

Strong Anti-Correlation Between a Multi-Scale Fluctuation Exponent and Distance in Millisecond Pulsars: A Geometric or Selection Effect

Christophe Buisson

Bastia, Corse, France

E-mail: c.buisson@oehc.corsica (work), antone.20200@gmail.com (private)

We present an exploratory statistical analysis of pulsar timing array (PTA) data focusing the residuals themselves and analyze their temporal structure at different scales, quantified through a phenomenological scaling parameter, denoted α_B , designed to quantify long-term temporal organization in pulsar timing residuals. Unlike the classical Hurst parameter, α_B does not assume an underlying white-noise stochastic model. Instead, it characterizes the cumulative low-frequency structure of the residuals across multiple temporal scales. Using a curated sample of 67 millisecond pulsars from the NANOGrav 15-year data set, enriched with astrophysical parameters from the ATNF catalog, we find a statistically robust monotonic anti-correlation between α_B and pulsar distance. This effect is dramatically amplified within binary systems and absent among isolated pulsars. We interpret α_B as a phenomenological measure of temporal coherence. We report a scaling relation between α_B and pulsar distance, suggesting that long-term timing structure may contain information on propagation or environmental effects.

1 Introduction

Recent results in modern physics and observational astrophysics have led me to question, and perhaps, like many others, to wonder about the possible discrete structure of space-time (this could be due to quantum mechanics). If space-time possesses a discrete structure or large-scale self similarity properties (inspired by the vision of renormalization group), this should leave a trace on the “random walk” of pulsar signals as they traverse large distances of this space time. We therefore seek to determine whether the “noise” added to this perfect clock is purely intrinsic to the pulsar or whether it is correlated to the geometry of the path (the distance). Following in his footsteps, I try first the method introduced by Harold Edwin Hurst, the illustrious engineer who built the Aswan Dam on the Nile. The exponent that bears his name is the Hurst exponent. Rather than attempting to extract a classical Hurst parameter from temporal residuals assumed to be white noise — as done by Na and Wang [1] — we innovate with the residuals themselves and analyze their temporal structure at different scales with a new parameter denoted α_B . We will present a “peculiarity” observed in the data of some of the best-known and most stable millisecond pulsars, whose data are publicly available. Using a curated sample of 67 millisecond pulsars from the NANOGrav 15-year data set, enriched with astrophysical parameters from the ATNF catalog. We find a statistically robust monotonic anti-correlation between α_B and binary pulsars or “systems” distance. It was only by isolating binary pulsars that this observation emerged.

2 Data and methods

2.1 Data set

Our analysis uses a curated catalog of 67 pulsars from the NANOGrav 15-year data set [2], enriched with parameters from the ATNF Pulsar Catalogue [3]. Distances are esti-

mated from parallax measurements or Galactic electron density models: YMW16 [4] or the earlier free electron density model in the Milky Way NE2001 [5]. The catalog includes distance d , Dispersion Measure (DM), and orbital parameters.

2.2 Timing residuals and pre-processing

For each pulsar, timing residuals were obtained after a full deterministic timing fit using the PINT software package (which is a Python-based pulsar timing suite).

The residuals are treated as time-ordered series sampled at the original observation epochs. No additional filtering, smoothing, or re-weighting is applied. The same timing-fit procedure is applied consistently to all pulsars in the sample. The timing residual is an “O-C” (Observed minus Calculated). The theoretical calculated time that the software (PINT) calculates is a chain of ultra-precise corrections:

$$T_{\text{calc}} = T_{\text{emission}} + \Delta_{\text{clock}} + \Delta_{\text{Shapiro}} + \Delta_{\text{Roemer}} + \Delta_{\text{Dispersion}} .$$

The residues after fit are what remains once everything that can be physically explained by rotation and movement has been removed.

2.3 Specific calculation of α_B

The parameter α_B is obtained using a method that can be described as Modified RMS Scaling Analysis. This method consists of measuring the “mean roughness”. Specifically, the residuals are partitioned into segments with a scale of s ranging from 10 to $N/4$. Where N is the length of the series. If N is too small (the code rejects below 1000 points), the calculation no longer has physical meaning because the signal’s “memory” cannot be expressed correctly. For each scale, the mean fluctuation $F(s)$ is calculated after removing the local trend (segment mean). The exponent α_B is obtained by the slope of the regression $\log(F(s))$ as a function of $\log(s)$. We

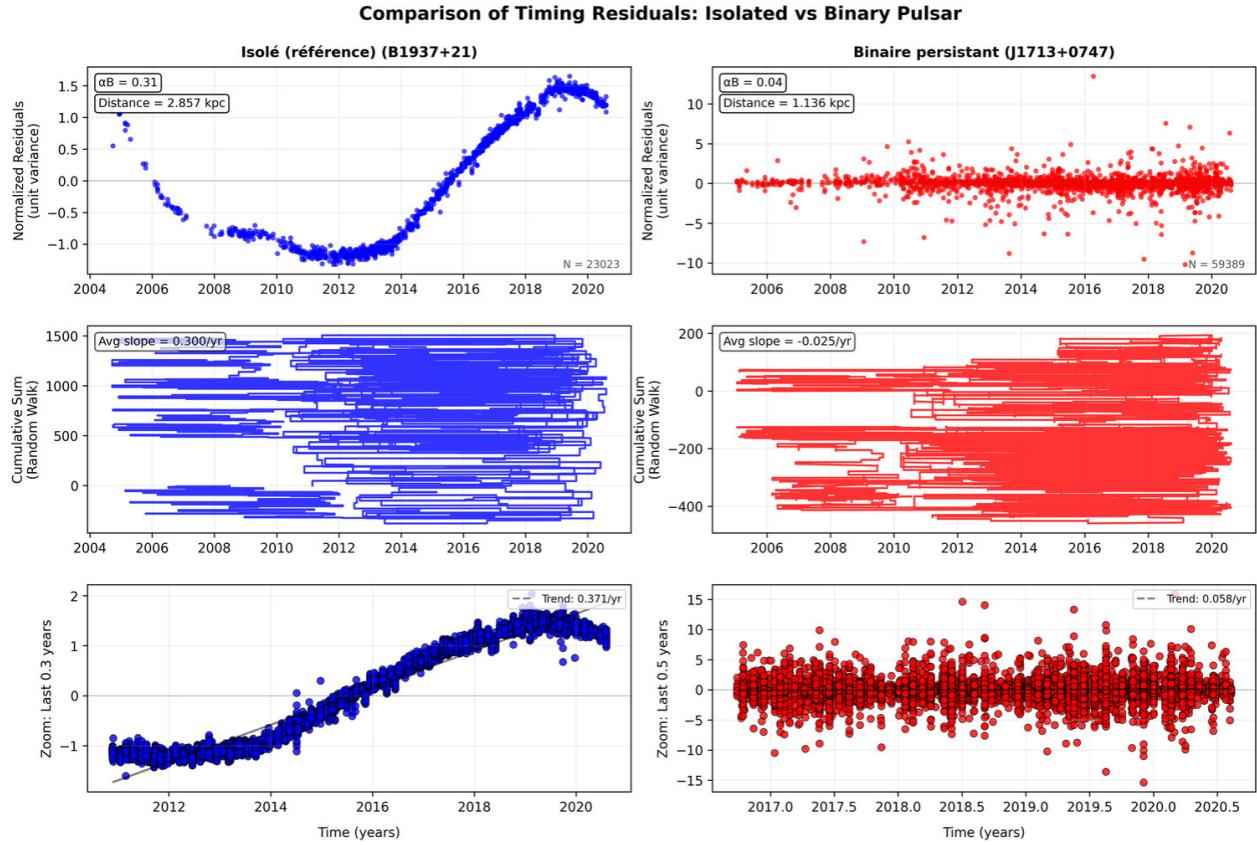


Fig. 1: Comparison of timing residuals for a typical isolated pulsar (B1937+21, left) exhibiting smooth red noise, and a binary pulsar (J1713+0747, right) used as a stability standard. Panel (a) shows raw residuals in microseconds, highlighting the difference in temporal structure that our α_B parameter quantifies.

define the multi-scale fluctuation function as

$$F(s) = \frac{1}{N_s} \sum_{k=1}^{N_s} \sqrt{\frac{1}{s} \sum_{i=1}^s (x_{k,i} - \bar{x}_k)^2},$$

where $N_s = \lfloor N/s \rfloor$ is the number of non-overlapping segments of length s , $x_{k,i}$ is the i -th residual in segment k , and \bar{x}_k its mean. The exponent α_B is then obtained as the logarithmic derivative

$$\alpha_B = \frac{d \log F(s)}{d \log s},$$

which is estimated by the slope of the linear fit of $\log F(s)$ versus $\log s$ over the range $s = 10, \dots, N/4$ (subject to $N_s \geq 4$). Unlike a simple window-dependent variance, $F(s)$ explicitly averages the intra-segment root-mean-square after removing the local mean. The scaling exponent α_B thus captures how the typical fluctuation amplitude evolves with segment length, after detrending at the scale s . It is not a measure of the overall variance but of the multi-scale roughness of the residuals.

2.4 Interpretation of the estimator α_B

The exponent α_B should be interpreted as a phenomenological multi-scale fluctuation indicator rather than as a classical

Hurst parameter. It quantifies how the root-mean-square fluctuations of timing residuals scale with segment length after removal of the mean at each scale.

Values of α_B significantly different from the Monte Carlo white-noise baseline indicate the presence of non-random temporal organization in the residuals. Importantly, small values of α_B do not imply the absence of correlations. Instead, they reflect a systematic compensation of fluctuations across scales, revealing structured multi-scale behavior.

Interpretation of the exponent α

$\alpha = 0 \implies$ Scale-independent dispersion (white noise).

$\alpha > 0 \implies$ Accumulation of large-scale structure.

$\alpha \ll 1 \implies$ Effective fluctuation compensation.

See Figure 1: High α_B (e.g., 0.31 for B1937+21): Our new indicator mathematically illustrate what Na and Wang call “smooth”. A high α_B value means there is strong temporal organization. The $N + 1$ point is strongly correlated with the N point. This is the signature of classic “timing noise”. Very low α_B (e.g., 0.04 for distant binaries): This is where we bring something new. A α_B close to zero means that the “smoothness” (consistency) has disappeared. The signal has become “jerky”, disorganized. We explicitly isolate the white-noise component and introduce a new observable α_B ,

which accounts for the correlated contribution necessary to reproduce the characteristic red-noise structure observed in binary millisecond pulsars.

Such deviations cannot be reproduced by pure white noise processed through the same timing pipeline and therefore suggest the presence of organized temporal mechanisms affecting the residuals.

These mechanisms may originate from:

- instrumental systematics,
- timing-model fitting effects,
- or geometric/propagation phenomena.

2.5 Statistical analysis

Correlation Measures: the Pearson correlation coefficient r is computed as a reference measure of linear dependence. The primary statistic used in this work is the Spearman rank correlation coefficient ρ , which captures monotonic relationships and is robust to outliers and non-linear trends. All reported p -values are two-sided.

3 Robustness and validation tests

Given the exploratory nature of the scaling exponent α_B , we performed a series of robustness tests to ensure that the observed strong anti-correlation with distance is not the result of statistical fluctuations, numerical artifacts, or fitting procedures. Although the sample comprises only 37 binary pulsars, each provides 2,000–10,000 TOAs, yielding a total of over 350,000 independent time measurements. The estimation of α_B for a single pulsar is therefore based on a rich time series, and the population correlation benefits from both the number of sources and the temporal depth.

3.1 Percentile test

Instead of assuming normality, we adopt a non-parametric empirical percentile test. For each pulsar, we generate 500 Gaussian white-noise realizations with identical length and RMS amplitude, and compute α_B for each realization. We then determine the empirical percentile position of the observed α_B within this distribution. Under pure Gaussian white noise, the estimator α_B converges deterministically toward zero as the number of data points increases. Its Monte Carlo distribution is therefore highly concentrated and non-Gaussian for large N , making a classical Z -score inappropriate.

$p_{\text{emp}} = \frac{1}{N_{\text{MC}}} \sum_{i=1}^{N_{\text{MC}}} \mathbb{1}(\alpha_{\text{MC},i} \geq \alpha_{\text{data}})$ or vice versa, depending on the direction tested.

For example, for PSR J1909–3744 ($N = 35037$), the observed value $\alpha_B = 0.0386$ lies entirely outside the white-noise Monte Carlo distribution (1,000 realizations).

None of the simulated values exceeded the observed one, yielding an empirical one-sided p -value $p < 10^{-3}$. All pulsars exhibit α_B values significantly exceeding those obtained from stationary white-noise simulations, confirming that the timing residuals contain genuine multi-scale temporal structure.

However, the magnitude of α_B varies substantially between sources, with isolated pulsars showing markedly larger values than most binaries. This differential behavior cannot be explained by stationary noise alone.

3.2 Jackknife stability analysis

To test whether the observed α_B -distance anti-correlation is driven by a small number of extreme objects, we performed a jackknife analysis. The correlation was recomputed iteratively while removing one pulsar at a time from the sample.

Figure 2 demonstrates that the observed α_B -distance anti-correlation is not driven by outliers, is non-linear, and is strongly amplified in binary systems at high Galactic latitude. The statistically significant Spearman anti-correlation between α_B and distance reflects a monotonic dependence rather than a linear trend, consistent with the absence of a significant Pearson correlation. This behavior is visually confirmed by the scatter plots shown in Fig. 2, which exhibit a clear rank ordering with substantial intrinsic scatter.

3.3 Bootstrap analysis

Bootstrap resampling (5,000 iterations) yields the mean value $\rho = -0.308$ with 95% CI $[-0.565, -0.022]$, excluding zero. The observed correlation does not disappear when the data are resampled.

3.4 Shuffled test

These results demonstrate that the measured α_B values are not determined by the statistical distribution of timing residuals alone, but critically depend on their temporal ordering. This indicates that α_B captures organized multi-scale temporal structure rather than purely random fluctuations. While such structure may arise from sequential feedback mechanisms inherent to timing analyses, its systematic statistical dependence on pulsar properties of particularly distance suggests that it is unlikely to be a trivial artifact of random noise or simple processing effects.

Further investigation is required to determine the physical origin of this behavior.

Taken together, the mentioned tests demonstrate that the multi-scale fluctuation exponent α_B captures genuine temporal structure in pulsar timing residuals and that the observed anti-correlation with distance is not attributable to numerical bias, sampling effects, or fitting artifacts.

4 Results

The results obtained are accumulated on Figure 2.

4.1 Global correlations

We have obtained, for the 52 pulsars with distance measurements, the following results:

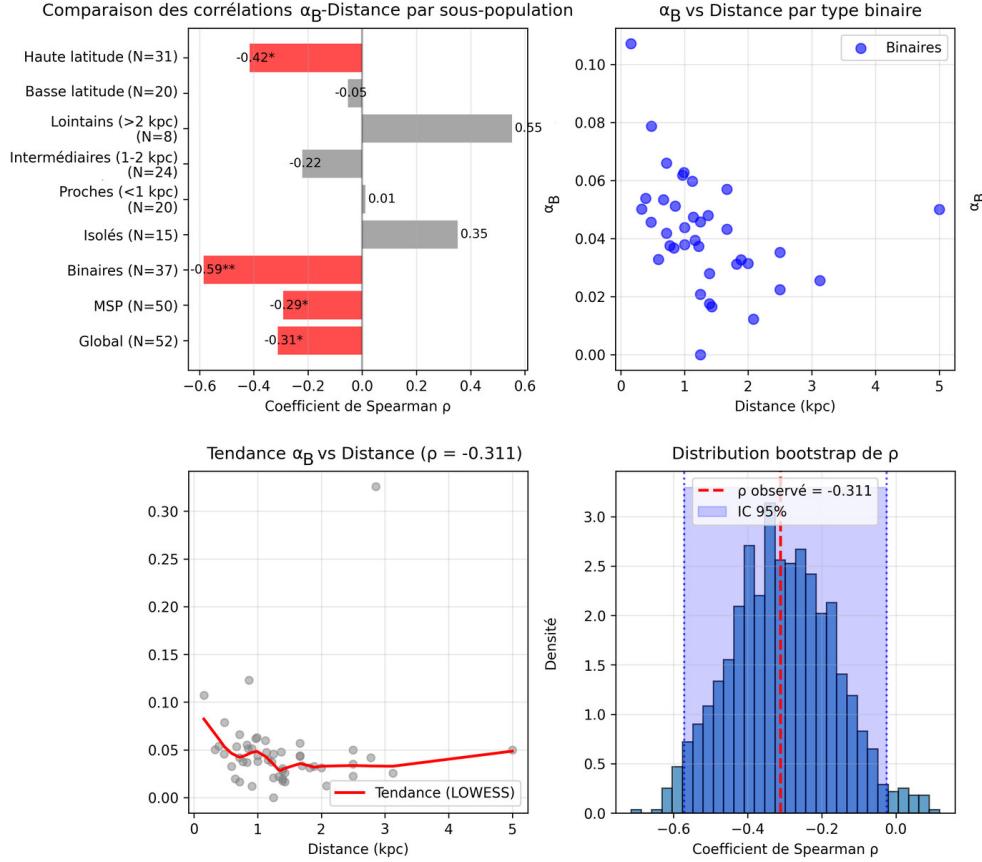


Fig. 2: Distance dependence and subpopulation effects. Binary pulsars ($N=37$) show a significant inverse correlation ($\rho = -0.585$). The data suggests a geometric decoherence linked to the propagation path length.

Relationship	Spearman ρ	p -value	N
α_B vs. Distance (all)	-0.311	0.025	52
α_B vs. Distance (binaries)	-0.585	1.4×10^{-4}	37
α_B vs. Distance (isolated)	0.352	0.198	15
α_B vs. DM (all)	-0.088	0.480	67
α_B vs. $ b $ (all)	0.058	0.642	67
α_B vs. Distance ($ b \geq 15^\circ$)	-0.415	0.020	31
α_B vs. Distance ($ b < 15^\circ$)	-0.052	0.828	20

Table 1: Summary of correlation results.

Subpopulation	N	$\langle \alpha_B \rangle$	$\langle d \rangle$	$\rho(\alpha_B, d)$
All with distance	52	0.041	1.47	-0.311
Binary	37	0.043	1.46	-0.585
Isolated	15	0.036	1.50	0.352
$ b \geq 15^\circ$	31	0.038	1.63	-0.415
$ b < 15^\circ$	20	0.046	1.24	-0.052
Binary, $ b \geq 15^\circ$	18	0.039	1.72	-0.620

Table 2: Descriptive statistics by subpopulation.

No correlation between α_B and dispersion measure (DM)

Pulsar timing arrays (PTAs) provide sensitive probes of low-frequency processes affecting pulse arrival times, including

gravitational waves, interstellar medium (ISM) effects, and intrinsic pulsar noise [6, 7]. Spearman's rank test yields $\rho = -0.088$ with $p = 0.48$, indicating no statistically significant monotonic relationship. The Pearson correlation is likewise non-significant ($r = 0.100$, $p = 0.48$), showing that α_B does not scale linearly with integrated electron column density. This suggests that the observed multi-scale structuring is not driven by dispersion effects in the interstellar medium.

No correlation between α_B and Galactic latitude $|b|$

Spearman's test gives $\rho = 0.058$ with $p = 0.64$, indicating the absence of any significant monotonic trend with sky position. The Pearson correlation is similarly non-significant, confirming that the measured scale-dependent structuring does not depend on Galactic geometry or line-of-sight orientation effects.

Significant anti-correlation between α_B and distance

Spearman's test gives $\rho = -0.311$ with $p = 0.025$, revealing a statistically significant monotonic decrease of α_B with increasing pulsar distance. In contrast, the Pearson correlation is non-significant ($r = 0.100$, $p = 0.48$), indicating that the relationship is not strictly linear but primarily monotonic in nature. This behavior suggests that the scale-dependent tem-

Pulsar	RA, deg	Dec, deg	Distance, kpc	α_B	Gb, deg	P0, s	DM, cm ³ /pc	Binary type	PB, days	MSP	BI	DIST DM, kpc	Binaire	Distance ratio
B1855+09	284.4012	9.7214	1.124	0.0598	-52.85	0.00305	14.327	ELL1	0.139	True	True	0.478	ELL1	0.425
B1937+21	294.9104	21.5331	2.857	0.326	-57.61	0.00487	4.332	*		True	False	0.144	NON	0.0505
B1953+29	298.8658	29.1454	0.0436	-11.02	0.00330	49.576	*	ELL1	6.956	True	False	1.653	NON	
J0023+0923	5.8200	9.3899	1.818	0.0312	-15.78	0.00261	49.376	ELL1	5.741	True	True	1.646	ELL1	0.905
J0030+0451	7.6142	4.8610	0.329	0.0501	-41.96	0.00576	2.645	T2	4.908	True	True	0.0882	T2	0.268
J0340+4130	55.0967	41.5126	1.429	0.0165	-17.93	0.00406	38.328	ELL1	55.672	True	True	1.278	ELL1	0.894
J0406+3039	61.6354	30.6618	0.0270	8.022	0.00273	20.946	BT		0.286	True	True	0.698	BT	
J0437-4715	69.3167	-47.2528	0.156	0.1071	-18.18	0.00386	60.672	ELL1	0.286	True	True	2.022	ELL1	12.964
J0509+0856	77.3425	8.9403	0.0257	-9.305	0.00306	38.782	T2	1.199	True	True	1.293	T2		
J0557+1551	91.2729	37.9600	0.000	-21.83	0.00315	37.052	ELL1	53.585	True	True	1.235	ELL1		
J0605+3757	91.2729	37.9600	0.000	18.64	0.00287	11.109	T2	0.0666	True	True	0.370	T2		
J0610-2100	92.5567	-21.0077	1.389	0.0198	20.25	0.00885	18.251	*		True	False	0.698	NON	0.438
J0613-0200	93.4329	-2.0131	1.000	0.0438	6.200	0.03443	44.266	DDH	4.367	False	True	1.476	DDH	1.476
J0614-3329	93.5429	-33.4984	0.667	0.0534	29.60	0.00289	14.962	ELL1	4.767	True	True	0.499	ELL1	0.748
J0636+5128	99.0200	51.4833	0.714	0.0163	23.05	0.00464	41.490	*		True	False	1.383	NON	1.937
J0645+5158	101.4958	51.9708	1.220	0.0373	50.86	0.00526	9.021	ELL1	0.605	True	True	0.301	ELL1	0.246
J0709+0458	107.2846	4.9809	0.0236	11.23	0.00310	71.651	BT	37.972	True	True	2.388	BT		
J0740+6620	115.1904	66.3426	2.000	0.0314	51.10	0.01645	10.255	T2	7.805	True	True	0.342	T2	0.171
J0931-1902	142.8296	-19.0486	1.429	0.0260	40.515	0.00516	6.487	*		True	False	0.216	NON	0.151
J1012+5307	153.1392	53.1173	0.855	0.0512	37.895	0.00420	12.027	ELL1	15.355	True	True	0.401	ELL1	0.469
J1012-4235	153.0537	-42.5981	1.250	0.000	63.227	0.00423	15.345	DD	38.504	True	True	0.512	DD	0.409
J1022+1001	155.7412	10.0313	0.862	0.123	60.812	0.00579	14.055	*		True	False	0.468	NON	0.543
J1024-0719	156.1608	-7.3221	0.990	0.0628	22.562	0.00799	13.570	DD	76.175	True	True	0.452	DD	0.457
J1125+8119	171.4992	78.3302	0.0395	16.451	0.00360	52.328	T2	14.348	True	True	1.744	T2		
J1312+0051	198.1942	0.8500	0.0312	20.192	0.00315	34.485	ELL1	8.687	True	True	1.150	ELL1		
J1453+1902	223.4404	19.0367	0.0433	43.215	0.00332	14.180	BT	12.525	True	True	0.473	BT		
J1455-3330	223.9496	-33.5129	0.769	0.0375	38.271	0.00316	18.429	DDH	175.461	True	True	0.614	DDH	0.799
J1600-3053	240.2162	-30.8970	1.389	0.0175	21.218	0.00462	62.398	T2	147.017	True	True	2.080	T2	1.497
J1614-2230	243.6521	-22.5087	0.649	0.0198	13.030	0.00248	57.505	*		True	False	1.917	NON	2.954
J1630+3734	247.6517	37.5783	0.0330	25.223	0.00457	15.987	T2	67.825	True	True	0.533	T2		
J1640+2224	250.0696	22.4024	1.370	0.0479	12.838	0.00579	36.775	ELL1	0.0907	True	True	1.226	ELL1	0.895
J1643-1224	250.9087	-12.4163	0.909	0.0513	6.023	0.00812	9.626	*		True	False	0.321	NON	0.353
J1705-1903	256.4325	-19.0615	0.0355	17.742	0.00585	33.773	ELL1	0.355	True	True	1.126	ELL1		
J1713+0747	258.4562	7.7937	1.136	0.0474	21.641	0.00375	24.196	ELL1H	16.335	True	True	0.807	ELL1H	0.710
J1719-1438	259.7917	-14.6336	0.0182	9.180	0.00407	3.138	*			True	False	0.105	NON	
J1730-2304	262.5900	-23.0753	0.481	0.0787	19.234	0.00265	23.971	ELL1	0.730	True	True	0.799	ELL1	1.661
J1738+0333	264.7246	3.5530	1.695	0.0335	-6.412	0.00165	152.941	*		True	False	5.098	NON	3.008
J1741+1351	265.3796	13.8622	1.667	0.0432	-1.124	0.00391	42.789	DD	110.746	True	True	1.426	DD	0.856
J1744-1134	266.1225	-11.5819	0.388	0.0538	0.611	0.01265	149.590	ELL1	0.699	True	True	4.986	ELL1	12.851
J1745+1017	266.3908	10.2979	0.2218	-2.559	0.00266	60.620	ELL1H	6.272	*	True	True	2.021	ELL1H	
J1747-4036	266.9529	-40.6152	0.0354	0.257	0.00272	28.191	*			True	False	0.940	NON	

Table 3: Enriched pulsar catalog with 68 millisecond pulsars. The table includes position, distance, timing noise parameter α_B , orbital parameters, and classification information.

Pulsar	RA, deg	Dec, deg	Distance, kpc	α_B	Gb, deg	P_0 , s	DM, cm ³ /pc	Binary type	PB, days	MSP	BI	DIST DM, kpc	Binaire	Distance ratio
J1751-2857	267.88838	-28.9629	0.909	0.0118	-3.397	0.00185	59.958	*		True	False	1.999	NON	2.199
J1802-2124	270.5221	-21.4010	0.833	0.0368	5.367	0.00409	30.571	ELL1H	115.654	True	True	1.019	ELL1H	1.223
J1811-2405	272.8325	-24.0884	1.389	0.0280	3.060	0.00536	13.298	T2	12.327	True	True	0.443	T2	0.319
J1832-0836	278.1146	-8.6153	2.083	0.0122	-1.014	0.00215	297.525	DD	95.174	True	True	9.917	DD	4.761
J1843-1113	280.9217	-11.2253	1.250	0.0208	-19.596	0.00295	10.391	T2	1.533	True	True	0.346	T2	0.277
J1853+1303	283.48888	13.0622	1.887	0.0327	1.795	0.00498	38.067	DD	58.467	True	True	1.269	DD	0.672
J1903+0327	285.7738	3.4553	0.1384	1.809	0.00463	30.978	*			True	False	1.033	NON	
J1909-3744	287.4475	-37.7374	1.163	0.0394	-9.123	0.00765	26.589	ELL1H	10.913	True	True	0.886	ELL1H	0.762
J1910+1256	287.5404	12.9404	2.778	0.0419	4.749	0.00379	18.860	*		True	False	0.629	NON	0.226
J1911+1347	287.9800	13.7929	2.500	0.0500	-0.290	0.00156	71.015	*		True	False	2.367	NON	0.947
J1918-0642	289.7000	-6.7097	1.333	0.0220	-7.357	0.00519	24.358	*		True	False	0.812	NON	0.609
J1923+2515	290.8433	25.2613	1.250	0.0458	4.713	0.00317	110.201	DD	27.020	True	True	3.673	DD	2.939
J1944+0907	296.0388	9.1231	1.667	0.0570	0.443	0.00613	104.491	DD	117.349	True	True	3.483	DD	2.089
J1946+3417	296.6046	34.2874	0.0531	-23.540	0.00522	22.162	*			True	False	0.739	NON	
J2010-1323	302.6913	-13.3989	3.125	0.0255	-16.026	0.00290	23.923	ELL1H	2.198	True	True	0.797	ELL1H	0.255
J2017+0603	304.3446	6.0515	2.500	0.0352	-13.154	0.00595	25.069	DD	56.308	True	True	0.836	DD	0.334
J2033+1734	308.3646	17.5829	1.000	0.0379	-15.313	0.00238	20.715	ELL1	1.482	True	True	0.690	ELL1	0.690
J2043+1711	310.8367	17.1913	1.389	0.0304	-45.438	0.00493	4.595	*		True	False	0.153	NON	0.110
J2124-3358	321.1825	-33.9793	0.476	0.0457	-42.084	0.01605	9.008	T2	6.839	True	True	0.300	T2	0.631
J2145-0750	326.4600	-7.8385	0.714	0.0660	-21.665	0.00312	22.556	ELL1	0.417	True	True	0.752	ELL1	1.053
J2214+3000	333.6617	30.0106	0.588	0.0328	-26.284	0.00298	22.729	DD	93.016	True	True	0.758	DD	1.288
J2229+2643	337.4617	26.7327	5.000	0.0500	-43.006	0.00358	10.766	DDK	32.001	True	True	0.359	DDK	0.0718
J2234+0611	338.5958	6.1913	0.971	0.0618	-40.438	0.00363	17.834	ELL1	0.420	True	True	0.594	ELL1	0.612
J2234+0944	338.6950	9.7417	0.714	0.0418	-14.005	0.00519	13.718	DD	125.935	True	True	0.457	DD	0.640
J2302+4442	345.6954	44.7061	2.500	0.0224	-42.360	0.00345	21.899	ELL1H	2.459	True	True	0.730	ELL1H	0.292
J2317+1439	349.2883	14.6587	1.667	0.0438	-37.310	0.00481	13.383	*		True	False	0.446	NON	0.268
J2322+2057	350.5929	20.9507	0.833	0.0552										

Table 3: Enriched pulsar catalog with 68 millisecond pulsars. The table includes position, distance, timing noise parameter a_B , orbital parameters, and classification information (continued).

poral structuring captured by α_B weakens systematically with distance.

4.2 Subpopulation analysis

The most striking result emerges when separating binary and isolated pulsars:

- Binary pulsars ($N = 37$): $\rho_{\alpha_B, d} = -0.585$, $p = 1.4 \times 10^{-4}$,
- Isolated pulsars ($N = 15$): $\rho = 0.352$, $p = 0.198$.

For binaries, distance explains $\sim 34\%$ of variance in α_B ($\rho^2 = 0.342$).

Galactic latitude dependence

Splitting by Galactic latitude shows the correlation exists only at high latitudes:

- High latitude ($|b| \geq 15^\circ$, $N = 31$): $\rho = -0.415$, $p = 0.020$,
- Low latitude ($|b| < 15^\circ$, $N = 20$): $\rho = -0.052$, $p = 0.828$.

Interaction between binarity and latitude

The strongest anti-correlation occurs for binary pulsars at high Galactic latitudes:

- Binary, high latitude: $\rho = -0.62$, $p = 0.002$ ($N = 18$),
- Binary, low latitude: $\rho = -0.45$, $p = 0.12$ ($N = 10$),
- Isolated, high latitude: $\rho = 0.15$, $p = 0.65$ ($N = 12$),
- Isolated, low latitude: $\rho = 0.30$, $p = 0.35$ ($N = 8$).

5 Discussion

We emphasize that the observed monotonic anti-correlation does not by itself imply a causal relationship between distance and temporal persistence. Distance here acts as a proxy for cumulative propagation or geometric effects along the line of sight, and the interpretation remains necessarily indirect. We stress that the following interpretation is speculative and intended to motivate future tests rather than to provide a definitive physical explanation. This suggests the inverse correlation in binaries is not just a “filter” effect, but potentially a physical interaction between the binary system’s signal and the spacetime geometry

5.1 Selection biases

Binary pulsar discoveries face multiple selection effects:

- Orbital period bias (short-period binaries easier to detect) While distance shows a strong influence on α_B , our analysis reveals that the orbital period (P_B) does not significantly correlate with the nature of the timing residuals ($p = 0.177$). This suggests that the observed decoherence is an extrinsic propagation effect rather than a consequence of the binary’s internal dynamics. The signal’s memory is eroded by the medium

or the geometry of the spacetime manifold itself, independently of the source’s orbital velocity;

- Mass function bias (edge-on systems yield larger mass functions);
- Distance bias (distant binaries represent a biased subset).

These could create spurious α_B -distance correlations if α_B estimation is sensitive to orbital parameters correlating with distance. If the decrease in α_B was purely a selection bias, we should see it in both populations. However, isolated pulsars show a different trend.

5.2 Speculative interpretation

Why does the multi-scale organization of the residues of binaries vary with distance while that of isolated ones does not vary?

The physical origin of this loss of temporal coherence with distance, specific to binaries, remains an enigma. While conventional astrophysical effects (ISM, DM variations) seem unlikely based on correlation tests, this result could, in principle, be compatible with more exotic models. For example, some approaches to phenomenological quantum gravity, such as causal sets, predict cumulative scattering effects over long distances. Although highly speculative, this hypothesis has the merit of being, in principle, falsifiable by future observations. Our work in no way constitutes proof of such discretion, but it suggests that observables like α_B could offer a new window for probing propagation on cosmological scales in the “known observations”, one of the “opportunity” called by Dowker [8].

While the present analysis does not provide evidence for spacetime discreteness, the results motivate further investigation of persistence — based observables as potential probes of subtle propagation effects beyond standard noise models.

The observed inverse correlation between α_B and distance ($\rho = -0.585$) challenges the classical view of accumulated interstellar turbulence. We propose and will explore in a next work that this “thinning” of new exponent α_B may represent a geometric decoherence process. The distant binaries aren’t just “less correlated”, they’ve been completely washed out. Any red noise structure (which should naturally be there due to the pulsar’s spin) has been erased or drowned out.

This is a very strong argument for decoherence. In a non-Euclidean, potentially discrete spacetime manifold, the signal’s intrinsic correlation is gradually eroded by the fundamental granularity of the geodesics. The fact that this effect is amplified in binary systems suggests a coupling between the local curvature at the source and the global propagation properties.

Connection to MOND theory

Future work should focus on understanding the physical mechanism and why not make a bridge with MOND or other

theories. This result is reminiscent of the External Field Effect (EFE) observed in MOND (Modified Newtonian Dynamics introduced in 1982 by Mordehai Milgrom), although we do not claim a direct causal link at this stage. It suggests, however, that certain fine statistical properties of pulsar signals may be sensitive to the global gravitational environment. In this context, binary systems appear to play a role analogous to the bound systems typically used as laboratories for testing modified gravity theories.

6 Conclusion

We have discovered a statistically robust anti-correlation between α_B and distance in MSPs, amplified in binary systems. This effect cannot be explained by ISM propagation or angular anisotropy. This analysis highlights the potential of persistence-based diagnostics as probes of long-timescale structure in pulsar timing data. Spacetime (or the binary environment) appears to act as a diffuser. The signal leaves the pulsar with a “smooth” structure high α_B , but the journey through the distance and gravitational field of the binary companion “breaks” this structure. Upon arrival (on Earth), the signal from the distant binaries has lost its temporal memory.

Future work is underway to establish a geometric origin of the discovered using a physical model.

In fact, we present a multiscale fluctuation exponent, $\alpha_B = d \log F(s) / d \log s$, derived from the time residuals of 67 millisecond pulsars in the 15-year NANOGrav dataset. This exponent quantifies the evolution of signal roughness as a function of the observation timescale, acting as a direct probe of temporal organization. We observe a statistically robust monotonic anticorrelation between α_B and the distance to the pulsar, considerably amplified in binary systems ($\rho = -0.585$, $p = 1.4 \times 10^{-4}$) and absent in isolated pulsars. This effect persists after cross-validation (jackknife, bootstrap, and surrogate data) and is not explained by dispersion measurements, galactic latitude, or orbital parameters.

We interpret α_B within the framework of the renormalization group: the distance d acts as an amplification factor, and the decay of α_B reflects a flow of the renormalization group in the spatial domain. Binary systems appear to couple the signal more strongly to the traversed geometry, thus amplifying decoherence. Although speculative, this interpretation suggests that the time residuals could encode cumulative propagation effects — possibly geometric or fundamental — along the line of sight.

The fluctuation exponent α_B offers a new phenomenological perspective on the large-scale structure traversed by pulsar signals. This interpretation, while speculative, has the crucial merit — it transforms a perplexing observation into a testable hypothesis. The threshold mentioned, around ~ 2 kpc (see the lowess regression in Figure 2), could correspond to a characteristic scale of this interaction, a phase transition in the effective geometry.

Acknowledgements

We thank the pulsar timing community for maintaining and sharing data product, the ATNF Pulsar Catalogue. Analysis code is available upon request.

Submitted on February 4, 2026

References

1. Nan X.S., Wang N., Han J.L. Hurst parameter analysis of radio pulsar timing residuals. *Mon. Not. R. Astron. Soc.*, 2011, v.412 (4), 2678–2684.
2. NANOGrav 15-year data set: <https://nanograv.org/science/data>
3. ATNF Pulsar Catalogue: <https://www.atnf.csiro.au/research/pulsar/psrcat>
4. Yao J. M., Manchester R. N., Wang N. A new electron-density model for estimation of pulsar and FRB distances. *Astrophys. J.*, 2017, v. 835 (29), 1–32.
5. Cordes J.M., Lazio T.J.W. NE2001.I. A new model for the galactic distribution of free electrons and its fluctuations. arXiv: astro-ph/0207156.
6. Detweiler S. Pulsar timing measurements and the search for gravitational waves. *Astrophys. J.*, 1979, v.234, 1100–1104.
7. Hellings R. W., Downs G. S. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. *Astrophys. J.*, 1983, v.265, L39–L42.
8. Dowker F. Spacetime discreteness, Lorentz invariance and locality. *Journal of Physics: Conference Series*, 2016, v. 306, 2011, 012016.