt2 = 0 , dt , 0 ,

which means

vi = ± ci, v2 = −gik cick = c2 = inv,

where the plus sign refers to signals travelling into the future,
and the minus sign — if signals travel into the past. There-
fore, we conclude:

Signals on the surface of the light cone in the Minkow-
ski space (which is the space-time of Special Relativ-
ity) are not transmitted instantly. They travel with the
same (constant) physically observable velocity equal to
the velocity of light.

Let us turn back to the above general formula of the light
cone equation in the pseudo-Riemannian space (which allows
all disturbing factors that are conceivable due to its Rieman-
nian geometry). It can be easily transformed using the defini-
tion of dτ to the form(

1 −
v2

c2

)
dτ2 = 0 ,

which differs from the above formula of the Minkowski space
in the disturbing factors g00 , 1, g0i , 0 (and, hence, vi , 0)
and gik ,−1 that are characteristic of the pseudo-Riemannian

space metric and manifested, in particular, in the physically
observable time interval dτ, the physically observable veloc-
ity of signals vi and the physically observable metric tensor
hik determining v2 = hik vivk.

This condition is satisfied, since dτ, 0 on the surface of
the light cone*, only if the observable velocity of signals is

vi = ± ci,

v2 = hik cick =

(
−gik +

1
c2 vi vk

)
cick = c2 = inv,

where the plus sign means their travel into the future, and the
minus sign — their travel into the past. This means:

Signals are not transmitted instantly on the surface of
the light cone in the pseudo-Riemannian space (which
is the space-time of General Relativity), but travel with
the velocity of light, the physically observable three-
dimensional vector of which depends on the disturbing
factors characteristic of the pseudo-Riemannian space,
while its square remains invariant. Their trajectories
coincide with the trajectories travelled by light signals
in the Minkowski space in the absence of the disturb-
ing factors, i.e., when the non-uniform, curved, rotating
and deformable light cone of the pseudo-Riemannian
space has became the straight and uniform light cone
of the Minkowski space.

In other words,

Neither the straight and uniform light cone in the Min-
kowski space of Special Relativity nor the disturbed
light cone in the pseudo-Riemannian space of General
Relativity are home of the instantly transmitted signals
that indicated the visible and future positions of stars in
Kozyrev’s astronomical observations.

We therefore consider trajectories, along which a stronger
condition is satisfied than the aforementioned light cone con-
dition (ds2 = c2dτ2 − dσ2 = 0, c2dτ2 = dσ2 , 0). This is the
condition

ds2 = c2dτ2 − dσ2 = 0 , c2dτ2 = dσ2 = 0 .

Since along such trajectories the four-dimensional inter-
val ds, the physically observable time interval dτ and the
physically observable three-dimensional spatial interval dσ
are zero, i.e., all these intervals degenerate along such trajec-
tories, we called their home space a fully degenerate space,
or in other words — a zero-space [18–21].

In particular, since trajectories in the zero-space associ-
ated with the pseudo-Riemannian space of General Relativity

*Except for a single space-time point, which is the location of the ob-
server himself (at this point, the vertices of the light cones of his past and
future converge). In this case, the point of signal emission and the location
of the observer coincide and, therefore, the observable time interval between
the emission of the signal and its arrival is always dτ= 0.
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is a fully degenerate (ultimate) version of trajectories on the
surface of the light cone, the zero-space is in fact a fully de-
generate light cone.

Since from the point of view of a regular observer dτ= 0
is everywhere in the zero-space (which is a fully degenerate
light cone), then the motion of signals along their trajectories
in the zero-space is observed by him as an instant transmis-
sion of these signals in his observable (non-degenerate) space
along trajectories on the surface of the regular light cone.

In confirmation of what has been said, we transform the
light cone equation to a form that takes into account the phys-
ical conditions of full degeneration w+ viui = c2, which are
also the physical conditions that stop observable time (dτ= 0,
see above). The resulting form of the light cone equation

[
1 −

1
c2

(
w + viui

)]2

−
u2

c2

 dt2 = 0 , dt , 0

is satisfied at every point on the surface of the light cone. Here
ui = dx i

dt is the signal’s coordinate velocity (for which we have
u2 =−gik uiuk), and dt is the coordinate time interval (it never
becomes zero, see explanation above). Under the conditions
of full degeneration w+ viui = c2, when observable time stops
(dτ= 0) from the point of view of an external observer, the
above light cone equation transforms into the degenerate light
cone equation that is also the zero-space equation(

1 −
u2

c2

)
dt2 = 0 , dt , 0 ,

meaning that signals travel in the zero-space with the coor-
dinate velocity of light, while they are observed as instantly
transmitted signals by an external observer, whose home is
the regular (non-degenerate) space-time.

In particular, the above means the following. Since the
zero-space is a fully degenerate (ultimate) version of the light
cone, signals can enter the zero-space and return back from
there at any point on the surface of the light cone if the phys-
ical conditions for full degeneration are somehow realized at
that point. For example:

Let us say that at the point of emission of a signal to-
wards an observer at the moment of its emission the
physical conditions of full degeneration are somehow
realized, and these conditions are also realized in the
receiving device of the observer. Then the observer will
register that the signal has disappeared at the emission
point and was instantly received by his receiver, while
the visible path along which the signal was instantly
transmitted is the trajectory of light signals between
him and the emission point (despite the fact that the
signal itself was transmitted along a trajectory lying in
the fully degenerate zero-space).

Such trajectories, instantly connecting any observer
with stars, indicate the visible (past) position of stars

and their position in the future (symmetrical to their
visible position), which was registered in Kozyrev’s as-
tronomical observations.

Thus, all three positions of stars, which were indicated by
instantly transmitted signals in Kozyrev’s astronomical obser-
vations, have been explained in the pseudo-Riemannian space
(space-time) of General Relativity. In the Minkowski space,
which is the space-time of Special Relativity, Kozyrev’s re-
sults have no explanation, because the Minkowski space does
not contain disturbing factors that could stop time or fully de-
generate the entire space-time.

3 Conclusion

In this article we discussed the phenomenon of instant trans-
mission of signals from stars (long-range action), discovered
in the astronomical observations performed in 1977–1979 by
Prof. N. A. Kozyrev [9,10], then — reproduced and confirmed
in 1989 by a group of scientists, headed by I. A. Eganova and
M. M. Lavrent’ev [11, 12]. We also gave our own theoretical
explanation to Kozyrev’s observed results in the framework
of General Relativity.

We have shown that the geometric structure of the Min-
kowski space (which is the space-time of Special Relativity)
does not contain disturbing factors that could stop time. And,
since stopping physically observable time along the trajec-
tory of a signal between the points of its emission and arrival
is a necessary condition for its instant transmission, signals
cannot be transmitted instantly in the space-time of Special
Relativity.

On the other hand, we have shown that observable time
can be stopped in the pseudo-Riemannian space (space-time)
of General Relativity, since it allows all disturbing factors that
are conceivable due to its Riemannian geometry. Such factors
are the gravitational field potential or the rotation of space
(due to the non-orthogonality of the three-dimensional spa-
tial section to time lines), or both of these factors presented
together.

We have shown that the condition of stopping physically
observable time is satisfied on a tiny spherical surface of the
gravitational radius (for non-rotating bodies) or slightly above
it (for rotating bodies), existing around the barycentre deep
inside absolutely every physical body in the range from el-
ementary particles to planets and stars. These spherical sur-
faces, enveloping the barycentres of all physical bodies are all
connected to each other by trajectories of stopping observable
time. Signals, instantly transmitted along these trajectories,
instantly connect all physically bodies in the Universe. Such
trajectories instantly connect any observer with stars and indi-
cate the middle (true) position of stars, which was registered
in Kozyrev’s astronomical observations.

We have also considered a fully degenerate (ultimate) ver-
sion of trajectories on the surface of the light cone, along
which physically observable time stops and, therefore, sig-
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nals travel instantly. Such trajectories make up a fully de-
generate light cone associated with the pseudo-Riemannian
space, which we called the zero-space. The motion of signals
along such trajectories (i.e., in the zero-space) is observed by
a regular external observer as their instant transmission in his
observable (non-degenerate) space along trajectories of light.
Once the conditions of full degeneration are somehow real-
ized at the point of emission of a signal towards an observer
and these conditions are also realized in his receiving device
(receiver), then he will register that the signal has travelled
instantly from the emission point to him along the trajectory
of light signals (while it travelled along a trajectory lying in
the fully degenerate zero-space). Such fully degenerate tra-
jectories also instantly connect any observer with stars. They
indicate the visible (past) position of stars and their position
in the future (symmetrical to their visible position), registered
in Kozyrev’s astronomical observations.

This is how Kozyrev’s astronomical observations of in-
stant transmission of signals from stars are explained in the
framework of General Relativity.

These results illustrate that, according to General Relativ-
ity, all physical bodies in the Universe, including you and us,
exist not only at the present moment in time, but are multidi-
mensional objects, the past, present and future of which are
an existing reality.

Submitted on June 28, 2025
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