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Summary: — This book introduces a mathematical theory of the internal constitution
of stars and sources of stellar energy, created using the mathematical methods of Gen-
eral Relativity. This is an alternative to the traditional theory of gaseous stars, which
was introduced in the 1920s based on classical mechanics and thermodynamics. On the
contrary, the consideration of a star and its field in the framework of General Relativity,
which is presented in this book, comes to a model of liquid stars. Such a star is homo-
geneous inside, with a tiny core (about a few kilometers in radius) in the centre. The
core is separated from the main substance of the star by a collapse surface with a radius
corresponding to the star’s mass. Despite the fact that almost all the mass of the star is
outside the core (the core is not a black hole), the gravitational force tends to infinity
on the surface of the core due to the space breaking in the star’s internal field. Such a
superstrong gravitational force is sufficient to transfer the necessary kinetic energy to
the light atomic nuclei of stellar substance in order to start the process of thermonu-
clear fusion. The energy produced by thermonuclear fusion is the energy with which
stars glow: each star’s tiny core is its glowing “inner sun”, and the stellar energy pro-
duced in it is then transferred to the star’s physical surface by thermal conduction. A
new classification of stars according to the space breaking in their fields has been intro-
duced: ordinary stars (ranging from dwarfs to supergiants), Wolf-Rayet stars, neutron
stars (and pulsars), and also black holes are considered. The introduced liquid model
of stars is consistent with new observational evidence for the state of condensed matter
inside stars; in particular, that the Sun is composed of high-temperature liquid metallic
hydrogen.
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Preface

A scientist often encounters established ideas that were once the sub-
ject of debate, sometimes controversy. Often, we use those ideas with
no knowledge of their historical development, nor of the assumptions on
which they are based. We rarely stop to ponder the validity of an estab-
lished idea. This is not surprising as this is how we have been building
our edifice of physical theories, by standing on the shoulders of giants,
to paraphrase Isaac Newton.

Yet established ideas and theories need to be challenged and revis-
ited when new data or new theories that contradict or shed new light on
them, become available. We need not be afraid of new information that
risk overturning accepted ideas. After all, this is how new paradigms
arise and how progress is achieved.

The question of whether stars are gaseous or liquid is one debate
that most scientists are oblivious to. Yet this was a subject of vigorous
debate in the late 19th and early 20th centuries, with well-known physi-
cists lining up behind both sides of the question. Larissa Borissova and
Dmitri Rabounski provide a summary of the history of this debate and
a personal perspective on how they were pulled into it.

Recent evidence for liquid stars, in particular the extensive research
performed by Pierre-Marie Robitaille who has proposed the liquid
metallic hydrogenmodel of the Sun*, leads us to revisit this question. In-
terestingly enough, stellar plasmas are modelled using Magnetohydro-
dynamics, i.e. magnetic fluid dynamics, a combination of Maxwell’s
equations of electromagnetism and the Navier-Stokes equations of fluid
mechanics†. Magnetohydrodynamics is also used to model liquid met-

*Robitaille P.-M. A high temperature liquid plasma model of the Sun. Progress in
Physics, 2007, vol. 3, no. 1, 70–81.

†Tajima T. and Shibata K. Plasma Astrophysics. Perseus Publishing, Cambridge,
2002; Kulsrud R.M. Plasma Physics for Astrophysics. Princeton University Press,
Princeton, 2005.
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als. This is an indication that the theory of liquid stars is highly plausible
as an explanation of solar and stellar astrophysical data.

My personal interest in this research area stems from the astrophys-
ical research I performed on stellar atmospheres of Wolf-Rayet stars
at the University of Ottawa’s Department of Physics for my thesis on
“Laser Action in C IV, NV and OVI Plasmas Cooled by Adiabatic Ex-
pansion”. Wolf-Rayet stars exhibit mass loss and an expanding stellar
atmosphere. This results in population inversion of certain atomic tran-
sitions due to the rapid cooling of the expanding plasma and the recom-
bination of the free electrons into higher excited ionic states and laser
action in the corresponding emission lines. This physical mechanism
has been proposed as the explanation for the prominent spectral lines
observed in the spectra of Wolf-Rayet stars.

In this book, Larissa Borissova and Dmitri Rabounski provide a
general relativistic theory of the internal constitution of liquid stars, a
model that was lacking till now. This they accomplish by using a math-
ematical formalism first introduced by Abraham L. Zelmanov for cal-
culating physically observable quantities in a four-dimensional pseudo-
Riemannian space, known as the “theory of chronometric invariants”.
This mathematical formalism allows to calculate physically observable
(chronometrically invariant) tensors of any rank, based on operators of
projection onto the time line and the spatial section of the observer. The
basic idea is that physically observable quantities obtained by an ob-
server should be the result of a projection of four-dimensional quantities
onto the time line and onto the spatial section (local three-dimensional
space) of the observer.

This analysis allows them to propose a classification of stars based
on three main types: ordinary stars (ranging fromwhite dwarfs to super-
giants), of which Wolf-Rayet stars are a subtype, neutron stars and pul-
sars and collapsars (i.e. black holes). Their theory also provides a model
of the internal constitution of our solar system. It provides an explana-
tion for the presence of the asteroid belt, the general structure of the
planets inside and outside that orbit and the net emission of energy by
the planet Jupiter.

The ultimate test of any theory of stellar structure is the stellar mass-
luminosity relationwhich is themain empirical relation of observational
astrophysics. Using their theory, the authors can calculate the pressure
inside stars as a function of radius, including the central pressure. As
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pointed out by the authors, the temperature of an incompressible liquid
star does not depend on the pressure, but only on the source of stellar
energy (as opposed to a gas, in particular as given by the equation of
state of an ideal gas). The authors compare the calculated energy release
by the proposed mechanism of thermonuclear fusion of the light atomic
nuclei in the Hilbert core (the “inner sun”) of stars with the empirical
mass-luminosity relation of observational astrophysics, to determine the
density of the liquid stellar substance in the Hilbert core.

This book represents a solid contribution to our understanding of
stellar structure from a general relativistic perspective. It provides a
general relativistic underpinning to the theory of liquid stars. It raises
new ideas on the constitution of stars and planetary systems and pro-
poses a new approach to stellar structure and evolution which is bound
to help us better understand stellar astrophysics.

Ottawa, September 2, 2013 Pierre Millette
Astrophysics research on stellar atmo-
spheres, Department of Physics, Uni-
versity of Ottawa



Foreword to the 1st edition

Three decades ago, in 1983, I began to study the history of the theory
of gaseous stars. I was inspired to do this by Prof. Kyril Stanyukovich
(1916–1989), an outstanding scientist in the field of gas dynamics and
General Relativity, with whom Larissa and I were on friendly terms for
long time. Stanyukovich told me that soon after Hans Bethe proposed
thermonuclear fusion as a source of stellar energy, in 1939 astrophysi-
cists began trying to adapt the gas model of stars to thermonuclear fu-
sion. In many cases their assumptions were so artificial in relation to
gas dynamics itself that only the absence of another theory could justify
their models. Stanyukovich also talked about many of the obvious evi-
dence for gas dynamics that would inherently contradict the gas model
of stars.

Then I read the primary papers on the theory of gaseous stars pub-
lished in the early 20th century. I found that the “core” of this theory,
consisting of the equations of mechanical and thermal equilibrium in-
side stars, does not depend onwhether the stars aremade of gas or some-
thing else. Only then, introducing into these equations the equation of
state of an ideal gas, the theory gives the so-called gaseous stars and all
the variety of the gas models.

Then we got carried away with other research studies, mainly on
General Relativity, so that astrophysics fell behind our attention by al-
most 25 years.

In the summer of 2007, Prof. Pierre-Marie Robitalle visited us for
the first time. Working in the Ohio State University, Pierre spent many
years doing deep experimental research in the fields of thermal physics
and nuclear magnetic resonance (which produces microwave radiation).
He drew our attention to new astrophysical evidence for the liquid Sun
and stars, which appeared only in the last decade. When Pierre-Marie
was walking with me in the afternoon in a nearby park, he pointed to
the disc of the Sun in the sky and said: “Look, it is a liquid ball.” But
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that summer did not allow us to create a detailed mathematical theory
of liquid stars.

A few months after this event, in the same 2007, Larissa and I un-
dertook to translate into English two classic papers on General Relativ-
ity written in 1916 by Karl Schwarzschild. In one of the works men-
tioned above, he introduced the space metric of a sphere filled with an
incompressible liquid, which then brought him great posthumous fame.
We knew that the Schwarzschild metric of a liquid sphere could not be
used as a model for liquid stars. This is due to the specific limitation
contained in the metric. However, immediately after reading the initial
derivation of the metric, published in his 1916 paper, we found that the
limitation was introduced artificially by him in order to make the grav-
itational field of the liquid sphere free from a breaking (discontinuity).
If it were possible to deduce a real metric of a liquid sphere, free from
any artificial limitations pre-imposed on the geometry of the space, we
could create a mathematical theory of liquid stars.

The way forward was finally found: we knew what to do next. To
check, Larissa immediately deduced the true metric of a liquid sphere,
then calculated some consequences for the liquid Sun. She found that
when the Sun is represented as a liquid sphere, its gravitational field
has a space breaking corresponding to the maximum concentration of
substance in the asteroid belt; thus the space breaking in the Sun’s grav-
itational field prevents substance from forming as a planet in that orbit.
So, we made sure that we are on the right path. (David Jones, Editor
of the New Scientist, wrote in 1981: “As is known, all major scientific
discoveries had been made in the course of working on other problems
or as a result of random observations.”)

That is the story in a nutshell. In the spring of 2013, we completed
the mathematical theory of liquid stars. This theory provides a basic
liquid model according to General Relativity, which together cover all
known types of stellar objects ranging from supergiants to black holes.
This book presents the main elements of this theory, with the exception
of the details of the stellar energy mechanism (this is left outside the
scope of a book devoted mainly to the internal constitution of stars).

Puschino, August 6, 2013 Dmitri Rabounski



Foreword to the 4th revised edition

In the 4th revised and improved edition I have corrected an error in the
definition of the space-time metric of a rotating liquid body, which, un-
fortunately, was present in previous editions. All calculations that were
affected by this error have been corrected (or omitted). The corrections
affected Sections on rotating stars and rotating black holes.

Puschino, December 28, 2024 Dmitri Rabounski
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Chapter 1 Problem Statement

1.1 A new theory of the internal constitution of stars

In this book, we introduce a new mathematical theory of the internal
constitution of stars and sources of stellar energy. The theory is based
on the joint consideration of a star and its field according to General
Relativity.

This is an alternative to the traditional theory of stars introduced
in the 1920s by Arthur Eddington [1] and others in the framework of
classical mechanics and thermodynamics.

As is known, the conventional theory has led to themodel of gaseous
stars: stars are considered as gaseous spheres, consisting mainly of hy-
drogen and a very inhomogeneous interior, so that the hydrogen of the
extremely hot and dense central region is used as fuel for the stellar en-
ergy generation process. It is assumed, following Hans Bethe [2], that
this exothermic process is a thermonuclear fusion producing helium
from hydrogen. The other two variants of the gas model differ in de-
tail from Eddington’s theory. Edward Milne [3] had proposed that there
are two (or more) different states of substance inside a star. Nikolai
Kozyrev [4] had come up with a peculiar picture of low density and
temperature inside stars and a non-nuclear source of stellar energy.

Another theory of the internal constitution of stars became wide-
spread in the 1920s and 1930s thanks to James Jeans [5, 6]. This is a
model of liquid stars. The public discussion between Jeans, who de-
fended the liquid model, and Eddington, the follower of the gas model,
was recorded in dozens of short messages published by them in scien-
tific journals. Indeed, Eddington won in the end. Despite a lot of as-
trophysical evidence for liquid stars, Jeans’ theory did not have a solid
mathematical foundation. His theory was based on observational anal-
ysis and arguments rather than a mathematical model. On the contrary,
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the theory of gaseous stars was mathematically well founded by Ed-
dington. In particular, the mathematical model of gaseous stars gives
a theoretical derivation of the mass-luminosity relation, which is one
of the main relations of observational astrophysics*. This was a “trump
card”: as soon as the gas model predicted the mass-luminosity relation,
this model was declared correct in general, and all its inconsistencies
with observational analysis were only some “difficulties” that had to be
resolved in the future. Thus, the model of gaseous stars has become the
generally accepted model for decades to come, up to the present.

We must now make an important remark. As is known, the core of
the mathematical theory of the internal constitution of stars consists of
two equations: the equation of mechanical equilibrium and the equation
of thermal equilibrium. Mechanical equilibrium means that the weight
of any unit volume of stellar substance is brought into equilibrium with
the pressure fromwithin the star. Thermal equilibrium (energy balance)
means that the energy produced in any unit volume of stellar substance
is brought into balance with the flow of energy (radiation, convection
or heat conduction) from within the star to its surface. These two basic
equations of the theory are taken from general physics and are inde-
pendent of whether stars are composed of gas, liquid, or anything else.
Only then, by introducing the equation of state of an ideal gas (andmany
other partial assumptions) into the basic equations, does the traditional
theory lead to gaseous stars and other conclusions, including the mass-
luminosity relation.

Jeans’ theory of liquid stars cannot follow this path. The equation
of state of an ideal liquid, given by classical physics, is so simple that
it does not contain the characteristics of stellar substance necessary for
further derivation using the equilibrium equations.

Instead of all these considerations using classical mechanics and
thermodynamics, we propose a completely different approach to the
problem. It is based on the joint consideration of a star and its field
according to General Relativity. We are considering liquid stars: this
corresponds to some new observational evidence for the state of con-
densed matter inside stars; in particular, that the Sun is composed of
high-temperature liquid metallic hydrogen [7–10].

*The most comprehensive derivation of the mass-luminosity relation in the frame-
work of the model of gaseous stars is given in Part I of Kozyrev’s paper [4].
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In the framework of General Relativity, the structure, substance and
field of such a star are characterized by the Schwarzschild metric of a
sphere filled with an incompressible liquid. A recent theoretical result
obtained by L. Borisova [11, 12] showed that if the Sun is represented
as a liquid sphere according to the Schwarzschild metric, then the Sun’s
field has a space breaking (discontinuity) in the asteroid belt: this means
that the space breaking prevents the formation of substance in the form
of a planet in this orbit. Therefore, we are confident that we are on the
right path.

First, we deduce Einstein’s field equations in a form that models
stars as liquid spheres. This is a particular form of the field equations
that may or may not satisfy a particular spacemetric. Therefore, we then
prove that the resulting particular form of the field equations satisfies the
Schwarzschild metric of a liquid sphere.

Then, based on the energy-momentum tensor of an ideal liquid (con-
tained in the right hand side of the field equations), we deduce the con-
servation law for the liquid substance of ordinary stars. Solving the ob-
tained energy-momentum conservation equations, we obtain the pres-
sure and density of the liquid substance inside stars. Then we obtain a
formula for the luminosity of stars according to the liquid model. Next,
we study how this theoretical formula can be compatible with the mass-
luminosity relation (one of the basic empirical relations of observational
astrophysics). As a result, we obtain the physical characteristics of the
mechanism that produces energy inside stars.

Concerning the stellar energy mechanism itself, we conclude that it
is the transformation of substance into radiation on the surface of a tiny
central “core” inside each star. The core may have a density different
from the density of the rest of the star’s substance (a liquid sphere in-
side is homogeneous) and is distinguished by a collapse surface with a
radius determined by the star’s mass. Despite the fact that almost all the
mass of the star is outside the core (since the core is not a black hole),
the gravitational force tends to infinity on the surface of the core due to
the space breaking in the star’s field on this surface. The super-strong
gravitational force is sufficient to transfer the necessary kinetic energy
to the light atomic nuclei of stellar substance in order to start the pro-
cess of thermonuclear fusion. The energy produced by thermonuclear
fusion is the same energy that stars emit. In other words, the tiny core of
each star is its luminous “inner sun”, and the produced stellar energy is
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then transferred to the physical surface of the star by thermal conduction
(usual in liquid media).

This is our plan for the upcoming Chapters. As a result, we obtain a
mathematical theory of liquid stars and sources of stellar energy based
on General Relativity.

Before moving on to these steps, in the next §1.2 we will consider
the space metrics that we use in our theory. Then we introduce a new
classification of stars. This classification is based on the location of the
space breaking in the star’s field relative to its surface (the space break-
ing is calculated based on the space metric and the proper parameters
of the star).

At the end of this Chapter, in §1.3 we will give a detailed overview
of the mathematical apparatus of physically observable quantities in the
space-time of General Relativity, which we will need for our further
calculations.

1.2 Modelling a star in terms of General Relativity

Stars are spherical bodies filled with substance and light. Their fields
are also spherically symmetrical. Therefore, when considering a star in
terms of General Relativity, the structure, substance and field of such
an object must be given by a spherically symmetric space metric.

Among the space (space-time) metrics known in General Relativity,
three basic metrics describe spherically symmetric fields. These are the
Schwarzschild metric of a material point, the Schwarzschild metric of
a sphere filled with an incompressible liquid, and the de Sitter metric
describing the spherical distribution of the physical vacuum (λ-field,
determined by the λ-term in Einstein’s field equations). All three of
these metrics will be used when considering stars.

1.2.1 The mass-point metric

ds2 =

(
1 −

rg
r

)
c2dt2 −

dr2

1 −
rg
r

− r2
(
dθ2 + sin2θ dϕ2

)
(1.1)

was introduced in 1916 by Karl Schwarzschild [13]. The metric de-
scribes the field of a spherically symmetric massive body at such a large
distance from it that the physical sizes of the body are neglected (as-
suming that the body is a material point). The metric is written in the
spherical coordinates r, ϕ, θ, the origin of which coincides with the
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mass-point. Here rg = 2GM
c2 is the Hilbert radius of the massive body*,

and M is the body’s mass (i.e, the mass of the field source).
According to the metric (1.1), such a space does not rotate or de-

form. The gravitational inertial force (see §1.3 for detail) in such a space
is due only to the g00 component of the fundamental metric tensor gαβ.
As is seen from the mass-point metric (1.1),

g00 = 1 −
rg
r
. (1.2)

Differentiating the gravitational potential w= c2(1−
√
g00) with re-

spect to xi, we obtain the gradient of the potential

∂w
∂xi = −

c2

2
√
g00

∂g00

∂xi . (1.3)

Then substitute it into the general formula for the gravitational iner-
tial force (1.42), taking the absence of rotation of the space into account.
We obtain the formulae for the covariant and contravariant components
of the gravitational inertial force

F1 = −
c2rg
2r2

1

1 −
rg
r

, F1 = −
c2rg
2r2 . (1.4)

As is seen from the formulae, the gravitational inertial force in the
space of a mass-point is due only to the Newtonian gravitational field
created by the mass and is inversely proportional to the square of the
distance r from it.

The curvature of the space of a mass-point is due to the Newtonian
gravitational field created by a massive body located at the coordinate
origin. This is not a constant curvature space; its curvature decreases
with distance from the massive body (source of the field). At an infin-
itely large distance from the body, the space is flat.

*This is not the same as the physical radius of the body. At a distance of the Hilbert
radius from the centre of gravity of a massive body (r= rg), a gravitational collapse
occurs: in a space without rotation, this is the state in which the component g00 of the
fundamental metric tensor gαβ is zero (g00= 0). See §4.1 and §4.2 for detail. TheHilbert
radius was introduced by David Hilbert (1862–1944), who considered it in 1917 [15]
based on the Schwarzschild mass-point metric. It is also known as the Schwarzschild
radius, despite the fact that Karl Schwarzschild (1873–1916) never considered gravita-
tional collapse in his works [13, 14].
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1.2.2 A space filled with a spherically symmetric homogeneous
distribution of the physical vacuum (determined by the λ-field in Ein-
stein’s field equations) without an island of mass represented in it is
described by the de Sitter metric

ds2 =

(
1 −
λr2

3

)
c2dt2 −

dr2

1 − λr2

3

− r2
(
dθ2 + sin2θ dϕ2

)
. (1.5)

The metric was introduced in 1918 by Willem de Sitter [16] as a
static model of the Universe. It is assumed that λ< 10−56 in such a space,
so the physical vacuum has a very low density in it. The modern version
of the static model of the Universe is presented in [17].

The fundamental metric tensor through its components according
to the de Sitter metric (1.5) shows that such a space does not rotate or
deform. Therefore, the gravitational inertial force (1.42) in such a space
is due only to the g00 component of gαβ, which is

g00 = 1 −
λr2

3
. (1.6)

Accordingly, after the same algebra as previously, we obtain the
gravitational inertial force

F1 =
λc2

3
r

1 − λr2

3

, F1 =
λc2

3
r . (1.7)

This is a non-Newtonian force of gravitation proportional to dis-
tance: the force (λ-force) increases with the distance r over which it
acts. If λ< 0 (the observed vacuum density is positive), then this is a
force of attraction. If λ> 0 (the observed vacuum density is negative),
then this is a force of repulsion. See Chapter 5 of our book [18], where
we considered the de Sitter metric and the physically observable char-
acteristics of the physical vacuum in detail.

The curvature of a de Sitter space is due to the non-Newtonian grav-
itational field created by the physical vacuum (λ-field) homogeneously
filling the space. The curvature is the same everywhere in the space. In
other words, it is a constant curvature space.

1.2.3 The metric of a sphere filled with an incompressible liquid
was first introduced in 1916 by Karl Schwarzschild [14] in a truncated
form containing significant limitations. He artificially pre-constrained
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the derivation of the metric to free the field from a breaking*. The true
metric of a sphere filled with an incompressible liquid remained un-
known until 2009, when L. Borisova deduced it in the most complete
form [11, 12], which is free of any limitations and thus takes a space
breaking into account.

The model of stars as liquid spheres plays a key rôle in our theory.
Therefore, we consider the metric of a sphere filled with an incompress-
ible liquid in the complete form [11,12]

ds2 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2rg
a3


2

c2dt2 −

−
dr2

1 −
r2rg
a3

− r2
(
dθ2 + sin2θ dϕ2

)
, (1.8)

where a= const is the physical radius of the liquid sphere, and rg = 2GM
c2

is the Hilbert radius, calculated from the liquid sphere’s mass M (i.e.,
the mass of the field source). The derivation of this metric, containing
all the necessary details, will be reproduced in §2.1 of the book, where
we apply this metric to ordinary stars.

The metric (1.8) is written for distances r< a. This is the “internal
metric” of a liquid sphere. On the surface of the sphere (r= a) the metric
coincides with the mass-point metric. Moreover, as was proved in [11]
(this derivation will be reproduced in §2.1 of this book), the “external
metric” of a liquid sphere (r> a) also coincides with themass-point met-
ric: the external field of a liquid sphere coincides with the Newtonian
gravitational field of a material point.

As is seen from the liquid sphere metric (1.8), such a space does not
rotate or deform. Therefore, according to the definition of the gravita-
tional inertial force (1.42), the force in such a space is due only to g00.
Thus, in the metric (1.8) we have

g00 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2rg
a3


2

. (1.9)

*In fact, as soon as any limitation is pre-imposed on the metric of a space, the
geometry of the metric space is artificially truncated. In this sense, the Schwarzschild
metric, introduced in 1916, is not a true metric of the space of a liquid sphere.
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After the same algebra as previously, we obtain

F1 = −
c2rgr

a3

1(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

, (1.10)

F1 = −
c2rgr

a3

√
1 −

rg r2

a3

3
√

1 −
rg
a −

√
1 −

rg r2

a3

. (1.11)

Since r< a inside the sphere, F1< 0 in it. Therefore, this is a force
of attraction. Its numerical value is proportional to the distance r over
which the force acts. The force is zero at the centre of the sphere and
reaches its limit at the surface of the sphere.

It can be shown that the curvature of such a space, due to the men-
tioned field of gravitation, increases with distance from the centre of
the liquid sphere to its surface. In other words, the space inside a liq-
uid sphere is not a constant curvature space. We will give a proof and
discuss both the four-dimensional curvature and the observable three-
dimensional curvature of such a space in §2.3.

1.2.4 Here we propose a new method for modelling stars, which
is based on the mathematical methods of General Relativity.

Let us consider stars as spherical bodies consisting of a liquid. Ac-
cording to the model of liquid stars, the internal structure, substance,
and field of a star are described by the metric of a sphere filled with an
incompressible liquid (1.8). As shown above, the gravitational force in
this case increases with distance from the centre of the star. The exter-
nal field of such a star is described by the mass-point metric (1.1). In the
external field, the ordinary Newtonian gravitational force acts: the force
is inversely proportional to the square of the distance from the star.

The field of a liquid sphere as such is not continuous everywhere.
According to the external metric (1.1) and the internal metric (1.8) of a
liquid sphere, its field has a space breaking that appears at two distances
from its centre. In this regard, we are now introducing a new classifi-
cation of stars based on General Relativity. We hereby explain how to
build this classification.

A space breaking occurs due to the violation of the signature con-
ditions characteristic of the space metric. This means that the space has
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a singularity in that region (surface or volume) in which at least one of
the signature conditions is violated.

The signature conditions for the sign-alternating diagonal metric
(+−−−) such as the metric of the four-dimensional pseudo-Riemannian
space (which is the basic space-time of General Relativity) have the fol-
lowing form

g00 > 0

g00 g11 < 0

g00 g11g22 > 0

g = g00 g11g22 g33 < 0


. (1.12)

The first three are known as the weak signature conditions. The
fourth is known as the strong signature condition. If one or all of the
weak signature conditions are violated, but the strong signature condi-
tion remains valid, then this is a removable singularity. If the strong
signature condition is violated, then the space-time has an irremovable
singularity: in this case, the solution is usually dropped from consider-
ation, since it “does not have a physical sense”. Yes, perhaps someone
could not see the physical sense in this. However, these cases are of
great mathematical significance. Therefore, we will consider any space
singularity (space breaking).

Consider now the space of a liquid sphere. The external metric (1.1)
of the sphere violates the first signature condition (g00= 0) at the dis-
tance r= rg from the centre

g00 = 1 −
rg
r
= 0

g00 g11 = −1 < 0

g00 g11g22 = r2 > 0

g = −r4 sin2θ < 0


. (1.13)

The internal metric (1.8) of the sphere shows that the second, third
and fourth signature conditions are violated at the distance

r = rbr =

√
a3

rg
(1.14)
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from the centre, at which the above three functions tend to infinity*

g00 =
9
4

(
1 −

rg
a

)
> 0

g00 g11 → −∞

g00 g11g22 → ∞

g = g00 g11g22 g33 → −∞


. (1.15)

This means that the field of a liquid sphere has a space breaking at
two distances from its centre:

1. The first space breaking occurs on a spherical surface around the
centre of gravity of the liquid sphere at a distance of the Hilbert
radius r= rg. This is the surface of gravitational collapse accord-
ing to the condition g00= 0 in this space breaking. In other words,
although the liquid sphere itself may not be a collapsar, it always
contains a central “core”, which is separated from the other liq-
uid substance by the surface of gravitational collapse. In the case,
where the liquid sphere is a star (as in the model of liquid stars),
each star contains such a core. The core is much smaller than the
physical radius of ordinary stars: while the radius of the collapsed
core (Hilbert radius) of the Sun is rg = 2.9 × 105 cm (2.9 km), the
Sun’s physical radius is 7.0 × 1010 cm (700,000 km). Therefore,
we call the first space breaking the inner space breaking;

2. The second space breaking occurs on a spherical surface around
the liquid body at the distance rbr =

√
a3/rg from it. This distance

is much greater than the physical radius of ordinary stars. There-
fore, we call it the outer space breaking (as opposed to the in-
ner space breaking at the Hilbert radius). For example, the outer
space breaking in the Sun’s field occurs at the distance rbr = 3, 4×
1013 cm= 340,000,000 km= 2.3 AU from the Sun. This space
breaking is located in the asteroid belt, near the orbit of the max-
imum concentration of asteroids (the asteroid belt extends from
2.1 AU to 4.3 AU from the Sun). This means that the outer space
breaking in the Sun’s field does not allow substance to form into
a joint physical body (such as a planet) in this orbit.

*As is known, a function has a breaking when approaches infinity.
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If the physical radius a of a liquid star coincides with its Hilbert
radius rg = 2GM

c2 , then the star is a gravitational collapsar. In this case
(rg = a), the internal metric of a liquid sphere (1.8) takes the form

ds2 =
1
4

(
1 −

r2

a2

)
c2dt2 −

dr2

1 − r2

a2

− r2
(
dθ2 + sin2θ dϕ2

)
. (1.16)

This metric under the particular condition a2 = 3
λ > 0 (where λ> 0)

has the same form as the de Sitter metric (1.5)

ds2 =

(
1 −
λr2

3

)
c2dt2 −

dr2

1 − λr2

3

− r2
(
dθ2 + sin2θ dϕ2

)
(1.17)

that describes a spherical distribution of the physical vacuum (λ-field).
This means that such an object, which is a liquid sphere in the state of
gravitational collapse, consists of a liquid, the state of which is close to
the high-density state of the physical vacuum.

As a result, the new model of liquid stars allows us to introduce a
new classification of stars according to the location of the space break-
ings in the star’s field relative to its physical surface:
Type I: Ordinary stars including the Sun

The radius of the collapsed core, i.e., the Hilbert radius rg of an
ordinary star is many orders of magnitude smaller than its phys-
ical radius (rg≪ a). The outer space breaking rbr is far from an
ordinary star, in the outer cosmos (rbr≫ a). These are almost all
visible stars: supergiants, the Sun, brown dwarfs and even white
dwarfs. Ordinary stars will be considered in Chapter 2;

Type Ia: Wolf-Rayet stars
They are almost the same as ordinary stars, except that a powerful
stellar wind must be taken into account, consisting of the particles
of stellar substance permanently flying out of the stars (this is a
property that characterizes Wolf-Rayet stars). Such stars and their
stellar wind will be considered in Chapter 3;

Type II: Neutron stars and pulsars
The radius of the Hilbert core is close to the physical radius of
such a star (rg ≲ a), but does not reach it (otherwise the star would
be invisible to observation). The outer space breaking rbr is also
close to the physical surface of such a star, but does not reach it
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(rbr ≳ a). In addition, pulsars rotate at high velocities close to rel-
ativistic. As a result, the metric and energy-momentum tensor of
such a star differ from those of ordinary stars;

Type III: Black holes
The Hilbert radius rg (radius of the inner space breaking) and the
outer space breaking radius rbr for such an object coincide on its
physical surface (rg = rbr = a). These are gravitational collapsars
(black holes): on the physical surface of such an object, the state
of gravitational collapse occurs (g00= 0), so all its mass is concen-
trated under the collapsed surface. Black holes will be the focus
of Chapter 4 of the book.

This classification is presented in Table 1.1 with the numerical val-
ues of the parameters calculated for typical members of the known fam-
ilies of stars.

The new model of liquid stars, which we have just introduced on the
basis of General Relativity and considered in the new classification of
stars, will be developed in the following Chapters.

1.3 Physically observable quantities

Before considering stars from the point of view of General Relativity,
it is necessary to explain the basics of the mathematical apparatus of
physically observable quantities in the four-dimensional curved pseudo-
Riemannian space (space-time). A detailed overview of this theory had
already been given in the corresponding Chapters of our books [18,19].
We now give only the necessary foundations of this theory, with some
additions necessary for our current research study on the theory of liquid
stars*.

To draw a visual picture of any physical theory, we must express the
obtained results in terms of real physical quantities that can bemeasured
in an experiment (they are called physically observable quantities). In
General Relativity, this problem is not at all trivial, because we consider
objects in the four-dimensional space (space-time) and therefore must

*To date, the most complete description (compendium) of the mathematical ap-
paratus of physically observable quantities in General Relativity is given in our recent
article. In this article, we have collected everything (or almost everything) that we know
on this topic fromZelmanov andwhat has been obtained over the past decades: Raboun-
ski D. and Borissova L. Physical observables in General Relativity and the Zelmanov
chronometric invariants. Progress in Physics, 2023, vol. 19, no. 1, 3–29.
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determine which components of four-dimensional tensor quantities are
actually physically observable.

Here is the problem in a nutshell. All equations of the General The-
ory of Relativity are given in the general covariant form, which does
not depend on our choice of a reference frame. The equations, like the
variables they contain, are four-dimensional. Thus, we ask what compo-
nents of these four-dimensional variables are actually observable in real
physical experiments, i.e., what components are truly physically observ-
able quantities? Intuitively, we could, at first glance, easily assume that
the three-dimensional components of a four-dimensional tensor consti-
tute a physically observable quantity. But at the same time, we cannot
be absolutely sure that we observe only three-dimensional components
of four-dimensional quantities, and not more complex variables that de-
pend on other factors, such as the properties of the physical standards
of our reference space.

As is known, a four-dimensional vector (tensor of the 1st rank) has
only 4 components: 1 time component and 3 spatial components. A ten-
sor of the 2 rank, such as a rotation tensor or a deformation tensor, has
16 components: 1 time component, 9 spatial components and 6 mixed
(space-time) components. Now, are the mixed components really phys-
ically observable quantities? Higher rank tensors have even more com-
ponents; for example, the Riemann-Christoffel curvature tensor has 256
components, so the problem of heuristically recognizing truly physically
observable components becomes much more difficult. In addition, there
is an obstacle associated with recognizing the observable components
of covariant tensors (which have lower indices) and mixed-type tensors
with both lower and upper indices.

We see that the recognition of physically observable quantities in
General Relativity is not a trivial task. Ideally, we would like to have a
mathematical method for unambiguously calculating physically observ-
able quantities for any tensors of any given rank.

Numerous attempts to develop such a mathematical method were
made in the 1930s by some researchers of that time. A certain con-
tribution was made by L.D. Landau and E.M. Lifshitz in their famous
The Classical Theory of Fields [20], first published in 1939. In addi-
tion to discussing the problem of physically observable quantities, in
§84 of their book they introduced the physically observable time in-
terval along with the physically observable three-dimensional interval,
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which depend on the physical properties (physical standards) of the ob-
server’s reference space. But all such attempts made in the 1930s were
very limited to solving some particular problems. None of them led to
a complete mathematical apparatus.

The complete mathematical apparatus for calculating physically ob-
servable quantities in the four-dimensional pseudo-Riemannian space
was first introduced by Abraham L. Zelmanov and is known as the the-
ory of chronometric invariants, or the chronometrically invariant for-
malism. It was first presented in 1944 in his PhD thesis [21], then — in
his short articles of 1956–1957 [22, 23].

The essence of Zelmanov’s mathematical apparatus of physically
observable quantities (chronometric invariants), developed specifically
for the four-dimensional curved inhomogeneous pseudo-Riemannian
space (space-time), is as follows.

At any point in the space-time, we can place a three-dimensional
spatial section x0 = ct= const (three-dimensional space), orthogonal to
a given time line xi = const. If a spatial section is everywhere orthogonal
to the time lines piercing it at every point, then such a space is called
holonomic. Otherwise, if the spatial section is non-orthogonal to the
above time lines, then the space is said to be non-holonomic.

The reference frame of a real observer includes a coordinate grid
spanned over a real physical body (the reference body of the observer
near him) and real clocks located at each point of the coordinate grid.
Both the coordinate grid and the clocks are a set of real references with
which the observer compares the results of his measurements. There-
fore, the physically observable quantities registered by the observer
must be the result of projecting four-dimensional quantities onto the
time line and the spatial section associated with him.

The operator projecting onto the time line of an observer is the vec-
tor of the four-dimensional velocity

bα =
dxα

ds
(1.18)

of the observer’s reference body with respect to him. This vector is
tangential to the world line of the observer at every point. Therefore, it
is a unit length vector

bαbα = gαβ
dxα

ds
dxβ

ds
=
gαβ dxαdxβ

ds2 = + 1 . (1.19)
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The operator projecting onto the spatial section of the observer (his
local three-dimensional space) is defined as a four-dimensional sym-
metric tensor hαβ, which has the form

hαβ = −gαβ + bαbβ

hαβ = −gαβ + bαbβ

hβα = −g
β
α + bαbβ

 . (1.20)

The vector bα and the tensor hαβ are orthogonal to each other. Math-
ematically this means that their contraction with each other is zero, i.e.,
hαβbα = 0, hαβbα = 0, hαβ bα = 0, hβα bα = 0. Therefore, the main proper-
ties of the operators projecting onto the time line and the spatial section
of an observer are expressed, obviously, as follows

bαbα = +1 , hβα bα = 0 . (1.21)

If the observer is at rest with respect to his reference body, his ref-
erence frame is called the accompanying reference frame. In this case,
bi = 0 in his reference frame, and the coordinate grids of his spatial sec-
tion are connected with each other by the transformations

x̃0 = x̃0
(
x0, x1, x2, x3

)
x̃i = x̃i

(
x1, x2, x3

)
,
∂x̃i

∂x0 = 0

 , (1.22)

where the third equation means that the spatial coordinates of the tilde-
marked grid are independent of time in the non-tilded grid, which is
equivalent to a coordinate grid with fixed time lines (xi = const) at each
point. A transformation of the spatial coordinates is the transition from
one coordinate grid to another within the same spatial section. A trans-
formation of time means the change of the entire set of clocks, i.e., the
transition to another spatial section (another three-dimensional refer-
ence space). This means replacing one reference body with all its phys-
ical standards by another reference body having its own physical stan-
dards. But when using different standards, the observer will obtain dif-
ferent observed values. Therefore, physically observable projections in
the accompanying reference frame must be invariant under the transfor-
mations (1.22). In other words, such quantities must have the property
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of chronometric invariance. Therefore, we call physically observable
quantities determined in the accompanying reference frame chronomet-
rically invariant quantities, or chronometric invariants in short.

The projection tensor hαβ, considered in the reference space accom-
panying an observer, has all the properties attributed to the fundamental
metric tensor, namely

hαi hk
α = δ

k
i − bi bk = δki , δki =

 1 0 0
0 1 0
0 0 1

 , (1.23)

where δki is the unit three-dimensional tensor*. Therefore, in the accom-
panying reference frame the three-dimensional tensor hik can lift and
lower indices in chronometrically invariant quantities.

Thus, in the accompanying reference frame the main properties of
the projection operators are

bαbα = +1 , hi
αbα = 0 , hαi hk

α = δ
k
i . (1.24)

Calculate the components of the projection operators in the accom-
panying reference frame. The component b0 is obtained from the ob-
vious condition bαbα = gαβbαbβ = 1, which in the accompanying refer-
ence frame (bi = 0) has the form bαbα = g00 b0b0 = 1. Thus, we have

b0 =
1
√
g00
, bi = 0

b0 = g0αbα =
√
g00 , bi = giαbα =

gi0
√
g00

 , (1.25)

and the components of hαβ are

h00 = 0 , h00 = −g00 +
1
g00
, h0

0 = 0

h0i = 0 , h0i = −g0i, hi
0 = δ

i
0 = 0

hi0 = 0 , hi0 = −gi0, h0
i =
gi0

g00

hik = −gik +
g0ig0k

g00
, hik = −gik, hi

k = −g
i
k = δ

i
k


. (1.26)

*The tensor δk
i is the three-dimensional part of the four-dimensional unit tensor δαβ ,

which can be used to replace indices in four-dimensional quantities.
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Zelmanov had created a mathematical method for calculating the
chronometrically invariant (physically observable) projections of any
general covariant (four-dimensional) tensor quantity or tensor equation.
He had formulated this method in the form of a theorem, which we call
Zelmanov’s theorem:
Zelmanov’s theorem

Let there be a four-dimensional tensor Qµν...ραβ...σ of the r-th rank,
where Qik...p

00...0 is the three-dimensional part of Qµν...ρ00...0 , in which
all upper indices are non-zero and all m lower indices are zeroes.
Then,

T ik...p = (g00)−
m
2 Qik...p

00...0 (1.27)

is a chronometrically invariant three-dimensional contravariant
tensor of the (r−m)-th rank. This means that the chr.inv.-tensor
T ik...p is the result of m-fold projection of the initial tensor Qµν...ραβ...σ

onto the time line by the indices α, β . . . σ and onto the spatial sec-
tion by r−m indices µ, ν . . . ρ.

According to this theorem, the chronometrically invariant (physi-
cally observable) projections of a four-dimensional vector Qα are

bαQα =
Q0
√
g00
, hi

αQα = Qi, (1.28)

and the chr.inv.-projections of a symmetric tensor of the 2nd rank Qαβ

are the following quantities

bαbβQαβ =
Q00

g00
, hiαbβQαβ =

Qi
0

√
g00
, hi

αhk
βQαβ = Qik. (1.29)

The chr.inv.-projections of a four-dimensional coordinate interval
dxα are the physically observable time interval

dτ =
√
g00 dt +

g0i

c
√
g00

dxi (1.30)

and the intervals dxi of each of the three-dimensional (spatial) coordi-
nates. Accordingly, the physically observable velocity of a particle is
the three-dimensional chr.inv.-vector

vi =
dxi

dτ
, vi vi = hik vivk = v2, (1.31)
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which at isotropic trajectories becomes the three-dimensional chr.inv.-
vector of the physically observable velocity of light

ci = vi =
dxi

dτ
, ci ci = hik cick = c2. (1.32)

Projecting the covariant and contravariant fundamental metric ten-
sor onto the spatial section associated with an observer, in the reference
frame accompanying him (bi = 0) we have

hαi hβk gαβ = gik − bi bk = −hik

hi
αhk
β g
αβ = gik − bibk = gik = −hik

 , (1.33)

which means that the chr.inv.-quantity

hik = −gik + bi bk (1.34)

is the chr.inv.-metric tensor, i.e., the physically observable metric ten-
sor, using which we can lift and lower indices in any three-dimensional
chr.inv.-object. The contravariant and mixed components of the chr.inv-
metric tensor are, obviously,

hik = −gik, hi
k = −g

i
k = δ

i
k . (1.35)

Formulating gαβ through the definition of hαβ =−gαβ + bαbβ, we
obtain the formula for the four-dimensional interval

ds2 = bαbβ dxαdxβ − hαβ dxαdxβ, (1.36)

expressed through the projection operators bα and hαβ. In this formula,
we have bαdxα = cdτ. Therefore, the first term is bαbβ dxαdxβ = c2dτ2.
The second term hαβ dxαdxβ = dσ2 is the square of the physically ob-
servable three-dimensional interval*

dσ2 = hik dxidxk. (1.37)

Thus, the four-dimensional interval, represented through physically
observable quantities, is

ds2 = c2dτ2 − dσ2. (1.38)

*Since hαβ in the accompanying reference frame has all properties of gαβ.
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Zelmanov had also deduced the main physically observable proper-
ties characteristic of the accompanying reference space associated with
an observer. He proceeded from the property of non-commutativity
(non-zero difference) of the mixed second chr.inv.-derivatives

∗∂2

∂xi∂t
−
∗∂2

∂t ∂xi =
1
c2 Fi

∗∂

∂t
, (1.39)

∗∂2

∂xi∂xk −
∗∂2

∂xk∂xi =
2
c2 Aik

∗∂

∂t
, (1.40)

where the chr.inv.-derivation operators that he had introduced are
∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi =
∂

∂xi −
g0i

g00

∂

∂x0 . (1.41)

The first two physically observable properties of the observer’s ref-
erence space are characterized by the chr.inv.-vector Fi of the gravita-
tional inertial force and the antisymmetric chr.inv.-tensor Aik of the an-
gular velocity with which the reference space rotates

Fi =
1
√
g00

(
∂w
∂xi −

∂vi
∂t

)
, (1.42)

Aik =
1
2

(
∂vk

∂xi −
∂vi

∂xk

)
+

1
2c2 (Fi vk − Fk vi) , (1.43)

where the quantities w and vi characterize the reference body and its
reference space. These are the gravitational potential

w = c2 (
1 −
√
g00

)
, 1 −

w
c2 =

√
g00 (1.44)

and the linear velocity with which the reference space rotates

vi = −c
g0i
√
g00
, vi = −cg0i√g00

vi = hik v
k, v2 = vk v

k = hik v
ivk

 . (1.45)

It should be noted that the quantities w and vi do not have the prop-
erty of chronometric invariance, despite the fact that vi = hik v

k can be
obtained as for any chr.inv.-quantity through lowering the index by the
chr.inv.-metric tensor hik.
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Zelmanov had also found that the chr.inv.-quantities Fi and Aik are
connected by two identities, which we call Zelmanov’s identities

∗∂Aik

∂t
+

1
2

(
∗∂Fk

∂xi −
∗∂Fi

∂xk

)
= 0 , (1.46)

∗∂Akm

∂xi +
∗∂Ami

∂xk +
∗∂Aik

∂xm +
1
2

(Fi Akm + Fk Ami + Fm Aik) = 0 . (1.47)

In the framework of quasi-Newtonian approximation, i.e., in a weak
gravitational field at velocities much lower than the velocity of light and
in the absence of rotation of the space, Fi (1.42) becomes an ordinary
non-relativistic gravitational force Fi =

∂w
∂x i .

Zelmanov had also introduced the following theorem setting up the
space holonomity condition:
Zelmanov’s theorem on the space holonomity condition

For a four-dimensional region of a space (space-time), the identi-
cal equality to zero of the tensor Aik is the necessary and sufficient
condition for the orthogonality of the spatial sections to the time
lines everywhere in this region.

In other words, the necessary and sufficient condition for a space to
be holonomic is achieved by setting the tensor Aik equal to zero. Natu-
rally, if the spatial sections are everywhere orthogonal to the time lines
(in this case the space is holonomic), then the quantities g0i are zero.
Since g0i= 0, we have vi = 0 and Aik= 0. Therefore, we call the tensor
Aik the space non-holonomity tensor.

If the conditions Fi = 0 and Aik= 0 are satisfied in a space region,
then the conditions g00 = 1 and g0i= 0 are also satisfied there. In such
a region, according to (1.30), dτ= dt: the difference between the coor-
dinate time t and the physically observable time τ disappears, since the
space is free from gravitational fields and rotation. In other words, ac-
cording to the theory of chronometric invariants, the difference between
the coordinate time t and the physically observable time τ comes from
both the gravitational field and rotation of the observer’s reference space
(which is the local space of the Earth for an Earth-bound observer), or
each of these physical factors separately.

On the other hand, it is unrealistic to find such a region in the Uni-
verse, where the background space would have neither gravitational
fields nor rotation. Therefore, in practice, the physically observable time
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τ and the coordinate time t differ from each other. This means that the
real space of our Universe is non-holonomic, and a holonomic space
can only be its local approximation.

The space holonomity condition is directly related to the problem
of integrability of time. The formula for the physically observable time
interval (1.30) does not have an integrating factor. In other words, this
formula cannot be reduced to the form

dτ = Adt , (1.48)

where the multiplier A depends on only t and xi. This is because in
a non-holonomic space, the formula (1.30) has a non-zero second term
depending on the coordinate interval dxi and also on g0i. In a holonomic
space, we have Aik= 0 and g0i= 0, so the second term of (1.30) is zero,
while the first term is the elementary time interval dt with an integrat-
ing multiplier

A =
√
g00 = f

(
x0, xi

)
, (1.49)

which allows us to write the integral

dτ =
∫
√
g00 dt . (1.50)

Therefore, time is globally integrable in a holonomic space (Aik= 0),
but cannot be globally integrated in a non-holonomic space (Aik, 0). In
the case, where time is integrable (a holonomic space), we can synchro-
nize clocks at two distant points in the space by moving a control clock
along the path between these two points. In the case, where time cannot
be globally integrated (a non-holonomic space), the clock synchroniza-
tion at two distant points is impossible: the greater the distance between
these two points, the greater the time deviation on these clocks.

The space of our planet Earth is non-holonomic due to its daily ro-
tation around the Earth’s axis. Therefore, two clocks located at different
points on the Earth’s surface must show a deviation between the time
intervals registered on each of them. The greater the distance between
these clocks, the greater the deviation of the physically observed time
registered on them. This effect was undoubtedly verified by the Hafele-
Keating experiment [24–29] on moving a set of standard atomic clocks
by a jet airplane around the globe. In this experiment, the rotation of
the Earth’s space significantly changed the measured time. When flying
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along the Earth’s rotation, the local space of an observer on board the
airplane had a greater rotation than the local space of another observer,
who remained motionless on the ground. During the flight against the
Earth’s rotation, it was the other way around. All the atomic clocks on
board the airplane showed a significant deviation of the observed time
depending on the velocity with which the observer’s space rotates.

Since the synchronization of clocks at various points on the Earth’s
surface is the most important task of maritime navigation, as well as
aviation, in the old days, desynchronization corrections were introduced
in the form of tables containing empirically obtained corrections that
take the Earth’s rotation into account. Now, thanks to the theory of
chronometric invariants, we know the origin of these corrections and
can calculate them on the basis of General Relativity.

In addition to gravitation and rotation, the reference body can de-
form thereby changing its coordinate grids over time. This factor must
also be taken into account in measurements. This can be done by select-
ing in the equations the three-dimensional symmetric chr.inv.-tensor of
the deformation rate of the reference space

Dik =
1
2

∗∂hik

∂t
, Dik = −

1
2

∗∂hik

∂t

D = hikDik =
∗∂ ln
√

h
∂t

, h = det ∥hik∥

 . (1.51)

The Christoffel symbols characterize the inhomogeneity of the ob-
server’s reference space. The regular Christoffel symbols of the 2nd
rank Γαµν and those of the 1st rank Γµν,σ, i.e.

Γαµν = g
ασ Γµν,σ =

1
2
gασ

(
∂gµσ

∂xν
+
∂gνσ
∂xµ

−
∂gµν

∂xσ

)
, (1.52)

are related to the corresponding chr.inv.-Christoffel symbols

∆i
jk = him∆jk,m =

1
2

him
( ∗∂hjm

∂xk +
∗∂hkm

∂x j −

∗∂hjk

∂xm

)
, (1.53)

which are determined similarly to the Γαµν and Γµν,σ. The only difference
is that here, instead of the fundamental metric tensor gαβ, the chr.inv.-
metric tensor hik is used.
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The components of the regular Christoffel symbols can be expressed
through the chr.inv.-properties of the observer’s reference space. Ex-
pressing the gαβ components and the first derivatives of gαβ in terms of
Fi, Aik, Dik, w and vi, after some algebra we obtain

Γ00,0 = −
1
c3

(
1 −

w
c2

)
∂w
∂t
, (1.54)

Γ00,i =
1
c2

(
1 −

w
c2

)2
Fi +

1
c4 vi
∂w
∂t
, (1.55)

Γ0i,0 = −
1
c2

(
1 −

w
c2

)
∂w
∂xi , (1.56)

Γ0i, j = −
1
c

(
1 −

w
c2

) (
Dij + Aij +

1
c2 Fj vi

)
+

1
c3 vj
∂w
∂xi , (1.57)

Γij,0 =
1
c

(
1 −

w
c2

) [
Dij −

1
2

(
∂vj

∂xi +
∂vi

∂x j

)
+

1
2c2

(
Fi vj + Fj vi

)]
, (1.58)

Γij,k = −∆ij,k +
1
c2

[
vi Ajk + vj Aik +

1
2
vk

(
∂vj

∂xi +
∂vi

∂x j

)
−

−
1

2c2 vk
(
Fi vj + Fj vi

)]
+

1
c4 Fk vi vj , (1.59)

Γ0
00 = −

1
c3

 1

1 − w
c2

∂w
∂t
+

(
1 −

w
c2

)
vk F k

 , (1.60)

Γk
00 = −

1
c2

(
1 −

w
c2

)2
F k, (1.61)

Γ0
0i =

1
c2

− 1

1 − w
c2

∂w
∂xi + vk

(
Dk

i + A·ki· +
1
c2 vi F k

) , (1.62)

Γk
0i =

1
c

(
1 −

w
c2

) (
Dk

i + A·ki· +
1
c2 vi F k

)
, (1.63)

Γ0
ij = −

1

c
(
1 − w

c2

) {
−Dij +

1
c2 vn ×

×

[
vj

(
Dn

i + A·ni·
)
+ vi

(
Dn

j + A·nj·
)
+

1
c2 vi vj Fn

]
+
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+
1
2

(
∂vi

∂x j +
∂vj

∂xi

)
−

1
2c2

(
Fi vj + Fj vi

)
− ∆n

ij vn

}
, (1.64)

Γk
ij = ∆

k
ij −

1
c2

[
vi

(
Dk

j + A·kj·
)
+ vj

(
Dk

i + A·ki·
)
+

1
c2 vi vj F k

]
, (1.65)

from which we obtain

Di
k + A·ik· =

c
√
g00

Γi
0k −
g0kΓ

i
00

g00

 , (1.66)

F k = −
c2 Γk

00

g00
, (1.67)

hiqhks∆m
qs = g

iαgkβ Γm
αβ . (1.68)

By analogy with the respective absolute derivatives, Zelmanov had
also introduced the chr.inv.-derivatives

∗∇i Qk =
∗∂Qk

dxi − ∆
l
ik Ql , (1.69)

∗∇i Qk =
∗∂Qk

dxi + ∆
k
il Ql, (1.70)

∗∇i Qjk =
∗∂Qjk

dxi − ∆
l
ij Qlk − ∆

l
ik Qjl , (1.71)

∗∇i Qk
j =

∗∂Qk
j

dxi − ∆
l
ij Qk

l + ∆
k
il Ql

j , (1.72)

∗∇i Q jk =
∗∂Q jk

dxi + ∆
j
il Qlk + ∆k

il Q jl, (1.73)

∗∇i Qi =
∗∂Qi

∂xi + ∆
j
ji Qi, ∆

j
ji =

∗∂ ln
√

h
∂xi , (1.74)

∗∇i Q ji =
∗∂Q ji

∂xi + ∆
j
il Qil + ∆l

li Q ji, ∆l
li =

∗∂ ln
√

h
∂xi . (1.75)

Zelmanov had also introduced the chr.inv.-curvature tensor. He fol-
lowed the same procedure by which the Riemann-Christoffel curvature
tensor was constructed, based on the non-commutativity of the second
derivatives of an arbitrary vector Qα taken in a given space, the geom-
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etry of which is Riemannian.
Taking into account the non-commutativity of the second chr.inv.-

derivatives of an arbitrary three-dimensional vector

∗∇i
∗∇k Ql −

∗∇k
∗∇i Ql =

2Aik

c2

∗∂Ql

∂t
+ H ··· jlki·Qj , (1.76)

where the chr.inv.-covariant differential of the vector is
∗∇k Qidxk = dQi + ∆i

kl Qkdxl, (1.77)

Zelmanov obtained the chr.inv.-tensor

H ··· jlki· =

∗∂∆
j
il

∂xk −

∗∂∆
j
kl

∂xi + ∆
m
il ∆

j
km − ∆

m
kl∆

j
im , (1.78)

which is similar to Schouten’s tensor from the theory of non-holonomic
manifolds [30]. The tensor H ··· jlki· differs from the Riemann-Christoffel
tensor R ···αβγδ· due to the presence of the space rotation tensor Aik in the
formula (1.76). Its generalization gives the chr.inv.-tensor

Clkij =
1
4

(
Hlkij − Hjkil + Hklji − Hiljk

)
, (1.79)

which has all the algebraic properties of the Riemann-Christoffel ten-
sor in the three-dimensional space of the observer (his spatial section).
Since the chr.inv.-tensor Ciklj is in fact the physically observable cur-
vature tensor of the observer’s spatial section, Zelmanov called it the
chr.inv.-curvature tensor. Contracting it step-by-step

Ckj = C ···ikij· = himCkimj , C = C j
j = hljClj , (1.80)

we obtain the chr.inv.-curvature scalarC, which is the observable three-
dimensional curvature of the space.

The tensor Hlkij is related to the curvature tensor Clkij by

Hlkij = Clkij +
1
c2

(
2Aki Djl + Aij Dkl + Ajk Dil +

+ Akl Dij + Ali Djk
)
, (1.81)

and their contractions Hlk =H ···ilki· and Clk =C ···ilki· are related as

Hlk = Clk +
1
c2

(
Akj D j

l + Alj D j
k + Akl D

)
. (1.82)
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In a particular case, where the space does not rotate, Hlkij =Clkij and
Hlk =Clk. In this case, Clk = hijCilkj has the form

Clk =
∗∂

∂xk

 ∗∂ ln
√

h
∂xl

 − ∗∂∆i
kl

∂xi + ∆
m
il ∆

i
km − ∆

m
kl

∗∂ ln
√

h
∂xm . (1.83)

Zelmanov had also deduced the chr.inv.-projections of the Riemann-
Christoffel curvature tensor Rαβγδ. Since its paired indices are non-
symmetric inside each pair, while the pairs are symmetric with respect
to each other, it has three chr.inv.-projections according to (1.29)

X ik = −c2 R·i·k0·0·

g00
, Y ijk = −c

R·ijk0···
√
g00
, Z ijkl = c2Rijkl. (1.84)

Substituting the necessary components of the Riemann-Christoffel
tensor Rαβγδ and then lowering the indices, Zelmanov had obtained

Xij =
∗∂Dij

∂t
−

(
D l

i + A·li·
) (

Djl + Ajl
)
+

+
(
∗∇i Fj +

∗∇j Fi
)
−

1
c2 Fi Fj , (1.85)

Yijk =
∗∇i

(
Djk + Ajk

)
−∗∇j (Dik + Aik) +

2
c2 Aij Fk , (1.86)

Ziklj = Dik Dlj − Dil Dkj + Aik Alj −

− Ail Akj + 2Aij Akl − c2Ciklj , (1.87)

where Y(ijk) =Yijk +Yjki +Ykij = 0 just like in the Riemann-Christoffel
tensor. Contraction of the spatial projection Ziklj step-by-step gives

Zil = hkjZiklj = Dik Dk
l − Dil D + Aik A·kl· + 2Aik Ak·

·l − c2Cil , (1.88)

Z = hilZil = Dik Dik − D2 − Aik Aik − c2C . (1.89)

At the end of our overview of the chronometrically invariant for-
malism, consider Einstein’s field equations*

Rαβ −
1
2
gαβR = −κTαβ + λgαβ . (1.90)

*The left hand side of the field equations (1.90) is often referred to as the Einstein
tensor Gαβ =Rαβ − 1

2 gαβR, in the notation Gαβ =−κTαβ + λgαβ.
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Einstein’s equations include: the fundamental metric tensor gαβ,
Ricci’s tensor Rαβ =R ···σασβ· (resulting from contraction of the Riemann-
Christoffel curvature tensor), the Riemann curvature scalar R= gαβRαβ,
Einstein’s constant κ= 8πG

c2 = 18.6 × 10−28 cm/gram, the constant of
gravitation G = 6.672 × 10−8 cm3gram−1sec−2, the energy-momentum
tensor Tαβ of a distributed matter, and also the λ-term [cm−2] that de-
scribes the physical vacuum. See §5.2 of the book [18].

Landau and Lifshitz [20] used κ= 8πG
c4 instead of κ= 8πG

c2 as used by
Zelmanov. To understandwhy, assume κ= 8πG

c2 as in Zelmanov’s theory.
Consider the chr.inv.-projections of the energy-momentum tensor

ρ =
T00

g00
, J i =

cT i
0

√
g00
, U ik = c2T ik, (1.91)

calculated as for any 2nd rank symmetric tensor (1.29). They have the
following physical sense: ρ is the observable mass density, J i is the
observable momentum density, and U ik is the observable stress tensor.
Ricci’s tensor has the dimension [cm−2]. Therefore, the scalar chr.inv.-
projection of the field equations, G00

g00
=−

κT00
g00
+ λ, as well as κT00

g00
=

8πGρ
c2

have the same dimension [cm−2]. Hence, the energy-momentum tensor
Tαβ has the same dimension as mass density [gram/cm3]. Therefore, if
we would use κ= 8πG

c4 on the right hand side of the field equations, then
we used not the energy-momentum tensor Tαβ but rather c2Tαβ.

The chr.inv.-projections of Einstein’s field equations (1.90) are cal-
culated as for any tensor of the 2nd rank (1.29). They have the form

∗∂D
∂t
+ Djl Dlj + Ajl Alj +

(
∗∇j −

1
c2 Fj

)
F j =

= −
κ

2

(
ρc2 + U

)
+ λc2, (1.92)

∗∇j
(
hijD − Dij − Aij

)
+

2
c2 Fj Aij = κ J i, (1.93)

∗∂Dik

∂t
−

(
Dij + Aij

) (
D j

k + A· jk·

)
+ DDik − Dij D j

k +

+ 3Aij A· jk· +
1
2

(∗∇i Fk +
∗∇k Fi

)
−

1
c2 Fi Fk − c2Cik =

=
κ

2

(
ρc2hik + 2Uik − Uhik

)
+ λc2hik , (1.94)
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which we call the chr.inv.-Einstein equations. Here U = hikUik is the
trace of the stress tensor Uik.

In addition, the energy-momentum tensor Tαβ of a distributedmatter
must satisfy the conservation law

∇σT ασ = 0 . (1.95)

The chr.inv.-projections of the conservation law are calculated as for
any tensor of the 1st rank (1.28). We call them the chr.inv.-conservation
law equations. They have the form

∗∂ρ

∂t
+ Dρ +

1
c2 Dij U ij + ∗∇̃i J i −

1
c2 Fi J i = 0 , (1.96)

∗∂Jk

∂t
+ DJk + 2

(
Dk

i + A·ki·
)

J i + ∗∇̃i U ik − ρF k = 0 , (1.97)

where the chr.inv.-operator ∗∇̃i =
∗∇i −

1
c2 Fi is created on the basis of the

chr.inv.-derivative operator ∗∇i.
With these definitions we can find out how any geometric object of

the four-dimensional pseudo-Riemannian space (space-time of General
Relativity) looks like from the point of view of any observer, located in
this space. For example, having any equation obtained in the general
covariant tensor analysis, we can calculate its chr.inv.-projections onto
the time line and the spatial section associated with any particular refer-
ence frame, and then formulate the corresponding chr.inv.-projections
in terms of the physically observable properties of this reference space.
Following this way, we will come to the equations containing only quan-
tities measurable in practice.

So, now we have all the mathematical “tools” necessary for our fur-
ther mathematical theory of the internal constitution of stars and sources
of stellar energy based on General Relativity.
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2.1 Introducing the space metric of a liquid star. Einstein’s equa-
tions in the form satisfying the metric

In this Chapter, we present our mathematical theory of liquid stars being
applied to ordinary stars. This means Type I of stars according to the
new classification we have just introduced based on General Relativity
(see §1.2 and Table 1.1 therein). Type I covers the widest variety of
stars, which includes super-giants, sun-like stars (including the Sun),
ordinary dwarfs and also white dwarfs*.

The structure, substance and field of a liquid star are characterized
by the Schwarzschild metric of a sphere filled with an incompressible
liquid. The metric was originally introduced in 1916 by Karl Schwarz-
schild [14]. He, however, introduced it in a truncated form contain-
ing substantial limitations: he artificially pre-imposed these limitations
in his derivation in order to free the field of a breaking; this leads to
an artificial truncation of the geometry of this metric space. In other
words, the metric introduced by Karl Schwarzschild is not exactly the
space metric of a liquid sphere. The true metric of a sphere filled with
an incompressible liquid, which is free of the mentioned limitations
and, thus, takes a space breaking into account, was deduced in 2009
by L. Borissova [11, 12]. Let us now reproduce her derivation, follow-
ing her most detailed explanation [11] along with some recent additions
and comments.

Consider an empty space containing a spherical island, which is
a liquid. The structure, substance and field of such a massive island
should be characterized by a space metric with spherical symmetry. As
is known, all spherically symmetric metrics have the following general

*In the framework of Eddington’s theory of gaseous stars, white dwarfs are consid-
ered separately.



42 Chapter 2 Liquid Stars and the Liquid Sun

form
ds2 = eνc2dt2 − eλdr2 − r2

(
dθ2 + sin2θ dϕ2

)
, (2.1)

where eν and eλ are functions of r and t.
The substance and field of the spherical liquid island must satisfy

Einstein’s field equations (1.90), which in the case under consideration
have the λ-field neglected, i.e.

Rαβ −
1
2
gαβR = −κTαβ , (2.2)

where Rαβ is Ricci’s curvature tensor, R is the curvature scalar, κ= 8πG
c2

= 18.6 × 10−28 cm/gram is Einstein’s gravitational constant, and Tαβ is
the energy-momentum tensor of a matter (liquid) distributed over the
space. Note that the energy-momentum tensor of any distributed matter
must satisfy the conservation law

∇σT ασ = 0 , (2.3)

where ∇σ is the general covariant derivative symbol.
Einstein’s field equations connect the components of the fundamen-

tal metric tensor, the space curvature and the distributed matter accord-
ing to Riemannian geometry. In other words, the invariant square form
of Riemannian metric, ds2= gαβ dxαdxβ= inv, together with Einstein’s
field equations characterize Riemannian spaces (i.e., spaces, the geom-
etry of which is Riemannian). Concerning the General Theory of Rela-
tivity, this means the following. Let us have a Riemannian space with a
specific metric ds2. Assume that a matter is distributed over the space
(thereby we assume a specific formula for the energy-momentum ten-
sor Tαβ). Then, the components of the fundamental metric tensor gαβ
(known from the specific formula for the metric ds2) and the compo-
nents of the specific energy-momentum tensor Tαβ, when substituted
into (respectively) the left hand side and the right hand side of Einstein’s
field equations should transform these equations into identities.

Here is how, based on the general formula for the spherically sym-
metric metric (2.1), we can deduce the metric of a sphere filled with an
ideal liquid. First, we take the energy-momentum tensor of an ideal liq-
uid and substitute its components into the right hand side of the field
equations. Then we find the components of the fundamental metric
tensor from the spherically symmetric metric (2.1) in their general form,
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containing the coefficients eν and eλ. We substitute these components
into the left hand side of the field equations. Then we look at what kind
of the coefficients eν and eλ make the left hand side of the field equa-
tions the same as the right hand side (thus turning the field equations into
identities). Finally, we substitute the resulting specific formulae for the
coefficients eν and eλ back into the general formula for the spherically
symmetric metric. As a result, we obtain the true metric of a sphere
filled with an ideal liquid. Voilà!

One might as well ask why Schwarzschild himself did not do just
that? Instead, why did he go down another complicated path full of
speculations? There is no answer to this question. . . Let us come back
to our derivation.

As is known, the energy-momentum tensor of an ideal liquid (which
is incompressible and non-viscous) has the form

T αβ =
(
ρ0 +

p
c2

)
UαU β −

p
c2 g

αβ, (2.4)

where ρ= ρ0 = const is the density of the liquid (which is constant), p
is the pressure inside the liquid, and

Uα =
dxα

ds
, UαUα = 1 (2.5)

is the four-dimensional velocity of the liquid flowwith respect to the ob-
server (his reference space coincides with the space of the liquid sphere,
at the centre of which the coordinate origin is located).

Let us formulate the field equations in component notation, taking
into account the physically observable properties of the space associated
with the liquid sphere.

First, we see that

g00 = eν, g0i = 0

g11 = −eλ, g22 = −r2, g33 = −r2 sin2θ

 (2.6)

in the metric of spherically symmetric spaces (2.1). According to the
chronometrically invariant formalism (see §1.3), the gravitational po-
tential in such a space has the following formula

w = c2
(
1 − e

ν
2
)
. (2.7)
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Since g0i= 0 in the metric, such a space does not rotate: the linear
velocity of its rotation is vi = 0. Therefore, the chr.inv.-tensor of the
angular velocity associated with the space is zero

Aik =
1
2

(
∂vk

∂xi −
∂vi

∂xk

)
+

1
2c2 (Fi vk − Fk vi) = 0 , (2.8)

and the chr.inv.-vector of the gravitational inertial force has the form

Fi =
c2

c2 − w

(
∂w
∂xi −

∂vi
∂t

)
= −

c2

2
ν′, (2.9)

where the prime denotes differentiation along the radial coordinate r.
With the above, the chr.inv.-metric tensor hik of the space has the fol-
lowing non-zero components

h11 = eλ, h22 = r2, h33 = r2 sin2θ , (2.10)

h11 = e−λ, h22 =
1
r2 , h33 =

1
r2 sin2θ

, (2.11)

h = det ∥hik∥ = eλr4 sin2θ . (2.12)

Since the chr.inv.-tensor Dik of the deformation rate of the space
is determined through the chr.inv.-derivatives of the hik, it has only the
following non-zero components

D11 =
λ̇

2
eλ−

ν
2 , D11 =

λ̇

2
e−λ−

ν
2 , D =

λ̇

2
e−
ν
2 , (2.13)

where the upper dot means differentiation along the time coordinate t.
The chr.inv.-Christoffel symbols (they characterize the physically

observable inhomogeneity of the space) are calculated according to their
definition given in §1.3, using the components of the chr.inv.-metric ten-
sor hik. After some algebra, we obtain formulae for the non-zero com-
ponents of ∆ij,m, which have the form

∆11,1 =
λ′

2
eλ , ∆22,1 = −r , ∆33,1 = −r sin2θ , (2.14)

∆12,2 = r , ∆33,2 = −r2 sin θ cos θ , (2.15)

∆13,3 = r sin2θ , ∆23,3 = r2 sin θ cos θ , (2.16)
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then we obtain the non-zero components of ∆k
ij

∆1
11 =

λ′

2
, ∆1

22 = −re−λ, ∆1
33 = −r sin2θ e−λ, (2.17)

∆2
12 =

1
r
, ∆2

33 = − sin θ cos θ , (2.18)

∆3
13 =

1
r
, ∆3

23 = cot θ . (2.19)

As was shown in §1.3, in a space without rotation, the 2nd rank
chr.inv.-curvature tensor Clk = hijCilkj (physically observable curvature
tensor) has the form (1.83). We are considering a space that does not
rotate. Thus, after some algebra, we obtain the non-zero components
of the chr.inv.-curvature tensor Clk for the spherically symmetric metric
(2.1). They have the form

C11 = −
λ′

r
, C22 =

C33

sin2θ
= e−λ

(
1 −

rλ′

2

)
− 1. (2.20)

Calculate the chr.inv.-projections of the energy-momentum tensor
of an ideal liquid (2.4) according to the general formulae (1.91). The
projections are the observable mass density ρ, the observable momen-
tum density J i and the observable stress tensor U ik of the liquid. Using
the conditions bi= 0 and b0= 1√

g00
(1.25) characteristic of the accom-

panying reference frame (since, in the case under consideration, the ob-
server accompanies the liquid sphere), we obtain

ρ =
T00

g00
= ρ0 , J i =

cT i
0

√
g00
= 0 , U ik = c2T ik = phik. (2.21)

According to the first chr.inv.-component, the liquid medium has a
density ρ= ρ0, which is constant everywhere inside the sphere.

The obtained condition J i= 0 means that the liquid medium has no
flows, and U ik = phik means that the observer’s reference space accom-
panies the liquid.

Also, according to the third chr.inv.-component, the traceU = hikUik

of the observable stress tensor U ik of the liquid medium is expressed
through the pressure p inside it as follows

U = 3p . (2.22)
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The chr.inv.-Einstein equations (1.92–1.94) in a space without rota-
tion take the simplified form

∗∂D
∂t
+ Djl Dlj +

(
∗∇j −

1
c2 Fj

)
F j = −

κ

2

(
ρ0c2 + U

)
, (2.23)

∗∇j
(
hijD − Dij

)
= 0 , (2.24)

∗∂Dik

∂t
− Dij D j

k + DDik − Dij D j
k +

1
2

(∗∇i Fk +
∗∇k Fi

)
−

−
1
c2 Fi Fk − c2Cik =

κ

2

(
ρ0c2hik + 2Uik − Uhik

)
, (2.25)

where ∗∇i is the chr.inv.-derivative symbol. The chr.inv.-conservation
law equations (1.96, 1.97) are also simplified as

Dρ0 +
1
c2 Dij U ij = 0 , (2.26)

∗∇̃i U ik − ρ0 F k = 0 , (2.27)

where we denote ∗∇̃i =
∗∇i −

1
c2 Fi.

Substitute, into the chr.inv.-Einstein equations (2.23–2.25), the ob-
tained chr.inv.-characteristics of a space with the spherically symmetric
metric (2.1), as well as the obtained chr.inv.-components of the energy-
momentum tensor of an ideal liquid. After some algebra, we obtain the
chr.inv.-Einstein equations (2.23–2.25) in component notation

e−ν
λ̈ − λ̇ ν̇2 + λ̇

2

2

 − c2e−λ
[
ν′′ −

λ′ν′

2
+

2ν′

r
+

(ν′)2

2

]
=

= − κ
(
ρ0c2 + 3p

)
eλ, (2.28)

λ̇

r
e−λ−

ν
2 = 0 , (2.29)

eλ−ν
λ̈ − λ̇ ν̇2 + λ̇

2

2

 − c2
[
ν′′ −

λ′ν′

2
+

(ν′)2

2

]
+

2c2λ′

r
=

= κ
(
ρ0c2 − p

)
eλ, (2.30)

c2 (λ′ − ν′)
r

e−λ +
2c2

r2

(
1 − e−λ

)
= κ

(
ρ0c2 − p

)
. (2.31)
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The second equation shows that λ̇ = 0 in this case. This means that
the internal space of the liquid sphere does not deform: using λ̇ = 0
we obtain D11= 0, D11= 0 and D= 0 according to (2.13). Taking this
circumstance into account, as well as the stationarity of the λ, we reduce
the field equations (2.28–2.31) to the final form

c2e−λ
[
ν′′ −

λ′ν′

2
+

2ν′

r
+

(ν′)2

2

]
= κ

(
ρ0c2 + 3p

)
eλ, (2.32)

2c2λ′

r
− c2

[
ν′′ −

λ′ν′

2
+

(ν′)2

2

]
= κ

(
ρ0c2 − p

)
eλ, (2.33)

c2 (λ′ − ν′)
r

e−λ +
2c2

r2

(
1 − e−λ

)
= κ

(
ρ0c2 − p

)
. (2.34)

To solve the field equations (2.32–2.34), we need a formula for the
pressure p. To find this formula, consider the conservation equations
(2.26, 2.27). Since the space does not deform (Dik= 0) in the case under
consideration, the chr.inv.-scalar conservation equation (2.26) vanishes.
Only the chr.inv.-vector conservation equation (2.27) remains non-zero.
Under the above conditions that we have assumed, it takes the form

∗∇i
(
phik

)
−

(
ρ0 +

p
c2

)
F k = 0 . (2.35)

Since ∗∇i hik= 0 is true always for the chr.inv.-metric tensor (as well
as ∇σ gασ= 0 for the fundamental metric tensor), the remaining conser-
vation equation (2.35) takes the form

hik
∗∂p
∂xi −

(
ρ0 +

p
c2

)
F k = 0 . (2.36)

Because ∗∂
∂x i =

∂
∂x i in a space without rotation, the above formula re-

duces to the non-trivial equation

p′e−λ +
(
ρ0c2 + p

) ν′
2

e−λ = 0 , (2.37)

where p′ = dp
dr , ν

′= dν
dr , and eλ , 0. Dividing both sides of this formula

by e−λ, we obtain the equation

dp
ρ0c2 + p

= −
dν
2
, (2.38)
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which is an ordinary differential equation with separable variables. It is
integrated easily as

ρ0c2 + p = Be−
ν
2 , B = const. (2.39)

Thus, we obtain the pressure p as a function of the ν

p = Be−
ν
2 − ρ0c2. (2.40)

When looking for the function p(r), we integrate the field equations
(2.32–2.34). Summing up (2.32) and (2.33), we find

c2 (λ′ + ν′)
r

= κBeλ−
ν
2 . (2.41)

Express ν′ from here, then substitute the obtained result into the
third field equation (2.34). We obtain

2c2

r
λ′ +

2c2

r2

(
eλ − 1

)
− κBe−λ−

ν
2 = κ

(
ρ0c2 − p

)
eλ. (2.42)

Substituting the pressure p from (2.40) into (2.42), we obtain the
following differential equation with respect to λ

λ′ +
eλ − 1

r
− κρ0reλ = 0 . (2.43)

Introduce a new variable y = eλ. Thus, we have λ′ = y
′

y . Substi-
tuting these y and y′ into the original equation, we obtain the Bernoulli
equation (see Kamke [31], Part III, Chapter I, §1.34)

y′ + f (r)y2 + g(r)y = 0 , (2.44)

where
f (r) =

1
r
− κρ0r , g(r) = −

1
r
. (2.45)

It has the following solution

1
y
= E(r)

∫
f (r) dr
E(r)

, (2.46)

where
E(r) = e

∫
g(r)dr. (2.47)
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Integrating (2.47), we obtain the function E(r)

E(r) = e−
∫

dr
r = eln L

r =
L
r
, L = const > 0 , (2.48)

so we obtain 1
y = e−λ, which is

e−λ =
L
r

∫
r
L

(
1
r
− κρ0r

)
dr = 1−

κρ0r2

3
+

Q
r
, Q = const. (2.49)

To find the integration constant Q, re-write the equation (2.42) as

e−λ
(
λ′

r
−

1
r2

)
+

1
r2 = κρ0 . (2.50)

This equation has a singularity at the point r= 0, i.e., at the centre
of the sphere, where the numerical value of the right hand side (i.e., the
liquid density) tends to infinity. This contradicts the initially assumed
condition ρ0 = const characteristic of incompressible liquids. In fact,
this contradiction should not exist in the theory. We resolve this contra-
diction (and the singularity) by re-writing (2.50) as

e−λ
(
1 − rλ′

)
=

d
dr

(
re−λ

)
= 1 − κρ0r2. (2.51)

After integration, we obtain

re−λ = r −
κρ0r3

3
+ A , A = const. (2.52)

Since A= 0 at the central point r= 0, it must be zero at any other
point as well. Dividing this equation by r, 0, we obtain

e−λ = 1 −
κρ0r2

3
. (2.53)

Comparing this solution with the formula for e−λ obtained earlier
(2.49), we see that they meet each other if Q= 0. Besides, we must
assume that eλ0= 1 at the central point r= 0, hence λ0 = 0.

So, we have the components h11 = e−λ and h11 = eλ of the chr.inv.-
metric tensor hik expressed through the radial coordinate r, i.e.

h11 = e−λ = 1 −
κρ0r2

3
, h11 = eλ =

1

1 − κρ0 r2

3

. (2.54)
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Introduce the limit condition r= a on the surface of the sphere (since
a is its radius). In this case, we have

e−λa = 1 −
κρ0a2

3
. (2.55)

On the other hand, the solution to this equation is also the mass-
point solution in emptiness. Hence, we have

e−λa = 1 −
2GM
c2a

, (2.56)

where M is the mass of the liquid sphere. Comparing both of these
formulae for e−λa and taking into account that Einstein’s gravitational
constant is κ=8πG

c2 , we obtain

M =
4πa3ρ0

3
= ρ0V, (2.57)

where V = 4πa3

3 is the volume of the sphere. We have obtained the usual
relation between the mass and volume of a homogeneous sphere.

Our next step is to find a solution for e−λ outside the sphere, where
r> a. Since outside the liquid sphere the density of substance is ρ0 = 0,
after integrating (2.51) we obtain

re−λ =
∫ r

0
dr −

∫ a

0
κρ0r2dr = r −

κρ0a3

3
. (2.58)

From this formula we obtain that

e−λ = 1 −
κρ0a3

3r
. (2.59)

Taking (2.55) and (2.56) into account, we arrive at the same solution
as the mass-point solution in emptiness, i.e.

e−λ = 1 −
2GM
c2r

. (2.60)

To obtain the variable ν, we use the equation (2.41). Substituting

λ′ =

2κρ0 r
3

1 − κρ0r2

3

(2.61)
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and the obtained formula for eλ into (2.41), after transformations we
obtain

ν′ +

2κρ0 r2

3

1 − κρ0 r2

3

−
κB
c2

re−
ν
2

1 − κρ0r2

3

= 0 . (2.62)

Introduce a new variable e−
ν
2 = y. Thus, we have ν′ =− 2y′

y . Substi-
tuting the above into (2.62), we obtain the Bernoulli equation

y′ +
κB
2c2

ry2

1 − κρ0r2

3

−

κρ0 r
3 y

1 − κρ0r2

3

= 0 , (2.63)

where

f (r) =
κB
2c2

r

1 − κρ0r2

3

, g(r) = −
κρ0 r

3

1 − κρ0r2

3

. (2.64)

Thus, we have the integral∫
g(r)dr = −

∫ κρ0 r
3

1 − κρ0r2

3

= ln N

√∣∣∣∣∣∣1 − κρ0r2

3

∣∣∣∣∣∣ , N = const, (2.65)

where

E(r) = N

√∣∣∣∣∣∣1 − κρ0r2

3

∣∣∣∣∣∣ . (2.66)

In a region, where the signature condition h11 = eλ > 0 is satisfied,
we have

1 −
κρ0r2

3
> 0 , (2.67)

therefore here we must use the modulus of the function.
Next, we look for 1

y = e
ν
2 , which is

e
ν
2 =
κB
2c2

√
1 −
κρ0r2

3

∫
rdr√(

1 − κρ0r2

3

)3 . (2.68)

After integration, we obtain

e
ν
2 =
κB
2c2

 3
κρ0
+ K

√
1 −
κρ0r2

3

 , K = const. (2.69)
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Find the integration constants B and K. To find the B, re-write the
formula for the pressure p (2.40) using the condition that p= 0 on the
surface of the sphere (r= a). Thus, we have

B = ρ0c2e
νa
2 , (2.70)

where e
νa
2 is the value of the function e

ν
2 on the surface of the sphere.

As a result, we obtain

e
ν
2 =
κρ0

2
e
νa
2

 3
κρ0
+ K

√
1 −
κρ0r2

3

 . (2.71)

To find the K, consider the e
ν
2 on the surface of the sphere (r= a)

e
νa
2 =
κρ0 e

νa
2

2

 3
κρ0
+ K

√
1 −
κρ0a2

3

 , (2.72)

from which we obtain that

K = −
1
κρ0

1√
1 − κρ0 a2

3

. (2.73)

The quantity e
νa
2 means the numerical value of the function e

ν
2 at

r= a, i.e., on the surface of the sphere. Therefore, we can apply it to the
mass-point solution in emptiness at r= a, i.e.

e
νa
2 =

√
1 −

2GM
c2a

. (2.74)

Taking the formulae (2.55) and (2.56) into account, we obtain

e
ν
2 =

1
2

e
νa
2

3 −
√√√√

1 − κρ0r2

3

1 − κρ0 a2

3

 =
=

1
2

3 √
1 −

2GM
c2a

−

√
1 −

2GMr2

c2a3

 . (2.75)

This solution on the surface of the sphere (r= a) meets the mass-
point solution in emptiness: e

νa
2 =

√
1 − 2GM

c2a =

√
1 − κρ0 a2

3 .
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With the obtained formulae for the coefficients eν and eλ, the space
metric of a sphere filled with an ideal liquid takes the form

ds2 =
1
4

3
√

1 −
κρ0a2

3
−

√
1 −
κρ0r2

3

2

c2dt2 −

−
dr2

1 − κρ0r2

3

− r2
(
dθ2 + sin2θ dϕ2

)
. (2.76)

Taking (2.55) and (2.56) into account, we can re-write the obtained
space metric (2.76) in the form

ds2 =
1
4

3 √
1 −

2GM
c2a

−

√
1 −

2GMr2

c2a3

2

c2dt2 −

−
dr2

1 − 2GMr2

c2a3

− r2
(
dθ2 + sin2θ dϕ2

)
. (2.77)

Finally, because 2GM
c2 = rg is the Hilbert radius calculated from the

mass M of the liquid sphere and taking the obtained formula for e
νa
2 into

account, we re-write the resulting metric in the final form

ds2 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2rg
a3


2

c2dt2 −

−
dr2

1 − r2rg
a3

− r2
(
dθ2 + sin2θ dϕ2

)
. (2.78)

This is the final formula for the “internal” space metric of a sphere
filled with an ideal liquid. As you can see, on the surface of the liquid
sphere (r = a) its “internal” metric completely coincides with the metric
of a material point in emptiness.

From here we can obtain the metric of the space outside the liquid
sphere (r> a). Let us do it.

We have already obtained the “external” solution for e−λ (2.59),
which turned out to be the same as the “external” mass-point solution
for this function (2.60). Outside the sphere we have B= 0 (2.39). There-
fore, (2.41) becomes

λ′ + ν′ = 0 , (2.79)
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where, according to (2.60),

λ′ =
2GM
c2r2

1

1 − 2GM
c2r

. (2.80)

Substituting (2.80) into (2.79) then integrating the resulting equa-
tion, we obtain

ν = ln
(
1 −

2GM
c2r

)
+ P, P = const, (2.81)

therefore
eν = P

(
1 −

2GM
c2r

)
. (2.82)

Since this function has also the form

eν = 1 −
2GM
c2a

, (2.83)

then on the surface (r= a) of the liquid sphere we have P= 1. Substitut-
ing the obtained formulae for eν (2.83) and eλ (2.60) into the spherically
symmetric metric (2.1), we obtain that the “external” space of a sphere
filled with an ideal liquid is described by the metric of a mass-point in
emptiness (1.1), i.e.

ds2 =

(
1 −

rg
r

)
c2dt2 −

dr2

1 −
rg
r

− r2
(
dθ2 + sin2θ dϕ2

)
. (2.84)

2.2 The outer space breaking in the Sun’s field coincides with the
asteroid belt

Herewe propose a newmodel of the Solar System based onGeneral Rel-
ativity. Namely, — the Sun and the planets will be considered as liquid
spheres according to the liquid spheremetric (2.78) obtained above. The
metric was also shown in the formula (1.8) of §1.2, where we consid-
ered the formulation of the star modelling problem in terms of General
Relativity. In addition, as was proved in the previous §2.1, the external
space of a liquid sphere is described by the metric of a mass-point in
emptiness (1.1).

Note that we are not discussing here whether the internal planets
can be represented as liquid spheres or not. Astrophysicists and geolo-
gists can simply refer to magma because it is in the state of liquid stone.
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However, the Jovian planets (Jupiter, Saturn, Uranus and Neptune) in
terms of their density and other parameters may well be considered
stars. Here we limit ourselves to theoretical modeling of the Sun and
the planets without analysing their origin. Let us dwell in detail on the
location of the “inner” and “outer” space breakings of their fields: the
space breaking in the field deep inside and far beyond the physical body
(liquid sphere) of each of them. We will then compare the result with
the observed distribution of the planets in the Solar System.

Our approach to the Solar System is simple. As is known, in a four-
dimensional Riemannian space with a sign-alternating diagonal metric
(+−−−), a breaking occurs in that region (point or surface) wherein at
least one of the four signature conditions

g00 > 0

g00 g11 < 0

g00 g11g22 > 0

g = g00 g11g22 g33 < 0


(2.85)

is violated. The space (space-time) of General Relativity is one of the
above type of Riemannian spaces. Therefore, we consider the signature
conditions in the space inside and outside the liquid Sun.

2.2.1 In the “internal” space metric of a liquid sphere (2.78), tak-
ing into account that

κρ0a3

3r
=

2GM
c2r

=
rg
r

(2.86)

therein*, the fundamental metric tensor has the following non-zero com-
ponents

g00 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2rg
a3


2

=

=
1
4

3
√

1 −
κρ0a2

3
−

√
1 −
κρ0r2

3

2

, (2.87)

g11 = −
1

1 − r2rg
a3

= −
1

1 − κρ0 r2

3

, (2.88)

*See formulae (2.59) and (2.60) in §2.1.
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g22 = −r2, (2.89)

g33 = −r2 sin2θ . (2.90)

From these components, we obtain that at a distance of

r = rbr =

√
a3

rg
=

√
3
κρ0
, (2.91)

from the centre of the sphere, the second, third and fourth signature
conditions are violated*

g00 =
9
4

(
1 −

rg
a

)
> 0

g00 g11 → −∞

g00 g11g22 → ∞

g = g00 g11g22 g33 → −∞


. (2.92)

This means that at the distance rbr =
√

a3/rg from the centre of the
liquid spherical body, its field has a space breaking on the surface of the
mentioned radius rbr.

The Hilbert radius rg = 2GM
c2 (gravitational collapse radius) calcu-

lated for ordinary physical bodies is many orders of magnitude smaller
than their physical sizes. Hence, a≫ rg for an ordinary liquid sphere
(such a body is not a collapsar). In this case, we have rbr =

√
a3/rg≫ a :

the spherical surface on which the field has a space breaking is far be-
yond the physical surface of the liquid sphere (field source) and, hence,
far from its internal field. In other words, the internal field and substance
of a liquid sphere form a space breaking in its external field.

What does the outer space breaking in a star’s field mean from a
physical point of view? Does such a space breaking a real action on a
physical body appearing in it, or is it just a mathematical fiction? As
will be shown in the next §2.3, the space (space-time) of a liquid sphere
has a breaking in its four-dimensional curvature tensor Rαβγδ under the
condition r= rbr. Namely, — the component R0101 (2.113), which is the
four-dimensional curvature of the space in the (r-t)-direction 0101, has

*Namely, — these three functions tend to infinity. As is known, a function has a
breaking as it tends to infinity.
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a breaking at the distance r= rbr from the centre of the liquid sphere,
i.e., the curvature becomes infinite (R0101→∞) on a surface of the ra-
dius r= rbr. Since the four-dimensional curvature is determined by the
gravitational field that fills the space (and vice versa), the breaking at
r= rbr means a breaking in the gravitational field of the liquid sphere.

This is the physical sense of the outer space breaking in the field of
a liquid sphere.

2.2.2 The external field of a liquid sphere is due to the same liquid
substance that fills the sphere and produces the field inside the sphere
itself (its internal field). According to the formula for the “external”
space metric (2.84), we see that its fundamental metric tensor has the
following non-zero components

g00 = 1 −
rg
r
, (2.93)

g11 = −
1

1 − rg
r

, (2.94)

g22 = −r2, (2.95)

g33 = −r2 sin2θ . (2.96)

We see that at the distance

r = rg =
2GM

c2 (2.97)

from the centre of the body, the first signature condition (g00> 0) is vi-
olated

g00 = 1 −
rg
r
= 0

g00 g11 = −1 < 0

g00 g11g22 = r2 > 0

g = −r4 sin2θ < 0


. (2.98)

In other words, the external field of a liquid sphere produces a space
breaking deep inside the sphere itself, in its internal space close to the
centre. For example, the calculated Hilbert radius rg = 2GM

c2 is only
2.9 km for the Sun, and for the Earth it is nothing but only 0.88 cm.
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2.2.3 So, according to our model of liquid stars based on General
Relativity, concerning ordinary stars and the Sun in particular, the above
conclusions mean the following:

1. At the centre of every star there is a small core of the Hilbert ra-
dius rg, on the surface of which the aforementioned inner space
breaking in the star’s field occurs. The inner space breaking phys-
ically means that the liquid substance of the star has a singularity
on a spherical surface of the Hilbert radius rg around the centre,
thereby the mentioned small core is physically separated from the
main substance of the star (the physical sense of this phenomenon
will be clearer using the example of the outer space breaking in
the Sun’s field);

2. The field of every star has an outer space breaking on a spherical
surface around the star. This is a “bubble” with a very large radius
rbr =

√
a3/rg, which is many orders of magnitude greater than the

physical radius a of the star. Physically, the outer space breaking
prevents the formation of nearby substance, such as small stones
or dust, rotating around the star, into a single planet in an orbit of
the radius rbr.

Calculate the radius rbr =
√

a3/rg =
√

3/κρ0 (2.91) of the outer space
breaking in the Sun’s field. With the Sun’s density ρ0 = 1.41 gram/cm3

or its mass M = 2.0 × 1033 gram and radius a= 6.95 × 1010 cm,

rbr = 3.4 × 1013 cm = 340,000,000 km = 2.3 AU. (2.99)

We obtain that the spherical surface of the outer space breaking in
the Sun’s field (the spherical surface of the bubble) is located in the
asteroid belt, very close to the orbit of the maximum concentration of
asteroids (the asteroid belt extends, approximately, from 2.1 to 4.3 AU
from the Sun).

This truly amazing theoretical discovery leads us to the conclusion
that the internal structure of the Solar System can be calculated accord-
ing to the liquid model. Namely, — we consider the Sun and the planets
as liquid spheres, then we calculate the space breaking rbr in the field
of each of these cosmic bodies. The results of this calculation are sum-
marized in Table 2.1.

These results related to the planets and the Sun, according to Ta-
ble 2.1, lead to the following conclusions:



2.2 The Sun’s field breaking in the asteroid belt 59

O
bj
ec
t

M
as
s

D
en
sit
y

Ra
di
us

H
ilb

er
tr
ad
iu
s

O
rb
it,

Sp
ac
e
br
ea
ki
ng

D
ist
an
ce

of
r br

M
,g

ra
m

ρ
0
,g

ra
m
/c
m

3
a,
cm

r g
,c
m

AU
r br

,A
U

fro
m

th
e
Su

n,
AU

Su
n

1.
98
×

10
33

1.
41

6.
95
×

10
10

2.
9
×

10
5

—
2.
3

2.
3

In
te
rn
al
pl
an
et
s

M
er
cu
ry

2.
21
×

10
26

4.
10

2.
36
×

10
8

0.
03

0.
39

1.
3

−
0.

9
–
1.
7

Ve
nu
s

4.
93
×

10
27

5.
10

6.
19
×

10
8

0.
73

0.
72

1.
2

−
0.

5
–
1.
9

Ea
rth

5.
97
×

10
27

5.
52

6.
38
×

10
8

0.
88

1.
00

1.
1

−
0.

1
–
2.
1

M
ar
s

6.
45
×

10
26

3.
80

3.
44
×

10
8

0.
10

1.
52

1.
4

0.
1
–
2.
9

A
ste

ro
id

be
lt

—
—

—
—

2.
5∗

—
—

Jo
vi
an

pl
an
et
s

Ju
pi
te
r

1.
90
×

10
30

1.
38

7.
11
×

10
9

28
0

5.
20

2.
3

2.
9
–
7.
5

Sa
tu
rn

5.
68
×

10
29

0.
72

6.
00
×

10
9

84
9.
54

3.
2

6.
3
–
12
.7

U
ra
nu
s

8.
72
×

10
28

1.
30

2.
55
×

10
9

13
19
.2

2.
4

16
.8
–
21
.6

N
ep
tu
ne

1.
03
×

10
29

1.
20

2.
74
×

10
9

15
30
.1

2.
4

27
.7
–
32
.5

Pl
ut
o

1.
31
×

10
25

2.
00

1.
20
×

10
8

0.
00
2

39
.5

1.
9

37
.6
–
41
.4

K
ui
pe
rb

el
t

—
—

—
—

30
–
10
0

—
—

∗
Th

em
ax
im

um
co
nc
en
tra

tio
n
of

as
te
ro
id
si
n
th
ea

ste
ro
id
be
lt
is
re
gi
ste

re
d
at
∼

2.
5
AU

fro
m
th
eS

un
,w

hi
le
th
ea

ste
ro
id
be
lt
co
nt
in
ue
s

fro
m

2.
1
to

4.
3A

U
(a
pp

ro
xi
m
at
el
y)
.

Ta
bl
e
2.
1:

Th
e
in
te
rn
al
co
ns
tit
ut
io
n
of

th
e
So

la
rS

ys
te
m

ac
co
rd
in
g
to

G
en
er
al
Re

la
tiv

ity
.



60 Chapter 2 Liquid Stars and the Liquid Sun

1. The outer space breaking in the Sun’s field is located at the dis-
tance r= 2,3 AU from the Sun, which is near the maximum con-
centration of asteroids in the asteroid belt;

2. The internal planets of the Solar System (Mars, the Earth, Venus
and Mercury) are located inside the “bubble” of the outer space
breaking in the Sun’s field;

3. For each of the internal planets, the “bubble” of the outer space
breaking in its field is as well located inside the “bubble” of the
outer space breaking in the Sun’s field;

4. The outer space breaking in Mars’ field and the outer space break-
ing in the Earth’s field reach the asteroid belt;

5. The outer space breaking in Mars’ field is located at 2.9 AU from
the Sun. It is in the asteroid belt near the orbit of Phaeton, the
hypothetical planet which was once orbiting the Sun according
to the Titius-Bode law at r= 2.8 AU and whose distraction in the
ancient ages gave birth to the asteroid belt;

6. The “bubble” of the outer space breaking in Jupiter’s field meets,
from its internal side, that of Mars at r= 2.9 AU from the Sun
(in the case of a “parade of the planets”). It is very near 2.8 AU,
which is the theoretical orbit of Phaeton according to the Titius-
Bode law;

7. For each of the other Jovian planets (Saturn, Uranus andNeptune),
the “bubble” of the outer space breaking in its field is located in-
side the inner boundary of the Kuiper belt (the belt of the aphelia
of the comets orbiting the Sun);

8. The outer space breaking in Neptune’s field meets, from the exter-
nal side of this “bubble”, the inner boundary of the Kuiper belt;

9. For Pluto, the “bubble” of the outer space breaking in its field is
located entirely inside the Kuiper belt.

The fact that the outer space breaking in the Sun’s field is located in
the asteroid belt, near the maximum concentration of asteroids, allows
us to say: yes, the space breaking considered in this study has a real
physical sense. It is most likely that the outer space breaking in the Sun’s
field prevents the asteroids to merge into a single physical body (called
Phaeton). Alternatively, if Phaeton was an already existing planet that
was orbiting the Sun near the “space breaking orbit” in the past, the force
of gravitation of another massive cosmic body, emerging near the Solar
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System in the ancient ages (for example, another star passing near it),
has displaced Phaeton to the “space breaking orbit” near it, thus leading
to the distraction of Phaeton’s body.

Thus, we arrive at the conclusion that the internal constitution of
the Solar System is formed by the geometric structure of the Sun’s field
according to Riemannian geometry that is manifested in the laws of the
General Theory of Relativity.

2.3 The geometric sense of the outer space breaking

Let us consider the properties attributed to the curvature of the space
of a liquid sphere. To do this, we first need to calculate the components
of the chr.inv.-curvature tensor Clkij, which is the physically observable
curvature tensor.

In the space of a non-rotating liquid sphere under consideration,
Aik= 0 and, hence,Clkij =Hlkij according to the definition of Hlkij (1.81).
Therefore, we calculateClkij =Hlkij = hjmH ···mlki· from the formula for H ···mlki·
(1.78), where we substitute the respective chr.inv.-Christoffel symbols
∆i

jk (2.17–2.19) obtained for the metric of a liquid sphere (2.78). After
some algebra, we obtain that the chr.inv.-curvature tensor Clkij in the
space of a liquid sphere has the following non-zero components

C1212 = H1212 = −
κρ0

3
r2

1 − κρ0r2

3

, (2.100)

C1313 = H1313 = −
κρ0

3
r2 sin2θ

1 − κρ0r2

3

, (2.101)

C2323 = H2323 = −
κρ0

3
r4 sin2θ . (2.102)

We see that in the space of a liquid sphere the non-zero components
of the observable space curvature tensor Ciklj satisfy the condition

Ciklj = −
κρ0

3

(
hkl hij − hil hkj

)
, (2.103)

where the negative constant −κρ0
3 is the observable three-dimensional

curvature of the space in the respective two-dimensional direction. This
means that the three-dimensional space of a non-rotating liquid sphere
has a constant negative curvature.
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Calculating the observable curvature scalar C = hikCik, where the
non-zero components of Cik are

C11 = −
2κρ0

3
1

1 − κρ0r2

3

, (2.104)

C22 =
C33

sin2θ
= −

2κρ0r2

3
, (2.105)

we obtain
C = − 2κρ0 = const < 0 . (2.106)

Hence, according to (2.103), the chr.inv.-curvature tensor Ciklj is
expressed through the observable curvature scalar C as

Ciklj =
C
6

(
hkl hij − hil hkj

)
. (2.107)

Therefore, the observable three-dimensional space of a non-rotating
liquid sphere is a constant negative curvature space, and its curvature
radiusℜ is imaginary: theℜ is formulated in terms of the observable
curvature scalar C as

C = − 2κρ0 =
1
ℜ2 , (2.108)

thus we obtain, finally,
ℜ =

i
2κρ0

. (2.109)

So forth we calculate the components of the Riemann-Christoffel
curvature tensor. As is known, the tensor is determined as

Rαβγδ =
1
2

(
∂gαδ

∂xβ∂xγ
+
∂gβγ

∂xα∂xδ
−
∂gβδ

∂xα∂xγ
−
∂gαγ

∂xβ∂xδ

)
+

+ gστ
(
Γαδ,σΓβγ,τ − Γβδ,σΓαγ,τ

)
. (2.110)

According to the metric of a liquid sphere (2.78), we have gik=−hik

and Γik, j=−∆ik, j. Thus, calculating the non-zero components of Γαβ,δ,

Γ01,0 = −Γ00,1 =
κρ0r
12

3
√

1 − κρ0 a2

3 −

√
1 − κρ0r2

3√
1 − κρ0r2

3

, (2.111)
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Γ11,1 = −
κρ0r

3
1(

1 − κρ0r2

3

)2 , (2.112)

then substituting these into (2.110), we obtain

R0101 = −
κρ0

12

3
√

1 − κρ0 a2

3 −

√
1 − κρ0r2

3√
1 − κρ0r2

3

, (2.113)

R1212 =
κρ0

3
r2

1 − κρ0r2

3

= −C1212 , (2.114)

R1313 =
κρ0

3
r2 sin2θ

1 − κρ0r2

3

= −C1313 , (2.115)

R2323 =
κρ0

3
r4 sin2θ = −C2323 . (2.116)

We see that the component R0101 determining the four-dimensional
curvature in the (r-t)-direction 0101 does not satisfy the condition

Rαβγδ = Q
(
gβγgαδ − gβδgαγ

)
, Q = const, (2.117)

which is specific to four-dimensional constant curvature spaces.
As a result of the above calculations, we arrive at the following con-

clusion about the space of a non-rotating liquid sphere:
The four-dimensional space (space-time) of a non-rotating liquid
sphere is not a constant curvature space. This is in contrast to its
observable three-dimensional space, which, as proven above, is a
constant negative curvature space.

In addition, based on the obtained formulae for C1212 (2.100) and
C1313 (2.101), we also see that the observable three-dimensional curva-
ture Ciklj has a space breaking

C1212 → −∞, C1313 → −∞ (2.118)

under the condition r = rbr =
√

3/κρ0 =
√

a3/rg . By the same condition
r= rbr, according to the formula for R0101 (2.113), we have

R0101 → −∞. (2.119)
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In other words, the three-dimensional chr.inv.-curvature Ciklj and
the four-dimensional Riemannian curvature Rαβγδ have a common space
breaking under the condition r= rbr. Concerning the model of liquid
stars, this means:

Both the observable three-dimensional space curvature Ciklj and
the four-dimensional Riemannian curvature Rαβγδ in the field of
any star have a common space breaking on a spherical surface at
the distance r= rbr =

√
3/κρ0 =

√
a3/rg from the star.

This is the geometric sense of the outer space breaking in a star’s
field (according to the considered model of liquid stars).

2.4 The gravitational force acting inside a liquid star

In a space without rotation, the gravitational inertial force Fi (1.42) is
due only to g00 determined by the gravitational potential w. Let us cal-
culate this force. Since the gravitational potential is w= c2(1−

√
g00),

we have
Fi =

∂w
∂xi = −

c2

2
√
g00

∂g00

∂xi . (2.120)

According to the “internal” metric of a non-rotating liquid sphere
(2.76), we have

g00 =
1
4

3
√

1 −
κρ0a2

3
−

√
1 −
κρ0r2

3

2

, (2.121)

or, in the same metric written in the other form (2.78),

g00 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2rg
a3


2

, (2.122)

hence the force acting inside the sphere is

F1 = −
κρ0c2r

3
1(

3
√

1 − κρ0 a2

3 −

√
1 − κρ0 r2

3

) √
1 − κρ0 r2

3

, (2.123)

F1 = −
κρ0c2r

3

√
1 − κρ0r2

3

3
√

1 − κρ0 a2

3 −

√
1 − κρ0r2

3

, (2.124)
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or, in another formulation expressed in terms of the gravitational radius
rg of the liquid sphere, which has the form

F1 = −
c2rgr

a3

1(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

, (2.125)

F1 = −
c2rgr

a3

√
1 −

rg r2

a3

3
√

1 −
rg
a −

√
1 −

rg r2

a3

. (2.126)

This is a force of attraction: since r< a inside the sphere, F1< 0 in
it. This force is proportional to distance. Its numerical value is zero at
the centre of the sphere (where r= 0), then increases with distance to a
maximum value on the surface of the star (where r= a)

(F1)r=a = −
κρ0c2a

6
1

1 − κρ0 a2

3

= −
c2rg
2a2

1

1 −
rg
a

, (2.127)

(F1)r=a = −
κρ0c2a

6
= −

c2rg
2a2 . (2.128)

2.5 Solving the conservation law equations: pressure and density
inside the stars

Consider now the pressure p and the density ρ0 inside an ordinary liquid
star. The formula relating pressure and density in a medium is called
the equation of state. It follows as a solution to the conservation law
equations.

We have already obtained almost everything that is needed for this
formula. In §2.1, we solved the conservation law equations with the
energy-momentum tensor of an ideal liquid (2.4), which is characteristic
of the substance of liquid stars. After substituting the physically observ-
able components (2.21) of the energy-momentum tensor, the general
form (1.96–1.97) of the conservation law equations takes the particular
form (2.26, 2.27). In a non-deforming space such as the space of an
ordinary star, only the vector conservation equation remains non-zero.
It has the form (2.36). This equation is solved as (2.40)

p = Be−
ν
2 − ρ0c2. (2.129)
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Substituting the already found integration constant B (2.70) and the
function e

ν
2 (2.75) into the p (2.129), we obtain the following formula

connecting the pressure p and the density ρ0 inside an ordinary star

p = ρ0c2

√
1 − κρ0r2

3 −

√
1 − κρ0 a2

3

3
√

1 − κρ0 a2

3 −

√
1 − κρ0r2

3

. (2.130)

Find the pressure in the near-surface layer of a star. The constant
κ= 18.6×10−28 cm/gram is a very small value, while ρ0 = 1.4 gram/cm3

for the Sun (yellow dwarf) is much smaller than the ρ0 for larger stars.
Therefore, κρ0a2 is much smaller than 1 even for very large stars. For
example, Betelgeuse, which is one of the largest red super-giants, has
M = 4.0 × 1034 gram, a= 7.0 × 1013 cm and ρ0 = 2.8 × 10−8 gram/cm3.
In this case, we have κρ0a2 = 2.6 × 10−7. As a result, we have√

1 −
κρ0r2

3
≈ 1 −

κρ0r2

6
,

√
1 −
κρ0a2

3
≈ 1 −

κρ0a2

6
. (2.131)

After some algebra, we obtain an approximate formula for the pres-
sure p inside an ordinary star, which has the form

p ≈
κρ2

0c2
(
a2 − r2

)
12

=
ρ0GM

2a2

(
a2 − r2

a

)
. (2.132)

Let h= a− r be the distance from the surface of the sphere to the
point of measurement. Since h≪ r in the near-surface layer, we have

a2 − r2 = (a − r) (a + r) = h (2a + h) ≈ 2ah . (2.133)

Thus, from (2.132), we obtain the ordinary formula for the pressure
in the near-surface layer

p = ρ0gh , (2.134)

where GM
a2 = g is the free-fall acceleration in the near-surface layer.

The pressure p0 = pr=0 in the central region of an ordinary star can
easily be found by assuming r= 0 in the general formula (2.130)

p0 = ρ0c2
1 −

√
1 − κρ0 a2

3

3
√

1 − κρ0 a2

3 − 1
≈
κρ2

0 a2c2

12
. (2.135)
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Since κ= 8πG
c2 , we can also re-write this formula in the form

p0 ≈
3GM2

8πa4 . (2.136)

Table 2.2 gives the numerical values of the central pressure p0,
which we have calculated according to the above formula for typical
members of the known families of ordinary stars.

We see that, according to our model of liquid stars, the pressure
in the central region of Betelgeuse, which is one of the largest stars, is
only 0.53 atmosphere (1 atm= 106 dynes/cm2). The smaller the star, the
higher the pressure inside it. The pressure in the central region of the
white supergiant Rigel, the radius of which is 14.6 times smaller than
Betelgeuse’s radius, is 1.7× 104 atm. Sun-like dwarfs have a central
pressure of ∼ 109 atm. However, the central pressure in white dwarfs
reaches 1017 atm.

Note that the temperature of a condensed matter does not depend on
the pressure in it. The incompressible liquid of stars is a kind of con-
densedmatter. Therefore, the temperature inside stars depends solely on
the formula of the particular mechanism that produces stellar energy.

This remark is important for understanding the physical conditions
inside stars and sources of stellar energy.

Object Mass Radius Density Pressure
M, gram a, cm ρ0 , gram/cm3 p0 , dynes/cm

2

Red
super-giant∗ 4.0 × 1034 7.0 × 1013 2.8 × 10−8 5.3 × 105

White
super-giant† 3.4 × 1034 4.8 × 1012 7.3 × 10−5 1.7 × 1010

Sun 2.0 × 1033 7.0 × 1010 1.4 1.3 × 1015

Jupiter
(proto-star) 1.9 × 1030 7.1 × 109 1.3 1.2 × 1015

Red dwarfs 6.7 × 1032 2.3 × 1010 13 1.3 × 1016

Brown dwarf ‡ 4.1 × 1031 7.0 × 109 29 5.7 × 1015

White dwarf § 2.0 × 1033 6.4 × 108 1.8 × 106 1.9 × 1023

∗Betelgeuse. †Rigel. ‡Corot-Exo-3. §Sirius B.

Table 2.2: The main characteristics of ordinary stars.
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2.6 The stellar energymechanism according to themodel of liquid
stars and the mass-luminosity relation

Let us turn to the dimensionless characteristics of stars, which are ex-
pressed in fractions of the corresponding characteristics of the Sun

M̄ =
M
M⊙
, ā =

a
a⊙
, ρ̄ =

ρ

ρ⊙
, . . . etc., (2.137)

where M̄ = ρ̄0 ā3 for a liquid sphere*. For the luminosity L of a star,
which is the energy radiated from the entire surface of the star to the
cosmos per one second, we have

L̄ =
L

L⊙
. (2.138)

With the above dimensionless representation of the characteristics
of stars, the analysis is greatly simplified. This is due to the fact that only
significant factors remain in the formulae, and all constant coefficients
disappear.

Let us now study what mechanism for the production of stellar en-
ergy can now be proposed based on General Relativity, so that its pro-
ductivity satisfies the observed luminosity of stars. In other words, to
be a real mechanism generating energy in stars, the calculated energy
production of the proposed mechanism must correspond to the mass-
luminosity relation, which is the main empirical relation of observa-
tional astrophysics (i.e., this relation does not depend on theories of the
internal constitution of stars and sources of stellar energy).

Consider the space metric of a liquid star. As we already know, the
space of a liquid star has two primary regions, described by different
space metrics:

1. The internal space metric (metric of a liquid sphere) is valid from
the centre of the star to its surface, except for a singular spheri-
cal surface of the tiny radius rg = 2GM

c2 around the centre of the
star (see below). The internal metric is also valid on a singular
spherical surface of the radius rbr =

√
a3/rg =

√
3/κρ0 in the outer

cosmos: on this spherical surface around the star in the outer cos-
mos, the star’s gravitational field has a space breaking produced
due to its internal metric;

*A liquid star has the same density ρ= ρ0 = const throughout its volume, so its mass
is M = 4

3 πρ0 a3. In fractions of the Sun’s mass, it is M̄ = ρ̄0 ā3.
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2. The external space metric (mass-point metric) is valid from the
surface of the star to infinity, except for a singular spherical surface
of the radius rbr =

√
a3/rg =

√
3/κρ0 around the star in the outer

cosmos (see above). The external metric is also valid deep inside
the star, on a singular spherical surface of the tiny radius rg = 2GM

c2

from the centre of the star: on this spherical surface deep inside
the star, the star’s gravitational field has a space breaking produced
due to its external metric.

As was shown in §2.3, the outer space breaking in the outer cosmos
only implies a breaking of the space curvature. In addition, it can be
shown based on §2.3 that this does not lead to an anomaly in the acting
gravitational force.

However, now we will show that the gravitational force has a very
strong anomaly on the singular spherical surface of the inner space
breaking. Indeed, inside a star at the Hilbert radius rg from its centre,
the external space metric is valid (and the internal metric is valid both
inside the Hilbert radius and outside it). Therefore, all calculations for
the inner singular surface are performed with the external space metric
(mass-point metric) despite the fact that this singular surface is located
deep inside the star near its centre.

According to the fundamental metric tensor of the external metric of
a liquid star (1.1), the physically observable chr.inv.-vector of the grav-
itational force Fi has the form (1.4). On the singular spherical surface
of the Hilbert radius r= rg, deep inside the star, the observed force of
gravity (1.4) reaches an infinitely large value

F1 = −
c2rg
2r2

1

1 −
rg
r

→ −∞ , (2.139)

which means that the gravitational field of the star has a space breaking
on this surface.

Due to its infinitely large magnitude, the force of gravity there is
sufficient to transfer the necessary kinetic energy to the atomic nuclei
of stellar substance in order to start thermonuclear fusion. The energy
released by thermonuclear fusion is the energy radiated by stars.

The singular spherical surface of the Hilbert radius rg = 2GM
c2 sur-

rounds the geometric centre of each star. This means that at the centre
of each star there is a luminous “inner sun”. This “inner sun” is tiny
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compared to the size of the star. For example, the Hilbert radius of the
Sun is only 2.9 km, while the physical radius of the Sun is 700,000 km.
Thus, the thermonuclear fusion zone is not only a surface layer of the
radius rg, but the entire volume of the “inner sun”. In other words, the
“inner sun” of the radius rg is the very place where, as a result of ther-
monuclear fusion, helium is formed from hydrogen, which provides the
luminosity of the star with energy. Further, the energy is transferred
from the “inner sun” of the star to its surface due to thermal conduc-
tion (the usual heat transfer in liquids); the transmitted energy is then
radiated from the surface of the star into the outer cosmos.

Since the “inner sun” of a star has a radius equal to the Hilbert radius
rg for the star, we will further refer to it as the luminous Hilbert core, or
merely — the Hilbert core.

The luminosity of a star shining due to the proposed mechanism of
stellar energy depends only on two factors: the volume V = 4

3 πr3
g of the

Hilbert core, in which stellar energy is released, and also on the density
ρg of stellar substance in it (which may differ from the density ρ0 of the
main mass of the star, see the explanation below). This means

L̄ = ρ̄g r̄3
g = ρ̄g M̄3. (2.140)

Recall that the proposed mechanism of stellar energy does not de-
pend on the pressure in the central region of a star: the super-strong
force of gravity (2.139) acting in the central region provides the neces-
sary conditions for thermonuclear fusion. But its productivity depends
on the density of stellar substance in the Hilbert core.

Let us calculate such a density of stellar substance in the Hilbert
core, with which the proposed mechanism of stellar energy satisfies the
observed mass-luminosity relation.

We start from the facts of observational astronomy. It shows the
mass-luminosity relation L̄= M̄2.6 for the stars, the masses of which are
in the range between 0.2M⊙ and 0.5M⊙, L̄= M̄4.5 for the star masses
between 0.5M⊙ and 2M⊙, L̄= M̄3.6 in the range between 2M⊙ and 10M⊙,
and also L̄= M̄ for the stars much heavier than 10M⊙. See Table 2.3.

The above empirical data from observational astronomy are consis-
tent with our theoretical formula for the luminosity of stars L (2.140),
if the stellar substance of the Hilbert core (in which stellar energy is
released) has a density as shown in Table 2.4.
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Observed mass-luminosity Scale of the stellar masses, in fractions
relation L̄= M̄x of the Sun’s mass M⊙

L̄ = M̄2.6 M̄ = 0.2 . . . 0.5
L̄ = M̄4.5 M̄ = 0.5 . . . 2
L̄ = M̄3.6 M̄ = 2 . . . 10
L̄ = M̄ M̄ > 10

Table 2.3: The observed mass-luminosity relation L̄= M̄x.

Density of the Hilbert Scale of the stellar masses, in fractions
core ρ̄g of the Sun’s mass M⊙

ρ̄g = M̄0.4 M̄ = 0.2 . . . 0.5
ρ̄g = M̄1.5 M̄ = 0.5 . . . 2
ρ̄g = M̄0.6 M̄ = 2 . . . 10
ρ̄g = M̄−2 M̄ > 10

Table 2.4: The density of stellar substance inside the Hilbert core.

Object Mass M̄ Density ρ̄0 Ratio ρ̄g/ρ̄0

Betelgeuse (red super-giant) 20 2.0 × 10−8 1.3 × 109

Rigel (white super-giant) 17 5.2 × 10−5 6.7 × 107

Jupiter (proto-star) 9.5 × 10−4 0.9 0.069
Red dwarfs 0.34 9 0.072
Brown dwarf (Corot-Exo-3) 0.021 21 0.010
White dwarf (Sirius B) 1 1.3 × 106 7.7 × 10−7

Table 2.5: The ratio ρ̄g/ρ̄0 for some typical stars.

Based on the function ρ̄g = M̄y according to Table 2.4, we can find
out how dense the Hilbert core of a star is compared to the main sub-
stance of the star (known from astronomical observations). Thus, we
calculate the following ratio for stars

ρ̄g

ρ̄0

=
M̄y

ρ̄0

. (2.141)

The calculation results are shown in Table 2.5. Based on the calcu-
lated ratio ρ̄g/ρ̄0 shown in Table 2.5, we arrive at the following conclu-
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sion. The luminous Hilbert core of a star — its “inner sun” — can have
a density different from that of the main substance of the star. It depends
on the particular type of star. For example, the Hilbert core of a giant or
supergiant is many orders of magnitude denser than the main substance
of these stars. The Hilbert core of a star similar to the Sun has about the
same density as the star itself. As for dwarf stars, theHilbert core of such
a star is more rarefied than the main substance of the star. The greater
the density of a dwarf star, the lower the density of its core compared to
the density of the entire star. In a star such as a white dwarf, the Hilbert
core is many orders of magnitude more rarefied than the main substance
of the star.

Accordingly, the following question arises. All physical bodies have
masses, so every body has a core of the Hilbert radius. Not only stars,
but also planets and even individual elementary particles should have
such a core. But why do not they shine like stars?

The answer comes from the state of the substance of which these
physical bodies are composed. Stars are made up of liquid substance,
consisting mainly of light chemical elements such as hydrogen and he-
lium. Therefore, thermonuclear fusion of such light atomic nuclei is
possible in the Hilbert core of every star. Due to the fact that stellar
substance is liquid, more and more “nuclear fuel” is delivered to the lu-
minous Hilbert core of a star from its other regions, thereby supporting
combustion inside the “nuclear boiler”, until the moment when all the
nuclear fuel of the star runs out. Another thing are planets. They consist
mainly of heavy elements with negligible hydrogen content. Therefore,
as soon as the “nuclear boiler” of the Hilbert core has used up the entire
supply of hydrogen fuel in the central region of a planet, it ceases to
produce energy, but continues to exist in the centre of the planet, in a
latent state.

Astronomers know that the energy radiated by Jupiter exceeds the
solar energy absorbed by the entire surface of this planet. The same is
true for Saturn. This means, according to our theory, that the Hilbert
core of each of these planets is still converting hydrogen into helium,
thereby releasing nuclear energy.

Concerning individual elementary particles, such as protons, neu-
rons and electrons: as you know, they are stable and indifferent for a
long time until they interact with other particles. In fact, this means that
the Hilbert core of the proton (as well as the neutron and the electron)
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does not interact with the main mass of the particle. Why is this happen-
ing? One can only guess that either the substance inside the particles is
in a super-solid state, or there is a layer of very strong vacuum between
the nucleus and the rest of the particle’s mass. On the other hand, the
Hilbert core of the proton (and the core of the neutron) has a tiny radius
(rg)p =

2Gmp

c2 = 2.48 × 10−52 cm, while the Hilbert core of the electron
has an even smaller radius (rg)e =

2Gme
c2 = 1.35 × 10−55 cm. As noted by

Albert Einstein, the geometric laws (space-time geometry) of General
Relativity are probably true up to the scale of elementary particles. On
a subnuclear scale, another geometry may work, asserting its own laws,
different from the laws of General Relativity. Therefore, we cannot now
say something definite about the physical conditions and processes in-
side elementary particles.

But as for theworld of ordinary stars and planets, experimental phys-
ics and observational astronomy show that Einstein’s theory is correct
and works on these scales with high accuracy. Therefore, all our conclu-
sions about the internal constitution of stars and about the mechanism
of energy production in stars must be taken into account.

The specific details of the proposed mechanism of stellar energy is
a separate topic that is outside the scope of this book (which is mainly
about the internal constitution of stars).

2.7 Characteristics of the internal space of a liquid star

To understand the description of an ordinary star, recall that in §2.1 we
reproduced the derivation of the true space metric of a liquid sphere,
originally obtained by L. Borissova [11, 12], following the “historical
path” as Schwarzschild did it. Namely, — we considered the metric
of a spherically symmetric space in a general form, then applied the
particular conditions characteristic of a sphere filledwith an ideal liquid.
The only difference from Schwarzschild’s derivation was that we did
not assume any artificial limitations. When following this derivation,
we obtained the observable characteristics of the space in the implicit
form, as an auxiliary result. Then, using the obtained results, we have
deduced the space metric of a liquid sphere in the final form.

Now, we express the observable characteristics of the space in the
explicit form, through the components of the fundamental metric tensor
of the metric obtained above. So, the true space metric of a liquid sphere
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obtained by L. Borissova [11, 12] has the form (1.8)

ds2 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2rg
a3


2

c2dt2 −

−
dr2

1 −
r2rg
a3

− r2
(
dθ2 + sin2θ dϕ2

)
. (2.142)

Let us calculate the chr.inv.-characteristics of the space using their
definitions given in §1.3 and taking into account the components of the
fundamental metric tensor according to the space metric (2.142).

The chr.inv.-metric tensor hik of the metric (2.142) has the following
non-zero components

h11 =
1

1 −
r2rg
a3

, h22 = r2, h33 = r2 sin2θ , (2.143)

h11 = 1 −
r2rg
a3 , h22 =

1
r2 , h33 =

1
r2 sin2θ

, (2.144)

and, hence, its determinant h= det ∥hik∥ and the non-zero spatial deriva-
tives of ln

√
h have the form

h = det ∥hik∥ =
r4 sin2θ

1 −
r2rg
a3

, (2.145)

∗∂ ln
√

h
∂r

=
2
r
+

rgr
a3

1

1 −
r2rg
a3

,
∗∂ ln
√

h
∂θ

= cot θ . (2.146)

After some algebra according to the chronometrically invariant for-
malism (see §1.3), we obtain the following. The chr.inv.-vector of the
gravitational inertial force acting in the space has the form

F1 = −
c2rg
a3

r(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

, (2.147)

F1 = −
c2rg
a3

r
√

1 −
rg r2

a3

3
√

1 −
rg
a −

√
1 −

rg r2

a3

, (2.148)
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where r< a since all of this is inside the sphere. Therefore, F1< 0, i.e.,
this is a force of attraction.

Calculate the non-zero components of the chr.inv.-Christoffel sym-
bols. After some algebra, we obtain

∆1
11 =

rgr
a3

1

1 −
rg r2

a3

, ∆1
22 = −

∆1
33

sin2θ
= −r

1 − rgr2

a3

 , (2.149)

∆2
12 = ∆

3
13 =

1
r
, ∆2

33 = − sin θ cos θ , ∆3
23 = cot θ . (2.150)

Based on the above, we calculate the non-zero components of the
chr.inv.-tensor of the observable three-dimensional curvature Ciklj and
of its contraction Cik. We obtain

C1212 =
C1313

sin2θ
= −

rgr2

a3

1

1 −
rg r2

a3

, C2323 = −
rgr4

a3 sin2θ , (2.151)

C11 = −
2rg
a3

1

1 −
rg r2

a3

, C22 =
C33

sin2θ
= −

2rgr2

a3 . (2.152)

So, with the obtained physically observable chr.inv.characteristics
of the internal space of a liquid sphere, we now have everything we
need to consider Einstein’s equations in the internal field of an ordinary
non-rotating star.

2.8 Einstein’s equations in the internal field of a liquid star

Let us consider Einstein’s field equations in the internal space of a liquid
sphere, the metric of which is (2.142).

As is known, the energy-momentum tensor of an ideal liquid has the
following form (2.4)

T αβ =
(
ρ0 +

p
c2

)
UαU β −

p
c2 g

αβ, (2.153)

where ρ0 = const is the density of the liquid, p is the pressure inside
the liquid, and Uα is the four-dimensional velocity of the liquid flow
with respect to the observer (the Uα is a unit four-dimensional vector,
therefore UαUα= 1). The chr.inv.-projections of the energy-momentum
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tensor have the form (2.21)

ρ =
T00

g00
= ρ0 , J i =

cT i
0

√
g00
= 0 , U ik = c2T ik = phik, (2.154)

where ρ is the observable mass density, J i is the observable momentum
density, and U ik is the observable stress tensor.

Using the above formulae and taking into account the fact that the
space of the liquid sphere under consideration does not rotate or deform
(Aik= 0, Dik= 0), we obtain the chr.inv.-Einstein equations (1.92–1.94)
in the simplified form

∗∇j F j −
1
c2 Fj F j = −

κ

2

(
ρ0c2 + U

)
, (2.155)

J i = 0 , (2.156)

1
2

(∗∇i Fk +
∗∇k Fi

)
−

1
c2 Fi Fk − c2Cik =

=
κ

2

(
ρ0c2hik + 2Uik − Uhik

)
, (2.157)

where ∗∇i is the chr.inv.-derivative symbol, Uik = phik and U = 3p.
Substitute the formulae for Fi, Cik and hik calculated for the metric

(2.142) into the above Einstein field equations. We obtain that only two
equations remain non-zero

3c2rg
a3

√
1 −

rg r2

a3

3
√

1 −
rg
a −

√
1 −

rg r2

a3

=
κ

2

(
ρ0c2 + 3p

)
, (2.158)

3c2rg
a3

2
√

1 −
rg
a −

√
1 −

rg r2

a3

3
√

1 −
rg
a −

√
1 −

rg r2

a3

=
κ

2

(
ρ0c2 − p

)
. (2.159)

Multiplying (2.159) by 3 then summing up the product with (2.158),
we obtain

κρ0c2 =
3c2rg

a3 . (2.160)

Substituting this result back into (2.159) and then reducing similar
terms, we obtain the equation of state of the liquid substance that ordi-
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nary stars consist of*

p = ρ0c2

√
1 − κρ0r2

3 −

√
1 − κρ0 a2

3

3
√

1 − κρ0 a2

3 −

√
1 − κρ0r2

3

. (2.161)

This formula completely coincides with the formula for the pres-
sure p (2.130), which we have obtained above as a result of following
Schwarzschild’s derivation.

The above formula for the pressure p can also be obtained from the
conservation equations (2.26, 2.27). Since the spacemetric (2.142) does
not deform (this means that hik , f (t) and, hence, Dik= 0), the chr.inv.-
scalar conservation equation (2.26) vanishes. Only the chr.inv.-vector
conservation equation (2.27) remains non-zero

∗∇i
(
phik

)
−

(
ρ0 +

p
c2

)
F k = 0 . (2.162)

Here ∗∇i hik= 0 is true always for hik, as well as ∇σ gασ= 0 for the
fundamental metric tensor. Therefore and since the chr.inv.-derivation
operator with respect to the spatial coordinates coincides with the ordi-
nary spatial derivation operator in a space without rotation, the remain-
ing conservation equation (2.162) takes the form

hik ∂p
∂xi −

(
ρ0 +

p
c2

)
F k = 0 . (2.163)

Substituting the formulae for h11 and F1, whichwe have obtained for
the metric (2.142), we transform (2.163) into the differential equation

dp
ρ0c2 + p

= −
rg
a3

rdr(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

. (2.164)

This equation can be re-written in the form

d ln
(
ρ0c2 + p

)
= −d ln

3
√

1 −
rg
a
−

√
1 −

rgr2

a3

 , (2.165)

*The equation of state of a medium is a formula connecting pressure and density
inside the medium.



78 Chapter 2 Liquid Stars and the Liquid Sun

which is easy to integrate. After integration, we have

p + ρ0c2 =
Q

3
√

1 −
rg
a −

√
1 −

rg r2

a3

, (2.166)

where the integration constant Q can be obtained from the obvious con-
dition p= 0 on the star’s surface (where r= a). Then

Q = 2ρ0c2

√
1 −

rg
a

(2.167)

and, thus, we obtain the solution

p + ρ0c2 = 2ρ0c2

√
1 −

rg
a

3
√

1 −
rg
a −

√
1 −

rg r2

a3

. (2.168)

It is easy to see that this solution leads to the same formula for p as
(2.161) that we have obtained from the Einstein field equations.

2.9 The internal space metric of a rotating liquid star

Let us now consider the metric of an ordinary liquid star (2.142) with
the only difference that the star rotates with an angular velocity ω along
its equatorial axis — the ϕ axis in the spherical coordinates r, θ, ϕ. In
this case, the metric of a non-rotating liquid sphere (2.142) takes the
following form

ds2 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2rg
a3


2

c2dt2 −

− ωr2 sin2θ

3
√

1 −
rg
a
−

√
1 −

r2rg
a3

 dt dϕ −

−
dr2

1 −
r2rg
a3

− r2
(
dθ2 + sin2θ dϕ2

)
. (2.169)

It should be noted that we are still considering ordinary stars. This
is what we call such stars, the Hilbert radius rg of which is much smaller
than their physical radius a.
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According to the space metric (2.169) obtained for an ordinary ro-
tating star, the linear velocity with which the space rotates is

v1 = v2 = 0 , v3 = ωr2 sin2θ . (2.170)

2.10 The stationary electromagnetic field of a rotating liquid star

A real star has its own electromagnetic field. Therefore, we must in-
troduce an electromagnetic field into the theory of liquid stars. Elec-
trodynamics in terms of the chronometrically invariant formalism was
presented in Chapter 3 of our book [18]. We are following Chapter 3
of [18] in order to apply it to our theory of liquid stars.

So, as is known from the general covariant formulation of electrody-
namics [20], the energy-momentum tensor of an arbitrary electromag-
netic field has the form

T αβem =
1

4πc2

(
−Fα··σFβσ +

1
4
gαβFµσF µσ

)
, (2.171)

where Fαβ is the electromagnetic field tensor known also as theMaxwell
tensor. The field tensor Fαβ is defined as a curl of the four-dimensional
electromagnetic field potential Aα, i.e.

Fαβ = ∇αAβ − ∇βAα =
∂Aβ
∂xα
−
∂Aα
∂xβ
. (2.172)

The physically observable projections of the four-dimensional elec-
tromagnetic potential Aα are the chr.inv.-scalar electromagnetic poten-
tial φ and the chr.inv.-vector electromagnetic potential qi

φ =
A0
√
g00
, qi = Ai. (2.173)

The electromagnetic field tensor Fαβ (2.171) has the following phys-
ically observable projections

ρem =
T00

g00
=

Ei Ei + H∗i H∗i

8πc2 , (2.174)

J i
em =

cT i
0

√
g00
=

1
4πc
εikmEk H∗m , (2.175)

U ik
em = c2T ik = ρemc2hik −

1
4π

(
EiEk + H∗iH∗k

)
, (2.176)
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where Ei is the three-dimensional chr.inv.-electric field strength vector,
H∗i is the three-dimensional chr.inv.-magnetic field strength pseudovec-
tor, and εimn is the unit completely antisymmetric three-dimensional
chr.inv.-pseudotensor [18]

E∗ik = −εiknEn, En =
∗∂φ

∂xn +
1
c

∗∂qn

∂t
−
φ

c2 Fn

H∗i =
1
2
εimnHmn, Hmn =

∗∂qm

∂xn −
∗∂qn

∂xm −
2φ
c

Amn

 . (2.177)
As is seen from (2.177), the chr.inv.-electric and chr.inv.-magnetic

strengths depend on not only the electromagnetic field potentials φ and
qi, but also on the characteristics of space — the acting gravitational
inertial force Fi and the angular rotational velocity Aik of space.

Assume that the scalar and vector potentials of the electromagnetic
field are stationary and homogeneously distributed (which corresponds
to the global structure of the electromagnetic field of ordinary stars).

∗∂φ

∂t
= 0 ,

∗∂φ

∂xi = 0

∗∂qi

∂t
= 0 , qik =

∗∂qi

∂xk −
∗∂qk

∂xi = 0

 , (2.178)

i.e., the electromagnetic field is stationary and vortex-free (as in ordi-
nary stars that we observe). In this case, we have

Ei = −
φ

c2 F i, Ei = −
φ

c2 Fi

H∗i = −
2φ
c
Ω∗i , H∗i = −

2φ
c
Ω∗i

 , (2.179)

where Ω∗i is the three-dimensional chr.inv.-pseudovector of the angular
velocity with which the space rotates

Ω∗i =
1
2
εimnAmn , Ω∗i =

1
2
εimn Amn. (2.180)

As is seen from (2.179), in the stationary vortex-free electromag-
netic field of an ordinary star, the electric field strength Ei is only due
to the scalar electromagnetic potential φ and the acting gravitational in-
ertial force F i, and the magnetic field strength H∗i is only due to the
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scalar electromagnetic potential φ and the angular rotational velocity
Ω∗i of space. The stronger the gravitational field of a rotating star, the
stronger its electric field. The faster the star rotates, the stronger its
magnetic field.

Using the formulae for Ei and H∗i (2.179), we obtain the chr.inv.-
components (2.174–2.176) of the electromagnetic field tensor Fαβ

ρem =
φ2

2πc4

(
Fj F j

4c2 + Ω∗jΩ
∗j
)
, (2.181)

J i
em =

φ2

2πc4 ε
ikmFkΩ∗m , (2.182)

U ik
em =

φ2

2πc2

(
Fj F j

4c2 + Ω∗jΩ
∗j
)

hik −
φ2

πc2

(
F iF k

4c2 + Ω
∗iΩ∗k

)
, (2.183)

and also the traceUem= hikU ik
em of the electromagnetic field stress tensor

U ik
em, which is thus formulated as follows

Uem =
φ2

2πc2

(
Fj F j

4c2 + Ω∗jΩ
∗j
)
= ρemc2. (2.184)

Hence, and since the magnetic strength is H∗i=− 2φ
c Ω

∗i (2.179), we
arrive at a conclusion that a stationary rotating ordinary liquid star is a
permanent magnet.

2.11 Maxwell’s equations in the electromagnetic field of a rotating
liquid star

As is known, the electromagnetic field is described by Maxwell’s field
equations. They consist of two groups. The general covariant formula-
tion of Maxwell’s equations has the form [20]

∇σF µσ =
4π
c

jµ, ∇σF∗µσ = 0 , (2.185)

where the first equation expresses the Group I, and the second equation
expresses the Group II. Here F∗µσ= εµσαβFαβ is the pseudotensor dual
to the electromagnetic field tensor Fαβ, and jµ is the four-dimensional
current vector of the electromagnetic field.

In terms of the chronometrically invariant formalism, the general
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covariant Maxwell equations (2.185) have the following form

∗∇j E j −
1
c

HikAik = 4πρ

∗∇k Hik −
1
c2 Fk Hik −

1
c

(
∗∂Ei

∂t
+ DEi

)
=

4π
c

j i

 I, (2.186)

∗∇i H∗i −
1
c

E∗ikAik = 0

∗∇k E∗ik −
1
c2 Fk E∗ik −

1
c

(
∗∂H∗i

∂t
+ DH∗i

)
= 0

 II, (2.187)

see Chapter 3 of the book [18]. Here E∗ik =−εiknEk is the pseudoten-
sor dual to the electric strength vector Ei, H∗i = 1

2 ε
imnHmn is the pseu-

dovector dual to the magnetic strength tensor Hmn. See their definitions
in (2.177). The trace D= hikDik of the space deformation tensor Dik is
the space deformation rate.

In the chr.inv.-Maxwell equations, the physically observable charge
density ρ and the physically observable current vector j i are the chr.inv.-
projections of the four-dimensional current vector jµ, i.e.

ρ =
1
c

j0
√
g00
, j i = hi

µ jµ. (2.188)

Since the space under consideration is stationary (the metric of a
liquid sphere does not depend on time), and the electromagnetic field is
also stationary, then the terms containing the space deformation tensor
Dik and the time derivatives of the electric Ei and magnetic H∗i field
strengths vanish. In this particular case, the chr.inv.-Maxwell equations
(2.186–2.187) take the simplified form

∗∇j E j −
1
c

HikAik = 4πρ

∗∇k Hik −
1
c2 Fk Hik =

4π
c

j i

 I, (2.189)

∗∇i H∗i −
1
c

E∗ikAik = 0

∗∇k E∗ik −
1
c2 Fk E∗ik = 0

 II. (2.190)
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The considered Maxwell equations characterize an electromagnetic
field arising due to electric charges and currents — the electromagnetic
field sources, which determine the right hand side terms of the Group I
equations. These terms are the charge density ρ and the current vector
j i, which are the chr.inv.-projections of the four-dimensional current
vector jµ (2.188) of the field. If the right hand side of the equations
were zero, then it would be an electromagnetic field without sources
(existing independently of sources).

The electromagnetic field sources, which are the charge density ρ
and the current vector j i, must satisfy the general covariant law of con-
servation of electric charge

∇σ jσ = 0 , (2.191)

which is also known as the continuity equation. This law means that the
four-dimensional current vector jσ and, hence, its chr.inv.-projections
ρ and j i (the electromagnetic field sources) are conserved in the four-
dimensional field volume.

The four-dimensional electromagnetic field potential Aσ must sat-
isfy the general covariant Lorenz condition

∇σAσ = 0 , (2.192)

which means that the four-dimensional field potential Aσ and, hence, its
chr.inv.-projections φ and qi, which are the chr.inv.-scalar and chr.inv.-
vector potentials of the field, are conserved in the four-dimensional field
volume.

In an arbitrary electromagnetic field, the general covariant conser-
vation law (2.191) and the general covariant Lorenz condition (2.192)
have the following chr.inv.-formulation

∗∂ρ

∂t
+ ρD + ∗∇̃i j i −

1
c2 Fi j i = 0 , (2.193)

1
c

∗∂φ

∂t
+
φ

c
D + ∗∇̃i qi −

1
c2 Fi qi = 0 , (2.194)

where we denote ∗∇̃i =
∗∇i −

1
c2 Fi. See Chapter 3 of the book [18].

Recall that, according to our initial assumption, the electromagnetic
field under consideration is stationary and vortex-free. This means that
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the conditions (2.178) must be true both for the field potentials φ and
qi and for the field sources ρ and j i. It is easy to see, in this case and
since we assumed that the space does not deform (Dik= 0), the chr.inv.-
conservation equation (2.193) and the chr.inv.-Lorenz condition (2.194)
are satisfied as identities.

2.12 Conclusion

All theoretical conclusions about the source of stellar energy and about
the internal constitution of stars presented in this Chapter were obtained
in the framework of our model of liquid stars. Our model is based on the
concept of stars as space-time objects according to General Relativity.
Below we list the most important conclusions that we thus arrived at:

1. The field of each star has an outer space breaking on a spherical
surface around the star. The “bubble” of the outer space breaking
in the field of each star has a radius of

rbr =

√
3
κρ0
=

√
a3

rg
, (2.195)

which exceeds the physical radius a of the star by many orders
of magnitude. The observable three-dimensional space curvature
Ciklj and the four-dimensional Riemannian curvature Rαβγδ have a
common space breaking on this surface. The outer space breaking
prevents the formation of nearby substance into a planet in this
orbit. The outer space breaking in the Sun’s field is located in the
asteroid belt, near the maximum concentration of asteroids;

2. The field of each star has an inner space breaking, deep inside the
physical body of the star, on a surface of the Hilbert radius

rg =
2GM

c2 (2.196)

from its centre. This means that there is a small core separated
by a singular surface from the main substance of the star. On the
surface of this core, the force of gravity reaches an infinitely large
value. By definition, the super-strong force of gravity is sufficient
to transfer the necessary kinetic energy to the light atomic nuclei
of stellar substance in order for thermonuclear fusion to begin.
Thus, nuclear energy is released. Liquid “nuclear fuel” is deliv-
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ered from other regions of the star to the core, maintaining com-
bustion inside this “nuclear boiler”;

3. Every star has a mass. Therefore, a luminous core of the Hilbert
radius rg = 2GM

c2 — an “inner sun” — exists at the centre of eve-
ry star. We call it the Hilbert core. This is where thermonuclear
fusion produces helium from hydrogen, thus making stars lumi-
nous. The energy is then transferred from the “inner sun” of the
star to its surface by thermal conduction (the usual heat transfer
in liquids) to then be radiated into the cosmos;

4. The Hilbert core is tiny compared to the size of stars. For example,
for the Sun, rg = 2.9 km;

5. The observed mass-luminosity relation of stars is satisfied if the
density of the Hilbert core depends on the particular type of star.
The Hilbert core of a giant or supergiant must be many orders
of magnitude denser than the main substance of these stars. The
Hilbert core of a star like the Sun should be about the same density
as the star itself. In a dwarf star, the Hilbert core must be more
rarefied than the main substance of the star (the core of a white
dwarf must be extremely rarefied);

6. Every planet has a mass. Therefore, the Hilbert core exists at the
centre of every planet. But planets are made upmostly of heavy el-
ements with a small amount of hydrogen. As soon as the “nuclear
boiler” in the Hilbert core of a planet uses up the entire supply of
hydrogen fuel in its central region, the “nuclear boiler” will cease
to produce energy, but will still exist in the centre of the planet, in
a latent state;

7. When we considered the internal space metric of a liquid star, we
followed the historical path as Schwarzschild did when introduced
the metric. Namely, — when we introduced the internal space
metric of a liquid sphere in a complete form (taking singularities
of the space into account), we used the Schwarzschild notations.
These notations come from the general form of a spherically sym-
metric metric and thus contain the coefficients eν and eλ, which
are functions of r and t. This is the commonly accepted method
of writing any spherically symmetric metric. Even when we cal-
culated the physically observable characteristics of such a metric
space, we obtained them in terms of the unknowns eν and eλ. As a
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result, we have obtained the physically observable characteristics
of the space in an incomplete form, which requires further calcu-
lation of the coefficients eν and eλ. This creates enormous difficul-
ties in solving particular problems in the space of such a metric.
Therefore, we initially introduced the internal space metric of a
liquid sphere in its final form, where the coefficients eν and eλ

are expressed through the main characteristics of the sphere, such
as its physical radius and Hilbert radius, and also through the ra-
dial coordinate r and time t. As a result, we have obtained all
components of the fundamental metric tensor in an explicit form,
without unknown coefficients. It was the subject of §2.7 and §2.8.
Therefore, if we (or someone else) further solve problems using
the internal space metric of an ordinary liquid star, then we will
initially have formulae for all physically observable characteristics
of its internal space;

8. Most stars rotate. Most likely, all stars rotate, but many of them
rotate so slowly that the Doppler splitting of spectral lines due to
their rotation cannot be detected by modern spectroscopy meth-
ods. In any case, if we consider a liquid star with an electromag-
netic field, then we should consider the internal space metric of a
rotating liquid sphere;

9. We have also found that the electric component of the electromag-
netic field of a star depends on its gravitational field, the magnetic
component depends on its rotation, and that a rotating ordinary
star is a permanent magnet. The stronger the gravitational field
of a star, the stronger the electric strength of its electromagnetic
field. The faster the star rotates, the stronger the magnetic strength
of its electromagnetic field.
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3.1 Finding the escape velocity condition for a star

A stream of particles of stellar substance is permanently erupted from
the surface of any star. A fraction of the stream consists of so rapid
particles that they leave the gravitational field of the star forever, for
the outer cosmos, thereby producing a stellar wind.* In terms of our
mathematical theory of liquid stars, this means that such particles of
the star’s surface layer are faster than the escape velocity of the star.

Why do some particles of stellar substance leave the surface of a
star? Can this process be likened to boiling water in a kettle, or is it
completely different? Finding an answer to this question is our research
task in this Chapter.

To answer this question we should study how particles of stellar sub-
stance travel inside a star. To do this, we first find a formula for the es-
cape velocity, expressed through the components of the space metric of
a liquid star. Then we deduce the equations of motion of the particles
inside the star. Thus, we obtain the physical conditions under which
the particles travelling in the surface layer of the star are faster than the
escape velocity. After that, we will be able to solve the equations of
motion for any particles of stellar substance.

The mentioned escape velocity, known also as the second cosmic
velocity vII, is the velocity at which a particle can “leave”, forever, the
gravitational field of the massive body.†

Let us assume that particles of stellar substance travel, radially, from
the centre of the star to its surface. Let the particles reach the star’s

*Wolf-Rayet stars differ from ordinary stars in an extremely huge stellar wind: this
stream is so strong that any Wolf-Rayet star loses a significant part of its mass with the
stellar wind.

†The first cosmic velocity vI, known also as the orbital velocity, allows the particle
to be orbiting the massive body without falling down onto its surface.
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surface then leave the star, forever, for the outer cosmos, thus forming a
stellar wind. Therefore, we call the formula for the velocity of a particle
of stellar matter, which is expressed through the star’s escape velocity,
the escape velocity condition.

For a spherically symmetric body, the mass of which is M, the es-
cape velocity at a distance r from the body’s centre is

vII =

√
2GM

r
. (3.1)

This formula comes from the mass-point metric (1.1),

ds2 =

(
1 −

rg
r

)
c2dt2 −

dr2

1 −
rg
r

− r2
(
dθ2 + sin2θ dϕ2

)
, (3.2)

where rg = 2GM
c2 , while M is the body’s mass.

As was shown in Chapter 2, the field of any liquid star has two pri-
mary regions. They are described by two different metrics. The metric
of a liquid sphere is valid from the centre of the star (r= 0) up to its
surface (r= a). The mass-point metric is valid from the surface of the
star up to the outer cosmos. In other words, particles of stellar substance
travel inside a star along the trajectories determined by the metric of a
liquid sphere. As soon as the particles leave the star (in the case, where
their velocities exceed the escape velocity of the star), they travel in the
cosmos along the trajectories determined by the mass-point metric.

Therefore, the velocity of a particle of stellar substance, travelling
from the surface of a star for the outer cosmos, is a solution to the equa-
tions of motion according to the mass-point metric. Expressed through
the escape velocity of the star, this solution is the escape velocity con-
dition for the star.

We deduce this formula as a solution to the chr.inv.-equations of
non-isotropic geodesics [18, 19]

dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk = 0

d (mvi)
dτ

+ 2m
(
Di

k + A·ik·
)

vk − mF i + m∆i
nk vnvk = 0

 , (3.3)

which are the equations of motion of a mass-bearing particle travelling
with the observable velocity vi. These equations are obtained as the
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chr.inv.-projections of the general covariant equations of non-isotropic
geodesics. See [18, 19] for detail.

Let us solve the equations (3.3) for a particle of stellar substance
travelling along the radial direction r. Therefore, we assume

v1 =
dr
dτ
, 0 , v2 = v3 = 0 . (3.4)

To solve the equations (3.3), we need to find specific formulae for the
physically observable properties characteristic of a space of the mass-
point metric (3.2). As is seen from the mass-point metric (3.2), such a
space does not rotate or deform (Aik= 0, Dik= 0). Only the gravitational
inertial force Fi and the Christoffel symbols ∆i

nk remain non-zero. Cal-
culating these quantities and also the components of the chr.inv.-metric
tensor hik according to their definitions given in §1.3, we obtain that for
the metric (3.2) they have the form

F1 = −
c2rg
2r2

1

1 −
rg
r

, F1 = −
c2rg
2r2 , (3.5)

h11 =
1

h11 = 1 −
rg
r
, h22 =

1
h22 = r2, h33 =

1
h33 = r2 sin2θ , (3.6)

∆1
11 = −

rg
2r2

1

1 −
rg
r

, ∆1
22 =

∆1
33

sin2θ
= −r

(
1 −

rg
r

)
, (3.7)

∆2
12 = ∆

3
13 =

1
r
, ∆2

33 = − sin θ cos θ , ∆3
23 = cot θ . (3.8)

With these, we obtain that the chr.inv.-equations of motion (3.3) in
a space of the mass-point metric have the form

1
m

dm
dτ
= −

rg
2r2

1

1 −
rg
r

dr
dτ

1
m

d
dτ

(
m

dr
dτ

)
−

rg
2r2

1

1 −
rg
r

(
dr
dτ

)2

+
c2rg
2r2 = 0


, (3.9)

where
m =

m0√
1 −

ṙ2

c2
(
1−

rg
r

)
, ṙ =

dr
dτ
. (3.10)
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Denote the relativistic mass of the particle on the surface of the star
(r= a) as m(0). This is the “start-mass” of the particle when leaving
the star. Then, denoting the observable velocity of the particle in the
moment of time, when it leaves the star’s surface, as ṙ0, we have

m = m(0)

√
1 −

rg
a√

1 −
rg
r

, m(0) =
m0√√

1 −
ṙ2

0

c2

1− r3
g

a3


. (3.11)

Let us begin solving the chr.inv.-equations of motion (3.9). Substi-
tuting the scalar equation into the vector equation, we obtain the vector
equation of motion along the radial coordinate r

r̈ −
rg
r2

ṙ2

1 −
rg
r

+
c2rg
2r2 = 0 . (3.12)

Denote ṙ = y. Then we have

r̈ = yy′, y′ =
dy
dr
, (3.13)

thus the equation (3.12) takes the form

yy′ −
rg
r2

y2

1 −
rg
r

+
c2rg
2r2 = 0 . (3.14)

Assuming u(r)= y2, we transform the previous equation into the or-
dinary linear differential equation

u′ −
2rg
r2

u

1 −
rg
r

+
c2rg
r2 = 0 . (3.15)

This equation has the following exact solution

u = e−F
(
u0 +

∫ a

r
g(r) eFdr

)
, u0 = y

2
0 = ṙ2

0 , (3.16)

where the functions contained in it have the form

F(r) =
∫ a

r
f (r)dr , f (r) = −

2rg
r2

1

1 −
rg
r

, g(r) =
c2rg
r2 . (3.17)
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Integrating the function f (r), we obtain

F(r) = ln

1 −
rg
a

1 −
rg
r


2

, eF =

1 −
rg
a

1 −
rg
r


2

, (3.18)

∫ a

r

c2rg
(
1 −

rg
a

)2
dr

r2
(
1 −

rg
r

)2 = c2
(
1 −

rg
a

) 1 − 1 −
rg
a

1 −
rg
r

 . (3.19)

Substituting (3.17–3.19) into (3.16) then neglecting the higher-order
terms of rg

a (since this ratio is tiny for ordinary stars), we obtain

ṙ2 = ṙ2
0

(
1 +

2rg
a
−

2rg
r

)
+ c2

(rg
a
−

rg
r

)
. (3.20)

From here, we obtain a formula for the radial velocity of a particle
of stellar substance leaving the star with a stellar wind. Since vII (3.1)
on the star’s surface (r= a) is

vII =

√
2GM

r
= c

√
rg
r
= c

√
rg
a
, (3.21)

the mentioned formula has the form

ṙ =
dr
dτ
= c

√
ṙ2

0 + v2
II

c2 −
rg
r
+

2ṙ2
0

c2

v2
II

c2 −
c2rg

r

 . (3.22)

This is the escape velocity condition we were looking for. If ṙ0= 0,
then the equation (3.22) transforms into the obvious condition

dr
dτ
=

√
v2
II −

c2rg
r
< vII . (3.23)

According to this condition, a particle of stellar substance cannot
leave the gravitational field of a star, if its start-velocity on the surface
of the star is zero. Therefore, in further consideration of the stellar wind,
we always assume ṙ0, 0 in all equations of our theory.

Let us obtain the final simplification to the escape velocity condition
(3.22). Denote the last term in the radicand as

q =
2ṙ2

0

c2

v2
II

c2 −
c2rg

r

 . (3.24)
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For the Sun, i.e., a typical ordinary star, we have: vII = 617 km/sec,
rg = 2.9 km, ṙ0 = 750 km/sec* and a= 7.0×105 km. Since q= 0 at r= a,
we assume r> a as for a stellar wind. After some algebra, we obtain

ṙ2
0 + v2

II

c2 ≃ 10−5,
rg
r
< 4.1 × 10−6, q < 5.3 × 10−11. (3.25)

For a typical star of the Wolf-Rayet family (see Table 1.1), we have:
vII = 982 km/sec, rg = 150 km, ṙ0 = 2200 km/sec and a= 1.4 × 107 km.
Therefore, for a typical Wolf-Rayet star, we obtain

ṙ2
0 + v2

II

c2 ≃ 6.4 × 10−5,
rg
r
< 1.1 × 10−5, q < 1.2 × 10−9. (3.26)

The term q has such a small numerical value (four orders of magni-
tude smaller, than the other terms in the formula) that it can be neglected
for the stellar wind that comes from both an ordinary star and a Wolf-
Rayet star. Therefore, the escape velocity condition has the form

dr
dτ
= c

√
ṙ2

0

c2 +
v2
II

c2 −
rg
r
. (3.27)

As follows from the above formula, the velocity of a particle of stel-
lar substance on the surface of an ordinary star (r= a) is ṙ0.

3.2 Light-like particles inside an ordinary star

Let us now consider how particles of stellar substance and particles of
light travel inside a star. (Stars are filled not only with substance, but
also with light.) First, consider light-like (massless) particles inside an
ordinary star. Such particles travel along isotropic geodesic lines. The
chr.inv.-equations of isotropic geodesics have the form [18,19]

dω
dτ
−
ω

c2 Fi ci +
ω

c2 Dik cick = 0

d (ωci)
dτ

+ 2ω
(
Di

k + A·ik·
)

ck − ωF i + ω∆i
nk cnck = 0

 . (3.28)

*ṙ0 ≃ 750 km/sec is typical for the particles of the fast component of the solar wind,
the composition of which is that of the photosphere. In contrast, the slow component
of the solar wind has a composition close to that of the corona. Its particles travel from
the Sun with a velocity of about 400 km/sec.



3.2 Light-like particles inside an ordinary star 93

These are the equations of motion of a light-like particle (such as
a photon, the frequency of which is ω) travelling with the observable
velocity of light ci. These chr.inv.-equations are obtained as the chr.inv.-
projections of the general covariant equations of isotropic geodesics.
See [18, 19] for detail.

As previously, we assume that ordinary stars do not rotate or deform
(Aik= 0, Dik= 0). Also, we consider a photon travelling strictly along
the radial coordinate (x1 = r direction) from the centre of the star to its
surface. In this case, the isotropic geodesic equations (3.28) inside an
ordinary star take the simplified form

dω
dτ
−
ω

c2 F1 c1 = 0

d (ωc1)
dτ

− ωF1 + ω∆1
11 c1c1 = 0

 , (3.29)

where the observable (light) velocity of the photon is c1= dr
dτ .

Consider the chr.inv.-scalar geodesic equation of (3.29). Substitut-
ing F1 (2.147), obtained for the metric of a liquid sphere, we have

1
ω

dω
dτ
= −

rg
a3

r(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

dr
dτ
. (3.30)

Re-write this equation in a form, which can easily be integrated

d lnω = −
d

∣∣∣∣∣∣3 √
1 −

rg
a −

√
1 −

rg r2

a3

∣∣∣∣∣∣∣∣∣∣∣∣3 √
1 −

rg
a −

√
1 −

rg r2

a3

∣∣∣∣∣∣
=

= d ln
1∣∣∣∣∣∣3 √

1 −
rg
a −

√
1 −

rg r2

a3

∣∣∣∣∣∣
. (3.31)

We are considering photons travelling inside the star. Therefore, the
solution must in the range rg ⩽ r⩽ a. After integration, we obtain

ω =
B

3
√

1 −
rg
a −

√
1 −

rg r2

a3

, B = const. (3.32)
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We assume that a photon starts from the Hilbert surface of the star
(r0 = rg). In this case, we obtain

B = ω0

3
√

1 −
rg
a
−

√
1 −

r3
g

a3

 , (3.33)

where ω0 is the initial value of the photon’s frequency on the Hilbert
surface, from which it started deep inside the star. Since rg≪ a for or-
dinary stars, we neglect the higher-order terms of rg

a . In this case, the
solution to the chr.inv.-scalar geodesic equation, which is the photon’s
frequency (3.32), takes the form

ω =

ω0

(
3
√

1 −
rg
a − 1

)
3
√

1 −
rg
a −

√
1 −

rg r2

a3

. (3.34)

Next, consider the vector geodesic equation of (3.29). With our as-
sumption of the radial motion of the photon, it has the form

d2r
dτ2
+

1
ω

dω
dτ

dr
dτ
+ ∆1

11

(
dr
dτ

)2

− F1 = 0 . (3.35)

Denote r̈ = d2r
dτ2 and ṙ = dr

dτ , then substitute 1
ω

dω
dτ (3.30), ∆1

11 (2.149)
and F1 (2.148). As a result, we transform the vector geodesic equation
(3.35) into a second order non-linear differential equation with respect
to r

r̈ −
rgr
a3

ṙ2(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

+

+
rgr
a3

ṙ2

1 −
rg r2

a3

+
c2rgr

a3

√
1 −

rg r2

a3

3
√

1 −
rg
a −

√
1 −

rg r2

a3

= 0 . (3.36)

In this form, the equation cannot be solved. Therefore, we simplify it
by the formula for ṙ2 taken from the obvious relation hik cick= c2, which
in the present case has the form

ṙ2

1 −
rg r2

a3

= c2. (3.37)
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As a result, the initial equation (3.36) takes the form

r̈ +
c2rgr

a3 = 0 , (3.38)

which is the equation of harmonic oscillation at the frequency

Ω =
c
a

√
rg
a
=

vII

a
=

√
2GM

a3 , (3.39)

which is dependent on the escape velocity vII (3.21) of the star.
In general, the oscillation frequency Ω (3.39) depends only on the

mass M and the radius a, which are the integral characteristics of the
star. Therefore, we call the Ω the proper frequency of the star. Table
4.1 gives the numerical values of the proper frequency Ω for typical
members of the known families of stars.

The proper frequency Ω of a star reaches its maximum magnitude
Ωmax=

c
a by rg = a. This is the case of gravitational collapsars (black

holes), which is also applicable to the entire Universe. According to ob-
servational estimates, the radius of the Universe is a= 1.3×1028 cm that
coincides with its Hilbert radius rg. Hence, the Universe is a huge gravi-
tational collapsar. Calculating the proper frequency Ω for the Universe,

Object Mass Radius Proper frequency
M, gram a, cm Ω, sec−1

Wolf-Rayet stars 1.0 × 1035 1.4 × 1012 7.0 × 10−5

Red super-giant∗ 4.0 × 1034 7.0 × 1013 1.6 × 10−7

White super-giant† 3.4 × 1034 4.8 × 1012 6.4 × 10−6

Sun 2.0 × 1033 7.0 × 1010 8.8 × 10−4

Jupiter (proto-star) 1.9 × 1030 7.1 × 109 8.4 × 10−4

Red dwarfs 6.7 × 1032 2.3 × 1010 2.7 × 10−3

Brown dwarf ‡ 4.1 × 1031 7.0 × 109 7.4 × 10−2

White dwarf § 2.0 × 1033 6.4 × 108 1.0
Universe 8.8 × 1055 1.3 × 1028 2.3 × 10−18

∗Betelgeuse. †Rigel. ‡Corot-Exo-3. §Sirius B.

Table 4.1: The proper frequency Ω for typical members of the known
families of stars and for the Universe.
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we obtain
Ωmax =

c
a
= 2.3 × 10−18 sec−1, (3.40)

which completely coincides with the numerical value of the Hubble con-
stant H = c

a = (2.3± 0.3)×10−18 sec−1. In this case, according to (3.39),
the integral mass of the Universe should be

M =
Ω2a3

2G
= 8.8 × 1055 gram, (3.41)

which is consistent with the observed average substance density in the
Universe, estimated to be in the range of 10−28 to 10−31 gram/cm3.

The chr.inv.-vector equation of isotropic geodesics in its final form
(3.38) is solved as

r = B1 cos
√rg

a
cτ
a

 + B2 sin
√rg

a
cτ
a

 , (3.42)

where B1 and B2 are integration constants. Assuming r and ṙ at the
initial moment of time τ0 = 0 to be r0 = rg and ṙ0 = c, we obtain

B1 = rg, B2 = a
√

a
rg
. (3.43)

As a result, we obtain the final solution for r

r = rg cosΩτ + a
√

a
rg

sinΩτ, Ω =
c
a

√
rg
a
, (3.44)

which is the harmonic oscillation equation r= A1 cosΩτ+ A2 sinΩτ.
Differentiating (3.44), we obtain the oscillation velocity of the photon

ṙ = c cosΩτ −
crg
a

sinΩτ, Ω =
c
a

√
rg
a
. (3.45)

As is seen from the solution (3.44), the entire light-like matter of
each star oscillates at the frequency Ω (3.39), which is the proper fre-
quency of that particular star and is determined by its mass and radius.
This oscillation occurs with two amplitudes:

a) The amplitude A1 = rg coincides with the radius of the inner space
breaking in the star’s field on the surface of the Hilbert core of the
star, where stellar energy is released;
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b) The amplitude A2 =
√

a3/rg coincides with the outer space break-
ing in the star’s field (see Chapter 2 for detail). The outer space
breaking is located outside the star, in the outer cosmos. For the
Sun (a= 7.0 × 1010 cm, rg= 2.9 × 105 cm), we obtain A2 = 3.4 ×
1013 cm= 2.3 AU, which is the distance from the Sun to the max-
imum concentration of asteroids in the asteroid belt. This means
that the light-like stellar matter of each star oscillates at the same
frequency both on the spherical surface of the outer space break-
ing in the field of that particular star, in the outer cosmos, and on
the surface of the Hilbert core deep inside the star.

The mentioned oscillation of the light-like matter of each star is due
to the gravitational field of that particular star, created by its mass M.

How does this oscillation affect the frequency of stellar photons? To
answer this question, consider the obtained solution for the photon’s fre-
quency ω (3.34) in two limiting cases corresponding to two oscillation
amplitudes: r= A1 = rg and r= A2 =

√
a3/rg. Thus, the frequency takes

the following numerical values

r = A1 = rg , ω = ω0

3
√

1 −
rg
a − 1

3
√

1 −
rg
a − 1

= ω0 , (3.46)

r = A2 =
a2

rg
, ω = ω0

3
√

1 −
rg
a − 1

3
√

1 −
rg
a

. (3.47)

As you see, this oscillation does not change the frequency of stellar
radiation near the Hilbert core (in the centre of the star), but affects its
frequency at large distances from the Hilbert core.

3.3 Particles of stellar substance inside an ordinary star

Such particles travel along non-isotropic geodesics. The chr.inv.-equa-
tions of non-isotropic geodesics [18, 19] have the form (3.3)

dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk = 0

d (mvi)
dτ

+ 2m
(
Di

k + A·ik·
)

vk − mF i + m∆i
nk vnvk = 0

 . (3.48)
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We assume that an ordinary star is a liquid sphere that does not rotate
or deform (Aik= 0, Dik= 0). For a particle of stellar substance, which
travels inside the star radially from the centre to the surface, the ob-
servable velocity is v1= dr

dτ , while v2= v3 = 0. In this case, the chr.inv.-
equations of non-isotropic geodesics (3.48) take the form

dm
dτ
−

m
c2 F1 v1 = 0

d (mv1)
dτ

− mF1 + m∆1
11 v1v1 = 0

 . (3.49)

They have the same structure as the chr.inv.-equations of isotropic
geodesics (3.29). Therefore, they are solved in the same way. But the
light speed condition hik cick= c2 (3.37) used in the isotropic geodesic
equations does not hold for mass-bearing particles. Hence, the chr.inv.-
equations of non-isotropic geodesics (3.49) will have a different solution
than that of the chr.inv.-equations of isotropic geodesics (3.29).

Substitute, into the scalar equation of (3.49), the formula for F1
(2.147), which we have obtained for the metric of a liquid sphere. Thus,
we obtain the scalar geodesic equation in the form

1
m

dm
dτ
= −

rg
a3

r(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

dr
dτ
. (3.50)

This equation can be re-written in the form

d ln m = −
d

∣∣∣∣∣∣3 √
1 −

rg
a −

√
1 −

rg r2

a3

∣∣∣∣∣∣∣∣∣∣∣∣3 √
1 −

rg
a −

√
1 −

rg r2

a3

∣∣∣∣∣∣
=

= d ln
1∣∣∣∣∣∣3 √

1 −
rg
a −

√
1 −

rg r2

a3

∣∣∣∣∣∣
, (3.51)

which is easy to integrate. Using rg ⩽ r⩽ a (we are considering only
particles inside the star), after integration we obtain

m =
B

3
√

1 −
rg
a −

√
1 −

rg r2

a3

, B = const. (3.52)
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Let us assume that a mass-bearing particle starts from the Hilbert
surface (r0 = rg), i.e., near the centre of the star. Then

B = m(0)

3
√

1 −
rg
a
−

√
1 −

r3
g

a3

 , (3.53)

where
m(0) =

m0√√
1 −

ṙ2
0

c2

1− r3
g

a3


(3.54)

is the initial value of the relativistic mass of the particle on the Hilbert
surface of the star.

Since the gravitational radius is rg≪ a for ordinary stars, we neglect
the higher-order terms of rg

a . Taking into account all this, the solution
(3.52) of the scalar geodesic equation takes the form

m =
m(0)

(
3
√

1 −
rg
a − 1

)
3
√

1 −
rg
a −

√
1 −

rg r2

a3

=

=

m0

(
3
√

1 −
rg
a − 1

)
(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

ṙ2
0

c2

, (3.55)

where
m(0) =

m0√
1 −

ṙ2
0

c2

(3.56)

in the framework of our approximation rg≪ a mentioned above and
characteristic of ordinary stars.

Now, we consider the vector geodesic equation of (3.49). With our
assumption that particles of stellar substance travel radially, from the
centre of the star to its surface, the equation has the form

d2r
dτ2
+

1
m

dm
dτ

dr
dτ
+ ∆1

11

(
dr
dτ

)2

− F1 = 0 . (3.57)
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Denote r̈= d2r
dτ2 and ṙ= dr

dτ . Substituting
1
ω

dω
dτ (3.30), ∆

1
11 (2.149) and

F1 (2.148), we transform the above equation into a non-linear differen-
tial equation of the second order with respect to r, which has the form

r̈ −
rgr
a3

ṙ2(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

+

+
rgr
a3

ṙ2

1 −
rg r2

a3

+
c2rgr

a3

√
1 −

rg r2

a3

3
√

1 −
rg
a −

√
1 −

rg r2

a3

= 0 . (3.58)

This equation is identical to the equation (3.36), which we have ob-
tained for photons. It cannot be solved as well. To simplify the equation,
we express ṙ2 from the obvious relation h11ṙṙ= ṙ2. We obtain

c2
1 − rgr2

a3

 1 − m2
0

m2

 = ṙ2, (3.59)

where
m =

m0√√
1 −

ṙ2

c2
(
1−

rgr2

a3

)
. (3.60)

It follows from (3.55) that

m0

m
=

(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

ṙ2
0

c2

3
√

1 −
rg
a − 1

. (3.61)

Therefore, from (3.59) we obtain

ṙ2 = c2
1 − rgr2

a3


 1 −

(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

)2(
1 −

ṙ2
0

c2

)
(
3
√

1 −
rg
a − 1

)2

 . (3.62)

Substituting this formula for ṙ2 into the initial differential equation
(3.58) and neglecting the higher-order terms of rg

a , we obtain the vector
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geodesic equation (3.58) in the solvable form

r̈ +

(
c2 + ṙ2

0

)
rgr

2a3 = 0 . (3.63)

This is the equation of harmonic oscillation at the frequency

Ω =

√(
c2 + ṙ2

0

)
rg

2a3 . (3.64)

This solution concerns particles of stellar substance. It is easy to
see that this formula transforms into the formula for the oscillation fre-
quency of stellar photons, Ω (3.39), under the limiting condition that
the oscillation speed is equal to ṙ = c.

The vector geodesic equation (3.63) is solved as

r = Q1 cosΩτ + Q2 sinΩτ, (3.65)

where the integration constant Q1 and Q2 results from the conditions
r0 = rg and ṙ0= 0 at the initial moment of time τ0 = 0. We obtain

Q1 = rg , Q2 =
ṙ0 a
√

2a√(
c2 + ṙ2

0

)
rg
. (3.66)

Therefore, the final solution for r has the form

r = rg cosΩτ +
ṙ0 a
√

2a√(
c2 + ṙ2

0

)
rg

sinΩτ , (3.67)

which is the harmonic oscillation equation r= A1 cosΩτ+ A2 sinΩτ.
Differentiating (3.67), we obtain the velocity of the particle

ṙ = −

√(
c2 + ṙ2

0

)
r3
g

2a3 sinΩτ + ṙ0 cosΩτ. (3.68)

The obtained solution (3.67) shows that particles of the liquid sub-
stance of each star oscillate at the frequencyΩ (3.64), which depends on
the mass and radius of that particular star, and also on the initial velocity
of the particles. This oscillation occurs with two amplitudes:
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a) The amplitude A1 = rg is the same as that of the light-like matter of
stars (see §3.2). That is, particles of the liquid substance of each
star oscillate with the same amplitude as the light-like matter of
that particular star. The amplitude coincides with the radius of the
inner space breaking in the star’s field on the surface of the Hilbert
core of the star, where stellar energy is released;

b) The amplitude

A2 =
ṙ0 a
√

2a√(
c2 + ṙ2

0

)
rg

(3.69)

depends on the initial velocity ṙ0 of the particles. If ṙ0 = c, then
A2 =

√
a3/rg coincides with the second oscillation amplitude of

the light-like matter of the star (see §3.2). According to (3.69), the
initial velocity of those of the particles, the oscillation amplitude
of which reaches the star’s surface (A2 = a), is

ṙ0 =
c√rg√
2a − rg

=
vII√
2 −

rg
a

≃
vII
√

2
, vII =

√
2GM

a
, (3.70)

where vII (3.21) is the escape velocity of the star. Applying the
condition A2 ⩾ a to (3.69), we obtain the velocity ṙ0 required for a
particle of stellar substance to leave the star’s surface, forever, for
the cosmos

ṙ0 ⩾

√
GM

a
, (3.71)

which is different from the escape velocity vII for a particle not
bound to the star’s substance.

Transform the proper frequency Ω (3.64) of a star to express it in
terms of the orbital velocity vI of a particle, calculated for the star

Ω =
c
a

√
rg
2a

√
1 +

ṙ2
0

c2 =
vII

a
√

2

√
1 +

ṙ2
0

c2 =
vI

a

√
1 +

ṙ2
0

c2 . (3.72)

Using this formula, we express r (3.67) in the form

r = rg cosΩτ +
ṙ0 a

vI

√
1 +

ṙ2
0

c2

sinΩτ , (3.73)
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which is r= A1 cosΩτ+ A2 sinΩτ. Therefore, we have

A1 = rg , A2 =
ṙ0 a

vI

√
1 +

ṙ2
0

c2

. (3.74)

Thus, we transform ṙ (3.68) to

ṙ = −
rgvI

a

√
1 +

ṙ2
0

c2 sinΩτ + ṙ0 cosΩτ. (3.75)

Consider now the amplitude A2 (3.74) for some special cases, where
it takes different numerical values:

1. If ṙ0= 0, then we have A2 = 0 according to the definition of A2
(3.74). In this case, the particles of stellar substance oscillate at
the amplitude rg. In other words, if ṙ0= 0, then the particles cannot
reach the surface of the star and, hence, leave the star;

2. If ṙ0 = vI, then the particles of stellar substance also cannot leave
the star. This is because they oscillate with an amplitude, which
is as well smaller than the physical radius of the star

A2 =
a√

1 +
v2
I

c2

< a ; (3.76)

3. If ṙ0 = vII, then the particles of stellar substance leave the star. This
is because if ṙ0 = vII, then we have

A2 =
a
√

2√
1 +

v2
II

c2

≃

(
1 −

v2
II

2c2

)
a
√

2 ≃ a
√

2 > a ; (3.77)

4. If A2= a, then the amplitude is equal to the physical radius of the
star. In this case, from the definition of A2 (3.74), we obtain

ṙ0 =
vI√

1 +
v2
I

c2

≃

(
1 −

v2
I

2c2

)
vI < vI , (3.78)

i.e., the particles of stellar substance are a little slower than the
orbital velocity for the star. That is, if the amplitude reaches the
physical radius of the star (A2= a), then the particles can jump out
from the surface of the star, but still cannot leave the star into its
orbit (they always fall back down on the star).



104 Chapter 3 Stellar Wind

Thus, our mathematical theory of liquid stars provides a solid theo-
retical foundation for the stellar wind emitted by a star as a wind consist-
ing of two components. One of the components is slightly slower than
the orbital velocity for the star, and the other is faster than the escape
velocity of the star. This is consistent with observational data. For ex-
ample, the solar wind has two components. The slow solar wind travels
at about 400 km/sec (slower than the orbital velocity vI= 440 km/sec for
the Sun). The fast solar wind travels at about 750 km/sec (faster than
the escape velocity of the Sun, vII= 617 km/sec).

3.4 Conclusion

Let us summarize the main results on the origin of the stellar wind,
which we have obtained. The results are as follows:

1. The light-like matter of each star oscillates at a certain frequency

Ω =
c
a

√
rg
a
=

vII

a
=

√
2GM

a3 , (3.79)

characteristic of that particular star. This means that each star
has its own characteristic frequency Ω determined according to
its mass M and radius a. Therefore, we call the Ω the proper fre-
quency of the star;

2. The mentioned oscillation occurs with two amplitudes. The am-
plitude A1= rg coincides with the radius of the Hilbert core of the
star, on the surface of which stellar energy is released. The other
amplitude A2 =

√
a3/rg coincideswith the radius of the outer space

breaking in the star’s field, which is in the outer cosmos. For the
Sun, A2 = 3.4 × 1013 cm= 2.3 AU coincides with the maximum
concentration of asteroids in the asteroid belt;

3. This is a common oscillation of the entire light-like matter of the
star. Its origin is the gravitational field of the star, the source of
which is the star’s mass M. In other words, this oscillation is the
own “breathing” of the star;

4. Particles of the liquid substance of each star oscillate with two
amplitudes at a certain frequency

Ω =

√(
c2 + ṙ2

0

)
rg

2a3 =
vII

a
√

2

√
1 +

ṙ2
0

c2 =
vI

a

√
1 +

ṙ2
0

c2 , (3.80)
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which is determined by the mass and radius of that particular star,
and also is dependent on the initial velocity ṙ0 of the particles.
This frequency can be expressed through the escape velocity vII

and the orbital velocity vI, calculated for the star;
5. Their oscillation amplitude A1 = rg is the same as that of the light-

like matter (photons) of the star. The other amplitude A2 depends
on the initial velocity of the particles

A2 =
ṙ0 a
√

2a√(
c2 + ṙ2

0

)
rg
=

ṙ0 a

vI

√
1 +

ṙ2
0

c2

; (3.81)

6. Stars radiate light (photons) and erupt particles of stellar substance
(stellar wind) not due to special physical conditions, but automat-
ically. The three-dimensional equation of motion of the particles
(both photons and particles of stellar substance), which travel ra-
dially from the centre of a liquid star to its surface, is the harmonic
free-oscillation equation

r̈ + Ω2r = 0 , Ω2 = −
2F1

r
=

c2rg
a3 , (3.82)

where F1=−
c2rg r
2a3 is the linearized form (in the sense of rg≪ a) of

the force of gravity acting inside any liquid star. This is a non-
Newtonian gravitational force proportional to distance, which is
the cause of the mentioned common oscillation of both light-like
stellar matter and stellar substance. Once the oscillation ampli-
tude exceeds the physical radius of the star, the particles come out
the star for the cosmos. Therefore, we arrive at a conclusion that
the cause of both stellar radiation and stellar wind is the internal
structure of the bodies of stars, which are liquid spheres in the
weightless state in the cosmos;

7. According to the theory, the stellar wind emitted by a star consists
of two components: a slow stellar wind and a fast stellar wind.
The particles, the oscillation amplitude of which reaches the star’s
surface (A2= a), have the initial velocity

ṙ0 =
vI√

1 +
v2
I

c2

≃

(
1 −

v2
I

2c2

)
vI < vI , (3.83)



106 Chapter 3 Stellar Wind

which does not exceed the orbital velocity vI for the star. The par-
ticles that are as fast as the escape velocity of the star (ṙ0 = vII)
have the oscillation amplitude

A2 =
a
√

2√
1 +

v2
II

c2

≃

(
1 −

v2
II

2c2

)
a
√

2 ≃ a
√

2 > a . (3.84)

This means that the slow stellar wind consists of the particles,
the oscillation amplitude of which is in the range of a⩽ A2< a

√
2.

These particles leave the surface of the star, but not forever. They
always fall back down on the star. The fast stellar wind consists
of the particles, the oscillation amplitude of which is A2 ⩾ a

√
2.

They leave the gravitational field of the star, forever, for the outer
cosmos. This theoretical result is consistent with observational
data: the solar wind is divided into the slow solar wind travelling
at ∼ 400 km/sec (slower than vI⊙= 440 km/sec) and the fast solar
travelling at ∼ 750 km/sec (faster than vII⊙= 617 km/sec).



Chapter 4 Black Holes

4.1 Non-rotating liquid collapsars

We are now going to study the collapse condition of a non-rotating
sphere filled with an ideal liquid, i.e., a collapsed liquid star without
rotation (in terms of our model of liquid stars). At first glance, this
formulation of the problem sounds meaningless: an ideal liquid is in-
compressible, therefore, such a liquid body cannot be compressed. Yes,
it would be meaningless, if the collapse were considered a process of
compression of a liquid cosmic body. We do not do that: we do not
discuss cosmogony. We merely treat a liquid collapsar as an already ex-
isting object. Thus, the above problem is reduced to the consideration
of physical conditions, and not the evolutionary compression of a liquid
cosmic body.

A cosmic body is a gravitational collapsar, if the parameters of its
field on its physical surface correspond to the condition of gravitational
collapse. Namely, — the gravitational field of the body is so strong on
its surface that light signals cannot leave it into the cosmos. In terms of
General Relativity, this means that the physically observable time stops
on the surface of the body.

According to the theory of physically observable quantities (chrono-
metric invariants), the physically observable time interval dτ (1.30) is
formulated through the gravitational potential w and the linear velocity
vi with which the space rotates as follows

dτ =
√
g00 dt +

g0i

c
√
g00

dxi =

(
1 −

w
c2

)
dt −

1
c2 vi dxi. (4.1)

Therefore, the general condition of gravitational collapse has the
below form consisting of two terms

dτ =
√
g00 dt +

g0i

c
√
g00

dxi = 0 . (4.2)
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In a space without rotation (wherein vi= 0), the general condition of
gravitational collapse is simpler

dτ =
√
g00 dt = 0 , (4.3)

or merely

g00 =

(
1 −

w
c2

)2
= 0 . (4.4)

Therefore, a non-rotating cosmic object is a collapsar, if the three-
dimensional gravitational potential w on its surface takes the value

w = c2. (4.5)

Let us consider the collapse condition for a non-rotating star con-
sisting of an ideal liquid. According to the above, the collapse condition
in this case has the form g00= 0. As is seen from the space metric of a
non-rotating liquid star (2.76)

ds2 =
1
4

3
√

1 −
κρ0a2

3
−

√
1 −
κρ0r2

3

2

c2dt2 −

−
dr2

1 − κρ0r2

3

− r2
(
dθ2 + sin2θ dϕ2

)
, (4.6)

which in terms of the Hilbert radius rg has the form (2.78)

ds2 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2rg
a3


2

c2dt2 −

−
dr2

1 −
r2rg
a3

− r2
(
dθ2 + sin2θ dϕ2

)
, (4.7)

the collapse condition (g00= 0) in such a space has the form

3

√
1 −
κρ0a2

3
−

√
1 −
κρ0r2

3
= 0 , (4.8)

or, which is the same,

3

√
1 −

rg
a
−

√
1 −

r2rg
a3 = 0 . (4.9)
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Thus, we obtain the radial coordinate r, at which a non-rotating liq-
uid star of a radius a meets the state of gravitational collapse

rc =

√
9a2 −

8a3

rg
. (4.10)

Since we keep in mind real cosmic objects, the numerical value of
the rc must be real (as well as a and rg). This requirement is satisfied by
the following obvious condition

a ⩽ 1.125 rg . (4.11)

If this condition is not satisfied (i.e., the physical radius a of a liquid
body is a⩾ 1.125 rg), then the non-rotating liquid body (star) cannot be
in the state of gravitational collapse.

As you can see, the general collapse condition (4.11) includes the
particular condition a= rg. In this particular case of a collapsed non-
rotating liquid star, we see that the physical radius a of the star’s sur-
face, the Hilbert radius rg and the radius of the outer space breaking
rbr =

√
a3/rg in the star’s field coincide

rc = rbr = rg = a . (4.12)

The obtained collapse condition a= rg (4.12) is only a particular
case of the general collapse condition (4.11). The general collapse con-
dition (4.11) includes three particular cases, concerning the location of
the physical surface of the collapsed liquid star:

1. The collapsed liquid star is larger than the Hilbert radius calcu-
lated for the star (a> rg), but smaller than 1.125 rg;

2. The surface of the collapsed liquid star coincides with its Hilbert
radius (a= rg);

3. The collapsed liquid star is completely located inside its Hilbert
radius (a< rg).

It is obvious that rc (4.10) is imaginary for rg≪ a, hence the state of
gravitational collapse is impossible for such a star. For example, consid-
ering the Sun (a= 7× 107 cm, M = 2× 1033 gram, rg = 3× 105 cm), we
see that the rc takes an imaginary numerical value. The same is as well
true for other ordinary stars, ranging from super-giants to white dwarfs.
Hence, ordinary stars cannot collapse.
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In fact, the particular collapse condition rc = rbr = rg = a (4.12) for-
mulates the collapse radius rc as follows*

rc = a =

√
3
κρ0
=

4.0 × 1013

√
ρ0

cm. (4.13)

For example, if a collapsed liquid sphere consists of an ordinary wa-
ter (ρ0 = 1.0 gram/cm3), then its radius is rc = 4.0×1013 cm= 3.1AU, i.e.
is located in the asteroid belt (the asteroids are located, approximately,
from 2.1 AU to 4.3 AU from the Sun).

Another example: a neutron star or pulsar. Such a star has a radius
of a= (8–16)×105 cm= 8–16 km. Hence, to be a collapsar, such a liquid
star must have ρ0 = 2.5 × 1015 – 6.3 × 1014 gram/cm3 according to the
obtained formula for rc (4.13).

Calculate the mass of a non-rotating liquid collapsar using the usual
formula M = 4

3 πa3ρ0 and the obtained formula a= rc =
√

3/κρ0 (4.13).
We obtain the following dependencies

M =
4πa
κ
= 6.8 × 1027 a gram, (4.14)

M =
4
√

3 π
κ3/2 √ρ0

=
2.7 × 1041

√
ρ0

gram, (4.15)

which we call the mass-radius relation and mass-density relation for
non-rotating liquid collapsars.

For example, if a collapsed liquid sphere has a size typical of a neu-
tron star or pulsar, which is a= (8–16) × 105 cm= 8–16 km, then its
mass should theoretically be M = (5.4–11) × 1033 gram that is 2.7–5.5
masses of the Sun.

4.2 The Universe as a huge liquid collapsar

Here is another example: the Universe itself. Astronomers estimate the
average density of substance in theUniverse to be in the range of 10−28 to
10−31 gram/cm3. In addition, according to the observational estimates,
the Hubble constant is H = c

a = (2.3± 0.3) × 10−18 sec−1, and the Uni-
verse’s radius is a= 1.3 × 1028 cm. At the upper limit of the estimated
density ρ0 = 10−28 gram/cm3, the collapse radius rc (4.10) falls into real

*κ= 8πG
c2 = 18.6 × 10−28 cm/gram is Einstein’s gravitational constant.



4.2 The Universe as a huge liquid collapsar 111

numerical values. Thus, according to the observational estimates, we
obtain the following characteristics of the Universe

a = 1.3 × 1028 cm

ρ0 = 10−28 gram/cm3

M = 9.2 × 1056 gram

rg = 1.4 × 1028 cm

rbr = 1.3 × 1028 cm

rc = 1.5 × 1028 cm


. (4.16)

This is a reason to think that the Universe can be considered as a
sphere of an ideal liquid, which is in the state of gravitational collapse.
We call this the liquidmodel of theUniverse. In this case, we should have
rc= rbr= rg= a (4.12). Based on this condition and the numerical value
of the Universe’s radius a= 1.3 × 1028 cm, obtained from the Hubble
constant, we calculate the mass and density that should be associates
with the Universe in the framework of the liquid model (according to
a= rg= 2GM

c2 and M = 4
3 πa3ρ0). We obtain

a = 1.3 × 1028 cm

ρ0 = 9.6 × 10−31 gram/cm3

M = 8.8 × 1055 gram

rg = 1.3 × 1028 cm

rbr = 1.3 × 1028 cm

rc = 1.3 × 1028 cm


. (4.17)

The calculated theoretical values (4.17) are compared with the es-
timates of observational astronomy (4.16) in Table 6.1. Since these ob-
servational estimates are known very approximately, we conclude that
the observable Universe is a huge collapsar. Therefore, all the world that
we observe, including ourselves, is located inside a huge black hole.

In particular, this conclusion meets another one made in 1965 by
Kyril P. Stanyukovich [33]. He neither studied the geometric properties
of a liquid sphere nor introduced a particular space metric. His analysis
was based on the properties of elementary particles. Following this way,
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M, gram ρ0 , g/cm
3 a, cm rg , cm rbr , cm rc , cm

Astron.
esteems 9.2×1056 ∼10−28 1.3×1028 1.4×1028 1.3×1028 1.5×1028

Liquid
model 8.8×1055 9.6×10−31 1.3×1028 1.3×1028 1.3×1028 1.3×1028

Table 6.1: The model of the observable Universe as a non-rotating liquid
sphere in the state of gravitational collapse. The calculated parameters of
the liquid model are compared with the observational esteems.

Stanyukovich obtained that theHilbert radius of theUniverse is the same
as the observed event horizon: the observable Universe is a collapsar.
So, despite the fact that Stanyukovich used a different theoretical base
from ours, he had arrived at the same conclusion.

4.3 Pressure and density inside a liquid collapsar

Let us calculate pressure and density inside non-rotating liquid collap-
sars. The formula (2.130) that we have obtained for the pressure p inside
a sphere filled with an ideal liquid

p = ρ0c2

√
1 − κρ0r2

3 −

√
1 − κρ0 a2

3

3
√

1 − κρ0 a2

3 −

√
1 − κρ0r2

3

(4.18)

under the collapse condition a=
√

3/κρ0 takes the simplest form

p = −ρ0c2 = const, (4.19)

where ρ0= const by definition inside any liquid sphere. This formula is
the equation of state of a liquid. Such a state is known as inflation: at a
positive density of a substance the pressure from within it is negative,
so the internal pressure of the substance tends to expand the body from
within (despite the fact that any liquid body is incompressible).

As is seen from this formula, the pressure inside a non-rotating liq-
uid collapsar is constant as well as the density. This means that the liquid
substance that fills a non-rotating collapsar is in the state of inflation and
has the same pressure and density throughout the entire volume of the
collapsar, from its centre to the surface.
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4.4 The internal forces of gravitation. The internal redshift

The force of gravitation acting inside a non-rotating liquid collapsar can
be found based on the force acting inside a non-rotating liquid sphere,
if the sphere is in the state of gravitational collapse (in this case, its
physical radius is a= rg =

√
3/κρ0).

Based on the formulae for the components F1 (2.123, 2.125) and F1

(2.124, 2.126) acting inside a non-rotating liquid sphere, we obtain

F1 =
κρ0c2r

3
1

1 − κρ0 r2

3

=
c2r
a2

1

1 − r2

a2

, (4.20)

F1 =
κρ0c2r

3
=

c2r
a2 . (4.21)

Since r< a inside the sphere, we have F1> 0. Therefore, this is a
force of repulsion. This force increases with the distance r, from zero at
the centre of the liquid collapsar to its maximum value on the surface.

If the observable Universe is really a huge liquid collapsar (astro-
nomical data evidence it), then the repulsive radial force acting inside
the collapsar may cause a frequency shift in photons. To investigate this
problem, we consider the chr.inv.-equations of isotropic geodesics

dω
dτ
−
ω

c2 Fi ci +
ω

c2 Dik cick = 0

d (ωci)
dτ

+ 2ω
(
Di

k + A·ik·
)

ck − ωF i + ω∆i
nk cnck = 0

 , (4.22)

which are the equations of motion of a light-like massless particle (such
as a photon, the frequency of which is ω), which travels with the ob-
servable velocity of light ci. These chr.inv.-equations are obtained as
the chr.inv.-projections of the general covariant equations of isotropic
geodesics. See [18, 19] for detail.

If the space of a non-rotating liquid collapsar does not rotate or de-
form (Aik= 0, Dik= 0), then the equations (4.22) take the form

dω
dτ
−
ω

c2 Fi ci = 0

d (ωci)
dτ

− ωF i + ω∆i
nk cnck = 0

 . (4.23)
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Let a photon travels only along the radial direction x1= r. Consider
the chr.inv.-scalar geodesic equation of the photon. Substitute the ob-
tained formula for F1 (4.20). Because the photon’s observable velocity
is the observable velocity of light along the radial direction, c1= dr

dτ , the
chr.inv.-scalar geodesic equation of the photon takes the form

1
ω

dω
dτ
=

r
a2 − r2

dr
dτ
. (4.24)

This equation is solved as d lnω=− 1
2 d ln |a2 − r2 |, or

d lnω = d ln
1

√
a2 − r2

, (4.25)

whence we obtain the function

ω (r) =
Q

√
a2 − r2

, Q = const. (4.26)

The integration constant Q is found from the obvious limit condition
ω(r= 0)=ω0. It is Q= a2ω0. Finally, we obtain the solution

ω =
ω0√
1 − r2

a2

. (4.27)

At the distances travelled by the photon, which are small to the phys-
ical radius of the collapsar (r≪ a), this formula transforms into

ω ≃ ω0

(
1 +

r2

2a2

)
. (4.28)

This causes a square redshift of the photon’s frequency

z =
ω − ω0

ω0
=

1√
1 − r2

a2

− 1 > 0 , (4.29)

which we call a parabolic redshift due to the parabolic square function.
That is, the force of repulsion F1 acting along the radial coordinate from
the observer decelerates photons travelling inside the star to him. At
small distances of the photon’s travel (r≪ a), the redshift is

z ≃
r2

2a2 , (4.30)
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or, formulating this result through the Hubble constant H = c
a ,

z ≃
H2r2

2c2 . (4.31)

So, the observed parameters of the Universe indicate that it is a huge
collapsar. This conclusion coincides with the calculations according to
the theory of non-rotating liquid collapsars presented here. Therefore,
astronomers should expect a non-linear parabolic redshift on the pho-
tons coming to us from the farthest regions of the Universe. The greater
the distance travelled by the photon, the greater the non-linearity of the
redshift function, which is expected to be registered in astronomical ob-
servations.

4.5 The state of a collapsed liquid substance

Let us now discuss the state of the substance that fills non-rotating liquid
collapsars. It is easy to see that once a non-rotating liquid star is in the
state of gravitational collapse (rg = a), the space metric (4.7) of such a
star takes the form

ds2 =
1
4

(
1 −

r2

a2

)
c2dt2 −

dr2

1 − r2

a2

− r2
(
dθ2 + sin2θ dϕ2

)
. (4.32)

This metric under the particular condition a2 = 3
λ > 0 (thus λ> 0) has

the same form as the de Sitter metric (1.5)

ds2 =

(
1 −
λr2

3

)
c2dt2 −

dr2

1 − λr2

3

− r2
(
dθ2 + sin2θ dϕ2

)
, (4.33)

which describes a spherical distribution of the physical vacuum (deter-
mined by the λ-field in Einstein’s field equations).

This means that liquid collapsars consist of an ideal liquid, the state
of which is similar to the state of the physical vacuum. The only differ-
ence is that the liquid filling collapsars has a positive density, while the
density of the physical vacuum at λ> 0 is negative; see §5.2 and §5.3
of our book [18] for detail. In addition, ordinary liquid collapsars have
a small size and high density (in contrast to the Universe as a whole).
Therefore, the liquid that fills ordinary (compact) collapsars is in a state
similar to the state of the high-density physical vacuum.
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What is the physical vacuum, known also as the λ-field? The phys-
ical vacuum is known due to the general formulation of Einstein’s field
equations containing the λ-term on the right hand side

Rαβ −
1
2
gαβR = −κTαβ + λgαβ , (4.34)

where the right hand side determines a distributed matter that fills the
space, and the left hand side determines the space geometry that is Rie-
mannian according to the formulation.

Let us re-write the field equations in the form

Rαβ −
1
2
gαβR = −κ T̃αβ , (4.35)

where the joint energy-momentum tensor T̃αβ=Tαβ + T̆αβ characterizes
both the distributed substance and the physical vacuum (λ-field).

The energy-momentum tensor of the physical vacuum

T̆αβ = −
λ

κ
gαβ (4.36)

was first deduced in 1995 by us and published in §5.2 and §5.3 of the
book [18]. It has the physically observable chr.inv.-projections

ρ̆ =
T̆00

g00
= −
λ

κ
= const < 0 , (4.37)

J̆ i =
c T̆ i

0
√
g00
= 0 , (4.38)

Ŭ ik = c2T̆ ik =
λ

κ
c2hik = − ρ̆c2hik, (4.39)

calculated in the same way as the observable chr.inv.-projections (1.91)
of any energy-momentum tensor.

The scalar chr.inv.-projection ρ̆=− λκ = const means that the physi-
cal vacuum is homogeneously distributed over the space, i.e., is a ho-
mogeneous medium. The vector chr.inv.-projection J̆ i= 0means that the
physical vacuum does not contain energy flows, i.e., is a non-radiating
medium.

Let us find the equation of state of the physical vacuum. According
to the chronometrically invariant formalism, the chr.inv.-stress tensor
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U ik of a distributed medium is expressed through the pressure inside
the medium as follows [18, 23]

Uik = p0hik − αik = phik − βik , (4.40)

where p0 is the equilibrium pressure known due to the equation of state,
p is the true pressure inside the medium, αik is the chr.inv.-viscous
stress tensor, βik=αik−

1
3 αhik is its anisotropic part that manifests itself

in anisotropic deformations, and α= hikαik is the trace of the viscous
stress tensor αik. Since a spherically symmetric space is isotropic by
definition, we have βik= 0 in the present case. In addition, according
to the initial assumption, the vacuum medium is non-viscous (αik= 0).
Therefore, for the physical vacuum, we have

Ŭik = p̆hik = − ρ̆c2hik . (4.41)

Thus, using the formula for the trace of the observable stress tensor
U = hikUik, we obtain the equation of state of the physical vacuum

p̆ = − ρ̆c2 (4.42)

that at a negative density ρ̆=− λκ < 0 is a manifestation of the state of
deflation, which means that the pressure from within the medium tends
to compress the sphere.

Deduce the components of the gravitational force acting inside a
vacuum collapsar (we call it a de Sitter collapsar). Following the same
way of derivation as that for the force acting inside a liquid collapsar
(4.20, 4.21), we obtain the force

F1 =
λc2r

3
1

1 − λr2

3

, F1 =
λc2r

3
, (4.43)

and for the frequency and frequency shift of a photon we obtain

ω =
ω0√

1 − λr2

3

≃ ω0

(
1 +
λr2

6

)
, (4.44)

z =
ω − ω0

ω0
=

1√
1 − λr2

3

− 1 ≃
λr2

6
> 0 . (4.45)
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To understand the results that we have obtained, let us recall that
we were able to transform the space metric of a collapsed liquid sphere
(4.32) into the de Sitter space metric (4.33) by only the particular con-
dition a2 = 3

λ > 0. Hence, we have assumed λ> 0. With λ> 0, we have
obtained a negative density of the physical vacuum ρ̆=− λκ < 0 (4.37),
the state of inflation p̆=− ρ̆c2 (4.42), the repulsing force F1> 0 (4.43)
and the square (parabolic) redshift (4.45).

These are the same results as those we have obtained for a liquid
collapsar, except for the negative density ρ̆=− λκ < 0 (and, hence, the
positive pressure p̆=− ρ̆c2 > 0, which gives the state of deflation) that
creates a problem.

To remove this problem, we could assume a negative value of the
λ, i.e., λ< 0 to get a positive density of the physical vacuum. But if so,
then the collapsar’s radius a would be imaginary, which is nonsense in
the observed Universe.

On the other hand, there is another way to remove this problem.
Now we will show you how to do it.

Consider Einstein’s field equations (4.34) in the form, where the
energy-momentum tensor of a distributed substance and the λ-term are
taken with the same sign

Rαβ −
1
2
gαβR = −κTαβ − λgαβ . (4.46)

In this case, the energy-momentum tensor of the physical vacuum
has the form

T̆αβ =
λ

κ
gαβ , (4.47)

and its physically observable chr.inv.-projections are

ρ̆ =
T̆00

g00
=
λ

κ
= const > 0 , (4.48)

J̆ i =
cT̆ i

0
√
g00
= 0 , (4.49)

Ŭ ik = c2T̆ ik = −
λ

κ
c2hik = − ρ̆c2hik. (4.50)

In this case, the physical vacuum (λ-field) is in the state of inflation
( p̆=− ρ̆c2), but its density is positive: ρ̆= λκ > 0. Therefore, themodified
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form (4.46) of Einstein’s field equations removes the aforementioned
contradiction between the theory of liquid collapsars and the observed
positive density of substance in the Universe.

Hence, we have obtained that the physical vacuum (λ-field) is a ho-
mogeneous, non-viscous, non-radiating medium, which in the state of
inflation.

Concerning the deduced redshift formula (4.45), it depends only on
the formula for the force of repulsion deduced from the specific g00 of
the de Sitter metric (4.33). Since we did not change the space metric,
the redshift formula (4.45) remains unchanged.

4.6 Time flows in the opposite direction inside collapsars

In a space without rotation, the observable time interval dτ (1.30) has
a simplified formula: dτ=

√
g00 dt. Therefore, according to the specific

g00 of the metric of a non-rotating liquid sphere (4.6), dτ in the field of
a non-rotating liquid star has the form

dτ = ±
1
2

3
√

1 −
κρ0a2

3
−

√
1 −
κρ0r2

3

 dt . (4.51)

This formula under the condition a= rg =
√

3/κρ0 characterizing a
star in the state of gravitational collapse transforms into

dτ = ∓
1
2

√
1 −
κρ0r2

3
dt . (4.52)

We see that the sign of the observable time interval dτ inside a reg-
ular liquid star is opposite to the dτ inside a liquid star in the state of
gravitational collapse. In other words, the observable time inside ordi-
nary stars flows in the opposite direction than the observable time inside
collapsars.

Just one illustration: we usually assume that the observable time
flows from the past to the future. If so, then the observable time inside
collapsars flows from the future to the past.

4.7 The boundary conditions in a liquid collapsar

Under the condition a= rg =
√

3/κρ0 characterizing liquid collapsars,
the non-zero components of the Riemann-Christoffel curvature tensor
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Rαβγδ (2.113–2.116) obtained in §2.3 take the form

R0101 =
κρ0

12
=

1
4a2 = const , (4.53)

R1212 = −C1212 =
κρ0

3
r2

1 − κρ0r2

3

=
r2

a2

1

1 − r2

a2

, (4.54)

R1313 = −C1313 =
κρ0

3
r2 sin2θ

1 − κρ0r2

3

=
r2

a2

sin2θ

1 − r2

a2

, (4.55)

R2323 = −C2323 =
κρ0

3
r4 sin2θ =

r4

a2 sin2θ . (4.56)

Since R0101=
κρ0
12 = const and R0101 > 0 in the case of a positive den-

sity ρ0 > 0 of the liquid, the internal space of a liquid collapsar is a four-
dimensional positive constant curvature space. This is in contrast to our
result of §2.3, where we showed that the space inside a regular liquid
sphere has a variable four-dimensional negative curvature. Hence:

The state of gravitational collapse is a “bridge” connecting the
world of a varying four-dimensional negative curvature inside or-
dinary stars and the world of a four-dimensional positive constant
curvature inside those stars that are in the state of gravitational
collapse.

Calculate the observable three-dimensional curvature of the space
inside non-rotating liquid collapsars. We calculate C11 (2.104), C22
(2.105) and the observable curvature scalar C = hikCik under the con-
dition a= rg =

√
3/κρ0 characterizing liquid collapsars. We obtain

C11 = −
2κρ0

3
1

1 − κρ0r2

3

= −
2
a2

1

1 − r2

a2

, (4.57)

C22 =
C33

sin2θ
= −

2κρ0r2

3
= −

2r2

a2 , (4.58)

C = − 2κρ0 = −
6
a2 = const < 0 . (4.59)

This is a three-dimensional negative constant curvature space as
well as the space inside ordinary liquid stars.
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So forth, we express the force of gravitation acting in the internal
space of a non-rotating liquid collapsar through the observable three-
dimensional curvature of the internal space. From the formulae for F1
(4.20) and F1 (4.21), we obtain

F1 = −
c2r
2

C11 , F1 = −
c2

2r
C22 . (4.60)

We see that both the observable three-dimensional curvature and
the force of gravitation have a space breaking

C11 → −∞, F1 → ∞ (4.61)

by the limit condition r= a on the surface of the collapsar.

4.8 Rotating liquid collapsars

Let us calculate whether the shape and size of rotating liquid collapsars
differs from the shape and size of non-rotating ones. This problem was
solved in December 2024 in a study of rotating collapsars [34], based
on the metric of a rotating body [35] introduced at the same time and
proven using Einstein’s equations. Here we briefly repeat these results.

Let the space of the metric (4.7) characteristic of a liquid star rotates
with an angular velocity ω around the polar axis of the collapsar. In this
case, among the g0i-th components of the fundamental metric tensor
gαβ, only the non-zero component

g03 = −
ωr2 sin2θ

2c

3
√

1 −
rg
a
−

√
1 −

r2rg
a3

 (4.62)

characterizes the rotation, while g01 = g02= 0. Therefore, the linear ve-
locity vi (1.45) with which the space rotates has the form

v3 = ωr2 sin2θ , v1 = v2 = 0 . (4.63)

Thus, we obtain the space metric on the surface of a rotating liquid
collapsar (its radius a differs from rg, i.e., r= a, rg due to its rotation)

ds2 =

(
1 −

rg
r

)
c2dt2 − 2ωr2 sin2θ

√
1 −

rg
r

dt dϕ −

−
dr2

1 − rg
r

− r2
(
dθ2 + sin2θ dϕ2

)
. (4.64)
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The resulting metric is analogous to the Schwarzschild mass-point
metric (1.1), but with an additional term describing the rotation of space.
This is not surprising, because the space metric of a liquid sphere coin-
cides with the metric of a mass-point on the surface of the sphere and
outside it (for this reason, the mass-point metric is sometimes called the
external metric of a liquid sphere).

The general condition of gravitational collapse means that the phys-
ically observable time stops (dτ= 0) on the collapse surface. The defi-
nition of dτ (1.30) takes both the factors g00 and g0i into account

dτ =
√
g00 dt +

g0i

c
√
g00

dxi =

(
1 −

w
c2

)
dt −

1
c2 vi dxi. (4.65)

Therefore, the collapse condition with vi, 0 is not dτ=
√
g00 dt= 0

as that for non-rotating collapsars, but takes the complete form

√
g00 −

1
c2 v3 u3 = 0 , (4.66)

where u3=
dϕ
dt =ω. Using the g00 and v3 (4.63) of the metric (4.64), we

obtain the collapse surface radius of a rotating liquid collapsar

rc =
rg

1 − ω
4r4 sin4θ

c4

⩾ rg , (4.67)

and, hence,

rc ≃ rg

(
1 +
ω4r4 sin4θ

c4

)
= rg + ∆rg . (4.68)

Assuming ω= 103 sec−1 and r= a= 106 cm for example, we obtain
∆rg ≃ 1.2 × 10−6 rg sin4θ ≃ 1.2 centimetres at the equator of the star
and ∆rg = 0 at the South Pole and North Pole.

We see that the collapse surface meets the radius a of the star only
at the poles of the star’s rotation, where the polar angle is θ= 0 and,
therefore, sin θ= 0. In other words, rotating liquid collapsars are not
spheres, but have an elliptic form thick on the equatorial plane (which
is orthogonal to the axis of rotation).

If a collapsar does not rotate (ω= 0), then its form is spherically
symmetric (rc= a= rg). At a maximum relativistic rotation speed, the
collapsar’s elliptic form is thick on the equatorial plane: when the col-
lapsar rotates with a velocity close to the velocity of light (ωa→ c), its
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form is determined by the equation

rc =
rg

1 − sin4θ
≃ rg

(
1 + sin4θ

)
. (4.69)

These results obtained for rotating liquid collapsars coincide with
the results obtained for rotating collapsars with the mass-point space
metric [34] due to the identity of the space metrics on their surfaces and
the identity of their outer space metrics.

4.9 Conclusion

Let us recall everything we have obtained here on liquid collapsars:
1. The radial coordinate at which a non-rotating liquid sphere of a

radius a meets the state of gravitational collapse, is rc (4.10)

rc =

√
9a2 −

8a3

rg
. (4.70)

For ordinary stars, rc takes imaginary numerical values. There-
fore, ordinary stars are not in the state of collapse;

2. Since the collapse radius rc must be real for real objects, the phys-
ical radius a of a non-rotating liquid collapsar must be

a ⩽ 1.125 rg . (4.71)

If a non-rotating liquid star has a radius of a⩾ 1.125 rg, then this
star cannot be in the state of gravitational collapse;

3. Density is the primary characteristic of non-rotating liquid collap-
sars. The physical radius a of such a collapsar is inversely propor-
tional to the square root of its density ρ0 (4.13)

a =

√
3
κρ0
=

4.0 × 1013

√
ρ0

cm; (4.72)

4. The mass M of a non-rotating liquid collapsar

M =
4πa
κ
= 6.8 × 1027 a gram, (4.73)

M =
4
√

3 π
κ3/2 √ρ0

=
2.7 × 1041

√
ρ0

gram (4.74)
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is proportional to its physical radius a (4.14) and is inversely pro-
portional to the square root of its density ρ0 (4.15);

5. The observable Universe is completely located inside its collapse
radius. Therefore, we conclude that the Universe is a gravitational
collapsar: all stars and galaxies, including ourselves, exist inside a
huge black hole. Its parameters theoretically calculated according
to the model of liquid collapsars are

a = 1.3 × 1028 cm

ρ0= 9.6 × 10−31 gram/cm3

M= 8.8 × 1055 gram

 ; (4.75)

6. A liquid substance that fills liquid collapsars is in the state of in-
flation. Its equation of state is

p = −ρ0c2 = const, (4.76)

which means that at a positive density of substance the pressure
is negative, so the pressure from within tends to expand the body
(but the collapsar does not expand, because a liquid body is in-
compressible). The pressure and density remain unchanged from
the centre of the collapsar up to its surface;

7. The gravitational inertial force acting inside a non-rotating liquid
collapsar is a force of repulsion. It increases with distance, from
zero at the centre of the collapsar to its maximum value on the
surface;

8. The internal force of repulsion produces a square (parabolic) red-
shift on photons travelling inside the collapsar;

9. The state of a liquid substance that fills ordinary (compact) col-
lapsars is similar to the state of the high-density physical vacuum
(high-density λ-field), which is a homogeneous, non-viscous, non-
radiating medium in the state of inflation;

10. The observable time flows in the opposite directions inside and
outside collapsars: if we assume that the observable time of our
world flows from the past to the future, then the observable time
flows from the future to the past inside collapsars;

11. The state of gravitational collapse is a “bridge” connecting the
world of a varying four-dimensional negative curvature inside or-
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dinary stars and the world of a four-dimensional positive constant
curvature inside gravitational collapsars (black holes);

12. Rotating liquid collapsars are not spheres, but have an elliptic form
thick on the equatorial plane (where sin θ= 1). The radius rc of a
rotating liquid collapsar is formulated through its gravitational ra-
dius rg, the sphere’s radius r= a, the polar angle θ and the angular
velocity of its rotation ω in the form

rc =
rg

1 − ω
4r4 sin4θ

c4

≃ rg

(
1 +
ω4r4 sin4θ

c4

)
=

≃ rg + ∆rg ⩾ rg . (4.77)
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