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Preface

This is abook written in 1999 by theoretical physicists Larissa Borissova
and Dmitri Rabounski.

The book o ers a new theoretical research that develops the theory
of physical observables in General Relativity. In their famous bbiwd
Classical Theory of Fieldkev Landau and Evgeny Lifshitz described
in detail the motion of particles in the electromagnetic and gravitational
elds. However, in the 1930s, the methods of general covariant analy-
sis did not yet take into account the concepts of physically observable
guantities (chronometric invariants). Therefore, the authors extended
the mathematical apparatus of chronometric invariants to the existing
physical theory, applying it to the motion of particles in the electromag-
netic and gravitational elds. In addition, Landau and Lifshitz did not
consider the motion of a particle with an internal torque (spin). There-
fore, a chapter in this book is devoted to the motion of particles with
spin. In two other chapters, the authors introduce the theory of the phys-
ical vacuum and the theory of the mirror Universe. In another chapter,
the authors outline the elements of tensor algebra and analysis in terms
of chronometric invariants. All this makes this book a modern addition
to The Classical Theory of Fields

Paris, June 17, 2010

In the 3rd edition, the authors have added a list of chronometrically in-
variant derivatives, as well as references to their recent publications. We
have also xed typographical errors found in the previous editions.

Calais, January 10, 2023 Patrick Marquet
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Chapter 1 Introduction

1.1 Geodesic motion of particles

Numerous experiments aimed at con rming the theoretical conclusions
of the General Theory of Relativity have also proved that its basic space-
time (four-dimensional pseudo-Riemannian space) is the basis of the
geometry of our real world. This means that, despite the progress in
experimental physics and astronomy, with the discovery of new e ects,
the four-dimensional pseudo-Riemannian space will remain the corner-
stone for a further extension of the basic geometry of the world and will
become one of its particular cases. Therefore, when creating the basic
mathematical theory of the motion of particles, we must consider their
motion in the four-dimensional pseudo-Riemannian space.

The following terminology must be taken into account here. Gener-
ally, the basic space-time of General Relativity Riamannian space
of four dimensions having Minkowski's sign-alternating labek@&=)
or (=+++). The latter means a{3)-split of the coordinate axes of the
Riemannian space into three spatial coordinate axes and the time axis.
For convenience of calculations, we consider a Riemannian space of the
signature (+===), where time is real while the spatial coordinates are
imaginary. Some other researchers use the signature kbel), ac-
cording to which time is imaginary and the spatial coordinates are real.
In general, Riemannian spaces can have any number of dimensions and a
non-alternating signature, e.g. (++++). Therefore, a Riemannian space
with an alternating signature label is commonly referred to pseaudo-
Riemannian spac¢¢o emphasize the split of the coordinate axes into two
di erent types, referred to as time and spatial coordinates. Nonetheless,
in this case, all its geometric properties are still properties of Rieman-

This is a metric space, the geometry of which is determined by the square metric
dg=g dx dx known also as the Riemann metric. Bernhard Riemann (1826 1866)
was a German mathematician, the founder of Riemannian geometry (1854).
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nian geometry and the pre x pseudo is not absolutely proper from
the mathematical point of view. Nevertheless, we are going to use this
notation as a long-established and traditionally understood one.

We will consider here particles travelling in the four-dimensional
pseudo-Riemannian space. A particle a ected by gravitation only falls
freely thus travelling along a shortegjeodesit line. Such motion is
calledfree motionor geodesic motianf the particle is also a ected by
additional non-gravitational forces, then the forces deviate the particle
from its geodesic trajectory and its motion becomes-geodesic

From a geometric point of view, the motion of a particle in the four-
dimensional pseudo-Riemannian space is the parallel transport of its
own four-dimensional vecto tangential to the particle's trajectory
in any of its points. Consequently, the equations of motion of such a
particle actually determine the parallel transport of the particle's vec-
tor Q along its four-dimensional trajectory and these are the equations
of the absolute derivative of this vector with respect to a parameter
which is hon-zero along the trajectory

DQ _dQ dx = . _aqoa :

ol__d_+ Qd—, s =0,1,2;3; (1:1)
whereDQ =dQ + Q dx isthe absolute di erential (absolute in-
crement in the pseudo-Riemannian space) of the végtor

The absolute di erential di ers from the ordinary di erentiad Q
by the presence of the Christo el symbols of the 2nd kind (co-
herence coe cients of the Riemannian space), which are formulated
through the Christo el symbols (coherence coe cients) of the 1st kind

and they are functions of the rst derivatives of the fundamental
metric tensog of the space

1@y ,@3 @y
2@ '@ @

When travelling along a geodesic trajectory (free motion), the par-
allel transport occurs in the sense of Levi-Civita. Here the absolute

=g . (1:2)

Coherence coe cients of a Riemannian space are named after Elwin Bruno
Christo el (1829 1900), the German mathematician who introduced them in 1869.
In the space-time of Special Relativity (the Minkowski space), one can always set an
inertial reference frame, where the matrix of the fundamental metric tensor becomes a
unit diagonal, so all of the Christo el symbols become zeroes.
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derivative of any transported vector equals zero, in particular it is true
for the four-dimensional vector of a particle

dQ

dx _ _
. Q d——O, (1:3)

thus the square of the transported vector remains unchanged along the
trajectory, i.e.Q Q =const Such equations are called the equations
of free motion.

Kinematic motion of a free particle is characterized by the four-
dimensional vector of the velocity of the particle, called kirgematic

vector
_dx .

d )
so the Levi-Civita parallel transport of the vector gives the equations of

the four-dimensional trajectory of the particle (called #guations of
geodesic lines

Q (1:4)

d?x L Ox dx
d2 d d
The necessary condition, 0 along the trajectory means that the
derivation parameter is not the same along trajectories of di erent
kinds. In the pseudo-Riemannian space, the three kinds of trajectories
are principally possible, each kind of which is corresponding to a spe-
ci c kind of particles, namely:

1) Non-isotropic real trajectorietay inside the light cone. Along
such trajectories, the square of the space-time intervdg’is 0,
thus, the intervatisis real. These are the trajectories of ordinary
subluminal particles. Such particles have non-zero rest-masses
and real relativistic masses;

2) Non-isotropic imaginary trajectorielay outside the light cone.
Along such trajectories the square of the space-time interval is
ds? <0, hencedsis imaginary. These are the trajectories of su-
perluminal particles. Such particles have imaginary relativistic
masses and are known @ghyons;

=0: (1:5)

Tullio Levi-Civita (1873 1941), an Italian mathematician, who was the rst to
study such a parallel transport [1].
»Tachyons faster-than-light particles. The possibility of tachyons and faster-than-
light signals was rst considered in the framework of Special Relativity in 1958 by
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3) Isotropic trajectorieday on the surface of the light cone. These
are the trajectories of particles having zero rest-mass (massless
light-like particles), which travel with the velocity of light. Along
isotropic trajectories, the space-time interval is zerg,= 0, but
the three-dimensional interval is not zero.

The space-time intervalsis commonly used as a derivation pa-
rameter along non-isotropic trajectories. On the other hand, it cannot
be used as a derivation parameter for the trajectories of massless parti-
cles, becausds= 0 along isotropic trajectories.

For this reason, Zelmanov [9] had proposed another variable to be
used as the derivation parameter, which does not turn into zero along
isotropic trajectories. This is a three-dimensional (spatial) physically

observable interval
|

d 2= g+ 209K Gyiguk, (1:6)
Joo

which di ers from a three-dimensional coordinate interval. Landau and
Lifshitz had arrived at the same conclusion in thigie Classical Theory
of Fields[10, Y84].

Substituting the above di erentiation parameters into the general
form of the equations of geodesic lines (1.5), we arrive at the equations
of non-isotropic geodesic lines (trajectories of mass-bearing particles)

d?x dx dx

9@ " dsds O 7
and the equations of isotropic geodesic lines (light-like particles)

d?x dx dx

5z + 4 d - 0: (1:8)

But, in order to give the complete description of the motion of a
particle, we have to build dynamic equations of motion, which contain
the physical properties of the particle, such as its mass, energy, etc.

Tangherlini, in his PhD thesis [2]. As was pointed out by Malykins [3], most studies
on the history of tachyons missed this fact. Meanwhile, the most important surveys on
this topic such as [4, 5] referred to Tangherlini. Tachyons were rst illuminated in the
journal publications on the theory of relativity in 1960, the principal paper [6] authored
by Terletskii, and then in 1962, in the more detailed paper [7] published by Bilaniuk,
Deshpande, and Sudarshan. The term tachyons was rst introduced later, in 1967 by
Feinberg [8]. See Malykins' survey [3] for detail.
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Motion of a free mass-bearing particle (non-isotropic geodesic line)
is characterized by its own four-dimensional momentum vector
dx
P =my—: 1.9
Mo~ (1:9)
wheremy is the rest-mass of the particle. From a geometric point of
view, the Levi-Civita parallel transport of the vectBr gives the dy-
namic equations of motion of the mass-bearing particle
dP dx
—+ P —=0; PP = = const 1:10
ds ds mﬁ ( )
Motion of a massless light-like particle (an isotropic geodesic line)
is characterized by its own four-dimensional wave vector
I dx
= —— 1:.11
< (1:11)
where! is a cyclic frequency characteristic of the massless particle.
Respectively, the Levi-Civita parallel transport of the vedfor gives
the dynamic equations of motion of the massless particle
dK dx
—+ K —=0; K K =0: 1:12
. . (1:12)

So, we have got the dynamic equations of motion for free particles.
Here, the equations are presented in the four-dimensional general co-
variant form. This form has its own advantage as well as a substan-
tial drawback. The advantage is their invariance in all transitions from
one reference frame to another. The drawback is that, in the general
covariant form, the terms of the equations do not contain actual three-
dimensional quantities, which can be measured in experiments or obser-
vations (namely physically observable quantitiesThis means that,
in the general covariant form, the equations of motion are merely an
intermediate theoretical result, not applicable in practice.

Therefore, in order to get the results of any physical mathematical
theory applicable in practice, we need to formulate the equations of the
theory through physically observable quantities. In particular, we
need to formulate the general covariant equations of motion of particles
through the physically observable properties characteristic of the actual
physical reference frame of an observer.
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At the same time, to de ne physically observable quantities is not a
trivial problem. For instance, for a four-dimensional vedfr (it has
4 components) we cameuristically assuméhat its three spatial com-
ponents form a three-dimensional observable vector, and its time com-
ponent is the observable potential of the vector eld (which generally
does not prove that these quantities can be actually observed). How-
ever, a contravariant tensor of the 2nd ra@k (it has as many as 16
components) makes the problem much more inde nite. For tensors of
higher ranks the problem of the heuristic de nition of their observable
components is much more complicated. Besides, there is an obstacle
related to the de nition of the observable components of covariant ten-
sors (with lower indices) and mixed type tensors (with both lower and
upper indices).

Therefore, the most reasonable way out of the labyrinth of heuristic
guesses is creating a strict mathematical theory to enable calculating ob-
servable components for any tensor quantity. Such a theory was created
in 1944 by Zelmanov [9]. It should be noted that other researchers were
also working on the theory of observable quantities in the 1930s. For
example, Landau and Lifshitz in their famotike Classical Theory of
Fields[10, Y84] introduced the observable time and observable three-
dimensional interval similar to those introduced by Zelmanov. Mean-
while, they limited themselves only to this particular case and they did
not arrive at general mathematical methods to determine physically ob-
servable quantities in a pseudo-Riemannian space.

Over the next decades, Zelmanov improved his mathematical appa-
ratus of physically observable quantities, called tineory of chrono-
metric invariants[11 13]. A similar result had also been obtained by
Cattaneo [14 17], an Italian mathematician, independently from Zel-
manov. However, Cattaneo published his rst study on the theme only
in 1958 [14] and his study was far from a complete theory.

In Y1.2, we will give an overview of the Zelmanov theory of phys-
ically observable guantities, which is necessary for understanding this
subject and using these mathematical methods in practice.

In Y1.3, we present the results of our study of the geodesic motion
of particles using the mathematical methods of chronometric invariants.
In Y1.4 we will focus on the formulation of the problem of creating the
equations of motion along non-geodesic trajectories, i.e., under the ac-
tion of non-gravitational external forces.
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1.2 Physical observable quantities

This section introduces the basics of Zelmanov's mathematical appara-
tus of chronometric invariants

To determine which components of any four-dimensional quantity
are physically observable, we consider a real reference frame of a real
observer, which includes @ordinate grid spanned over hieference
body(which is a real physical body near him), at each point of which a
real clockis installed. The reference body, being a real physical body
has a gravitational eld, can be rotating and deforming, thereby making
the reference space inhomogeneous and anisotropic. Actually, the refer-
ence body and its associated reference space can be considered as a set
of real physical references, to which the observer compares all results
of his measurements. Therefore, physically observable quantities reg-
istered by an observer must be obtained as a result of projecting four-
dimensional quantities onto the time lines and the three-dimensional
space of the observer's reference body.

From a geometric point of view, the observer's three-dimensional
space is thepatial sectiorx® = ct= const At any point of the space-
time, a local spatial section (local space) can be placed orthogonally
to thetime line If there exists a space-time enveloping curve to such
local spaces, then it is a spatial section everywhere orthogonal to the
time lines. Such a space is known asaonomic spacedf no envelop-
ing curve exists to such local spaces, but only spatial sections locally
orthogonal to the time lines exist, then such a space is knowmas-a
holonomic space

We assume that the observer is at rest with respect to his physical
references (his reference body). The reference frame of such an observer
everywhere accompanies his reference body and, hence, his reference
space in any displacements. Therefore, such a reference frame is called
theaccompanying reference frame

Any coordinate grid that is at rest with respect to the same reference
body is related to another one within the same spatial section (three-

To date, the most complete description (compendium) of the mathematical ap-
paratus of physically observable quantities in General Relativity is given in our recent
article. Inthis article, we have collected everything (or almost everything) that we know
on this topic from Zelmanov and what has been obtained over the past decades: Raboun-
ski D. and Borissova L. Physical observables in General Relativity and the Zelmanov
chronometric invariant€?rogress in Physic2023, vol. 19, no. 1, 3 29.
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dimensional reference space) through the transformation

0= X0 Xt %2 X3 ?

i : .
=% Xt & _, & (113

@®

where the latter equation means that the spatial coordinates in the tilde-
marked grid are independent of time in the non-tilded grid, which is
equivalent to setting a coordinate grid of xed time lings= constat
any of its points. The transformation of the spatial coordinates is noth-
ing but only the transition from one coordinate grid to another within
the same spatial section. The transformation of time means changing
the whole set of clocks, so this is the transition to another spatial section
(another three-dimensional reference space). In practice, this means the
replacement of one reference body with all of its physical references
with another reference body that has its own physical references. But,
when using di erent references, the observer will obtain di erent results
of measurements (other observable quantities). Therefore, physically
observable quantities must be invariant with respect to the transforma-
tions of time, so they must lehronometrically invariant quantities

Since the transformations (1.13) determine a set of xed time lines,
chronometric invariants (physical observables) are all those quantities,
which are invariant with respect to the transformations.

In practice, to obtain physically observable quantities in the accom-
panying reference frame of a real observer, we have to calculate the
chronometrically invariant projections of four-dimensional quantities
onto the time line and the spatial section of his physical reference body,
then formulate the chr.inv.-projections with the chronometrically invari-
ant (physically observable) properties of his reference space.

We project four-dimensional quantities onto the time line and the
spatial section of an observer using the projection operators, charac-
terizing the properties of the observer's reference space. The operator
b projecting onto the time line is a unit vector of the four-dimensional
velocity of the observer with respect to his reference body

dx
b = ds (1:14)
which is tangential to the observer's world-trajectory at every point. Be-
cause any reference frame is described by its own tangential unit vec-
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tor b , Zelmanov referred to thb as themonad vectar The operator
projecting onto the spatial section associated with the observer is the
four-dimensional symmetric tensor

h = g +bb; h = g +bb; (2:15)
the mixed components of which are
h = g+bb: (1:16)

Zelmanov [9] had showed that the veclorand the tensdn  have
all properties necessary to projection operators, namely the prop-
ertiesb b =1 andh b =0. As a result, the projection of a tensor
guantity onto the time line is a result of its contraction with the monad
vectorb . The projection onto the spatial section is its contraction with
the tensoh

The observer's three-dimensional velocity with respect to his ref-
erence body in the accompanying reference frame is z#ro0. The
other components of the monad vector are

b = -ﬁlz; bp=go b = p%; bh=g b = -ﬁgléi (2:17)

Joo Joo

Therefore, in the accompanying reference frate=(0), the com-

ponents of the operator projecting onto the spatial section are

hoo = 0; hoO = g°0+i- =0 9

| goo’ °
hoi = 0; i = goi: W=i=0 B
hig=0; hO = gio; h? _ % :(1:18)
hik = Ok + 9oi Jok . hk= gk h:( _ gL _ L ,

The tensoh inthe three-dimensional space of the reference frame
accompanying the observer has all properties characteristic of the fun-

damental metric tensor
0
0 (2:19)
1

[EEY

hho= | bb'= | L:i

0

o
(el o)
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where L is the unit three-dimensional tensdfor this reason, in the ac-
companying reference frame, the three-dimensional chr.inv.-tdpsor
can lift or lower indices in chr.inv.-quantities.

The projections of an arbitrary vect® onto the time line and
the spatial section in the accompanying reference frahe @) of an
observer are

T=bQ =b°QO=%; (1:20)

LO=H0Q = %Qk; L=hQ = Q=Qk  (1:21)

The projections of an arbitrary tensor of the 2nd r&k are

T=bbQ =b0"Qu= %’; (1:22)

L= 0R0Q = gOI_nglek; Lk=h hQ =Qk: (1:23)
00

After testing the obtained quantities by the transformations (1.13),
we see that chronometrically invariant (physically observable) quanti-
ties are the projection onto the time line and the spatial components of
the projection onto the spatial section. We will refer to these observable
guantities as thehr.inv.-projections

Projecting the four-dimensional coordinatesin the accompany-
ing reference frame, we obtain the chr.inv.-invariant of piysically

observable time o
= Pooot + —gL'_ X (1:24)
C" Jdoo

and the chr.inv.-vector of thghysically observable coordinateshich
coincide the spatial coordinatgs Thus, projecting an elementary four-
dimensional coordinate intervdk gives an elementary interval of the
physically observable time, which is the chr.inv.-invariant

d = Poodt+ 2 dx: (1:25)
C" Qoo

This tensor | is the three-dimensional part of the four-dimensional unit tenspr
which can be used to replace (lift and lower) indices in four-dimensional quantities.
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and also the chr.inv.-vector of an elementary interval of the physically
observable coordinatab<. As a result, theohysically observable ve-
locity of a particle is the three-dimensional chr.inv.-vector

dx

d y

which di ers from its coordinate velocity' = dx
Projecting the fundamental metric tenspr we obtain thahy is

thechr.inv.-metric tensqror, in other words, thebservable metric ten-
sor in the accompanying reference frame

(1:26)

hhtg =g*= n* hhg =gk bbk= hy; (1:273)
the components of which are
hik= ok+bibg; h*= g% h= g = |5 (L27b)
Therefore, the square of any observable spatial intefvab
d 2= hydxdxt: (1:28)

The space-time intervalsexpressed through physically observable
guantities is obtained by substitutigg from (1.15), namely

d=cdd ? d % (1:29)

Apart from their projections onto the time line and the spatial sec-
tion of an observer, four-dimensional quantities of the 2nd rank and
higher ranks also have mixed components that have both upper and
lower indices at the same time. How do we nd physically observ-
able quantities among them, if any? The best approach is to develop a
general mathematical method to calculate physically observable quan-
tities, based solely on their property of chronometric invariance. Such
a method had been developed by Zelmanov, who formulated it in the
form of a theorem, which we callelmanov's theorem
Zelmanov's theorem

We assume tha(@'k P are components of a four-dimensional ten-
sorQ . ofr- th rank in which all upper indices are not zero,
while all mlower indices are zeroes. Then tensor quantities

TP = (goo) ? Qoo (1:30)
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make up three-dimensional contravariant chr.inv.-tensar afj-
th rank. Hence, the tens®*P is a result ofn-fold projection on
time lines by indices; ::: and also, projection on the spatial
section byr mindices; :::  of the initial tensorQ .
An immediate result of this theorem is that, for any vedprthe
following two gquantities are physically observable

bQ =pX; HQ =Qf (1:31)

Joo
and for any symmetric tensor of the 2nd ra@Qk , the following three
guantities are physically observable

i
bbQ = HbQ =p; HHQ =0k (132)
Yoo Joo

while in an antisymmetric tensor of the 2nd rank, the rst quantity is
zero, becaus®go= Q%=0.

All physically observable chr.inv.-projections must be compared to
the observer's references the physically observable properties char-
acteristic of his reference body and local space, and with which the nal
equations of theory must be formulated. These physically observable
properties are obtained using the chr.inv.-derivation operators with re-
spect to time and the spatial coordinates. The mentioned operators had
been introduced by Zelmanov as follows [9]

@ 1 @ @_ @ 9gi @
= p——; — == =—; 1:33
@ Joo @ @ @ goo@ (1:33)
and they are non-commutative, so the di erence between the 2nd deriva-
tives is not zero

¢ @ _1_a@ .
@0 @& ¢ @ =
¢ G _2,0 (1:35)

@a @a@a @
Here, Ai is thethree-dimensional antisymmetric chr.inv.-invariant
tensor of the angular velocity with which the space rotates
!
1l ov av 1

M=5 = ¢
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wherey is the linear velocity of this rotation

. _ _ 9

Vi = C-pgo—'_; V= CQOI p% %
Yoo 3 (137)

Vi = hika; \/2=VkVk= hikVin !

The tensoAy, equated to zero, is the necessary and su cient con-
dition of the holonomity of space [9]. In this cagg,= 0 andv; =0. In
a non-holonomic spacdyx, 0. For this reason, the tensg is also
the tensor of the space non-holonomity

The quantityF; is thethree-dimensional chr.inv.-vector of the grav-
itational inertial force

1 @ @i\;.

C
wherew is a gravitational potential
w=c?1 p% : (1:38a)

the origin of which is the gravitational eld of the observer's reference
body. In quasi-Newtonian approximation, i.e., in a weak gravitational
eld at velocities much lower than the light velocity and in the absence
of rotations of the space, the quantfbecomes a non-relativistic grav-
itational force

@

F= @ :

The reference body of any observer is a real physical body, which
can deform. As a result, the coordinate grid spanned over it can deform,
and also the real reference space associated with the reference body can
deform as well. Therefore, real physical references must take the space
deformations into account.

In particular, as a result of the deformations, the observable metric
hik of the reference space is non-stationary. This is taken into account by

(1:39)

The space-time of Special Relativity (Minkowski space) in a Galilean reference
frame, as well as numerous cases of the space-time of General Relativity are examples
of holonomic spacesX = 0).

»The quantitiesv andv, do not have the property of chronometric invariance, while
the gravitational inertial force vector and the tensor of the angular velocity of the space
rotation, created using them, are chr.inv.-quantities.
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introducing thethree-dimensional symmetric chr.inv.-tensor of the rate
of the space deformations

.9
D = 1 @ik, Dik _ 1 @'k
ik — 3= - AT I
2 @ 0 2
- @n h = 1:40
D= h*Dy = D = = § (1:40)
h = detkhikk !

With the de nitions above, we can generally express any property of
a geometric object located in a space through the observable properties
of the space.

For instance, the Christo el symbols, which appear in the equations
of motion, are non-tensorial geometric objects [18]. Nevertheless, they
can be formulated with physically observable quantities. The formulae
obtained by Zelmanov [9] are

1§ 1
00 = géﬁ%+ 1 gka"i; (1:41)

1z
1 w 2
k _ K. :
0= Zz1 g F5 (1:42)
|
1 1 o 1 %
8i=g§1 o W D AR SuFRE (1:43)
2
I
1 w 1 '
K — k. Ak k. .
a1l g DitA +GuF (1:44)
(
1 1
I(j): W Dij+_2Vn
cl = C
11} 1 #
v D'+ A" +v D+ A" +?V,VJ|:n + (1:45)
! )
1 @v, @v 1 L
rat@ e AW e

" #

1 1
k— Kk k k k k K . (4.
R DJ- +AJ. +v D+ A +—C2v.v,F ; (1:46)
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where :‘ are thechr.inv.-Christo el symbolswhich are de ned sim-

ilarly to the ordinary Christo el symbols (1.2) but using the chr.inv.-
metric tensohy and the chr.inv.-derivation operators
!
Copm o = Lim @m o @km @
ik jk;m 2 @k @j @m .
By analogy with the respective absolute derivatives, Zelmanov had
also introduced the chr.inv.-derivatives

(1:47)

Q= oL (1:48)

fOk e %k Q. (1:49)

o LT (150)

ngt= okt s
rink:%ij, lQik+ Kkl (1:52)

riQizgl lQ (1:53)

(Qi = gji+ Qi+ Qi (1:54)

where, as Zelmanov had proved,

| = %?F‘; (1:55)

So, we have explained the basics of the mathematical apparatus of
chronometric invariants. Now, having any equations obtained using
general covariant methods we can calculate their chr.inv.-projections
onto the time line and spatial section associated with any particular ref-
erence observer and formulate the obtained chr.inv.-projections with the
real physically observable properties of his reference space. Following
this way, we arrive at the equations containing only the quantities mea-
surable in practice.
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Naturally, the rst possible application of this mathematical appara-
tus that comes to our mind is deducting the chr.inv.-equations of motion
of free particles and studying the results. A particular solution to this
problem had been obtained by Zelmanov [9]. The next section, Y1.3,
will focus on the general solution to the problem.

1.3 The dynamic equations of motion of a free particle

The absolute derivative of the four-dimensional vector of a particle with
respect to a non-zero scalar parameter along its trajectory is actually a
four-dimensional vector
_dQ dx
N = —+ —_—; 1.56
the chr.inv.-projections of which are determined in the same way as the
projections of any four-dimensional vector (1.31)

N0 Jo N 1 i

pP— = Pp— = p— NO+ggiN' ; 1:57
" oo " oo Pgoo o o (=7)
N'=h N =hiN%+hi N¥: (1:58)

From a geometric point of view, these are the projections of the vec-
tor N on the time line and the spatial components of its projection on
the spatial section in the accompanying reference frame. Projecting the
general covariant dynamic equations of motion of a free mass-bearing
particle (1.10) and those of a free massless particle (1.12), we obtain
the chr.inv.-equations of motion of the free mass-bearing particle

dm m m kL

T C—Fv +§D.kvv =0; (1:59)

d mv . . . .
Y i2mDi+Al V¢ mF+m Ly"k=0; (1:60)

while for the free massless particle we have

g_k C_k2|:,ci + C—kzD,kc'ck =0; (1:61)
d kc P

+2k DL+ Al c* kF'+k Lc'c*=0; (162
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wheremis the relativistic mass of the mass-bearing particle,% is the
wave number of the massless particle, ahs the three-dimensional
chr.inv.-vector of the light velocity.

It is easy to see that, in contrast to the general covariant dynamic
equations of motion (1.10) and (1.12), the chr.inv.-equations have a sin-
gle derivation parameter for both mass-bearing and massless particles.
This universal parameter is the physically observable time

These chr.inv.-equations were rst obtained by Zelmanov [9]. As we
have showed in our rst book [19], the Zelmanov chr.inv.-equations of
motion above include the strictly positive time functi§h> 0. There-
fore, the above equations manifest a case, where the physically observ-
able time has a strictly direct owd > 0).

The ow of the coordinate timeadt shows the change of the time
coordinate of the particle® = ct with respect to the clock associated
with the observer (his reference clock). Hence, the sign of the time
function shows the direction along the time axis at which the particle
travels with respect to the observer.

The time function% is derived from the geometric condition, ac-
cording to which the square of the four-dimensional velocity of the par-
ticle, transported parallel to itself, remains unchanged along its world-
trajectoryu u =g u u =const We showed [19] that the time func-
tion equation% is the same for both subluminal mass-bearing particles,
massless (light-like) particles and superluminal mass-bearing particles.
The equations have two solutions which are given here by the common
formula according to [19]

!
- i w2
ao _ wv ¢, (1:63)
d 1, 21 =

We showed [19] that time has a direct ow)ifv'  ¢2> 0, time has
areverse ow, ifyv! c¢2<0,andthe ow of time stops, iivi ¢2=0.
Therefore, there exists a whole range of solutions for various kinds of
particles and the directions they travel in time with respect to the ob-
sgrver. For instance, the relativistic mass of a mass-bearing particle

0 —

= M is positive, if the particle travels to the future, and it is neg-

ative, if the particle travels to the past. Respectively, the wave number

The relativistic mass is the projection of the particle's four-dimensional vector onto
the observer's time line.



1.3 The dynamic equations of motion of a free particle 25

of a massless particlé;% = Kkis positive, when the massless particle
travels to the future, and is negative, when it travels to the past.
As a result, for a free mass-bearing particle, which travels to the
past, we obtain the chr.inv.-equations of motion
dm m m kL

q C—Fv +§D,kvv =0; (1:64)

d mv! , ,
Vi mF +m L VIV =0; (1:65)

while for a free massless particle, travelling to the past, we have

dk k_goko

d— éF.c' + ?DH(CC 0; (1:66)
d(;«: +KFi+k | cck=0: (1:67)

For a superluminal mass-bearing particle, the chr.inv.-equations of
motion are similar to those of a mass-bearing particle travelling with a
subluminal velocity, except that the relativistic masg multiplied by
imaginary uniti [19].

Itis easy to see that the chr.inv.-equations of motion to the future and
to the past are not symmetric due to the di erent physical conditions in
the cases of the direct and reverse ow of time, therefore some terms in
the equations vanish.

Besides, we considered mass-bearing and massless particles accord-
ing to the wave-particle concept by assuming their motion as wave prop-
agation in the framework of the approximation of geometric optics [19].
As is well-known fromThe Classical Theory of Field40], in the fra-
mework of the wave-particle concept and the geometric optics approxi-
mation, the dynamic vector of a massless particle has the form

Q@ . :
K a (1:68)
where isthe wave phase (eikonal). In the same way, we had introduced
the dynamic wave vector of a mass-bearing particle

P=_—; (1:69)
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where~ is Planck's constant. Since the wave phase equation (eikonal
equation) is the conditioK K =0[10], we had obtained the chr.inv.-

eikonal equation for a massless particle
|

1 @% @ @
- — h =0; 1:70
CZ @ @I @k ( )
and for a mass-bearing particle
|

1 QIZ hk = @ @ ﬁ (1:71)

2 @ @ @k 2 '
then, after substituting the dynamic wave vector into the general covari-
ant equations of motion (1.10, 1.12), then projecting them onto the time
line and the spatial section in the accompanying reference frame, we
had obtained the wave form of the chr.inv.-equations of motion of a

mass-bearing particle [19]
I

d @ i @ ik @ .
d_@w@ Djv o7 = 0 (1:72)
I
d @ LA L@ @
_hlk DII<+AkI - ¥ hkm_m
d = e 1@2@ @ 1)
mn i k - 0N-
02@ +h™ v @n—O,

where plus in the alternating terms stands for the particle's motion
from the past to the future (direct ow of time), while minus stands for
its motion to the past (reverse ow of time). Noteworthy, in contrast to
the corpuscular form of the chr.inv.-equations of motion (1.59, 1.60)
and (1.64, 1.65), the wave equations (1.72, 1.73) are symmetric with
respect to the direction of motion in time. For a massless particle, the
wave form of the chr.inv.-equations of motion include the chr.inv.-
vector of the light velocityc' instead of the subluminal chr.inv.-velocity

v of a mass-bearing particle.

The fact that the corpuscular equations of motion to the past and to
the future are asymmetric had led us to the conclusion that in the four-
dimensional space-time of General Relativity there exists a fundamental
asymmetry of the directions in time. To understand the physical sense
of this fundamental asymmetry, we had introducedrttieor principle
or, in other words the observable e ect of the mirror Univer4é9].
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Let us imagine anirror in the four-dimensional space-time, which
coincides with the spatial section (three-dimensional space) associated
with an observer, so that the mirror separates the past from the future.
Then, particles and waves travelling from the past to the future (positive
relativistic masses and frequencies) hit the mirror and bounce back in
time to the past. As aresult, their properties take negative numerical val-
ues. Conversely, particles and waves travelling to the past (negative rela-
tivistic masses and frequencies) bounce from the mirror to give positive
numerical values to their properties and begin travelling to the future.
When bouncing from the mirror, the quanti%?t— changes sign, and so
the equations of wave propagation to the future become the equations
of wave propagation to the past (and vice versa). Noteworthy, when
re ecting from the mirror, the chr.inv.-equations of wave propagation
transform into each oth@ompletelywithout contracting or adding new
terms. In other words, the wave form of matter undergoasplete
re ection from the mirror. On the contrary, the corpuscular chr.inv.-
equations of motiomo not transform completelypon re ection from
the mirror: the spatial projections of the equations for mass-bearing and
massless particles, travelling from the past to the future, have the addi-
tional term

2m D+ Al VK 2k DL+ Al X (1:74)

not found in the equations of motion from the future to the past. In other
words, the equations of motion to the past gain the additional term upon
the re ection, while the equations of motion to the future lose the term
when the particle hits the mirror. This means that, either in the case
of motion of a ball-particle (the corpuscular equations) as well as in the
case of wave propagation, we come across a situation that is not a simple
bouncing from the mirror, but rathepassinghrough the mirror itself
into another world a world beyond the mirrar

In the mirror world, all particles have negative masses or frequen-
cies, so they travel (from our point of view) from the future to the past.
The wave form of matter in our world does not a ect events in the mirror
world, and the mirror world wave matter does not a ect events in our
world. On the contrary, the corpuscular form of matter (particles) in
our world can produce a signi cant e ect on events in the mirror world,
while the mirror world particles can a ect events in our world. Our
world and the mirror world are completely isolated from each other (no
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mutual e ect between particles from the two worlds) under the obvious
conditionD}vk=" Al vk, at which the additional term in the corpuscu-
lar chr.inv.-equations of motion becomes zero. This becomes true, in
particular, wherDL =0 andAki =0, i.e., when the space does not rotate
or deform [19].

So, we have considered the motion of particles along non-isotropic
trajectories, wherd*=c¢?d 2 d 2> 0, and the motion along isotrop-
ic (light-like) trajectories, wherds’=0andc?d ?=d 2, 0. Besides,
we have considered the third kind of trajectories [19], which, apart from
ds® =0, meet even more strict conditioodd ?=d 2=0

" #
d =1 C—lzw+v.ui dt=0; (1:75)

d 2=hydxXdx=0: (1:76)

We called such completely degenerate trajectarége-trajectories
because from the point of view of an ordinary subluminal observer,
any physically observable time intervals and any physically observable
spatial intervals are zeroes along them. We also showed that along
zero-trajectories the determinant of the fundamental metric tamsor
is zero ¢ = 0), while as is known, in Riemannian spaces, by their de ni-
tion, there igg <0, so the Riemannian metric is strictly non-degenerate.
Therefore, we called a space, the metric of which is completely degen-
erate,zero-space For the same reason, we called particles hosted by
such a completely degenerate space (zero-space) and travelling along
trajectories in izero-particleq19].

Actually, formulae (1.75, 1.76) show the physical conditions, under
which the complete degeneration of the four-dimensional space-time oc-
curs. Re-write thghysical conditions of degeneratias follows

w+vu =% (1:77)
gruu=c® 1 = (1:78)

Thus, we had obtained the formula for the mass of a zero-particle
M, which includes the degeneration conditions

m
M = T — (179)
1 Z WtV u'
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which di ers from the relativistic massiof an ordinary particle, located
in a non-degenerate space-time region. Whes the ratio between two
scalar quantitiesn and 1 0—12 w + viu' , each one equals zero in the
case where the metric is degenerate, but the ratio is not zero

The dynamic vector of a zero-particle, represented in the corpuscu-
lar and wave forms, is

_ Mdx | _~ @ .

T ocodt’ Y

Then, the dynamic chr.inv.-equations of motion in the zero-space,
taken in their corpuscular form, are

(1:80)

MDjcu'uk = 0; (1:81)
% Mu' +M | u"uk=0; (1:82)
while the wave form of the equations is
@
D{(“uk@ =0; (1:83)
!

d « @ ik @ _ 4. :
at h @ + hMmn Imku @ =0: (184)
The chr.inv.-eikonal equation for a zero-particle takes the form

k@ @ _ . .
hI @@ - O, (185)

which is a standing wave equation, i.e., the zero-particle has the form
of a standing light-like wave (information ring). This result means that,
from the viewpoint of an ordinary observer like us, the entire zero-space
is lled with a system of standing light-like waves (zero-particles) a
standing-light hologramBesides, in the zero-space, the physically ob-
servable time has the same numerical value for any two events (1.75).
This means that, from the viewpoint of an ordinary observer, the ve-
locity of any zero-particle is in nite, and zero-particles can instantly
transfer information from one point of our ordinary world to another,
thereby performing théong-range actiorj19].

This ispsimilar to the case of massless particles, because ¢ived we have that
me=0and 1 v&c?=0, but their ratio is non-zero, i.em= p—_—, 0.

1 vZ=?
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1.4 Non-geodesic motion of particles. Problem statement

It is known that, when a particle travels freely in a Riemannian space,
the absolute derivative of its dynamic world-vector (its four-dimensional
momentumP ) remains equal to zero, and the square of the vector re-
mains unchanged along the motion trajectory. In other words, the vector
is transported parallel to itself in the sense of Levi-Civita.

If the motion of a particle is non-free (non-geodesic), then the abso-
lute derivative of its four-dimensional momentum is not zero, but the ab-
solute derivative of the sum of its four-dimensional momenfinand
an additional momentum vectbr, gained by the particle from an exter-
nal eld that deviates its motion from geodesic line, is zero. Superposi-
tion of any number of vectors can be subjected to parallel transport [18].
Hence, when creating the equations of non-geodesic motion, we rst of
all require the de nition of perturbing non-gravitational elds.

Naturally, an external eld will only interact with a particle and de-
viate it from its geodesic line, if the particle has a physical property of
the same kind as the external eld does. As of today, we know of three
fundamental physical properties of particles, not related to each other.
These arenass electric chargeandspin If the fundamental character
of the former two was under no doubt, the spin of an electron over a few
years after experiments by Stern and Gerlach (1921) and their interpre-
tation by Goudsmit and Uhlenbeck (1925), was considered as a speci ¢
momentum of the electron caused by its rotation around its own axis.
But experiments done over the next decades, in particular, the discov-
ery of the spin in other elementary particles, proved that the views of
spin particles as rotating gyroscopes were wrong. Spin proved to be a
fundamental property of particles just like mass and electric charge, al-
though it has the dimension of angular momentum and in interactions
manifests its as a speci ¢ rotation momentum inside the particle.

Gravitational elds by now have received a geometric interpretation
due to Einstein's equations. In the theory of chronometric invariants, the
gravitational force and potential (1.38) are obtained as functions of only
the geometric properties of the space itself. Therefore, considering the
motion of a particle in a pseudo-Riemannian space, we actually consider
its motion in a gravitational eld.

But we still do not know whether the electromagnetic Lorentz force
and the electromagnetic eld potential can be expressed through the ge-
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ometric properties of the space. Therefore, electromagnetic elds at the
moment have no geometric interpretation. An electromagnetic eld is
introduced into a pseudo-Riemannian space as an external tensor eld
(the eld of Maxwell's tensor). By now the main equations of the elec-
tromagnetic eld theory have been obtained in the general covariant
form . In this theory, a charged particle gains a four-dimensional mo-
mentum S A from an acting electromagnetic eld, whes is the
four-dimensional potential of the eld, argls the electric charge of the
particle [10, 20]. By adding this additional momentum to the particle's
own momentum vector and applying the Levi-Civita parallel transport
to the summary vector, we can obtain the general covariant equations of
motion of the particle in a space lled with the gravitational and elec-
tromagnetic elds.

The case of spin particles is far more complicated. To deduce a
momentum that a particle gains due to its spin, we need to de ne the
external eld that interacts with the spin. Initially, this problem was ap-
proached using the methods of Quantum Mechanics (Dirac's equations,
1928). The geometric methods of the General Theory of Relativity were
rst used by Papapetrou [21] and then together with Corinaldesi [22] in
the attempt to solve the problem of spin particles. Their approach relied
on the general view of particles as mechanical monopoles and dipoles.
From this point of view, an ordinary mass-bearing particlensexhan-
ical monopole If a particle is represented as two masses co-rotating
around a common centre of gravity, then the particle mexhanical
dipole Proceeding from the representation of a spin particle as a ro-
tating gyroscope, they considered it as a mechanical dipole, where the
centre of gravity is under the particle’s surface. They considered the
motion of such a mechanic dipole in a pseudo-Riemannian space with
the Schwarzschild metric a particular case, where the space does not
rotate or deform (the latter means that the space metric is stationary, i.e.,
the tensor of the space deformation rate is zero).

There is no doubt that Papapetrou's method is noteworthy, but it has
a signi cant drawback. Being developed in the 1940s, it fully relied on

Despite this positive fact, due to the complicated calculation of the electromag-
netic eld energy-momentum tensor in the space-time of General Relativity, speci ¢
problems are usually solved either for particular cases of General Relativity, or, most
often, in a Galilean reference frame in the Minkowski space, i.e., in the space-time of
Special Relativity.
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the view of spin particles as swiftly rotating gyroscopes, which does not
match experimental data of the recent decades

There is another way to solve the problem of motion of spin parti-
cles. In Riemannian spaces, the fundamental metric tensor is symmet-
ric,g =g . Nevertheless, we can create a space in which the metric
tensor has an arbitrary forgn , g (the geometry of such a space is
non-Riemannian). Then, a non-zero antisymmetric part can be found
in the metric tensor Then corresponding additions will appear in the
Christo el symbols  and in the Riemann-Christo el curvature ten-
sorR . These additions will be the result of the fact that, a vector
transported along a closed contour does not return to its initial point, so
the trajectory becomes twisted like a spiral. Such a space is known as
a twisted space. In such a space, the spin rotation of a particle can be
considered as the transport of the rotation vector along the contour over
the particle's surface, which generates a local eld of the space twist.

Nonetheless, this method has got signi cant drawbacks as well.
Firstly, if we haveg , g ,then functions ofthg components with
di erent order of indices can vary. The functions are somehow xed
in order to set a speci c eld of this rotation, which very narrows the
range of possible solutions, allowing you to create equations only for
a number of speci c cases. Secondly, this method is completely based
on the assumption that the spin rotation of a particle is a local twist
eld created by the transport of the particle's rotation vector along the
closed contour. This again means the view of spin particles as rotating
tiny mechanical gyroscopes (similarly to Papapetrou's method), which
is inconsistent with experimental data.

Nevertheless, there is no doubt that an additional momentum gained
by a spin particle can be represented using the methods of the General
Theory of Relativity. Adding the gained momentum to the dynamic
vector of the particle (which is the e ect of gravitation) and applying

Indeed, considering an electron as a tiny ball with a radiugsf2.8 10 *cm
means that the linear velocity of its rotation on the surfaa:eqsé— 2 10" cmisec,
which is 70 times greater than the light velocity. Experlments show that electrons do
not have such rotation speeds.

»Generally, in any tensor of the 2nd rank and of high ranks symmetric and anti-
symmetric parts can be distinguished. For instance, in the fundamental metric tensor
g = 3-2L(g +g )+ %(g g )=S +N we have the symmetric pa8 and the
antisymmetric parfN . Because the metric tensor of any Riemannian space is sym-
metricg =g , its antisymmetric part is zero.
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the Levi-Civita parallel transport of the summary vector, we can obtain
the general covariant equations of motion of the spin particle

Having obtained the general covariant equations of motion of a spin
particle and an electrically charged particle, we shall project them onto
the time line and the spatial section of an observer, and then express the
obtained chr.inv.-projections in terms of the physically observable prop-
erties of his reference space. As a result, we will arrive at the chr.inv.-
equations of non-geodesic motion.

Therefore, the problem that we are going to solve in this book falls
into several stages. In Chapter 3, we will create a chr.inv.-theory of
the electromagnetic eld in the four-dimensional pseudo-Riemannian
space. We will also obtain the chr.inv.-equations of motion of a charged
particle in the electromagnetic eld.

In Chapter 4, we will create a theory of the motion of spin particles.
We will approach this problem in its most general form, assuming that
spin is a fundamental property of matter (like mass or electric charge).
A detailed study will show that the eld of the space non-holonomity
(spatial rotation of the space) interacts with the particle's spin, giving it
an additional momentum.

In Chapter 5 we are going to discuss the chr.inv.-projections of Ein-
stein's equations. Based on them, we will derive the properties of the
physical vacuum and how they are applied to cosmology.

In Chapter 6, we will consider the theory of the mirror world, as
well as the physical conditions for entering it through the membrane
that separates it from us.

Before starting this research, in Chapter 2 we will give tensor al-
gebra and analysis in terms of physically observable quantities (chrono-
metric invariants). We recommend Chapter 2 to those readers, who want
to use the chronometrically invariant formalism in their research.

We wrote this in the mid-1990s, in the 1st edition of this book. In 2007, Suhen-
dro [23, 24] developed a new and highly original approach to spin particles, which is
based on the view of the spin as an elementary curl of the space itself. We agree that,
since his approach is purely geometric in nature, it is closer to Einstein's approach (the
geometrization of matter and interactions) than our approach, implemented in Chapter 4
of this book based on the Lagrange method.



Chapter 2 Basics of Tensor Algebra
and Analysis

2.1 Tensors and tensor algebra

We assume a space (nhot necessarily a metric one) with an arbitrary ref-
erence frame located in it. In an area of this space, there exists an
objectG de ned byn functionsf, of the coordinatex . We know the
transformation rule to calculate theséunctions in any other reference
frameX in this space. If the functionsf, and also the transformation
rule have been given, théhis ageometric objectwhich in the system
X has axial component§, (x ), while in any other systerit it has
componentd, (X ).

We assume that a tensor objeeinso) of zero rank is any geometric
object' , transformable according to the rule

= g; (2:1)
@&

where the index sequentially takes the numbers of all coordinate axes
(this notation is also known ammponent notatioor tensor notatioh
Any tensor of zero rank has a single component and is also known as a
scalar. From a geometric point of view, any scalar is a point to which
a certain number is attributed. A scalar el a set of points, which
have a common property. For instance, a point mass is a scalar, and a
distributed mass (a gas, for instance) makes up a scalar eld.

Contravariant tensors of the 1st raAk are geometric objects with
components, transformable according to the rule

~ @&

A=A @; (2:2)

Algebraic notations for a tensor and a tensor eld are the same. The eld of a
tensor is represented as the tensor in a given point of the space, but its presence in other
points of the space is assumed.
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From a geometric point of view, such an object isragimensional
vector. For instance, the vector of an elementary displacedrent a
contravariant tensor of the 1st rank.

Contravariant tensors of the 2nd raftk are geometric objects with
components, transformable according to the rule

@a.
@ @

From a geometric point of view, such an object is an area (parallelo-
gram) constructed by two vectors. For this reason, contravariant tensors
of the 2nd rank are also known birectors

Thus, contravariant tensors of higher ranks are geometric objects,
transformable according to the rule

@ @,
@ @

A vector eld or a higher rank tensor eld are space distributions
of the tensor quantities. For instance, because a mechanical strength
characterizes both its own magnitude and the direction, its distribution
in a physical body can be presented by a vector eld.

Covariant (i.e., lower-index) tensors of the 1st r@nkare geometric
objects, transformable according to the rule

x @
A=A a (2:5)

The gradient of a scalar eld, i.e., the quantityA = g, is a co-
variant tensor of the 1st rank. That is, since for an ordinary invariant we
have™ ="', then

A =A (2:3)

A::: =A™ (2:4)

@_ 0@ _0oa.

@ @aa@&@ @ @&

Covariant tensors of the 2nd radk are geometric objects with
the transformation rule

(2:6)

~ @ @
A =A ——: 2.7
@ & (2:7)
Hence, covariant tensors of higher ranks are
A::: =A.. @ g : (2:8)

@ o
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Mixed tensors are tensors of the 2nd rank or of higher ranks with
both upper and lower indices. For instance, a mixed symmetric tensor
A is a geometric object, transformable according to the rule

A=A @ & : (2:9)
@& &

Tensor objects exist both in metric and non-metric spacAsy
tensor hag" components, whera is its dimension and is the rank.

For instance, a four-dimensional tensor of zero rank has 1 component,
a tensor of the 1st rank has 4 components, a tensor of the 2nd rank has
16 components and so on.

Indices in a geometric object, marking its axial components, are
found not in tensors only, but in other geometric objects as well. For
this reason, if we come across a quantity in component notation, this is
not necessarily a tensor quantity.

In practice, to know whether a given object is a tensor or not, we
need to know a formula for this object in a reference frame and then
transform it to any other reference frame. For instance, consider the
following classic question: are the Christo el symbols (i.e., the coher-
ence coe cients of space) tensors? To answer this question, we need to
calculate the quantities in a tilde-marked reference frame

!
e =9 e. . €. :1'@ +@ @
’ ’ 2 @ @ &

proceeding from the quantities in a non-marked reference frame.

First, calculate the terms in brackets (2.10). The fundamental metric
tensor like any other covariant tensor of the 2nd rank, is transformable
to the tilde-marked reference frame according to the rule

N @ @&
0 =g ——: (2:.11)
@ &

Because thg- depends on non-tilde-marked coordinates, its deri-

vative with respect to tilde-marked coordinates (which are functions of

(2:10)

In non-metric spaces, as is known, the distance between any two points cannot be
measured. Thisis in contrastto metric spaces. Inthe theories of space-time-matter, such
as the General Theory of Relativity and its extensions, metric spaces are taken under
consideration. This is due to the fact that the core of these theories is the measurement
of time durations and spatial lengths, which is nonsense in a non-metric space.
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non-tilded ones) is calculated according to the rule
_—= === (2:12)

Then the rstterm in brackets (2.10), taking the rule of transforma-
tion of the fundamental metric tensor into account, is
@ eaa, @& G @& O .,
@& @ @ & * @& & A @@@"
Hence, calculating the remaining terms of the tilde-marked Christ-
o el symbols (2.10), after transitioning the free indices we obtain

@@ @ @x
e . — " = = = " = =" . .
" aea Yaaa @9
@ E@ @& O
e - =2 =2 & .
GE@ @ @@@ (2:15)

so, we see that the Christo el symbols are not transformed in the same
way as tensors, hence they are not tensors.

Tensors can be represented as matrices. But in practice, this form
can be possible for only tensors of the 1st or 2nd rank (single-row and
at matrices, respectively). For instance, the tensor of an elementary
four-dimensional displacement is

dx = d&; dxt; dxé; de ; (2:16)
while the four-dimensional fundamental metric tensor is

Goo Goi1 Qo2 Jo3

g = 010 911 912 Q13 2:17)
J20 Q21 Q22 Q23

O30 031 0932 033

Tensors of the 3rd rank are three-dimensional matrices. Represent-
ing tensors of higher ranks as matrices is more problematic.

Now we turn to tensor algebra a section of tensor calculus, which
focuses on algebraic operations over tensors.

Only same-type tensors of the same rank with indices in the same
position can be added or subtracted. Haeing uptwo same-type ten-
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sors gives a new tensor of the same type and rank with the components
being the sums of the corresponding components of these tensors

A +B =D ; A +B =D : (2:18)

Multiplication is permitted not only for same-type, but for any ten-
sors of any ranks. Thexternal multiplicatiorof tensors of the-th rank
and themth rank gives a tensor of thea ¢ m)-th rank

AB=D ; AB =D : (2:19)

Contractionis the multiplication of the same-rank tensors, when
their indices are the same. The contraction by all indices gives a scalar

A B =C; A B =D: (2:20)

Often multiplication of tensors means contraction of some indices.
Such multiplication is known aimternal multiplication which means
contraction of some indices inside the multiplication. Thisis an example
of internal multiplication

A B=D; A B =D: (2:21)

Using internal multiplication of geometric objects, we can deter-
mine whether they are tensors or not. This is the so-called theorem of
fractions, which is given here according to [9]:

Theorem of fractions
If B is atensor and its internal multiplication with a geomet-
ric objectA(; )isatensoD

A(; )B =D ; (2:22)

then the objecA(; )is also atensor.

According to the theorem, if the internal multiplication of an object
A with atensoB gives a tensob

A B =D ; (2:23)

then the objecA is a tensor. Or, if the internal multiplication of an
objectA with atensoB gives a tensoD

A B =D ; (2:24)
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then the objech is atensor.

The geometric properties of any metric space are determined by its
fundamental metric tensgr , which can lift and lower indices in geo-
metric objects of this metric spacé&-or instance,

g A=A; gg A =A: (2:25)

In Riemannian spaces, the mixed fundamental metric tegss
equalto the unittens@y =g g = . The diagonal components of
the unit tensor are units, and its other components are zeroes. Using
the unit tensor, we can replace indices in four-dimensional quantities,
so that

A=A; A =A: (2:26)

Contraction of any tensor of the 2nd rank with the fundamental met-
ric tensor gives a scalar, known as teasor spuior thetensor trace

g A =A_: (2:27)

For instance, the trace of the fundamental metric tensor in a four-
dimensional pseudo-Riemannian space is

g g =g =d+0gi+g5+gi= 0+ 1+ 3+ 3=4 (2298)

The chr.inv.-metric tensohny (1.27) has all properties of the fun-
damental metric tens@ in the observer's three-dimensional space.
Thereforehy can lower, lift or replace indices in chr.inv.-quantities. Re-
spectively, the trace of a three-dimensional chr.inv.-tensor is obtained by
means of its contraction with the chr.inv.-metric tenbgr

For instance, the trace of the tensor of the space deformation rate
Dik (1.40) is

h*Dy = DT; (2:29)
the physical sense of which is the relative expansion rate of an elemen-
tary volume of the space.

Of course, the above very brief account cannot fully cover such a

vast eld like tensor algebra. Moreover, there is even no need in do-
ing that here. Detailed accounts of tensor algebra can be found in many

In Riemannian spaces, the metric has the square &#w g dx dx , known
also as theRiemannian metric form Therefore, the fundamental metric tensor of a
Riemannian space is the tensor of the 2nd rank,
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mathematical books not related to the General Theory of Relativity. Be-
sides, many speci c techniques of this science, which occupy a substan-
tial part of mathematical textbooks, are not used in theoretical physics.
Therefore, our contribution has been to provide only the basic intro-
duction to tensors and tensor algebra needed to understand this book.
For the same reasons, we have not covered issues such as the weight of
tensors and many others not used in the calculations in this book.

2.2 Scalar product of two vectors

The scalar productof two vectorsA and B in a four-dimensional
pseudo-Riemannian space is

g AB =A B =A)B°+AB" (2:30)

Scalar product is a contraction, because multiplication of vectors
contracts all of their indices. Therefore, the scalar product of two vectors
(tensors of the 1st rank) is always a scalar (tensor of zero rank). If both
of the vectors are the same, their scalar product

g AA =AA =AA+AA (2:31)
is the square of the given vectér . Consequently, the length of this
vectorA is q—

A= A = g AA: (2:32)

Since the four-dimensional pseudo-Riemannian space of General
Relativity by de nition has the sign-alternating metric of the signature
(+===) or (=+++), the lengths of a four-dimensional vector in the space
can be real, imaginary or zero. Vectors having non-zero (real or imag-
inary) lengths are known asn-isotropic vectorsVectors having zero
length are known aisotropic vectors Isotropic vectors are tangential
to the trajectories of light-like particles (isotropic trajectories).

In three-dimensional Euclidean space, the scalar product of two vec-
tors is a scalar quantity with a magnitude equal to the product of their
lengths, multiplied by the cosine of the angle between them

AB = A B cos A;B : (2:33)

Theoretically, at every point of any Riemannian space a tangential
at space can be set, the basis vectors of which are tangential to the
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basis vectors of the Riemannian space at that point. In this case, the
metric of the tangential at space is the same as the metric of the Rie-
mannian space at that point. This statement is also true in the Rieman-
nian space, if we take the angle between the coordinate lines into ac-
count and replace Roman (three-dimensional) indices with Greek (four-
dimensional) ones.

From here, we can see that the scalar product of two vectors is zero,
if the vectors are orthogonal to each other. In other words, the scalar
product from a geometric point of view is the projection of one vector
onto the other. If the vectors are the same, then the vector is projected
onto itself, so the result of this projection is the square of its length.

Denote the chr.inv.-projections of arbitrary vectdks andB as
follows

az 22, a = A (2:34)
Joo
b= Bo . i — pi- .
= p—; b =B (2:35)
Joo

then their remaining components are

a+iva a
A = lc—v\lli A= g EVI; (2:36)
2
b+ 1vb b
BRP=—¢ Bi= b —v: (2:37)
1 W c
C2

Substituting the chr.inv.-projections into the formulaefoB and
A A , we obtain

A B =ab ab =ab hygabs (2:38)
AA =a aga=a hgaas (2:39)

From here, we see that the square of the length of any vector is
the di erence between the squares of the lengths of its time and spa-
tial chr.inv.-projections. If both of the projections are equal, then the
vector's length is zero, so the vector is isotropic. Hence, any isotropic
vector equally belongs to the time line and the spatial section. The equal-
ity of the time and spatial chr.inv.-projections also means that the vector
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is orthogonal to itself. If its time projection is longer than the spatial
one, then the vector is real. If the spatial projection is longer , then the
vector is imaginary.

The scalar product of any four-dimensional vector with itself can be
illustrated by the square of the length of the space-time interval

d€ =g dx dx =dx dx =dxdx’+dxdx: (2:40)

In terms of physically observable quantities, it can be represented
as follows

d=c?d 2 dxdxX =c?d ? hxdxXdx<=c’d 2 d 2 (2:41)
q—

Itslengthds= g dx dx canbe real, imaginary or zero, depend-
ing on whetherdsis time-like c?d 2>d 2 (subluminal real trajecto-
ries), space-like?d 2<d 2 (imaginary superluminal trajectories), or
isotropicc?d 2=d 2 (light-like trajectories).

2.3 Vector product of two vectors. Antisymmetric tensors and
pseudotensors

Thevector producbf two vectorsA andB is a tensor of the 2nd rank
V , obtained from their external multiplication according to the rule

A A

1
A B AB—éBB

(2:42)

As is easy to see, the order in which vectors are multiplied mat-
ters, i.e., the order in which we write down tensor indices is important.
Therefore, tensors obtained as vector productsaatesymmetric In
an antisymmetrictens& = V ;itsindices being moved reserve
their placesasdotg, V =V , thereby showing from where the in-
dex was moved. In symmetric tensors, there is no need to reserve
places for moved indices, because the order in which they appear does
not matter. In particular, the fundamental metric tensor is symmetric
g =g ,whilethe tensor of the space curvati®e is symmetric in
respect to the transposition by pair of its indices, but is antisymmetric
inside each pair of the indices.

Itis obvious that only tensors of the 2nd rank or of higher ranks can
be symmetric or antisymmetric.
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All diagonal components of any antisymmetric tensor by de nition

are zeroes. So, in an antisymmetric tensor of the 2nd rank, we have
1
vV = A;B ZEAB AB =0: (2:43)

In the three-dimensional Euclidean space, the vector product of two
vectors is the area of the parallelogram they make and is equal to the
product of their moduli, multiplied by the sine of the angle between
them _ . .

vk=" A BX sin A;BX : (2:44)

This means that the vector product of two vectors (i.e., an antisym-
metric tensor of the 2nd rank) is an area, oriented in the space according
to the directions of its forming vectors.

Contraction of an antisymmetric tensér with any symmetric ten-
sorA =A A iszero, becaus¢ =0andV = V . Forexample,

V A A = Voo APAY + Vg A%A + Vig AAY + Vi AAK = 0: (2:45)

According to the theory of chronometric invariants, the chr.inv.-
projections of an antisymmetric tensor of the 2nd rahk are

Voo Vo o1 i .
'ﬁﬁ = -ﬁﬁ = E ab ba ; (246)
Vi :% ab“ ap'; (2:47)

where the third chr.inv.-projectioﬁ% (1.32) is zero, because in any an-
tisymmetric tensor all diagonal components are zeroes.

The physically observable chr.inv.-projectivtk of the tensol
onto the observer's spatial section is analogous to a vector product in a

three-dimensional space, but the quan{i\%)%, which is the space-time

(mixed) chr.inv.-projection of the tensdt , has no equivalent among
components of an ordinary three-dimensional vector product.
The square of an antisymmetric tensor of the 2nd rank, formulated
with the chr.inv.-projections of its forming vectors, is
VV = % aa'bgb® ab'ahbt +
o _ _ (2:48)
+abgb > ’oib bPaa
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The last two terms in this formula contain the quantia€g.34) and
b (2.35), which are the chr.inv.-projections of the multiplied vectrs
andB onto the observer's time line, so these terms have no equivalent
in the three-dimensional Euclidean space.

Asymmetry of tensor elds is de ned by reference to antisymmetric
tensors. In a Galilean reference frangich antisymmetric references
are the Levi-Civita tensors: for four-dimensional quantities, this is the
four-dimensional completely antisymmetric unit tensor , while for
three-dimensional quantities, this is ttl@ee-dimensional completely
antisymmetric unit tens@™ The components of the Levi-Civita ten-
sors, which have all indices di erent, are eithefl or 1 depending
on the number of transpositions of their indices. All of the remaining
components, i.e., those having at least two coinciding indices, are ze-
roes. Moreover, for the signature£+==) we are using, all the non-zero
components have a sign opposite to their corresponding covariant com-
ponents For instance, in the Minkowski space we have

g g g g e =90091192293380123=

O Ok Om © = Q1102203323 =

e0123

123

W Iwo

(2:49)
e

due to the signature conditioggo= 1 andg;1=0g>2=033= 1we have
accepted. Therefore, the components of the teasor are

9
Q0123= 1 l023= 1. l203— 49. QI230- 7 3

2 (2:50)
€123= 1, €23=+1; €e203= 1, €1p30=+1

and the components of the tensgf" are

elB= 41 3= 1 e8l=4]

€23= 1, ez=+1 e3z= 1

W IwWeo

(2:51)

Because we have an arbitrary choice for the sign of the rst compo-
nent, we can also assure®'?3= 1 ande'?3= 1. Consequently, the

A Galilean reference frame is the one that does not rotate or deform and falls freely
in the at space-time of Special Relativity (Minkowski space). In a Galilean frame, the
time lines are linear and so are three-dimensional coordinate axes.

»If the space-time signature is € + +), the said is true for only the four-dimensional
tensore . The components of the three-dimensional teréBrwill have the same
sign as the corresponding componentsgf.
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remaining components will change. In general, the teesor is re-
lated to the tensa®™ as followse?km = gkm,

Multiplying the four-dimensional antisymmetric unit tenser
by itself we obtain an ordinary tensor of the 8th rank with non-zero
components, which are given in the matrix

e e = (2.52)

The remaining properties of the tensor  are derived from the
previous by means of the contraction of its indices

e e = (2:53)

!
e e = 2 = 2 ; (2:54)
e e = 6 ; e e = 6 = 24 (255

Multiplying the three-dimensional antisymmetric unit teneF by
itself we obtain an ordinary tensor of the 6th rank

| Pos o
Mg =B K kK K (2:56)
m m m
r S t
The remaining properties of the tens®™ are
o
. I | ’ .
eMesm= kK T sf 1 s (2557)
r S
eMeym=21; kMg =2 1=6: (2:58)

The completely antisymmetric unit tensor de nes for a tensor ob-
jectits correspondingseudotensgmarked with asterisk. For instance,
any four-dimensional scalar, vector and tensors of the 2nd, 3rd, and 4th
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ranks have corresponding four-dimensional pseudotensors of the fol-
lowing ranks

9
\Y/ =e V; vV =e V §
1 1 =
\% =5e vV, Vv = g€ \Y g (2:59)
1
V = — V
24° ’

Pseudotensors of the 1strank, suck as are callegbseudovectors
and pseudotensors of zero rank, suctVasare calledoseudoscalars
Any tensor and its corresponding pseudotensor are knowduakto
each other to emphasize their common genesis.
Three-dimensional tensors have corresponding three-dimensional
pseudotensors as follows

v ikm — eika; Vv k= eikarn %
% (2:60)

Pseudotensors are called such because, in contrast to ordinary ten-
sors, they do not change their sign when re ected with respect to one
of the coordinate axes. For instance, when the coordinates are re ected
with respect to the abscissa axis, we have &L, x2= %, x3=%. In
this case, the re ected component of an antisymmetric tefigowhich
is orthogonal tax}, is ®b3= ks, but its corresponding component of
the dual pseudovectdf ' is

9
1
V1= Zelkmy = 5 123\ 4 o132\, = i g

Ql

NIk NI

élkmvkm

2
1
> €303+ €320, = V3

Because a four-dimensional antisymmetric tensor of the 2nd rank
and its dual pseudotensor are of the same rank, their contraction gives

a pseudoscalar, so that we have

Lgamg = §: (2:61)

VV =Ve V =e B =B: (2:62)
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~The square of a pseudoten6r and the square of a pseudovector
V !, expressed through their dual tensors, are

VV =e Ve V = 2/V ; (2:63)
ViV = egmVKMelPaV, = BVimV K™ (2:64)

In inhomogeneous anisotropic pseudo-Riemannian spaces, we can-
not set a Galilean reference frame, so the asymmetry references of ten-
sor elds will depend on the inhomogeneity and anisotropy of the space,
which are de ned by the fundamental metric tensor. In this general case,
a reference antisymmetric tensor is thar-dimensional completely an-
tisymmetric discriminant tensor

E = '|e5: ; E =€ p_g (2:65)

Here is the proof. The transformation of the completely antisym-
metric unit tensor from a Galilean (non-tilde-marked) reference frame
into an arbitrary (tilde-marked) reference frame is

== = == ¢e. =Je ; (2:66)

whereJ= det & s called thelacobian of the transformaticfueter-
minant of the Jacobi matrix)

@ @ @ @
@ @ @ @
1 @& @&

J = det @ = det @ @ o @@ : (2:67)
@ @ @ @e

Because the fundamental metric tengoris transformable accord-
ing to the rule
§ = @ @

= ; 2:68
@ @ (2:68)

its determinant in the tilde-marked reference frame is
g = det @ @ = J%g: (2:69)

@’
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Because in the Galilean (non-tilde-marked) reference frame

1 0 0

g=det g =det = 1 (2:70)

0
0O 1 0 O
0O 0 1 0
0O 0 0 1
thenJ?= . Expressing  inan arbitrary reference frame &s
and writing down the metric tensor in an ordinary non-tilde-marked
form, we obtainE =e IO_g (2.65). In the same way, we obtain
the transformation rules for the components, because for them
g=§J2, whereJ=det (% .

The discriminant tensdg is not a physically observable quan-
tity. A physically observable reference of the asymmetry of tensor elds
is thethree-dimensional discriminant chr.inv.-tensor

" =z=hhhbE =bE ; (2:71)
" =hhhbE =bE ; (2:72)
whch in th%aCﬁompanymg reference frarbe< 0), taking into account
that h" goo, takes the form
wikm _ p OKm p% EOikm _ ?pﬁ : 2:73)
"ikm = b°Eoikm = -I%(gﬂ akmph (2:74)

Using this tensor, we can transform chr.inv.-tensors into chr.inv.-
pseudotensors. For instance, based on the antisymmetric chr.inv.-tensor
of the angular velocity with which the space rotatdg,(1.36), we ob-
tain the chr.inv.-pseudovector of this rotation' = 2 " kMA,

2.4 Dierential and directional derivative

In geometry, thadi erential of a function is its variation between two
in nitely close points, the coordinates of which ateandx +dx . Re-
spectively, thebsolute di erentiain ann-dimensional space is the vari-
ation of ann-dimensional quantity between two in nitely close points
in this space. For continuous functions, which we commonly deal with
in practice, their variations between in nitely close points are in nite-
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simal. But in order to de ne an in nitesimal variation of a tensor quan-
tity, we cannot use simply the di erence between its numerical values
in the pointsx andx +dx , since tensor algebra does not de ne the
ratio between the numerical values of a tensor in di erent points of a
space. This ratio can be de ned only using the rules transforming ten-
sors from one reference frame to another. Therefore, di erential opera-
tors and the results of their application to tensors must be tensors.

Thus, the absolute di erential of a tensor quantity is a tensor of the
same rank as the original tensor itself. For a scalgiis the scalar

@l
D' = —dx ; 275
@ (2:75)
which in the accompanying reference franbe= 0) is
@' @'
D' = —d +—dx: 2:76
@ & (2:76)

It is easy to see that, apart from the three-dimensional observable
di erential, there is an additional term that takes into account the de-
pendence of the absolute displacenighton the ow of the physically
observable timel .

The absolute di erential of a contravariant vectar, formulated
with the absolute derivation operator(nabla), is

DA =r Adngdx+ Adx =
@ (2:77)

=dA + A dx ;

wherer A is the absolute derivative & with respect tax , andd
stands for the ordinary di erential

r A= % + A; (2:78)
d= @@ dx : (2:79)

Formulating the absolute di erential with physical observables is
equivalent to projecting its general covariant form onto the time line
and the spatial section in the accompanying reference frame

DA . .
T=b DA:@pg:; B =h DA : (2:80)
00
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Denoting the chr.inv.-projections of the vectdr as

' = ﬁAi_; q = A} (2:81)
doo
we obtain its remaining components

il l | ]
W o_ tgva . . o
z A-—1 w A= g EV"(Z'82)
C2

Po=" 1

Because the ordinary di erential in the chr.inv.-form is

@ @

d=—d +—

@ @

after substituting it and the Christo el symbols, taken in the accompa-
nying reference frame (1.41 1.46), into the formulae for the chr.inv.-

projectionsT andB' (2.80) of an arbitrary vectoA , we obtain

dx; (2:83)

T=b DA =d +% Fq'd +Dyggdxf ; (2:84)

B'=h' DA =dd + —dx*+qgd D} +A
¢ . _ . (289)
S F'd + |,gmdx"

To create the chr.inv.-equations of motion, we need the chr.inv.-
projections of the absolute derivative of a vector to the direction, tan-
gential to the trajectory. From a geometric point of view, directional
derivativeof a function is its change with respect to an elementary dis-
placement along the given direction. Tdiesolute directional derivative
in ann-dimensional space is the change ofradimensional quantity
with respect to an elementarnydimensional interval along the given
direction. For instance, the absolute derivative of a scalar function
along a curvex =x ( ), where is a non-zero monotone parameter
along the curve, shows the rate of the change of this function

D _d
—_— = — 2.
g g (2:86)
In the accompanying reference frame it is
b _ @d +del : (2:87)

d  @d @d
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The absolute directional derivative of an arbitrary vectoralong
acurvex =x ()is

DA dx dA dx
_d =r A d—— d—+ A d—, (288)
and its chr.inv.-projections are
|
DA d 1 .d Cogdxe _
b——=g*+c Fdg +Dbwd4 (2:89)
|
DA _dd ' dx d
(It 3 N kY i i
"G T T ta thg PtA |
. «  (2:90)
_Fid_+ i qmd_x.
c d mk g

Actually, the above chr.inv.-projections are the generic chr.inv.-
equations of motion of a particle in the space. Once we de ne a par-
ticular vector characterizing the motion of a particle, we calculate its
chr.inv.-projections and substitute them into the above equations (2.90,
2.91), we immediately obtain the chr.inv.-equations of the motion of the
particle.

2.5 Divergence and curl

Thedivergenceof a tensor eld is its change along a coordinate axis.
Respectively, thabsolute divergencef an n-dimensional tensor eld

is its divergence in an-dimensional space. The divergence of a tensor
eld is the result of the contraction of the eld tensor with the absolute
derivation operator . The divergence of a vector eld is a scalar

@
r A =—+ A ; 291
& (z91)
and the divergence of a 2nd rank tensor eld is a vector
&
r F o= + F + F 2:92
& (2:92)
where, as it can be proved, is
an" 3

- : (2:93)
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To prove (2.93), we will use the de nition of the Christo el symbols.
Write the de nition of in detail

I
_Ll, @9, Qg @g "

2 @ @ @
Because and are free indices here, they can change their sites.

As a result, after the contraction with the tengor , the rst and last
terms cancel each other, so takes the form

1 Q@g
29 @

The quantitiegyy are the components of a tensor reciprocal to the
tensorg . Therefore, each component of the matix is

=g (2:94)

(2:95)

g =2 ; g=detg ; (2:96)

g
wherea is the algebraic co-factor of the matrix element with indices
,equal to( 1) * , multiplied by the determinant of the matrix ob-
tained by crossing the row and the column with the numbeasd out
ofthe matrixg . Asaresult, wehava =gg . Since the determin-
ant of the fundamental metric tengprdet g by de nition is

X
g:“(nmwa%w%g%g%m; (2:97)

00 3

then the quantitylg willbe dg=a dg =gg dg ,or

% =g dg : (2:98)
Integrating the left hand side, we def{ @), because thgis nega-
tive while logarithms are de ned for only positive functions. Then, we

havedIn( g) = % Since( g)'**=2In( g), we obtain

p

din _gzgg dg ; (2:99)

o] (2.95) takes the form

(2:100)



2.5 Divergence and curl 53

which has been proved (2.93).

Now, we are going to deduce the chr.inv.-projections of the diver-
gence of avector eld (2.91) and of atensor eld of the 2nd rank (2.92).
The divergence of a vector eld is a scalar, consequently the diver-
gencer A cannot be projected onto the time line and the spatial sec-
tion, but, this is enough to express it through the chr.inv.-projections
of the A and through the observable properties of the reference space.
Besides, the ordinary derivation operators must be replaced with the
chr.inv.-derivation operators.

Assuming the notatioris andg' for chr.inv.-projections of the vec-
tor A (2.81), we express the remaining components of the vektor
through them (2.82). Then, substituting the ordinary derivation opera-
tors in the form, expressed through the chr.inv.-derivation operators

1 @_ @ [ w
- 28 -1 ¥ 2:101
P @ @ oo 2 ( )
@ @, 1 @ .
& a3 (2:102)
into (2.91), and taking into account th%t_ = pﬁp%, we obtain
! . p_
1 @ @' . @n h 1 .
rA = & D + & +q & @F.q'- (2:103)
In the third term, the quantity
p_
@n h_ )
& i (2:104)

stands for the chr.inv.-Christo el symbols‘j‘i (1.47), contracted by two
indices. Hence, similar to the de nition of the absolute divergence of a
vector eld (2.91), the quantity
. p— .
[ . @n h | . .
g +q & = g +q }iz riqg (2:105)
is thechr.inv.-divergencef a three-dimensional vector eld'.

Consequently, we call thehysical chr.inv.-divergencef the vector
eld g' the following chr.inv.-quantity

Big = rig C—le.q‘; (2:106)
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in which the 2nd term takes into account the fact that the ow of time is
di erent at the opposite walls of an elementary volume of the space [9].
As a matter of fact that, when calculating the divergence we consider an
elementary volume of the space, so we calculate the di erence between
the amounts of a substance that ows in and out of the volume over an
elementary time interval. But the presence of the gravitational inertial
force F' (1.38) results in a dierent ow of time at di erent points in
the space. Therefore, when we measure time intervals on the clocks
installed at the opposite walls of the volume, the beginnings of the time
intervals will not coincide, thereby making the measured time intervals
invalid for comparison. The clock synchronization at the opposite walls
of the volume will give the true picture the measured time durations
will be di erent.

The nal equation for the divergenae A is

!
A % %+' D + Bq': (2:107)

The second term in this formula is a physically observable analogy
to the ordinary divergence in the observer's three-dimensional space.
The rst term (in brackets) has no equivalent. It is the sum of the
two functions:% is the variation in time of the time projection of
the vectorA , while ' D is the variation in time of the volume of the
three-dimensional vector eld'. The latter is because the trace of the
chr.inv.-tensor of the space deformation rBte hkDj, = D is the rate
of the relative expansion of an elementary volume of the space.
Applyingr A =0 to the four-dimensional vector potential of
an electromagnetic eld gives the Lorenz condition for the eld. As a

result, the Lorenz condition in the chr.inv.-form is
[

. 1 @
Fig= = —+'D: 2:108
Now we are going to deduce chr.inv.-projections of the divergence of
an arbitrary antisymmetric tensér = F (later we will need them
to obtain Maxwell's equations in the chr.inv.-form)
r F = % + F + F =
pP— (2:109)
_ @ + @ " g F o

@ @



2.5 Divergence and curl 55

where the third term F is zero, because the contraction of the
Christo el symbols (which are symmetric by their lower indices)
with the antisymmetric tensét  is zero as in the case of any symmet-
ric and antisymmetric tensors.

The divergence F is a four-dimensional vector, so its chr.inv.-
projections are calculated as for a vector, i.e.

T=br F ; B=hr F =r F" (2110)
We denote chr.inv.-projections of the tensor as follows
. F/ : :
E'=p>; Hk=FkK (2:111)
Yoo

then the remaining non-zero components of the tensor are

FO= %VkEk; (2:112)
|
1 1 1 '
FO= p— Ex —wH" =wWwE" ; 2:113
K ‘Ba) k c e 2 VikVn ( )
) Ei l.VkHlk .
Fi=—piz—;  Fo= P SooE: (2:114)

1
Fl= HY “wES Fi=Hi+-MBc wE); (2115)
and the square of this tensber is
F F =HixH* 2EE" (2:116)

Substituting the components into (2.110) and replacing the ordinary
derivation operators with the chr.inv.-derivation operators, after some
algebra we obtain

r F [ . n ﬁ 1
T= pch:) = g + E' @@I EHlkAik; (2:117)
. p_
. ik
B=r Fi= g*k + Hik @@;kh
11 @ 1 (2118)
@FKH"‘ - E+DE' ;
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whereAy is the antisymmetric tensor of non-holonomity of the space.
Taking into account that

@' i _ i )
R L (2:119)

is the chr.inv.-divergence of the vectt, and also that

1 ;
rH* ?FkH'kz PiH ™ (2:120)

is the physical chr.inv.-divergence of the tenstf, we arrive atthe nal
equations for the chr.inv.-projections of the divergence of an arbitrary
antisymmetric tensof

T= riE % H* Ay ; (2:121)
B'= fHK 1@ + DEi! : (2:122)
c @
So forth, we calculate the chr.inv.-projections of the divergence of
the pseudotensdf

1 1
F =ZE F ; F =ZE F : 2:123
which is dual to the given antisymmetric tengor .
We denote its chr.inv.-projections as follows
o F,! : :
Hi=pX; E*=Fk (2:124)
Yoo
so there are the obvious relatiols' H* andE  E' between the
above chr.inv.-quantities and chr.inv.-projections of the antisymmetric
tensorF (2.111), because of the duality Bf andF
Therefore, given that
F.lo1 . .
P2 =Py, . pk= wikeg (2:125)
goo 2
the remaining components of the pseudoterisor, formulated with
the chr.inv.-projections of its dual tensbr (2.111) are
1 ) 1 #
Fol= Z:Vk--kpq Hpq + < W Eq VEp ; (2:126)
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1 1
0_ " pa " P
Fim=op= " Hea* " WEs WEp

) Yoo . 4 (2:127)
nk nk .
= PAvi vic Hpq p PAvivik VoEq VEp ;
" #
Oi — 1 " ipq 1 . .
oo
lp__
Fo= > P oo "ipgHPY; (2:129)
K —mn kp 1 n kpq 1 " mkp . .
F “=""Ep Z:v, Hpq P Vi Vim Ep; (2:130)
!
1
Fik="kp EP EVquq ; (2:131)
while its square is

where" P9 js the three-dimensional discriminant chr.inv.-tensor (2.73,
2.74). Then the chr.inv.-projections of the divergence of the pseudoten-
sorF  are written as

r F, _@1i+ .@npﬁ 1

p— = Hi—— ZE™*A; 2:133
p% @ @ c Aik ( )
ik P
rp = & L gx @D
@ . @1 o1 | (2134)
ik i
SREX S —g *DH';

or, using the respective formulae for the chr.inv.-divergemgé "and
also the physical chr.inv.-divergend®E ¥, as well as (2.119, 2.120),
we obtain

r Fo i 1o
—ng = riH E E "Ak; (2135)
. |
. I ..
rF '= BE™ @ ibH (2:136)

@
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Apart from the divergence of a vector, antisymmetric tensor and
pseudotensor of the 2nd rank, we need to deduce the chr.inv.-projections
of the divergence of a symmetric tensor of the 2nd rank (we will need
them to obtain the conservation law in the chr.inv.-form). We willimport
them from Zelmanov [9]. Like Zelmanov did in his theory, we denote
chr.inv.-projections of a symmetric tensbr as follows

T! . . .
To_ . 50 ki k= pik (2:137)
Yoo Joo

then, according to [9], we have

r T . .2 _
_0:@+ D+DygNK+criKl ZFRK: (2138)
Jo @ c

i
r T'=c——+cDK +2c Dl + A KK+
@ A (2:139)
+c% rN® RN FL

So forth, consider theurl of atensor eld the di erence between
the covariant derivatives of the tensor. From a geometric point of view,
it is the vortex (rotation) of the eld. Thabsolute curlis the curl of
ann-dimensional tensor eld in an-dimensional space. The curl of an
arbitrary four-dimensional vector eld is a covariant antisymmetric
tensor of the 2nd rank, which is de ned as follows

@ @

@ @&
wherer A is the absolute derivative & with respect to the coordi-
natex

F =r A r A (2:140)

r-A=— A (2:141)

The curl, contracted with the four-dimensional absolutely antisym-
metric discriminant tensdg (2.65), is the pseudotensor

|
@ @
& o @ @

See Y98 in the well-known book authored by Peter Raschewski [18]. Actually, the
curl of atensor eld is not the tensor (2.140), but its dual pseudotensor (2.142), because
the invariance with respect to re ection is necessary for any rotations.

F =E rA r A =E
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In electrodynamicsk (2.140) is the electromagnetic eld tensor
(known also as the Maxwell tensor). Itis the curl of the four-dimensional
electromagnetic eld potentiah . Therefore, when considering elec-
trodynamics in terms of chronometric invariants, we will need formu-
lae for the chr.inv.-projections of the four-dimensional darl and its
dual pseudotensdf , expressed through the chr.inv.-projections of
the four-dimensional vector potential (2.81) that formed them.

Let us calculate the components of the durl, taking into account
that Foo= F%°= 0 just like for any other antisymmetric tensor. As a
result, after some algebra, we obtain

|
o wo @ 1@ .
Foi= 1 2 ?Fi @@ c @'
|
@ @, @ e,
k i K i
o @ cof @ | (2144)
@ @ , 1 @ Vk@i.

(2:143)
Fik = — =

FOO: —Vka+—Vk — + = (2:145)

+ 2 s Lyyn @, 1 Ghn (2:146)
C c C

a5 @ Yk Zm
@ @ c @& (2:147)

Orn 2
Go @ c@ <& (2:148)
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|
Fo _gFo _x @, 1@ '
== p—=h* —+>—=X  —F 2:149
Goo Goo @ c@ ¢ (&)

|
. . . R L
Flk —q oK FE = hlmhkn @m @n _A|k. 21
where (2.149, 2.150) are the chr.inv.-projections of the &url Re-
spectively, the chr.inv.-projections of its dual pseudotefisor are

; ) " ! #

F | F i ) 1 @ @ 1
o _ % _ wikm k m . (o
n = 20 = - == = _ ; (2:151
"o ' Qoo 2@ @ o\ (2151
|
ik _ wikm @ 1 @nm .
e e e ce

whereF,'=go F '=go E' F can be calculated using the men-
tioned components of the cufl (2.143 2.148).

(2:152)

2.6 Laplace's operator and d'’Alembert's operator

Laplace's operator known as the Laplacian, is the three-dimensional
derivation operator having the following form
=rr =r2= gkriry: (2:153)

Its four-dimensional generalization in a pseudo-Riemannian space
is dAlembert's general covariant operator

=g rr : (2:154)

In the Minkowski space, the operators take the form

@ , @ , @

- el @@ ead (2:159)
_1eé @ @ @ _1é .
@ @@ @@ @@ @ Y

Our task is to apply dAlembert's operator to scalar and vector elds
in a pseudo-Riemannian space, and also to present the results in the chr.
inv.-form. At rst, we apply dAlembert's operator to a four-dimensional
scalar eld' , because in this case the calculations are much simpler (the
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absolute derivative of a scalar eld ' does not contain the Christo el
symbols, so it becomes the ordinary derivative)

@ @ @ .

@ @&
At rst, we formulate the components of the fundamental metric

tensor in terms of chronometric invariants. For tifecomponent, ac-

cording to (1.18), we havg® = h*. Theg® components are obtained
from the linear velocity of the space rotatigr= cgo'p%

(2:157)

g% = —|91: & (2:158)
C" Qoo
Theg® component can be obtained, based on the main property of
the fundamental metric tensor, whichgs g =g . Setting = =0
in the mentioned property, we obtain

g 9° =900g®+gig” = 5=1, (2:159)
then, taking into account that

w 2 1 w
Qo= 1 =z %i = M 1 @ (2:160)

we obtain the formula

g¥=—=— _ 1 ZwuV: (2:161)
1 Y ¢
c2
Substituting the obtained formulae into' (2.157) and replacing
the ordinary derivation operators with the chr.inv.-derivation operators,

we obtain the dAlembertian of the scalar eld in the form, expressed
through only chronometrically invariant quantities

1 @ i '

1@ hik @ = (2:162)
c2 @2 @| @k

where, in contrast to the ordinary operators, is the chr.inv.-dAlem-

bert operator, and is the chr.inv.-Laplace operator

10w _@ (2:163)

c2 @2 @i @k’
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@ .

@ @k

So forth, we are going to apply dAlembert's operator to an arbitrary
four-dimensional vector eldA

K rore = hk

= g (2:164)

A=g rrA: (2:165)

Since A is a four-dimensional vector, the chr.inv.-projections of
this quantity are calculated as for any vector

T=b A =bg rrA; (2:166)
B=h A=hgrrA: (2:167)

In general, to obtain the dAlembertian in the chr.inv.-form for a vec-
tor eld in a pseudo-Riemannian space is not a trivial task, because the
Christo el symbols are not zeroes in a pseudo-Riemannian space, so the
auxiliary formulae for the chr.inv.-projections of the second derivatives
take dozens of pages

After some di cult algebra, we obtain the required formulae for
the chr.inv.-projections of the dAlembertian of the vector efd in
the four-dimensional pseudo-Riemannian space (space-time of General
Relativity). The formulae that we have obtained have the form

1 ' '
= sghd @E% Fa
. 1 1 D 1
+ hik f’k’—gn hk = @ (Dkn Am) " + @%
Lok @ ik i mk (2:168)
D m Gk gAiqu +3F|F @DmkD
D 1 1.
g md" G DR+ CHY R Ot An) "

This is one of the reasons why practical applications and theoretical problems of
the electromagnetic eld theory are in most cases calculated in a Galilean reference
frame in the Minkowski space (space-time of Special Relativity), where the Christo el
symbols are zeroes. As a matter of fact, the general covariant notation hardly permits
unambiguous interpretation of calculation results, unless they are formulated with phys-
ically observable quantities (chronometric invariants) or demoted to a simple speci ¢
case, like that in the Minkowski space, for instance.
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B = Ai+c_:ng1DL+A;iqki+g%+
+C—12D|'(+AkI %k ég F! éF‘%I+
+C—12F'<@%I % DM + AT @Qn:+@qukF'+
¢ 2 jad"F SDF+ D DAl @ (2169)
@ 1@ g
ol By Db @Prs e DREAT
a ., a

. i
Em DII'1+AY: + Il(n @m km @n '
where ' and ( arethe results of applying the chr.inv.-dAlembert
operator (2.163) to the quantities= % andg' = A', which, in turn,

are the chr.inv.-projections of the vectér,

.1 @ K @ .
7 "aar (2:170)
=184 | G 2:171)

1T T eaer

The main criterion for correct calculations in such a complicated
case as here (the chr.inv.-projections of the dAlembertian of a vector
eld, which resulted in the formulae 2.168 and 2.169) is Zelmanov's
rule of chronometric invariance: Correct calculations make all the
terms in the nal equations chronometrically invariant quantities. That
is, they consist only of chr.inv.-quantities, their chr.inv.-derivatives, and
also of the chr.inv.-properties of the reference space. If at least one error
was made in the calculations, the terms of the nal equations will not
be chronometric invariants.

The dAlembertian of a tensor eld, equated to zero or not zero,
gives thed’Alembert equationgor this eld. From a physical point of
view, these are the equations of propagation of the eld waves. If the
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dAlembertian of a eld is not zero, these are the equations of wave prop-
agation enforced by the eld-inducing sources (the so-callatembert
equations with sourcgsFor instance, the sources of an electromagnetic
eld are electric charges and currents. If the dAlembert operator of a
eldis zero, then these are the equations of free wave propagation not re-
lated to any sources (tlAlembert equations without sourgedf the
space-time region under consideration, besides the tensor eld in the
guestion, is also lled with another medium, then the dAlembert equa-
tions will have an additional term or terms characterizing the medium,
which can be obtained from the equations that determine it.

2.7 Conclusions

We are now ready to outline the results of this Chapter. Apart from
general knowledge of tensors and tensor algebra, we have obtained some
tools to facilitate our calculations in the next Chapters. The equality to
zero of the absolute directional derivative of the dynamic vector of a
particle along its trajectory sets the equations of motion of the particle.
The equality to zero of the divergence of a vector eld sets the Lorenz
condition and the continuity equation for the eld. The equality to zero
of the divergence of a 2nd rank symmetric tensor sets the conservation
law, and the equality to zero of a 2nd rank antisymmetric tensor (and
also of its dual pseudotensor) set the Maxwell equations. The curl of a
vector eld, applied to an electromagnetic eld, is the electromagnetic
eld tensor (Maxwell tensor). The dAlembert equations for a eld are
the equations of propagation of the eld waves.

This is a short list of possible applications of the mathematical ap-
paratus at our disposal. Therefore, if we now come across an antisym-
metric tensor or a di erential operator, we can simply use the templates
we have already obtained in this Chapter.




Chapter 3 Charged Patrticles in
the Pseudo-Riemannian Space

3.1 Problem statement

In this Chapter, we will create a theory of the electromagnetic eld and
charged particles in the four-dimensional pseudo-Riemannian space,
which is the basic space-time of General Relativity. The peculiarity that
makes our theory di erent from the ordinary relativistic electrodynam-
ics, is that all equations of the theory will be given in the chr.inv.-form,
i.e., expressed through physically observable quantities.

An electromagnetic eldis usually considered as avector eld ofthe
electromagnetic four-dimensional potentfal in the four-dimensional
pseudo-Riemannian space. Its time component is known actter
electromagnetic potential, and its spatial components make up the so-
calledvector electromagnetic potential. The four-dimensional elec-
tromagnetic potentiah in CGSE and Gaussian systems of units has

the dimension
A [gram™@cm*@sec!]: (3:1)

Itis obvious that the componeritsaindA' have the same dimension.
Therefore, when studying an electromagnetic eld, we have a substan-
tial di erence from studying a gravitational eld: according to the the-
ory of chronometric invariants, the gravitational inertial fofeeand
the gravitational potentialv (1.38) are only functions of the geomet-
ric properties of the space, while electromagnetic elds ( elds of the
electromagnetic potenti@l ) have not yet received a geometric inter-
pretation, so we have to study an electromagnetic eld as an external
vector eld introduced into the space.

The equations of Classical Electrodynamics Maxwell's equations
that determine the relationship between the electric and magnetic com-
ponents of the electromagnetic eld were obtained long before theo-
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retical physics adopted the terms of Riemannian geometry and even the
Minkowski space of Special Relativity. Later, when electrodynamics
was set forth in Minkowski space under the narekativistic electro-
dynamics Maxwell's equations were obtained in a four-dimensional
form. Then Maxwell's equations were obtained in the general covari-
ant form, acceptable for any pseudo-Riemannian space. But, having the
general covariant form, Maxwell's equations became less visual, which
was the advantage of Classical Electrodynamics. On the other hand,
four-dimensional equations in the Minkowski space can simply be rep-
resented in terms of their scalar (time) and vector (spatial) components,
since in a Galilean reference frame they are observable quantities by def-
inition. But when we consider an inhomogeneous, anisotropic, curved,
rotating and deforming pseudo-Riemannian space, the problem of com-
paring the vector and scalar components of the general covariant equa-
tions with the equations of Classical Electrodynamics becomes non-
trivial. Then the following question arises: what quantities are physi-
cally observable in relativistic electrodynamics?

Therefore, the equations of relativistic electrodynamics must be for-
mulated in the pseudo-Riemannian space, in terms of the physically ob-
servable components of the electromagnetic eld potential as well as
the physically observable properties of the space. We will solve this
problem using the mathematical apparatus of chronometric invariants,
i.e., projecting general covariant quantities onto the time line and the
spatial section associated with a real observer. The result that we are
going to get with this method will be apbservable generalizatioof
the fundamental quantities and laws of relativistic electrodynamics. In
addition, Classical Electrodynamics will be obtained as a special case
taking into account the e ects of the physical and geometric properties
of the reference space of the observer.

3.2 The observable components of the electromagnetic eld ten-
sor. The eld invariants

In accordance with the basics of electrodynamics, the tensor of an elec-
tromagnetic eld is the curl of the four-dimensional potental of the

eld. The electromagnetic eld tensor is also referred toMaxwell's
tensor

F=rAr A= —_— (3:2)



3.2 The electromagnetic eld tensor. The eld invariants 67

Itis easy to see that this formula is a general covariant generalization
of the three-dimensional quantities of Classical Electrodynamics

1k
E=r E@’

whereE andFt are, respectively, the strength vectors of the electric and
magnetic eld components, the scalaris the scalar potential of the
electromagnetic eld, the vectok is the spatial vector-potential of the
electromagnetic eld, and

!r ={—@)++@+k—@) (3:4)
@ @y @
is the gradient operator in the three-dimensional Euclidean space.

At rst, we are going to determine those components of the electro-
magnetic eld tensoF , which are physically observable quantities in
the four-dimensional pseudo-Riemannian space. Then, we will nd are-
lationship between the observable quantities and the electric strEngth
and the magnetic strengtt of the electromagnetic eld in the frame-
work of Classical Electrodynamics. Then the strength vectors will be
obtained in the pseudo-Riemannian space, which in general is inhomo-
geneous, anisotropic, curved, rotating and deforming.

It is important to pay attention to the following. Since in the Min-
kowski space, i.e., in the space-time of Special Relativity, in an inertial
reference frame (the one that moves linearly with a constant velocity)
the metric is

H = rotA; (3:3)

ds =c?dt® dx¥ dy? dZ; (3:5)
and, hence, the components of the fundamental metric tensor are
Goo=1; 0i=0;, ogn=0g2=0g:3= 1: (36)

there is no di erence between the covariant and contravariant compo-
nents ofA (in particular, this is why all calculations in the Minkowski
space are much simpler)

"= A= A% A= A: (3.7)

In the pseudo-Riemannian space (and in Riemannian spaces in gen-
eral) there is a di erence, because the metric has a general form. There-
fore, the scalar potential and vector-potential of an electromagnetic eld
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must be de ned as the chr.inv.-projections (physically observable com-
ponents) of the four-dimensional electromagnetic eld poteraial

':bAzﬁA“J:; g=hA =A: (3:8)
Joo
The other components & , are not chr.inv.-quantities. They are
formulated with thé andq' as follows
|
1 1 '
0 - vy = . = ) ERYE .
A cva A= G e (3:9)

w
1z

Note that, according to the theory of chronometric invariants, the
covariant chr.inv.-vectog; is obtained from the contravariant chr.inv.-
vectorq' by lowering the index using the chr.inv.-metric tenbgy i.e.,
gi = hik q". On the contrary, the ordinary covariant vectgr which is
not a chr.inv.-quantity, is obtained as a result of lowering the index using
the fundamental metric tensok; =g, A .

According to the formula for the square of an arbitrary vector (2.39),
the square of the potentidl in the accompanying reference frame is

AA =g AA ='2 hedgk="2 o (3:10)

and is real if 2> g?, imaginary if' 2<¢?, and zero if 2= ¢?.

Now, using the components of the poten#al (3.8, 3.9) in the def-
inition of the electromagnetic eld tensdf¥ (3.2), then formulating
the ordinary derivatives with the chr.inv.-derivatives (1.33) and using
the components of the curl of an arbitrary vector eld (2.143 2.150),
we obtain the chr.inv.-projections of the eld tender

. !
Fo _dFo _ .« @ 1@ ' _i .
-pﬁ —p—% h @k+c @ CzF' (3:11)

!
Fk=g gtF =hmpn g‘;” @@r: ?A”‘: (3:12)

Let us denote the chr.inv.-projections of the electromagnetic eld
tensor, as in Classical Electrodynamics

F

o .

E'= H¥ = Fk; (3:13)

@ﬂ’
o
=]
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so their covariant (lower-index) chr.inv.-counterparts are

k. @ 1@ o .
Ei = hgE" = @ @ @ P F; (3:14)
mn_ @ @k 2 _
Hik = himhnH™ = - i 315
k k & o ~ A (3:15)

while the mixed componentd, ™= HT are obtained fronH™ using
the chr.inv.-metric tensdry, so thatd, ™= hH'™. The space deforma-

tion tensorDj = %% (1.40) is also present in the formulae, but in a
hidden form: it appears in the formulae, when we substitute the compo-
nentsgk = hymg™ into the time derivatives.

We can also formulate other components of the electromagnetic
eld tensor F  with its chr.inv.-projectionsE' and H* (3.11), using
the formulae for the components of an arbitrary antisymmetric tensor
(2.112 2.115). We can do it, since the general formulae (2.112 2.115)
containE' andH in implicit form , regardless of whether they are
components of a curl or any other kind of antisymmetric tensor.

In the Minkowski space, since there is no acceleraBibmrotation
Aix and deformation®jy, the formula forE; becomes

o @' 1@, .
E = @, c @ (3:16)
or, in the three-dimensional vector form,
! 1 @
E=r"' 17
g (3:17)

which, apart from the sign, matches the formulafan Classical Elec-
trodynamics.

Now, we formulate the electric and magnetic strengths through the
components of the eld pseudotendor , which is dual to the Maxwell
tensorF = %E F (2.123). So forth, in accordance with (2.124),
the chr.inv.-projections of the pseudotenfor are

. F,l : :
Hi=p2; Ek=fk (3:18)
Joo

Using the formulae for the components of an arbitrary pseudotensor

F , which we have obtained in Chapter 2 (2.125 2.131), and also the
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above for_mulae f_oEi andHi (3.14, 3.15), we obtain expanded formu-
lae forH " andE *, which have the form
!

1 2! 1 -
H'= i —g;“ @@'g < Amn = 5" Hmn; - (3119)
!
. . ' "1 ' .
=k SR, _é@(n E%ﬂ = kg (3:20)

It is easy to see that the following pairs of tensors are dual conju-
gates:H ' andHmpn, E K andE,. The chr.inv.-pseudovectdt ' (3.19)
includes the term

I
1||. @m @n._l..' . .
E Imn @ @m - E Imn rnqm rmqn : (321)
which is the chr.inv.-curl of the three-dimensional vector ¢lgl There
is also the term

1 imn 2' 2' i

=" — =— 3:22

2 ¢ Amn= (3:22)
where '=21"MA,, is the chr.inv.-pseudovector of the angular ve-

locity with which the space rotates. In a Galilean reference frame in
the Minkowski space (since there is no acceleration, rotation and de-
formations), the obtained formula for the magnetic strength chr.inv.-
pseudovectoH ' (3.19) takes the form

|
wimn @m @n. .

o1
| — - ~i ~n .
H'= > a0 . (3:23)
which in the three-dimensional vector form is
H = rotA: (3:24)

We see that the structure of a pseudo-Riemannian space a ects an
electromagnetic eld, located in it. As a result, the physically observ-
able chr.inv.-vectors of the electric strendih(3.14) and the magnetic
strengthH ' (3.19) of the electromagnetic eld depend on the gravita-
tional potential and rotation of the space.

The same e ect will as well appear in the Minkowski space, if a non-
inertial reference frame (which rotates and moves with acceleration) is
assumed to be the reference frame of the observer. But in the Minkow-
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ski space, we can always nd a Galilean reference frame (which is not
true in a pseudo-Riemannian space), because the Minkowski space itself
does not accelerate reference frames and neither rotates nor deforms it.
Therefore, such e ects in the Minkowski space are strictly relative and,
therefore, can be removed by coordinate transformations.

In relativistic electrodynamics, there are two invariants characteriz-
ing the electromagnetic eld. They are called tBlectromagnetic eld
invariantsand formulated as follows

JW=F F =2FF%+ FyF*; (3:25)
b=F F =2FiF%+FyF* (3:26)

The rst invariant is a scalar, while the second is a pseudoscalar.
Formulating them with the components of the electromagnetic eld ten-
sor, we obtain

Ji= HxH® 2BE; 3 =""(EnHin EHmm; (3:27)

and, using the formulae for the components of the eld pseudotensor
F , which we have obtained in Chapter 2, we can re-write the eld
invariants in the following form

Ji= 2EE" H{H'; J= 4EH" (3:28)

Since the above quantitids and J, are invariants, we arrive at the
following conclusions:

a) If the squares of the electric and magnetic strengths are equal
E2=H 2in one reference frame, then this equality remains valid
in any other reference frame;

b) If the electric and magnetic strengths are orthog@hihl ' = 0in
one reference frame, then this orthogonality remains valid in any
other reference frame.

An electromagnetic eld, where the conditid& = H 2 and/or the
condition E{H ' =0 are true, i.e., one or both of the eld invariants
(3.28) are zeroes, is known as motropic electromagnetic eld In
this case, the term isotropic does not mean the location of this eld in
the light-like region of the pseudo-Riemannian space (as is assumed in
geometry), but rather the property of the eld to radiate equally in any
direction in the three-dimensional space (spatial section).
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The electromagnetic eld invariants can be also formulated with the
chr.inv.-derivatives of the scalar chr.inv.-potentiand the vector chr.
inv.-potentialg' (3.8) as well as the chr.inv.-properties of the reference
space of the observer. After some algebra based on the formulae (3.27),
we obtain the desired formulae

" !
o ohmn @ @ @m @ @
Ji=2 h"h @ @ @ h @ @K

2k @ @ 1 @ @, 8 i (390

c @@ ¢ @ @ c

#
2' wimn @i 2' @I i 2' @i i ' i
T "ed@ TFael &
: ! #
J2=1- wimn @m @n i i
: @ o ¢ ! (3:30)
@ la ..
@I c @ C2 !

We can nd physical conditions speci ¢ of isotropic electromag-
netic elds, by setting the formulae (3.29, 3.30) equal to zero. Doing
this, we see that the conditions for the equality of the electric and mag-
netic strength&£2 = H 2 and their orthogonalitf;H ' = 0in a pseudo-
Riemannian space depend not only on the properties of the electromag-
netic eld itself (the scalar potentidl and the vector potentiaj'), but
also on the acceleratidfl, rotationAy and deformatiomj of the space
itself. In particular, the vector; andH ' are orthogonal, if the space is
holonomic ' =0, and the eld of the electromagnetic vector potential

i imn _@m @ _—
g' does not rotaté a o 0.

3.3 Maxwell's equations and their observable components. Con-
servation of electric charge. Lorenz' condition

In Classical Electrodynamics, the correlations of the electric strength
E [gram™@cm 2 sec?] of an electromagnetic eld to its magnetic
strengthH [gram™ cm * sec ] are determined baxwell's equa-
tions which had originally been derived from a generalization of ex-
perimental data. In the middle of the 19th century, Maxwell showed
that if an electromagnetic eld is induced in emptiness by given charges
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and currents, then the resulting eld is determined by the two groups of
equations [20]

9
1&_4, %
ot ¢ @ c t % ' (3:31a)
divE=4 '
o 8
e+ @ - ° S (3:31b)

diveF =0

where [gram™cm 32sec 1] is the electric charge density (namely
the amount of the chargee [gram*™ cm®> sec ] within 1 cm?®) and+

[gram'™ cm 12 sec 4] is the current density vector. The equations con-
taining the eld-inducing sourcesand+ are known as thést group of
the Maxwell equationsand the equations that do not contain the eld
sources are known as t@ad group of the Maxwell equations

The rst equation in the 1st group is Biot-Savart's law, the second is
Gauss' theorem, both in di erential notation. The rst equation in the
2nd group is the di erential notations of Faraday's law of electromag-
netic induction, and the second is the condition according to which no
magnetic charges exist. In total, there are 8 equations (four vector and
four scalar ones) in 10 unknowns: three component&,dhree com-
ponents o, three components gf and one component of

A correlation between the eld sourcesand+t is set by thdaw of
conservation of electric charge

% +div$+=0; (3:32)

which is a mathematical notation of the experimental fact that an elec-
tric charge cannot be destroyed, but is merely re-distributed between
charged bodies in contact.

Now we have a system of 9 equations in 10 unknowns, so the system
de ning the eld and its sourcesiis still inde nite. The 10th equation that
makes the system de nite (the number of equations and unknowns must
be the same) ikorenz' conditionthat connects the scalar and vector
potentials of the eld as follows

%% + divA=0: (3:33)
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The Lorenz condition is derived from the fact that the scalar poten-
tial ' and the vector potenti# of any electromagnetic eld, related to
the strength vector® andF with (3.3), are de ned ambiguousl¥ and
H in (3.3) remain unchanged, if we replace

! 1@
A=A0+r . v -0 == .
1 C@’

where is an arbitrary scalar. Obviously, the ambiguous de nition of
the' andA permits other correlations between the quantities except for
the Lorenz condition. Nevertheless, it is the Lorenz condition, which
enables the transformation of the Maxwell equations into wave equa-
tions. This is how the Lorenz condition does the transformation.

The equatiordivF =0 (3.31) is satis ed, if we assumi = curlA.
In this case, the rst equation in the 1st group (3.31) takes the form

rot % + %%éz 0; (3:35)

which has the solution

(3:34)

1k
E= r E@'

SubstitutingH = curlAandE (3.36) into the 1st group of the Max-
well equations, we obtain

(3:36)

1@'! _

1 @A ! : 4 .
g@ r divA+ E@ = ? ‘I", (337)
1@ .
"+ 2= divk = 4 3:38
oo WV , (3:38)
where = é‘% + é‘% + % is the ordinary Laplace operator.

Imposing the Lorentz condition (3.33) on the potentiaendA, we
transform the equations of the 1st group to the form

= 4 ; (3:39)
— 4 . .
A= —t (3:40)

where = %% is the ordinary d’Alembert operator.
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Applying the dAlembert operator to a eld gives the equations of
propagation of the eld waves (see Y2.6). For this reason, the obtained
result means that if the Lorenz condition is true, then the 1st group of
the Maxwell equations (3.31) is a system of the equations of propaga-
tion of waves of the scalar and vector electromagnetic eld potentials
(in the presence of the eld-inducing sources electric charges and
currents). The equations will be obtained in the next section, Y3.4.

Next, we are going to consider the Maxwell equations in the four-
dimensional pseudo-Riemannian space to obtain them in the chr.inv.-
form, i.e., formulated with physically observable quantities.

In the four-dimensional pseudo-Riemannian space, the Lorenz con-
dition has the general covariant form

r A=%+ A =0; (3:41)

which is the condition of conservation of the four-dimensional elec-
tromagnetic eld potential. The law of conservation of electric charge

(continuity equatiopis
r j =0; (3:42)

wherej is the four-dimensionaturrent vectoiknown as theshift cur-
rent The chr.inv.-projections of the current vectpr are the electric
charge density

1 jo
= —p—=; 3:43
C " Joo ( )

and the spatial current density. Using the chr.inv.-formula for the di-
vergence of a vector eld (2.107), we obtain the Lorenz condition (3.41)
and the continuity equation (3.42) in the chr.inv.-form

1@, CoLl_ |
E—+ED+ riql ?Fiql—o, (344)
@ g1

—+ D+ 1] —C2F.1'=O: (3:45)

Here, D=hkDy =Dl = an’n is the trace of the space deforma-
tions rate tensor (1.40), the physical sense of which is the relative ex-
pansion rate of an elementary volume. The sigrstands for a chr.inv.-
derivative, determined by analogy with the sigief a general covariant
(absolute) derivative, see formulae (1.48 1.54).
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Becausé FSl.38) contains the rst derivative of gravitational poten-
tialw=c*(1 " Too), the term3; g takes into account the fact that the
ow of time is di erent at the opposite walls of an elementary volume.
The formula for the gravitational inertial fordg (1.38) also takes into
account the non-stationarity of the space rotation (if any).

Besides, since the chr.inv.-derivation operators (1.33) have the form

@ 1 @ @ 0 1.0 .o
@ 1 g @ @ @ 2 @

the condition of conservation of the vector efd, namely the equa-
tions (3.44, 3.45), directly depend on the gravitational potential and the
velocity with which the space rotates.

The chr.inv.-derivatives2 and-2 are the observed time variations
of the chr.inv.-quantities and . The chr.inv.-quantities D and D are
the observed time variations of the spatial volume of'tlend .

If there are no gravitational inertial forces, and the space does not
rotate or deform, then the obtained chr.inv.-formulae for the Lorenz con-
dition (3.44) and the charge conservation law (3.45) take the form

. p—
1@ @ @nh .
c @+ & & g =0; (3:47)
. p_
@ @' @n h;
-+ = =——j'=0; 3:48
@ @ @ ° (3:48)
which in a Galilean reference frame in the Minkowski space become
1@, @ @ 6 Q@
——+ = =0; —+ = =0; 3:49
c@ @& @ & (3:49)
or, in the ordinary vector notation
1@ .. @ .
—— +divA=0; — +divt=0; 3:50
c@ @ t (3:50)

which completely matches the Lorenz condition (3.33) and the charge
conservation law (3.32) in Classical Electrodynamics.

Let us turn to the Maxwell equations. In a pseudo-Riemannian space
each pair of the equations merge into a single general covariant equation

4
r F =?J; r F =0; (351)
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whereF is the contravariant (upper-index) form of the electromag-
netic eld tensor, and= s its dual pseudotensor. Using the chr.inv.-
formulae for the divergence of an antisymmetric tensor of the 2nd rank
(2.121, 2.122) and for its dual pseudotensor (2.135, 2.136), we arrive at
the Maxwell equations in the chr.inv.-form

1 2
rE SH%A=4 g
i ! =1, (352
. . l . . 4
rkHIk C_lekHlk % %+DEI :4?]'%
9
1
riH! ZE%A=0 g
i ! =1l.  (353)
: 1 . 1 i :
rgE K @FkElk < % +DH':0§

The above chr.inv.-Maxwell equations were rst obtained, indepen-
dently, by José del Prado and Nikolai Pavlov [25] (Zelmanov asked these
students to do it, and explained how to do it).

Now, we transform the chr.inv.-Maxwell equations to express them
throughE' andH ' as unknowns. Getting thE' andH ' from their
de nitions (2.111, 2.124)

1
Hi= 3 "imnH mn, (3:54)

2™ @ c @

and multiplying the rst equation byP9, we obtain

!
E ik —n ikm l_ F @l 1 @m — "ikmEm; (355)

) 1
"R H™ =S B 3R H™ = HPY: (356)

..iqu P = 5

NI =

Substituting the result a4’ = "™kH | into the rst equation of the
1st group (3.52), we bring it to the form

riE % oH™=4 (3:57)

where '=1"IMA, s the chr.inv.-pseudovector of the angular ve-
locity with which the space rotates. SubstitutiBd = " *™E, (3.55)
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into the rst equation of the 2nd group (3.53), we obtain
i 2 m_n- .
riH +E mE™=0: (3:58)

Then, substitutingd® =" ™kH . into the second equation of the 2nd
group (3.52) we obtain

. 1 .
rk n mIkH m ? Fk"mIkH m

}E@I .\ @anE|§= 4_J| (359)
@ @

c Cc

and, multiplying both sides of the equation%ﬁ and taking r " ™k=0
into account, we bring this formula (3.59) to the form

wikm e H mpﬁ C_lznikkaH mpﬁ
}_@Eipﬁ 4_ 'ph (3:60)
c@ -2
or, in the other notation
: P— 1 @ - 4 .P-
kg H o h L @R =4 PR, 361
k m C@ C J 1 ( )

wherej’ pﬁisthe volume density of the currefitand B = ry 5 R
is the physical chr.inv.-divergence (2.106), which takes into account the
fact that the ow of time is di erent at the opposite walls of an elemen-
tary volume.

The obtained equation (3.60) is the chr.inv.-notation for the Biot-
Savart law in the pseudo-Riemannian space.

Substitutinge k= "kmg_(3.55) into the second equation of the
2nd group (3.53), after similar transformations we obtain

wikm g Em h +%£’)H h =0; (3:62)

which is the chr.inv.-notation for the Faraday law of electromagnetic
induction in the pseudo-Riemannian space.

So, the nal system of 10 chr.inv.-equations in 10 unknowns (two
groups of the Maxwell equations, the Lorenz condition, and the conti-
nuity equation), which completely determine an electromagnetic eld
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and its sources in the pseudo-Riemannian space, is

HE S nHT=4 g
s, (363)
. P 1@_P- 4 P §
"KM Hm h Z—E"h==—j h}
riH S mET=0 g
sl (3:64)
. - 1@ §
wikm g, g PR+ 2 @y iPh 2 :
k Em + C@ 0
1@ + _ D+ Bg =0 the Lorenz condition (3:65)
c @ c | ’ .
g + D+ B j'=0 the continuity equation.  (3:66)

In a Galilean reference framen the Minkowski space, the determi-
nant of the chr.inv.-metric tensor ish= 1, so the space does not rotate
( m=0)ordeform D = 0), and it does not contain gravitational elds
(F=0). In this case, the chr.inv.-Maxwell equations (3.63, 3.64) that
we have obtained in the pseudo-Riemannian space of General Relativ-
ity transform into the Maxwell equations in Classical Electrodynamics
written in the tensor form

9
@l
@ | : |
glkm T @ }@':4_ ; %l, (3:67)
@k @m c @ c 1
[ 9
@.ll
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The same equations, but written in the ordinary vector notation, are
similar to the classic Maxwell equations in the three-dimensional Eu-
clidean space (3.31). Besides, the chr.inv.-Maxwell equations obtained
in the four-dimensional pseudo-Riemannian space (3.64) show that if
the space does not rotate, then the chr.inv.-divergence of the magnetic
eld strength is zeroriH '=0. In other words, the magnetic compo-
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nent of an electromagnetic eld remains unchanged, if the space is holo-
nomic. At the same time, the divergence of the electric eld strength in
this case is not zerariE'=4  (3.63), so the electric component is
linked directly to the charge density Hence, a conclusion on mag-
netic charge , if it actually exists, should be linked directly to the eld
of rotation of the space itself.

3.4 D'Alembert's equations for the electromagnetic potential, and
their observable components

As we have already mentioned in Chapter 2, dAlembert's operator ap-
plied to a eld gives the equations of propagation of the eld waves.
For this reason, the dAlembert equations for the scalar electromagnetic
potential' are the wave propagation equations for the scalar 'eld
while for the spatial vector-potenti# these are the wave propagation
equations for the vector eldx.

The general covariant dAlembert equations for the electromagnetic
eld potential A in the four-dimensional pseudo-Riemannian space
were obtained in the end-1950s by Stanyukovich [26] using the 1st group
of the general covariant Maxwell equationsF = % j (3.51)and
the Lorenz conditiom A =0 (3.41). Stanyukovich's equations are

4

A RA= —j; (3:69)

whereR =g R is Ricci's tensor (the contraction of the Riemann-

Christo el curvature tensoR ). The termR A vanishes from the
left hand side of the equations, if the Ricci tensor is zero, so the space
metric satis es Einstein's eld equations away from gravitating masses.
This term can be neglected in the case, where the space curvature is not
signi cant. But, even in the Minkowski space, the problems of physics
can be considered in the presence of acceleration and rotation. There-
fore, even in the framework of this approximation, it is possible to re-
veal, for example, the in uence of the rotation of the observer's refer-
ence body and the acting gravitational inertial force on the observed
propagation velocity of electromagnetic waves.

The reason for simpli cations is that the chr.inv.-projections of the
dAlembert equations in their complete form are a very di cult task to
deduce. The resulting equations will be so bulky to make any unambigu-
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ous conclusions. Therefore, we will limit the scope of our work to trans-
forming the dAlembert equations into the chr.inv.-tensor form for an
electromagnetic eld in a non-inertial reference frame in the Minkowski
space. But this does not a ect the other sections in this Chapter, where
we go back to the pseudo-Riemannian space of General Relativity.
Calculating the chr.inv.-projections of the dAlembert equations

4 _
A= ] (3:70)

based on their general formulae (2.168, 2.169), we obtain
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where we take into account the observable charge densit% in

the space that does not deform, and in the linear approximation (with
higher-order terms withheld, because we assume that the eld of grav-
itation and the eld of the space rotation are weak).

We see that the physically observable chr.inv.-properties of the ref-
erence space (i.e., the quantitle's Ay, Dix, Lm) constitute some ad-
ditional sources that together with the electromagnetic eld sources
' andj' induce waves travelling along the electromagnetic eld.

Let us now analyse the results. At rst, consider the obtained equa-
tions (3.71, 3.72) in a Galilean reference frame in the Minkowski space.
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Here the metric takes the form as in the formula (3.5) and, therefore, the
chr.inv.-dAlembert operator (2.163) transforms into the ordinary

dAlembert operator = 312@ = . Then the obtained equations
(3.71, 3.72) take the simplest form
. 4 .
‘=4 q = ?j'; (3:73)

which completely matches the corresponding equations in Classical
Electrodynamics (3.39, 3.40).

Now we return to the obtained chr.inv.-dAlembert equations (3.71,
3.72). To make their analysis easier we denote all terms on the left hand
side of the scalar equation (3.71) Band those of the vector equation
(3.72) asB'. Transpositioning the variables into their rightful positions
and expanding the formulae for (2.163), we obtain

1@

?—@ W rire' =T+4 ; (3:74)

1 @q K R . _

?F hm rmrkql—Bl+?Jl, (375)
whereh® r; ri= isthe chr.inv.-Laplace operator. If the eld poten-

tials' andq' are stationary, then the dAlembert equations become the
Laplace equations

" =T+4 (3:76)
d=9+%T; (3:77)

i.e., they characterize static states of the eld.

A eld is homogeneous along a direction, if its ordinary derivative
with respect to this direction is zero. A eld in a Riemannian space is
homogeneous, if its general covariant derivative is zero. If a eld is con-
sidered in the accompanying reference frame, then the observable inho-
mogeneity of the eld is characterized by a non-zero chr.inv.-derivative

ri of the eld potential [9,11 13]. On the contrary, if the chr.inv.-
derivative r; is non-zero, then the eld isbservedas homogeneous.

So, the chr.inv.-dAlembert operator is the di erence between
the term characterizing the observable eld non-stationarity and the
term characterizing the observable eld inhomogeneity. If the electro-
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magnetic eld is stationary and homogeneous, then the left hand side of
the dAlembert equations (3.74, 3.75) is zero: the eld does not generate
electromagnetic waves (it is not a wave eld).

In an inhomogeneous stationary eld (wheng, O and(l-:g: 0),
the dAlembert equations (3.74, 3.75) characterize a standing wave

herire' =T+4 ; (3:78)
mk i_ iy 4o .
h™ rmrkq —B+?j. (3:79)

In a homogeneous non-stationary eld (wherg=0 and%é?, 0),
the dAlembert equations describe the eld change with time depending
on the eld-inducing sources (charges and currents)

1 @
§—=T+4 ; (3:80)
1 @q | . .

> =B+ " (3:81)

In an inertial reference frame (where the Christo el symbols are
zero), the general covariant derivative is equal to the ordinary derivative

ri' = gi, so the dAlembert chr.inv.-scalar equation (3.74) is
1 @I ) @l
= hk_———=T+4 : 3:82
ce "aa (382)

As is known from the oscillation theory in mathematical physics,
the terma in the ordinary dAlembert equations

- i @ g|k @
a2 @ @ @
is the absolute value of the three-dimensional velocity of elastic oscil-
lations propagating along the eld.

Expanding the chr.inv.-derivatives (3.46), we bring the d’Alembert
scalar equation (3.82) to the form

1, @ @ | @
C2 CZ @2 @I@k C2 W@ @
l |k@|y@

c? wh @ @ Vka

(3:83)

(3:84)
+

—T+4;
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whereV? = hy VK, and the second chr.inv.-derivative with respect to
time formulates with the ordinary derivatives as follows

e __1 @, 1 @@
@ | W@ 5, w @@

c? c?

(3:85)

We can now see that the square of the linear velogityith which
the space rotates has a greater e ect on the propagation of the eld
waves, than the observable non-stationarity of the eld, i.e., the term
%. In the limiting case, where! c, the dAlembert operator becomes
the Laplace operator, therefore, the dAlembert wave equations become
the Laplace stationary equations. At low velocities of the space rotation
(v c), observable electromagnetic waves propagate with the velocity
of light.

In general, the modulus of the observable wave velocity of the scalar
electromagnetic potential- y takes the form

Ve = ﬂciz : (3:86)
1z
Itis obvious that the chr.inv.-quantity (3.85), which is the observable
acceleration of the scalar potentiaglis quite di erent from the analo-
gous coordinate quantity; the stronger the gravitational potential, the
greater the charge rate of the gravitational potential with time
@_,w*e 1 e
@ 2 @ 2 w@aoa’
In the limiting case, whera/! ¢? (approaching the state of grav-
itational collapse as the state on the surface of a gravitational collap-
sar), the observable acceleration of the scalar electromagnetic potential
(3.85) becomes in nitesimal, while the coordinate rate of the scalar po-
tential growth (3.87), to the contrary, becomes in nitely large. But un-
der ordinary conditions, the gravitational potentiaheeds only smaller
corrections to the acceleration and the rate of the electromagnetic scalar
potential growth.
All that has been concluded above about the chr.inv.-scalar quan-

tity % is also true for the chr.inv.-vecto%, because the chr.inv.-

(3:87)

' _ 1 ik . .
dAlembert operator = gg h % is di erent from the men-
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tioned scalar and vector functions in only the second term the Laplace
operator, in which the chr.inv.-derivatives of the scalar and vector quan-
tities are di erent from each other, i.e.

. _ @ @
o dEgt (3:88)
If the gravitational potential and the velocity with which the space
rotates are in nitesimal, then the chr.inv.-dAlembert operator for the

scalar electromagnetic potential becomes the ordinary dAlembert op-
erator
L _1@ ik @ .
2 @ @@’
so in this case electromagnetic waves, produced by the scalar potential
', propagate with the velocity of light.

ri

(3:89)

3.5 The Lorentz force. The energy-momentum tensor of an elec-
tromagnetic eld

Now we are going to deduce the chr.inv.-projections (physically observ-
able components) of the four-dimensional force, which is the result of
the action of an electromagnetic eld on an electric charge in a pseudo-
Riemannian space.

This problem will be solved for the two cases: a) for a point charge;
b) for a charge distributed in the space. In addition, we will deduce the
chr.inv.-projections of the energy-momentum tensor for an electromag-
netic eld.

In the three-dimensional Euclidean space of Classical Electrody-
namics, the motion of a charged particle in an electromagnetic eld is
described by the vector equation

dp _ e a4 . :

a-eE+E 15 1 o I (3:90)
wherep=mu is the three-dimensional momentum vector of the parti-
cle, andmis the particle's relativistic mass. The right hand side of this
equation is referred to as th®rentz force

The equation, characterizing the change of the kinetic (relativistic)
energy of the particle

2
E=md= g2 (3:91)

u2
1 =
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due to the work accomplished by the electric eld strength to displace it,
takes the three-dimensional vector form (in the framework of Classical

Electrodynamics)
dE

— = eEu; 392
gr = €Ed; (3:92)
and is also known as tHve forces theorem
In the four-dimensional form, thanks to the uni cation of energy
and momentum, in a Galilean reference frame in the Minkowski space,
the equations (3.90) and (3.92) take the joint form
du e dx
c—=-F U ; Uu =—4;
o ds ¢ ds
and are known as thiinkowski equationéF is the electromagnetic
eld tensor). Because the metric here is diagonal (3.5),
r

ds=cdt 1

(3:93)

I I I
> 2 2 2
u 5 _ dx N d_y N dz =

@ YT @ ta ta o G

and the components of the particle's four-dimensional velddityare
0_ 1 i u' : :
U= gq——; U = —-g——,; (3:95)

u? u?
1 2 c 1 2

whereu' = dd—f is its three-dimensional coordinate velocity. Because the
components of F U in the Galilean reference frame are

e EuU

0 _ . )
1 =
e i _ 1 i . € jkm . .
EF u = —e|i2 eE+Ee uH m ; (3:97)
c 1 %
C

then, in the Galilean reference frame, the time and spatial components
of the Minkowski equations (3.93) take the form

%E: eEu’; (3:98)
dp' i . € jkm i '
rite eE+Ee WHm; p'=mu: (3:99)
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The above relativistic equations, except for the sign on the right hand
side, match the live forces theorem and the equations of motion of a
charged particle in Classical Electrodynamics (3.90, 3.91). Note that
the di erence in the sign of the right hand side of the equations is deter-
mined only by the choice of the space signature. We use the signature
(+===). But, if we assume the signature«++), then the sign of the
right hand side of the equations will be the opposite.

Let us now consider this problem not in the Minkowski space, but
in the pseudo-Riemannian space of General Relativity.

The chr.inv.-projections of the four-dimensional momentum vector

=2F U gained by a charged particle in the pseudo-Riemannian
space from the interaction of the chamgef the particle with the elec-
tromagnetic eld that lIs the space, are

F
7=8FY . (3:100)
C " Joo
B = gpi U :S FiOU°+ FikU" : (3:101)

Given that the components of the are

Fvvi 1 : vi
. U= —g——; (3102
1 ¥ v c 1

2 2 2

0_- 4
U™= ¢

and taking into account the formulae for the chr.inv.-components of an

arbitrary curl (2.143 2.150), we obtain
!

_ e @ 1@ ° i :
T vace @ (3:103)
¢ 1 5
e gt @ 1@
C - | %) (3:104)
+ himhkn % @@r: 2_Aik Vk

The chr.inv.-scalaf, to within the multiplier c—lz is the work done
by the electromagnetic eld to displace the chaeg&he chr.inv.-vector
B', to within the multiplier%, represents the chr.inv.-force below acting
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on the charged particle due to the electromagnetic eld and called the
physically observablehr.inv.-Lorentz force
!

. . 1
'=cB = eE+ = kM Vi (3:105)

The alternating sign appears here because the square equation with
respect to% has two roots (1.63) in the pseudo-Riemannian space.
Plus in the Lorentz force stands for the particle's motion to the future
(with respect to the observer), and minus denotes the particle's mo-
tion to the past. In a Galilean reference frame in the Minkowski space,
there is no di erence between the physically observable tinaad the
coordinate time. Therefore, the Lorentz force (3.99) obtained from the
Minkowski equations has no alternating signs.

If the electric charge is not a point, but a distributed matter, then
the Lorentz force = %F U in the Minkowski equations (3.93) is
replaced by the four-dimensional vector of therentz force density

f = %F i (3:106)
where the four-dimensional current densjty= ¢ ; j' is determined
by the 1st group of the Maxwell equations (3.51)

c
i =—r F : 3:107
=g (3:107)
The chr.inv.-projections of the Lorentz force densityare
f 1_ .,
Y= -Ej" (3:108)
Joo c
! !
i oL ik ic Luikmy . (e
f'= E+EHkJ = E+E Hmik ; (3:109)

and in the three-dimensional Euclidean space they take the form

fo q 1
—=—-z=-E+ 3:110
P o t (3:110)
1
f= E+ < B (3:111)

whereq is the heat power density released in the current conductor.
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Transform the Lorentz force density (3.106), using the Maxwell
equations. Substituting (3.107) we arrive at

f=1p
C

FrF =
h i (3112)
F F FrF :

=

1
4

1
4

Transpositioning the mute indices and using the antisymmetry of
the Maxwell tensoF , we transform the second term to the form

FergF rF +r F =

1 1
= -F rF =-F r F
2 2
As a result, forf (3.112) and its contravariant form we obtain
!

(3:113)

1 1
f = — F F +- F F ; 3:114
" 3 ; ( )
I
1 1 '
f == F F +>g F F : 3:115
yu 29 ( )
Introducing the notation
1
1 1 ’
— F F +Xg F F =T : 3:116
we obtain the formula
f=rT : (3:117)

according to which the four-dimensional vector of the Lorentz force den-
sity f is equal to the absolute divergence of a quarifity called the
energy-momentum tensof the electromagnetic eld. The tensor
issymmetricT =T ,and its trace (given that the trace of the funda-
mental metric tensorig g = =4)iszero
|
1 1 '
T = g T = 4— F F + Z g g F F =
1 (3:118)
=— F F +F F =0:
4
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The chr.inv.-projections of the energy-momentum tensor are
. cT . _
g=—>; J=p==; Uk=ITK (3119
Joo Joo

where the chr.inv.-scalar is the observable eld density, the chr.inv.-
vectorJ' is the observable density of the eld momentum, and the chr.
inv.-tensorU K is the observable density of the eld momentum ux.

For the electromagnetic eld energy-momentum tensor (3.116) we
obtain

E2+H ?2
3= MEH (3.121)
Uk = qch* 4ﬁ E'EX+HH*; (3:122)

whereE?=hy E'EKandH 2=hy H 'H .
Comparing the obtained formula fgr(3.120) with that for the en-
ergy density in Classical Electrodynamics, we obtain

E2+ H?

W =
8 1

(3:123)

whereE? = (E; E) andH? = (H; /). We see that the chr.inv.-quantity
g is the observable energy densitf the electromagnetic eld in the
pseudo-Riemannian space.

Comparing the obtained formula for the chr.inv.-vecibr(3.121)
with that for Poynting's vector in Classical Electrodynamics we have

S= 41 EH (3:124)

from which we can see that thE is thePoynting observable vectan
the pseudo-Riemannian space.

The correspondence of the third observable compodé&n3.122)
to the quantities of Classical Electrodynamics can be established us-
ing analogies with continuum mechanics, where a similar tensor is the
three-dimensional stress tensor of an elementary volume of a medium.
Therefore, the above K is theobservable stress tensof the electro-
magnetic eld in the pseudo-Riemannian space.
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Expressing the left hand side of the identities for the Lorentz force
density (3.108, 3.109) through the chr.inv.-components of the electro-
magnetic eld energy-momentum tensor (3.120 3.122), we take into
account the equatioh =r T (3.117) and the formulae for chr.inv.-
components of the absolute divergence of an arbitrary symmetric tensor
of the 2nd rank (2.138, 2.139). Thus, we obtain

1 ; 1 . 1
g+qD+gDijU”+ ;i J' ?HJIZ EEijl; (3:125)
@k

@ +DJX+2 DF+ AK 3T+ UK gFk= |
1. P (3:126)
- Ek+EllkImH ijm :

The rst chr.inv.-identity (3.125) shows that the observable change
in time of the electromagnetic eld densitywith time depends on:

a) The rate of change of the observable volume of the space, lled
with the electromagnetic eld (the terwD);

b) The force caused by the space deformation (the @fitd 0y;

c) The e ect of the gravitational inertial force on the electromagnetic

eld momentum density (the terrf J');

d) The observable spatial variation (physical divergence) of the elec-
tromagnetic eld momentum density (the terf J'):

e) The magnitudes and mutual orientation of the current density vec-
tor j' and the electric strength vectBt (on the right hand side of
the identity).

The second chr.inv.-identity (3.126) shows the observable change in
time of the electromagnetic eld momentum densit§depending on:

a) The rate of change of the observable volume of the space, lled
with the electromagnetic eld (the termJX);

b) The force caused by the space deformation and the Coriolis force,
which are expressed by the te@nD¥ + A% Ji;

c) The e ect of the gravitational inertial force on the observable den-
sity of the electromagnetic eld (the tergiF);

d) The observable spatial variation of the eld streBsU';

e) The e ect of the observable Lorentz force density the quantity
fk= EX+ KMy ;i on the right hand side.
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In conclusion, we consider a particular case, where the electromag-
netic eld is isotropic. A formal de nition of isotropic elds made using
the Maxwell tensor [20] is a set of the two conditions

FF =0, FF =0; (3:127)

whichmeanthatthe eldinvarianty=F F andJ,=F F (3.25,
3.26) are zeroes. In the chr.inv.-notation, taking (3.28) into account, the
conditions take the form

E2=H 2 EH'=0: (3:128)

So, an electromagnetic eld in a pseudo-Riemannian space is ob-
served as isotropic, if the observable lengths of its electric and magnetic
strength vectors are equal, and the Poynting vet't@8.121) is zero

i c
J ==
4

nkmE, H L= 0: (3:129)
In terms of the chr.inv.-components of the energy-momentum tensor
(3.120, 3.121), the obtained conditions (3.128) also mean that

J=cq; (3:130)

[ :
whereJ=" J2 andJ?2=hy J'JX. In other words, the observable mo-
mentum density] of any isotropic electromagnetic eld depends only
on the eld densityqg.

3.6 The equations of motion of a charged particle, obtained by the
parallel transport method

In this section, we will obtain the chr.inv.-equations of motion of a
charged mass-bearing test-particle in an electromagnetic eld, located
in a four-dimensional pseudo-Riemannian space

Generally speaking, using the method described herein we can also obtain equa-
tions of motion for a particle, which is not a test one. A test particle is one with charge
and mass so small that they do not a ect an electromagnetic or gravitational eld, in
which it moves.

There is also another approach to particle motion in the pseudo-Riemannian space.
It is based on the elastodynamics of the space-time continuum an extension of Gen-
eral Relativity, which was introduced a decade ago by Pierre A. Millette based on the
analysis of the deformation of the space-time in terms of continuum mechanics. In



3.6 The equations of motion (the parallel transport) 93

The desired equations are the chr.inv.-projections of the Levi-Civita
parallel transport equations of the four-dimensional summary vector of
a charged mass-bearing particle

e
Q =P + ?A ; (3:131)

whereP = moddiS is the four-dimensional momentum vector of the par-
ticle, andC%A is an additional four-dimensional momentum that the
particle gains from the interaction of its charg&vith the electromag-
netic eld potential A deviating its trajectory from a geodesic line.
Given this problem statement, the parallel transport of the superposi-
tion on the particle's non-geodesic momentum vector and the deviating
vector is also geodesic, so that we have

d e e dx

d_sP+§A + P+§A E_O' (3:132)

By de nition, a geodesic line iseonstant direction lineThis means
that any vector tangential to such a line at a given point will remain
tangential to this line along its entire length, when transported parallel
to itself [9].

The equations of motion can also be obtained in another way by
considering the motion along a line of the least (shortest) length using
the least action principle. Least length lines are also constant direction
lines. But, for instance, in spaces with non-metric geometry, length is
not de ned as category. In this case, least length lines are neither de-
ned and, therefore, we cannot use the least action method to obtain
the equations of motion. Nevertheless, even in non-metric spaces we
can de ne constant direction lines and a non-zero derivation parameter
along them. Hence, we can assume that in metric spaces, to which Rie-
mannian spaces belong, least length lines are merely a particular case
of constant direction lines.

In accordance with the general formulae that we have obtained in
Chapter 2, the chr.inv.-projections of the parallel transport equations

particular, he showed that the massive body itself is part of the spacetime fabric that
is rotating. See his extensive paper and subsequent monograph on this subject: Mil-
lette P. A. Elastodynamics of the spacetime continulitre Abraham Zelmanov Jour-

nal, 2012, vol. 5, 221 277. Millette P. A. Elastodynamics of the Spacetime Continuum.
The 2nd expanded edition, American Research Press, Rehoboth (New Mexico), 2019,
415 pages.
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(3.132) are de ned as follows

da 1 .d Cdxk
— 4+ — d —+D.d— =0°
|
dg' | mdx d i
das " cas Tdgs Pt _
i ) (3:134)
pd o gmd g
c ds ™1 (s ;

where the space-time intervais assumed to be the derivation param-
eter along the trajectory, whilg andg' are the chr.inv.-projections of
the dynamic vectof) (3.131) of the patrticle

1 e
"2b Q = pL = i Po+ — Ao ; (3:135)

Yoo Joo C
§=nQ =Q =P+ A: (3:136)

The chr.inv.-projections of the momentum vector are
Po 11

— = m; Pl==mv'==p 3:137
P oo c P ( )

where plus stands for the motion to the future (with respect to the ob-
server), minus appears if the particle travels to the past, |a‘rrdm%—x'

is the three-dimensional chr.inv.-momentum vector of the particle. The
chr.inv.-projections of the additional momentum vecg)A have the
form

e Av e, e ,_ € )
g-pg:m—g, gAI—?ql, (3138)

where' is the scalar potential argl is the vector-potential of the acting
electromagnetic eld, which are the chr.inv.-components of the four-
dimensional eld potentialA (3.8). Then™ (3.135) andd' (3.136),
which are the chr.inv.-projections of the summary ve®or are

~o el. .

= mE o (3:139)
. 1 . e .
== p'+=q : 14
G=;P+3d (3:140)
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Substitute the quantiti€sandd' into the general formulae for the
chr.inv.-equations of motion (3.133, 3.134). Moving the terms charac-
teristic of electromagnetic interaction to the right hand side, we arrive
at the chr.inv.-equations of motion for a charged particle in our world (it
travels to the future with respect to an ordinary observer)

d ' _ _
d—m C—WZ]F.V' (r:_TZ]DikVIVk = 29 +§ R Dikq've ; (3141)
d mv! i

—— mF+2m DL+ Al vK+m | vIvk=
d W e . (3:142)
eaq e Ky ok Qi i o€ i i k.
-—— - —V'+ D, + +—=F - v
cd coc @ Bt A c2 c
while for an analogous particle located in the mirror world (it travels to
the past with respect to the observer) the equations have the form

dm m_ ; m i ed e i i
T 2fiV*ta DixV'vK = 2q t= Ad Dikq'v¥ ; (3:143)
i . .
dM 4 mE+m AV
i 3:144
edd e’ k. k piaai 4 & i € nk.( :
= Cd oo/ td DrACTEE o ondVE

It is easy to see that the left hand side of the equations completely
matches that of the chr.inv.-equations of motion of a free particle. The
only di erence is that the above equations include the right hand terms
that characterize non-geodesic motion. Therefore, the right hand side is
non-zero here; they take into account the in uence of the electromag-
netic eld on the particle, as well as the in uence of the physical and
geometric properties of the space itsdf (A, Di, !,). Itis obvi-
ous that, if the particle is charge-free<0), the right hand side terms
turn to zero and the resulting equations completely match the chr.inv.-
equations of motion of a free mass-bearing particle (see formulae 1.59,
1.60 and also 1.64, 1.65).

Let us consider the right hand side terms in detail. The obtained
equations are absolutely symmetric for the motion either to the future
or to the past and they change their sign once the charge sign changes.
We denote the right hand side of the chr.inv.-scalar equations of motion
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(3.141, 3.143) a3. Given that

¢ _ @, @

q @ v @ (3:145)
then using the formula for the covariant form of the electric strergth
(3.14), we can represeifitas follows

T= Sgv 2@
c @
! , (3:146)
3 @ c3 c

Substituting this formula into (3.141, 3.143) and multiplying the re-
sults byc?, we obtain the equation for the relativistic enefgy mc
of a charged particle travelling to the future and to the past

((jj—E MRV + mDgvivk= eBv o2+
|
_ ! . (3:147)
+E% DiquVI"'qu AL
(;—E mFRV + mDVv'vk= eBV eQ+
|

@ )
- 1 3.148)
e @ L ki,.€ . ;.
+C_@ Dikq V"'Cq oV F;

wheree E V' is the work done by the electric component of the electro-
magnetic eld to displace the particle per unit time.

The obtained chr.inv.-scalar equations of motion of a charged parti-
cle (3.147, 3.148) is thive forces theorenn the pseudo-Riemannian
space, representedin the chr.inv.-form. Itis easy to see that, in a Galilean
reference frame in the Minkowski space, the scalar equation of motion
for the particle travelling to the future (3.147) matches the time com-
ponent of the Minkowski equations (3.98). In the three-dimensional
Euclidean space, the equation (3.147) transforms into the live forces
theorem in Classical Electrodynamics whicr%Es: eEu (3.92).

Let us turn to the right hand side of the chr.inv.-vector equations of
motion (3.142, 3.144). Denote them M}. Since

dd _ @ @ . .
3 + vk@ : (3:149)
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and taking into account tha%ik = 2D* (1.40),

@ _ @ ik, ik @k
——=—h = 2D + h*—: 3:150
@ @ K @ (3:130)

we obtain theM' in the form

€k @ + & Fi + Aky, + §Aiqu+
c

Mi = _
c c? .
€ K @ ki €@ e k (3:151)
LG Dy Vv & G LaVv

Using the formulae for the chr.inv.-componei5(3.11) andH®
(3.12) of the Maxwell tensdf , we write down the rst two terms and

the third term fromM' (3.151) as follows

§h”‘%+i—2Fi: eEi+eH'<§k, (3:152)
e e @ @| e
= Avie= oY —@:‘ 3 7 ocH e (3153)

We write down the quantityd™® asHk = "™mkH | (3.56). Then we

have the following

!
€ myn @m  G@n € jmy, mVi;  (3:154)

e
i Alk =
c? Vk 2c @ @M 2c
1 ! '
i iy = wikm + 8 0k _yk pig
M e E e VikH m - q Cv Dy
K @' ik Kk @m @k .
+eH @k + = A' Ok + h'm @ " (3:155)
€ vk @ e k
@ o AV
and the sum of the latter three termshiti is equal to
|
€ @n @k e @I €
_h|mvk = k . qnvk=
k =k nk
2¢ @ @ ¢ @ ¢ (3:156)

_ € im @ € k@ Ehimqnvk @'km:

= "k 20V @ 2c @
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Finally, the chr.inv.-vector equations of motion of a charged particle
(3.142, 3.144) that travels to the future and to the past take the following
form, respectively

i . . . .
d (TV mF +2m D} + Al vk+m | vivk=
!
1
- e EI + _--|km H +
ZHE (3:1573)
€ k ke @ ik '
+ = —Vv* D, +eH + SA
R @k ¢ %
€ i @k € @I € @xm
— hMy, = = k & — Kimg" k .
e " @ 2" 1V e
i . .
M mE+m AV
!
= e Ei+i"ikmka .
2¢c m
, (3:157b)

e o @

e g Evk D|I(+er@k+ Ak

Eim@ ek@l |mnk@km
g e 2" e

Here the rstterm e E'+ -1 "* My H ; on the right hand side is
di erent from the chr.inv.-Lorentz force '= e E'+ 1" kM, H . by
the coe cient % in the term that stands for the magnetic component of
the force. This fact is very surprising, because the ordinary equations of
motion of a charged particle, which are the three-dimensional compo-
nents of the general covariant equations of motion, contain the Lorentz
force without any change. In Y3.9 we will look for such a structure of
the electromagnetic eld potenti&l , with which the other terms in the
M! completely compensate the coe cieétin the Lorentz force.

3.7 The equations of motion, obtained using the least action prin-
ciple as a particular case of the previous equations

In this section, we are going to deduce chr.inv.-equations of motion of
a mass-bearing charged particle, using the least action principle. The



3.7 The equations of motion (the least action principle) 99

principle says that an actio8 to displace a particle along a shortest
trajectory is the least, so the variation of the action is zero
Zy
dS=0: (3:158)
a

Therefore, the equations of motion, obtained from the least action
principle are the equations of shortest length lines.

The action of a gravitational eld and an electromagnetic eld to
displace a charged particle at an elementary intetgas [10]

dS= mcds SA ax : (3:159)

We see that this quantity is only applicable to particles that travel
along non-isotropic trajectoriesl§$, 0). On the other hand, obtaining
the equations of motion using the parallel transport method (constant di-
rection lines) is applicable to both non-isotroptts( 0) and isotropic
trajectories s=0). Moreover, the parallel transport method is appli-
cable to non-metric geometries, in particular, to particles that travel in
a completely degenerate space-time (zero-space). Therefore, the equa-
tions of shortest length lines, since they are obtained using the least
action method, are a narrow particular case of the equations of constant
direction lines, which result from the parallel transport method.

Return to the least action principle (3.158). For a charged mass-
bearing particle, this condition takes the form

Zy Zy Z ba
dS= mpcds - A dx =0; (3:160)
a a a c
where the rst term can be expressed as follows
Z, Z,
mpcds= mpcDU x =
a z, ° (3:161)
= mc du ds . U dx x:
a

We represent the variation of the second integral from the initial
formula (3.160) as the sum
Z, o VAN zZ, !

Adx=6 A dx + Adx : (3162

a a a
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Integrating the second term, we obtain

Adx =A Xx dA X : (3:163)

Here the rsttermis equal to zero, since the integral varies for given
numerical values of the coordinates (integration limits). Taking into
account the fact that the variation of any covariant vector is

@ @
A =— Xx; dA = —dx ; 3:164
& & ( )

we obtain the variation of the electromagnetic part of the action
Z, Z, !
e @ @

- Adx = - —dx x — xdx : (3165
. ¢ . @ @ (3:169)

Transpositioning the free indicesand inthe rstterm of (3.165)
and taking the variation of the gravitational part of the action (3.161)
into account, we obtain the variation of the total action (3.160)

Zy Zy e

ds= mpc dU - U dx EF dx x; (3:166)

a a

whereF = A @ is the Maxwell tensor, and = ddis is the four-
dimensional velocity of the particle. Since the quantity is arbitrary,

the formula under the integral is always zero. Finally, we arrive at the
general covariant equations of motion of the charged particle in their
covariant (lower-index) form

du

mc = U u =§F U ; (3:167)

or, lifting the index , at the contravariant form of the equations

du e
c —+ Uu =-F U: 3:168
MoC — o c ( )

These are actually the Minkowski equations (3.93) in the pseudo-
Riemannian space. Therefore, their chr.inv.-projections can be called
the chr.inv.-Minkowski equations in the pseudo-Riemannian space. For
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an our-world charged particle (it travels to the future with respect to an
ordinary observer), the chr.inv.-Minkowski equations have the form

E 4 . .
dE mEV + mDkvivk= eBV' (3:169)

d
d mv' i i ik ik
d mF +2m D+ A vi+m vV =
o ' (3:170)
= eE'+E"'kmkam;

and for an analogous particle in the mirror world (it travels to the past)
the equations have the form
dE ik —

T mFEVv' + mDyv'v

d mvi

eEV'; (3:171)
!
. . 1
+mF+m L vivk= e E+ =" KMy H 2 (3:172)

The chr.inv.-scalar equations of motion, both in our world and in the
mirror world, represent the live forces theorem. The right hand side of
the chr.inv.-vector equations represents the chr.inv.-Lorentz force in the
pseudo-Riemannian space.

Itis easy to see that, in a Galilean reference frame in the Minkowski
space, the obtained chr.inv.-equations of motion become the ordinary
live forces theorem (3.92) and the ordinary three-dimensional equations
of motion (3.90) accepted in Classical Electrodynamics.

As is seen from the obtained chr.inv.-equations of motion, the right
hand side of the equations (3.169 3.172), obtained using the least action
method, is di erent from the right hand side of the equations (3.146,
3.157), obtained using the parallel transport method. The dierence
here is the absence in (3.169 3.172) of numerous terms, which char-
acterize the structure of the acting electromagnetic eld and the space
itself. But as we have already mentioned above, shortest length lines are
only a particular case of constant direction lines, determined by parallel
transport.

Therefore, there is no surprise in that the parallel transport equa-
tions, as more general ones, have additional terms, which take into ac-
count the structure of the acting electromagnetic eld and the structure
of the space.
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3.8 The geometric structure of the four-dimensional electromag-
netic potential

In this section, we are going to nd such a structure of the acting elec-
tromagnetic eld potentialA , under which the length of the summary
vectorQ =P + C%A characteristic of a charged mass-bearing particle
remains unchanged in the Levi-Civita parallel transport along the parti-
cle's trajectory. So, the four-dimensional pseudo-Riemannian space of
General Relativity is assumed.

As is known, the Levi-Civita parallel transport preserves the length
of any transported vectd , therefore, the conditio@ Q =constis
true along the entire trajectory of parallel transport. Since the square of
the length of any-dimensional vector is invariant in thredimensional
pseudo-Riemannian space, in which the vector is located, the above
condition is true in any reference frame, including any observer who
accompanies his reference body. Hence, we can analyse the condition
Q Q =const formulating it with physically observable quantities in
the accompanying reference frame, i.e., in the chr.inv.-form.

The components of the summary vec@r of a charged particle in
the accompanying reference frame have the form

QO =1 g m+ i_z : (3173)
" #
QO — 1 m+ i + ivl mVi + gqi X (33174)
1w 2 2 c
C
1 e e
Q= ¢ Mvitoa o Mt W (3:175)
il e .
Q = = my + d (3:176)
and its square is |
€ ., i 2me 1
Q Q — rT%‘l‘ g qiqI + ? Evi ql . (3177)

From here, we can see that the square of the summary momentum
of a charged particle consists of the three quantities:
a) The square of the four-dimensional momentum of the particle,
which is the ternP P =n¢;
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b) The square of the four-dimensional additional momenté%m
that the particle gains from the acting electromagnetic eld (it is
the second term);

c) Theterm?Z¢ ' lviq' thatdescribes the interaction between
the mass of this particle and its electric charge

In the above formula fo Q (3.177), the rst termm% remains
unchanged. In other words, this term is an invariant and, therefore, it
does not depend on the reference frame. Our task is to deduce such
conditions, under which the entire formula (3.177) remains unchanged.

Propose that the eld vector-potentigl has the following structure

q = Evi: (3:178)

In this case the second term of (3.177) is

I
& e 2 V2
—AA=—11 —: 3:179
& a !z (3:179)

Transforming the third term in the same way, we obtain the square
of the vectorQ (3.177) in the form

| r—
V2 2mge, V2

eZIZ
QQ =mé+71 7t 2 1 50 (3180)

Then, introducing the following notation for the scalar potential

== (3:181)
1 .
c2

we can represent the obtained formula (3.180) as follows

_ 5 2mpe o _ .
QQ =ng+ Z t—g - const (3:182)

So, the length of the summary vecQr remains unchanged in its
parallel transport, if the observable potentialandq' of the eld are

A similar problem could be solved, assuming that - Vv'. Butin comparative
analysis of two groups of the equations only positive numerical valugsof v' will
be important, because the observer's physical tigay de nition, ows from the past
to the future only, so the physically observable time interdalare always positive.



104 Chapter 3 Charged Particles in the Pseudo-Riemannian Space

related to its four-dimensional potenti&l as follows

JeAL_=' —g——; A=g=-v: (3183
Joo 1 ¥ c

c2

In this case, the vecteC% A that characterizes the interaction of the
particle's charge with the electromagnetic eld has the form

1 . U |
EJpAL_= —qeoj; EA'=2<a|vi: (3:184)
c? Joo 2 1 v2 c? c3 1 ¥

The dimensions of the vectOIC%A andP = moddiS in CGSE and
Gaussian systems of units are the same as that of magam].
Comparing the chr.inv.-projections of the above vectors, we can see
the same quantity in the interaction of the particle's charge with the
acting electromagnetic eld
S L B (3:185)
“ 21 ¥

wheree' is the potential energy of the particle travelling with the ob-
servable velocity' = %—X' in the acting electromagnetic eld (this par-
ticle is at rest with respect to the observer and his reference body). In
general, the scalar potentlals the potential energy of the eld, divided
by unit charge. Therg' is the potentialelativistic-energyof the par-
ticle having a charge and travelling in the electromagnetic eld, and
e' gisitsrest-energy in the eld. When the patrticle rests in the eld, its
potential rest-energy is equal to the potential relativistic-energy.
ComparingE = mc& andW=e' , we arrive at the same conclusion.
RespectlverW0 =€ =2 is an electromagnetic quantlty analogous to the
rest-massng. Then the chr.inv. quantlt){2 A= —2vI is similar to the
observable chr.inv.-momentum vectpr=mv'. Therefore when the
particle rests in the electromagnetic eld, its electromagnetic projec-
tion onto the observer's spatial section (it is a chr.inv.-vector) is zero,
while only the time projection (potential rest-enemgy, = cons) is ob-
servable. But if the particle travels in the eld, having a non-zero veloc-
ity v!, its observable electromagnetic projections become the potential
relativistic-energye' and the three-dimensional momentl%gnvi.
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Having the chr.inv.-projections of the vectcérA calculated for the
given eld structure (3.183), we can restore the vedolin the general
covariant form. Taking into account that

. ' X i
viz g I a6
c 1 v d ds
2

Ai:qi:

c

we obtain the desired general covariant notation&or

dx e e' gdx
='0—; A = ——; 3:187
°ds c? c2 ds’ ( )
the chr.inv.-projections of which are
Jp—AO_ = '= g—2—:; A=qg=-v (3188)
Joo 1 ¥ c

3

where the alternating sign appears in the time chr.inv.-projection, which
is not the case in the initial formula (3.183).

Naturally, a question arises: how did the scalar observable compo-
nent of the vectoA , initially de ned as' , acquire the alternating sign
under the given structure of the (3.187)? The answer is that, in the
rst case, the quantities andq' werede nedbased on the general rule
of building chr.inv.-quantities. But without knowing the structure of the
projected vectoA , we cannot calculate them. Therefore, in the for-
mulae for the time and spatial projections (3.183), the symbasad
q' merelydenotethe quantities without revealing their structure. On the
contrary, in the formulae (3.188) the quantitieandq' werecalculated
using the formulaé = P gog A® + % A andq' = A, where the compo-
nentsA® andA' were given. Hence, in the second case, the quantity
results from the calculation that sets forth the speci ¢ formula

N (3:189)

2
Vv
1 =

c

As a result, thecalculatedchr.inv.-projections of the vectoC%A
have the following formulation

e A e €o . e _¢€e 4
Sl = S 40 o SA=Z_yh (3190
c® " Too c? V2 c? cd ( )
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where plus stands for a particle located in our world, so travelling
from the past to the future, while minus stands for a particle located
in the mirror world, which travels to the past with respect to us. The
square of the vector's length is
' 2 2! 2
§A A = e% 1 é = e;o const  (3:191)

The vector; A has a real length at® < ¢?, zero length at? = ¢
and an imaginary length af > ¢. However, we limit our study to the
real form of the vector (subluminal velocities), because light-like and
superluminal charged particles are unknown

Comparing the formulae fd? = mo and A = Hddi we can
see that these vectors are collinear, so they are tangential to the same
non-isotropic trajectory, to which the derivation parametgis assum-
ed. Hence, in this case, the momentum vector of the paficlis co-
directed with the acting electromagnetic eld, so the particle is travel-
ling along the eld.

Consider a general case, where the vectors are not collinear. The
third term in the square of the summary vec@rQ (3.177) is the
doubled scalar product of the vectdPs and C—ezA . The Levi-Civita
parallel transport leaves their scalar product unchanged

DPA =ADP+PDA =0; (3:192)
therefore, we obtain
I
2e _2me , 1 .
2 PA < Eviq' = const (3:193)

e., the scalar product @ and C—ezA remains unchanged. Conse-
guently, the lengths of the vectors remain unchanged. In particular,

A A ='2 qq =const (3:194)

The scalar product of two vectors is the product of their lengths
multiplied by the cosine of the angle between them. Therefore, the Levi-
Civita parallel transport leaves the angle between the transported vec-
tors unchanged

PA
cosP ;A = —p——— =const (3:195)

m '?2 gq
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Taking into account the formula for the relativistic masswe can
re-write the condition (3.193) as follows

' 2 Al
r:zoe qv.q — = const (3:196)

v2 %
1@ clg

2e _ 2mge
@PA = —z 4

or as the relationship between the scalar and vector potentials

- -
& qv.q = const (3:197)

v2 v2
1§c1§

For instance, we can nd the relationship between the potentials
andq' for the case, where the momentum vector of the parftlds
orthogonal to the additional momentupr gained from the electro-
magnetic eld. Since the parallel transport leaves the angle between
transported vectors unchanged (3.195), the cosine of the angle between
the above two transported orthogonal vectors is zero. So, we have

1 .
PA = ' Eviq'zo; (3:198)

i.e., if the particle travels in the electromagnetic eld so that the vectors
P andA are orthogonal, then the eld scalar potential is

= %viqi; (3:199)

so itis the scalar product of the particle's observable velocignd the
spatial observable vector-potential of the el

Now, we are going to obtain a formula for the square of the summary
vectorQ , assuming that the structure of the electromagnetic eld po-
tential isA ="' oddis (3.187). So, the eld potential is co-directed
with the particle's momentum vecté® . Then

m . .

Multiplying both sides of the equation tmf and denoting the rela-
tivistic energy of the particle a = mc, we obtain

E? c*p’+e”? qq=Ej+e”}: (3:201)
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3.9 Minkowski's equations as a particular case

In Y3.6 we considered a charged mass-bearing particle in a pseudo-
Riemannian space. There, the general covariant equations of its mo-
tion were obtained using thgarallel transport methodWe have also
obtained the chr.inv.-projections of the general covariant equations.

We have showed that their time chr.inv.-projection (3.147) in a Gali-
lean reference frame takes the form of the time component of the Min-
kowski equations (3.98), becoming the live forces theorem in the three-
dimensional Euclidean space of Classical Electrodynamics (3.92). On
the other hand, the right hand side of the spatial chr.inv.-projection has
the term e E' + % wikmy, H . instead of the chr.inv.-Lorentz force,

whichis "= e E'+1"kmy,H , and also several other additional
terms that depend on the observable characteristics of the acting elec-
tromagnetic eld and of the space itself.

Therefore, for the spatial chr.inv.-projections of the equations of mo-
tion of a charged particle in a pseudo-Riemannian space, the correspon-
dence principle with the three-dimensional components of the Minkow-
ski equations is set non-trivially.

On the other hand, the equations of constant direction lines, obtain-
ed using the parallel transport method in a pseudo-Riemannian space,
are a more general case of the equations of shortest length lines, ob-
tained using the least action principle. The equations of motion, ob-
tained using the least action principle in Y3.7, have the structure match-
ing that of the Minkowski equations. Consequently, we can suppose that
the chr.inv.-projections of the equations of motion obtained in Y3.6 are
more general ones; in a particular case, i.e., under speci c conditions,
they can be transformed into the chr.inv.-projections of the equations of
motion, obtained using the least action principle in Y3.7.

To nd exactly under what conditions this can be true, we are going
to consider the spatial chr.inv.-projections of the equations of motion
(3.157), which contain the mismatch with the Lorentz force.

For the convenience of analysis, we considered the right hand side of
(3.157) as a separate formula (J[enotedi/lé\sSubstituting the magnetic
strengthH'* (3.12) into the ternf; A*v of the formula for theM', we
write down the term as follows

I
€ Ay = Epmpn @m @ €

- wikm . .
) Vi e @ @ T H nvk; (3:202)
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where" k™H .= Hk according to the chronometrically invariant for-
malism (see Chapter 2).

So forth, we substitute the chr.inv.-components of the electromag-
netic eld potential A (3.188) into (3.157). With the eld potential
A (3.188), the additional momentum vectcérA that the electrically
charged particle gains from the electromagnetic eld is tangential to the
particle's trajectory.

Using the rst formula,gm= %Vm' we arrive at the dependence of
the right hand side under consideration on only the scalar potential of
the electromagnetic eld

|
i _ i, Lk
M'= eE'+ c "™iH m +
. v2! @. e @ VZ! | (3:203)
+el*1 — —+—h —
c2 @k 2 @k c2

Substituting the obtained relativistic formula of the scalar electro-

magnetic potential (3.181) into this formula, we see that the sum of

the last two terms becomes zero
| |

2° 2°
ik @ \ ik @ ve .
— h' — 1 _02 — hI —x _CZ =0: (3:204)

ThenM' takes the form of the chr.inv.-Lorentz force
!

M= eE'+ % KVH (3:205)

which is exactly what we had to prove.

Now, consider the right hand sid&T of the chr.inv.-scalar equation
of motion (3.147) under the condition, according to which the ve#tor
has the structure that is mentioned above and is tangential to the parti-
cle's trajectory. Substituting the formulae for the chr.inv.-projections
' andq' of the vectorA having the given structure into (3.146), we
transform the quantitg?T to the form

n #
’T= eEV e%+ce2 g hicvk ' Digk v =
o 2; (3206)
. L} V el
= I — — + _yy, ——
eEv e @ 1 c2 D.kvv ) 5 Vk @
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Using the relativistic formula for (3.181) in the rst derivative,
then returning t6 again after derivation, we obtain

;e e K
AT= eBV —@C?’Dhi|(vvk +C—D.kv'vk+c—vk%—
. %
= eEV ;_cz %kvv +2vk% + (3:207)
e' @k .
+—DI vivk +02Vk@_ eV

because we took into account th% = 2Djk by de nition of the space
deformation tensobjx (1.40).

So, the chr.inv.-equations of motion of a charged mass-bearing par-
ticle, obtained in the four-dimensional pseudo-Riemannian space using
the parallel transport method, match the equations, obtained using the
least action principle in the particular case, where:

a) The electromagnetic eld potentidl has the following structure
A =" o% (3.187);

b) The eld potentialA is tangential to the four-dimensional trajec-
tory of the travelling particle.

In particular, for the above structure of the electromagnetic eld
potential in a Galilean reference frame in the Minkowski space, the ob-
tained chr.inv.-equations of motion completely match the live forces the-
orem (chr.inv.-scalar equation of motion) and the Minkowski equations
(chr.inv.-vector equations) in the three-dimensional Euclidean space,
thus taking the form known in Classical Electrodynamics.

Noteworthy, this is another illustration of the geometric fact that
the shortest length lines (determined by the least action principle) are
merely a narrow particular case of constant direction lines (resulting
from the Levi-Civita parallel transport).

3.10 Structure of a space lled with a stationary electromagnetic
eld

It is obvious that, when assuming a particular structure of the electro-
magnetic eld, we impose a certain limit on the motion of electrically
charged particles, which, in its turn, imposes a limitation on the struc-
ture of the pseudo-Riemannian space, in which the charged particles
travel. We are going to nd out what kind of structure the pseudo-
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Riemannian space should have so that a charged particle can travel in a
stationary electromagnetic eld.

As we have obtained earlier in this Chapter, the chr.inv.-equations
of motion of a charged particle in our world have the form

(;—E mFEV + mDy vivk = e3—+§ Fq  Dig'vk;  (3:208)

d my

d
_edd e’ o i L€ o€y k.
= g o vitd Dy + A +?F' E L anvk:

k=

mF +2m D+ Al vK+m | vy
(3:209)

Since we assume the electromagnetic eld to be stationary, the eld
potentials' andqg' do not depend on time. In this case, the chr.inv.-
components of the electromagnetic eld tensor are

@ @ @ w

|
i_}uimn _l-uimn % @ i .. .
Hi= 2 M= 5™ 28 G g Am o (3211)

From the above, we can nd the limitations imposed on the space
metric due to the stationary state of the acting electromagnetic eld.

The formulae fog; andH ', together with the chr.inv.-derivatives of
the scalar and vector electromagnetic potentials, include the observable
properties of the space such as the chr.inv.-vector of the gravitational
inertial forceF; and the chr.inv.-tensor of the space non-holonomity
It is obvious that, in a stationary electromagnetic eld, the mentioned
properties of the space must be stationary as well

@:O; E:O; @:O; Qlk:o: (3212)
@ @ @ @

From the above de nitions, we see that the quantibeandAy are
stationary (they do not depend on time), if the linear velocity with which
the space rotates is stationa%,’: 0. Therefore, the conditiof&’'= 0,

i.e., the stationary rotation of the space, turns the chr.inv.-derivative with
respect to spatial coordinates into the ordinary derivative

@@ 10 @

@ & 2o & (3:213)



112 Chapter 3 Charged Particles in the Pseudo-Riemannian Space

Since the chr.inv.-derivative with respect to time is di erent from the
ordinary derivative only by the multiplieg: 13 @@, the ordinary
derivative of a stationary quantity is zero as well.

For the space deformations rate tenBg, under a stationary rota-

tion of the space we have
[
@k _1@k_1@ 1 1 @g.
@ 2@ 20 %7 e
Because in the stationary case under consideration the right hand
side of the equations of motion is stationary, the left hand side must
be stationary too. This means that the space does not deform. Then,
according to (3.124), the three-dimensional coordinate mgiridoes
not depend on time, so the chr.inv.-Christo el symboliﬁ (1.47) are
stationary too.
Using the chr.inv.-components of the Maxwell tensor (3.210, 3.211),
we transform the Maxwell equations (3.63, 3.64) to the case of the sta-
tionary electromagnetic eld. As a result, we have

(3:214)

. p_ 9

l .
@i+@nihEI g mHm:4 g
@ @& ) 04 ) §|, (3:215)
"KM B H W B o= iR :

C

_ p— 9

I .
G DNy 2 em=o B
@ @ c §”' (3:216)
wikm ?k Empﬁ :0 ’

Then the Lorenz condition (3.65) and the continuity equation (3.66),
respectively, take the form

Biq =0; B =o0: (3:217)

So, we have found the way in which any stationary state of an elec-
tromagnetic eld that lls a pseudo-Riemannian space a ects the physi-
cally observable properties of the space itself and, hence, the main equa-
tions of electrodynamics.

In the next sections, Y3.11 Y3.13, we will use the above results for
solving the equations of motion of a charged particle (3.208, 3.209) in
stationary electromagnetic elds of the three kinds:
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1) A stationary electric eld (the magnetic strength is zero);

2) A stationary magnetic eld (the electric strength is zero);

3) A stationary electromagnetic eld (both the magnetic and electric
components of the eld are non-zero).

3.11 Motion in a stationary electric eld

We are going to consider the motion of a charged mass-bearing particle
in a pseudo-Riemannian space, lled with a stationary electromagnetic
eld of the strictly electric kind (the magnetic component of the eld is
Zero in this case).

What conditions should the space satisfy to allow the existence of a
stationary electromagnetic eld of the strictly electric kind? From the
formula for a stationary state of the magnetic strength

_@ @ 2 .
Hik = & @ ?Aik (3:218)
we see thaHjx = 0 is satis ed under the two conditions:

a) The vector-potential' is irrotational% = &

b) The space is holonomiy = 0.

The stationary electric strengff) (3.210) is the sum of the spatial

derivative of the scalar electromagnetic potentiand the terms; F.
But in a real Earth-bound laboratory, the ratio between the gravitational
potential and the square of the light velocity is nothing, but only

w _GM
¢z R
therefore the second term in (3.210) can be neglected, 95 itepend
only on the spatial distribution of the scalar potential
_ @
C
Because the right hand side of the equations of motion (it stands for
the Lorentz force) is stationary, the left hand side must be stationary too.
This is true under the conditions that we are considering, if the space
deformation tensor is zero (the space does not deform). So, if a sta-
tionary electromagnetic eld has the non-zero electric component and
zero magnetic component, then the pseudo-Riemannian space, which is
lled with the eld, must satisfy the following conditions:

10 0 (3:219)

E (3:220)
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a) The potentialv of the acting gravitational eldis negligible 0;
b) The space does not rotadg = 0;
c) The space does not defoildy = 0.

To simplify further calculations, assume that the observer's three-
dimensional space is similar to the Euclidean one, so we assH[nd).
Then the chr.inv.-equations of motion of a particle having an electric
chargee (3.208, 3.209) take the form

dm_ ed .

d_ = ?d_ ; (3221)
d i _ edq )
Fmv o= = (3:222)

From the chr.inv.-scalar equation of motion (live forces theorem),
we see that the change of the particle's relativistic en&gymc is due
to the work done by the electric compondhtof the electromagnetic
eld to displace the particle.

From the chr.inv.-vector equations of motion, we see that the parti-
cle's observable momentum changes due to the change of the electro-
magnetic eld vector-potentiali. Assuming that the four-dimensional
electromagnetic eld potential is tangential to the four-dimensional tra-
jectory of the particle, we obtain the three-dimensional Lorentz force

= eF (3:223)

on the right hand side. That is, in this case, the particle's observable
momentum changes under the action of the electric strength of the elec-
tromagnetic eld.

Both of the groups of the chr.inv.-Maxwell equations for a stationary
electromagnetic eld (3.215, 3.216) in this case become simple

. 9

@' _ § )

=~ =4 £ @

@ | nikm =2 — g ), 3:224
j'=0 § | @ -

Integrating the chr.inv.-scalar equation of motion (live forces theo-
rem), we arrive at the so-calldide forces integral

m+ i—z = B = const (3:225)
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whereB is an integration constant.
Another consequence from the chr.inv.-Maxwell equations is that,
in the present case, the scalar potential of the eld satis es:

1) Poisson's equatio% + % + % = Jif 0

. @@ L@ _ni =
2) Laplace's equatio 2+@§/+@—O, if =0.

So, we have found such properties of the pseudo-Riemannian space,
which allow charged particles to travel in a stationary electric eld. It
would be natural now to obtain exact solutions to the chr.inv.-equations
of motion for such a particle (3.221, 3.222). But, unless a particular
structure of the electromagnetic eld itself is determined by the Maxwell
equations, this cannot be done. For this reason, to simplify further cal-
culations, we assume that the given eld is homogeneous.

Assume that the covariant chr.inv.-vector of the electric streggth
is directed along the axis. Following Landau and Lifshitz (see Y20 of
The Classical Theory of Field$0]), we are going to consider a charged
particle that isrepulsedby the eld the case of a negative humeri-
cal value of the electric strength and the increasing coordixafehe
particle. Then the components of the vectrare

Ei.=Ex= E=const E>=E3=0: (3:226)

Because the eld homogeneity meaBs= % =const the scalar

potential' is a function ofx, which satis es the Laplace equation

@ _@_
@ @
This means that the homogeneous stationary electric eld satis es
the condition of the absence of the eld-inducing charges0.
Let a charged particle travel along the electric strength veEtpr
i.e., alongx. Then the chr.inv.-equations of its motion have the form

0: (3:227)

dm ed ed ; e _dx

— = ——= ——V =—E—; 22

d c2d Zdx. @od’ (3:228)
! ! [

d dx _ d dy _d dz __

d— md— =eE:; d_ md— =0; d— md— =0: (3229)

Naturally, if a charged particle iattractedby the eld, then the electric strength
is positive, while the particle's coordinate decreases.
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Integrating the chr.inv.-scalar equation of motion (live forces theo-
rem), we arrive at the live forces integral

E
= i_z X+ B: B = const (3:230)

The integration constar® can be obtained from the initial condi-
tionsmj =g = Myp) andxj =o = X(0). SO, we obtain
eE
B=mo X0 (3:231)
therefore the solution (3.230) takes the form
eE
m=-3 X Xo +Mo): (3:232)
Substituting the obtained solution into the chr.inv.-vector equations

of motion (3.229), we bring them to the form

E
e—2x2+ B+%Ex X =eE
C C
eE eE .

gxy+ B+?x y=0 (3:233)

eE eE .
— Xz+ B+—2x 7z=0
(o c

= 0000000000/ 110NN/ O

From here, we realize that the last two equations in (3.233) are or-
dinary equations with separable variables, which have the form

y &= x z s
y_._ . Z__@”. (3:234)
Y B+ &Ex Z B+SEx

C c
y= ——; 7= —2_; (3:235)
B+ &Fx B+ &Fx

whereC; andC; are integration constants. They can be found by setting
the initial conditionsyj =0 = y(o) @andXxj =0 = X(0) and using the formula
for B (3.121). As a result, we obtain

Ci=moYo);  C2=MoZo): (3:236)

The dot stands for the derivation with respect to the physically observable time
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Let us solve the equation of motion alorgwhich is the rst of the
equations (3.233). Denote= 3= p. Then

X:W:a:&azpp; (3237)

and, therefore, the above equation of motion alggn be transformed
into an equation with separable variables, which has the form

d eEdx
P 52: —; (3:238)
1 @ B+ =X

and is solved as a standard integral. After integrating the above equation,
we arrive at the following solution
r

2 ¢
1 P2 o o= const (3:239)
¢ B+ &Ex
C

Assumingp= Xj =0 = X() and substitutind® from (3.231), we ob-
tain the following formula for the integration constaty
s

X0
Cs= M) 1 ?Z (3:240)
In the case under consideration, we can replace the interval of the
physically observable timé with the coordinate time intervalt. We
will explain why in the next section.
In The Classical Theory of Field40], Landau and Lifshitz solved
the equations of motion of a charged particle in a Galilean reference
frame in the Minkowski space (space-time of Special Relativity). Natu-
rally, in order to compare our solutions in the pseudo-Riemannian space
with theirs, consider the same particular case of the motion in a homo-
geneous stationary electric eld as they did (see Y2U0he Classical
Theory of Fields To do this, we should pladg = 0 andAyx = 0in our
equations. As a result, we obtain that in this case
d =1 g dt C—lzv.dxi = dt: (3:241)
In other words, in the four-dimensional region, where the particle
travels, the three-dimensional metric is Galilean.
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Substituting the variable= & dX into the formula (3.239) we arrive
at the equation with separable varlables
r

2
dx B+&x"~ C2
—-—=cC ; (3:242)

the solution of which is the function
S T
c? eE 2
ct=— B+ -=-x C2+C4; Csy=const (3:243
oF 2 3 +Ca 4 t ( )
where the integration consta@j, taking into account the initial condi-
tions at the moment of time= 0, is

_ MocC :
Ca= — X0 (3:244)

Now, formulating the coordinateexplicitly from (3.243) witht, we
obtain the nal solution to the spatial chr.inv.-equations of motion of the
charged particle along

B eF2 i
X= = —(ct Cs?+C2 BE (3:245)

or, after substituting the found integration constants,
v

X= ct+

4

' "
22
Mo)CX0) * m(O)C2 (0)
ek (3:246)
m(O)
+ X0

If the eld attractsthe patrticle (i.e., the electric strength is positive
E1 = Ex= E=cons), we will obtain the same solution forbut having
the opposite sign

c? éB e2E2

= ~—(ct C 2+CZ§: 3:247
X eE (C 4) 3 ( )

In The Classical Theory of Field$0], the same problem is consid-
ered. But, in contrast to our solution in the pseudo-Riemannian space,
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Landau and Lifshitz solved this problem through integrating the three-
dimensional components of the general covariant equations of motion
(the Minkowski three-dimensional equations) without accounting for
the live forces theorem. Their formula faris
1 q
g M 4+ (ceEY?: (3:248)

This formula matches our solution (3.245)xif) m‘eLI)ECZ =0andthe
initial velocity of the particle is zerxg) = 0. The latter manifests the
signi cant simpli cations assumed iThe Classical Theory of Fielgs
according to which some integration constants are zero.

It is easy to see that, even when solving the equations of motion
in a Galilean reference frame in the Minkowski space, the mathemati-
cal methods of chronometric invariants give a certain advantage reveal-
ing the hidden factors that are left unnoticed when solving the three-
dimensional components of the general covariant equations of motion.
This means that, even when physically observable quantities coincide
with coordinate quantities, itis geometrically correct to solggstenof
the chr.inv.-equations of motion, because the live forces theorem, being
their scalar part, inevitably a ects the solution to the vector equations.

Of course, in the case of an inhomogeneous non-stationary electric
eld, some additional terms will appear in our solution to reveal the
more complicated and time varying eld structure.

Let us now calculate the three-dimensional trajectory of the particle
in the homogeneous stationary electric eld that we are considering.
To do this, we integrate the equations of motion along the weewlz
(3.235), then express time from there and substitute it into the solution
for x, which we have obtained.

First, substituting the obtained solution %(3.245) into the equa-
tion for y, we obtain the equation with separable variables

d C
d_3t’ = — 1 ; (3:249)
EE (ct Cq)?+C3
integrating which we have
c eEt+
y= m(oé% arc sinh—cM +Cs; (3:250)
2

X
moc 1 %
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whereCs is an integration constant. FropF y(o) att=0, we nd

c
Cs = Y(0) m(oé%arcsinh—&: (3:251)
c 1B

Substituting the constant inio(3.250) we nally have

_ Mo)Y(0)C
= + -
y Y(Oé oF 9
eEt+ E 22
arc sin M) X0) arc sinh—& :
§ X(ZO) X(20)
moec 1 2 c 1 2

Formulating from heréwith y andy gy and taking into ac%)unt that
a= arcsinhb if b= sinha, after substitutingarc sinlb=1In b+ b2+1
into the second term we have

% (3:253)
M) X(O)% :

Substitute it into our solution fox (3.246). As a result we obtain
the desired equation for the three-dimensional trajectory of the particle

S
2

_ myo)c? X(o)
ot e b

g 9

§ 2 (3:254)
+C =2
cos MeEHn rx(o) Mo
M) Y(0)C 2 ek
. 1 D

The obtained formula means that a charged particle in a homoge-
neous stationary electric eld, located in our world, travels along a curve
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based on &hain ling while the factors that deviate the particle from the
purely chain line are functions of the initial conditions.

Our formula (3.254) completely matches the result frohe Clas-
sical Theory of Fieldswhich is formula 20.5 in [10]

2
= 1o cosh—e'Ey ;

: 3:255
eE M(0)Y(0)C ( )

once we assume thag, mg”Ecz =0, and the initial velocity of the parti-
cle isx)= 0. The latter condition assumes that the integration constant
in the chr.inv.-scalar equation of motion (live forces theorem) is zero,
which is obviously not always true, but can be assumed only in a very
narrow particular case.

At low velocities, after equating the relativistic terms to zero and ex-
panding the hyperbolic cosine into sere@shb= 1+ Z b o '24 + 26 +10,
our formula for the three-dimensional trajectory of the particle (3 254),
with higher-order terms withheld, takes the form

eEy yo .
2my) y(20)

so the particle travels alongmarabola Thus, once the initial coordi-
nates of the particle are assumed zeroes, our solution (3.256) completely
matches the result froffihe Classical Theory of Fieldghich is

X= Xo)t+ (3:256)

_ _eBy® |
2m(0)y(20)

Integrating the equation of motion along thaxis gives the same
results. This is because the only di erence between the equations with
respectty andz(3.235)isa xed coe cient the integration constant
(3.236), which is equal to the initial momentum of the particle algng
(in the equation foy) and alonge (in the equation fog).

Let us nd the properties of the particle (such as its energy and mo-
mentum) a ected by the acting homogeneous stationary electric eld.

Calculating the relativistic square root (with the above assumptions)
r
r r X2 +y2 +
1 v2 L x2+y2+ 22 MO 1 %0)2(20)
2 c? B eE
Moy * =& X X0

(3:257)

i (3:258)
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we obtain the energy of the particle

E- M(0)C? _ m(or)CZ+ eE X X

g = S (3:259)
\% 2 2
1 2 1 Yot yc(g)" o)
which at the velocity much lower than the light velocity is
E=moc®+eE X Xg : (3:260)

The relativistic momentum of the particle is obtained in the same
way, but since the formula is bulky we would not include it here.

So, we have studied the motion of a charged particle in a homoge-
neous stationary electric eld, located in our world. So forth, we will
consider the motion of an analogous particle of the mirror world under
the same conditions.

The chr.inv.-equations of motion of a charged patrticle in a stationary
electric eld that lls the mirror world, taking into account the above
constraints imposed on the geometric structure of the space, have the
form

dm ed
q - 2d (3:261)
d i _ edq .

The di erence from the equations of motion in our world (3.221,
3.222) is only the sign in the live forces theorem.

Assume that the electric strength is negative (i.e., the refglises
the charged particle) and that the particle travels along the eld strength,
So its motion is co-directed with theaxis.

Then, integrating the live forces theorem for the mirror-world par-
ticle (3.261), we obtain the live forces integral

m= i—fx+ B; (3:263)

where the integration constadt= const calculated from the initial con-
ditions, is

eE
B=mpg)+ = X0 (3:264)
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Substituting the results into the chr.inv.-vector equations of motion
(3.262), we have (compare these equations with 3.233)

9
e—Ex2+ B ﬂzx %= eE
c? c?
eE eE . =
§Xy+ B ?x y=0 g (3:265)
eE
— Xzt B ?x z=0 ;

After some algebra similar to that done to obtain the trajectory of
an analogous charged particle in our world, we arrive at

,
c? e2E2
X = e_Eés Cz —(ct c4)2§; (3:266)

r
X2
whereCs = mg) 1+ -8landCs= <T9F9. O,

R 4 !
m(O)C2 Zg (0) ors MOXO
eCEZ (3:267)
m( ) + X0)

The obtained coordinateof the mirror-world charged particlee-
pulsedby the stationary electric eld, is similar to that for an analogous
particle of our world, which isttractedby the eld (3.247), i.e., when
the electric strength is positivié; = Ex = E = const Consequently, we
arrive at the interesting conclusion: the transition of a charged particle
from our world into the mirror world (where time ows in the opposite
direction) is the same as changing the sign of its charge.

Noteworthy, we had arrived at the same conclusion about masses of
particles [19]: the purported transition of a particle from our world into
the mirror world is the same as changing the sign of its mass. Hence,
our-world particles and mirror-world particles are mass and charge com-
plementary.

Let us nd the three-dimensional trajectory of the charged particle
in the homogeneous stationary electric eld that Ils the mirror world.
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Calculatingy in the same way as for the our-world particle, we have

0)Y(©0)C
Y=Yot —m(éE()
8 9
3:268)
% eEt+ % (
§¢strcsin—|M arcsin—|x(0_)_§:

Xo) Xo)
Mmoc 1+ 3 c 1+-33
In contrast to the formula for the our-world particle (3.252), this
formula has an ordinary arcsine and plus under the square root.
Formulating timet from here with the coordinatgsandyq)

Xo)
moc 1t

% (3:269)

M) X(O)% ;

and substituting it into our formula fox (3.267), we obtain the nal
formula for the trajectory

S
2
_ My0)C® X0)
TXo e e
8 9
§ , (3270)
= C
CosS, weE+ arcsin— X0 o) :
%"T(O)V(O)C 2 § ek
: c 1+-9

2’

In other words, the motion of the particle limrmonic oscillation
Once we assume the initial coordinates of the particle equal to zero, as
well as its initial velocityx) = 0 and the integration constaBt= 0, the
obtained equation for the trajectory takes the much simpler form

Mo cos—=)

X= .
ek Mo)Y(0)C

(3:271)
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At low velocities, after equating the relativistic terms to zero and
. . . . _ b2 b4 . b2 .
expanding the cosine into seriegsb=1 =+ 11 1 3 (this
is always possible within a smaller part of the trajectory), our formula

(3.270) becomes
(3:272)

which is the equation of @arabola So, the charged particle in the
mirror world at low velocity travels along a parabola, as the our-world
particle does under the same conditions in the eld.

Therefore, a charged particle of our world travels in a homogeneous
stationary electric eld along a chain line, which at low velocities be-
comes a parabola. An analogous mirror-world particle travels along
a harmonic trajectory, each small part of which at low velocities is a
parabola (as in the case of the our-world particle).

3.12 Motion in a stationary magnetic eld

Let us consider the motion of a charged particle in the case, where the
electric component of the electromagnetic eld is zero, while the mag-
netic component is non-zero and stationary. In this case, the chr.inv.-
electric and magnetic strengths are

@ e T 1 o_,. :
Ei = & CZF|— & C21 g@i 0; (3:273)
|
i — 1uimn - 1nimn @m @n 2' . . .
H' = > Hmn = > @ @ ?Amn , 0; (3:274)

because, if the eld is strictly magnetit € constandE; = 0), then the
e ect of gravitation can be neglected. From (3.274) we can see that
the magnetic strengthl ' is not zero, if at least one of the following
conditions is true:

a) The vector potentiaj' of the eld is rotational:;

b) The space is non-holonomig, O.

We will consider the motion of the particle in a general case, where
both of the above conditions are true (we will also use a non-holonomic
space later as the basic space for spin particles). As in the previous
section Y3.11, we assume deformations of the space to be zero and the
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three-dimensional metric to be Euclidegn= . However, the ob-
servable metrityk = g+ C—lz Vi W in this case is not Galilean, because
in a non-holonomic space we always héye, ~ gi.

Assume that the space rotates aroundzthris with a constant an-
gular velocity 12= 21= . Then the linear velocity of this rota-
tionv = i x*has the two non-zero componems yandw = X,
and the non-holonomity tensor has the only non-zero compadhgnt

Aoq = . In this case, the space metric takes the form

ds = c?dt?® 2 ydtdx+2 xdtdy dx¥* dy?> dZ; (3:275)

whereF, =0 andDj = 0. In Y3.11, which focused on a charged parti-
cle in a stationary electric eld, we could assume that the Christo el
symbols are zeroes, i.e., consider the particle's motion in a Galilean
reference frame in the Minkowski space. In contrast, in this section,
the three-dimensional observable metrjgcis not Euclidean due to the
space rotation, and the Christo el symbol']bk (1.47) are not zeroes.

If the linear velocity with which the space rotates is not in nitesimal
compared to the velocity of light, then the components of the chr.inv.-
metric tensohj are

2,2 2y2

h11:1+—02y ; hzzzl*'—C2 PE

2yy

7, h33 = 1, (3276)

and its determinant and the correspondiffgcomponents are

2 24 y2
h = detkhik = hyshp,  h2, =1+ Z ; (3:277)
I I 9
1 2X2' 1 2y2' %
1m_ 2 : 22 _ 1
mERlr s MER S g
% (3:278)
2
h2= XY : h33=1
hc? ’

Based on théix components, we obtain the non-zero components
of the chr.inv.-Christo el symbols 'J.k (2.47)

1 - 2 “xy
11 C4 1+ 2(X§2+y2)

2

(3:279)
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2 2 22
y 1+ 55~
1 _ c : :
- : 3:280
o c? 1+- Z(X;+y2) ( )
22
2 2x 1+
1 _ e . .
= ; 3:281
22 c2 1+ z(xcz;. yz) ( )
2,,2
2 2y 1+
2 _ c : :
= ; 3:282
11 C2 1+ 2(X§2+ y2) ( )
2x 1+ —;yz
2 _ . .
= : (3:283)
2 4,2
2 = xy (3:284)

T

We will solve the chr.inv.-equations of motion of a charged particle
in the stationary magnetic eld that lIs the pseudo-Riemannian space.
To make the calculations easier, assume that the four-dimensional eld
potentialA is tangential to the four-dimensional trajectory of the parti-
cle. Since the electric eld componentis zdfp= 0, it does not perform
any work, so the right hand side of the chr.inv.-scalar equation of motion
turns into zero.

Then, the chr.inv.-equations of motion of a charged particle (3.208,
3.209) belonging to our world take the following form

211 =0; (3:285)

di mv' +2mAlvk+m | vk = g"”‘mka m; (3:286)

while for an analogous charged patrticle travelling in the same stationary
magnetic eld, located in the mirror world, we have

dm _

: 287
5 0; (3:287)

dg mvi +m gk Swikmy gy (3:288)



128 Chapter 3 Charged Particles in the Pseudo-Riemannian Space

Integrating the live forces theorem for the our-world particle and the
mirror-world particle we obtain, respectively
_ Mo _ ) _ M _ . (a
m= ﬁiz—constz B; m—qiz—constz B; (3:289)
15 15

c? c?

whereB andB are integration constants. The constants actually mean
thatv2 = const i.e., the modulus of the particle's observable velocity
remains unchanged in the absence of the electric component of the elec-
tromagnetic eld.

Then the chr.inv.-vector equations of motion for an our-world parti-
cle (3.286) take the form

dv! ik, i k— € ik : )

d_ + 2AkIV + :,]kVnV - ﬁ: : kaH m (3290)
while for a mirror-world particle (3.288) we have the same equations,
but without the tern2 A} vk, namely

dv

v ioynyk= & wikm

g nk VkH m: (3:291)

The magnetic strength is determined by the Maxwell equations for
a stationary eld (3.215, 3.216), which, with zero electric strength and
under the constraints assumed in this section, take the form

9

mH™= 2 ¢ g

. _ F 3292

nikm re H mph — 4_le ? ( )
C

TR C L TR S T (3:293)

From the rst equation of the 1st group, we see that the scalar prod-
uct of the space non-holonomity pseudovector and the magnetic strength
pseudovector is a function of the charge density. As a result, if the charge
density of the stationary magnetic eld is= 0, then the pseudovectors

i andH ' are orthogonal.

Henceforth, we will consider two possible orientations of the mag-
netic eld strength with respect to the pseudovector of the space non-
holonomity (rotation).
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3.12.1 The magnetic eld is co-directed with the non-holonomity
eld

Assume that the magnetic strength pseudovestbiis directed along
thezaxis, i.e., in the same direction as the pseudovector of the angular
velocity =2 "*kMA., with which the space rotates. In this case, the
space rotation pseudovector has just one non-zero compongat

while the magnetic strength pseudovector has as well one non-zero com-
ponent that has the form

1 1
H 3 — E --3mnHmn — E " 312H12+ " 321H21 - le —
| .
. Lo (3:294)
__ 01 @ 2
cC @ @y ¢c

The condition' = constis derived based on the condition of the
absence of the electric component of the eld. Hence, the 1st group of
the Maxwell equations (3.292) in this case have the form

|
3H3:T% %y-+zlcz= 2 ¢C 9
P-4 P
ng?’ =gith (3:295)
@@Hsp_z%jzpﬁ
=0 ’

The 2nd group of the equations (3.293) turn to the trivial relation-
ship @.° - 0, so we haveH 3= const This means that the stationary
magnetic eld that we are considering is homogeneous aloridext,
we assume that the stationary magnetic eld is strictly homogeneous
H '=const Then, from the rst equation of the 1st group (3.295), we
see that the eld is homogeneous under the following two conditions

|
@1 @ vl
— — =const = —— =const 3:296
& @y = ( )

Hence, the charge density of the stationary magnetic eld under
consideration is> 0, if the eld scalar potential is< 0. In this case,
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the other equations of the 1st group (3.295) take the form
P 2_ C @npE 3

= |

c@nh
4 @y ' Td @

=

=0: (3:297)

Sinceh=1+ w (3.277), this means: the current vector in the
homogeneous stationary magnetic eld is non-zero only if the space
rotation velocity is comparable to the light velocity. In a weak eld of
the space non-holonomity, we have 1, hencej! = j2=0.

Now, expressing the magnetic strength from the Maxwell equations
(3.295) we write down the chr.inv.-vector equations of motion for an
our-world particle (3.290, 3.291) in the form

" I # 9
o, 2 ZXyX X0 1,2 1
x+T = +1+7y+ X+ 2 Xy +
m ' #
2 2,2
1 o _ €eH XYy X X
YT g Tttty
" 22! S (3:298)
2 Xyy Y AN
Vo ettt Xt T2 e
n ' #
2 22"
2 2_ €H Xyy y
+ Sy°= o 2 + 1+ o X
2=0 '
while those for an analogous mirror-world particle are
" 9
X+ 1x2+2 12)$|y+ Ly?= -
eH 2xyx+ 1+ 2x2
mc c? z Y
j+ 22+2 Zxy+ 2,\2= 3! (3:299)
n I #
2 22"
= ﬁ ny + 1+ y X
mc c? c?

z=0 ’

The terms on the right hand side, which cont@ftn appear, because
in a rotating space the observable chr.inv.-meltyicis not Euclidean.
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Hence, in the case under consideration there is a di erence between the
contravariant form of the observable velocity and its covariant form.
The right hand side includes the covariant components

!

2%y 2,2
Vo = hopv! + hyov? = Z X+ 1+ Z Vi (3:300)
!
2 2,2
vy = hyvt + hyov? = c;(y y+ 1+ C_zy x:  (3:301)

If the space does not rotate=( 0), then the chr.inv.-equations of
motion of the our-world particle (3.298) to within their sign match the
equations of motion in a homogeneous stationary magnetic eld given
by Landau and Lifshitz (see their formula 21.ZTihe Classical Theory
of Fieldg, which have the form

eH . eH

K= —vy; = _x;, 2=0; 3:302
X mCy, y mcxv Y4 ] ( )

while our equations (3.298) under the same simpli cation mean

. eH . _eH -
X = m_cy' y—ﬁ:x, 2=0: (3:303)

The di erence is derived from the fact that Landau and Lifshitz as-
sumed the magnetic strength in the Lorentz force to have a plus sign,
while in our equations it has a minus sign, which is not thatimportant,
because it only depends on the choice of the space signature.

If the space rotates (non-holonomic), then the equations of motion
will include the terms containing, 0—22 ande‘.

In a strong eld of the space non-holonomity, solving the equations
that we have obtained is a non-trivial task, which is likely to be tackled
in the future with computer-aided numerical methods. Hopefully, the
results will be quite interesting.

Let us now nd exact solutions to the obtained equations of motion
in a weak eld of the space non-holonomity, i.e., heglecting second or-
der terms. In this case, the equations of motion that we have obtained
(3.298, 3.299) for an our-world particle are simpli ed

H H
K+2 y= %:y; y 2 x=%;x; 5=0: (3:304)
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and for a mirror-world particle they are even simpler

. eH eH - )
X = m_cy' y_mc ; 2=0: (3:305)
First, consider the equations for the our-world particle. The equation

alongz can be integrated straightaway. The solution is
z=70 +Zp): (3:306)

From here we see that, if at the initial moment of time the particle's
velocity alongzis zero, then it travels within they plane only. Re-write
the remaining two equations of (3.304) as follows

3—X= 2+ 1)y; 3—y:(2+ 1Y x; (3:307)
where we denoté = eH as in Y21 ofThe Classical Theory of Fields
Formulatingx from the second equation, we derive it then substitute the
result into the rst equation. Thus, we obtain

2
3_¥+(2 + | )2y: 0’ (3308)

which is an oscillation equation. Its solution is

y=Cicos(2 + ') +Cysin(2 + !) ; (3:309)

whereCy = y(g) andC; = y“’) are integration constants. Substituting
y (3.309) into the rst equatlon of (3.307), we obtain

;I_x: (2 + )ygecos2 + ')  Yyosin@2 + 1) ; (3310)

or, after integration,

X=Yy@gsin2 + !) z)ﬁo) cos(2 + !') +Cs; (3:311)
where the integration constant@s = X(o) + ny’), :

Having all of the constants substituted, the obtained formulag for

(3.311) andy (3.309) nally transform into
#COS(Z + 1) +

Yoy .
TXot

X=Yyosin@Z + 1) (3312)
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_ y(O)
= |
y=Yocos2 + !) + 5+

| sin(2 + 1) : (3:313)

Hence, the formulae for components of the particle's veloxiynd
y in a homogeneous stationary magnetic eld are harmonic oscillation
equations. The oscillation frequency in a weak eld of the space non-
holonomity is2 + ! =2 + &,

From the live forces integral in the stationary magnetic eld (3.289)
we see that the square of the particle's velocity is a constant quantity.
Calculatingv? = x2 + y? + 22 for the our-world particle, we obtain that
this quantity

!

Yo
V=X Yot Aot 2 X0t 5
" g " #(3:314)
(0) . Yo
>+ 1 +yosin2 + 1) T cos(2 + 1)

is constant/? = const provided thatCs = x() + y(") =0.

Integratingx (3.312) andy (3.313) by the observable time we
obtain the coordinatesandy of the our-world particle travelling in the
homogeneous stationary magnetic eld

' #
X= 2330) sin + !') ypcos(2 + !)
. ! (3:315)
1 e YO o
2+ 1 OT 4
) #
y= yogsin2 + 1) + 2310) cos(2 + 1)
(3:316)
1 O
5+ 1 5,
where the integration constants are
Y(O) Yo
Ca=X0+ 3 ; Cs=yo+———: (3317
4 = X0) i 5= Y(0) 2+ 1) ( )

From (3.315) we see that the particle perforn@monic oscilla-
tionsalong x provided that the equatiox) + 5 y(o’ =0is true. This
is also the condition for the constant square of the particle's velocity
(3.314), which satis es the live forces integral.
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Based on the above solutions, we arrive at the equation of the parti-
cle's trajectory within thexy plane

o2
X+ y? =ﬁ §Y(20) + 2 Z(O)! )zi 5 2f4! ,
Yoycos(2 + 1) +2y:rL)lsin(2 + 1) +
" o 4 (3318)
+ yosin(2 + 1) +2);L)!cos(2 + 1)
22f5! +C§+C§;

Assuming that, at the initial moment of timgg) = 0 and the inte-
gration constant€, andCs are zeroes, we can simplify the obtained
formulae (3.315, 3.316), namely

1
X= > 1 y(o)COS(Z + 1) (3:319)

1 . ) .
y= ] yosin(2 + 1) : (3:320)

With these formulae, our equation of the particle's trajectory (3.318)
transforms into the simple equation of a circle

2

2 Yo .
@+ 1)

So, if the initial velocity of an our-world charged particle with re-

spect to the direction of the homogeneous magnetic 2lk(s) is zero,
then the particle travels within they plane along &ircle of radius

X2 + (3:321)

_ Yo _ Yo . )
r_2+!_2+ﬂ4, (3:322)
mc

which depends on the magnetic eld strength and the angular velocity
with which the space rotates.

If the initial velocity of the particle along the magnetic eld direc-
tion is not zero, then it travels alongsairal line of radiusr. In gen-
eral, the particle travels along alipsewithin the xy plane (3.318),
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the shape of which is di erent from a circle depending on the initial
conditions of the motion.

It is easy to see that our results match those obtained in YPheof
Classical Theory of Fields

1 1

X= Y0 cos! ; y = T Yy sin! ; (3:323)
once we assume= 0, i.e., the space does not rotate. In this particu-
lar case, the radius= Y@ = = ¢y(0) of the particle’s trajectory does not
depend on the space rotatlon If, O, then the non-holonomity eld
disturbs the particle travelling in the magnetic eld by adding up an ad-
ditional quantity?2 totheterm = ﬁlnthe equations. Inastrong eld
of the space non-holonomity, wherecannot be neglected compared to
the light velocity, this disturbance is even stronger.

On the other hand, in a non-holonomic space the argument of the
trigonometric functions in our equations contains $kien of two terms
one of which is derived from the interaction of the particle's charge
with the magnetic eld strength, and the other is the result of the space
rotation (it does not depend on the electric charge of the particle, or even
on the presence of the magnetic eld at all). This allows us to consider
two special cases of the motion of a charged particle in a homogeneous
stationary magnetic eld that Ills a non-holonomic space.

Inthe rst case, where the particle is electrically neutral or the mag-
netic eld is absent, the particle's motion is the same as that under the
action of the magnetic component of the Lorentz force, except for the
fact that this motion is caused by the space rotation with a vel@city
comparable té = 4.

How real is this case? To answer this question, we need an approx-
imate estimate of the ratio between the angular velocityith which
the space rotates and the magnetic eld strergtin at least a particu-
lar case. The best example would be the atom, because on the scale of
the electron orbits, the electromagnetic interactions are several orders
of magnitude stronger than others, and the orbital velocities of electrons
are relatively large.

Such an estimate can be made on the basis of the second particular
case of the motion, where we assume that the condition

eH

3:324
s (3:324)
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is true and, hence, the argument of the trigonometric functions in the
equations of motion becomes zero.

Consider the reference frame of an observer, whose reference space
is associated with the nucleus of an atom. Then the ratio in the question
(in CGSE and Gaussian systems of units) for an orbiting electron is

B e _ 48 101° _
H 2mec 182 102830 10W (3:325)

= 8.8 10°cm™?gram *?;

where the minus sign is due to the fact thatandH in (3.324) are
oppositely directed.

Let us now solve the equations of motion of a mirror-world charged
particle in the homogeneous stationary magnetic eld (3.305), whichin
a non-holonomic space match the equations

x= ly; y=1x; 2=0: (3:326)

The solution to the third equation of motion (alaz)gs simplest and
has the fornz=zq) + 7).

The equations of motion alongandy are similar to those for an
analogous our-world particle, except that the argument of the trigono-
metric functions has instead oft +2 | i.e.

Y()

X = Y(o)Sin! cos!  + X@o )+ Yo 2. (3:327)

y=yeocos! + 3@ sin! (3:328)
Hence, the formulae for the components of the mirror-world parti-
cle's velocity x andy are the equations of harmonic oscillations at the
frequencyl = &1
Their solutlons, i.e., the coordinates of the mirror-world particle
travelling in the homogeneous stationary magnetic eld have the form
! Lo
1 y(0)

Yo . (2
X= sin! Yoycos!  + X+ 5 +Cy; (3:329)

Vo)

1 .
y== ygsin!  +Z=cosl  +Cs; (3:330)
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where the integration constants are
Y© Yo
Ca=x0)* 32 Cs= Yo+ 73 20, (3:331)

As we have already mentloned, the live forces integral in a station-
ary magnetic eld (3.289) means the constant relativistic mass of the
travelling particle and, hence, the constant square of its observable ve-
locity. Then, using the solutions for the velocities of the mirror-world
particle, i.e., the squared quantitiesy, z, we obtain that

2 — 2 2
V' =Xo Yot Z<20)+ |

y (3:332)
+2 Xo) +y(0> y()+y sin! &cos!
is constant/? = constprovided that
X0+ 2@ = o: (3:333)

From the formula forx (3.329), we see that the particle performs
strictly harmonic oscillations alongunder the same condition (3.333).
Taking this fact into account, squaring and addingxuf8.329) and
y (3.330) for the mirror-world particle in the homogeneous stationary
magnetic eld, we obtain its trajectory within they plane

32+ 2 =

2 ; !
_ 1 é(z y(o)% 2Cy Yo _.
= '—2 0) + |—2 I_ Y(0) cos! + I_ sin! + (3334)

!
i Yo 2Cs 2. 02.
+ Yosin! + !—cos! !—+C4+C5,

which di ers from the our-world particle trajectory (3.318) thy+ 2
replaced with and by the numerical values of the integration constants
(3.331). Therefore, a mirror-world charged particle having zero initial
velocity along thezaxis (direction of the magnetic eld strength) travels
along arellipsewithin the xy plane.

Once we assumgy) as well as the constan® andCs to be zeroes,
the obtained solutions become much simpler

X = 'ly(o)cos! , y = liy(o)sin! ; (3:335)
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In such a simpli ed case, the mirror-world particle which is at rest
with respect to the eld direction makescircle

y2
X2+ y? = % (3:336)

within the xy plane with the radius = 22 = ¢y,

Consequently, if the initial velocity of the particle along the mag-
netic eld direction @ axis) is not zero, then the particle travels along
aspiral line around the magnetic eld direction. Hence, the motion of
mirror-world charged particles in a homogeneous stationary magnetic
eld is the same as that of our-world charged particles in the absence of
the space non-holonomity.

3.12.2 The magnetic eld is orthogonal to the non-holonomity
eld

We are going to consider the case, where the magnetic strength pseu-
dovectorH ' is orthogonal to the pseudovector' = £ "*™A, of the
space non-holonomity eld. In this case, the rst equation of the 1st
group of the chr.inv.-Maxwell equations that we have obtained for a sta-
tionary magnetic eld (3.292) means that the charge density of the eld
is zero =0.

Assume that the magnetic strength is directed ajofogly the com-
ponentH 2= H is non-zero), while the non-holonomity eld is directed
alongz (only the component 3= is non-zero). We also assume that
the magnetic eld is stationary and homogeneous. Under the above as-
sumptions, the non-zero component of the magnetic strength is

I
2 py = @ O _ :
H“=Hjs = @ @ = const (3:337)

If the non-holonomity eld is weak, then the equations of motion of
an our-world particle take the form
eH eH
X+2 y=—z; §y 2 x=0; 2= —X; 3:338
X y=-—2z ¥ x=0; 2= —x )

which, denoting = ﬁq—'j: become even simpler

X+2 y=lz, y 2 x=0; z= 1x: (3:339)
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Di erentiating the rst equation with respect toand substituting
andzinto it from the second and the third equations, we have

X+ 4 2412 x=0: (3:340)

Settingx= p, we arrive at the oscillation equation

S
2

P H
p+E2p=0; B= 4 2+12= 4 2+ S . (3341)
mc
which solves as follows
p=Cicosk +Cysink; (3:342)

whereC; = Xy andCs, = X(O’ are integration constants. Integratixg p
with respect to , we obtaln the formula fox

) %0
B2

sine cCosk + Xqo) + Z(O) ; (3:343)

wherex) + (0’ =Cs is an integration constant.
Substltutlngx p (3.342) into the equations of motion in terms of
y andz (3.339) and integrating them, we obtain

2 . 2 2 .
y= 5 X0 sink B2 Xoycose +yq)+ 52 Xo); (3:344)

| | |
z= — X(o)cosk E X(0)Sine  + Z) E X0); (3:345)

Wherey(0)+ = C4 and z) 'E@ =Cs are new integration con-
stants. Then mtegratlng the obtained equations (3.344, 3.345) with re-
spect to , we obtain the nal formulae foy andz
|
2
Y= Xo)cose + &smé +Yo *+
e (3:346)

. 2
7 X0 tYot B2 X(0) ;
|

! X( 0)

z:p Xo)cose + sine  + 2z

I !
B2 X0) *Zo) B2 X0) 5

(3:347)
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Wherey(o) + 2 Eé(o) =Cg andz(o) i EX<20) =Cy.

If = O (the space does not rotate) and some integration constants
are zeroes, then the above equations completely match the well-known
formulae of relativistic electrodynamics in the case, where the station-

ary magnetic eld is directed along theaxis

X = & sine; Yy =yo+VYo . Z= Q cost:  (3:348)

So forth, since the live forces integral means that the square of the
observable velocity of a charged particle in a stationary magnetic eld
is constant, we can calculaté= x? + y? + Z2. Substituting the obtained
formulae for the velocity components, we obtain

2

2 _ 2 3

V=X Yo tdoty %0t2 Yo ! Zo
] o @39

20, X(0) Sink b cosk

thereforev? = const provided that
Xo)+2 Yo ! Zo=0: (3:350)

The three-dimensional trajectory of the particle can be found by cal-
culatingx? + y? + Z2. Thus, we obtain the equation

2 2 — 2 2
X2 +y +zz—p ) * C5+C2+C2 +

+ Ci+CZ 2+2(CsC+CsCy) + (I C; 2 Cg)+
, !1 (3:351)
X()smé —+
92
!

[
+2(1 Cs 2 C¢) Xxpcosk +

X()sme ;

2C3
+ B2 X(0) COSk
which includes a linear term and a square term with respect to time, as
well as a parametric term and two harmonic terms. In a particular case,
where the integration constants are zeroes, the obtained formula (3.351)
takes the form of the equation osahere

2,2 18, X(zo)é
X2 +y +22:§ 0t g2k (3:352)
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the radius of which is
1
=g Kyt 0. (3:353)

wherek = p4 2312= 4 24 €7

So, an our-world charged particle in a homogeneous stationary mag-
netic eld, orthogonal to the space non-holonomity eld, travels over a
surface of ssphere the radius of which depends on the magnetic eld
strength and the angular velocity with which the space rotates.

In a particular case, where the non-holonomity eld is absent and
the initial acceleration of the particle is zero, the obtained trajectory
equation simpli es signi cantly to the equation of a sphere

1 1 mc
Xty 7= !—ZX(ZO)i =y X=X (3:354)

with the radius depending only on the interaction of the particle's charge
with the magnetic eld this is the result, well-known in electrody-
namics (see Y21 ifihe Classical Theory of Fieljls
For a mirror-world charged particle that travels in a homogeneous
stationary magnetic eld, orthogonal to the non-holonomity eld, the
equations of motion take the form
eH . - eH

X=—1z y=0; z=

3:355
mc mc ( )

They are only di erent from the equations for the our-world particle
(3.338) by the absence of the terms that include the angular velocity
of the space rotation.

3.13 Motion in a stationary electromagnetic eld

In this section, we are going to focus on the motion of a charged parti-
cle under the action of both the magnetic and electric components of a
stationary electromagnetic eld. As a background we will consider a
non-holonomic space that rotates aroundzleis with a constant an-
gular velocity 1= 21= , so the space has the metric (3.275). In
such a spacd;; = 0andDj, = 0.

We will solve this problem, assuming that the non-holonomity eld
is weakand, hence, the three-dimensional space has the Euclidean met-
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ric. In this case, the Maxwell equations for a stationary electromagnetic
eld (3.215, 3.216) take the form

9
mH™= 2 ¢ S
. _ p- s, 3:356
.-Ikmrk Hmph :%jlphzo 1§ ( )
9
mE"=0 =
2 I, (3:357)

"N En R =0

since the observable homogeneity of a eld means the equality to zero of
its chr.inv.-derivative [9,11 13], while in the particular case under con-
sideration the chr.inv.-Christo el symbols are equal to zero (the metric
is Galilean) so the chr.inv.-derivative is the ordinary derivative. Hence,
the Maxwell equations mean that, in this case, the following conditions
are satis ed:

a) The space non-holonomity pseudovector and the electric eld
strength are orthogonal, hE™=0;

b) The space non-holonomity pseudovector and the magnetic eld
strength are orthogonal, ,H ™=0. Consequently, the charge
density is zero =0;

c) The electromagnetic eld current is absefit= O.

The latter condition means that the presence of the electromagnetic
eld currentsj', 0Ois due tothe inhomogeneity of the magnetic strength
of the acting electromagnetic eld.

Given that the non-holonomity pseudovector is orthogonal to the
electric eld strength, we can consider the motion of the particle in the
two cases of the mutual orientation of the elds:

1) H? EandH Kk~
2) HKE andH? ~.

In either case, we assume that the electric strength is co-directed
with the x axis. According to the background metric (3.275), the space
rotation pseudovector is co-directed wthHence, in the rst case, the
magnetic strength is co-directed withand in the second case it is co-
directed withx.

The chr.inv.-equations of motion of a charged particle in the station-
ary electromagnetic eld, where the electric strength is co-directed with
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x have the following form in our world

dm_ eEdx.

d° @d’ (3:358)
d 1 !
T mv' +2mAlvk= e E'+ E" kM Hm o (3:359)
and in the mirror world the equations take the form
dm eFE dx
— = —=— 3:360
3 2q ( )
I
d i P '
T mvi = e El+ E" kmy H (3:361)

As before, consider a charged particdpulsedby the electromag-
netic eld. In this case, the components of the electric strertgttto-
directed withx, in a Galilean reference frame (where the covariant and
contravariant components of a tensor quantity are the same) are

_- _Q@_ - e _Q- :
Ei = Ex= — =const= E; E, = E3=0: (3:362)
@

Integrating the live forces theorem we obtain the live forces integral

for our world and the mirror world, respectively,

eE ] _eE ] )
_?XJ, B: m= ?X+B, (3:363)

whereB is an integration constant for our world, aRds an integra-
tion constant for the mirror world. Calculating these constants from the
initial conditions at the moment of time= 0, we obtain

eE eE
B=mo S Xo: B=mot sxo: (3364

wheremy, is the relativistic mass of the particle, arg is its displace-
ment at the initial moment of time.

From the obtained live forces integrals (3.363), we see that the dif-
ference between the two cases under this study is due to the dierent
orientation of the magnetic strengithto the electric strengtE and to
the angular velocity™ with which the space rotates (orientation of the
space non-holonomity eld). This di erence reveals itself only in the
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chr.inv.-vector equations of motion, while the chr.inv.-scalar equations
of motion (3.358, 3.360) and their solutions (3.363) remain the same.

Note that the vectoE can also be directed alornyg but cannot be
directed along. Thisis because in the space with such a metric the non-
holonomity pseudovector is co-directed withe, while the 2nd group
of the Maxwell equations requit& to be orthogonal to".

Now, taking into account the integration results from the live forces
theorem (3.363), we will write down the chr.inv.-vector equations for
the two cases that are conceivable.

Case 1.Assume thatt ? E andH K~ so the magnetic strengt is
directed along (parallel to the non-holonomity eld).

Then, out of all components of the magnetic strength, only the fol-
lowing component is non-zero

1
e @ 2

— + —Ap=const=H: (3:365
oy @ o A2 ( )

Consequently, the chr.inv.-vector equations of motion for an our-
world particle have the form

9
eE , eE_ . eH
— X+ B+ —x (X+2 —eE —
> X (%42 ) Zy §
eE eE eH 2
—Xy+ B+ —x(y 2 x)=—X ;o (3:366
R R )=~ g ( )
E
e—2x2+ B+ %Ex 2=0 >
C C
while for a mirror-world particle we have
9
eE , eE eH
p— + B i =—eE —
2 2 ¢’ g
eE eE eH 2
—xy+ B —x §y= —X 3:367
R 2 XY= g ( )
E E
e—2x2+ B e—zx 2=0 ,
c ¢

Besides, the 1st group of the Maxwell equations require that in the
case under study the following condition must be true

sH3= 2 c; (3:368)
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where 3= = constandH 2=H =const

Based on the obtained formula (3.368) we arrive at the obvious
conclusion: the above mutual orientation of the space non-holonomity
pseudovector and the magnetic eld strength is only possible in the case,
where electric charges are present in the space, so the charge density is
non-zero , O.

Case 2.Assume thaet KE, B2 ~ andE? ~, so the magnetic and el-

ectric strengths are co-directed withwhile the non-holonomity
eld is still directed alongz.

In this case, out of all components of the magnetic strength only the
rst component is non-zero

I
@ @3
Hl=Hy= —= = const= H: 3:369
c @ ay ( )
With this formula, we obtain the chr.inv.-vector equations of motion
for an our-world particle and those for a mirror-world particle. For the
our-world particle the equations have the form

9
E eE
iz X2 + B+—x(x+2 y) = eE §
eE eE eH 2
— Xy + B+—x V 2 X)= —1z X 3:370
2% =R ) S ( )
eEXZ+ B+eEX 5= eH
c? c2 -7 ’

while the equations for the mirror-world particle have the form

9
eE E
—2x2+ 8 e—zx %= eE
c c
eE eE_ . _ eH_ = .
?Xy+ B ?X = TZ . (3371)
g €E ,_eH
A

Now, having the equations of motion of a charged particle in a sta-
tionary electromagnetic eld of the above two mutual orientations with
respect to the pseudovector of the space non-holonomity eld (pseu-
dovector of the space rotation), we can start solving them.
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3.13.1 The magnetic eld is orthogonal to the electric eld and is
parallel to the non-holonomity eld

Let us solve the chr.inv.-vector equations of motion of the charged par-
ticle (3.366, 3.367) in the non-relativistic approximation, i.e., assuming
the absolute value of the particle's observable velocity negligible com-
pared to the velocity of light. Hence, we assume that the particle's mass
at the initial moment of time is equal to its rest-mass

Mo) = ﬁ& my: (3:372)

2
V
1 2z

Assume that the electric strengkhis negligible, so the terrﬁg
can be withheld. Under these conditions, the chr.inv.-vector equations
of motion for an our-world particle take the form

mo(k+2 y)=eE Ty

eH
X

nb(y 2 X) - T ; (3373)

= 0000000 100K/ O

mpz=0

while for a mirror-world particle we have
H H
mpX = eE eTy; %y=%x; mpz=0: (3:374)

These equations match those obtained in Y ZhmClassical The-
ory of Fields[10] in the case, where the space non-holonomity is absent
( = 0) and the electric strength is directed along xexis.

The obtained equations for the mirror-world particle are a partic-
ular case of the our-world equations & 0. Therefore, we can only
integrate the our-world equations, while the mirror-world solutions are
obtained automatically by assuming 0. Integrating the equation of
motion alongz we obtain

Z=270) *Zo): (3:375)

Integrating the equation alongwe arrive at
!

H
y= 2 + %: x+Cy (3:376)
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where the integration constant@g =y 2 + r‘% X(0)-

Substituting the obtained solution fgrinto the rst equation of
(3.373), we obtain a second-order di erential equation with respect to
X, which has the form

E
K41 2y = % +12%0) 1 Yo (3:377)

where! =2 + e“ . Introducing a new variable

A E
u=x ; A= e% +12x0) ! Y); (3:378)

we obtain the harmonic oscillation equation
U+!2%u=0; (3:379)
which has the following solution
u=Cycos! +Cssin! ; (3:380)

where the integration constants &g= up) andCz = @ Returning
back to the initial variablex by the reverse substitution of the variables,
we nally obtain a solution forx, which is
1 eE
! X( 0 sin!  +
Mo

3:381
Yo (3:381)

+ tXo T

mp! 2

Substituting this formula into the obtained equation fq3.376),

then integrating it, we obtain a solution fgrwhich is

_ 1 eE' . X(o) |
y= I_ Y(0) m sin! !—COS. +

eE X0)
mot 2 YO

The chr.inv.-vector equations in the mirror world have the same so-

lutions, but because= 0 for them, the frequency is = eHC

The energy of the our-world and mirror-world particles &e mc
andE= md, respectively.

(3:382)
+
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Finally, we obtain solutions for the three-dimensional momentum
of the our-world particle

9
1 _ _eE _
p*=mox= —— Moy SNl + mMyXg)cos! g
! ' |
2 my eH eE '
p2 =My = — + = y(O) + n,by(o) + g
AR 4 3 (3383)
2 nb eH eE | -
* 1 + 1o Yo) W cos! + Xq)sin!
p3 = MpZ = MyZp) :
and for the mirror world particle
1_ €E . 9
p'= = Moy sin! +moXg)cos! §
! ) ! )
eE eE . _- .
p? = T +Mo Y0 ol cos!  + Xp)sin! § (3:384)

p3 = Mo Z)

where, in contrast to our world, the frequency is e—h':

From here we see that the momentum of an our-world charged par-
ticle in the given con guration of the acting elds performs harmonic
oscillations alongk andy, while alongz it is a linear function of the
observable time (if the particle's initial velocity isz, 0). Within the
xy plane the oscillation frequencylis=2 + &4,

It should be noted that obtaining exact solutions to the equations of
motion in the presence of both the electric and magnetic components of
the electromagnetic eld is very problematic, because we need to solve
elliptic integrals. It can be possible to solve them in the future, when the
solutions will be obtained on computers, but this problem is obviously
out of the scope of this book. Presumably, Landau and Lifshitz faced
a similar problem, because in Y22 Te Classical Theory of Fielgds
where they considering a similar problenthey obtained the equations
of motion and then solved them assuming the particle's velocity to be
non-relativistic and the electric strength to be wéglé 0.

Butin contrast to our book, Landau and Lifshitz used the general covariant method
and, therefore, they did not take the space non-holonomity into account.



3.13 Motion in a stationary electromagnetic eld 149

3.13.2 The magnetic eld is parallel to the electric eld and is
orthogonal to the non-holonomity eld

Let us solve the chr.inv.-vector equations of motion of a charged particle
(3.370, 3.371) in the same approximation as in the previous case. In this
case, for an our-world particle and for a mirror world particle the vector
equation of motion have the form, respectively

eE eH eH
X+ 2 =—: y 2 X= —z; 2= —V.; (3:385
Y= Y —_ moc” ( )
eE eH eH
X= —: y= —Z; 2= —V: 3:386
o V= e moc” ( )

Integrating the rst equation of motion in our world (3.385), which
means the motion alorng we obtain

eE
X= — 2 y+Cq; 3:387
o y+Cy ( )

whereCy = const= xg) + 2 Y(o).
Integrating the third equation of motion (alompwe have

eH
=—y+GCy; 3:388
z moCy 2 ( )

whereC; = const= g 2y(q).

Substituting the obtained formulae fwandzinto the second equa-
tion of motion (3.385), we obtain a linear di erential equation of the
2nd order with respect tg, which is

eZHZ% 2 eE eH
"+i 2+ = +2 C ——Cy: (3389
y —r o i ( )

We will solve it, using the variable change method. Thus, introduc-
ing a new variablel in the form

|
_ 1 L 2_4 2
U—y+!—2 mcz 2 C]_, =4 +

H?
mge?
we obtain the inhomogeneous equation of forced oscillations

eE

; (3:390)

U+!2u= : (3:391)
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the solution of which is the sum of a general solution to the free oscil-
lation equation
i+!2u=0; (3:392)

and a particular solution to the inhomogeneous equation
=M +N; (3:393)

whereM = constandN = constare constants.

Di erentiating 0 twice with respect to and substituting the results
into the initial inhomogeneous equation with respedi {8.391), then
equating the obtained coe cients forto each other, we obtain that the
above linear coe cientsM andN are

As a result, the general solution to the initial inhomogeneous equa-
tion (3.391) takes the following form

. 2 eE
u=Czcos! +Cysin! + X
mp! 2

(3:395)

where the integration constants can be obtained by substituting the ini-
tial conditions at =0 into the obtained solution (3.395). As a result,
we obtainCs = Uy andCy = 2.

Returning back to the initial variable(3.390), we obtain the nal

solution for this coordinate

mn !#
1 eH
Y= Yot i3 _mocC2+2 C, cos! +
Y | 1 eH ! 2 eE (3:396)
0) .
+!—S|n! |_2 ECCZ'FZ C]_ +n"b!2

Then, substituting this formula into the equationsxXandz, after
integrating we arrive at the solutions feandz

I
eE 4 2 2 .
=— 1 — ? T y(0)+A sin!  +

|1 2
2mo L (3:397)
ﬂ cosl +(Ci1+2 A +Csg;
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" #
= Cl Yoy + A sin! mcos!
MoC: ! ' | (3:398)
e
—A C; +Cg;
MoC 2 6
where (for convenient notation)
|
1 eH '
A - '—2 EC C2 2 C]_ y (3399)
while the new integration constants are
2 eH
Cs=xo —29;  Co=z9+ y<0) (3:400)

If we assume = 0, then, based on the solutions for an our-world
charged particle (3.396 3.398), we immediately obtain the solutions for
an analogous charged particle in the mirror world

ek
X o FXO) X0 (3401)
y= @ cos! y(0) sin! @ +Y0); (3:402)
z= Z(O) sin! y(0) cos! + @ +Z0): (3:403)

Consequently, the components of the three-dimensional momentum
of the our-world particle under the considered con guration of the act-
ing elds take the form

2! 9
p'=moxg +eE 1 S
2my y(o) sin!  + yq+ A cos! y(0) é
p>=my yocosl ! yo+A sin! 42 3 (3:404)
Y)+ A cos! y(o) sin! A+ —— 2 ek Yo)

mp! 2
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where the frequency is

2
1= 4 2+%: (3:405)

In the mirror world, given the above con guration of the acting
elds, the components of the three-dimensional momentum of an anal-
ogous charged particle are

p' = moX) + 2€E
p? = My Y(g)COS! Z)sin!
p®=my Zgcos!  y(sin!

; (3:406)

= 00000/ 100K/ O

where, in contrast to our world, the frequency is n?(—o'jc

3.14 Conclusions

In fact, the theory that we have created in this Chapter can be more
precisely called thehronometrically invariant representation of elec-
trodynamics in a pseudo-Riemannian spate other words, because
the mathematical apparatus of physically observable quantities initially
assumes the four-dimensional space-time of General Relativity, we can
simply refer to it as thehronometrically invariant electrodynamigsr
CED). Here, we have obtained only the basics of this theory:

The chr.inv.-components of the electromagnetic eld tensor (Max-
well tensor);

The Maxwell equations in the chr.inv.-form;

The law of conservation of electric charge in the chr.inv.-form;

Lorenz' condition in the chr.inv.-form;

The dAlembert equations in the chr.inv.-form (wave propagation
equations) for the scalar potential and vector-potential of the elec-
tromagnetic eld;

The Lorentz force in the chr.inv.-form;

The electromagnetic eld energy-momentum tensor and its chr.
inv.-components;

The chr.inv.-equations of motion of a charged particle;

The geometric structure of the four-dimensional electromagnetic
eld potential.
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It is obvious that, the whole scope of the chr.inv.-electrodynamics
is much wider than the above obtained results. In addition to what has
been obtained, we could obtain the chr.inv.-equations of motion of a dis-
tributed charge or study the motion of a particle that has its own electro-
magnetic emission interacting with the electromagnetic eld or, at last,
deduce the equations of motion for a charged particle travelling at an
arbitrary angle to the eld strengths (either for an individual particle or
a distributed charge), or solve many other interesting problems.

In addition, of course, here we are talking about non-quantum elec-
trodynamics. As is known, the mathematical apparatus of chronomet-
ric invariants was created for the four-dimensional pseudo-Riemannian
space. In a space with a di erent geometry, the operators formally de n-
ing physical observables, of course, will also be di erent. However, the
creation of the mathematical methods determining physical observable
guantities in the space of quantum mechanics and quantum electrody-
namics is in principle also possible: we have carried out the necessary
preliminary work in this direction, and only the lack of time, as well as
the shift in the focus of our scienti ¢ interests to other, incommensu-
rably more interesting problems, stopped the creation of a chronomet-
rically invariant quantum mechanics and a chronometrically invariant
electrodynamics.




Chapter 4 Spin Particles in
the Pseudo-Riemannian Space

4.1 Problem statement

In this Chapter we are going to obtain the equations of motion of a par-
ticle with an internal rotation momentursgin). As we noted in Chap-

ter 1, these are the parallel transport equations of the four-dimensional
dynamic vector of the particl® , which is the sum

Q =P +S; (41)

whereP = moddiS is the four-dimensional momentum vector of the par-
ticle. The four-dimensional vect& is an additional momentum which
this particle gains from its internal momentum (spin), so this momen-
tum makes the motion of the particle non-geodesic. Therefore, we will
refer toS as thespin momentumSince we know the components of
the momentum vectoP , to de ne summary dynamic vect@®@ we
only need to obtain the components of the spin momentum v&ctor

Our rst step, in Y4.1, will be de ning a particle's spin as a ge-
ometric quantity in the four-dimensional pseudo-Riemannian space of
General Relativity. Then, in Y4.2, we will deduce the spin momentum
vectorS itself. In Y4.3, our contribution will be to obtain the equations
of motion of a spin particle in the pseudo-Riemannian space, as well as
the chr.inv.-projections of the equations. Other sections of this Chapter
will focus on the motion of elementary particles.

The numerical value of the spin isn~, measured in the fractions
of Planck's constant, wheme is the so-calledspin quantum number
As of today, it is known that for various kinds of elementary particles
this number is1= 0; 1; 1; 3; 2. The alternating sign stands for the
possible right-wise or left-wise internal rotation of the spin particle un-
der consideration. Besides, the Planck constdras the dimension of
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angular momentum [gram crsec 1]. This alone hints that the spin ten-
sor, according to its geometric structure, should be similar to the tensor
of an angular momentum, i.e., be an antisymmetric tensor of the 2nd
rank. We are going to check if another source can prove this.

Bohr's second postulate states that the length of an electron orbit in
an atom must be amteger number of de Broglie wavelengths= %
which stands for the electron in accordance with the wave-particle con-
cept. In other words, the electron orbit leng?hr consists ofk de
Broglie wavelengths

2r=k =k—; (4:2)

wherep is the orbital momentum of the electron. Taking into account
that Planck’s constant is= 21 the equation (4.2) takes the form

rp=k-~: (4:3)

Because the radius-vector of an electron arbi$ always orthogo-
nal to the electron's orbital momentup¥, this formula in tensor nota-
tion is a vector product, namely

h i :
ri: pk = k-: (4:4)

From here we conclude that Planck's constant deduced from Bohr's
second postulate in tensor notation is present with an antisymmetric ten-
sor of the 2nd rank.

This representation of the Planck constant in a tensor form is linked
to the orbital model of atoms the systems more complicated than
the electron or any other elementary particle. Nevertheless, the spin is
also de ned using this constant as an internal property of elementary
particles themselves. Therefore, according to Bohr's second postulate,
we can consider the geometric structure of Planck's constant proceeding
from another experimental relationship which is related to the internal
structure of the electron.

We have such an opportunity thanks to the classical experiment per-
formed by Stern and Gerlach in 1921. One of their results is that any
electron has an internal magnetic momentugn proportional to the
electron's internal rotation momentum (spin)

Xz (45)
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wheree is the charge of the electromy is its mass, and is the spin
quantum number (for the electron, itis %). The magnetic momentum
of a contour covering an areé&= r?, which conducts a currerit is
Lm=1S. The current equals to the chargelivided by its circulation

periodT = ZL along the contour

eu
= — 4.6
> T (4:6)
whereu is the linear velocity of the charge circulation. Hence, the in-
ternal magnetic momentum of the electron is

1
Lm = = eur; (4:7)
2
or, in tensor notation,
1 h i q1h i
Lk = Se ri:uk = > rpk (4:8)

wherer' is the radius-vector of the internal current circulation provided
by the electron, andX is the vector of the circulation velocity.

From here we see that Planck’s constant calculated from the internal
magnetic momentum of an electron (4.5) is also the vector product of
two vectors. Therefore, it is an antisymmetric tensor of the 2nd rank

h i .
g—E r': pk =n-; (4:9)
which proves a similar conclusion based on the Bohr second postulate.

Thus, considering the electron quantum relationships in the four-
dimensional pseudo-Riemannian space of General Relativity, we intro-
duce thefour-dimensional antisymmetric Plank tenser, the spatial
components of which are the three-dimensional quantitfes.e.

00 01 _02 _03
10 11 12 _13

~ B 20 21 22 23 (4:10)
30 31 .32 _33

The equations (4.8) and (4.9) are given for the Minkowski space acceptable for
the above experiment. In a Riemannian space, the result of integration depends on
the integration path. Therefore, the radius-vector of a nite length is not de ned in a
Riemannian space, because its length depends on the constantly varying direction.
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The antisymmetric Planck tenser is dual to thePlanck pseudo-
tensor which is~ = %E ~ . Therefore, the spin of a particle in
the four-dimensional pseudo-Riemannian space is characterized by the
antisymmetric Planck tensor- , or by its dual Planck pseudotensor
n~ . Note that the physical nature of the spin does not matter here; it
is only su cient that this fundamental property of particles is charac-
terized by a tensor (or a pseudotensor) of a certain kind. Thanks to this
approach, we can solve the problem of the motion of spin particles with-
out any preliminary assumption on their internal structure, i.e., using a
strictly formal mathematical method.

Hence, from a geometric point of view, the Planck constant is an
antisymmetric tensor of the 2nd rank, the dimension of which is that
of angular momentum irrespective of the quantities from which it was
obtained (mechanical or electromagnetic).

The latter also means that the Planck tensor does not characterize
the rotation of masses inside an atom or any masses inside elementary
particles; it is derived based on a fundamental quantum rotation of the
space itself and sets all elementary rotations in the space irrespective
of their nature.

The rotation of a space is characterized by the chr.inv.-teAgor
(1.36), which results from lowering indicég = him hkn A™"in the com-
ponentsA™" of the contravariant four-dimensional tensor

|
. _l1oe o .
A ch h a; a 5 @ & (4:11)

In the accompanying reference frantb£ 0), the auxiliary quantity
a has the components

| |
1 @ @, _ _1 @v v

ao = 0; aOizz_Cz@@' alk—%@ @'(4:12)
SO we have
Ao = 0; Ao = Aio=0; %
I =, .
1w av. 1 § (4:13)
A|k_§ @ @ +2—C2(Fivk FkV|) y

Inthe absence of gravitational elds, the tensor of the angular veloc-
ity A with which the space rotates depends only on the linear velocity
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of this rotationy;. Therefore we denote itas =

|
1 @v @v .

0=0; &= i0=0; K3 @ o (4:14)
On the other hand, according to the wave-particle concept, any par-
ticle corresponds to a wave having the endigymc = ~! , wheremis

the relativistic mass of the particle ahds its characteristic frequency.

In other words, from a purely geometric point of view, any particle can
be considered as a wave spread and in nitely close to the position of the
particle, the characteristic frequency of which is dependent on a cer-
tain distribution of the angular velocitids also de ned within this
vicinity. As a result, the above quantum relationship in tensor notation
becomesn@=~ 1| .

Because the Planck tensor is antisymmetric, all of its diagonal com-
ponents are zeroes. Its space-time (mixed) components in the accompa-
nying reference frame are also zero similar to the corresponding com-
ponents of the four-dimensional tensor of the space rotation (4.14). The
numerical values of the spatial (three-dimensional) components of the
Planck tensor, physically observable in experiments, ardepending
on the rotation direction and make up ttlewee-dimensional chr.inv.-
Planck tensork,

In the case of a left-wise internal rotation, the componetts~?3,
~31 are positive, while the components?, ~*2, ~?! are negative (and
vice versa for a right-wise rotation). Then the geometric structure of the
four-dimensional Planck tensor, represented as a matrix, is

0 0 0 O
_go 0 - - .
- =B, - o - (4:15)
0o ~ =~ 0

In the case of a right-wise internal rotation, the non-zero compo-
nents~*?, ~?3, ~31 change their sign to become negative, while the com-
ponents-13, ~32, ~21 pecome positive

0
0 .

~ 0 (4:16)
0
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The square of the four-dimensional Planck tensor is calculated based
on the following obvious formula

h
~ ~ =22 91102 giz + 011033 9%3 +

+ O22033 U33 +2 012023 gzzgl?i (4:17)

012033+ 013923 011023+ 012013 ;

and, in a Galilean reference frame in the Minkowski space, where the
metric is diagonal unit (2.70),is ~ =6~2. However, in the pseudo-
Riemannian space of General Relativity, the value-of~ is calcu-

lated using the spatial components of the fundamental metric tensor ex-
pressed from the chr.inv.-metric tensgy= g + c—lz Vi Vk dependent on

the space rotation velocity. Hence, although the physically observable
components’ of the Planck tensor are constants (having opposite signs
for left-wise and right-wise rotations), its square in a general case de-
pends on the angular velocity with which the space rotates.

Now, having the Planck tensor components de ned, we can deduce
the momentum that a particle gains from its spin, as well as the equa-
tions of motion of the spin particle travelling in the pseudo-Riemannian
space. This will be the focus of the next section, Y4.2.

4.2 A spin particle's momentum in the equations of motion

The additional momentur8 that a particle gains from its spin can be
obtained from considering thectionfor spin particles.

The actionS for a particle that has an internal scalar dtdwith
which an external scalar eld interacts thereby displacing the particle
at an elementary intervals is

Zy
S= «kan KAds (4:18)
a

where (p) is a scalar constant that characterizes the particle's prop-
erties manifested in the interaction, and also equates dimensions in the
equation. If the internal scalar ell of the particle corresponds to an
external tensor eld of the 1st rank , then the action required to dis-
place the particle by the eld is
Zy
S= xa) kA dx: (4:19)
a
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In the interaction of the particle's internal scalar etdvith an ex-
ternal tensor eld of the 2nd rank , the action to displace the particle
by that eld is 7

b

S= ka) KA dxdx; (4:20)
a

and so forth. For instance, if an internal vector poteritiaspeci c of
a particle corresponds to an external vector @ld then the action to
displace the particle by the eld is
Zy
S= ka) kAds: (4:21)
a

Besides, the action can be represented, irrespective of the nature of
internal properties of particles and external elds, as follows
VAN
S=  Ldt; (4:22)

f1
wherelL is the so-called.agrange functionBecause the dimension of
action is [erg ses gram cnf sec 1], then the Lagrange function has the
dimension of energy [erg gram cn? sec 2]. In addition, the derivative
of the Lagrange function with respect to the three-dimensional coordi-
nate velocityu' = 9 of the particle

T dt
@
@i
is the covariant notation of its three-dimensional momenpim cP'
that can be used to restore the complete formula for the four-dimensional
momentum vectoP of the particle.

Therefore, having a formula for the action to displace a spin parti-
cle, as well as the Lagrange function di erentiated with respect to the
coordinate velocity of the particle, it is possible to restore the formula
for the additional momentum gained by the particle due to its spin.

As is known, the action to displace a free particle in the pseudo-
Riemannian space is 7

b
S= mpcds: (4:24)

a

= pi (4:23)

In The Classical Theory of Field40], Landau and Lifshitz use minus before
the action, and we always have plus before the integral of the action and also before
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In a Galilean reference frame in the Minkowski space, since the non-
diagonal terms of the fundamental metric tensor are zeroes, the space-

time interval is r

q —— U2
ds= g dxdx =cdt 1 ?; (4:25)
hence, the action (4.24) becomes
S= mecds= mc® 1 —dt: (4:26)
a 11 c

Therefore, the Lagrange function of a free particle in a Galilean
reference frame in the Minkowski space is

1 —=: (4:27)

Di erentiating it with respect to the particle's coordinate velocity,
we arrive at the covariant form of its three-dimensional momentum

q9—:7

@1 3 :

pi=@-= 2 & _ Moy
@ Q@ N

c2

; (4:28)

from which, after lifting the index, we arrive at the four-dimensional
momentum vector of the free particle as follows

mp dx _ dx

"= dt " ™ds

(4:29)

V2
c 1l 3z

In the nal formula, both of the multipliersng andddis are general
covariant quantities, so they do not depend on the choice of a particular
reference frame. For this reason, this formula obtained in a Galilean ref-
erence frame in the Minkowski space is also true in any other arbitrary
reference frame in any pseudo-Riemannian space.

the Lagrange function. This is because the sign of an action depends on the signature of
the pseudo-Riemannian space. Landau and Lifshitz use the sigmature-), where

time is imaginary, the spatial coordinates are real and the three-dimensional coordinate
momentum is positive. On the contrary, we use the signature=() as Zelmanov

[9,11 13], because, in this case, time is real and the spatial coordinates are imaginary,

so the three-dimensionabservablenomentum is positive.
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Let us now consider the motion of a particle having an internal struc-
ture that in experiments reveals itself as #p@n The inner rotation
(spin) n~ of a patrticle in the four-dimensional pseudo-Riemannian
space corresponds to the external &d of the space rotation. There-
fore, the summary action to displace a spin patrticle is

Zy
S= mocds+ (g~ A ds; (4:30)
a
where () [seccm?] is a scalar constant characteristic of the particle
in the spin interaction. Since the action constants can include only the
particle's properties and fundamental physical constants, the constant
(s) IS, obviously, the spin quantum numb®(function of the internal
properties of the particle), divided by the light velocityy= 2. Then,
the action to displace a spin particle, produced by the interaction of the
particle's spin with the space non-holonomity el is
Z Z
S= ¢ ~ A ds=

a

~ A ds: (4:31)

a

Ol>

A remark should be made here. Deducing the four-dimensional
momentum vector for a spin particle using the same method as for a
free particle is impossible. As was shown above, we rst obtained the
four-dimensional momentum vector of a free particle in a Galilean ref-
erence frame in the Minkowski space, where the formuladeex-
pressed throughlt and substituted into the action has the very sim-
ple form (4.25). As was noted, the obtained formula for the momen-
tum vector (4.29), due to its property of general covariance, is true in
any reference frame in the pseudo-Riemannian space. But as we can
see from the above formula for the action for a spin particle, the spin
a ects the motion of the particle only if the space is non-holonomic
A , 0, i.e., where the non-diagonal termg of the fundamental met-
ric tensor are non-zeroes. In a Galilean reference frame, by de nition,
the non-diagonal terms in the metric tensor are zeroes, hence, zeroes
are the components of the linear velocity with which the space rotates
v = c% and, hence, all components of the non-holonomity tensor
A . Therefore, this is worthless and cannot be used to rst deduce the
formula for the momentum of a spin particle in a Galilean reference
frame in the Minkowski space (where it is zero by de nition). Instead
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we must deduce the momentum of a spin particle directly in the pseudo-
Riemannian space.

The space-time intervals travelled by a particle in the pseudo-
Riemannian space, written in terms of the reference frame accompa-
nying an arbitrary observer, is

r

2
ds=cd 1 - =
C2 _|¥|
W+ViLI'. u (4:32)
=cdt 1 > 1 —;
C 21 W+;/.u

C

where the coordinate velocity of the partlchla: dx' can be expressed

through its observable velocity = dx as follows
N S (4:33)
1 W+ \ ul ! 1 W+ Vv, ul 27 ’

c? 2

Then, the additional action (4.31), produced by the interaction of
the particle's spin with the space non-holonomity eld, becomes
S
7z t, .!2
+ i 2
s=n ~A 1 210 u—dt (4:34)
11 c
Therefore, the Lagrange function for this action is
s

Ty
W+ ViUl u?
c? c?’

L=n~ A 1 (4:35)
Now to deduce the spin momentum we only need to di erentiate
the Lagrange function (4.35) with respect to the coordinate velocity of
the particle. Taking into account that the internal rotation eld tensor
~ of the particle and the space rotation eld tengor (4.13) are not
functions of the particle's velocity, after di erentiating we obtain
s
1o
w+ v ul u?
=2, @ :
@I @I C2 CZ
~mnn
= _q& (V + VI)
¢z 1

(4:36)

C2
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wherev; = hj, vK according to the chronometrically invariant formalism.
Compare (4.36) with the covariant spatial compongnt cP; of

the four-dimensional momentum vecter = rrbddiS of a particle in the

pseudo-Riemannian spacdf the particle is located in our world, so

it travels from the past to the future with respect to us, then its three-

dimensional covariant momentum is

p=cR=cg P = mMU+V)= Gmo— (v +vi): (4:37)
1 v

c2

From here we see that the four-dimensional momerfurthat the
particle gains due to its spin (its internal spin momentum) is
1 dx
A -

S ==5n~

= 5 (4:38)

or, denoting p=n~ A =n~"A.,, to make the formula simpler, we

obtain 1 d
X
S == o—: 4:39
2 %gs (4:39)
Then the summary vect® (4.1) that characterizes the motion of
the spin particle is formulated as follows
dx 1 dx

+=n~ A

=P +S =
QI:)Smodscz ds

(4:40)

So, any spin particle travelling in a non-holonomic spage ( 0)
actually gains an additional momentum that deviates the particle from a
geodesic line and thereby makes its motion non-geodesic. Inthe absence
of the space rotation, i.e., in a holonomic space, we Wave 0, so the
spin of a particle does not a ect its motion. However, it is di cult to

nd (if at all possible) such a sub-atomic region, where the background
space does not rotate. Therefore, the spin a ects the motion of particles
on the scale of atomic physics everywhere in the Universe.

4.3 The equations of motion of a spin particle

The equations of motion of a spin particle are the parallel transport equa-
tions of the summary vect@) =P +S (4.40) along the trajectory of

In this comparison we mean a mass-bearing particle.
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the particle, namely

d dx

— P +S + P+S — =0; 441

ds ds ( )
where the square of the vector remains unchar@@e@ = constinthe
Levi-Civita parallel transport along the particle's trajectory.

Let us deduce the chr.inv.-projections of the general covariant equa-
tions of motion (4.41). The projections in their general notation, ob-
tained in Chapter 2, have the form

d 1_ ,d 1 _ dx
- — — + - D = . .
. I
dd ' dx< d i
— 4+ —— +g—= +
ds  cds s Dic+ A .
Cd . d
—-F'— + Imkqu =0;

c ds
where' is the projection of the summary vectQr onto the observer's
time line andq' is its projection onto his spatial section

(4:43)

2bQ = pR =gl g gD, (4:44)
oo Goo oo
qg=hQ =Q'=P+8" (4:45)

Therefore, to solve the problem, it is necessary to derive specic
formulae for the' andq', then substitute them into (4.42, 4.43). The
chr.inv.-projections of the momentum vectr = moddiS are

P o1
-pL_ = m; P'=-mv'; (4:46)
Yoo c
and now we have to deduce the chr.inv.-projections of the spin momen-
tum vectorS . Taking into account in the formula f& (4.39) that the
space-timepinterval, formulated with physically observable quantities,
isds=cd 1 v&c?, we obtaintheS components

1 n-"A, V¢ _
A (447)
1 Z 2

S0 =
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1 n~mnAmn
__qi

S'= F 4:48
3 1fV (4:48)
C2
1 w n~"Aq,
= 51 5 ;; (4:49)
1 5
C
1 n-m™
5= L Amey vy (4:50)
c3 1 v

c2
which are formulated with physically observable quantities. Thus, we
obtain the chr.inv.-projections of the particle's spin momentum vector

S 1 i_ 1 i :
-ﬁﬁ = g ) SI = g VI, (451)
where the quantity is o
=N ﬁ? (4:52)
1z

while the alternating sign resulting from the time functigh (1.63)
indicates the particle's motion to the future (upper sign) or to the past
(lower sign). Then, the square of the spin momentum vector is

1 dx dx 1
SS=gSS=gSg F: =g§ (4:53)
and the square of the summary vecr is
2 1 2. .
QQ =g QQ:”‘S"‘?%O"‘F 0- (4:54)

Therefore, the square of the summary vector of any spin particle
separates into the following three parts:

a) The square of the momentum vector of the partl® = mg;
b) The square of its spin momentum vec®I1S = % (2);
c) The termc—z2 My o describing the spin-gravitational interaction.

To implement parallel transport, it is necessary that the square of the
transported summary vector remains unchanged throughout the entire
path. But the obtained formula (4.54) means that (becaysecons)
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the square of the summary vect@r of a spin particle remains un-
changed if only o = const i.e., the increment ofg is zero

d o—%dx =0 (4:55)

along the trajectory of the spin particle.

Dividing both sides of the equation loly, which is always possible
because any time interval registered by an observer is greater than zero
we obtain the chr.inv.-conservation condition for the square of the spin
particle's summary vector

i@ a =0: (4:56)
Substituting ¢ = n~""An, we have
|
@,k @n
n~" ——+v =0: 4:57

To illustrate the result, we replace the space non-holonomity tensor
Aik, which is actually the tensor of the angular velocity with which the
space rotates, with the angular velocity pseudovector

i— 1 wimn . .
=5 Amn; (4:58)

which is also a chr.inv.-quantity. Multiplying ' by "ipq

i 1, 1
Mipg = 5" " ipgAmn = 5

we transform the formula (4.57) to the following form
" #
n~m" @S@"imn i +Vk£ "imn S
_ , 1 @P- . o 1 @P- ; _
= n""’mnI imn -p_ﬁ@ h : +V _@k h : - 0

pa  pq Am=Apg; (459

(4:60)

The conditiord =0makes sense only in a generalized space-time, where the fun-
damental metric tens@y can be completely degenerate. In this case, the above con-
dition determined a completely degenerate region (called zero-space), in which there
are zero-particles capable of instant displacement, and, hence, they are the carriers of
long-range action.
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The gravitational inertial force vector and the space non-holonomity
tensor are related by the Zelmanov identities, one of which (see formula
13.20in [9]) has the following form

2 _@pﬁ i owijk

Jp—ﬁ@ rik=0; (4:61)
or, in the other notation
|
@i 1 e @k, 1 & @ _,
@ +§ r«E riR = @ +2 & @ =0; (462)

where" 1 F is the chr.inv.-curl of the gravitational inertial force
eld K. From here we see that the non-stationarity of the space rota-
tion eld Ay is due to the presence ofcarrl of the acting eld of the
gravitational inertial forcd-.

As a result, taking the Zelmanov identity (4.61) into account, our
formula (4.60) transform into

" 1 @P- ;
which can be re-written in the two-side form
P i
n~" R = n~m”"imnvk§) @ h, @ (4:64)

@k @k

Let us now recall that the above formula is nothing but only the ex-
panded chr.inv.-notation of the conservation condition for the summary
vector (4.57). The left hand side of (4.64) is

2n~ r1F> roF1+ riFs rsF1+ roFs rsFs ; (4:65)

where plus and minus stand for the right-wise and left-wise rotating
reference space of the observer, respectively. Therefore, the left hand
side of the equation (4.64) is the chr.inv.-curl of the gravitational inertial
force. The right hand side of (4.64) depends on the spatial orientation
of the space rotation pseudovector.

Therefore, to preserve the square of the momentum vector of a spin
particle, transported parallel to itself along the trajectory of the parti-
cle, it is necessary that the right hand side and the left hand side of the
equation (4.64) be equal to each other along the trajectory.
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In a general case, without additional assumptions about the geo-
metric structure of the background space, the above condition requires
a balance between the vortical eld of the acting gravitational inertial
force and the spatial distribution of the space rotation pseudovector.

If the eld of the gravitational inertial force is vortexless, then the
left hand side of the conservation condition (4.64) is zero and, therefore,
this condition becomes

1 pP- .
n~mn imnvkﬁ—ﬁa@f h ' =0: (4:66)
Using the chr.inv.-derivative® = & + 3 w & we have
n #
1 @P- . 1 @P- .
T k — . .
n~"mn imnV -ﬁ—ﬁ @ h ! ?Vk@ h ' =0: (467)

Since the force eld is vortexless, then, because of (4.66), the sec-
ond term in this formula is zero. Therefore, the square of the summary
vector of a spin particle remains unchanged in the vortexless force eld
Fi, provided that the chr.inv.-formula (4.66) and the formula containing
the ordinary derivative are zeroes

1 @P-
Phax

mnn k
N~""imnV

=0: (4:68)

For example, for mass-bearing particles, this can be in the case
wherevk = 0, so this is when they are at rest with respect to the observer
and his reference body. In this case, the vanishing of the derivatives in
(4.68) is not essential. In contrast, massless particles travel with the
velocity of Iighb_Hence, for thﬁr_n, in the vortexless force ekl the
derivatives-@ "h T and=2 "h | must be zeroes in any case.

Let us now deduce the chr.inv.-equations of motion of a spin particle
in the pseudo-Riemannian space. Substituting (4.46) and (4.51) into
(4.44) and (4.45), we obtain that the chr.inv.-projections of the summary
vector of the spin particle are

|
= m+C—12 ; qi:%mvi+é v (4:69)

Having these quantities with» 0 substituted into (4.42, 4.43), we

obtain the chr.inv.-equations of motion for a mass-bearing spin particle
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travelling in our world (it travels from the past to the future)

dm m 1d i
T —Fv 2D,kv'vk— —Zd—+@F,v' @D,kvv (4:70)
d i Al K i i gk =
g +2m D, + vl mF+m | vy
(4:71)

1d 7 2 i,k i i onyk.
2q v = Dy+A Vv +§F 2 HAVLTAN
while for a mass-bearing spin particle travelling in the mirror world (it
travels to the past), having the quantities (4.69) for0 substituted into
(4.42, 4.43), we obtain

dm m

1d i
T —Fv +—Dkv'vk— S —FV

2q T @ DicVIVK; (4:72)

ct
d [ [ i yNyK —
g m +mF+m VvV = .
1d | | (4:73)
2d ' @ @

The obtained equations are written so that their left hand side has
ageodesic partharacteristic of free (geodesic) motion of the particle,
and the right hand side has the terms produced due to the spin of the par-
ticle, which makes its motion non-geodesiof-geodesic payt Hence,
the right hand side is zero for a spinless particle, and the obtained equa-
tions transform into the chr.inv.-equations of free motion. The above
form of the equations will facilitate their analysis.

In the framework of the wave-particle concept, a massless parti-
cle is described by the four-dimensional wave vettor= 'E%i where
d 2=hy dxdxXis the square of the physically observable spatial inter-
val (itis not equal to zero along isotropic trajectories). Because massless
particles travel along isotropic trajectories (light propagation trajecto-
ries), the vectoK is also isotropic, i.e., its square is zero. But, because
the dimension oK is [cm 1], the equations have the dimension dif-
ferent from the dimension of the equations of motion of mass-bearing
particles. Besides, this fact does not allow us to create a joint formula
for the action for both massless and mass-bearing particles [9].

On the other hand, the spin is a physical property, possessed by
both mass-bearing and massless particles. Therefore, when deducing
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the equations of motion of spin particles, we need to use a uniform vec-
tor applicable to both kinds of particles. Such a vector can be obtained
by applying the physical conditions along isotropic trajectories

d€=c’d? d ?2=0; cd =d , 0 (474)
to the four-dimensional momentum vector of a mass-bearing particle

p = dx _ mdx _ _dx .
“MgsTed M
As a result the observable spatial interval, not equal to zero along

isotropic trajectories, becomes a derivation parameter for mass-bearing

particles, while the dimension of the above vector, in contrast to the
wave vectoK [cm 1], matches the dimension of the momentum vec-
tor P [gram]. The relativistic mass), not equal to zero for massless
particles, can be obtained from the energy equivalent using thenc
formula. For instance, the ener@= 1 MeV=1:6 10 ° erg of a pho-

ton corresponds to a relativistic masswof 1:8 10 28 gram.

Therefore, the four-dimensional momentum vector (4.75) can de-
scribe the motion of either mass-bearing particles (non-isotropic trajec-
tories) or massless particles (isotropic trajectories). Note rifgat O
andds= 0 for massless particles, therefore their ratio in (4.75)85ir&
determinacy. However the transition froﬁ to g+ in (4.75) solves this
indeterminacy, because the relativistic mass of any massless patrticle is
m, Oand alsad , Oalong its trajectory.

Itis obvious that along isotropic trajectories (massless particles) the
square of the momentum vectBr (4.75) is zero

(4:75)

dx dx ds
PP =g PP =nfg d—d—_mzﬁ_o, (4:76)
and the chr.inv.-projections of the vector have the form
PO m; p=Imd (4:77)
Joo c

wherec' is the chr.inv.-vector of the light velocity. In this case, the spin
momentum vector of the particle (4.39) is as well isotropic

1 dx 1 dx _ 1 dx |

"Z°dGs  Zod @ d (4:78)
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since its square is equal to zero

1 dxdx _ 1 ,ds _
SS=g SS== 2% ——==2
g ¢ 9 Tdz Td dz°
hence, the square of the summary vecfor=P +S of a massless
spin particle is also zero. The chr.inv.-projections of the isotropic spin
momentum (4.78) have the form
S 1 i_ 1

‘ﬁ%— ?; S=§ c, (4:80)

; (479)

S0 its spatial observable projection matches that for a mass-bearing par-
ticle (4.51), where the particle's observable veloaity(4.51) is used
instead of the chr.inv.-vecta' of the light velocity. Thus, the chr.inv.-
projections of the summary vector of a massless spin particle are

1 O T R
= m+= '="mcd+ = c: 4:81
= g =g = (4:81)
Substituting them with> 0 into the formulae (4.42, 4.43), we ob-
tain the chr.inv.-equations of motion of a massless spin particle that trav-
els in our world (it travels from the past to the future)

dm m K i K.
T —Fc +—D,kc'c —2d—+—|=,cI — Dicc'ck; (4:82)
d 4 4 Al oK i i anek =
d—md +2m D+ A, ¢ mF +m |, c'c
1d 0 2 Lipai & i i anak (+83)
@a ¢ @ DA ER g e

while for a massless spin particle in the mirror world (it travels from the
future to the past), having the quantities (4.81) wkh O substituted
into (4.42, 4.43), the chr.inv.-equations of motion have the form

T BRe GO = i GRe 5Dk (@8
d i i i ~n.k
d_ md +mF +m nkCC =

Lq | | (4:85)

@d @ @
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4.4 The physical conditions of spin interaction

We have shown that the spin of a particle (its internal rotation momen-
tum) interacts with an external eld of the space rotation, determined

by the space non-holonomity tensbr = %ch h % % , which

is the curl of the four-dimensional velocity vectbr of the observer
with respect to his reference body. In electromagnetic phenomena, the
charge of a particle interacts with an external electromagnetic eld
the eld of Maxwell's tensorF = @ @ Therefore, it seems natu-
ral to compare the chr.inv.-projections of Maxwell's tengor with the
chr.inv.-projections of the space non-holonomity ten&or.

In Chapter 3, we showed that the electromagnetic eld tersor
(Maxwell's tensor) has two groups of the chr.inv.-projections, produced

by the tensor itself and by its dual pseudotendor =sE F

Fd 2
0 _ i ik — ik
%—E, F*"=H %
c i 2! (4:86)
8_=Hi; Fik:Eik
00 ’

The chr.inv.-projections of the space non-holonomity ten&or
(4.11) and of its dual pseudotensbr = %E A are

Al . 2
-ﬁﬁ =0; Ak = h'mhknAmn %
i : (4:87)
1sA°: =0; Ak =0 %
Yoo ’

Comparing the above formulae, we see that the spin interaction has
an analogy in only the magnetic componertk = Ak = hMhkPA - of
the space non-holonomity eld, and the electric component of the
non-holonomity eld is equal to zerd' = % =0. Thisis no surprise,
because the internal rotation eld of a particle (its spin) interacts with
the space non-holonomity eld as with an external eld, and both of the
elds are produced by motion, like a magnetic eld.

HereE s the four-dimensional completely antisymmetric discriminant tensor,
using which we can make pseudotensors in the four-dimensional pseudo-Riemannian
space. See Y2.3 in Chapter 2 for details.
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Besides the said, the magnetic component of the non-holonomity
eld, which is non-zeroH = Ak | 0, cannot be dual to the zero quan-

tity H '= % =0. Therefore, the similarity with an electromagnetic

eld isincomplete. A complete coincidence could not even be expected,
because the space non-holonomity tensor and the electromagnetic eld

tensor have a di erent structure: the Maxwell tenfor = g g‘ isa
pure curl , and the non-holonomity tensdéx = 1ch h (% %

is not. On the other hand, we have no doubt that in the future a compar-
ative analysis of these elds will lead to a theory of the spin interaction
similar to electrodynamics.

The incomplete similarity of the space non-holonomity eld to an
electromagnetic eld leads also to another result. If we de ne the spin
interaction force like the Lorentz force = gF U , then the obtained

formula =-23A U ontherighthand side of the equations of motion
of a spin particle will not include all the same terms. Meanwhile, an
external force acting on the particle, by de nition, must include all the
factors that deviate its motion from a geodesic line, i.e., all terms on
the right hand side of the equations of motion. This is why the four-
dimensional force of the spin interaction, [gram/sec], is
DS dS dx
=—=—+ S —; 4:88
ds ds ds ( )
the chr.inv.-projection of which onto the spatial section, after dividing
by ¢, gives the three-dimensional observable force of the spin interac-
tion, '[gramcm sec?]. For instance, for a mass-bearing particle trav-
elling in our world, using (4.71), we obtain
. 1 d .2 . C . . o
I = @d_ VI g D|I(+ Akl v©+ ? FI g InkVnV . (489)
So forth, by analogy with the electromagnetic eld invariants (3.25,
3.26), we obtain the space non-holonomity eld invariants

B=A A = AACE ™ =2 T (490)
JbL=A A =0; (4:91)
where the invariang; =2 ; ' is always di erent from zero, other-

wise the space would be holonomic (not rotating).
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Now we are approaching the physical conditions speci ¢ of the mo-
tion of elementary spin particles. Re-writing the de nition of the chr.
inv.-vector of the gravitational inertial force (1.38) as

!
F = 1 @ @V — C2 @n 1 g @iV_ (492)
= : = _— :
13 @ @ @ @
we formulate the non-holonomity tensAk as
q q
| w w
A/ @n 1 = @n 1 =
Ak = 1‘ @/ QV + ¢ Vi . ¢ : (4:93)
2 @ @ @k @

From here we see that the non-holonomity ten&gris the three-
dimensional observable curl of the linear velocity with which the space
rotates plus two additional terms formed jointly by the gravitational po-
tentialw and the space rotation.

Because of the tiny numerical value of the Planck constant, the spin
interaction only a ects elementary particles. On the scale of such small
masses and distances, the gravitational interaction is negligibly weak.
Therefore, we can assumd 0. As aresult, on the scale of elementary

particles the tensoty is a pure physically observable curl
|

S _1 @av @, _
A|k—§ @ @, (4:94)

the gravitational inertial force (4.92) has only its inertial part

@v. 1 @v_ e

F= : 4:95
" 9@ Tie a (4:95)
and the Zelmanov identities
2 @P- i ik —n. k, 1 K—n. (4
Jﬁﬁ@ h '+l rif=0; rg +?F|< =0; (4:96)
take the form
9
Aov o lafo Gug
h 2 | =
h@ @ @ g (4:97)
Ik k i@/ k =0 ;
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If we substitute%E 0, thereby assuming that the observable rota-
tion of the space is stationary, we obtain k=0, i.e., the space rota-
tion pseudovector remains unchanged. Then the Zelmanov 1st identity
becomes _

@ |

@

from which we see thab = detkD{ k= @Lph =0, i.e., the relative de-
formation rate of an elementary volume of the space is zero.

So, we have obtained that on the scale of elementary particles, the
eld of the angular velocities with which the space rotates remains un-
changed (x  ¥=0), and the space does not deforin= 0).

Therefore, it is possible that the stationary state of the space non-
holonomity eld (it is the external eld in the spin interaction) is the
necessary condition of the stability of elementary particles. Hence, we
can conclude that long-living spin particles have stable internal rota-
tions, while short-living particles are unstable spatial vortexes.

The study of the motion of short-living particles is rather problem-
atic, because we do not have experimental data on the structure of the
unstable vortexes that generate them. On the contrary, by studying long-
living particles, i.e., their motion in the stationary eld of the space ro-
tation, we can obtain exact solutions to the equations of motion. We will
focus on this task in the next section Y4.5.

iD+

0; (4:98)

4.5 Motion of elementary spin particles

As we have mentioned, the Planck constant, being a tiny absolute value,
only works for elementary particles, where gravitational interactions
is a few orders of magnitude weaker than electromagnetic, weak and
strong ones. Hence, assumiwg O in the chr.inv.-equations of mo-
tion of spin particles (4.70 4.73) and (4.82 4.85), we will arrive at the
chr.inv.-equations of motion of elementary particles.

Besides, as we have obtained in the previous section, Y4.4, under
a stationary rotation of the space, on the scale of elementary particles
the trace of the space deformations tensor is Z2r00. Of course,
zero trace of a tensor does not necessarily mean that the tensor itself is
zero. On the other hand, a deforming space is a very rare phenomenon.
Therefore, when studying the motion of elementary particles, we will
assumeDj, = 0.
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In Y4.3, we have showed that under a stationary rotation of the space,
the conservation condition for the spin momentum ve&obf a spin
particle takes the form (4.68), so that

1 P—
n~mnu Imnvk'p_ﬁa@k h |

On the other hand, unde%’: 0the Zelmanov 2nd identity applied
to elementary particles (4.97) means that

=@ @?h = 5= @ PR k=0; (@100)
@(k @k h@(k '

hence, the rst condition of (4.97) is true provided ﬂﬁ pﬁ k =0,

and the space rotation pseudovector is

=0: (4:99)

Ik

|
= —p(%); () = const (4:101)
Taking all that has been said above into account, and based on the
general chr.inv.-equations of motion of a mass-bearing spin particle
(4.70, 4.71), we obtain the chr.inv.-equations of motion of an elementary
particle. For an our-world particle (it travels to the future with respect
to an ordinary observer), the equations have the form

dm 1d

d 2 i k —

d—mv + mA(v +mnkvv _
1d . (4:103)

i i,k i n,,k.
—— v —A vk — 1 ynyk
c2d c2 c2 Nk

while for an elementary spin particle that is located in the mirror world
(so it travels to the past), we obtain

dm_ 1d
o (4:104)
4 +m L vV = 1d v LVVE (4:105)

d c2d c?

The chr.inv.-scalar equation of motion is the same for both our-world
particles and mirror-world spin particles. Integrating it for an our-world
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particle, namely taking the integral

i — m+—=d
+ =0; 4:106
1=0 d C ( )
we obtain
|II+—2—CO||St— B: (410;)

whereB is an integration constant that can be calculated from the initial
conditions.

To illustrate the physical sense of the obtained live forces integral,
consider an analogy between then chr.inv.-projections

9
Po 1 1.
== m; Pl==mv'==p
0 ) <" 8 (4:108)
_p—S) = i : Si = i Vi § .
% C2 ! C3 y

of the particle's four-dimensional momentum vector and those of its spin
momentum vector, which afe =mp2% andS = 29 Based on the
analogy with the relativistic masan, we will refer to the quantity = 3

as the relativisticspin massso the quantitycl—2 o is the rest spin mass.
Hence, the live forces theorem for an elementary spin particle (4.107)
means that the sum of the particle's relativistic mass and its spin mass
remains unchanged along its trajectory.

Now, using the live forces integralwe consider the chr.inv.-vector
equations of motion of a mass-bearing elementary particle, located in
our world, i.e., the equations (4.103). Substituting the live force integral
(4.107) into (4.103), then having the constant cancelled, we obtain the
kinematic equations of motion

dv I n,k_n- .
i 2AlVK+ 1 vk = 0; (4:109)
which, in this case, are non-geodesic. The tefgv"vk, which is the
contraction of the chr.inv.-Christo el symbols with the particle's ob-
servable velocity, is relativistic in the sense that it is the square func-
tion of the velocity. This term can be neglected, because the observable

The solution to the chr.inv.-scalar equation of motion.
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metrichx = gk + C—lzv. \k along the trajectory approaches the Euclidean
metric. Such a case is possible, if the linear velocity of the space ro-
tation is much lower than the light velocity, and, therefore, the three-
dimensional coordinate metrgy is Euclidean as well. Then, the diag-
onal components of the chr.inv.-metric tensor are

hll = h22 = h33 =+1; (4:110)

while the other components ang =0, if i, k.

Noteworthy that the four-dimensional metric cannot be Galilean in
this case, since the spatial section rotates with respect to the time lines
that pierce it. In other words, although the observable three-dimensional
space (the spatial section) in this case is a at Euclidean space, the
four-dimensional space-time is not the Minkowski space, but a pseudo-

Riemannian space with the metric
ds’ = goodx’dx’ + 2ggi dX0dX + gy dxXdxk = @11
= 2d2+ 2ggicdtd®  dxt? dx? dd?%

Assume, for instance, that the space rotates with a constant angular
velocity = constaround thec axis. Then the linear velocity= i x¢
with which the space rotates is

= 12X= y;  w= axt= x; (4:112)

whereAx = ik. Then, the space non-holonomity tenggy has only
the two non-zero components

A= An= ; (4:113)
and the chr.inv.-vector equations of motion (4.109) become
dvt ) dv? 1 dv®
v, -0 N -0 NV _q,. :
] 2 v-=0; ] 2 v-=0; ] 0; (4114)

where the third equation can be solved immediately as

v® = vy, = const (4:115)

_dx3

Taking into account that® = 9 we represent? as follows

=V + Xy (4:116)
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wherex(30 is the numerical value of the® coordinate at the initial mo-
ment of t}]e observable time= 0.
So forth, we formulate? from the rst equation of (4.114)

1 dvt
2 _ : .
= g (4:117)
then, di erentiating (4.117) with respect @ , we obtain
dv? 1 dvt _
d - 2 dz’ (+118)

and substituting the result (4.118) into the second equation of (4.114)
we obtain

dvt s 1

7 +4 “vt=0; (4:119)

which is a free oscillation equation. Its solution is
vi=Cicos(2 )+Cysin(2 ): (4:120)

whereC; andC; are integration constants, which can be calculated from
the conditions at the initial moment of the observable tinred

9
1 _
Vi = &1
dvt . %: (4:121)
— = 2 Cgsin(2 ) _,+2 Cycos(2 ) _
d :0 _0 _O b
. vl
Thus, we obtairC; = v(lo), Co= 52, v(lo): ‘fj—"l _o- Then, we nally
obtain the equation for*
Vi _.
vi=vgcos(2 )+ > sin(2 ); (4:122)

so the velocity of the mass-bearing elementary spin particle akbng
performs sinusoidal oscillations at the frequency equal to the double
angular velocity of the space rotation.

Taking into account that! = ‘é—xl we integrate the obtained formula
(4.122) with respect td . We obtain

vi vk
= Qgine ) @

72 cos(2 )+Cs: (4:123)
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Assuming thak' = x, at the initial moment of time = 0, we obtain
the integration constaids = x* ot ‘O) . Then, we have

1
v
xt = ﬁsin(z ) 4(0) cos(2 )+ x5+ (0)2, (4:124)
so thex! coordinate of the elementary particle also performs free oscil-
lations at the frequency .
Now, having the obtained® (4.122) substituted into the second
equation (4.114), we arrive at the equation

dv? .
b 2 Vpcos2 )+vgsin@ ); (4:125)
which, after integration, gives’

V= v sin@2 ) 2(0) cos(2 )+Cs: (4:126)

Assuming thaw? = v(zo) at the moment of time = 0, we obtain the

_\2 4 Vo
constantC, = Vit 3 Then

. 0 0
V2 = v(lo) sin(2 ) 2( ) cos(2 )+ v(O) 2( ). (4127)

Taking into account thai? = ‘L—Xz we integrate the above formula

with respect tal . As a result, we obtain the formula for the coordinate
x? of the particle

Vl
0 0 0
X2 = 4( ) sin(2 ) 2( ) cos(2 )+ Vi + 2(—) + Cs: (4:128)

The integration constar@@s can be calculated from the condition

X2 = x(zo) at =0.ItisCs= x(zo) + o . Then, nally, thex? coordinate of

the particle is expressed as

%
2 _ 2 ©) ©)
X“=V +—— —S|n(2 )
© 2
2 4 s (4129)

(0) (0)
> cos(2 )+X(0)
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From this formula we see that, if at the initial moment of the ob-
servable time = 0 an elementary spin particle had a velocify) along

the axisx” and an acceleratiov, alongx, then the particle, in addi-

tion to free oscillations along the axis at the frequency, equal to the
double angular velocity of the space rotationis subjected to a linear

1
displacement at x> = v(zo) + \;fi
Considering the live forces integral (solution to the chr.inv.-scalar
equation of motion) for an elementary spin partictet —; = B= const
(4.107), we can nd the integration constaBit Re-writing (4.107) as

r

s 0.5 1 V. 4:130
Mo 2 2’ (4 )
we conclude that the square of the observable velocity of the particle is
v2 = const Because the velocity components have already been found
and since the three-dimensional metric in question is Euclidean, we can

represent/? as follows

ViZ+ 224 322
vi 2 vy

_ 1l 2 2 2 3 2 ) ©"©
=V TV TV oot * o 131)

1 1
éz V(O)%l - Vio é
+ 280 + > (o)sm(z ) > cos(2 )

The square of the velocity is conserved;fg) =0 andv(lo) =0. Then
the integration constam of the live forces integral is

m + 3
Bz +— & - V(Zo) 2_ v(lo) 24 v(30) 2= const (4:132)

1

m+ 5 = +———, (4:133)

soitis the conservation condition for the sum of the particle’s relativistic
massmand its spin mass;.
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Here we should make a remark about what has been said above about
elementary particles. Taking into accoutn="mnk ¥ in the de ni-
tion o=n~"A, we obtain

0=N""Ap,=2n~ (4:134)

where~ k=35 v ™ Here,~ « is the three-dimensional pseudovec-
tor of the mternal momentum of an elementary particle. Hengéas

the scalar product of the three-dimensional pseudovectors: the internal
momentum- i of the particle and the angular velocity ¥ with which

the space rotates. Therefore, we conclude that the spin interaction is
absent if the particle's internal rotation pseudovector and the external
space rotation pseudovector are observed orthogonal.

Let us return back to the equations of motion of elementary spin
particles. Taking into account the integration constants that we have
obtained, the chr.inv.-vector equations of motion of an elementary spin
particle, located in our world, have the following solutions

9

1 1 Cou Vo 1
VT = Vi, cos(2 ); x = > sin2 )+ X0)
V2 = vy sin(2

3 (4135
); XK= 2(0) cos2 )+ 2(0) X(oé )

3_,,3 — 3
V™= Vo) X = Vi) + X ’

Letus now nd the shape of the three-dimensional spatial trajectory
along which the elementary particle travels. Let the reference frame
of the observer be such that the observed initial displacement of the
particle is zerox(o) (0) (0) =0. Then, its spatial coordinates at an
arbitrary moment of time are

xt=x=asin2 )
x*=y=a[l cos(2 )]
xXX=z=b

; (4:136)

= 0000 100K/ O

wherea= ‘0) andb= V?) The obtained coordinate solutions are para-
metric equatlons of a surface, along which the particle travels. To illus-
trate what kind of surface it is, we switch from the parametric notation
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to the coordinate notation by removing the parametitom the equa-
tions. Then, calculating? + y?, we obtain

X +y?=2a’[1 cos(2 )]=
4:.137
= 4a®sir? ( )=4azsin2%: ( )

At rst glance, the obtained result looks like a spiral line equation
x?+y?=a? z=b . However, the similarity is not complete. Accord-
ing to the trajectory equation that we have obtained, an elementary spin
particle travels along a spiral wound on the surface of a cylinder so that
the particle has a constant velochiy v?o) along the axis of the cylin-
der (z axis), and the radius of the particle's trajectory (the radius of the
cylinder) oscillates with a frequencyin the range from zero up to the

. vE
maximum2a= -2 atz= 2—"b

So, the trajectory of an elementary spin particle in our world looks
like a spiral line wound on an oscillating cylinder. The lifetime of the
particle is equal to the length of the cylinder divided by the velocity of
the particle along the axis of the cylinder xis). Pulsations of this
cylinder are energy breath ins and breath outs of the particle.

This means that the cylinder that we have mathematically deduced
above is theevent cylindemf an elementary particle from its birth in
our world (its materialization) to its death (dematerialization). But even
after death the particle's event cylinder does not disappearstliis
into the event cylinders of other particles born by this decay either in
our world or in the mirror world.

Therefore, the analysis of the births and decays of elementary par-
ticles in terms of the General Theory of Relativity means the analysis
of the branching points of the event cylinders of these particles, taking
into account possible branches leading to the mirror world.

If we consider the motion of two bound spin particles that rotate
around a common centre of mass, for example, a positronium atom (a
dumbbell-shaped system consisting of an electron and a positron), then
we get a DNA-like double spiral atwisted rope ladder with a num-
ber of steps (links connecting particles) wound on the pulsating cylinder
of their events.

Wherek=0;1;2;3;:::1f v, =0, then the particle simply oscillates within thg
plane (the plane of the cylinder's section).
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Let us now solve the chr.inv.-equations of motion of an elementary
spin particle travelling in the mirror world (a world with the reverse ow
of time). The mentioned equations (4.104, 4.105) under the physical
conditions speci ¢ of elementary particletake the form

dm_ 1d

d i _ 1d i .

d— mv. = ?d_ vV o (4139)
The solution to the chr.inv.-scalar equation is the live forces integral
m+ 5 =B=const as in the case of an analogous our-world particle
(4.107). Substituting it into the chr.inv.-vector equations of (4.139), we
obtain their solution .
dv'
d

which means' = véo) = const According to the solution, from the view-
point of an ordinary observer, an elementary spin particle travels in the
mirror world linearly at a constant velocity. This is in contrast to the ob-
servable motion of an analogous our-world particle, because it travels
along an oscillating spiral line.

On the other hand, from the viewpoint of an observer, whose home
is the mirror world, the motion of elementary spin particles in our world
will be linear and uniform, and in his world elementary spin particles
will travel along oscillating spiral lines.

We could also get an analysis of the motion of massless (light-like)
spin particles in a similar way. But we do not know how adequate our
assumption that the linear velocity with which the space rotates is much
smaller compared to the light velocity would be. Although, in general,
the methods for solving the equations of motion are the same for mass
and massless particles.

=0; (4:140)

4.6 A spin particle in an electromagnetic eld

In this section, we are going to deduce the chr.inv.-equations of motion
for a particle that has both spin and electric charge, and travels in an

We assumed that the space rotates stationarily at a low speed and does not deform,
and the three-dimensional metric is Euclidean.
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external electromagnetic eld that lls the four-dimensional pseudo-
Riemannian space.
So, the summary vector characteristic of such a particle is

Q =P +C_92A +S (4:141)

whereP is the four-dimensional momentum vector of the patrticle. The
other two four-dimensional vectors are, respectively, an additional mo-
mentum gained by the particle from the interaction of its charge with the
electromagnetic eld, and also an additional momentum gained from the
interaction of the particle's spin with the space non-holonomity eld.

Since the vector® andS are tangential to the four-dimensional
trajectory of the particle, we assume that the electromagnetic eld po-
tentlalA |s also tangential to the trajectory In this case, it has the form
A="p d , and the formulay = V' (see Y3.8) sets the relationship
between the scalar potentlabnd the vector potentiaf of the electro-
magnetic eld.

Then chr.inv.-projection§ and{' of the particle’'s summary vector
Q (4.141) under consideration are

e' i1

"= m+—=+—=: §==
q 2

1
2tz mv' +—( +e )V (4142)

wheremis the relativistic mass of the particle,is the scalar potential
of the acting electromagnetic eld, whiledescribes the interaction of
the particle's spin with the space non-holonomity eld

Mo . ‘o . _ o . .
m=f—: '~ =" (4:143)
1Y 1Y 1Y

The desired equations are deduced in the same way as those for a
charge-free spin particle, except for the fact that we have to project the
absolute derivative of the sum of the above three vectors (4.141). Using
the formulae for” and§' (4.142), we obtain the chr.inv.-equations of
motion of a charged mass-bearing spin particle located in our world (it
travels from the past to the future)

((jj_m m Fvl+ i M Dy vivk =
(4:144)

1 o '
?dg( +e' )+ -;4e Fv' -::46 Di V'V
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d , : , ,
i i ik i n,k —
— mv +2m D, +A v: mF+m vV =

d .
1 h | 2( + ¢ . .
S8’ 22 gl v (a4)
te te k.
2 F!' 2 AVLYAS

while for an analogous particle located in the mirror world (it travels
from the future to the past) the equations are

dm m_ ; m i
T @ @bV
14 L. y+ € Eyi € vk o
- ?d_ C4 | C4 ik ’
di mv' +mF +m | vivk=
1dh S e e (147
?d_( +e')v o F 2 vV

The Levi-Civita parallel transport in a Riemannian space leaves the
length of any transported vector unchanged. Hence, its square is invari-
ant in any reference frame. In particular, the square of the transported
vectorQ (4.141) characteristic of a spin particle in an electromagnetic
eld remains unchanged in the accompanying reference frame

e e
QQ:g P+?A+S P+?A+S =

e' 2dx dx e'
0, 0 _ L80, 0

, (4:148)
@@ dsds M@ ea

:g n‘b+

In Y3.9, we have already shown that when the four-dimensional elec-
tromagnetic potential is oriented along the world-line of a charged
particle, the right hand side of the chr.inv.-equations of motion of the
particle are signi cantly simpli ed: the right hand side of the chr.inv.-
vector equations of motion takes the form of the chr.inv.-Lorentz force

'= e E'+1"kmyH . and the right hand side of the chr.inv.-scalar
equation is the scalar product of the electric strength vegt@and the
observable velocity of the particle.

Keeping the said in mind, we can represent the obtained chr.inv.-
equations of motion of a charged spin particle (4.144 4.147) in a more
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speci ¢ form. Thus, moving the spin interaction terms of the equations
to the left hand side and introducing the chr.inv.-Lorentz force, for a
charged spin particle that travels in our world we obtain

d 1 i
— m+—- = m+—-5 Rv+
d = @ e (4:149)
1 ik — i
+§ m+? Dikv'v® = gEiv,
9 i Vi +2me DL+Al V& m+ - F'+
‘ ¢ = “ 1 @aso)
K= e B4 Tekmyoy
+ m+§ VYV = € +E VkFA m
and for an analogous particle in the mirror world we have
—m+t—= = m+—= RV+
d e @ e (4:151)
1 iyvk— € o
+§m+§ Dixv'v® = ?Eiv,
E m+—vi + m+—Fi+ m+ — ivnvk—
' (4:152)

1.
- e EI+ E:ulkmka m :

To make conclusions on the motion of charged spin particles in the
pseudo-Riemannian space, we have to set a speci ¢ geometric structure
of the space. As in the previous section, Y4.5, where we analysed the
motion of charge-free spin particles, we now assume that:

a) Since the gravitational interaction on the scales of elementary par-
ticles is negligible, we can assume that O;

b) The space rotation is stationary, i.%’ =0,

c) The space does not deform, i.By =0;

d) The three-dimensional coordinate mewicdx'dx* is Euclidean,
e, gk= g ik

e) The space rotates with a constant angular velociground the
axisx® = z, hence the components of the linear velocity with which
the space rotates avg= 1ox*= yandw= 1x'= X.
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Taking the above constraints into account, we obtain the formula for
the space-time intervals® on the scale of elementary particles

ds = c?dt? 2 ydtdx+2 xdtdy dx* dy* dZ; (4:153)
while the physically observable characteristics of the space are
F=0; Dik=0; A= A= ; Axz=A~A3=0: (4154)

As in the previous section, Y4.5, we assume that the space rotates
with a velocity much slower than the velocity of light. In such a case,
the metric chr.inv.-tensahnjx is Euclidean, and the chr.inv.-Christo el
symbols i.k are zeroes, which simpli es the algebra. Then the chr.inv.-
equations of motion of a charged spin particle in our world give

e _ dx
— m+ = = SE—; 4:155
d c2 2 ' d ( )
9
d m+ 5 V!
— % +2m+ - V2=
d |
= e El+ MMy
d m+ 5 V2 2
2 om+— V= ; (4:156)
d c? !
1
= e E%+ E"Z"mka m
!
d m+ 5 V3 1 '
5 c2 - e E3+ E " SkakH m :
while the equations for such a particle in the mirror world give
d e _dx
— m+— = S E—; 4:157
d C2 C2 | d 1 ( )
9
d m+ 5 vt 1 !
d—: e E'+ Enlkaka
!
d m+ 5 V2 - B
— ¢ = e B2+ Znmy g (4:158)
!
d m+ 5 V3 '
c? = e E3+ " 3kakH m

d
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Let us look at the chr.inv.-scalar equation of motion in our world
(4.155) and those in the mirror world (4.157). We see that the sum of the
relativistic mass of the charged spin particle and its spin mass equalizes
the work done by the electric component of the acting electromagnetic
eld in displacing the particle by the elementary intenda!". It can
be seen from the chr.inv.-vector equations of motion that both in our
world (4.156) and in the mirror world (4.158) the sum of the spatial
momentum vector of the particle and its spin momentum vector along
x3 =z is determined only by the component of the Lorentz force along
the same axis.

Now our task is to calculate the trajectory of a charged spin particle
in an electromagnetic eld with given properties. As in Chapter 3, we
assume that the eld is constant, so its electric and magnetic strengths
E; andH ' are

@l
E= 2 4:159
=2 (#159)
" #
Hi= % MmN = 2—1C"‘m” @d):;m) @éx\r;n) 2' Amn © (4:160)

In Chapter 3, we already considered a similar problem. Namely,
we solved the chr.inv.-equations of motion for a charged mass-bearing
particle, but without taking its spin into account. Obviously, in the par-
ticular case of a charged spinless particle (where the spin of the particle
is zero), the solutions for a charged spin particle must coincide with the
solutions that we have obtained in Chapter 3 in the framework of pure
electrodynamics.

To compare our results with those obtained in the framework of elec-
trodynamics, it would be reasonable to analyse the motion of a charged
spin particle in the three typical kinds of electromagnetic elds, which
were under study in Chapter 3 as well asTine Classical Theory of
Fieldsby Landau and Lifshitz [10]:

a) A homogeneous stationary electric eld (the magnetic strength of
the eld is zero,H ' = 0);

b) A homogeneous stationary magnetic eld (the electric strength of
the eld is zero,E; = 0);

c) A homogeneous stationary electromagnetic eld (both of the eld
component# ' andE; are non-zeroes).
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On the other hand, in electrodynamics we consider the motion of or-
dinary macro-particles. Itis not obvious that all the three above cases are
applicable to the micro-world of elementary particles, given the metric
constraints. Here is why.

First, the spin of an elementary particle a ects its motion only in the
eld of the space non-holonomity. Hence, the non-holonomity tensor is
A, 0. But from the formulae for the electric strendth (4.159) and
the magnetic strengtH ' (4.160) we see that the space non-holonomity
only a ects the magnetic eld component. Hence, we will focus on the
motion of elementary spin particles in an electromagnetic eld of the
strictly magnetic kind.

Second, the chr.inv.-scalar equation of motion of a charged spin par-
ticle (4.155)

0
2

d 1 e :
mo + - = —EV (4:161)
d v2 Cz
1 5
C
in a non-relativistic case, where the particle is much slower than the

velocity of light, takes the form
Eiv' = 0; (4:162)

so the electric eld componertoes not perform worko displace the
particle under the constraints speci ¢ of the world of elementary parti-
cles. Since we are considering a stationary eld, the obtained condition
(4.162) can be represented as follows
@, @dx _d
gl = I — _ _ . .

E|V —@V —@d——d——O, (4163)
which obviously means that the scalar electromagnetic potential is con-
stant ( = cons), therefore,

H i ._" imn % @n

1%
@y @y
—_— 2 == = 4:164
20 @n @m @n @m ( )

In a relativistic case, the electric component reveals itself (it per-
forms work to displace the particle), provided that the absolute value of
the particle's velocity is non-stationary

1 2 i
F 0N Cyi 00 (4165

- Mo
c2
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Hence, the electric component of the acting electromagnetic eld,
given the constraints speci c of elementary particles, reveals itself only
on those relativistic charged patrticles, the velocity of which is not con-
stant. All slow-moving particles fall out of our consideration in an
electromagnetic eld of the strictly electric kind.

Therefore, the general casghould be studied only in a stationary
electromagnetic eld of thestrictly magnetic kindwhere the electric
eld component is absent. This is what will be done in Y4.7.

4.7 Motion in a stationary magnetic eld

In this section, we are going to consider the motion of a charged spin
particle in a homogeneous stationary magnetic eld.

As in the previous section, Y4.6, we assume that the space-time has
the metric (4.153), wherg; = 0 andDjx = 0. The space rotates around
the z axis (within thexy plane) with a constant angular velocity.
Hence, the space non-holonomity tensor has the only non-zero com-
ponentsAjp= Apx;= = const and the quantity o = n~""A, that
describes the interaction of the particle's spin (its internal rotation) with
the external eld of the space non-holonomity is

0=n ~PAp+ A =2n~A;,= 2n~ ;  (4:166)

where plus stands for the co-directedand  (with Ajp= , the
numerical value of*? is also negative;'2= ~), and minus means
that they are oppositely directed (with,= , we have-1?=+-~).

In this case, the chr.inv.-equations of motion of a charged elemen-
tary spin particle located in our world take the form

m+ — =0; (4167)

(4:168)

A charged elementary spin particle travelling with an arbitrary velocity, either low
or relativistic.
»Provided that the electromagnetic eld potential is directed along the four-
dimensional trajectory of the particle.
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and for an analogous particle located in the mirror world we have

dg m+ e =0; (4:169)

d i i k — e n k . .
g ™z v+ m+ VIV = c "MvieH e (4:170)

Having the live forces theorem (chr.inv.-scalar equation of motion)
integrated, we obtain the live forces integral. In our world and in the
mirror world it is, respectively

m+ — = B = const, m+— = B=const (4171)
C C

whereB andB are integration constants in our world and in the mirror

world, respectively. We can obtain these constants by substituting the
initial conditions at = 0into (4.171). As a result, we have

_ 0 _ n~"Amn , )
B—Irno+§—mo+—C2 ; (4:172)
_ 0 _ N~""Amn .
B= nmy i mo =2 (4:173)

The formulae for the live forces integrals (4.171) mean that, in the
absence of the electric eld component, the square of the velocity of a
charged elementary spin particle is constaft hy v'vk = const

Having the formulae for the live forces integrals substituted into
(4.168, 4.170), we arrive at the chr.inv.-vector equations of motion in
our world and in the mirror world, respectively

av' - - e .

Tt 2A VAR SRVAIVAE —CB"'kmka m (4:174)
avi e .

Tt L vV = = KMV H (4:175)

which are similar to the chr.inv.-equations of motion of a charged macro-
particle (charged spinless particle) in a homogeneous stationary mag-
netic eld (3.290, 3.291), except that here the integration constant from
the living forces integral is not equal to the relativistic massf the
particle, as it was in electrodynamics (3.290, 3.291), but to the formula
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(4.171) that takes into account the interaction of the particle's spin with
the space non-holonomity eld.

For the readers, who have a special interest in the chronometrically
invariant formalism, we make a remark concerning the notations in the
chr.inv.-equations of motion.

When obtaining the components of the te%{jvk, found only in the
our-world equations, we have, for instance, for the inded

W= ANVE+ ANV = AV + WAV (4:176)

whereAi;= A= . Then obtainingA! etAl, we have
Al = h'MAg, = WA + h2Ap, = h2A,; (4:177)
A} = h'MAgy = ht1Ag; + h12An, = h1Ay, ; (4:178)

whereh are the elements of a matrix reciprocal to the makix so
the required components b¥ are calculated as

hoo hi2
htl= =< ht2= == 4:179
o 0 ( )
Then, since the determinant of the chr.inv.-metric tensor in the case
under consideration (see Y3.12 for detail) is

2 %242
h= detkyk= 1+ ————; (4:180)
the unknown quantitp\}vk (4.176) is
o "2 2X2! #
ASVE = 0y ?xyx+ 1+? y (4:181)

The componem\kzv", found in the equation of motion aloygcan
be calculated in the same way.

Let us get back to the chr.inv.-vector equations of motion of the
charged spin particle in the homogeneous stationary magnetic eld. We
approach them in two possible cases of mutual orientation of the mag-
netic strength and the space non-holonomity pseudovector, when they
are co-directed and are orthogonal to each other.
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4.7.1 The magnetic eld is co-directed with the non-holonomity
eld

Assume that the space non-holonomity eld pseudovector is directed
along thez axis, and the space non-holonomity eld is weak. Then the
chr.inv.-vector equations of motion of a charged elementary spin particle
located in our world take the form

y _eH _eH_ . )
X+2 y= —2yi ¥ 2 x= X, 2=0; (4182)
while for an analogous particle located in the mirror world we have
eH eH
X= —vy, y= —x; 2=0: 4:183
cB oy cB ( )

These equations are di erent from those for a charged spinless par-
ticle (3.104, 3.305), deduced under the same assumptions, only by the
integration constar from the live forces integral, which, instead of the
relativistic mass of the patrticle, takes into account here the interaction
of the particle's spin with the space non-holonomity eld.

Using the solutions obtained in ¥3.12, we can immediately obtain
the formulae for the coordinates of the our-world charged spin particle

X=  Yocos(2 + !') +Xxgsin@2 + !)

.\ Yoy | (4:184)
2+ 1 OT T
y= yosin(2 + !') xgcos2 + !) (4185)
ry X0 .
2 + ! © 5
and also those for the mirror-world particle
_ 1 : Yo). ,
X= T Yo cos! + Xgysin!  + X+ T (4:186)
1 . 0
y=1 Yosin! Xoycos!  +Yy() &; (4:187)

which are di erent from the solutions obtained in the framework of elec-
trodynamics only by the frequentytaking into account the interaction
of the particle's spin with the space non-holonomity eld.
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In our world, particles have positive masses, therefois

r r
2 2

Vv \%
H1 © ey 1
eH _°© 2 2
| = = c - . (41898)

0 2n~
mc+ c mpC + < mMpC e

where the alternate sign in the denominator depends on the mutual ori-

entation of~and : plus stands for the co-directedand , and mi-

nus means that they are oppositely directed, regardless of a right-hand

or left-hand reference frame. See the comment to (4.166) for details.
Particles of the mirror world have negative masses (4.143)

m= 'lL;<O; = 1’%<0; (4:189)
v2 V2
1 1 B
therefore,! inthe mirror world is
r

eH 1 @ en 1 W
eH 2 2

| = - Z = © (4:190)
mc+ ¢ moC 2 mpC  “—

Note that the obtained formulae for the coordinatesmdy (4.184
4.187) take into account the fact that the square of the particle's velocity
remains unchanged both in our world and in the mirror world, which is
presented with the conditions (respectively)

Yo _ .. Yo _ . .
Xo) + > 1T 0; Xo) + T 0; (4:191)
resulting from the live forces integral (see Y3.12 for details).

The third equation of motion (alorg is solved as

Z=2Z0) *Zo): (4:192)

The obtained formulas for the coordinatesandy (4.184 4.187)
indicate that a charged elementary spin particle travelling in a homo-
geneous stationary magnetic eld parallel to a weak eld of the space
non-holonomity perform&armonic oscillationsalongx andy. In our

world the oscillation frequency is s

2
eH M

2n~
MpC =—

E=2+1 =2+ (4:193)
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and in the mirror world an analogous particle performs similar oscilla-
tions at the frequency (4.190).

In a weak eld of the space non-holonomity, the valuenef is
much less than the energyc?. Because we havgl— 1 forany
small value , at low velocities of motion we have

|
eH 2n~
e 2+ 1 : (4:194)
MoC moc?

If at the initial moment of time the displacement and the velocity of

an our-world charged elementary spin particle satisfy the conditions

Yo _q,. X _q. .
0t 79 Yo 77770 (4:195)

it will travel like a charged spinless particle alongiecle within the xy
plane

Yy
2.2 = 0 . .
Xty = ————; 4:196
y 2+ 1) ( )
but the radius of its circulation in this case is equal to
r=-2 - o, L (4197)
2+ H Vi
e
2+ 2n~ 1 @

MpC C

and is dependent on the value and orientation of its spin. If the initial
velocity of a charged spin particle, directed along the magnetic eld
strength (along), is not zero, then the particle travels along the mag-
netic strength along spiral line with the same radius.

An analogous mirror-world particle, provided that its displacement
and velocity at the initial moment of time satisfy the conditions

X0+ =0, yo 2=0; (4:198)
will also travel along a circle
2
2+y?2= 0. (4:199)

N

We set they axis along the initial momentum of the particle, which is always
possible. Then all formulae for the coordinates will have zero initial velocity of the
particle alongx.
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with the radius
Yo

¥
2
eH 1 V(_g)
2n~ c
moC C

—ls

(4:200)

In a general case, where there is no additional conditions (4.195,
4.198), the trajectory of a charged elementary spin particle within the
xy plane will not be circular.

Let us obtain a formula for the energy and momentum of the parti-
cle. Using the formulae for the live forces integral, we obtain the quan-
tity o, whichis g=n~"An,=n ~?A;,+~1A; = 2n~ . For de-
tails, see (4.166). Then for the particle located in our world we have

2 -
Etot = BE = M = const (4:201)

2
1@
C2

while in the mirror world we have

2 2n~
Ey=BZ= ¢ N

1

= const (4:202)

Since in this section, Y4.7, we have assumed that the electric com-
ponent of the acting electromagnetic eld is absent, the eld does not
contribute to the total energy of the particle (as it is known, the mag-
netic component of an electromagnetic eld does not perform work to
displace electric charges).

From the obtained formulae (4.201, 4.202) we see that the total en-
ergy of the particle remains unchanged along the trajectory, while its
value depends on the mutual orientation of the particle's internal mo-
mentum~ and the angular velocity with which the space rotates.

The latter statement requires some comments to be made. By de ni-
tion the scalar quantity (value of the spin ir-units) is always positive,
while ~and are the numerical values of the components of the anti-
symmetric tensorek and i, which take opposite signs in right-hand
and left-hand reference frames. But since we are dealing with the prod-
uct of the quantities, only their mutual orientation matters, which does
not depend on a right-hand or left-hand reference frame.
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If ~and are co-directed (their scalar product is positive), then the
total energy of an our-world spin particle; (4.201) is the sum of its
relativistic energyE = mc® and its spin energy

Es= +—; (4:203)

so the total energy of the particle is greater tfmmc.

If ~and are oppositely directed, théfi is the di erence between
the relativistic energy and the spin energy of the particle. This mutual
orientation permits a speci ¢ case, whargc?>=2n~ and, therefore,
the total energy of the particle becomes zero (this case will be discussed
in Y4.8, concerning elementary particles).

For charged spin particles having negative masses, which inhabit the
mirror world, the total energ¥: (4.202) is negative, but its absolute
value is as well greater than the relativistic enefyy mc, provided
that~and are co-directed.

So forth, for the observable total spatial momentum of the our-world
particle we have

: 2 ~ . ~ .
Plot = LA L 2n v =mv' —|L V', (4:204)
2 1 0 2 1 Yo

c? c?

so itis an algebraic sum of the particle's relativistic observable momen-
tum p'=mv' and the spin momentum that the particle gains from the
space non-holonomity eld. The particle's total momentum is greater
than its relativistic momentum, ffand are co-directed, and it is less
otherwise. In the case of the opposite mutual orientationasid |, the
total momentum becomes zero (so does the total energy), provided that
the conditionmpc?=2n~ s true.

For the mirror-world particle the quantitg,,, is

. 2n~ - . 2n~ .
Piot = —ibocz W oviz omvi A v'; (4:205)
CZ 1 @ CZ 1 @

c? c?

so the particle moves faster (in the mirror world),~fand are co-
directed, and it is slower otherwise.
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The velocity components of a charged spin particle in the magnetic
eld co-directed with the space non-holonomity eld, taking into ac-
count the conditions (4.191), in our world are

X=yosin@2 + 1) xgcos2 + !) ; (4:206)
Y=Y0C0s(2 + 1) +xgsin2 + !) ; (4:207)
while for an analogous particle located in the mirror world we have
X = Y(o)sin! X0)cos! ; (4:208)
Y = Y@)cos! + xgsin! : (4:209)
Then the total momentum of the particli@ our world is
Piot = My@sin(Z + 1) (4:210)
2 1 %
2 ~
ptzot: MY(O) cos(2 + 1) ; (4:211)
2 1 @
2 ~
o= G2 20 (4:212)
@ 1 ‘0

c2

where! is asin (4.188). In the mirror world we have

moc?  2n~ .
Pt = —F——— Yo sin! ; (4:213)

V2
)
¢ 1 &

2 2n~
ptzot = _mo|_y(0) cos! ; (4:214)

moc?  2n~
Plot = ——F—=———7Z0); (4:215)
\%
¢ 1

The initial momentum of the particle within they plane is directed along
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where! is as in (4.190). Noteworthy, although the magnetic strength
does not appear in the total enefgy;, it appears in the total momentum
as a term of the formula fdr (4.190).

4.7.2 The magnetic eld is orthogonal to the non-holonomity eld

Let us now consider the motion of a mass-bearing charged spin particle
in a homogeneous stationary magnetic eld, which is orthogonal to the
space non-holonomity eld. Let the non-holonomity eld be weak and
directed along (so, the magnetic eld is directed along. Then the
chr.inv.-vector equations of its motion

y eH . . eH

X+2 y= H_:,Z’ y 2 x=0; 2= UBX (4:216)
are similar to those for a charged spinless particle (3.338). The dier-
ence from (3.338) is that here the denominator of the right hand side
contains, instead of the relativistic mass of the charged particle, the in-
tegration constant from the live forces integral, which takes into account
the interaction between the particle's spin and the non-holonomity eld.
After integration, the equations give

X<°) sink e(O) cost +x0+ 33 X‘O) (4:217)
|
) !
Y= —5 XocCose + X0 )smé +Yo *+
e (4:218)
Bz X0 * V(O) TR OL
: X0)
z- 5 XoCose + —— b sine  + Zq
(4:219)

Lo !
pX(O) * Z0) B2 X0)

which are di erent from the corresponding solutions for a charged spin-
less particle by the frequendy that is dependent on the spin and its
mutual orientation with the non-holonomity eld

2
) E eH2 1 0
- C
b= 4 2+12= 4 24— - (4220)

- 2
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Subsequently, an equation of the trajectory of the charged spin parti-
cle is similar to that of the spinless particle. In a particular case, namely
under certain initial conditions, the trajectory equation is the equa-

tion of asphere

1
X+ yr+ 7= ™ Xy (4:221)

whose radius, in contrast to the radius of the trajectory of the spinless
particle, depends on the particle's orientation with respect to the non-
holonomity eld

1
r= > X0) - (4:222)
E eHz 1 o
4 2+ i 5
2N~
mpc? =i~

Let us look at an analogous particle, located in the mirror world,
moving in a weak eld of the space non-holonomity, directed algng
and orthogonal to the magnetic eld. For the particle, the chr.inv.-vector
equations of motion are

X:ﬁz; y=0; z= ﬁx; (4:223)

cB cB

so they are di erent from the equations for the our-world particle (4.216)
by the absence of the terms which contain the angular velocity of the
space rotation . As aresult their solutions can be obtained from the so-
lutions for our world (4.217 4.219), if we assunte="! . Subsequently,
an equation of the trajectory of the charged spin particle located in the
mirror world is

2n~

2
1 myC
Xty +Z = SXon 1= —r—j X0): (4:224)
: V]
eH 1 -2

c

The total energy of the particlgy; in this case, where the magnetic
eld is orthogonal to the space non-holonomity eld, is the same as it
was for the case of parallel orientation of the elds. But the formulae for
components of the total momentum (4.201, 4.205) are di erent, because
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they include the particle's velocity which depends on mutual orientation
of the magnetic eld and the non-holonomity eld. In the particular
case, where the elds are orthogonal to each other, components of the
particle's velocity (obtained by derivation of the formulae for 4.217
4.219) in our world are

X(0)

X = X(p)cose + — 5 sing ; (4:225)

2 . 2 2
y = = X(0) Sink 2 Xo)cosk +yq)+ 52 X0); (4:226)

! ! |
z= — X(o)cosk E X(o)Sine  + zpq) E Xoy;  (4:227)

while in the mirror world we obtain

X = Xp)cos! + & sin! ; (4:228)

Y=Y (4:229)

1. . 1. )
Z= X0 cose  Xpgysin! + Zqg) MRCE (4:230)

Now we assume that the initial acceleration of the particle and the
integration constants are zeroes, which simpli es the algebra. We also
set thex axis along the initial momentum of the particle. In the frame-
work of this consideration we obtain the components of the total mo-
mentum for the particle located in our world

¢z 2n~
ptlot u X(0) COSE ; (4:231)
2 1 ég’
moc® 2n~ 2 .
Phot = T YO sing ; (4:232)
VZ
2 1 2
mec® 2n~ | _
ptot B X©)Sing ; (4:233)

vV
)
@ 1
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and for the analogous patrticle located in the mirror world

2

Mo C n~
Ly = —F——X0) cosk : (4:234)
V

¢z 1 2

» _  Mpc® 2n~ o _

Piot = —|_2 Yo)=0; (4:235)
2 1 Yo

3 _ Mmpc® 2n~ L _

Prot = —|_2 X0) Sink : (4:236)
2 1 Yo

As it easy to see, the obtained solutions can be transformed into
corresponding ones from electrodynamics (Y3.12) by assuniing.

4.8 Quantization of the masses of elementary particles

As obtained before, the chr.inv.-scalar equations of motion of a charged
spin particle in an electromagnetic eld, located in our world and in the
mirror world, respectively, have the form

d - d e i

Integrating the equations, we obtain the live forces integrals

m+§=B; m+@ =B; (4:238)
whereBis an integration constant in our world aBdk that in the mirror
world. Integration constants depend on the initial conditions, therefore,
it is possible to choose the above constants so as to make them zeroes.

Under what initial conditions are the integration constants equal to
zero? For charged spin particles, located in our world and in the mirror
world (4.238), we obtain, respectively

m+§=0; m+? =0; (4:239)

while the right hand side of the chr.inv.-vector equations of motion
(4.150, 4.152), which contain the chr.inv.-Lorentz force, also become
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zeroes. In other words, with zero integration constants in the scalar
chr.inv.-equations, the acting electromagnetic eld does not produce a
work to displace charged particles.

Having the relativistic square root cancelled in (4.239), which is al-
ways possible for any particle having non-zero rest-masses, we represent
these formulae in a form that does not depend on the particle's velocity.
Then, for mass-bearing particles located in our world we have

moc® = n~""Ann; (4:240)
and for mirror-world particles of non-zero masses we have
moc? =  n~""Agn: (4:241)

We will refer to the formulae (4.240, 4.241) as tagv of quantiza-
tion of the masses of elementary particles

The rest-mass of any mass-bearing spin particle is proportional to
the energy of its spin interaction with the space non-holonomity
eld, taken with the opposite sign.

Or, in other words:

The rest-energy of any mass-bearing spin particle is equal to the
energy of its spin interaction with the space non-holonomity eld,
taken with the opposite sign.

Because in the mirror world the relativistic energy and spin-energy
of any particle are negative in (4.239), the minus sign stands on the
right hand side of (4.241) in the mirror world. So, this law is the same
as (4.240), which we have obtained for a spin particle in our world.

Obviously, the above quantum formulae are not applicable to spin-
less particles.

Let us make some quantitative estimates, based on the obtained
guantization law. Considering an elementary particle, we will calcu-
late the numerical value of the quantityy = n~""An, as follows. First,
we formulate the tensor of the space angular velo&itywith the pseu-
dovector = % imnp

i L1

imn 5 pq"imnqu = r?’] ﬁ r? % Apg = Amn; (4:242)

NI =

This quantity characterizes the interaction energy of the particle's spin with the
space non-holonomity eld the spin energy , in other words.
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so we havédmn="imn . Then, because

1
E " imn~mn =~ (4243)

is the Planck pseudovector, the quantigys n~™""in ' is
o=2n~; (4:244)

so it is the double scalar product of the Planck three-dimensional pseu-
dovector and the three-dimensional pseudovector of the angular velocity
with which the space rotates, multiplied by the particle's spin number.
If ~;and ' are co-directed, then the cosine is positive, hence

o=2n~; '=2n~ cos=;~ >0; (4:245)
while if they are oppositely directed, then
o=2n~; '=2n~ cos=;~ <O: (4:246)

Therefore, for any mass-bearing elementary spin particle, the inte-
gration constant from the live forces integral becomes zero, provided
that the pseudovectors; and ' are oppositely directed.

This means that, if the interaction energy of a mass-bearing elemen-
tary spin particle with the space non-holonomity eld becomes equal
to its rest-energy = myc?, then the momentum of the particle neither
manifests itself in our world nor in the mirror world.

Assume that theaxis is co-directed with the angular velocity pseu-
dovector of the space rotation'. Then out of all three components of
the ' the only non-zero component is

1 1
3: 2"3an n: 2 "312A12+"321A21 -
@312 (4:247)

— A2
‘ﬁFlZ

— 312A12

To simplify the algebra we assume that the three-dimensional coor-
dinate metri@jk is Euclidean and the space rotates at a constant angular
velocity . Then components of the linear velocity of the space rotation
arevi= X, \b= y, andAj, = . Hence

3 e312 Al

—pﬁ A12 = — = -pﬁ . (4248)

;%



4.8 Quantization of the masses of elementary particles 207

The square root of the determinant of the chr.inv.-metric tensor, as
de nedin (4.180), is

p

r
detkhyk= 1+

P 2 x2+y2

h= =

(4:249)
Because we are dealing with very smallpc_oordinate values on the

scales of elementary particles, we can assunme 1 and, according

to (4.248), also 3= = const Then the law of quantization of the

masses of elementary particles (4.240), considered in our world and in

the mirror world, becomes

_2n~
==

(4:250)

Hence, for any elementary mass-bearing particle, located in our
world, the following relationship between its rest-magsand the an-
gular velocity with which the space rotates is obvious

moc®
2n~-

This means that the rest-mass (true mass) of an observable object,
under ordinary conditions does not depend on the properties of the ob-
server's reference space. On the contrary, for elementary particles it
becomes strictly dependent on these properties, in particular it de-
pends on the angular velocity of the space rotation.

Hence, proceeding from the quantization law, we can calculate the
rotation frequencies of the observer's reference space, which correspond
to the rest-masses of elementary particles.

The results, proceeding from the calculations for elementary parti-
cles of known kinds, are given in Table 4.1.

These results show that on the scale of elementary particles, the ob-
server's space is always non-holonomic. So forth for instance, in obser-
vation of an electron.= 2:8 10 2 cm the linear velocity of rotation of
the observer's space is= r=2200 km/sec Because other elemen-

(4:251)

This value ofv equals the velocity of an electron in the Bohr 1st orbit, although
when calculating the velocity of the space rotation (see Table 4.1) we considieeed a
electron i.e., the one not related to an atomic nucleus and quantization of orbits in an
atom of hydrogen. The reason is that the genetic quantum non-holonomity of the
space seems not only to de ne rest-masses of elementary particles, but to be the reason
of rotation of electrons in atoms.
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Elementary particles Rest-mass  Spin ,sec!?

Leptons

electrone , positrone* 1 12 7.782 10%°

electron neutrinoe and

electron anti-neutrinde <4 10% 1 <3 10Y
-meson neutrino and

-meson anti-neutrind <8 1/2 <6 10%
-meson, *-meson 206.766 1/2 1.609 107

Baryons

nucleons

protonp, anti-protonp 1836.09 12 1.429 10?4

neutronn, anti-neutrori 1838.63 12 1.431 10**

hyperons

O-hyperon, anti- °-hyperon 2182.75 1/2 1.699 10**
*-hyperon, anti-*-hyperon 2327.6 12 1.811 10%*
-hyperon, anti- -hyperon 2342.6 172 1.823 10
O-hyperon, anti--hyperon 2333.4 172 1.816 10%
-hyperon, anti- -hyperon 2584.7 12 2.011 10**
9-hyperon, anti- °-hyperon 2572 172 2.00 10*
-hyperon, anti- -hyperon 3278 32 850 107

Table 4.1: Frequencies of rotation of the observer's reference space, which
correspond to elementary mass-bearing particles.

tary particles are even smaller, this linear velocity seems to be the upper
limit .

So, what did we get? Generally, the observer compares the results
of his measurements with the standards located in his reference body.
But the body and himself are not related to the observed object and do
not a ect it during observations. Hence, in the macro-world there is
no dependence of the true properties of the observed bodies (rest-mass,
rest-energy, etc.) on the properties of the reference body and reference
space their properties arenot relatedto each other.

In other words, although observed images are distorted by the in-
uence from the physical properties of the observer's reference frame,

It is interesting that the angular velocities of the space rotation in baryons (see
Table 4.1) up within the order of the magnitude match the frequer€§® sec * which
characterizes elementary particles as oscillators [27].
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the observer himself and his reference body in the macro-world do not
a ect the measured objects anyhow.

But the world of elementary particles presents a big di erence. In
this section, we have seen that once we reach the scale of elementary
particles, where the spin, a quantum property of the particles, signi -
cantly a ects their motion, while the physical properties of the reference
body (reference space) and those of the particles become tightly linked
to each other, so the reference badgcts the observed particles. In
other words, the observer does not just compare the properties of the ob-
served particles to those of his references any longer, but instead directly
a ectsthe observed particles. The observer shapes their properties in a
tight quantum relationship with the properties of his references.

We can explain the above in other words as follows. When look-
ing at the world of elementary particlebere is no bordebetween the
observer (his reference body and reference space) and the observed par-
ticles. Hence, we have an opportunity to de nestationshipbetween
the space non-holonomity eld, linked to the observer, and the rest-
masses of the observed particles (objects of his observations), which in
the macro-world are not related to the reference body. So, the obtained
law of quantization of the masses is only true for elementary particles.

Please note that we have obtained the above result using only the ge-
ometric methods of the General Theory of Relativity, and not the prob-
abilistic methods used in Quantum Mechanics. In the future, this result
can possibly become a bridge between these two theories.

4.9 The Compton wavelength

So, we have obtained that, in observations of an mass-bearing elemen-
tary particle, the rotation frequency of the observer's space is”z"’Tf_2
(4.251). Let us nd the wavelength corresponding to that frequency.
Assuming that this wave, i.e., the wave of the space non-holonomity,
propagates with the light velocity = c, we have

C ~

=2n—: (4:252)
mopC

In other words, when we observe a mass-bearing particle with the
spinn= % the length of the space non-holonomity wave is equal to

Compton's wavelength of this particle. = et
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What does this mean? The Compton e ect, named after Compton
who discovered it in 1922, is the diraction of a photon on a free
electron, which results in the decrease of its own frequency

h
= 1=EC(1 cos#) = (1 cos#); (4:253)

where ; and » are the photon's wavelengths before and after the en-
counter, and? is the diraction angle. The multiplier ¢, specic to
the electron, at rst was called tHeompton wavelengtbf the electron.
Later it was discovered that other elementary particles during the dif-
fraction of photons reveal as well the speci ¢ wavelengths m%c or

¢~ e That is, elementary particles of every kind (electrons, pro-
tons, neutrons etc.) have their own Compton wavelengths. The physical
sense behind the quantity will be explained later. As obtained, within an
area smaller thang, any elementary particle is no longer a point object
and its interaction with other particles (and with the observer) is de-
scribed by Quantum Mechanics. Hence, thesized area is sometimes
interpreted as the size of the elementary particle.

As for the results that we have obtained in the previous section,
Y4.8, they can be interpreted as follows. In the observation of a mass-
bearing elementary particle, the observer's space rotates so fast that the
angular velocity of its rotation makes a speci ¢ wavelength equal to
the Compton wavelength speci ¢ of the observed particle (the size,
inside which the particle is no longer a point object). In other words,
it is the angular velocity of the space rotation (the wavelength in the
space non-holonomity eld), which determines the Compton observ-
able wavelength (speci ¢ size) of the elementary particle.

4.10 Massless spin particles

Because massless particles do not have an electric charge, the chr.inv.-
scalar equation of their motion in our world and in the mirror world are
as follows, respectively,

d
d_ m+§ :0, d_ m+? =O. (4254)

Their integration always gives a constant equal to zero, hence we
always obtain the formulae (4.239). Therefore, for massless particles in
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our world and in the mirror world, we have
mé= (4:255)

On the other hand, it is obvious that the term rest-mass is not ap-
plicable to massless particles they are always on the move. Their rel-
ativistic masses are de ned from the energy equivaeatmc?, mea-
sured in electron-volts. Consequently, massless particles have no rest
spin energy o = n~""Amqp.

Nevertheless, the Planck tensor found in the spin energyables
the quantization of the relativistic masses of massless particles and of
the angular velocities of the space rotation. Hence, to obtain the angu-
lar velocities of the space rotation for massless particles, we need an
expanded formula of their relativistic spin energywhich would not
contain the relativistic square root.

Quantum Mechanics speaks of the helicity of massless particles

the projection of the spin of a massless particle onto the direction
of its momentum. The reason for introducing this term is the fact that
massless particles cannot be at rest with respect to any ordinary ob-
server, since they always travel with the velocity of light with respect
to him. Therefore, we can always assume that the spin of any mass-
less particle is tangential to its light-like trajectory (either co-directed
or oppositely directed to it).

Keeping in mind that the spin quantum numinesf any massless
particle is 1, we assume that for a massless particle

= A (4:256)

whereAn, is the angular velocity chr.inv.-tensor of rotation of its light-
like space.

Hence, to obtain the relativistic spin energy of a massless particle
(4.256) we need to nd the components of the angular velocity chr.inv.-
tensor of the light-like space rotation. We are going to create the tensor
similar to the space rotation four-dimensional ten&or (4.11), which
describes the rotation of the reference space, travelling with respect to
the observer with an arbitrary velocity (this means a non-accompanying
reference frame). As a result we obtain

A =Zch h a; a-= ; (4:257)

NI =
26
2|®.
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whereb is the four-dimensional velocity of the light-like reference
frame with respect to the observer, and

h = g +bb (4:258)

is the four-dimensional generalization of the chr.inv.-metric tensor for
the light-like reference space.

The home space of massless particles is a space-time region cor-
responding to the four-dimensional light-like (isotropic) cone given by
the equatiory dx dx =0. This cone exists at any point of the four-
dimensional pseudo-Riemannian space with the signature €.

The four-dimensional velocity vector of the light-like reference
frame of massless particles is

~ _dx _ dx &

b =4 " cd bb =0; (4:259)
S0 its chr.inv.-projections in the reference frame of an ordinary sublu-
minal observer are

bo co1dX 1

= 1 b==-—=2¢" 4:260
P cd ¢ (4:260)

while the other components of the isotropic vector (4.259) are

|
- 1 1 ) ~ 1

0 _ i . — . .
= —vic 1; bi= -(g w): 4:261
‘ﬁ% 2 | i C( i 1) ( )

The isotropic condition of a massless particle's four-dimensional ve-
locity, b b =0, in the chr.inv.-form has the form

hic ¢'ck = ¢? = const (4:262)

wherehy is the chr.inv.-metric tensor of an ordinary subluminal ob-
server's reference space. The components of the four-dimensional light-
like metric tensorh  (4.258), the three-dimensional components of
which make up the light-like space chr.inv.-metric tenEbrare

F00 _ WV 22U e+ Sy ke §
- 2
21 g g
(4:263)
] 1 K
[0l = voc+ v://kc c . Rk = pks §
cl =

z
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wherec' is the chr.inv.-vector of the light velocity, plus stands for the
light-like space with the direct ow of time (our world), and minus
stands for the reverse-time (mirror) world.

Deduce the components of the curl of the four-dimensional velocity
vector of a massless particle, which is found in the formula (4.257).
After some algebra we obtain

9
iio ac il W @
! ! : (4:264)
~ .1 @ @ 1 @v av %
Bk= o= —1 — o= —p
2C @k @I 2C @k @I 1

Generally, to de ne the spin energy of a massless particle (4.256),
we need the covariant spatial components of the space rotation tensor,
namely the lower-index componentsdy. To deduce them, we take
the formula for the contravariant componeAfsand lower their indices
similar to any chr.inv.-quantity, using the chr.inv.-metric tensor of the
observer's reference space.

Substituting the obtained componehts andd into

Aik =c ﬁiOﬁkOéoo_l_ ﬁiOﬁkmaom_i_ ﬁimﬁk°%+ ﬁimﬁknamn (4:265)

we arrive at the general formula

n ! #
- . 1 @ @ 1
k — k m n
A = RMpKN > @ @ + ﬁ(FnCm FmcCn)
n ! #
i 1 @4 @y 1
k
!
b Iuet 1o g Gmo (4266)
c @

VRM ik, G oM Gipkn ki
"@ 2C2 | |4
@n @n @y @y .
@ @ @ @
In this formula, the quantity} % % + 55 (FoVim - FmWn), by
de nition, is the chr.inv.-tensor of the angular velocity of the observer's
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space rotatiomAmn, which is the non-holonomity tensor of then-
isotropic space at the same time.

The quantity2 % % + 55 (FnCm  FmCn) by its structure is
similar to the tensoAy, but instead of the linear velocity with which
the non-isotropic space rotates, it has the components of the covariant
chr.inv.-vector of the light velocitgm = hnnc". The vectorcy, is a phys-
ically observable quantity, because it is obtained by lowering indices in
the chr.inv.-vectorc” using the chr.inv.-metric tensdv,,. We denote
that tensor ag\nn, Where the inward curved cap (croissant) means that
the quantity belongs to thisotropic spacewith the direct ow of time

the upper part of the light cone, which in a curved space-time gets

a round shape. Then we obtain

!

_18n @

2 @ @m

In the particular case, where the gravitational potential is negligible
(i.e., wherew 0) the tensor becomes

|
_18@n @
2@ @’
so it is the chr.inv.-curl of the light velocity. Therefore, we will refer to
Amn as theisotropic space curl
The following example gives a geometric illustration of the isotropic
space curl. As is known, the necessary and su cient condition of the
equalityAnn= 0 (the space holonomity condition) is the equality to zero
of all components = cp%, i.e., the absence of the space rotation.

1
Amn + 2@ (Fncm  Fmcn): (4:267)

Amn (4:268)

The tensoAnnis de ned only in the isotropic space, inhabited by mass-
less particles. Outside the isotropic space it is nonsense, because the

We refer to a region of the four-dimensional space-time, where particles having
non-zero rest-masses exist, as tloa-isotropic spaceThis is the region of the world-
trajectories, along whiclds, 0. Subsequently, if the intervalsis real, then the par-
ticles travel with subluminal velocities (ordinary particles); if it is imaginary, then the
particles travel with superluminal velocities (tachyons). So, the space of both sublumi-
nal particles and superluminal tachyons is non-isotropic by de nition.

~We refer to a region of the four-dimensional space-time, inhabited by massless
(light-like) particles, as thésotropic space This region can also be called thight
membraneFrom a geometric point of view, the light membrane is the four-dimensional
surface of the isotropic cone, i.e., the set of its four-dimensional elements that are the
world-lines of the propagation of light.
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interior of the light cone is inhabited by subluminal particles, while
tachyons inhabit its exterior .

Our subject here is massless particles (photons). From (4.268) it is
seen that the non-holonomity of the isotropic space is linked to the curl
nature of the linear velocity of massless partidgsHence, any photon
is a spatial curl of the isotropic space, and the photon's spin results from
the interaction between its internal curl eld with the external tensor
eld Amn

To make the explanations even more illustrative, we depict the home
regions of di erent kinds of particles. The light cone exists in every
point of space (space-time). The light cone equatjordx dx =0in
the chr.inv.-notation takes the form

22 hxx¥=0; hxxk= 2 (4:269)

On Minkowski's diagram, the light cone interior is lled with the
non-isotropic space, where subluminal particles exist. Outside it, there
is also a region of the non-isotropic space, inhabited by superluminal
tachyons. The speci ¢ space of massless particlesgaae-time mem-
branebetween these two non-isotropic regions. The picture is mirror-
symmetric: in the upper part of the cone, there is the subluminal space
with the direct ow of time (our world), separated in the observer's spa-
tial section from the lower part the subluminal space with the reverse
ow of time (the mirror world). In other words, the upper part of the
cone is inhabited by real particles (they have positive masses and ener-
gies), while the lower part is inhabited by their mirror counterparts
(masses and energies of which are negative from our point of view).

Therefore, the rotation of the subluminal non-isotropic space that is
inside the light cone involves the surrounding light membrane (iso-
tropic space). As a result, the light cone begins a rotation described
by the tensonn (isotropic space curl). Of course, we can assume a
reverse order of events, where the light cone rotation involves the con-
tent of its internal part. But, since particles inside the cone have
non-zero rest-masses, they are heavier than massless particles on the
light membrane. Hence, the internal content of the light cone is also
an inertial media.

Now we come back to the formula for the relativistic spin energy of a
massless particle= ~""A,, (4.256). Lowering indices in the isotropic
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space non-holonomity tenséf (4.266), we obtain
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Having Ai contracted with the Planck tensgf, we obtain
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where plus stands fof our world and minus for the mirror world.
The quantity o= 1 v&c?2=0for massless particles is zero, be-

cause they travel with the light velocity. Hence, keeping in mind that

o=n~"A., we obtain an additional condition imposed on the non-
holonomity tensor of the isotropic spaég: at any point of the trajec-
tory of any massless particle, the condition

anAmn = 2~(A12 + Aoz + A31) =0 (4:272)

must be true. Or, in the other notationl+ 2+ 3=0.

Therefore, in a region, where the observer sees a massless parti-
cle, the angular velocity with which the observer's non-isotropic space
rotates is equal to zero.

The other terms that make up the relativistic spin energy of the
massless particle (4.271) are due to possible non-stationary state of the
light velocity% as well as other dependencies that include the squared
velocity of light.

So forth, we will analyse the obtained formula (4.271) under the
following two simpli cation assumptions:
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a) The gravitational potential is negligible/( 0);
b) The three-dimensional chr.inv.-velocity of light is stationary.

Inthis case, the quantitidg andAy, which are the observer's space
non-holonomity tensor and the isotropic space curl, become

| |
_1@v Gv. ECN
2 @ @’ 2 @ @’

and, therefore, the formula (4.271) for the relativistic spin energy of a
massless particle takes the following form

Aik A (4:273)

|
. 1 . '
=n ~Kpy + =G cm-ka (4:274)

Therefore, the quantity that describes the action of the spin of a
massless particle, is determined (in addition to the particle's spin) only
by the isotropic spatial curl and does not depend in any way on the non-
holonomity (rotation) of the observer's space.

To make further deductions simpler, we transfori#.274) as fol-
lows. Similar to the pseudovector ' = 2" kMA, of the rotation angu-
lar velocity of the observer's space, we introduce a pseudovector

1
"= 5" A (4:275)
which can be interpreted as the pseudovector of the rotation angular
velocity of the isotropic space.
SubsequentlyAxm="kmn ". Then the formula for (4.274) can
be represented as follows
!

1 .
=n~; '+ gcichk"kmn n . (4:276)

This means that the internal mechanical curl (spin) of a massless
particle only reveals itself in the interaction with the isotropic space
curl. The result of the interaction is the scalar produ¢t | to which
the massless particle's spin is attributed. Hence, massless particles are
elementary light-like curls of the isotropic space itself.

Let us estimate the rotations of the isotropic space for massless par-
ticles having di erent energies. At present, we know for sure that among
massless particles are photons the quanta of an electromagnetic eld.
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Kind of photons Frequency; sec*
Radiowaves 1 10%

Infra-red rays 18 1.2 10%
Visible light 1.2 10 2.4 10
Ultraviolet rays 2.4 10% 10Y

X-rays 107 10%°

Gamma rays 16 1023 and above

Table 4.2: The rotation frequencies of the isotropic space,
which correspond to photons.

The spin quantum number of any photon is 1, and the eriergy!
of a photon is positive in our world. Hence, taking into account the live
forces integral for massless particles (4.255), for photons we have

~l =~ T C—12 G M (4:277)

Assume that the rotation pseudovector of the isotropic space
is directed along the axis, while the light velocity is directed along
Then, the relationship (4.277) obtained for photons becorhes 2~
or, after having the Planck constant cancelled,

! 2

3 57 (4:278)

so the isotropic space rotation frequencyfor a massless particle is
constant and coincides the particle's own frequencyhanks to this
formula, resulting from the quantization law of the relativistic masses of
massless particles, we can estimate the isotropic space angular velocities
that correspond to photons of di erent energy levels. Table 4.2 gives the
results of our calculation.

From Table 4.2, we see that the angular velocity of rotation of the
isotropic space in photons of the gamma rays range is of the order of the
ordinary space rotation frequencies in electrons and other elementary
particles (see Table 4.1).

411 Conclusions

Here is what we have obtained in this Chapter. Firstly, we have obtained
that the spin of any patrticle is characterized by the four-dimensional an-
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tisymmetric tensor of the 2nd rank called the Planck tensor. Its diagonal
and space-time components are zeroes, while the non-diagonal spatial
components are ~ depending on the spatial direction of the spin and
our choice of a right or left-handed reference frame.

The spin (internal vortical eld) of a particle interacts with an ex-
ternal eld of the space non-holonomity. As a result, the particle gains
an additional momentum, which deviates the particle's motion from a
geodesic line. This interaction energy is found from the chr.inv.-scalar
equation of motion of the particle (live forces theorem), so the equation
must be taken into account when solving the chr.inv.-vector equations
of motion.

A particular solution to the chr.inv.-scalar equation of motion is the
law of quantization of the masses of elementary spin particles, which
unambiguously links:

The rest-masses of mass-bearing elementary particles with the an-
gular velocity of the observer's space rotation;

The relativistic masses of photons with the angular velocity of ro-
tation of their internal light-like space.

Because the region, where light-like particles exist, is home to four-
dimensional isotropic trajectories, such terms as the isotropic space
and the light-like space can be used as synonyms.

Please note that we have obtained the results using only the geomet-
ric methods of the General Theory of Relativity, not the probabilistic
methods of Quantum Mechanics. In the future, this result can possibly
become a bridge between these two theories.




Chapter 5 The Physical Vacuum

5.1 Introduction

According to the recent data, the average density of matter in the Uni-
verse is about’5 10 10 3°gram/cnt. The average density of substance

in galaxies is greater, 10 2* gram/cn? in our Galaxy. Astronomical
observations show that most part of the cosmic mass is accumulated in
compact objects, such as stars, the total volume of which is incompa-
rable to the entire Universe (this is called the island distribution of
substance). Therefore, our Universe is predominantly empty.

For a long time, the words emptiness and vacuum were consid-
ered synonymous. But since the 1920s, the geometric methods of the
General Theory of Relativity have showed that these are two di erent
states of matter.

The distribution of matter in the Universe is characterized by the
energy-momentum tensor, which is linked to the geometric structure of
the space-time (expressed with the fundamental metric tensor) by the
eld equations In Einstein's theory of gravitation, which is an applica-
tion of Riemannian geometry, these &iastein's equations

R %g R= {T +g : (5:1)
These equations, in addition to the energy-momentum tensor and
the fundamental metric tensor, include:
)R =R is Ricci's tensor, which is the contraction result of
the Riemann-Christo el curvature tensBr by two indices;
2) R=g R isthe scalar curvature;

The left hand side of the eld equations (5.1) is often referred to assihstein
tensorG =R  3g RinthenotatiorG = {T + g

»Gregorio Ricci-Curbastro (1853 1925), an Italian mathematician who was the
teacher of Tullio Levi-Civita in Padua in the 1890s.
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3) {=85=1.862 10 2’ cm/gram is Einstein's gravitational con-
stant whileG=6:672 10 & cm’/gram seé is Gauss' gravita-
tional constant. Note that Landau and Lifshitz [10] l{seu
instead of = 8 S as used by Zelmanov. To understand the reason,

why{ =88 G is not in our study, consider the chr.inv.-projections
of the energy—momentum tensbr : the chr.inv.-scalar of the ob-
servable mass densiggg = , the chr.inv.-vector of the observable

. cT! ; .
momentum densﬂygg:(‘;o = J' and the chr.inv.-tensor of the observ-

able momentum ux densitg?T K = U [9]. Therefore, the scalar

chr.inv.-projection of the Einstein equationsgi(‘)%‘} = {g% + .As

is known, the dimension of the Ricci tensor is [&}) hence the
Einstein tensoG  and the quantity{% = % have the same
dimension. Consequently, it is obvious that the dimension of the
energy-momentum tensdr is that of mass density [gram/cin

This means that, when we uégg on the right hand side of the
Einstein equations, we actually use not the energy-momentum ten-
sor itself, but the quantitg?T , the chr.inv.-scalar projection and
chr.inv.-vector projection of which are the observable energy den-

sity £ °2T°° = c2and the observable energy ua? c2J!, respec-

tlvely

4) [cm ?]is the so-calledosmological termwhich describes non-
Newtonian forces of attraction or repulsion, depending on the sign
before ( > 0 stands for repulsion,< 0 stands for attraction).
The term is referred to as cosmological , because it is assumed
that the forces described bygrow up proportionally with distance
and, therefore, reveal themselves in full scale at cosmological
distances comparable to the size of the entire Universe. Because
the non-Newtonian gravitational eld ¢ eld) has never been ob-
served, the cosmological term in our Universg i< 10 °6 cm 2
(as of today's measurement accuracy).

Looking at the Einstein equations (5.1), we see that the energy-
momentum tensor describing the distribution of matter is linked to both
the fundamental metric tensor and the Ricci tensor, and, therefore, to
the Riemann-Christo el curvature tensor. The equality of the Riemann-
Christo eltensorto zero in a space is the necessary and su cient condi-
tion for the space to be at. The Riemann-Christo el tensor is non-zero
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in a curved space only. It reveals itself as an increment of an arbitrary
vectorV inits parallel transport along a closed contour

1 ..
V = ER”' V : (5:2)
where is the area within this contour. As a result, the initial vector

V andthevecto¥ + V have dierentdirections. From a quantita-
tive point of view, the di erence is described by a quantitycalled the
four-dimensional curvaturef the pseudo-Riemannian space along the
given parallel transport (see [9] for details)

. tan'
K= IlrlnO an ; (5:3)

wheretan' is the tangent of the angle between the vestorand the
projection ofthe vectoy + V ontothe area constructed by the trans-
port contour. For instance, we consider a surface and a geodesic tri-
angle on it, produced by crossing three geodesic lines. We transport a
vector, de ned in any arbitrary point of that triangle, parallel to itself
along the sides of the triangle. The summary rotation angiéer the
vector returns to the initial point is= (where is the sum of the
internal angles of the triangle). Assume the surface curvatiisequal

at all of its points. Then

K= Iir|n0 L const (5:4)

where isthe triangle's area, arild= K is called thespherical excess
If ' =0, thenthe curvature i = 0, so the surface is at. In this case the
sum of all internal angles of the geodesic triangle {& at space). If

> (the transported vector is rotated towards the circuit), then there is
a positive spherical excess, so the curvakire0. An example of such
a space is the surface of a sphere: a triangle on the surface is convex.
If < (the transported vector is rotated counter the circuit), then the
spherical excess is negative and the curvatuke<<0.

Einstein had postulated that gravitation is caused by the space-time
curvature. He understood the space (space-time) curvature as the in-
equality to zero of the Riemann-Christo eltend®r , 0(as assumed
in Riemannian geometry). This concept completely includes Newto-
nian gravitational concept, so Einstein's four-dimensional gravitation-
curvature for an ordinary physical observer can reveal itself as follows:
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a) Newtonian gravitation;

b) Rotation of the three-dimensional space (three-dimensional spa-
tial section);

c) Deformation of the three-dimensional space;

d) The three-dimensional curvature, so that there are non-zero rst
derivatives of the Christo el symbols.

According to Mach's Principle, on the basis of which Einstein's the-
ory of gravitation rests, ...the property of inertia is completely deter-
mined by the interaction of matter [28], so the space-time curvature is
produced by the matter that lls the space-time. Proceeding from the
above and from the Einstein equations (5.1), we can givetdtbemat-
ical de nitions to the emptiness and the physical vacuum

The emptinessis the state of a space-time, for which the Ricci tensor is
R =0, which means the absence of any substamce=0) and
the non-Newtonian gravitational elds € 0). The eld equations
(5.1) in the emptinessare as simple aR =0;

The physical vacuum (or, simply, the vacuum) is the state of a space-
time, where there is no substante =0, but , 0 and, hence,
R , 0. The emptiness is a particular case of the vacuum in the
absence of the- eld. The eld equations in the physical vacuum
have the form

R %g R=g : (5:5)

The Einstein equations are applicable to the most varied cases of
distributed matter, except for the cases, where the density is close to
that of the substance inside atomic nuclei. It is hard to give an accurate
mathematical description to all of the cases of distributed matter, be-
cause such a problem is so general and it cannot be appropehed
Onthe other hand, the average density of substance in our Universe is so
small, 510 10 29 gram/cn?, that we can assume it near the vacuum.
The Einstein equations say that the energy-momentum tensor is func-
tionally dependent on the metric tensor and the Ricci tensor (curvature
tensor, contracted by two indices). At such small numerical values of

If we put down the Einstein equations for an empty spBce %g R=0n
the mixed formR %g R=0, then after contractionR %g R=0) we obtain
R %4R: 0. So the scalar curvature in the emptinesR#s0. Hence, the eld equa-
tions (Einstein equations) in an empty spaceRre= 0.
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density, we can assume the energy-momentum tensor to be proportional
to the metrictensof g and, hence, proportional to the Ricci ten-
sor. Therefore, besides the eld equations in the vacuum (5.5), we can
consider the eld equations

R =kg ; k = const (5:6)

where the energy-momentum tensor is di erent from the metric tensor
only by a constant. This case, including the absence of masses (i.e.,
in the vacuum) as well as some other conditions close to it, related to
our Universe, were studied in detail by Petrov [29, 30]. He called the
spaces, for which the energy-momentum tensor is proportional to the
metric tensor (and, hence, to the Ricci tendgirjstein spaces

A space withR =kg (Einstein space) is homogeneous at every
of its points, has no mass uxes, while the density of the matter that
lIs the space (including any substances) is everywhere constant. In
this case,

R=g R =kg g =4k; (5:7)

while the Einstein tensor takes the form
1
G =R Eg R= kg ; (5:8)

wherekg is the analogue of the energy-momentum tensor of the mat-
ter that lIs the Einstein space.

To nd out what kinds of matter Il Einstein spaces, Petrov studied
the algebraic structure of the energy-momentum tensor. This is what
he did: the tensol is compared to the metric tensor in an arbitrary
point; for this point the di erencel g is calculated, where are
the so-called eigenvalues of the matifix ; the dierence is equated
to zero to nd the values of, which make the equality true. This
problem is also called the matrix eigenvalues probleifihe matrix
eigenvalues set allows us to de ne the algebraic kind of this matrix.
For a sign-constant metric, this problem had been solved already, but
Petrov proposed a method to bring any matrix to a canonical form in the
space of a sign-alternating metric, which allowed using it in the pseudo-
Riemannian space, in particular, to study the algebraic structure of the

Generally, the problem should be solved at a given point, but the obtained result
is applicable to any point of the space.
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energy-momentum tensor. This can be illustrated as follows. The eigen-
values of the matrix elements are similar to the basis vectors of the
metric tensor matrix, so the eigenvalues de ne a kind of skeleton of
the tensof (the skeleton of matter); but even if we know what the
skeleton is, we cannot know exactly what the muscles are. Nevertheless,
the structure of such a skeleton (the length and mutual direction of the
basis vectors) can be depicted based on the properties of matter, such as
homogeneity or isotropy, and their relation to the space curvature.

As a result, Petrov had shown that all Einstein spaces have three ba-
sic algebraic kinds of the energy-momentum tensor and a few subtypes.
According to his algebraic classi cation of the energy-momentum ten-
sor and the curvature tensor, all Einstein spaces are sub-divided into
three basic kinds, which is calld®trov's classi cation.

The Einstein spaces of the kind | are best understood, because the
eld of gravitation in such a space is produced by a massive island ( is-
land distribution of substance), while the space itself can be empty or

lled with the vacuum. The curvature of such a space is created by the
island mass and by the vacuum. At the in nite distance from the island
mass, in the absence of the vacuum, this space remains at. Devoid of
any island masses but lled with the vacuum, the space of the kind | has
a curvature (e.g. de Sitter spaces). An empty space of the kind |, i.e.,
the one devoid of any island masses or the vacuum, is at.

The Einstein spaces of the kind Il and of the kind Ill are more ex-
otic, because they are curved by themselves. Their curvature is neither
related to the island distribution of masses, nor the presence of the vac-
uum. The kind Il and the kind 11l are generally attributed to radiation
elds, for instance, to gravitational waves.

A few years later, Gliner [32 34] in his study of the algebraic struc-
ture of the energy-momentum tensor of the vacuum-like states of mat-
ter(T g ,R =kg ) outlined its special kind, for which all four
eigenvalues are the same, so the three spatial vectors and the time vec-
tor of the ortho-reference of the tensdf are equal to each other

A chr.inv.-interpretation of the algebraic classi cation of Einstein spaces (or, in
other words, of Petrov's gravitational elds) was introduced in 1970 by a co-author of
this book, Borissova, née Grigoreva [31].

»If we introduce a local at space, tangential to the given Riemannian space at a
given point, then the eigenvaluesof the tensofT are the quantities in an ortho-
reference, corresponding to this tensor, in contrast to the eigenvalues of the metric ten-
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The matter that corresponds to the energy-momentum tensor of such a
structure has a constant density const equal to the coinciding eigen-
values of the energy-momentum tenser  (the dimension of is the
same as that 6f [gram/cn?]). The energy-momentum tensor in this
caseis

T =9 ; (5:9)

and the eld equations with =0 have the form
1
R 59 R= {g ; (5:10)
while with the cosmological term, 0, they are
1
R ég R= {g +g : (5:11)

Gliner called this state of matter thevacuum[32 34], because it
is related to a vacuum-like state of substante (g , R =Kkg ),
which is not exactly the vacuum (in the vacuuim, = 0). At the same
time, Gliner showed that spaces lled with thevacuum are Einstein
spaces, so three basic kinds of th@acuum exist, which correspond
to the three basic algebraic kinds of the energy-momentum tensor (and
of the curvature tensor). In other words, an Einstein space of each kind
(1, 1, and Ill), provided that matter is present in it, is lled with the

-vacuum of the corresponding kind (1, II, or 111).

Actually, because whentakeninthe ortho-reference ofthe energy-
momentum tensor of the-vacuum, all the three spatial vectors and the
time vector are the same (all the four directions have the same signi -
cance), the -vacuum is the highest degree of isotropic matter. Besides,
since Einstein spaces are homogeneous, i.e., the matter density is there
everywhere equal [29, 30], thevacuum that IIs such a space does not
only have a constant density, but is homogeneous as well.

As we have seen, Einstein spaces can be lled with thecuum,
with the physical vacuun({ = 0) or with the emptiness. Besides, there

sorg in an ortho-reference, de ned in this tangential space.

Gliner used the signature¢ ++). Therefore, he hadl = g . So, since the
observable density of matter is positiver T"g = > 0, he had negative numerical
values ofthe . In our book, we use the signaturef==), because in this case the three-
dimensional observable interval is positive. Therefore, we hav® andT = g
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can existisolated islands of mass, which also produce the space curva-
ture. Therefore, the Einstein spaces of the kind | are the best illustration
of our knowledge of the Universe as a whole. And, thus, to study the
geometry of the Universe and the physical states of the matter that lls
it, it is the same as studying the Einstein spaces of the kind I.

Petrov had proposed and proved a theorem (see Y13 in [29]), which
we callPetrov's theorem

Petrov's theorem

Any space of a constant curvature is an Einstein spacesa
that> . ..the Einstein spaces of the kind Il and of the kind IIl can-
not be constant curvature spaces.

Hence, a constant curvature space is an Einstein space of the kind I,
according to the Petrov classi cation.Kf= 0, then an Einstein space of
the kind I is at. This makes our study of the vacuum and vacuum-like
states of matter in the Universe even simpler, because by today we have
well studied constant curvature spaces. For example, thesie Sitter
spacesor, in other words, the spaces with the de Sitter metric.

Any de Sitter space ha =0and , O, soitis lled with the
ordinary vacuum and does not contain islands of substance. On the
other hand, we know that the average density of matter in the Universe
is rather low. Looking at it in general, we can neglect the presence of
occasional islands and inhomogeneities of substance, which locally
distort it. Hence, our space can be generally assumed as a de Sitter
space with the constant curvature radius equal to the observable radius
of the Universe.

Theoretically a de Sitter space can have either a positive curvature
K >0 or a negative curvaturé < 0. Analysis (see Synge's book) shows
that in de Sitter worlds witlK < 0 time-like geodesic lines are closed: a
test-particle repeats its motion again and again along the same trajectory.
This brings to mind some ideas, which seem to be too revolutionary
from the point of view of today's physics [35]. For this reason, most
physicists (Synge, Gliner, Petrov, and others) have left negative curva-
ture de Sitter spaces beyond the scope of their consideration.

As is known, positive curvature Riemannian spaces are the gen-
eralization of an ordinary sphere, while the negative curvature ones
are the generalization of the Lobachewski-Bolyai space (an imaginary-
radius sphere). According to Poincaré's interpretation, negative curva-
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ture spaces lie on the internal surface of a sphere. Using the methods of
chronometric invariants, Zelmanov showed that in the four-dimensional
pseudo-Riemannian space the three-dimensional observable curvature
is negative to the Riemannian four-dimensional curvature. Since we per-
ceive our planet as a sphere, the observable curvature is positive in our
world. If any hypothetical beings inhabited the internal surface of the
Earth, they would perceive it as concave, and their world would be of a
negative curvature.

This illustration inspired some researchers for the idea of the possi-
ble existence of our mirror twin, theirror Universeinhabited by an-
tipodes. Initially it was assumed that, once our world has a positive
curvature, the mirror Universe must be a negative curvature space. But
Synge showed (see [35, Chapter VII]) that space-like geodesic trajecto-
ries are open in a positive curvature de Sitter space, and in a negative
curvature de Sitter space they are closed. In other words, a negative cur-
vature de Sitter space is not a mirror re ection of its positive curvature
counterpart.

On the other hand, in our study [19] (see also Y1.3 herein) we found
another approach to the concept of the mirror Universe. We considered
the motion of free particles with the reverse time ow. As aresult, it was
obtained that the observable scalar component of the four-dimensional
momentum vector of a particle is its negative relativistic mass. Note-
worthy, particles having mirror masses were obtained as a formal re-
sult of projecting the four-dimensional momentum of a particle onto the
time line associated with an ordinary observer, and the projection result
was not related to changing the space curvature sign, i.e., particles with
either the direct or reverse ow of time can either exist in positive or
negative curvature spaces.

These results obtained by the geometric methods of the General
Theory of Relativity inevitably a ect our views of matter and cosmol-
ogy of our Universe.

In Y5.2, we are going to obtain the energy-momentum tensor of the
vacuum and, at the same time, a formula for its observable density. We
will also introduce a classi cation of matter according to the obtained
formula of the energy-momentum tensdr¢lassi cationof matter). In
Y5.3, we are going to consider the physical properties of the vacuum
in the Einstein spaces of the kind [; in particular, we will discuss the
physical properties of the vacuum in a de Sitter space and make conclu-
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sions on the global structure of the Universe. Following this approach,
in Y5.4, we will set forth the concept of the origin and evolution of the
Universe as a result of tHaversion Explosiotirom a pre-particle that
possessed some speci ¢ properties. In Y5.5, we will obtain a formula
for the non-Newtonian gravitational inertial force, which is proportional
to distance, and Y5.6 and Y5.7 will focus on the gravitational collapse
in a Schwarzschild space ¢gavitational collapsay and in a de Sitter
space (an in ationary collapse and ananton). In Chapter 6, we will
show that our Universe and the mirror Universe are the mirror time ow
worlds, which co-exist in a de Sitter space with a four-dimensional neg-
ative curvature. Also we will nd the physical conditions, which allow a
transition through the membrane that separates our world and the mirror
Universe.

5.2 The observable density of the vacuum. Non-Newtonian grav-
ity. The T-classi cation of matter

The Einstein equations (i.e., the eld equations in Einstein's theory of
gravitation) are the functions that link the space curvature to the distri-
bution of matter. Their general form R % g R= {T +g

The left hand side, as is known, describes the geometric structure of the
space, while the right hand side describes the matter that lIs the space.
The sign of the second term on the right hand side depends on the sign
of . As we will see below, the sign of and so the type of Newtonian
gravitation (attraction or repulsion) is directly linked to the sign of the
vacuum density.

Einstein spaces are de ned by the conditibn g , and the eld
equations for them have the forh =kg . Such eld equations can
exist in the two cases: a) in a space, where, 0, i.e., in a substance;

b) in a space, wher€ =0, i.e., in the vacuum. But, since in Einstein
spaces, lled with the vacuum, the energy-momentum tensor is equal to
zero, it cannot be proportional to the metric tensor; this fact contradicts
the de nition of Einstein spaced( g ).

So what is the problem here? In the absence of any substance, but
in the vacuum, the eld equations akre %g R= g and, hence,
the space curvature is produced by theld (non-Newtonian elds of
gravitation), and not by a substance. In the absence of both a substance
and the - eld, we haveR =0, so the space is empty but generally it
is not at.
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We see that the- eld and the vacuum are actually the same thing,
therefore, thezacuum is a non-Newtonian eld of gravitatiokVe will
call this point of the theory thphysical de nition of the physical vac-
uum Hence, the - eld is the action of the vacuum potential.

This means thatthe terng  ofthe eld equations cannot be omit-
ted in the vacuum, no matter how small it is, since it describes the vac-
uum, which is one of the causes that make the space curved. Then the
eld equationsR % g R= {T + g taketheform

R %g R= {¥%® ; (5:12)

on the right hand side of which the tensor

® =T +T =T {—g (5:13)
is the energy-momentum tensor that describes matter in general (both
substance and the vacuum). The rstterm here is the energy-momentum
tensor of a distributed substance. The second term

T = {—g (5:14)
is the energy-momentum tensor of the vacuum.

Therefore, because Einstein spaces can be lled with the vacuum,
their mathematical de nition is better to be set forth in a more gen-
eral form¥# g , which takes the presence of both substance and the
vacuum (- eld) into account. In particular, doing this helps to avoid
contradictions when considering Einstein empty spaces.

Note that the energy-momentum tensor of the vacuum (5.14) is the
direct consequence of the eld equations in a general form.

If > 0 (the non-Newtonian forces of gravitation repulsion), then
the observable density of the vacuum is negative

= Too _ = Ll 0; (5:15)

go  { {

and if < 0 (the non-Newtonian forces of gravitation attraction), then
the observable density of the vacuum is, on the contrary, positive

. >0: (5:16)
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The latter fact, as we will see in Y5.3, is of great importance, be-
cause a de Sitter space with 0, being a constant-negative curvature
space lled with the vacuum only (no substance present), best ts our
observation data on our Universe in general.

Therefore, based on the studies by Petrov and Gliner and taking into
account our note on the existence of the energy-momentum tensor of the
vacuum ( - eld) and, hence, the physical properties of the vacuum, we
can introduce a new geometric classi cation of the states of matter ac-
cording to the energy-momentum tensor. We will call this classi cation
theT-classi cation of matter

I) The emptiness:T =0and =0 (a space-time without matter).
In this case, the eld equations aRe =0;

II) The physical vacuum (or, simply, the vacuum): =0and , O.
In this case, the eld equationsa@®@ = g ;

) The -vacuum: T =g , =const(a vacuum-like state of
substance). In this case, the eld equations@re= { g ;

IV) Substance: T , 0, T / g (this state comprises both an ordi-
nary substance and electromagnetic elds).

Generally, the energy-momentum tensor of substance (the kind IV
according to the T-classi cation) is not proportional to the metric ten-
sor. On the other hand, there are such states of substance, in which the
energy-momentum tensor contains a term proportional to the metric ten-
sor, but since it also contains other terms, these states of substance are
not the -vacuum. Such, for instance, is an ideal uid

1= Pyu P

=2 2 g ; (5:17)

wherep s the uid pressure, and also electromagnetic elds
T =F F ¢ F F ; (5:18)

whereF F is the rst invariant of the electromagnetic eld under
consideration (3.27), anid is the Maxwell tensor. Ip= ¢? (a sub-
stance inside atomic nuclei) apd= const the energy-momentum ten-
sor of an ideal uid seems to be proportional to the metric tensor.

But in the next section, Y5.3, we will show that the equation of state
ofthe -vacuum has a di erent fornp= c?, which is the state of inf-

We mean here the Riemannian four-dimensional curvature.
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lation (the expansion of a medium having a positive density). Hence, the
pressure and density in atomic nuclei should not be constant as to pre-
vent the transition of their internal substance into a vacuum-like state.

Note that the introduced T-classi cation of matter, just like the eld
equations, is only aboutdistributed mattethat a ects the space cur-
vature, but not about test-particles (material points, the masses of which
are so small that their e ect on the space curvature can be neglected).
Therefore, the energy-momentum tensor is not de ned for particles;
they must be considered beyond the T-classi cation of matter.

5.3 The physical properties of the vacuum. Cosmology

Einstein spaces are de ned by the eld equations ke =kg , where
k=const With , OandT = g the space is lled with a matter,
the energy-momentum tensor which is proportional to the fundamen-
tal metric tensor, so this kind of matter is thevacuum. As we saw in
the previous section, Y5.2, the energy-momentum tensor of the vacuum
is also proportional to the metric tensor. This means that the physi-
cal properties of the vacuum and those of theacuum are mostly the
same, except for a scalar coe cient that determines the composition of
the matter (a substance or theeld) as well as the absolute value of
the acting forces. Therefore, we will consider an Einstein space lled
with the vacuum or the-vacuum. In this case, the eld equations take
the form

R 29 R= ( )y : (5:19)

Writing them in the mixed form and then contracting indices, we
obtain the scalar curvature

R=4({ ); (5:20)

then substituting it into the initial equations (5.19), we obtain the eld
equations in their nal form

R =( )9 (5:21)

where{ =const k.

Let us consider the physical properties of the vacuum and the
vacuum. The physically observable properties of a medium are express-
ed with the chr.inv.-projections of its energy-momentum tensor: the ob-
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. . CTl
servable density = @, the observable momentum density= =%
doo Jdoo

and the observable stress tensidf = 2Tk,
For the energy-momentum tensor of th#eacuum,T = g ,the
chr.inv.-projections have the following form

= % =, (5:22)
_CTy
Uk=cTk= k= (5:24)

For the energy-momentum tensor = 79 (5.14), which de-
scribes the vacuum, the chr.inv.-projections are

Too _

i CT
J' = 15—% =0; (5:26)
Uk =T = 0 chk = ch: (5:27)

We see that the-vacuum and the vacuum-(eld) have a constant
density, so these are the kindsusfiformly distributed matterThey are
alsonon-emitting mediasince the energy ux?J' in them is zero

3Ti 3Ti
.c°T .ocT
Al =p=2=0; cA=p=2=0: (5:28)
Joo Joo

In the reference frame that accompanies the medium, the stress ten-

sor is equal to (see Zelmanov's book [9])

Uik = pohik = phk  ik; (5:29)

where pp is the equilibrium pressure, de ned from the state equation,
p is the true pressure,i is theviscosity of the 2nd kin@the viscous
stress tensor), = : is the trace of the tensory, and k= i % hix

is the anisotropic part of the tensog, which is called theviscosity of

the 1st kind(it reveals itself in anisotropic deformations).
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Expressing the -vacuum stress tensor (5.24) in the reference frame
accompanying the-vacuum itself, we obtain

Ui = phk = c?hi; (5:30)
and, similarly, for the stress tensor of the vacuum (5.27), we have
Ui = phk = c?hi: (5:31)

This means that the-vacuum and the vacuum are non-viscous me-
dia ( k=0, k=0), the equation of state of whiclis the same

p= & p= & (5:32)

Such a state is known @&sation, because at the positive density of
a medium the pressure inside it is negative, so the medium expands.

So, these are the physical properties of theacuum and the vac-
uum: these are homogeneous const non-viscous i = =0 and
non-emittingd' = 0 media that are in the state of in ation.

Let us now consider the vacuum that lls constant curvature spaces,
in particular, a de Sitter space the approximation of our Universe.

In constant curvature spaces, the Riemann-Christo el tensor is (see
Chapter VIl in Synge's book [35])

R =Kgg 9 g ; K=const (5:33)

Having the tensor contracted by two indices, we obtain a formula for
the Ricci tensor, which on subsequent contraction allows us to deduce
the scalar curvature. As a result we have

R = 3Kg ; R= 12K: (5:34)

Assuming our Universe to be a constant curvature space, we obtain
the eld equations formulated with the curvature

3Kg = {T +g : (5:35)

The equation of state of a distributed matter is the relationship between the pressure
and density in the medium. For instanpe; 0is the equation of state of a dust medium,
p= c?isthe equation of state of a matter inside atomic nuglei? c?is the equation
of state of an ultra-relativistic gas.
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Re-write this formula ag 3K)g ={ T . Then, the energy-
momentum tensor of a substance lling a constant curvature space is

3K
{

We see that, in a constant curvature space, the problem of geometri-
zation of matter solves by itself: the energy-momentum tensor (5.36)
contains only the metric tensor and fundamental constants.

A de Sitter space is a constant curvature space, where 0 and

, 0, hence, itis lled with the vacuum (any substance is absent). Then,
equating the energy-momentum tensor of substance (5.36) to zero, we
obtain the same result as that of Synge=: 3K in any de Sitter space.

Taking into account this relationship, the formula for the observable
density of the vacuum in a de Sitter world becomes

3K 3Kc? .

{~ { 86

Now we are arriving at the key question about the sign of the four-
dimensional curvature in our Universe. The reason to ask this question
is not only curiosity. Depending on the answer, the de Sitter world cos-
mology can t the available observational data or can lead to a result
totally alien to the commonly accepted astronomical facts.

Given that the four-dimensional curvature is positie 0, the vac-
uum density is negative and, hence, the in ationary pressure is greater
than zero: the vacuum contracts. Then, sirree), the non-Newtonian
gravitational forces are the forces of repulsion. At the positive in ation-
ary pressure of the vacuum, which tends to compress the entire space,
we should observe the repulsing forces of non-Newtonian gravitation.
First, since the -forces are proportional to distance, their expanding ef-
fect would grow along with the growth of the Universe's radius, there-
fore the expansion would accelerate. Second, if the Universe were ever
less than the distance at which the compressive pressure of the vacuum
is equal to the expanding action of theforces, the expansion would
become impossible.

If, on the contrary, the four-dimensional curvature is negative0,
the in ationary pressure is less than zero the vacuum expands. Be-
sides, since< 0 in this case, the non-Newtonian forces of gravitation
are the forces of attraction. Then, the Universe can still be expanding

T =

(5:36)

(5:37)



236 Chapter 5 The Physical Vacuum

from nearly a point until the moment of time, when the vacuum density
becomes so low that its expanding force becomes equal to the compress-
ing force of the non-Newtonian-forces.

As seen, the question of the curvature sign is the most crucial ques-
tion for cosmology of our Universe.

But human perception is three-dimensional and, therefore, an ordi-
nary observer cannot judge anything on the sign of the four-dimensional
curvature by means of his direct observations. What can be done then?
The way out of the situation is in the theory of chronometric invariants,
which determine physical observable quantities.

Among the goals that Zelmanov set for himself was to build the cur-
vature tensor of the three-dimensional spatial section associated with an
observer his observable three-dimensional space, which is inhomo-
geneous, non-holonomic (rotating), deforming, and curved, in a general
case. The Zelmanov curvature tensor (see formula 5.40 for the tensor it-
self, and 5.41 for its contractions) has all the properties of the Riemann-
Christo el tensor in the three-dimensional space of the observer and, at
the same time, has the property of chronometric invariance.

Zelmanov had deduced this tensor based on the similarity with the
Riemann-Christo el curvature tensor, which is the result of the non-
commutativity of the second derivatives from an arbitrary vector in
a Riemannian space. Deducing the di erence of the second chr.inv.-
derivatives from an arbitrary vector, he obtained the equation

28 @

2 @ + Hlkij Qi (5:38)

rireQ reriQ=
where the chr.inv.-tensor
j i
Hj:@il @kl+r|nj mj
Iki @k @i il km im
is similar to Schouten's tensor from the theory of non-holonomic man-

ifolds . But in a general case, where the space rotags (), the ten-
sor HlkiJ is algebraically di erent from the Riemann-Christo el tensor.

(5:39)

Schouten had created the theory of non-holonomic manifolds for an arbitrary di-
mension space by considering mrdimensional sub-space of ardimensional space,
wherem<n [36]. In the theory of chronometric invariants, we actually consider an
observer associated with am¢€ 3)-dimensional sub-space of the< 4)-dimensional
pseudo-Riemannian space. At the same time, the theory of chronometric invariants is
applicable to any metric space in general. See [9].
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Therefore, Zelmanov had introduced a new tensor

Cuij = %1 Hiii  Hiki + Hiji Higk (5:40)
which was not only a chr.inv.-quantity, but it also has all algebraic prop-
erties of the Riemann-Christo el tensor. Therefo@y;; is the physi-
cally observable curvature tensor of the three-dimensional observable
space of an observer, who accompanies his reference body. Having it
contracted, we obtain the chr.inv.-quantities

Ci=Cygf =h"Cumj; ~ C=Cl=HCy; (541

which also characterize the observable three-dimensional space curva-
ture. Becaus€yij, Cx; andC are chr.inv.-quantities, they are phys-
ically observables for the observer. In particular, thes the three-
dimensional observable scalar curvatuygs.

Concerning the physical properties of the vacuum applied to cos-
mology, we need to know how the observable three-dimensional curva-
ture C is linked to the four-dimensional curvatukein a general case
and in a de Sitter space in particular. We are going to consider this
problem step-by-step.

The Riemann-Christo el four-dimensional curvature tensor is a ten-
sor of the 4th-rank, hence it hag= 256components, out of which only
20 are signi cant. The remaining components are either zeroes or iden-
tical to each other, because the Riemann-Christo el tensor is:

a) Symmetric by each pair of itsindic& =R ;

b) Antisymmetric with respect to the transposition of indices inside
each of the pair® = R ,R = R ;

c) Itsatis es the propertR (=0, where round brackets stand for
the (; ; )-transpositions.

The signi cant components of the Riemann-Christo el tensor pro-
duce the three chr.inv.-tensors

ik ijk
Xk= 228, yik= C-ﬁ—Ro_ . ZM = RN (5:42)
Joo Joo
The tensoX® has 6 component¥’ has 9 components, whigX!
has only 9 due to its symmetry. Th&* components are constructed
based on the properyij) = Yijk + Yjki + Yiij = 0. Substituting the com-
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ponents of the Riemann-Christo el tensor, and having indices lowered,
Zelmanov had obtained [9]
Xij = & DI + Al Dy+ Ay +
@ 1 (5:43)

+ rif+ ik ?Fil:j;

2
Yik = ri Dik+Akx rj(Di+ Ak)+ P Aj Fe; (5:44)

Zij = Dik Dy Di Dyj + A A
A A+ 27 Aq - CCigj :

From the above formulae we see that the spatial chr.inv.-components
of the Riemann-Christo el tensafj; (5.45) are linked to the chr.inv.-
tensor of the three-dimensional observable curvaiyie

Let us now deduce a formula for the three-dimensional observable
curvature in a constant curvature space. In such a space the Riemann-
Christo el tensor has the form (5.33). Then

(5:45)

Roiok =  Khik9oo; (5:46)

p

Roijk = Joo Vihik Whj ; (5:47)

o|X

1
Rij = K hichy hihgg+ v viheg why +
¢ 1 (5:48)
+g\/j(thi| vihig) -
Deducing its chr.inv.-projections (5.42), we obtain
X*=c?Kh¥; Yk =0; zM=cK hknl n'hk; (5:49)

hence,
Zija = K hichy - hihye (5:50)

Zy =2 =2¢Khy;  Z=7Z=6cK: (5:51)

On the other hand, we know the formula g in an arbitrary cur-
vature space (5.45), which is linked to the three-dimensional observable
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curvature. Obviously, it is as well true fé€ = const Then, having the
general formula (5.45) contracted, we obtain

Z) = DkDf DiyD+ AxA+2AKAS  *Cy; (5:52)
Z=h'zy = DiD* D? AA¥ c°C: (5:53)

In a constant curvature space, we h@awe6c’K (5.51). Hence, in
such a space the relationship between the four-dimensional scalar cur-
vatureK and the three-dimensional observable scalar curvaliise

6c°K = DD D? AAX cC: (5:54)

We see that in a constant curvature space that does not rotate or de-
form, the four-dimensional curvature has the opposite sign to the three-
dimensional observable curvature. In a de Sitter space (since there is no
rotation or deformation), we have

K= =C; (5:55)

so there the three-dimensional observable curvatu@esis 6K.

Taking the results that we have obtained above, we are now going
to create a cosmological model of our Universe based on only the two
experimental facts: a) the sign of the observable density of matter in the
Universe, and b) the sign of the observable three-dimensional curvature
of the background space of the Universe.

At rst, our everyday experience shows that the density of matter
in our Universe is positive, no matter how rare ed it may be. Then to
ensure that the vacuum density (5.37) is positive, the cosmological term
is negative < 0 (in this case, the non-Newtonian gravitational forces
are the forces of attraction) and, hence, the four-dimensional curvature
is negativeK < 0.

Secondly, as Ivanenko referred to McVittie's presentation [37] in his
Preface to the 1962 edition of Weber's book [28]:

Though the data of cosmological observations are obviously not
exact, but, for instance, McVittie maintains that the best results of
the observation of the Hubble redshiftkb 75 km/sec Mpc and

of the average density of matter 10 3! gram/cn? support the
idea of the non-vanishing cosmological term O.
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Therefore, we assume that the vacuum density in our Universe is
positive and the three-dimensional observable curvatuge>9. As a
result, the four-dimensional curvatureks< 0 and, hence, the cosmo-
logicaltermis < 0. Then, from (5.37) we obtain the observable density
of the vacuum in our Universe

3K _C
{ {
so the in ationary pressure in the vacuum is negapive ¢ (the vac-
uum expands). Since the homogeneous distribution is among the phys-
ical properties of the vacuum, the negative in ationary pressure in the
vacuum also means the expansion of the Universe as a whole.

Therefore, the observable three-dimensional space of our Universe
(its curvature i<C > 0) is a three-dimensional expanding sphere, which
is a sub-space of the four-dimensional space-time with the curvature
K < 0 (a space of the Lobachewski-Bolyai geometry).

Of course a de Sitter space is merely an approximation of our Uni-
verse. Astronomical data say that although islands of masses are oc-
casional and do not a ect the global curvature, their e ect on the space
curvature near them is signi cant (a deviation of light rays and similar
e ects). But in our study of the Universe as a whole we can neglect the
occasional islands of substance and the local non-uniformities in the
curvature. In this case, the background space of our Universe can be
considered as a de Sitter space with a negative four-dimensional curva-
ture (hence, the observed three-dimensional curvature is positive).

>0; (5:56)

5.4 The concept of the Inversion Explosion of the Universe

From the previous section, Y5.3, we know that3K in a de Sitter
space. According to its physical sense, therm is approximately the
same as the curvature. For a three-dimensional spherical sub-space of
the de Sitter space, the observable curvalire 6K is

1

C:@'

(5:57)
whereRis the observable curvature radius (radius of the sphere). Then,
the four-dimensional curvature of the de Sitter space is

1 .
6R2’

(5:58)
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i.e., the larger the sphere's radius, the smaller the space curvature
According to astronomical estimates, our Universe originated 10 20
billion years ago. Hence, the distance covered by a photon since it was
born at the dawn of the UniverseRs 10°7 1028 cm. This distance is
referred to as theadius of the event horizorAssuming that our Uni-
verse as a whole is a de Sitter space Witk O, for the four-dimensional
curvature and, hence, for theterm = 3K, we have the estimate

1

6R;
Onthe other hand, similar gures for the event horizon, space curva-
ture radius and-term are available from di Bartini [38,39], who studied
the relationships between fundamental physical constants based on the
methods of combinatorial topology. In his works, the Universe's radius
is interpreted as the largest distance, determined from the topological
context. According to thei Bartini inversion relationship
R

Tz =1; (5:60)

K = 10 %6¢cm 2 (5:59)

the space radiuR (which is the largest distance in the Universe) is the
result of the spherical inversion of the gravitational radius of the electron

=1:347 10 % cm into the space outside the electron with respect
to its classical radius=2:818 10 2 cm (which is the radius of the
spherical inversion, according to di Bartini). The space radius (event
horizon radius) is equal to

R=5895 10°%cm: (5:61)

Following this way, di Bartini had de ned thgpace masgwhich is
the mass within the space radius) and$pace densitgs

M=3986 10 gram; =987 10 *gramrem®: (5:62)

As a matter of fact, the theoretical results that di Bartini had obtained
say that the space of the Universe (ranged from the classical radius of
the electron to the event horizon) is the external inversion image of the
internal space of a certain particle with the size of the electron (ranged
from the gravitational radius of the electron to its classical radius). From
other points of view, the particle is di erent from the electron: its mass
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is equal to the space malsk= 3:986 10°’ gram, while the mass of the
electron is onlym=9:11 10 28gram.

The space inside such a particle cannot be represented as a de Sit-
ter space: the vacuum density in a de Sitter space WiktD and the
curvature observable radius 2:818 10 ¥cmiis

3K 1

T 3 r>=3.39 10°!gramem’; (5:63)
while that inside the di Bartini particle is

- M _903 10®grameen: (5:64)

=523 9 g : :

On the other hand, the external space of such a particle, which is
the inversion image of its internal space, can be assumed as a de Sitter
space in accordance with its properties. Let us assume that a space with
the curvature radius, equal to the di Bartini radi/s 5:895 10°° cm,
is a de Sitter space witk < 0. Then the four-dimensional curvatuke
and the -term of the space are

1
K= — = 48 10°%cm? (5:65)
6R?
—3K= -~ = 144 10%cm?2 (5:66)
S0 . ; :

so they are ve orders of magnitude less than the observed estimate,
whichisj j< 10 5. This can be explained by the fact that the Universe
continues to expand and, in the distant future, the numerical values of
the space curvature and the cosmological term will decrease, approach-
ing the numbersin (5.65, 5.66), calculated for the largest distance (space
radius, according to di Bartini).

The estimated value of the vacuum density in a de Sitter space of
the di Bartini space radius is

3K _ 3Ke?
{ 860G
which is also less than the observed average density of matter in the Uni-

verse (510 10 30 gram/cnd), but is very close to the matter density
in the space of the di Bartini radi@87 10 34 gram/cn3.

7.7 10 3*gramrem’; (5:67)
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To calculate how long our Universe will continue to expand, we
must calculate the di erence between the observed event horizon ra-
dius R, and the curvature radiu’. Assume that the maximum event
horizon radius of the UniversB, .y iS equal to the di Bartini space
radiusR= Ryma=5.895 10?°cm (5.61), which is the outer inversion
distance. Then, comparing this value with the observed event horizon
radiusR, 10?7 1028 cm, we obtain R=Ryms Rs« 5.8 10%°cm.
Hence, the time left for the expansion of our Universe is

R -
t= s 600 billion years. (5:68)

These calculations of the vacuum density and other properties of
the de Sitter space pave the way for conclusions on the origin and evo-
lution of our Universe and allow the only interpretation of the di Bartini
inversion relationship. We will call this interpretation tbesmological
concept of the Inversion Explosion of the Univer§ais cosmological
concept is based on our analysis of the properties of the de Sitter space
using the geometric methods of the General Theory of Relativity and
taking into account the di Bartini inversion relation, which is the re-
sult of modern knowledge of fundamental physical constants. We can
formulate this concept as follows:

Atthe very beginning, there was a single pre-particle with a radius
equal to the classical radius of the electron, and with a mass equal
to the mass of the entire Universe.

Then the inversion explosion occurred: a topological transi-
tion inverted the matter from within the pre-particle with respect
to its surface into the outer world, which gave birth to our expand-
ing Universe. At present, 10 20 billion years since the explosion,
the Universe is at the early stage of its evolution. The expansion
will continue for almost 600 billion years.

At the end of this period, the expanding Universe will reach
its curvature radius, at which the non-Newtonian forces of grav-
itation, proportional to distance, will be equal to the in ationary
expanding pressure of the vacuum. The expansion will discon-
tinue and stability will be reached, which will last until the next
inversion topological transition occurs.

The calculated parameters of matter at di erent stages of the evolu-
tion of the Universe are presented in Table 5.1. The evolution stages are
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Evolution Age, Space Density, -term,
stage years radius, cm gramfm  cm?
Pre-particle 0 2.82101 9.03 10 ?

Presenttime 1020 10° 10?7 10® 510 10%* <10°%
After expansion  62310° 5.89 10°° 9.87 103 1.44 10

Table 5.1: Parameters of matter and space at di erent stages of the evolution
of the Universe.

the pre-particle before the inversion explosion, the stage of the inversion
expansion at the present time, and the stage after the expansion.

The reasons for this topological transition, which led to the spher-
ical inversion of the matter from within the pre-particle (after its In-
version Explosion), remain unknown... but so do the reasons for the
emergence of the Universe in some other contemporary cosmologi-
cal concepts, for instance, in the Big Bang concept (the explosion of the
Universe from a singular point).

5.5 Non-Newtonian gravitational forces

The Einstein spaces of the kind I, including constant curvature spaces,
besides those that have occasional islands of matter can be either
empty or lled with a homogeneously distributed matter. But an empty
Einstein space of the kind | (its curvatureks= 0) is dramatically dif-
ferent from non-empty spaceK € const, 0).

To make our discourse more concrete, let us consider the eld of
gravitation in the most typical empty and non-empty Einstein spaces of
the kind I.

If an island of mass is a ball (the spherically symmetric distribution
of mass in the island) located in emptiness, then the curvature of such
a space is derived from the Newtonian eld of gravitation, produced
by the island, and such a space is not a constant curvature space. At
an in nite large distance from the island, the space becomes at, i.e.,
a constant curvature space with= 0. A typical example of the eld
of gravitation, produced by a spherically symmetric island of mass in
emptiness is the eld determined by the Schwarzschild metric

2
d€= 1 r?gczdtz A° 2 g2igR g2 (569)
1

=|&
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wherer is the distance from the island, ands the gravitational radius
of the island.

A Schwarzschild space neither rotates nor deforms. The compo-
nents of the chr.inv.-vector of the gravitational inertial force (1.38) in
such a space can be deduced as follows. According to the metric (5.69),
the componenggg is

I
goo = 1 f; (5:70)

then, dierentiating the gravitational potential = (1 p%) with
respect tac', we obtain

@v ¢ @
F. g 20 5:71
@ 2" Qoo @& (5:71)

Substituting it into the formula for the gravitational inertial force
(1.38), and taking into account the fact that such a space does not rotate
(this follows from the metric, where adj; = 0), we obtain

1=

g 1 ,_ Crg .
Ty Fi= o5 (5:72)

Therefore, the vectdf' in a Schwarzschild space describes a New-
tonian gravitational force, which is reciprocal to the square of the dis-
tancer from the gravitating mass.

If a space islled with the spherically symmetric distribution of the
physical vacuum (- eld) and does not include any island of mass, its
curvature is everywhere the same. An example of such a eld is that
described by the de Sitter metric
I

2° 2
a2= 1 = 2ge

2 2+' V2 . .
3 = r>d2+sird d?: (573)

Note that although any de Sitter space has no islands of mass, which
create ordinary Newtonian elds of gravitation, we can always consider

According to the latest theoretical studies [40], the de Sitter space metric (5.73)
satis es to the condition of the spherical symmetry in only a limiting case, where.
In a general case of, 0, a de Sitter space can be spherically symmetric only if it has
zero volume (i.e., only if the de Sitter space degenerates into a point). This means that
an actual de Sitter space (wherein 0, i.e., a space lled by the vacuum) should not
have the property of the spherical symmetry.
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the motion of small test-particles, since their own Newtonian elds are
so weak that they can be neglected.

Any de Sitter space is a constant curvature space that becomes at
only in the absence of the- elds. A de Sitter space neither rotates
nor deforms, and the non-zero components of the chr.inv.-vector of the
gravitational inertial force in such a space take the form
 r 1. & :

3

As is seen, the vectd¥' in a de Sitter space describes a kind of non-
Newtonian gravitational forces, which are proportionaktof < 0,
then these are the forces of attractionif O, then these are the forces of
repulsion. The forces of non-Newtonian gravitation (we will call them
the -forces) increase with the distance at which they act.

Therefore, we can see the principal di erence between empty and
non-empty Einstein spaces of the kind I: in empty spaces with an island
of mass only Newtonian forces exist, while in the spaces lled with the
vacuum and without islands of mass there are only non-Newtonian grav-
itation forces. An example of a mixed space of the kind | is that of the
Kottler metric [41]

dr? 2
dsz— 1+?+— Czdtz ﬁ
1+2c+0
2d2+siP d'? 3 (575)
a b ar !
F. = CZ 3 2r , F1: C2 “* -~
! 1+%+? 3 2r2 ,

where both Newtonian forces and thdorces exist: a Kottler space is
lled with the vacuum and also includes islands of mass, the latter which
produce Newtonian gravitational forces.

On the other hand, Kottler had proposed this metric with two un-
known constants andb to de ne which additional constraints are re-
quired. Hence, despite some attractive features of the Kottler metric,
only two of its limiting cases are of practical interest. These are the
Schwarzschild metric (Newtonian gravitational forces) and the de Sitter
metric (non-Newtonian gravitational forces, i.e., thérces).
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5.6 Gravitational collapse

Obviously, it is a certain approximating assumption to represent our
Universe as a de Sitter space ( lled with the vacuum without islands of
mass) or a Schwarzschild space (an island of mass in emptiness). The
real metric of our world is something in between . However, in prob-
lems related to non-Newtonian gravity (caused by the physical vacuum),
where the in uence of concentrated masses can be neglected, the de Sit-
ter metric is optimal. And, in problems with the gravitation caused by
massive islands, the Schwarzschild metric is reasonable. An illustrative
example of such a split of the modelsis collapse the state of a space
(space-time) region, wheggo = 0.
The formula for the gravitational potential deduced for an arbi-
trary space metric is (1.38). Then
w 2 2w w2
Qo= 1 5 =1 F+5;
hence, the state of collapsgg= 0) occurs atw = c2.
Scientists usually considgravitational collapse the compressed
state of an island of mass as a result of the action of Newtonian gravity,
which compressed the island to a very small size, equal to the gravita-
tional radius of the mass. Hence, strict gravitational collapse occurs
in a space of the Schwarzschild metric (5.69), because only the New-
tonian eld of a spherically symmetric island of mass in emptiness is
present in such a space.
At a large distance from a massive island, the gravitational eld be-
comes weak and the gravitational eld potential becomes
GM

w = (5:77)

(5:76)

whereG is the Gauss gravitational constalt,is the island's mass that
produced the gravitational eld. Since the third termin (5.76) is so small
in a weak eld that it can be neglected, the formula fpg becomes

2GM
: 5:78
2 (5:78)

Joo=1

so gravitational collapse in a Schwarzschild space occurs if

2GM _
c2r

1; (5:79)
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where the quantity
2GM
= z (5:80)

'y

which has the dimension of length, is called gravitational radiusof
the island of mass. Theamgg can be presented as follows

'q
Joo=1 rk (5:81)

From here we see that gravitational collapse occurs in a Schwarz-
schild space at the distance rg from the centre of mass.

If the entire mass of the spherically symmetric island (which is the
source of the Newtonian eld) is concentrated under the gravitational
radius of the mass, the surface of such an island of mass is referred to
as theSchwarzschild spher&uch objects are also callgdavitational
collapsars because under the gravitational radius an escape velocity is
higher than the velocity of light, so light cannot leave such objects from
within.

It is easy to see from formula (5.69) that, in a Schwarzschild eld
of gravitation, the three-dimensional space does not roggte Q) and,
hence, the interval of the physically observable time (1.25) is

r
r
d = Pogdt= 1 2 dt: (5:82)

So, at the distance=ryq the observable time interval is equal to
zerod = 0: from the point of view of an external observer, the observ-
able time on the surface of a Schwarzschild sphere stdpside the
Schwarzschild sphere the observable time interval becomes imaginary.

At goo = O (the state of gravitational collapse) the observable time interval (1.25)
isd = Cizv. dxi, wherey, = c% is the linear velocity with which the space rotates
(1.37). Only assuming, = 0 andy; = 0, the collapse condition can be de ned correctly:
for an external observer the observable time ow on the surface of a collapsar stops
d =0, while the four-dimensional interval i§€= d 2=gydxdx. From here a
conclusion can be made: the space is holonomic on the surface of a collapsar, so the
collapsar does not rotate.

As we had showed in our rst book [19], a completely degenerate space-time region
(called the zero-space), whete=0,d =0andd =0, collapses if it does not rotate.
Here we proved a more general theoremggf = 0, then the space is holonomic irre-
spective of whether it is degenera@=0) or not (g <0, the ordinary space-time of
General Relativity).
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We can also be sure that an ordinary observer who is located on the
Earth surface, apparently stays outside the Schwarzschild sphere of the
Earth, the radius of which is 0.443 cm, and he can only look at the pro-
cess of gravitational collapse from outside .

If r =rg, then the quantity

1

Iy

r

O11 = (5:83)

grows up to in nity. But the determinant of the metric tengpr is
g= risinf < 0; (5:84)

S0 a space-time region inside a gravitational collapsar is generally not
degenerate, although collapse is also possible in the zero-space.

At this point a note concerning photometric distance and metric ob-
servable distance should be made. The quaniityot a metric distance
along the axis<t = r, because the metric (5.69) has with the coe -
cient 1 rTQ ! The guantityr is aphotometric distancde ned as the
function of an illumination, produced by a stable source of light and re-
ciprocal to the square of the distance from the source. In other words,
is the radius of a non-Euclidean sphere of the surfacenea[9].

According to the theory of chronometric invariants, the elementary
observable metric distance between any two in nitely close points in a
Schwarzschild space is

dr2 5 42 ,
d = —+r2.d 2+si? d'2: (5:85)
17
At =constand' =constitis
z ., z
p— rz
- Phoar= ed. (5:86)

ry ry 1 I'y

r

and it is not the same as the photometric distance
To de ne the space-time metric inside a Schwarzschild sphere, we
formulate the external metric (5.69) for a radius rg. We obtain

dr?

e

r

4 = r?g 1 Cdi + 2d2+si? d2: (587)
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Introducing the notations= cf andct=F, we obtain
Czdf2 lg

I 9 cf
ct

ds = 1d? c?df? d ?2+si? d'?2; (588)

S0 the space-time metric inside the Schwarzschild sphere is similar to
the external metric, provided that the time coordinate and the spatial
coordinater swap their roles: the photometric distanceutside the
collapsar is the coordinate tined inside it, while outside the collapsar
the coordinate timet is the photometric distandenside it.

From the rst term of the Schwarzschild internal metric (5.88) we
see that it is not stationary, but exists within a limited period of time

t= r—g: (5:89)
c

For the Sun, the gravitational radius of which is about 3 km, the life
span of such a space is approximatel§0 ® sec. For the Earth, the
gravitational radius of which is as small as 0.443 cm, the life span of
the internal Schwarzschild space is even lesser, 1.6 U sec.

Comparing the metrics inside a gravitational collapsar (5.88) and
outside it (5.69), we conclude the following:

a) The space of both metrics is holonomic, i.e., it does not rotate
(Ak=0);
b) The external metric is stationary, and the vector of the observable
gravitational inertial force i§t = Ci—z'\";
c) The internal metric is non-stationary, and the observable gravita-
tional inertial force is zero.
Let us give more detailed analysis of the external and internal met-
rics. To make the analysis simpler, we assumeonstand' = const
so that out of the possible three spatial directions we limit our study to
the radial direction only. Then the external metric is

Iy ,  dr?
ds = T 1 c2dt® + o (5:90)
T
while for the internal metric we have
242 r
ag=M  fo g g (5:91)

81 cf
ct
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Calculating the physically observable distance (5.86) to the attract-
ing centre of the collapsar along the radial directiome obtain

q —
= .qL: r(r rg)+rgln PrPr rg + const (5:92)

We see that at=ry the observable distance is a constant value
g=Trgln pG + const (5:93)

This means that a Schwarzschild sphere, de ned by a photomet-
ric radiusrg, for an external observer is a sphere with the observable
radius g=rglIn p@+ const(5.93). Therefore, for an external observer
any gravitational collapsar is a sphere with a constant observable radius,
on the surface of which the observable time stops.

Let us look within a collapsar. For an external observer, the observ-
able time interval (5.82) inside a Schwarzschild sphere is imaginary

r

. Ig
d =i " 1dt; (5:94)

or, inthe internal coordinates = cfandct=f (from the point of view
of an internal observer),

(5:95)

Hence, for an external observer, the imaginary time inside a col-
lapsar (5.94) stops on its surface, while the internal observer sees the
ow of his observable time on the surface growing in nitely.

So, when looking at a collapsar from outside, the physically observ-
able distance inside it, according to the metric (5.87), is

z dr 9 —— r Ig
= ﬁrg— = r(r rg)+rgarctan " 1+ const (5:96)
21

and, from the point of view of an internal observer, itis
Zr

- Iy
= = 1dr: (5:97)

ct
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From here we see that et ct=ry for an external observer the ob-
served distance between any two points tends to a constant, and for an
internal observer the observed distance decreases to zero.

In conclusion, let us touch upon the question of what happens to
particles falling from the outside onto the Schwarzschild sphere along
its radial direction. For the outer metric of a collapsar, we have

dr

r_g .

r

r

d€=cd?2 d 2% d =1 ngt; d = (5:98)
1

For real-mass particless’ > 0, for light-like particlesds?= 0, for

superluminal tachyonds’ < 0 (their masses are imaginary). In radial

motion towards a gravitational collapsar, these conditions are:

1) Real-mass particlesS: ‘<1 3 ?
2) Light-like particles: & =2 1 &%
3) Imaginary particles-tachyons% ’> 21 r?g ?

Sincer =rg on the surface of a Schwarzschild sphere, t%pn 0.
Hence, any particle, including a light-like one, will stop there. A four-

dimensional interval on the surface of the sphere is
d= d ?<0; (5:99)

which means that the surface of a Schwarzschild spheres (gravitational
collapsar) is home to particles having imaginary rest-masses.

5.7 In ationary collapse

A de Sitter space has noislands of mass, hence, Newtonian gravitational
elds are absent there. Therefore, gravitational collapse is impossible
in a de Sitter space. Nevertheless, the condigig O is a strictly geo-
metric de nition of collapse, not necessarily related to Newtonian elds.
Therefore, we can consider collapse in any arbitrary space.

Consider the de Sitter metric (5.73). It describes a non-Newtonian
gravitational eld in a constant curvature space without islands of mass.
In a de Sitter space, collapse can occur due to non-Newtonian gravita-
tional forces. From the de Sitter metric (5.73), we see that

2

r
goo=1 3 ; (5:100)
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so the gravitational potential = c?(1 p%) is

r
2 rz
w=_cC 1 = (5:101)

Because it is the potential of a non-Newtonian gravitational eld,
produced by the vacuum{ eld), we will call it the -potential
Since = 3K in any de Sitter space, hence

1) goo=1 Kr?>0atdistances< #;
2) go=1 Kr?<0atdistances> ¢
3) goo=1 Kr2=0(collapse) at the distanee 191?

If the four-dimensional curvature Is < 0, then the numerical value
of goo=1 Kr?is always greater than zero. Hence, collapse is only
possible in a de Sitter space with> 0.

In Y5.3, we showed that the basic space of our Universe as a whole
hasK < 0. But we can assume the presence of local inhomogeneities
with K >0, which do not a ect the space curvature in general. In par-
ticular, collapse can occur in such inhomogeneities. Therefore, itis rea-
sonable to consider a de Sitter space Vidth 0 as a local space in the
vicinities of some compact objects.

In de Sitter spaces the three-dimensional observable curv@tisre
linked to the four-dimensional curvature with the relationgbip 6K
(5.55). Then, assuming the observable three-dimensional space to be a
sphere, we obtai€ = 2, (5.57) and, henc& = < (5.58), whereR
is the observable curvature radius. In the casK &f0, the numerical
value ofRis real, but aK > 0 it becomes imaginary.

So, collapse in a de Sitter space is only possibkeaD. In this case,
the observable curvature radius is imaginary. DefbtaR , whereR
is its absolute value. Then, in a de Sitter space KithO we have

1
K=—; 5:102
= (5:102)
and the collapse conditicghyo=1 Kr? can be written as follows
p_
r=R 6; (5:103)

. P—. , , "
so, atthe distanae= R * 6in a de Sitter space witk > 0 the condition
Ooo= 0 is true: the observable time ow stops and collapse occurs.
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That is, the region of a de Sitter space under the raditiR pé
stays in collapse. Since the vacuum (it lls any de Sitter space) stays in
in ation, we will call such a collapsén ationary collapseto di eren-
tiate it fromFg_ravitational collapse (it occurs in a Schwarzschild space),
whiler =R~ 6 (5.77) will be referred to as thie ationary radius, rins.

Then the collapsed region of a de Sitter space, which is under the in-
ationary radius, will be referred to as aim ationary collapsar, or,
simply, anin anton.

Inside an in anton we hav& > 0, so the three-dimensional observ-
able curvature i <0. In this case, the vacuum density is negative
(the in ationary pressure is positive, hence, the vacuum compresses)
and > 0, so there are non-Newtonian forces of repulsion. This means
that an in ationary collapsar (in anton) is lled with the vacuum hav-
ing a negative density, which is in the state of fragile balance between
the compressing pressure of the vacuum and the expanding forces of
non-Newtonian gravitation.

In a de Sitter space witd > 0, we have

p—  _P T
d = "goodt= 1 Kr2dt= 1 — dt; (5:104)

2
Fint

so onthe surface of an in ationary sphere the observable time ow stops
d =0. Besides, the assumed space-time signatue @}, i.e., the con-
dition goo> 0, is true atr < rjy;.

Using the term in ationary radius we represent the de Sitter met-
ric with K> 0 as follows

g, o dr? 2 42, o )
ds = —R2d? —— r?d?2+si? d'?; (5105)

r2

then the chr.inv.-vector of the gravitational inertial force (5.74) has the
non-zero components

.
F=—C L. pe=el. (5:106)
1 = inf Fint

Let us deduce formulae for the observable distances and the ob-
servable in ationary radius in an in anton. To make our calculations
simpler, we assume= constand' = const i.e., out of all three spatial
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directions only the radial direction will be considered. Then the observ-
able three-dimensional interval is
z z
P— dr o
= h1pdr= p——— =r;;arcsin— + const (5:107)
1 Kr2 Finf

so the observable in ationary radius is constant

Z Finf dr

inf = ) Jﬁﬁ =5 Tinf (5:108)

In a space with the Schwarzschild metric, which we considered in
the previous section, Y5.6, a collapsar is a collapsed compact mass,
which produces the curvature of the space as a whole. An ordinary
observer, whose home is a Schwarzschild space, stays always outside
gravitational collapsars.

In a de Sitter space, a collapsar is the vacuum that lIs the entire
space, and the surface of the collapsar has a radius equal to the space cur-
vature radius. Therefore, an ordinary observer, whose home is a de Sit-
ter space, stays always under the surface of anin ationary collapsar and,
therefore, he watches the in ationary collapsar from within.

To look beyond an in ationary collapsar, we consider the de Sitter
metric with K > 0 (5.105) for distances> ri,;. Considering the radial
direction, in the coordinates associated with an ordinary observer (the
internal coordinates of the collapsar), we obtain

r2
ds’= @ 1Rdt+

2

. r

inf Z
inf

2
dr” . (5:109)
1

or, from the point of view of an observer, who is located outside the
collapsar (in the external coordinates= ct andct=r), we have

242 £2
gg= 29 KU B (5:110)

5.8 Conclusions

At a low density of matter (as observesl, 10 10 39 gram/cn? in the
Metagalaxy, i.e., the space is nearly empty), we can assume that the
energy-momentum tensor s g . In this case the Einstein equa-
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tions take the fornrR =kg , wherek=const This case was stud-
ied in detail by Petrov [29, 30]. He called this kind of spa&dsstein
spaces According to Gliner [32, 33], who studied the algebraic struc-
ture of the energy-momentum tensor, a special type of the tensor can be
outlined:T = g ,where =constisthe density of matter. It charac-
terizes a vacuum-like state of matter. He called this state of matter the

-vacuum Gliner had also showed that a space lled with theacuum
is an Einstein space.

We have disclosed the physical sense of the energy-momentum ten-

sor of thevacuunT = g andthat of the-vacuumT = g .We
have also deduced the formulae for the physically observable properties
of the vacuum and the-vacuum, such as their density, momentum den-
sity and stress-tensor. We have also showed that the vacuum is a homo-
geneous, non-viscous, hon-emitting and in ating (expanding at a pos-
itive density) medium. Proceeding from Petrov's studies and Gliner's
studies and taking into account the deduced energy-momentum tensor
of the vacuum (and, hence, the physical properties of the vacuum) we
have suggested a geometrical classi cation of matter according to the
energy-momentum tensor. We called it thelassi cation of matter

The emptiness the state, in which the energy-momentum tensor
of matter is zeroT =0), and non-Newtonian gravitation elds
are absent (=0);

The physical vacuum (or, simply, the vacuum) the state, in
which substance is absefdt (= 0), but there are non-Newtonian
gravitational elds ( , 0);

The -vacuumT =g , =const a vacuum-like state of
matter;

Substance T , 0, T / g the state that includes ordinary
matter and electromagnetic eld.

Routine experience shows that: the density of matter in our Universe
is positive. With a positive density of the vacuum, the cosmological
termis < 0, i.e., non-Newtonian gravitational forces are the forces of
attraction, and its in ation pressure is negative (the vacuum expands).

Considering spaces lled exclusively with the vacuum (and no sub-
stance inside), such as a de Sitter space, we have found that the collapse
condition @go = 0) is realized therein in the form of a collapsed re-
gion that we called aim ationary collapsar, or anin anton. Inside an
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in anton, there is > 0, i.e., the vacuum density is negative, the pres-
sure is positive, and non-Newtonian gravitational forces are the forces
of repulsion that cause the in anton to exist in an equilibrium of the
compressing pressure of the vacuum and the expanding forces of non-
Newtonian gravitation.
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6.1 Introducing the concept of the mirror world

As we mentioned in Y5.1, the attempts to represent our Universe and
the mirror Universe as two spaces with positive and negative curvature
failed: even when considering a space of the de Sitter metric, which is
one of the simplest space-time metrics, trajectories in a positive curva-
ture de Sitter space are substantially di erent from those in its negative
curvature twin (see Chapter VII in Synge's book [35]).

On the other hand, many researchers, beginning with Dirac, intu-
itively predicted that the mirror Universe (as the antipode of our Uni-
verse) should be sought not in a space with the opposite sign of the space
curvature, but in a space where particles have masses and energies with
the opposite sign. That is, since the masses of particles in our Universe
are positive, then particles in the mirror Universe must be obviously
negative.

Joseph Weber [28] wrote that neither Newton's law of gravitation
nor the relativistic theory of gravitation ruled out the existence of neg-
ative masses; rather, our empirical experience says that they have never
been observed. Both Newton's theory of gravitation and Einstein's Gen-
eral Theory of Relativity predicted negative mass behaviour quite di er-
ent from what electrodynamics prescribes for negative charges. For two
bodies, one with a positive mass and the other with a negative mass,
but equal in magnitude, one would expect the positive mass to attract
the negative mass and the negative mass to repulse the positive mass, so
that one would chase the other! If the motion occurs along a line con-
necting the centres of two bodies, then such a system will move with a
constant acceleration. This problem was studied by Bondi [42]. Assum-
ing that the gravitational mass of the positron is negative (observations
show that its inertial mass is positive) and using the methods of Quan-
tum Electrodynamics, Schi found that there is a di erence between the
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inertial mass of the positron and its gravitational mass. The di erence
turned out to be much larger than the error of the E6tvos experiment,
which showed the equality of gravitational and inertial mass [43]. As a
result, Schi arrived at the conclusion that a negative gravitational mass
in the positron cannot exist (see Chapter 1, Y2 in Weber's book [28]).

Besides, the co-habitation of positive and negative masses in the
same space-time region would cause ongoing annihilation. The possible
consequences ofthe mixed existence of particles, having both positive
and negative masses, were also studied by Terletskii [44, 45].

Therefore, the idea of the mirror Universe as a world of negative
masses and energies faced two obstacles:

a) Theexperimentum crucihat would point directly at the exchange
interactions between our Universe and the mirror Universe;

b) The absence of a theory that would clearly explain the separation
of the worlds with positive and negative masses as di erent space-
time regions.

In this section, Y6.1, we are going to tackle the second (theoretical)
part of the problem.

Let us apply the term mirror properties to the space-time metric.
To do this, write the square of the space-time interval in the chr.inv.-
form

d€=c’d? d % (6:1)
where _
d 2= hydxdxt; (6:2)
N
w 1 ; w+vu
d =1 = dt gv.dx'= 1 cZI dt: (6:3)

From here we see that the physically observable elementary spatial
interval (6.2) is the square function of the elementary spatial increments
dx. The spatial coordinates are all equal, so there is no principal
di erence between the translational motion to the right or to the left, up
or down. Therefore, we will no longer consider mirror re ections with
respect to spatial coordinates.

Time is a di erent thing. The physically observable timéor an or-
dinary observer always ows from the past to the future, so that 0.

But there are two cases, in which the observable time stops. At rst, this
is possible in the ordinary space-time under the condition of collapse.
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Secondly, this happens in the zero-space the completely degenerate
four-dimensional space-time. Therefore, the state of an observer, whose
own observable time stops, can be regarded to be transitional, i.e., un-
available under ordinary conditions.

We will consider the problem of the mirror Universe for bati» O
andd =0. In the latter case, the analysis will be done separately for
collapsed regions of the ordinary space-time and for those in the zero-
space. We start the analysis from the ordinary case, wherd. From
the formula for the physically observable time (6.3), it is obvious that
the conditiond > Qis true if

w+vu' < ¢ (6:4)

If the space does not rotate € 0), then the above formula trans-
forms intow < ¢2, which corresponds to the space-time structure outside
the state of collapse.

Thends’ (6.1) can be expanded as follows

2 .
d<= 1 g 2 2 1 g v dxdt
(6:5)
hi dX dx€ + C—lzv.vkdxidxk;
on the other hand
!

2 )
d=c?d? d 2=c%d? 1 é; V2 = hyvivk:  (6:6)

Let us divide both sides of the formula fdis® (6.5) by the next
guantities, according to the kind of particle trajectory:

1) c?d 2 1 ‘é—j , if the space-time interval is redis’ > 0;
2) ¢?d ?, if the space-time interval is equal to zete® = O;
3) c¢d? ‘é—; 1, if the interval is imaginary s’ < 0.
As a result, in all three cases we obtain the same square equation
with respect to the function of the true coordinate tintelependent on

the physically observable timeregistered by the observer. The square

equation has the form

| |
dt 2 2vvi dt 1 1 - '
— —+ —vwVvivk 1 =0; (67
d C2 1 g d 1 ¥2 C4 i ik ( )
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which has two solutions

[
dt’ o
— = Suvi+1 (6:8)
d ;, 1 g C
| |
dt’ 1 1 '
— = Suwvh 1 (6:9)
d , 1 g c
Integratingt with respect to , we obtain
Z . Z
1 dx
t=— Vi ax + const (6:10)
C 1 W 1 v

c? c?

which can be easily integrated, if the space does not rotate and the gravi-
tational potential isv=0. Then the integral is=  + const The right
choice of the initial conditions can make the integration constant equal
to zero. In this case, we obtain the solution
t= > 0; (6:11)
which graphically represents two beams, which are the mirror re ec-
tions of each other with respect to 0. We can say that here, the ob-
server's own time serves as a mirror membrane, the mirror surface of
which separates two worlds: one with the direct ow of the coordinate
time from the past to the future= , and the other, mirror world, with
the reverse ow of the coordinate from the future to the gast
Noteworthy, the world with the reverse ow of time is not like a
videotape being rewound. Both worlds are quite equal, but for an ordi-
nary observer the mentioned time coordinate in the mirror Universe is
negative. The mirror surface of the membrane in this case only re ects
the time ow, but does not a ect it.
Now we assume that the space does not rotatd®, but the gravi-
tational potential is not zenew, 0. Then we have
z d
t= + const (6:12)
1 ¥

c2

The physically observable time registered by any observer everywhere ows
from the past to the future, so the conditidr> O is true in the reference frame as-
sociated with any observer.
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If the gravitational potential is weakM ¢?), then the obtained
integral (6.12) becomes
1 Z !
t= +c_ wd = ( + t); (6:13)

where tis a correction that takes into account the potential eld
The quantityw can denote any scalar potential eld either a eld of
Newtonian potential or a eld of non-Newtonian gravitation.

If the gravitational eld is strong, then the integral has the form
(6.12). The stronger the eld potential, the faster the coordinate time
ow (6.12). In the limiting case, wherev= ¢, we havet! 1 . On the
other hand, aiv = c? collapse occurd = 0. We will consider this case
below, but for now we are still assuming thak c¢2.

Let us consider the coordinate time in a Schwarzschild space and a
de Sitter space. If the potential describes a Newtonian gravitational
eld (a Schwarzschild space), then

t= = ; (6:14)

i.e., the closer we approach the gravitational radius associated with the
massM, the greater the di erence between the coordinate time and the
physically observable time registered by the observer. If the potemtial
describes a non-Newtonian gravitational eld (a de Sitter space), then

‘ d z d
t= = S a— (6:15)
3

which means that the closer the measured photometric distadndbe
in ationary radius in the space, the faster the coordinate time ow. In
the limiting case, where! ri;, we havet! 1

Therefore, in a space that does not rotate, but is lled with a gravi-
tational eld, the coordinate time ow is faster when the eld potential
is stronger. This is true both in a Newtonian gravitational eld and in a
non-Newtonian gravitational eld.

Let us now consider a general case, where the space rotates and is
lled with a gravitational eld. Then the coordinate tintehas the form
(6.10), which includes:
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a) The rotational time determined by the teryd X, which has the
dimension of rotation momentum divided by unit mass;

b) The ordinary coordinate time, linked to the physically observable
time registered by the observer.

From the integral fot (6.10), we see that the rotational time, pro-
duced by the space rotation, exists independently from the observer be-
cause it does not depend onFor an observer, who rests on the surface
of the Earth (anywhere apart from the poles), the rotational time can
be interpreted as the time determined by the rotation of the planet around
its axis. The rotational time always exists irrespective of whether the
observer records it at this particular location or not. The regular coordi-
nate time is linked to our presence (it depends on the registered lime
and to the gravitational eld at the point of observation (in particular,
to the eld of the Newtonian potential).

Noteworthy, withy;, 0, the time coordinatéat the initial moment
of observation (when the physically observable time registered by the
observer is o = 0) is not zero.

Representing the integral fo(6.10) as

Z C—lzv.dxi d
t= £ . (6:16)
1 W

c2
we obtain that the quantity under the integral sign is:
1) Positive, ifévI dx> d ;
2) Zero, ifc—lzv. ddi= d ;
3) Negative, ifZvdx < d .

Hence, the coordinate tinteof an object that we observe stops, if
the scalar product of the linear velocity with which the space rotates and
the observable velocity of the objectis/' = ¢2. This happens, if the
numerical values of both velocities equal to the velocity of light, and
they are either co-directed or oppositely directed.

A region of the space-time, where the conditign' = ¢2 is true
and, hence, the coordinate time stops for a real observer, initiher
membraneseparating two regions of the space-time the region with
the direct ow of the coordinate time and the region with the reverse co-

ordinate time ow. Obviously, no one observer under ordinary physical
conditions in an Earth-bound laboratory can accompany such a space.
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We will refer to the space-time region, where coordinate time takes
negative numerical values as timgrror space

Let us analyse the properties of particles that inhabit the mirror
space, in comparison with the properties of particles located in the or-
dinary space, where the time coordinate is always positive.

The four-dimensional momentum vector of a mass-bearing patrticle
having a non-zero rest-masy is

dx
P = mOE’ (6:17)
the chr.inv.-projections of which are
Po dt ; m ;
— =m—= m; P'= —V'; 6:18
goo d c (6:18)

where plus stands for the direct coordinate time ow, and minus
stands for the reverse coordinate time ow with respect to the physically
observable time registered by the observer. The squdre «f

PP =g PP =ng; (6:19)

while its length is
PP =m: (6:20)

We see that any particle having a non-zero rest-mass, being a four-
dimensional object, is projected onto the observer's time line as a dipole
consisting of a positive massm and a negative masan. But when
the vectorP is projected onto the spatial section, we obtain a single
projection the particle's three-dimensional observable momentum
p'=mv'. In other words, each observable particle with a positive rela-
tivistic mass has its owmirror twin with the same negative mass: the
particle and its mirror twin are only di erent by the sign of the mass,
while the three-dimensional momenta of both particles are positive.

Similarly, for the four-dimensional wave vector

I dx dx
K = —-—— =k—1: 21
cd d '’ (6:21)
which describes a massless patrticle, the chr.inv.-projections are
Ko i k i.

== k; K'= < (6:22)

Qoo
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This means that any massless particle, as a four-dimensional object,
exists also in the two states: in our world (the direct ow of time) it is
a massless particle with a positive frequency, while in the mirror world
(the reverse ow oftime) itis a massless particle with the same negative
frequency.

Let us de ne thematerial Universeas the four-dimensional space
(space-time) lled with a substance and elds. Then, since any particle
is a four-dimensional dipole object, we can consider the material Uni-
verse as a four-dimensional dipole object that exists in the two states:
our Universe inhabited by particles with positive masses and frequen-
cies, and as its mirror twin themirror Universe where masses and
frequencies of particles are negative, while the three-dimensional ob-
servable momentum remains positive.

On the other hand, our Universe and the mirror Universe are merely
two di erent regions of the same four-dimensional space-time.

For instance, when analysing the properties of the Universe as a
whole, we neglect Newtonian elds, produced by occasional islands of
substance, so we assume the basic four-dimensional space of our Uni-
verse to be a de Sitter space with a negative four-dimensional curvature,
while its three-dimensional observable curvature is positive (see Y5.5).
Hence, we can assume that our Universe as a whole is a region of the
de Sitter space with the negative four-dimensional curvature, where the
time coordinate is positive as well as the masses and frequencies of par-
ticles located in the region. Besides, vice versa, the mirror Universe is a
region of the same de Sitter space, where the time coordinate is negative
as well as the masses and frequencies of particles located in it.

The space-time membrane that separates our Universe from the mir-
ror Universe in the space-time, does not allow them to mix , thereby
preventing their total annihilation. This membrane will be discussed
below, in the end.

Let us consider the dipole structure of the Universe under the con-
ditiond =0, i.e., the collapsed regions of the ordinary space-time as
well as the completely degenerate space-time region (zero-space).

First, as we have shown, the conditidn=0 is true in collapsed
regions of the ordinary (non-degenerate) space-time, provided that the
space is holonomic (it does not rotate). In this case,

W
d =1 5 d=0: (6:23)
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This condition is true for collapse of any kind, i.e., for the gravita-
tional elds of any kind, including the elds of a non-Newtonian grav-
itational potential. Ad =0 (6.23), the four-dimensional metric is

d= d 2= hydXdx® = giedXdx< = gy u'udt®; (6:24)
hence, in this case the absolute value of the intaitgdd
L P , 2 ik
jdsi=id =i hyuiukdt=iudt; u®= hyu'us (6:25)

therefore, the four-dimensional momentum vector of a particle that is
located on the surface of a collapsar is

P :mo‘ii; d = udt; (6:26)
and its square is
PP =g PP = ng; (6:27)

hence, the length of the vectBr (6.26) is imaginary
P PP =img: (6:28)

The latter, in particular, means that the surface of a collapsar is
inhabited by particles with imaginary rest-masses. But, at the same
time, this does not mean that superluminal particles (tachyons) should
be found there. This is because the rest-masses of tachyons are real
(in that time they are ordinary particles), but their relativistic masses
become imaginary only after the particles accelerate to superluminal
velocities thus become tachyons.

On the surface of any collapsar the term observable velocity is
void, because the physically observable time registered by an ordinary
observer stops on the surfaak € 0).

The components of the four-dimensional momentum vector of a par-
ticle on the surface of a collapsar (6.26), can be formally written as

po= ¢ pi- % u' (6:29)

We cannot observe such a particle, because the observable time

stopi on the surface of a collapsar. On the other hand, the velocity
— dx

u= T found in this formula, is a coordinate velocity; it does not de-

pend on the observer's measured time that stops there. Hence, we can
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interpret the spatial vectd?' = %u‘ as the coordinate momentum of
the particle, and the quantitS?? c3 can be interpreted as the particle's
energy. The energy has only one sign here, hence, the surface of any
collapsar as a four-dimensional region is not a dipole four-dimensional
object, presented in the form of two mirror twins. This means that the
surface of any collapsar, irrespective of its Newtonian or non-Newtonian
nature, exists in a single state.

On the other hand, the surface of a collapgrp € 0) can be re-
garded as a membrane, which separates the four-dimensional space-time
regions outside the state of collapse and under the collapse state. Out-
side the state of collapse, we hayg > 0, so the observer's measured
time isreal. Underthe collapse state, we hgyg< 0, hence isimag-
inary. When an ordinary observer, when entering a collapsar, crosses
its surface, his measured time is subjected to a®@0n , changing its
réle to that of the measured spatial coordinates.

The term light-like particle is nonsense on the surface of a col-
lapsar. This is because =cd for light-like particles by de nition,
hence, on the surface of a collapsar € 0) for such particles we have

p—
u= hyguuk= ———=—=""2=:=0: (6:30)

Secondly, the physically observable time registered by the observer
stops @ =0) in the completely degenerate space-time (zero-space),
since there, by de nitiond =0andd =0. As we have shown in the
previous book [19], the above degeneration conditions can be written in
the following expanded form as follows

: _ 2
w+wu = gru'uk=c? 1 g : (6:31)
Particles inherent in the completely degenerate space-time (called

zero-particle} have zero relativistic mass= 0, but non-zero masses
M (1.79) and non-zero corresponding momepita

M = M. =Ml (6:32)
1 5 w+wu

which are not sign-alternate quantities.
Therefore, mirror twins are only found in the ordinary matter
these are massless and mass-bearing particles, which are not in the state
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of collapse. Collapsed objects in the ordinary space-time (gravitational
collapsars and in ationary collapsars) do not have the property of mirror
dipoles, they therefore are common objects for our Universe and the
mirror Universe. Zero space objects, since they also do not have the
property of mirror dipoles, lie outside the basic space-time due to the
complete degeneration of the metric. Itis possible to enter such neutral
zones, which are on the surface of collapsed objects in the ordinary
space-time and in the zero-space, from either our Universe (where the
coordinate time is positive) or the mirror Universe (where the coordinate
time is negative).

6.2 The conditions to move through the membrane, to the mirror
world

Now we are going to discuss the question of the membrane that sepa-
rates our Universe from the mirror Universe in the space-time, thereby
preventing the total annihilation of all particles with negative and posi-
tive masses.

In our Universe, we hawdt> 0, anddt< Ois true in the mirror Uni-
verse. Hence, the membrane is a region of the space-time, dtref®
(the coordinate time stops). Mathematically, this means

|
gt—llw C—lzv.v' 1 =0; (6:33)

c2

which can also be presented as the physical condition
|
1 1 i '
dt= —— Svdx d =0: (6:34)
1 ¥ c
c2
The latter notation is more versatile, because it is applicable not
only to the space-time of General Relativity, but also to a generalized
space-time, where the total degeneration of the metric is possible.
Inside the membrane, the conditiarssconstanddt= 0, in accor-
dance with (6.34), are determined by the formula

vidX c?d =0; (6:35)
which can be also written in the form

wv = & (6:36)
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The above condition can be represented as follows
viv' = jujjvijcos w;v = & (6:37)

This condition is satis ed, if the numerical values of the velocities
v andv' are equal to the velocity of light and are either co-directed
( plus) or oppositely directed ( minus ).

Therefore, from a physical point of view, the membrane that we are
talking about is a space that is in motion with the velocity of light and,
at the same time, rotates with the velocity of light. So, the membrane is
a world of light-like spiral trajectories. Itis possible that such a space is
inhabited by particles having the helicity property (e.g., massless light-
like particles photons).

Having dt= 0 substituted into the formula fad <%, we obtain the
space metric inside the membrane

ds? = g dXdx; (6:38)

which is the same as the metric on the surface of a collapsar. The above
metric is a particular case of a space-time metric with the signature
(+===). Thereforeds’ inside the membrane is always negative.

This means that, in a region of the four-dimensional space-time,
which serves the membrane between our Universe and the mirror Uni-
verse, the four-dimensional interval is space-like.

The di erence from the space-like metric on the surface of a collap-
sar (6.24) is that the space on the surface of a collapsar does not rotate,
so there igyik = hi, while in the internal space of the membrane we
havegx = hik+ C—12 Vi \k (1.18). Or, in other words, inside the membrane
we have the metric

ds = gedXdx = hpdXdx<+ C—lzv.vkdx‘dxk; (6:39)

which is space-like due to the space rotation (thekgds' = c2d ).

As a result, an ordinary mass-bearing particle (irrespective of the
sign of its mass) in its natural form cannot pass through the mem-
brane: this region of the space-time is inhabited by light-like particles
travelling along light-like spirals.

On the other hand, the limiting case of particles with 0 or m< 0
are particles with zero relativistic mass= 0. From a geometric point
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of view, the region, in which such particles exist, is tangential to the
regions inhabited by particles with either>0 or m< 0. This means
that zero-mass particles can have exchange interactions with either our-
world particlesm> 0 or mirror-world particlesn< 0.

Particles with zero relativistic mass, by de nition, exist in a region
of the space-time, whers* =0 andc?d 2=d 2?=0. Equatingds’ in-
side the membrane (6.38) to zero, we obtain

ds? = g dXdx< = 0; (6:40)

so this condition satis es in the two cases:

1) All numerical valuesiX are zeroes, sdx = 0;
2) The three-dimensional metric is degene@tedetkgixk= 0.

The rst case takes place in the ordinary space-time under the limit-
ing condition on the surface of a collapsar, where all its surface shrinks
into a point I = 0). In this case, the metric on the collapsar's surface,
according tads? = hy dxXdx€ = gy dX'dx* (6.24), becomes zero.

The second case takes place on the surface of a collapsar located in
the zero-space: since the conditigndxdx*= 1 3 ? 22 is true
there, then aiv = c2 we have alwaysj dx'dx<= 0.

The rst case is asymptotic, so it never takes place in reality. There-
fore, we can expect that middlemen in the exchange between our Uni-
verse and the mirror Universe are those particles with zero relativistic
mass, which inhabit the surface of the collapsars located in the com-
pletely degenerate space-time. In other words, the mentioned middle-
men are those zero-particles that are inherent in the surface of zero-
space collapsars.

6.3 Conclusions

So we have shown that our Universe is the observable region of the
space-time, where time coordinate is positive, thus all particles have
positive masses and energies. The mirror Universe is the region of the
space-time, in which, from the viewpoint of an ordinary observer, time
coordinate is negative and all particles have negative masses and ener-
gies. From the viewpoint of an our-world observer, the mirror Universe

is the world with the reverse ow of time, where particles travel from
the future to the past with respect to us.
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These two worlds, our Universe and the mirror Universe, are sep-
arated by the membrane the region of the space-time, inhabited by
light-like particles that travel along light-like spirals. On the scale of el-
ementary particles, such a space can be home to light-like particles that
have helicity (e.g., photons). The mentioned membrane prevents mix-
ing positive-mass and negative-mass particles, so it prevents their to-
tal annihilation. The middlemen in the exchange interaction between
our world and the mirror world can be particles with zero relativistic
masses (zero-particles) under the physical conditions on the surface of
the collapsars located in the completely degenerate space-time (zero-
space collapsars).




=

10.

11.

Bibliography

Levi-Civita T. Nozione di parallelismo in una varieta qualunque e conse-
quente speci cazione geometrica della curvatura RiemanniReradicon-
ti del Circolo Matematico di Palermd 917, tome 42, 173 205.

. Tangherlini F. R. The velocity of light in uniformly moving frame. A dis-

sertation. Stanford University, 1958he Abraham Zelmanov Journal
2009, vol. 2, 44 110.

. Malykin G.B. and Malykin E. G. Tangherlini's dissertation and its sign-

i cance for physics of the 21th centur§he Abraham Zelmanov Journal
2009, vol. 2, 121 143.

. Recami E. Classical tachyons and possible applicatiRinista del Nuovo

Cimentq 1986, vol. 9, 1 178.

. Liberati S., Sonego S., and Visser M. Faster-thaignals, special relati-

vity, and causalityAnnals of Physic2002, vol. 298, 151 185.

. Terletskii Ya. P. The causality principle and the second law of thermodyn-

amics.Soviet Physics Doklady961, vol. 5, 782 785.
Translated from:Doklady Academii Nauk SSSR960, vol. 133, no. 2,
329 332.

. Bilaniuk O.-M. P., Deshpande V. K., and Sudarshan E. C. G. Meta relat-

ivity. American Journal of Physic4962, vol. 30, no. 10, 718 723.

. Feinberg G. Possibility of faster-than light particl&hysical Review

1967, vol. 159, no. 5, 1089 1105.

. Zelmanov A. L. Chronometric Invariants. Translated from the 1944 PhD

thesis, American Research Press, Rehoboth, New Mexico, 2006.

Landau L. D. and Lifshitz E. M. The Classical Theory of Fields. Pergamon
Press, Oxford, 1951.

Translated from the 1st Russian edition published in 1939. Section refer-
ences are given from the nal 4th English edition, expanded twicely from
the 1st edition, Butterworth-Heinemann, 1979.

Zelmanov A.L. Chronometric invariants and accompanying frames of
reference in the General Theory of Relativi§oviet Physics Doklagy
1956, vol. 1, 227 230.

Translated from:Doklady Academii Nauk SSSR956, vol. 107, no. 6,
815 818.



Bibliography 273

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.
26.

Zelmanov A. L. and Agakov V. G. Elements of the General Theory of Rel-
ativity. Nauka, Moscow, 1988 (in Russian).

Zelmanov A. L. On the relativistic theory of an anisotropic inhomogene-
ous universeThe Abraham Zelmanov Journ&008, vol. 1, 33 63.
Translated fromProceedings of the 6th Soviet Conference on the Prob-
lems of Cosmogonyeld in 1957 in Moscow, USSR Acad. Science Pub-
lishers, Moscow, 1959, 144 174 (in Russian).

Cattaneo C. General Relativity: relative standard mass, momentum, en-
ergy, and gravitational eld in a general system of referemégovo Cim-
entq 1958, vol. 10, 318 337.

Cattaneo C. On the energy equation for a gravitating test pamiole-
vo Ciment91959, vol. 11, 733 735.

Cattaneo C. Conservation laws in General Relatihiyovo Cimentp
1959, vol. 13, 237 240. vol. 11, 733 735.

Cattaneo C. Problemes d'interprétation en relativité généCaldoques
internationaux du CNR$0.170 Fluides et champ gravitationel en rela-
tivité générale , Editions du CNRS, Paris, 1969, 227 235.

Raschewski P. K. Riemannsche Geometrie und Tensoranalysis. Deutscher
Verlag der Wissenschaften, Berlin, 1959 (reprinted by Verlag Harri
Deutsch, Frankfurt am Main, 1993).

Rabounski D. and Borissova L. Particles Here and Beyond the Mirror.
The 4th revised edition, New Scienti ¢ Frontiers, London, 2023.
Published in English 2001, 2008, 2012, 2023; in French 2010, 2023;

in Russian 2023.

French translation: Rabounski D. et Borissova L. Particules de I'Univers
et au dela du miroir. La 2éme édition révisée, New Scienti ¢ Frontiers,
Londres, 2023.

Terletskii Ya. P. and Rybakov Yu. P. Electrodynamics. High School Pub-
lishers, Moscow, 1980 (in Russian).

Papapetrou A. Spinning test-particles in General RelativRyolceedings
of the Royal Society,A951, vol. 209, 248 258.

Corinaldesi E. and Papapetrou A. Spinning test-particles in General Re-
lativity. II. Proceedings of the Royal Society?®51, vol. 209, 259 268.

Suhendro I. A four-dimensional continuum theory of space-time and the
classical physical eldsProgress in Physi¢c2007, no. 4, 34 46.

Suhendro |. Spin-curvature and the Uni cation of Fields in a Twisted
Space. Svenska fysikarkivet, Stockholm, 2008.

Pavlov N. V. and del Prado J. Private report to A. L. Zelmanov, 1968.

Stanyukovich K. P. Gravitational Field and Elementary Particles. Nauka,
Moscow, 1965 (in Russian).



274 Bibliography

27. Stanyukovich K. On the problem of the existence of stable particles in the
MetagalaxyThe Abraham Zelmanov Journ&008, vol. 1, 99 110.
Translated fromProblems of the Theory of Gravitation and Elementary
Particles Atomizdat, Moscow, 1966, 267 279 (in Russian).

28. Weber J. General Relativity and Gravitational Waves. Interscience Pub-
lishers, New York, 1961.

29. Petrov A. Z. Einstein Spaces. Pergamon Press, Oxford, 1969.

30. Petrov A.Z. The classi cation of spaces de ning gravitational elds.
The Abraham Zelmanov Journ&008, vol. 1, 81 98.

Translated from:Uchenye Zapiski Kazanskogo Universitet®54, vol.
114, no. 8, 55 69.

31. Borissova (née Grigor'eva) L. B. Chronometrically invariant representat-
ion of the classi cation of the Petrov gravitational eldSoviet Physics
Doklady, 1970, vol.15, 579 582.

Translated from:Doklady Academii Nauk SSSRI70, vol. 192, no. 6,
1251 1254.

32. Gliner E. B. Algebraic properties of energy-momentum tensor and vac-
uum-like states of mattedournal of Experimental and Theoretical Phys-
ics, 1966, vol. 22, no. 2, 378 382.

Translated fromZhurnal Eksperimental’'noii Teoreticheskoi Fizikb66,
vol. 49, no. 2, 543 548.

33. Gliner E. B. Vacuum-like state of medium and Friedmann's cosmology.
Soviet Physics Doklad$970, vol. 15, 559 562.

Translated from:Doklady Academii Nauk SSSRI70, vol. 192, no. 4,
771774,

34. Sakharov A. D. The initial stage of an expanding Universe and the appear-
ance of a nonuniform distribution of mattdournal of Experimental and
Theoretical Physicsl966, vol. 22, no. 1, 241 249.

Translated fromZhurnal Eksperimental’'noii Teoreticheskoi FizikbB66,
vol. 49, no. 1, 345 357.

35. Synge J. L. Relativity: the General Theory. North Holland, Amsterdam,
1960.

36. Schouten J. A. und Struik D.J. Einfuhrung in die neuren Methoden der
Di erentialgeometrie. Noordho , Groningen, 1938.

First published irzentralblatt fir Mathematik1935, Bd. 11 und Bd. 19.

37. McVittie G. C. Remarks on cosmologyaris Symposium on Radio Ast-
ronomy(IAU Symposium no. 9 and URSI Symposium no. 1, July 30
August 6, 1958), Stanford University Press, Stanford, 1959, 533 535.

38. OrosdiBartini R. Some relations between physical constaatget Phys-
ics Doklady 1965, vol. 10.

Translated from:Doklady Academii Nauk SSSR965, vol. 163, no. 4,
861 864.



Bibliography 275

39.

40.

41.

42.

43.

44.

45,

Oros di Bartini R. Relations between physical const@tgyress in Phys-
ics, 2005, no. 3, 34 40.

Translated fromProblems of the Theory of Gravitation and Elementary
Particles Atomizdat, Moscow, 1966, 249 266 (in Russian).

Crothers S. J. On the general solution to Einstein's vacuum eld for the
point-mass when =0 and its consequences for relativistic cosmology.
Progress in Physi¢2005, no. 3, 7 18.

Kottler F. Uber die physikalischen Grundlagen der Einsteinschen Gravi-
tationstheorieAnnalen der Physikl918, Bd. 361, Nr. 14, 401 462.

Bondi H. Negative mass in General RelatiiRgview of Modern Physics
1957, vol. 29, no. 3, 423 428.

Schi L. 1. Sign of gravitational mass of a positroRhysical Review Let-
ters 1958, vol. 1, no. 7, 254 255.

Terletskii Ya. P. Paradoxes in the Theory of Relativity. Plenum Press, New
York, 1968.

Translated from: Terletskii Ya. P. Paradoxes in the Theory of Relativity.
Patrice Lumumba University Press, Moscow, 1965 (in Russian).

Terletskii Ya. P. Paradoxes in the theory of relativitsnerican Journal of
Physics 1969, vol. 37, no. 4, 460 461.




Index

accompanying observdd de Sitter space 227, 235, 239, 240
action 99, 159 247, 252 255
antisymmetric tensor 42 di Bartini R. 241 243
antisymmetric unit tensors 44 di erential 9, 48
asymmetry of motion along time axisdiscriminant tensors 47 48
25,28 divergence 51, 53
Bartini R., seeli Bartini R. eikonal (wave phase) 25
Biot-Savart law 78 ~ equation 26, 29
bivector 35 Einstein A. 220, 222
black hole 248 constant 221

equations 220

body of reference 14
spaces 224 229, 244

Cattaneo C. 13 tensor 22_0
Christoel E.B. 9 electromagnetic eld tensor 66 70
symbols 9, 21, 36 elementary particles 205 210

emptiness 220, 223, 231
energy-momentum tensor 89, 221,
229 232
equations of motion 9, 23
charged particle 95 98
free particle 23 29
spin particle 170, 172
event horizon 241

chronometric invariants 15
Compton wavelength 209
conservation of electric charge 73
continuity equation 75

contraction of tensors 38
coordinate grid 14

coordinate velocity 160

curl 58

current vector 75 Galilean reference frame 44
curvature of space-time 222, 227 zzggeodesic line 9

scalar curvature 220 geodesic (free) motion 9
three-dimensional observable geometric object 34

curvature 237 240 Gliner E.B. 225
cylinder of events 184 gravitational collapse 247
gravitational inertial force 20
dAlembert operator 60
deformation rate tensor 21 helicity 211
del Prado J. 77 hologram 29
derivative 50 holonomity of space 14

de Sitter metric 245 non-holonomity tensor 20



Index

in anton 254

in ationary collapse 254
inversion explosion 243

isotropic space 214, 219

Jacobian 47
Kottler metric 246

Lagrange function 160
Laplace operator 60
Levi-Civita T. 10
parallel transport 9
-term 221, 229, 239
long-range action 29

magnetic charge 80
Mach Principle 223
Maxwell equations 72, 77 79

metric fundamental tensor 9, 32

metric observable tensor 18

Minkowski equations 86, 100

mirror principle 26

mirror Universe 228

monad vector 16

multiplication of tensors 38

-vacuum 226, 226, 231

physical properties 233

nongeodesic motion 30

Papapetrou A. 31
Pavlov N. V. 77
Petrov A.Z. 224
classi cation 225
theorem 227
physical observables 12 15
Planck tensor 156 159
Poynting vector 90
projection operators 15
pseudo-Riemannian space 8
pseudotensors 45

277

guantization of the masses of element-

ary particles 205 207

Ricci tensor 80

Riemann
Riemann
Riemann

scalar 34

B.8
-Christo el tensor 237
ian space 8

scalar product 40

Schwarzschild metric 244
signature of space-time 8, 161, 226
spatial section 14

spin momentum 154, 164

spur (trace) 39

Stanyukovich K. P. 80

state equ
substanc
Synge J.

ation 234
e 229
L. 227, 234, 258

T-classi cation of matter 231
tensor 34

Terletskii
time func
time line

Ya. P. 259
tion 24
14

trajectories 10

unit tensor 17

vacuum 220, 223, 231

X . physical properties 233
non-Newtonian gravity 229, 243, 246,actor product 42

viscous stress-tensors 233

Weber J.

239

Zelmanov A.L. 11, 1324, 58, 63,

168, 175, 223, 228, 236

theorem 18

curvature tensor 236
zero-particles 28
zero-space (degenerated space-time)

28, 29, 167, 248, 268



About the authors

Larissa Borissova (b. 1944, Moscow, Russia) is a graduate of the Sternberg
Astronomical Institute (Faculty of Physics, Moscow University). Since 1964
she was trained by Dr. Abraham Zelmanov (1913 1987), a famous cosmolo-
gist and researcher in General Relativity. Since 1968 she worked with Prof.
Kyril Stanyukovich (1916 1989), a prominent scientist in gas dynamics and
General Relativity. In 1975, Larissa Borissova got a Candidate of Science
degree (Soviet PhD) in gravitational waves. She has published about 50 sci-
enti ¢ papers and 3 books on General Relativity. In 2005, Larissa Borissova
became a co-founder and Editor®fogress in Physi¢sand in 2008, an Edi-

tor of The Abraham Zelmanov Journ&he has since continued her scienti ¢
studies as an independent researcher.

Dmitri Rabounski (b. 1965, Moscow, Russia). Since 1983 he was trained by
Prof. Kyril Stanyukovich (1916 1989), a prominent scientist in gas dynam-
ics and General Relativity. He was also trained with Dr. Abraham Zelmanov
(1913 1987), a famous cosmologist and researcher in General Relativity. He
was also trained by Dr. Vitaly Bronshten (1918 2004), the well-known expert
in the physics of destruction of bodies in the atmosphere. Dmitri Rabounski
has published about 50 scienti ¢ papers and 3 books on General Relativity. In
2005, he started a new journal on physiPsogress in Physicsvhere he is

the Editor-in-Chief. In 2008, he started a new journal on General Relativity,
The Abraham Zelmanov Journabhile continuing his scienti ¢ studies as an
independent researcher.




Cover and titlepage image: The enigmatic woodcut by an unknown artist of the Middle
Ages. Itis referred to as tHelammarion Woodcubecause its appearance in page 163

of Camille Flammarion'd’Atmosphére Météorologie populairéParis, 1888), a work

on meteorology for a general audience. The woodcut depicts a man peering through the
Earth's atmosphere as if it were a curtain to look at the inner workings of the Universe.
The caption Un missionnaire du moyen age raconte qu'il avait trouvé le point ou le ciel
et la Terre se touchent... translatesto A medieval missionary tells that he has found
the point where heaven [the sense here is sky ] and Earth meet...

Book format:60 901/16
Typeface family: Tempora TLF
Default font size: 11 pt

Typos corrected on: 20.12.2023






