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Observational Cosmology: From High Redshift Galaxies to the Blue Pacific

Halton Arp

Max-Planck-Institut für Astrophysik, Karl Schwarzschild-Str.1,
Postfach 1317, D-85741 Garching, Germany

E-mail: arp@mpa-garching.mpg.de

1 Birth of galaxies

Observed: Ejection of high redshift, low luminosity quasars
from active galaxy nuclei.

Shown by radio and X-ray pairs, alignments and lumin-
ous connecting filaments. Emergent velocities are much less
than intrinsic redshift. Stripping of radio plasmas. Probabi-
lities of accidental association negligible. See Arp, 2003 [4]
for customarily supressed details.

Observed: Evolution of quasars into normal companion ga-
laxies.

The large number of ejected objects enables a view of
empirical evolution from high surface brightness quasars
through compact galaxies. From gaseous plasmoids to fo-
rmation of atoms and stars. From high redshift to low.

Fig. 1: Enhanced Hubble Space Telescope image showing ejection
wake from the center of NGC 7319 (redshift z = 0.022) to within
about 3.4 arcsec of the quasar (redshift z = 2.11)

Observed: Younger objects have higher intrinsic redshifts.
In groups, star forming galaxies have systematically

higher redshifts, e. g. spiral galaxies. Even companions in
evolved groups like our own Andromeda Group or the nearby
M81 group still have small, residual redshift excesses relative
to their parent.

Observed: X-ray and radio emission generally indicate
early evolutionary stages and intrinsic redshift.

Plasmoids ejected from an active nucleus can fragment
or ablate during passage through galactic and intergalactic
medium which results in the forming of groups and clusters
of proto galaxies. The most difficult result for astronomers
to accept is galaxy clusters which have intrinsic redshifts.
Yet the association of clusters with lower redshift parents is

demonstrated in Arp and Russell, 2001 [1]. Individual cases
of strong X-ray clusters are exemplified by elongations and
connections as shown in the ejecting galaxy Arp 220, in Abell
3667 and from NGC 720 (again, summarized in Arp, 2003
[4]). Motion is confirmed by bow shocks and elongation is
interpreted as ablation trails. In short — if a quasar evolves
into a galaxy, a broken up quasar evolves into a group of
galaxies.

2 Redshift is the key

Observed: The whole quasar or galaxy is intrinsically red-
shifted.

Objects with the same path length to the observer have
much different redshifts and all parts of the object are shifted
closely the same amount. Tired light is ruled out and also
gravitational redshifting.

The fundamental assumption: Are particle masses con-
stant?

The photon emitted in an orbital transition of an electron
in an atom can only be redshifted if its mass is initially
small. As time goes on the electron communicates with more
and more matter within a sphere whose limit is expanding
at velocity c. If the masses of electrons increase, emitted
photons change from an initially high redshift to a lower
redshift with time (see Narlikar and Arp, 1993 [6])

Predicted consequences: Quasars are born with high red-
shift and evolve into galaxies of lower redshift.

Near zero mass particles evolve from energy conditions
in an active nucleus. (If particle masses have to be created
sometime, it seems easier to grow things from a low mass
state rather than producing them instantaneously in a finished
state.)

DARK MATTER: The establishment gets it right, sort of.
In the Big Bang, gas blobs in the initial, hot universe

have to condense into things we now see like quasars and
galaxies. But we know hot gas blobs just go poof! Lots of
dark matter (cold) had to be hypothesized to condense the
gas cloud. They are still looking for it.

But low mass particles must slow their velocities in order
to conserve momentum as their mass grows. Temperature is
internal velocity. Thus the plasmoid cools and condenses its
increasing mass into a compact quasar. So maybe we

H. Arp. Observational Cosmology. From High Redshift Galaxies to the Blue Pacific 3
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Fig. 2: Schematic representation of quasars and companion galaxies
found associated with central galaxies from 1966 to present. The
progression of characteristics is empirical but is also required by
the variable mass theory of Narlikar and Arp, 1993 [6]

have been observing dark matter ever since the discovery of
quasars! After all, what’s in a name?

Observed: Ambarzumian sees new galaxies.
In the late 1950’s when the prestigious Armenian astro-

nomer, Viktor Ambarzumian was president of the Interna-
tional Astronomical Union he said that just looking at pic-
tures convinced him that new galaxies were ejected out of
old. Even now astronomers refuse to discuss it, saying that
big galaxies cannot come out of other big galaxies. But we
have just seen that the changing redshift is the key that
unlocks the growth of new galaxies with time. They are small
when they come from the small nucleus. Ambarzumian’s
superfluid just needed the nature of changing redshift. But
Oort and conventional astronomers preferred to condense hot
gas out of a hot expanding universe.

Observed: The Hubble Relation.
An article of faith in current cosmology is that the relation

between faintness of galaxies and their redshift, the Hubble
Relation, means that the more distant a galaxy is the faster it
is receding from us. With our galaxy redshifts a function of
age, however, the look back time to a distant galaxy shows it
to us when it was younger and more intrinsically redshifted.
No Doppler recession needed!

The latter non-expanding universe is even quantitative in
that Narlikar’s general solution of the General Relativistic
equations (m= t2) gives a Hubble constant directly in term
of the age of our own galaxy. (H0= 51 km/sec×Mpc for
age of our galaxy = 13 billion years). The Hubble constant

observed from the most reliable Cepheid distances is H0=
= 55 (Arp, 2002 [3]). What are the chances of obtaining the
correct Hubble constant from an incorrect theory with no
adjustable parameters? If this is correct there is negligible
room for expansion of the universe.

Observed: The current Hubble constant is too large.
A large amount of observing time on the Hubble Space

Telescope was devoted to observing Cepheid variables whose
distances divided into their redshifts gave a definitive value
of H0= 72. That required the reintroduction of Einstein’s
cosmological constant to adjust to the observations. But
H0= 72 was wrong because the higher redshift galaxies
in the sample included younger (ScI) galaxies which had
appreciable intrinsic redshifts.

Independent distances to these galaxies by means of
rotational luminosity distances (Tully-Fisher distances) also
showed this class of galaxies had intrinsic redshifts which
gave too high a Hubble constant (Russell, 2002 [8]) In
fact well known clusters of galaxies gives H0’s in the 90’s
(Russell, private communication) which clearly shows that
neither do we have a correct distance scale or understanding
of the nature of galaxy clusters.

DARK ENERGY: Expansion now claimed to be acceler-
ation.

As distance measures were extended to greater distances
by using Supernovae as standard candles it was found that
the distant Supernovae were somewhat too faint. This led
to a smaller H0 and hence an acceleration compared to
the supposed present day H0= 72. Of course the younger
Supernovae could be intrinsically fainter and also we have
seen the accepted present day H0 is too large. Nevertheless
astronomers have again added a huge amount of undetected
substance to the universe to make it agree with properties of
a disproved set of assumptions. This is called the accordance
model but we could easily imagine another name for it.

3 Physics — local and universal

Instead of extrapolating our local phenomena out to the
universe one might more profitably consider our local region
as a part of the physics of the universe.

Note: Flat space, no curves, no expansion.
The general solution of energy/momentum conservation

(relativistic field equations) which Narlikar made with
m= t2 gives a Euclidean, three dimensional, uncurved space.
The usual assumption that particle masses are constant in
time only projects our local, snapshot view onto the rest of
the universe.

In any case it is not correct to solve the equations in a non-
general case. In that case the usual procedure of assigning
curvature and expansion properties to the mathematical term
space (which has no physical attributes!) is only useful for
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excusing the violations with the observations caused by the
inappropriate assumption of constant elementary masses.

Consequences: Relativity theory can furnish no gravity.
Space (nothing) can not be a “rubber sheet”. Even if there

could be a dimple — nothing would roll into it unless there
was a previously existing pull of gravity. We need to find a
plausible cause for gravity other than invisible bands pulling
things together.

Required: Very small wave/particles pushing against bodies.
In 1747 the Genevoise philosopher-physicist George-

Louis Le Sage postulated that pressure from the medium
which filled space would push bodies together in accordance
with the Newtonian Force =1/r2 law. Well before the cont-
inuing fruitless effort to unify Relativistic gravity and quan-
tum gravity, Le Sage had solved the problem by doing away
with the need to warp space in order to account for gravity.

Advantages: The Earth does not spiral into the Sun.
Relativistic gravity is assigned an instantaneous com-

ponent as well as a component that travels with the speed
of light, c. If gravity were limited to c, the Earth would
be rotating around the Sun where it was about 8 minutes
ago. By calculating under the condition that no detectable
reduction in the size of the Earth’s orbit has been observed,
Tom Van Flandern arrives at the minimum speed of gravity
of 2×1010 c. We could call these extremely fast, extremely
penetrating particles gravitons.

A null observation saves causality.
The above reasoning essentially means that gravity can

act as fast as it pleases, but not instantaneously because that
would violate causality. This is reassuring since causality
seems to be an accepted property of our universe (except for
some early forms of quantum theory).

Black holes into white holes.
In its usual perverse way all the talk has been about black

holes and all the observations have been about white holes.
Forget for a moment that from the observer’s viewpoint it
would take an infinity of time to form a black hole. The ob-
servations show abundant material being ejected from stars,
nebulae, galaxies, quasars. What collimates these out of a
region in which everything is supposed to fall into? (Even
ephemeral photons of light.) After 30 years of saying nothing
comes out of black holes, Stephen Hawking now approaches
the observations saying maybe a little leaks out.

Question: What happens when gravitons encounter a black
hole?

If the density inside the concentration of matter is very
high the steady flux of gravitons absorbed will eventually
heat the core and eventually this energy must escape. After
all it is only a local concentration of matter against the
continuous push of the whole of intergalactic space. Is it
reasonable to say it will escape through the path of least
resistance, for example through the flattened pole of a spinn-

ing sphere which is usual picture of the nucleus? Hence the
directional nature of the observed plasmoid ejections.

4 Planets and people

In our own solar system we know the gas giant planets
increase in size as we go in toward the Sun through Neptune,
Uranus, Saturn and Jupiter. On the Earth’s side of Jupiter,
however, we find the asteroid belt. It does not take an ad-
vanced degree to come to the idea that the asteroids are the
remains of a broken up planet. But how? Did something
crash into it? What does it mean about our solar system?

Mars: The Exploding Planet Hypothesis.
We turn to a real expert on planets, Tom Van Flandern.

For years he has argued in convincing detail that Mars,
originally bigger than Earth, had exploded visibly scarring
the surface of its moon, the object we now call Mars. One
detail should be especially convincing, namely that the pre-
sent Mars, unable to hold an atmosphere, had long been
considered devoid of water, a completely arid desert. But
recent up-close looks have revealed evidence for “water
dumps”, lots of water in the past which rapidly went away.
Where else could this water have come from except the
original, close-by Mars as it exploded?

For me the most convincing progression is the increasing
masses of the planets from the edge of the planetary system
toward Jupiter and then the decreasing masses from Jupiter
through Mercury. Except for the present Mars! But that
continuity would be preserved with an original Mars larger
than Earth and its moon larger than the Earth’s moon.

As for life on Mars, the Viking lander reported bacteria
but the scientist said no. Then there was controversy about
organic forms in meteorites from Mars. But the most straight
forward statement that can be made is that features have now
been observed that look “artificial” to some. Obviously no
one is certain at this point but most scientists are trained to
stop short of articulating the obvious.

Gravitons: Are planets part of the universe?
If a universal sea of very small, very high speed gravitons

are responsible for gravity in galaxies and stars would not
these same gravitons be passing through the solar system
and the planets in it? What would be the effect if a small
percentage were, over time, absorbed in the cores of planets?

Speculation: What would we expect?
Heating the core of a gas giant would cause the liquid/

gaseous planet to expand in size. But if the core of a rocky
planet would be too rigid to expand it would eventually
explode. Was the asteroid planet the first to go? Then the
original Mars? And next the Earth?

Geology: Let’s argue about the details.
Originally it was thought the Earth was flat. Then spher-

ical but with the continents anchored in rock. When Alfred
Wegener noted that continents fitted together like jigsaw
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puzzle and therefore had been pulled apart, it was violently
rejected because geologists said they were anchored in basalt-
ic rock. Finally it was found that the Atlantic trench between
the Americas and Africa/Europe was opening up at a rate
of just about right for the Earth’s estimated age (Kokus,
2002 [5]). So main stream geologists invented plate tecton-
ics where the continents skated blythly around on top of this
anchoring rock!

In 1958 the noted Geologist S. Warren Carey and in 1965
K. M. Creer (in the old, usefully scientific Nature Magazine)
were among those who articulated the obvious, namely that
the Earth is expanding. The controversy between plate tec-
tonics and expanding Earth has been acrid ever since.
(One recent conference proceedings by the latter adherents is
“Why Expanding Earth?” (Scalera and Jacob, 2003 [7]).

Let’s look around us.
The Earth is an obviously active place. volcanos, Earth

quakes, island building. People seem to agree the Atlantic
is widening and the continents separating. But the Pacific is
violently contested with some satellite positioning claiming
no expansion. I remember hearing S. Warren Carey pains-
takingly interpreting maps of the supposed subduction zone
where the Pacific plate was supposed to be diving under the
Andean land mass of Chile. He argued that there was no
debris scraped off the supposedly diving Pacific Plate. But
in any case, where was the energy coming from to drive a
huge Pacific plate under the massive Andean plate?

My own suggestion about this is that the (plate) is stuck,
not sliding under. Is it possible that the pressure from the
Pacific Basin has been transmitted into the coastal ranges of
the Americas where it is translated into mountain building?
(Mountain building is a particularly contentious disagree-
ment between static and expanding Earth proponents.)

It is an impressive, almost thought provoking sight, to
see hot lava welling up from under the southwest edge of
the Big Island of Hawaii forming new land mass in front
of our eyes. All through the Pacific there are underground
vents, volcanos, mountain and island building. Is it possible
this upwelling of mass in the central regions of the Pacific is
putting pressure on the edge? Does it represent the emergence
of material comparable to that along the Mid Atlantic ridge
on the other side of the globe?

The future: Life as an escape from danger.
The galaxy is an evolving, intermittently violent environ-

ment. The organic colonies that inhabit certain regions within
it may or may not survive depending on how fast they
recognize danger and how well they adapt, modify it or
escape from it. Looking out over the beautiful blue Pacific
one sees tropical paradises. On one mountain top, standing
on barely cool lava, is the Earth’s biggest telescope. Looking
out in the universe for answers. Can humankind collectively
understand these answers? Can they collectively ensure their
continued appreciation of the beauty of existence.
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On the General Solution to Einstein’s Vacuum Field for the Point-Mass
when λ 6=0 and Its Consequences for Relativistic Cosmology

Stephen J. Crothers

Sydney, Australia

E-mail: thenarmis@yahoo.com

It is generally alleged that Einstein’s theory leads to a finite but unbounded universe.
This allegation stems from an incorrect analysis of the metric for the point-mass when
λ 6=0. The standard analysis has incorrectly assumed that the variable r denotes a
radius in the gravitational field. Since r is in fact nothing more than a real-valued
parameter for the actual radial quantities in the gravitational field, the standard
interpretation is erroneous. Moreover, the true radial quantities lead inescapably to
λ=0 so that, cosmologically, Einstein’s theory predicts an infinite, static, empty
universe.

1 Introduction

It has been shown [1, 2, 3] that the variable r which appears
in the metric for the gravitational field is neither a radius
nor a coordinate in the gravitational field, and further [3],
that it is merely a real-valued parameter in the pseudo-
Euclidean spacetime (Ms, gs) of Special Relativity, by which
the Euclidean distanceD= |r−r0| ∈ (Ms, gs) is mapped in-
to the non-Euclidean distanceRp ∈ (Mg, gg), where (Mg, gg)
denotes the pseudo-Riemannian spacetime of General Rela-
tivity. Owing to their invalid assumptions about the variable

r, the relativists claim that r=
√

3
λ defines a “horizon” for

the universe (e .g. [4]), by which the universe is supposed to
have a finite volume. Thus, they have claimed a finite but
unbounded universe. This claim is demonstrably false.

The standard metric for the simple point-mass when
λ 6=0 is,

ds2=

(

1−
2m

r
−
λ

3
r2
)

dt2−

−

(

1−
2m

r
−
λ

3
r2
)−1

dr2− r2
(
dθ2+ sin2 θdϕ2

)
.

(1)

The relativists simply look at (1) and make the following
assumptions.

(a) The variable r is a radial coordinate in the gravita-
tional field ;

(b) r can go down to 0 ;

(c) A singularity in the gravitational field can occur only
where the Riemann tensor scalar curvature invariant
(or Kretschmann scalar) f = RαβγδR

αβγδ is un-
bounded .

The standard analysis has never proved these assum-
ptions, but nonetheless simply takes them as given. I have
demonstrated elsewhere [3] that when λ=0, these assum-
ptions are false. I shall demonstrate herein that when λ 6=0

these assumptions are still false, and further, that λ can only
take the value of zero in Einstein’s theory.

2 Definitions

As is well-known, the basic spacetime of the General Theory
of Relativity is a metric space of the Riemannian geometry
family, namely — the four-dimensional pseudo-Riemannian
space with Minkowski signature. Such a space, like any
Riemannian metric space, is strictly negative non-degenerate,
i. e. the fundamental metric tensor gαβ of such a space has a
determinant which is strictly negative: g= det || gαβ ||< 0.

Space metrics obtained from Einstein’s equations can
be very different. This splits General Relativity’s spaces
into numerous families. The two main families are derived
from the fact that the energy-momentum tensor of matter
Tαβ , contained in the Einstein equations, can (1) be linearly
proportional to the fundamental metric tensor gαβ or (2) have
a more compound functional dependence. The first case is
much more attractive to scientists, because in this case one
can use gαβ , taken with a constant numerical coefficient,
instead of the usual Tαβ , in the Einstein equations. Spaces
of the first family are known as Einstein spaces.

From the purely geometrical perspective, an Einstein
space [5] is described by any metric obtained from

Rαβ −
1

2
gαβR=κTαβ − λgαβ ,

where κ is a constant and Tαβ ∝ gαβ , and therefore includes
all partially degenerate metrics. Accordingly, such spaces
become non-Einstein only when the determinant g of the
metric becomes

g= det || gαβ ||=0 .

In terms of the required physical meaning of General
Relativity I shall call a spacetime associated with a non-
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degenerate metric, an Einstein universe, and the associated
metric an Einstein metric.

Cosmological models involving either λ 6=0 or λ=0,
which do not result in a degenerate metric, I shall call rela-
tivistic cosmological models, which are necessarily Einstein
universes, with associated Einstein metrics.

Thus, any “partially” degenerate metric where g 6=0 is
not an Einstein metric, and the associated space is not an
Einstein universe. Any cosmological model resulting in a
“partially” degenerate metric where g 6=0 is neither a rela-
tivistic cosmological model nor an Einstein universe.

3 The general solution when λ 6=0

The general solution for the simple point-mass [3] is,

ds2 =

(√
Cn−α√
Cn

)

dt2−

( √
Cn√

Cn−α

)
C ′n

2

4Cn
dr2−

−Cn(dθ2 + sin
2 θdϕ2) ,

(2)

Cn(r) =
[
|r − r0|

n + αn
] 2
n , n ∈ <+,

α=2m, r0 ∈ < ,

where n and r0 are arbitrary and r is a real-valued parameter
in (Ms, gs).

The most general static metric for the gravitational field
[3] is,

ds2=A(D)dt2−B(D)dr2−C(D)
(
dθ2+sin2 θdϕ2

)
, (3)

D= |r − r0|, r0 ∈< ,

where analytic A,B,C > 0 ∀ r 6= r0 .
In relation to (3) I identify the coordinate radius D, the r-

parameter, the radius of curvature Rc, and the proper radius
(proper distance) Rp.

1. The coordinate radius is D= |r − r0| .

2. The r-parameter is the variable r .

3. The radius of curvature is Rc=
√
C(D(r)) .

4. The proper radius is Rp=
∫ √

B(D(r))dr .

I remark that Rp(D(r)) gives the mapping of the Euclid-
ean distance D= |r− r0| ∈ (Ms, gs) into the non-Euclidean
distance Rp ∈ (Mg, gg) [3]. Furthermore, the geometrical re-
lations between the components of the metric tensor are invi-
olable and therefore hold for all metrics with the form of (3).

Thus, on the metric (2),

Rc=
√
Cn(D(r)) ,

Rp=

∫ √ √
Cn√

Cn − α

C ′n
2
√
Cn

dr .

Transform (3) by setting,

r∗=
√
C(D(r)) , (4)

to carry (3) into,

ds2=A∗(r∗)dt2−B∗(r∗)dr∗2− r∗2
(
dθ2+sin2 θdϕ2

)
. (5)

For λ 6=0, one finds in the usual way that the solution
to (5) is,

ds2=

(

1−
α

r∗
−
λ

3
r∗2
)

dt2−

−

(

1−
α

r∗
−
λ

3
r∗2
)−1

dr∗2− r∗2
(
dθ2+ sin2 θdϕ2

)
.

(6)

α= const.

Then by (4),

ds2=

(

1−
α
√
C
−
λ

3
C

)

dt2−

−

(

1−
α
√
C
−
λ

3
C

)−1
C

′2

4C
dr2 −

− C
(
dθ2 + sin2 θdϕ2

)
,

(7)

C =C(D(r)), D=D(r)= |r − r0|, r0 ∈< ,

α= const ,

where r∈ (Ms, gs) is a real-valued parameter and also
r0 ∈ (Ms, gs) is an arbitrary constant which specifies the
position of the point-mass in parameter space.

When α=0, (7) reduces to the empty de Sitter metric,
which I write generally, in view of (7), as

ds2=

(

1−
λ

3
F

)

dt2 −

(

1−
λ

3
F

)−1
d
√
F
2
−

− F
(
dθ2 + sin2 θdϕ2

)
,

(8)

F =F (D(r)), D=D(r)= |r − r0|, r0 ∈< .

If F (D(r))= r2, r0 =0, and r> r0 , then the usual form
of (8) is obtained,

ds2=

(

1−
λ

3
r2
)

dt2 −

(

1−
λ

3
r2
)−1

dr2−

− r2
(
dθ2 + sin2 θdϕ2

)
.

(9)

The admissible forms for C(D(r)) and F (D(r)) must
now be generally ascertained.

If C ′≡ 0, then B(D(r))= 0 ∀ r, in violation of (3).
Therefore C ′ 6=0 ∀ r 6=r0 .

Now C(D(r)) must be such that when r→ ±∞, equa-
tion (7) must reduce to (8) asymptotically. So,
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as r→ ±∞, C(D(r))
F (D(r))

→ 1.

I have previously shown [3] that the condition for sin-
gularity on a metric describing the gravitational field of the
point-mass is,

g00(r0)= 0 . (10)

Thus, by (7), it is required that,

1−
α

√
C(D(r0))

−
λ

3
C(D(r0))= 1−

α

β
−
λ

3
β2=0 , (11)

having set
√
C(D(r0))=β. Thus, β is a scalar invariant for

(7) that must contain the independent factors contributing to
the gravitational field, i .e. β=β(α, λ). Consequently it is
required that when λ=0, β=α=2m to recover (2), when

α=0, β=
√

3
λ to recover (8), and when α=λ=0, and

β=0, C(D(r))= |r − r0|
2 to recover the flat spacetime of

Special Relativity. Also, when α= 0, C(D(r)) must reduce
to F (D(r)). The value of β= β(λ)=

√
F (D(r0)) in (8) is

also obtained from,

g00(r0)= 0=1−
λ

3
F (D(r0))= 1−

λ

3
β2 .

Therefore,

β=

√
3

λ
. (12)

Thus, to render a solution to (7), C(D(r)) must at least
satisfy the following conditions.

1. C ′(D(r)) 6=0 ∀ r 6= r0 .

2. As r→ ±∞, C(D(r))
F (D(r))→ 1 .

3. C(D(r0))=β
2, β=β(α, λ) .

4. λ=0⇒β=α=2m and C =
(
|r − r0|

n + αn
) 2
n .

5. α=0⇒β=
√

3
λ and C(D(r))=F (D(r)) .

6. α=λ=0⇒β=0 and C(D(r))= |r − r0|
2 .

Both α and β(α, λ) must also be determined.
Since (11) is a cubic, it cannot be solved exactly for

β. However, I note that the two positive roots of (11) are

approximately α and
√

3
λ . Let P (β)= 1 − α

β −
λ
3β

2. Then

according to Newton’s method,

βm+1=βm −
P (βm)

P ′(βm)
=βm −

(
1− α

βm
−λ
3β

2
m

)

(
α
β2m
− 2λ

3 βm

) . (13)

Taking β1=α into (13) gives,

β≈β2=
3α− λα3

3− 2λα2
, (14a)

and

β≈β3=
3α− λα3

3− 2λα2
−

−





1−

α(3−2λα2)
(3α−λα3) −

λ
3

(
3α−λα3

3−2λα2

)2

α
(
3−2λα2
3α−λα3

)2
− 2λ

3

(
3α−λα3
3−2λα2

)




 ,

(14b)

etc., which satisfy the requirement that β=β(α, λ).

Taking β1=
√

3
λ into (13) gives,

β≈β2=

√
3

λ
+

α

α
√

λ
3 − 2

, (15a)

and

β≈β3=

√
3

λ
+

α

α
√

λ
3 − 2

−

−












1− α(
√

3
λ+

α

α

√
λ
3
−2

) − λ
3

(√
3
λ +

α

α
√

λ
3−2

)2

α(
√

3
λ+

α

α

√
λ
3
−2

)2 −
2λ
3

(√
3
λ +

α

α
√

λ
3−2

)












,

(15b)

etc., which satisfy the requirement that β=β(α, λ).
However, according to (14a) and (14b), when λ=0,

β=α=2m, and when α=0, β 6=
√

3
λ . According to (15a),

(15b), when λ=0, β 6=α=2m, and when α=0, β=
√

3
λ .

The required form for β, and therefore the required form
for C(D(r)), cannot be constructed, i .e. it does not exist.
There is no way C(D(r)) can be constructed to satisfy all
the required conditions to render an admissible solution to
(7) in the form of (3). Therefore, the assumption that λ 6=0
is incorrect, and so λ=0. This can be confirmed in the
following way.

The proper radius Rp(r) of (8) is given by,

Rp(r)=

∫
d
√
F

√
1− λ

3F
=

√
3

λ
arcsin

√
λ

3
F (r) +K ,

where K is a constant. Now, the following condition must
be satisfied,

as r→ r±0 , Rp→ 0+ ,

and therefore,

Rp(r0)= 0=

√
3

λ
arcsin

√
λ

3
F (r0) +K ,
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and so,

Rp(r)=

√
3

λ

[

arcsin

√
λ

3
F (r)− arcsin

√
λ

3
F (r0)

]

. (16)

According to (8),

g00(r0)= 0⇒F (r0)=
3

λ
.

But then, by (16),
√
λ

3
F (r)≡ 1 ,

Rp(r)≡ 0 .

Indeed, by (16),
√
λ

3
F (r0)6

√
λ

3
F (r)6 1 ,

or √
3

λ
6
√
F (r)6

√
3

λ
,

and so

F (r)≡
3

λ
, (17)

and
Rp(r)≡ 0 . (18)

Then F ′(D(r))≡ 0, and so there exists no function F (r)
which renders a solution to (8) in the form of (3) when λ 6=0
and therefore there exists no function C(D(r))which renders
a solution to (7) in the form of (3) when λ 6=0. Consequently,
λ=0.

Owing to their erroneous assumptions about the r-para-
meter, the relativists have disregarded the requirement that
A,B,C > 0 in (3) must be met. If the required form (3) is
relaxed, in which case the resulting metric is non-Einstein,
and cannot therefore describe an Einstein universe, (8) can
be written as,

ds2= −
3

λ

(
dθ2 + sin2 θdϕ2

)
. (8b)

This means that metric (8)≡ (8b) maps the whole of
(Ms, gs) into the point Rp(D(r))≡ 0 of the de Sitter “space”
(Mds, gds).

Einstein, de Sitter, Eddington, Friedmann, and the mod-
ern relativists all, have incorrectly assumed that r is a radial
coordinate in (8), and consequently think of the “space”
associated with (8) as extended in the sense of having a
volume greater than zero. This is incorrect.

The radius of curvature of the point Rp(D(r))≡ 0 is,

Rc(D(r))≡

√
3

λ
.

The “surface area” of the point is,

A=
12π

λ
.

De Sitter’s empty spherical universe has zero volume.
Indeed, by (8) and (8b),

V = lim
r→±∞

3

λ

r∫

r0

0 dr

π∫

0

sin θ dθ

2π∫

0

dϕ=0 ,

consequently, de Sitter’s empty spherical universe is indeed
“empty”; and meaningless. It is not an Einstein universe.

On (8) and (8b) the ratio,

2π
√
F (r)

Rp(r)
=∞ ∀ r .

Therefore, the lone point which consitutes the empty de
Sitter “universe” (Mds, gds) is a quasiregular singularity and
consequently cannot be extended.

It is the unproven and invalid assumptions about the
variable r which have lead the relativists astray. They have
carried this error through all their work and consequently
have completely lost sight of legitimate scientific theory,
producing all manner of nonsense along the way. Eddington
[4], for instance, writes in relation to (1), γ=1− 2m

r − αr2

3
for his equation (45.3), and said,

At a place where γ vanishes there is an impass-
able barrier, since any change dr corresponds to
an infinite distance ids surveyed by measuring
rods. The two positive roots of the cubic (45.3)
are approximately

r=2m and r=
√(

3
α

)
.

The first root would represent the boundary of
the particle — if a genuine particle could exist
— and give it the appearance of impenetrability.
The second barrier is at a very great distance
and may be described as the horizon of the
world.

Note that Eddington, despite these erroneous claims, did not
admit the sacred black hole. His arguments however, clearly
betray his assumption that r is a radius on (1). I also note that
he has set the constant numerator of the middle term of his
γ to 2m, as is usual, however, like all the modern relativists,
he did not indicate how this identity is to be achieved. This
is just another assumption. As Abrams [6] has pointed out in
regard to (1), one cannot appeal to far-field Keplerian orbits
to fix the constant to 2m — but the issue is moot, since λ=0.

There is no black hole associated with (1). The Lake-
Roeder black hole is inconsistent with Einstein’s theory.
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4 The homogeneous static models

It is routinely alleged by the relativists that the static homo-
geneous cosmological models are exhausted by the line-
elements of Einstein’s cylindrical model, de Sitter’s spherical
model, and that of Special Relativity. This is not correct, as
I shall now demonstrate that the only homogeneous universe
admitted by Einstein’s theory is that of his Special Theory
of Relativity, which is a static, infinite, pseudo-Euclidean,
empty world.

The cosmological models of Einstein and de Sitter are
composed of a single world line and a single point respecti-
vely, neither of which can be extended. Their line-elements
therefore cannot describe any Einstein universe.

If the Universe is considered as a continuous distribution
of matter of proper macroscopic density ρ00 and pressure
P0 , the stress-energy tensor is,

T 11 =T
2
2 =T

3
3 = − P0 , T 44 = ρ00 ,

Tμν =0, μ 6= ν .

Rewrite (5) by setting,

A∗(r∗)= eν , ν = ν(r∗) ,

B∗(r∗)= eσ, σ=σ(r∗) . (19)

Then (5) becomes,

ds2= eνdt2 − eσdr∗2 − r∗2
(
dθ2 + sin2 θdϕ2

)
. (20)

It then follows in the usual way that,

8πP0 = e
−σ

(
ν̄

r∗
+

1

r∗2

)

−
1

r∗2
+ λ , (21)

8πρ00= e
−σ

(
σ̄

r∗
−

1

r∗2

)

+
1

r∗2
− λ , (22)

dP0
dr∗

= −
ρ00 + P0

2
ν̄ , (23)

where

ν̄=
dν

dr∗
, σ̄=

dσ

dr∗
.

Since P0 is to be the same everywhere, (23) becomes,

ρ00 + P0
2

ν̄=0 .

Therefore, the following three possibilities arise,

1. dν
dr∗

=0 ;

2. ρ00 + P0 =0 ;

3. dν
dr∗

=0 and ρ00 + P0 =0 .

The 1st possibility yields Einstein’s so-called cylindrical
model, the 2nd yields de Sitter’s so-called spherical model,
and the 3rd yields Special Relativity.

5 Einstein’s cylindrical cosmological model

In this case, to reduce to Special Relativity,

ν= const=0.

Therefore, by (21),

8πP0 =
e−σ

r∗2
−

1

r∗2
+ λ ,

and by (19),

8πP0 =
1

B∗(r∗)r∗2
−

1

r∗2
+ λ ,

and by (4),

8πP0 =
1

BC
−
1

C
+ λ ,

so
1

B
=1−

(
λ− 8πP0

)
C ,

C =C(D(r)), D(r)= |r − r0|, B=B(D(r)) ,

r0 ∈< .

Consequently, Einstein’s line-element can be written as,

ds2= dt2 −
[
1−

(
λ− 8πP0

)
C
]−1

d
√
C

2
−

− C
(
dθ2 + sin2 dϕ2

)
=

= dt2 −
[
1−

(
λ− 8πP0

)
C
]−1 C

′2

4C
dr2−

− C
(
dθ2 + sin2 dϕ2

)
,

(24)

C =C(D(r)), D(r)= |r − r0|, r0 ∈< ,

where r0 is arbitrary.
It is now required to determine the admissible form of

C(D(r)).
Clearly, if C ′≡ 0, then B=0 ∀ r, in violation of (3).

Therefore, C ′ 6=0 ∀ r 6= r0 .
When P0 =λ=0, (24) must reduce to Special Relativity,

in which case,

P0 =λ=0⇒C(D(r))= |r − r0|
2 .

The metric (24) is singular when g−111 (r0)= 0, i .e. when,

1−
(
λ− 8πP0

)
C(r0)= 0 ,

⇒ C(r0)=
1

λ− 8πP0
. (25)

Therefore, for C(D(r)) to render an admissible solution to
(24) in the form of (3), it must at least satisfy the following
conditions:
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1. C ′ 6=0 ∀ r 6= r0 ;

2. P0 =λ=0⇒C(D(r))= |r − r0|
2 ;

3. C(r0)=
1

λ−8πP0
.

Now the proper radius on (24) is,

Rp(r)=

∫
d
√
C

√
1−

(
λ− 8πP0

)
C
=

=
1

√
λ− 8πP0

arcsin
√
(λ− 8πP0 )C(r) +K ,

K = const. ,

which must satisfy the condition,

as r→ r±0 , Rp→ 0+ .

Therefore,

Rp(r0)= 0=
1

√
λ− 8πP0

×

× arcsin
√
(λ− 8πP0 )C(r0) +K ,

so

Rp(r)=
1

√
λ−8πP0

[
arcsin

√
(λ−8πP0 )C(r)−

− arcsin
√
(λ− 8πP0 )C(r0)

]
.

(26)

Now if follows from (26) that,

√
(λ− 8πP0 )C(r0)6

√
(λ− 8πP0 )C(r)6 1 ,

so

C(r0)6C(r)6
1

(
λ− 8πP0

) ,

and therefore by (25),

1
(
λ− 8πP0

) 6C(r)6
1

(
λ− 8πP0

) .

Thus,

C(r)≡
1

(
λ− 8πP0

) ,

and so C ′(r)≡ 0⇒B(r)≡ 0, in violation of (3). Therefore
there exists no C(D(r)) to satisfy (24) in the form of (3)
when λ 6=0, P0 6=0. Consequently, λ=P0 =0, and (24)
reduces to,

ds2= dt2 −
C

′2

4C
dr2 − C

(
dθ2 + sin2 dϕ2

)
. (27)

The form of C(D(r)) must still be determined.

Clearly, if C ′≡ 0, B(D(r))= 0 ∀ r, in violation of (3).
Therefore, C ′ 6=0 ∀ r 6= r0 .

Since there is no matter present, it is required that,

C(r0)= 0 and
C(D(r))

|r − r0|2
=1 .

This requires trivially that,

C(D(r))= |r − r0|
2 .

Therefore (27) becomes,

ds2= dt2−
(r−r0)

2

|r−r0|2
dr2−|r−r0|

2
(
dθ2+ sin2 dϕ2

)
=

= dt2 − dr2 − |r − r0|
2
(
dθ2 + sin2 dϕ2

)
,

which is precisely the metric of Special Relativity, according
to the natural reduction on (2).

If the required form (3) is relaxed, in which case the
resulting metric is not an Einstein metric, Einstein’s cylindr-
ical line-element is,

ds2= dt2 −
1

(
λ− 8πP0

)
(
dθ2 + sin2 θdϕ2

)
. (28)

This is a line-element which cannot describe an Einstein
universe. The Einstein space described by (28) consists of
only one “world line”, through the point,

Rp(r)≡ 0 .

The spatial extent of (28) is a single point. The radius of
curvature of this point space is,

Rc(r)≡
1

√
λ− 8πP0

.

For all r, the ratio 2πRc
Rp

is,

2π√
λ−8πP0

Rp(r)
=∞ .

Therefore Rp(r)≡ 0 is a quasiregular singular point and
consequently cannot be extended.

The “surface area” of this point space is,

A=
4π

λ− 8πP0
.

The volume of the point space is,

V = lim
r→±∞

1
(
λ− 8πP0

)

r∫

r0

0 dr

π∫

0

sin θ dθ

2π∫

0

dϕ=0 .

Equation (28) maps the whole of (Ms, gs) into a quasi-
regular singular “world line”.

Einstein’s so-called “cylindrical universe” is meaning-
less. It does not contain a black hole.
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6 De Sitter’s spherical cosmological model

In this case,
ρ00 + P0 =0 .

Adding (21) to (22) and setting to zero gives,

8π
(
ρ00 + P0

)
= e−σ

(
σ̄

r∗
+
ν̄

r∗

)

=0 ,

or
ν̄= − σ̄ .

Therefore,

ν(r∗)= − σ(r∗) + lnK1 , (29)

K1= const.

Since ρ00 is required to be a constant independent of
position, equation (22) can be immediately integrated to give,

e−σ =1−
λ+ 8πρ00

3
r∗2 +

K2

r∗
, (30)

K2= const.

According to (30),

−σ= ln

(

1−
λ+ 8πρ00

3
r∗2 +

K2

r∗

)

,

and therefore, by (29),

ν= ln

[(

1−
λ+ 8πρ00

3
r∗2 +

K2

r∗

)

K1

]

.

Substituting into (20) gives,

ds2=

[(

1−
λ+ 8πρ00

3
r∗2 +

K2

r∗

)

K1

]

dt2 −

−

(

1−
λ+ 8πρ00

3
r∗2 +

K2

r∗

)−1
dr∗2 −

− r∗2
(
dθ2 + sin2 θdϕ2

)
,

which is, by (4),

ds2=

[(

1−
λ+ 8πρ00

3
C +

K2√
C

)

K1

]

dt2 −

−

(

1−
λ+ 8πρ00

3
C +

K2√
C

)−1
C

′2

4C
dr2 −

− C
(
dθ2 + sin2 θdϕ2

)
.

(31)

Now, when λ= ρ00=0, equation (31) must reduce to the
metric for Special Relativity. Therefore,

K1=1, K2=0 ,

and so de Sitter’s line-element is,

ds2=

(

1−
λ+ 8πρ00

3
C

)

dt2 −

−

(

1−
λ+ 8πρ00

3
C

)−1
C

′2

4C
dr2 −

− C
(
dθ2 + sin2 θdϕ2

)
,

(32)

C =C(D(r)), D(r)= |r − r0|, r0 ∈< ,

where r0 is arbitrary.
It remains now to determine the admissible form of

C(D(r)) to render a solution to equation (32) in the form of
equation (3).

If C ′≡ 0, then B(D(r))= 0 ∀ r, in violation of (3).
Therefore C ′ 6=0 ∀ r 6= r0 .

When λ= ρ00=0, (32) must reduce to that for Special
Relativity. Therefore,

λ= ρ00=0⇒C(D(r))= |r − r0|
2 .

Metric (32) is singular when g00(r0)= 0, i .e. when

1−
λ+ 8πρ00

3
C(r0)= 0 ,

⇒C(r0)=
3

λ+ 8πρ00
. (33)

Therefore, to render a solution to (32) in the form of (3),
C(D(r)) must at least satisfy the following conditions:

1. C ′ 6=0 ∀ r 6= r0 ;

2. λ= ρ00=0⇒C(D(r))= |r − r0|
2 ;

3. C(r0)=
3

λ+8πρ00
.

The proper radius on (32) is,

Rp(r)=

∫
d
√
C

√

1−
(
λ+8πρ00

3

)
C

=

=

√
3

λ+8πρ00
arcsin

√(
λ+8πρ00

3

)

C(r)+K ,

(34)

K = const ,

which must satisfy the condition,

as r→ r±0 , Rp(r)→ 0+ .

Therefore,

Rp(r0)= 0=

√
3

λ+ 8πρ00
arcsin

√(
λ+ 8πρ00

3

)
C(r0)+K ,
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so (34) becomes,

Rp(r)=

√
3

λ+8πρ00

[
arcsin

√(
λ+8πρ00

3

)

C(r)−

− arcsin

√(
λ+ 8πρ00

3

)

C(r0)
]
.

(35)

It then follows from (35) that,

√(
λ+ 8πρ00

3

)

C(r0)6

√(
λ+ 8πρ00

3

)

C(r)6 1 ,

or

C(r0)6C(r)6
3

λ+ 8πρ00
.

Then, by (33),

3

λ+ 8πρ00
6C(r)6

3

λ+ 8πρ00
.

Therefore, C(r) is a constant function for all r,

C(r)≡
3

λ+ 8πρ00
, (36)

and so,
C ′(r)≡ 0 ,

which implies that B(D(r))≡ 0, in violation of (3). Con-
sequently, there exists no function C(D(r)) to render a
solution to (32) in the form of (3). Therefore, λ= ρ00=0,
and (32) reduces to the metric of Special Relativity in the
same way as does (24).

If the required form (3) is relaxed, in which case the
resulting metric is not an Einstein metric, de Sitter’s line-
element is,

ds2= −
3

λ+ 8πρ00

(
dθ2 + sin2 θdϕ2

)
. (37)

This line-element cannot describe an Einstein universe.
The Einstein space described by (37) consists of only one
point:

Rp(r)≡ 0 .

The radius of curvature of this point is,

Rc(r)≡

√
3

λ+ 8πρ00
,

and the “surface area” of the point is,

A=
12π

λ+ 8πρ00
.

The volume of de Sitter’s “spherical universe” is,

V =

(
3

λ+ 8πρ00

)

lim
r→±∞

r∫

r0

0 dr

π∫

0

sin θ dθ

2π∫

0

dϕ=0 .

For all values of r, the ratio,

2π
√

3
λ+8πρ00

Rp(r)
=∞ .

Therefore, Rp(r)≡ 0 is a quasiregular singular point and
consequently cannot be extended.

According to (32), metric (37) maps the whole of
(Ms, gs) into a quasiregular singular point.

Thus, de Sitter’s spherical universe is meaningless. It
does not contain a black hole.

When ρ00=0 and λ 6=0, de Sitter’s empty universe is
obtained from (37). I have already dealt with this case in
section 3.

7 The infinite static homogeneous universe of special
relativity

In this case, by possibility 3 in section 4,

ν̄=
dν

dr∗
=0, and ρ00 + P0 =0 .

Therefore,

ν= const=0 by section 5

and
σ̄= − ν̄ by section 6 .

Hence, also by section 6,

σ= − ν=0 .

Therefore, (20) becomes,

ds2= dt2 − dr∗2 − r∗2
(
dθ2 + sin2 θdϕ2

)
,

which becomes, by using (4),

ds2= dt2 −
C

′2

4C
dr2 − C

(
dθ2 + sin2 θdϕ2

)
,

C =C(D(r)), D(r)= |r − r0|, r0 ∈< ,

which, by the analyses in sections 5 and 6, becomes,

ds2= dt2 −

(
r − r0

)2

|r − r0|2
dr2 − |r − r0|

2
(
dθ2 + sin2 θdϕ2

)
,

(38)
r0 ∈< ,
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which is the flat, empty, and infinite spacetime of Special
Relativity, obtained from (2) by natural reduction.

When r0 =0 and r>r0 , (38) reduces to the usual form
used by the relativists,

ds2= dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
.

The radius of curvature of (38) is,

D(r)= |r − r0| .

The proper radius of (38) is,

Rp(r)=

|r−r0 |∫

0

d|r − r0|=

r∫

r0

(r − r0)
|r − r0|

dr= |r − r0| ≡D .

The ratio,

2πD(r)

Rp(r)
=
2π|r − r0|
|r − r0|

=2π ∀ r .

Thus, only (38) can represent a static homogeneous uni-
verse in Einstein’s theory, contrary to the claims of the
modern relativists. However, since (38) contains no matter it
cannot model the universe other than locally.

8 Cosmological models of expansion

In view of the foregoing it is now evident that the models
proposed by the relativists purporting an expanding universe
are also untenable in the framework of Einstein’s theory.
The line-element obtained by the Abbé Lemaı̂tré and by
Robertson, for instance, is inadmissible. Under the false
assumption that r is a radius in de Sitter’s spherical universe,
they proposed the following transformation of coordinates on
the metric (32) (with ρ00 6=0 in the misleading form given
in formula 9),

r̄=
r

√
1− r2

W 2

e−
t
W , t̄= t+

1

2
W ln

(

1−
r2

W 2

)

, (39)

W 2=
λ+ 8πρ00

3
,

to get

ds2= dt̄2 − e
2t̄
W

(
dr̄2 + r̄2dθ2 + r̄2 sin2 θdϕ2

)
,

or, by dropping the bar and setting k= 1
W ,

ds2= dt2 − e2kt
(
dr2 + r2dθ2 + r2 sin2 θdϕ2

)
. (40)

Now, as I have shown, (32) has no solution in C(D(r))
in the form (3), so transformations (39) and metric (40) are
meaningless concoctions of mathematical symbols. Owing to

their false assumptions about the parameter r, the relativists
mistakenly think that C(D(r))≡ r2 in (32). Furthermore,
if the required form (3) is relaxed, thereby producing non-
Einstein metrics, de Sitter’s “spherical universe” is given by
(37), and so, by (35), (36), and (40),

C(D(r))= r2≡
λ+ 8πρ00

3
,

and the transformations (39) and metric (40) are again utter
nonsense. The Lemaı̂tré-Robertson line-element is inevitably,
unmitigated claptrap. This can be proved generally as follows.

The most general non-static line-element is

ds2=A(D, t)dt2 −B(D, t)dD2 −

− C(D, t)
(
dθ2 + sin2 θdϕ2

)
,

(41)

D= |r − r0|, r0 ∈<

where analytic A,B,C > 0 ∀ r 6= r0 and ∀ t.
Rewrite (41) by setting,

A(D, t)= eν , ν = ν(G(D), t) ,

B(D, t)= eσ, σ=σ(G(D), t) ,

C(D, t)= eμG2(D), μ=μ(G(D), t) ,

to get

ds2= eνdt2−eσdG2−eμG2(D)
(
dθ2 + sin2 θdϕ2

)
. (42)

Now set,
r∗=G(D(r)) , (43)

to get

ds2= eνdt2 − eσdr∗2 − eμr∗2
(
dθ2 + sin2 θdϕ2

)
, (44)

ν= ν(r∗, t) , σ=σ(r∗, t) , μ=μ(r∗, t) .

One then finds in the usual way that the solution
to (44) is,

ds2= dt2 −
eg(t)

(
1 + k

4r
∗2
)2 ×

×
[
dr∗2 + r∗2

(
dθ2 + sin2 θdϕ2

)]
,

(45)

where k is a constant.
Then by (43) this becomes,

ds2= dt2 −
eg(t)

(
1 + k

4G
2
)2
[
dG2 +G2

(
dθ2 + sin2 θdϕ2

)]
,

or,

ds2= dt2 −
eg(t)

(
1 + k

4G
2
)2 ×

×
[
G

′2dr2 +G2
(
dθ2 + sin2 θdϕ2

)]
,

(46)
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G′=
dG

dr
,

G=G(D(r)) , D(r)= |r − r0| , r0 ∈< .

The admissible form of G(D(r)) must now be determ-
ined.

If G′≡ 0, then B(D, t)= 0 ∀ r and ∀ t, in violation of
(41). Therefore G′ 6=0 ∀ r 6= r0 .

Metric (46) is singular when,

1 +
k

4
G2(r0)= 0 ,

⇒ G(r0)=
2

√
−k

⇒ k< 0 . (47)

The proper radius on (46) is,

Rp(r, t)= e
1
2 g(t)

∫
dG

1 + k
4G

2
=

= e
1
2 g(t)

(
2
√
k
arctan

√
k

2
G(r) +K

)

,

K = const ,

which must satisfy the condition,

as r→ r±0 , Rp→ 0+ .

Therefore,

Rp(r0, t)= e
1
2 g(t)

(
2
√
k
arctan

√
k

2
G(r0) +K

)

=0 ,

and so

Rp(r, t)= e
1
2 g(t)

2
√
k

[
arctan

√
k

2
G(r) −

− arctan

√
k

2
G(r0)

]
.

(48)

Then by (47),

Rp(r, t)=e
1
2 g(t)

2
√
k

[
arctan

√
k

2
G(r)− arctan

√
−1
]
, (49)

k< 0 .

Therefore, there exists no function G(D(r)) rendering a
solution to (46) in the required form of (41).

The relativists however, owing to their invalid assum-
ptions about the parameter r, write equation (46) as,

ds2= dt2−
eg(t)

(
1+k

4r
2
)2
[
dr2+r2

(
dθ2+sin2 θdϕ2

)]
, (50)

having assumed that G(D(r))≡ r, and erroneously take r
as a radius on the metric (50), valid down to 0. Metric
(50) is a meaningless concoction of mathematical symbols.
Nevertheless, the relativists transform this meaningless ex-
pression with a meaningless change of “coordinates” to ob-
tain the Robertson-Walker line-element, as follows.

Transform (46) by setting,

Ḡ(r̄)=
G(r)

1 + k
4G

2
.

This carries (46) into,

ds2= dt2−eg(t)
[

dḠ2
(
1−κḠ2

)+Ḡ2
(
dθ2+sin2 θdϕ2

)
]

. (51)

This is easily seen to be the familiar Robertson-Walker
line-element if, following the relativists, one incorrectly as-
sumes Ḡ≡ r̄, disregarding the fact that the admissible form
of Ḡ must be ascertained. In any event (51) is meaningless,
owing to the meaninglessness of (50), which I confirm as
follows.

Ḡ′≡ 0⇒ B̄=0 ∀ r̄, in violation of (41). Therefore
Ḡ′ 6=0 ∀ r̄ 6= r̄0 .

Equation (51) is singular when,

1− kḠ2(r̄0)= 0 ⇒ Ḡ(r̄0)=
1
√
k
⇒ k> 0 . (52)

The proper radius on (51) is,

R̄p= e
1
2 g(t)

∫
dḠ

√
1− kḠ2

= e
1
2 g(t)

(
1
√
k
arcsin

√
kḠ(r̄) +K

)

,

K = const. ,

which must satisfy the condition,

as r̄→ r̄±0 , R̄p→ 0+ ,

so

R̄p(r̄0, t)= 0= e
1
2 g(t)

(
1
√
k
arcsin

√
kḠ(r̄0) +K

)

.

Therefore,

R̄p(r̄, t)= e
1
2 g(t)

1
√
k
×

×
[
arcsin

√
kḠ(r̄)− arcsin

√
kḠ(r̄0)

]
.

(53)

Then √
kḠ(r̄0)6

√
kḠ(r̄)6 1 ,

16 S. J. Crothers. On the General Solution to Einstein’s Vacuum Field for the Point-Mass when λ 6=0



October, 2005 PROGRESS IN PHYSICS Volume 3

or

Ḡ(r̄0)6 Ḡ(r̄)6
1
√
k
.

Then by (52),
1
√
k
6 Ḡ(r̄)6

1
√
k
,

so

Ḡ(r̄)≡
1
√
k
.

Consequently, Ḡ′(r̄)= 0 ∀ r̄ and ∀ t, in violation of
(41). Therefore, there exists no function Ḡ(D̄(r̄)) to render
a solution to (51) in the required form of (41).

If the conditions on (41) are relaxed in the fashion of
the relativists, non-Einstein metrics with expanding radii of
curvature are obtained. Nonetheless the associated spaces
have zero volume. Indeed, equation (40) becomes,

ds2= dt2 − e2kt
(
λ+ 8πρ00

)

3

(
dθ2 + sin2 θdϕ2

)
. (54)

This is not an Einstein universe. The radius of curvature
of (54) is,

Rc(r, t)= e
kt

√
λ+ 8πρ00

3
,

which expands or contracts with the sign of the constant k.
Even so, the proper radius of the “space” of (54) is,

Rp(r, t)= lim
r→±∞

r∫

r0

0 dr≡ 0 .

The volume of this point-space is,

V = lim
r→±∞

e2kt
(
λ+ 8πρ00

)

3

r∫

r0

0 dr

π∫

0

sin θ dθ

2π∫

0

≡ 0 .

Metric (54) consists of a single “world line” through
the point Rp(r, t)≡ 0. Furthermore, Rp(r, t)≡ 0 is a quasi-
regular singular point-space since the ratio,

2πekt
√
λ+ 8πρ00√

3Rp(r, t)
≡∞ .

Therefore, Rp(r, t)≡ 0 cannot be extended.
Similarly, equation (51) becomes,

ds2= dt2 −
eg(t)

k

(
dθ2 + sin2 θdϕ2

)
, (55)

which is not an Einstein metric. The radius of curvature of
(55) is,

Rc(r, t)=
e
1
2 g(t)

√
k

,

which changes with time. The proper radius is,

Rp(r, t)= lim
r→±∞

r∫

r0

0 dr≡ 0 ,

and the volume of the point-space is

V = lim
r→±∞

eg(t)

k

r∫

r0

0 dr

π∫

0

sin θ dθ

2π∫

0

≡ 0 .

Metric (55) consists of a single “world line” through
the point Rp(r, t)≡ 0. Furthermore, Rp(r, t)≡ 0 is a quasi-
regular singular point-space since the ratio,

2πe
1
2 g(t)

√
kRp(r, t)

≡∞ .

Therefore, Rp(r, t)≡ 0 cannot be extended.
It immediately follows that the Friedmann models are

all invalid, because the so-called Friedmann equation, with
its associated equation of continuity, Tμν;μ =0, is based upon
metric (51), which, as I have proven, has no solution in
G(r) in the required form of (41). Furthermore, metric (55)
cannot represent an Einstein universe and therefore has no
cosmological meaning. Consequently, the Friedmann equa-
tion is also nothing more than a meaningless concoction of
mathematical symbols, destitute of any physical significance
whatsoever. Friedmann incorrectly assumed, just as the rela-
tivists have done all along, that the parameter r is a radius in
the gravitational field. Owing to this erroneous assumption,
his treatment of the metric for the gravitational field violates
the inherent geometry of the metric and therefore violates
the geometrical form of the pseudo-Riemannian spacetime
manifold. The same can be said of Einstein himself, who
did not understand the geometry of his own creation, and by
making the same mistakes, failed to understand the impli-
cations of his theory.

Thus, the Friedmann models are all invalid, as is the
Einstein-de Sitter model, and all other general relativistic
cosmological models purporting an expansion of the uni-
verse. Furthermore, there is no general relativistic substan-
tiation of the Big Bang hypothesis. Since the Big Bang hypo-
thesis rests solely upon an invalid interpretation of General
Relativity, it is abject nonsense. The standard interpretations
of the Hubble-Humason relation and the cosmic microwave
background are not consistent with Einstein’s theory. Ein-
stein’s theory cannot form the basis of a cosmology.

9 Singular points in Einstein’s universe

It has been pointed out before [7, 8, 3] that singular points
in Einstein’s universe are quasiregular. No curvature type
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singularities arise in Einstein’s universe. The oddity of a
point being associated with a non-zero radius of curvature
is an inevitable consequence of Einstein’s geometry. There
is nothing more pointlike in Einstein’s universe, and nothing
more pointlike in the de Sitter point world or the Einstein
cylindrical world line. A point as it is usually conceived of in
Minkowski space does not exist in Einstein’s universe. The
modern relativists have not understood this inescapable fact.
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The First Crisis in Cosmology Conference
Monção, Portugal, June 23–25 2005

Hilton Ratcliffe

Astronomical Society of Southern Africa

E-mail: ratcliff@iafrica.com

The author attended the first Crisis in Cosmology Conference of the recently associated
Alternative Cosmology Group, and makes an informal report on the proceedings with
some detail on selected presentations.

In May 2004, a group of about 30 concerned scientists
published an open letter to the global scientific community
in New Scientist in which they protested the stranglehold of
Big Bang theory on cosmological research and funding. The
letter was placed on the Internet∗ and rapidly attracted wide
attention. It currently has about 300 signatories representing
scientists and researchers of disparate backgrounds, and has
led to a loose association now known as the Alternative
Cosmology Group†. This writer was one of the early signa-
tories to the letter, and holding the view that the Big Bang
explanation of the Universe is scientifically untenable, pa-
tently illogical, and without any solid observational support
whatsoever, became involved in the organisation of an intern-
ational forum where we could share ideas and plan our way
forward. That idea became a reality with the staging of the
First Crisis in Cosmology Conference (CCC-1) in the lovely,
medieval walled village of Monção, far northern Portugal,
over 3 days in June of this year.

It was sponsored in part by the University of Minho in
Braga, Portugal, and the Institute for Advanced Studies at
Austin, Texas. Professor José Almeida of the Department
of Physics at the University of Minho was instrumental
in the organisation and ultimate success of an event that
is now to be held annually. The conference was arranged
in 3 sessions. On the first day, papers were presented on
observations that challenge the present model, the second day
dealt with conceptual difficulties in the standard model, and
we concluded with alternative cosmological world-views.
Since it is not practicable here to review all the papers
presented (some 34 in total, plus 6 posters), I’ll selectively
confine my comments to those that interested me particularly.
The American Institute of Physics will publish the proceed-
ings of the conference in their entirety in due course for those
interested in the detail.

First up was professional astronomer Dr. Riccardo Scarpa
of the European Southern Observatory, Santiago, Chile. His
job involves working with the magnificent Very Large Tele-
scope array at Paranal, and I guess that makes him the envy
of just about every astronomer with blood in his veins!

∗http://www.cosmologystatement.org/
†http://www.cosmology.info/

His paper was on Modified Newtonian Dynamics (MOND),
which I had eagerly anticipated and thoroughly appreciated.
MOND is a very exciting development in observational ast-
ronomy used to make Dark Matter redundant in the explan-
ation of cosmic gravitational effects like the anomalous rot-
ational speeds of galaxies. Mordehai Milgrom of the Weiz-
mann Institute in Israel first noticed that mass discrepancies
in stellar systems are detected only when the internal accel-
eration of gravity falls below the well-established value a0=
= 1.2×10−8 cm×s−2. The standard Newtonian gravitational
values fit perfectly above this threshold, and below a0 MOND
posits a breakdown of Newton’s law. The dependence then
becomes linear with an asymptotic value of acceleration
a=(a0 g)

1/2, where g is the Newtonian value. Scarpa has
called this the weak gravitational regime, and he and colle-
agues Marconi and Gilmozzi have applied it extensively to
globular clusters with 100% success. What impressed me
most was that the clear empirical basis of MOND has been
thoroughly tested, and is now in daily use by professional
astronomers at what is arguably the most sophisticated and
advanced optical-infrared observatory in the world. In prac-
tice, there is no need to invoke Dark Matter. Quote from
Riccardo: “Dark Matter is the craziest idea we’ve ever had
in astronomy. It can appear when you need it, it can do what
you like, be distributed in any way you like. It is the fairy
tale of astronomy”.

Big Bang theory depends critically on three first prin-
ciples: that the Universe is holistically and systematically
expanding as per the Friedmann model; that General Relati-
vity correctly describes gravitation; and that Milne’s Cos-
mological Principle, which declares that the Universe at
some arbitrary “large scale” is isotropic and homogeneous,
is true. The falsification of any one of these principles would
lead to the catastrophic failure of the theory. We saw at the
conference that all three can be successfully challenged on
the basis of empirical science. Retired electrical engineer
Tom Andrews presented a novel approach to the validation
(or rather, invalidation) of the expanding Universe model. It
is well known that type 1A supernovae (SNe) show mea-
surable anomalous dimming (with distance or remoteness
in time) in a flat expanding Universe model. Andrews used
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observational data from two independent sets of measure-
ments of brightest cluster galaxies (defined as the brightest
galaxy in a cluster). It was expected, since the light from the
SNe and the bright galaxies traverses the same space to get to
us, that the latter should also be anomalously dimmed. They
clearly are not. The orthodox explanation for SNe dimming
— that it is the result of the progressive expansion of space
— is thereby refuted. He puts a further nail in the coffin
by citing Goldhaber’s study of SNe light curves, which did
not reveal the second predicted light-broadening effect due to
time dilation. Says Andrews: “The Hubble redshift of Fourier
harmonic frequencies [for SNe] is shown to broaden the
light curve at the observer by (1+ z). Since this broadening
spreads the total luminosity over a longer time period, the
apparent luminosity at the observer is decreased by the
same factor. This accounts quantitatively for the dimming
of SNe. On the other hand, no anomalous dimming occurs
for galaxies since the luminosity remains constant over time
periods much longer than the light travel time to the observer.
This effect is consistent with the non-expanding Universe
model. The expanding model is logically falsified”.

Professor Mike Disney of the School of Physics and
Astronomy at Cardiff University calls a spade a spade. He
has created an interesting benchmark for the evaluation of
scientific models — he compares the number of free par-
ameters in a theory with the number of independent mea-
surements, and sets an arbitrary minimum of +3 for the
excess of measurements over free parameters to indicate
that the theory is empirically viable. He ran through the
exercise for the Big Bang model, and arrived at a figure of
−3 (17 free parameters against 14 measured). He therefore
argued that the there is little statistical significance in the
good fits claimed by Big Bang cosmologists since the surfeit
of free parameters can easily mould new data to fit a desired
conclusion. Quote: “The study of some 60 cultures, going
back 12,000 years, shows that, like it or not, we will always
have a cosmology, and there have always been more free
parameters than independent measurements. The best model
is a compromise between parsimony (Occam’s razor) and
goodness-of-fit”.

Disney has a case there, and it is amply illustrated when it
comes to Big Bang Nucleosynthesis (which depends initially
on an arbitrarily set baryon/photon ratio), and the abundances
of chemical elements. Dr. Tom van Flandern is another
straight talking, no frills man of science. He opened his
abstract with the words “The Big Bang has never achieved a
true prediction success where the theory was placed at risk
of falsification before the results were known”. Ten years
ago, Tom’s web site listed the Top Ten Problems with the
Big Bang, and today he has limited it to the Top Fifty.
He pointed out the following contradictions in predicted
light element abundances: observed deuterium abundances
don’t tie up with observed abundances of 4He and 7Li, and
attempts to explain this inconsistency have failed. The ratio

of deuterium to hydrogen near the centre of the Milky Way
is 5 orders of magnitude higher than the Standard Model
predicts, and measuring either for quasars produces deviation
from predictions. Also problematic for BBN are barium and
beryllium, produced assumedly as secondary products of
supernovae by the process of spallation. However, observa-
tions of metal-poor stars show greater abundance of Be than
possible by spallation. Van Flandern: “It should be evident to
objective minds that nothing about the Universe interpreted
with the Big Bang theory is necessarily right, not even the
most basic idea in it that the Universe is expanding”.

Problems in describing the geometry of the Universe
were dealt with by several speakers, and we must here of
course drill down a bit to where the notion came from (in the
context of Big Bang theory). The theory originated in Father
Georges Lemaı̂tre’s extensions to Friedmann’s solution of
the Einstein General Relativity (GR) field equations, which
showed that the Universe described in GR could not be static
as Einstein believed. From this starting point emerged some
irksome dilemmas regarding the fundamental nature of space
and the distribution of matter within it. It was here more than
anywhere that the rich diversity of opinion and approach
within the Alternative Cosmology Group was demonstrated.
Professor Yurij Baryshev of the Institute of Astronomy at
St. Petersburg State University quietly presented his argu-
ment against the Cosmological Principle: large-scale struc-
ture is not possible in the Friedmann model, yet observation
shows it for as far as we can see. I had recently read Yurij’s
book The Discovery of Cosmic Fractals, and knew that he
had studied the geometric fractals of Yale’s famous Professor
Benoit Mandelbrot, which in turn led to his extrapolation of
a fractal (inhomogeneous, anisotropic) non-expanding large-
scale universe. Baryshev discussed gravitation from the
standpoint that the physics of gravity should be the focus of
cosmological research. General Relativity and the Feynman
field are different at all scales, although to date, all relativistic
tests cannot distinguish between them. He pointed out that
if one reversed the flow and shrunk the radius, eventually
the point would be reached where the energy density of the
Universe would exceed the rest mass, and that is logically
impossible. He left us with this gem: Feynman to his wife
(upon returning from a conference) “Remind me not to attend
any more gravity conferences!”

Conference co-ordinator Professor José Almeida present-
ed a well-argued case for an interesting and unusual world-
view: a hyperspherical Universe of 4-D Euclidean space
(called 4-Dimensional Optics or 4DO) rather than the stand-
ard non-Euclidean Minkowski space. Dr. Franco Selleri of
the Università di Bari in Italy provided an equally interesting
alternative — the certainty that the Universe in which we
live and breathe is a construction in simple 3-D Euclidean
space precludes the possibility of the Big Bang model. He
says: “No structure in three dimensional space, born from an
explosion that occurred 10 to 20 billion years ago, could
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resemble the Universe we observe”. The key to Selleri’s
theory is absolute simultaneity, obtained by using a term
e1 (the coefficient of x in the transformation of time) in
the Lorentz transformations, so that e1=0. Setting e1=0
separates time and space, and a conception of reality is
introduced in which no room is left for a fourth dimension.
Both Big Bang and its progenitor General Relativity depend
critically on 4-D Minkowski space, so the argument regressed
even further to the viability of Relativity itself. And here is
where the big guns come in!

World-renowned mathematical physicist Professor Hu-
seyin Yilmaz, formerly of the Institute for Advanced Studies
at Princeton University, and his hands-on experimentalist
colleague Professor Carrol Alley of the University of Mary-
land, introduced us to the Yilmaz cosmology. Altogether 4
papers were presented at CCC-1 on various aspects of Yilmaz
theory, and a fifth, by Dr. Hal Puthoff of the Institute for
Advanced Studies at Austin, was brought to the conference
but not presented. It is no longer controversial to suggest
that GR has flaws, although I still feel awkward saying it
out loud! Professor Yilmaz focussed on the fact that GR
excludes gravitational stress-energy as a source of curvature.
Consequently, stress-energy is merely a coordinate artefact
in GR, whereas in the Yilmaz modification it is a true tensor.
Hal Puthoff described the GR term to me as a “pseudo-
tensor, which can appear or disappear depending on how
you treat mass”. The crucial implication of this, in the words
of Professor Alley, is that since “interactions are carried
by the field stress energy, there are no interactive n-body
solutions to the field equations of General Relativity”. In
plain language, GR is a single-body description of gravity!
The Yilmaz equations contain the correct terms, and they
have been applied with success to various vexing problems,
for example the precession of Mercury’s perihelion, lunar
laser ranging measurements, the flying of atomic clocks in
aircraft, the relativistic behaviour of clocks in the GPS, and
the predicted Sagnac effect in the one-way speed of light
on a rotating table. Anecdote from Professor Alley: at a
lecture by Einstein in the 1920’s, Professor Sagnac was
in the audience. He questioned Einstein on the gedanken
experiment regarding contra-radiating light on a rotating
plate. Einstein thought for a while and said, “That has got
nothing to do with relativity”. Sagnac loudly replied, “In
that case, Dr. Einstein, relativity has got nothing to do with
reality!”

The great observational “proof” of Big Bang theory is
undoubtedly the grandly titled Cosmic Microwave Back-
ground Radiation, stumbled upon by radio engineers Penzias
and Wilson in 1965, hijacked by Princeton cosmologist Jim
Peebles, and demurely described by UC’s COBE data anal-
yser Dr. George Smoot as “like looking at the fingerprint of
God”. Well, it’s come back to haunt them! I was delighted
that despite some difficulties Glenn Starkman of Case West-
ern Reserve University was able to get his paper presented

at the conference as I had been keenly following his work
on the Wilkinson Microwave Anisotropy Probe (WMAP)
data. Dr. Starkman has discovered some unexpected (for Big
Bangers) characteristics (he describes them as “bizarre”) in
the data that have serious consequences for the Standard
Model. Far from having the smooth, Gaussian distribution
predicted by Big Bang, the microwave picture has distinct
anisotropies, and what’s more says Starkman, they are clearly
aligned with local astrophysical structures, particularly the
ecliptic of the Solar System. Once the dipole harmonic is
stripped to remove the effect of the motion of the Solar
System, the other harmonics, quadrupole, octopole, and so
on reveal a distinct alignment with local objects, and show
also a preferred direction towards the Virgo supercluster.
Conference chair, plasma physicist Eric Lerner concurred in
his paper. He suggested that the microwave background is
nothing more than a radio fog produced by plasma filaments,
which has reached a natural isotropic thermal equilibrium
of just under 3K. The radiation is simply starlight that has
been absorbed and re-radiated, and echoes the anisotropies
of the world around us. These findings correlate with the
results of a number of other independent studies, including
that of Larson and Wandelt at the University of Illinois,
and also of former Cambridge enfant terrible and current
Imperial College theoretical physics prodigy, Professor João
Magueijo. Quote from Starkman: “This suggests that the
reported microwave background fluctuations on large ang-
ular scales are not in fact cosmic, with important conseq-
uences”. Phew!

The final day saw us discussing viable alternative cos-
mologies, and here one inevitably leans towards personal
preferences. My own bias is unashamedly towards scientists
who adopt the classical empirical method, and there is no
better example of this than Swedish plasma physics pioneer
and Nobel laureate Hannes Alfven. Consequently, I favoured
the paper on Plasma Cosmology presented by Eric Lerner,
and as a direct result of that inclination find it very difficult
here to be brief! Lerner summarised the basic premises: most
of the Universe is plasma, so the effect of electromagnetic
force on a cosmic scale is at least comparable to gravitation.
Plasma cosmology assumes no origin in time for the Uni-
verse, and can therefore accommodate the conservation of
energy/matter. Since we see evidence of evolution all around
us, we can assume evolution in the Universe, though not at
the pace or on the scale of the Big Bang. Lastly, plasma
cosmology tries to explain as much of the Universe as pos-
sible using known physics, and does not invoke assistance
from supernatural elements. Plasmas are scale invariant, so
we can safely infer large-scale plasma activity from what we
see terrestrially. Gravity acts on filaments, which condense
into “blobs” and disks form. As the body contracts, it gets rid
of angular momentum which is conducted away by plasma.
Lerner’s colleague Anthony Peratt of Los Alamos Laboratory
modelled plasma interaction on a computer and has arrived

H. Ratcliffe. The First Crisis in Cosmology Conference. Monção, Portugal, June 23–25 2005 21



Volume 3 PROGRESS IN PHYSICS October, 2005

The First Crisis in Cosmology Conference, Monção, Portugal, June 23–25 2005

Schedule of Presentations

Name Location Paper Title

Antonio Alfonso-Faus
aalfonsofaus@yahoo.es

Madrid Polytech. Univ.,
Spain Mass boom vs Big Bang

Carrol Alley
coalley@physics.umd.edu

Univ. of Maryland,
USA

Going “beyond Einstein” with Yilmaz theory
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at a compelling simulation of the morphogenesis of galaxies.
Since plasma cosmology has no time constraints, the dev-
elopment of large-scale structures — so problematic for Big
Bang — is accommodated. Lerner admits that there’s still a
lot of work to be done, but with the prospect of more research
funding coming our way, he foresees the tidying up of the
theory into a workable cosmological model.

Dr. Alain Blanchard of the Laboratoire d’Astrophysique
in Toulouse had come to CCC-1 explicitly to defend Big
Bang, and he did so admirably. My fears that the inclusion
of a single speaker against the motion might amount to mere
tokenism were entirely unfounded. Despite the fact that many
of us disagreed with much of what he said, he acquitted
himself most competently and I would say ended up making
a number of good friends at the conference. Two quotes
from Dr. Blanchard: “We are all scientists, and we all want
to progress. Where we differ is in our own prejudice.” “When
you do an experiment, you can get a ‘yes’ or ‘no’ answer from
your equipment. When you work with astrophysical data,
you are dealing with an altogether more complex situation,
infused with unknowns.”

No account of CCC-1 would be near complete without
a summary of a paper that caught all of us by complete
surprise. Professor Oliver Manuel is not an astronomer. Nor
indeed is he a physicist. He is a nuclear chemist, chairman of
the Department of Chemistry at the University of Missouri,
and held in high enough esteem to be one of a handful of
scientists entrusted with the job of analysing Moon rock
brought back by the Apollo missions. His “telescope” is
a mass spectrometer, and he uses it to identify and track
isotopes in the terrestrial neighbourhood. His conclusions
are astonishing, yet I can find no fault with his arguments.
The hard facts that emerge from Professor Manuel’s study
indicate that the chemical composition of the Sun beneath
the photosphere is predominantly iron! Manuel’s thesis has
passed peer review in several mainstream journals, including
Nature, Science, and the Journal of Nuclear Fusion. He
derives a completely revolutionary Solar Model, one which
spells big trouble for BBN. Subsequent investigation has
shown that it is likely to represent a major paradigm shift
in solar physics, and has implications also for the field of
nuclear chemistry. He makes the following claims:

1. The chemical composition of the Sun is predominantly
iron.

2. The energy of the Sun is not derived from nuclear
fusion, but rather from neutron repulsion.

3. The Sun has a solid, electrically conducting ferrite
surface beneath the photosphere, and rotates uniformly
at all latitudes.

4. The solar system originated from a supernova about 5
billion years ago, and the Sun formed from the neutron
star that remained.

Manuel’s study contains much more than the sample points

mentioned above. Data freely available from NASA’s SOHO
and TRACE satellites graphically and unambiguously sup-
port Manuel’s contentions (to the extent of images illustrating
fixed surface formations revolving with a period of 27.3
days), and suggest that the standard Solar Model is grossly
inaccurate. The implications, if Manuel’s ideas are validated,
are exciting indeed. His words: “The question is, are neutron
stars ‘dead’ nuclear matter, with tightly bound neutrons
at minus 93 MeV relative to the free neutron, as widely
believed? Or are neutron stars the greatest known source of
nuclear energy, with neutrons at plus 10 to 22 MeV relative
to free neutrons, as we conclude from the properties of the
2,850 known isotopes?”

The conference concluded with a stirring concert by a
3-piece baroque chamber music ensemble, and it gave me
cause to reflect that it appeared that only in our appreciation
of music did we find undiluted harmony. That the Big Bang
theory will pass into history as an artefact of man’s obsession
with dogma is a certainty; it will do so on its own merits,
however, because it stands on feet of clay. For a viable
replacement theory to emerge solely from the efforts of
the Alternative Cosmology Group is unlikely unless the
group can soon find cohesive direction, and put into practice
the undertaking that we become completely interdisciplinary
in our approach. Nonetheless, that there is a crisis in the
world of science is now confirmed. Papers presented at the
conference by some of the world’s leading scientists showed
beyond doubt that the weight of scientific evidence clearly
indicates that the dominant theory on the origin and destiny
of the Universe is deeply flawed. The implications of this
damning consensus are serious indeed, and will in time
fundamentally affect not only the direction of many scientific
disciplines, but also threaten to change the very way that we
do science.
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Physics textbooks assert that in the famous interferometer 1887 experiment to detect
absolute motion Michelson and Morley saw no rotation-induced fringe shifts — the
signature of absolute motion; it was a null experiment. However this is incorrect. Their
published data revealed to them the expected fringe shifts, but that data gave a speed
of some 8 km/s using a Newtonian theory for the calibration of the interferometer,
and so was rejected by them solely because it was less than the 30 km/s orbital speed
of the Earth. A 2002 post relativistic-effects analysis for the operation of the device
however gives a different calibration leading to a speed > 300 km/s. So this experiment
detected both absolute motion and the breakdown of Newtonian physics. So far another
six experiments have confirmed this first detection of absolute motion in 1887.

1 Introduction

The first detection of absolute motion, that is motion relative
to space itself, was actually by Michelson and Morley in
1887 [1]. However they totally bungled the reporting of their
own data, an achievement that Michelson managed again
and again throughout his life-long search for experimental
evidence of absolute motion.

The Michelson interferometer was a brilliantly conceived
instrument for the detection of absolute motion, but only in
2002 [2] was its principle of operation finally understood and
used to analyse, for the first time ever, the data from the 1887
experiment, despite the enormous impact of that experiment
on the foundations of physics, particularly as they were laid
down by Einstein. So great was Einstein’s influence that the
1887 data was never re-analysed post-1905 using a proper
relativistic-effects based theory for the interferometer. For
that reason modern-day vacuum Michelson interferometer
experiments, as for example in [3], are badly conceived,
and their null results continue to cause much confusion:
only a Michelson interferometer in gas-mode can detect
absolute motion, as we now see. So as better and better
vacuum interferometers were developed over the last 70
years the rotation-induced fringe shift signature of absolute
motion became smaller and smaller. But what went unnoticed
until 2002 was that the gas in the interferometer was a key
component of this instrument when used as an “absolute
motion detector”, and over time the experimental physicists
were using instruments with less and less sensitivity; and
in recent years they had finally perfected a totally dud in-
strument. Reports from such experiments claim that absolute
motion is not observable, as Einstein had postulated, despite
the fact that the apparatus is totally insensitive to absolute
motion. It must be emphasised that absolute motion is not
inconsistent with the various well-established relativistic ef-

fects; indeed the evidence is that absolute motion is the
cause of these relativistic effects, a proposal that goes back
to Lorentz in the 19th century. Then of course one must
use a relativistic theory for the operation of the Michelson
interferometer. What also follows from these experiments is
that the Einstein-Minkowski spacetime ontology is invalid-
ated, and in particular that Einstein’s postulates regarding the
invariant speed of light have always been in disagreement
with experiment from the beginning. This does not imply
that the use of a mathematical spacetime is not permitted;
in quantum field theory the mathematical spacetime encodes
absolute motion effects. An ongoing confusion in physics is
that absolute motion is incompatible with Lorentz symmetry,
when the evidence is that it is the cause of that dynamical
symmetry.

2 Michelson interferometer

The Michelson interferometer compares the change in the
difference between travel times, when the device is rotated,
for two coherent beams of light that travel in orthogonal
directions between mirrors; the changing time difference
being indicated by the shift of the interference fringes during
the rotation. This effect is caused by the absolute motion
of the device through 3-space with speed v, and that the
speed of light is relative to that 3-space, and not relative to
the apparatus/observer. However to detect the speed of the
apparatus through that 3-space gas must be present in the
light paths for purely technical reasons. A theory is required
to calibrate this device, and it turns out that the calibration
of gas-mode Michelson interferometers was only worked out
in 2002. The post relativistic-effects theory for this device is
remarkably simple. The Fitzgerald-Lorentz contraction effect
causes the arm AB parallel to the absolute velocity to be
physically contracted to length
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L|| = L

√

1−
v2

c2
. (1)

The time tAB to travel AB is set by V tAB = L||+vtAB ,
while for BA by V tBA = L||− vtBA, where V = c/n is the
speed of light, with n the refractive index of the gas present
(we ignore here the Fresnel drag effect for simplicity — an
effect caused by the gas also being in absolute motion). For
the total ABA travel time we then obtain

tABA = tAB + tBA =
2LV

V 2 − v2

√

1−
v2

c2
. (2)

For travel in the AC direction we have, from the Pytha-
goras theorem for the right-angled triangle in Fig. 1 that
(V tAC)

2 = L2+(vtAC)
2 and that tCA = tAC . Then for the

total ACA travel time

tACA = tAC + tCA =
2L

√
V 2 − v2

. (3)

Then the difference in travel time is

Δt =
(n2 − 1)L

c

v2

c2
+ O

(
v4

c4

)

. (4)

after expanding in powers of v/c (here the sign O means for
“order”). This clearly shows that the interferometer can only
operate as a detector of absolute motion when not in vacuum
(n=1), namely when the light passes through a gas, as in
the early experiments (in transparent solids a more complex
phenomenon occurs and rotation-induced fringe shifts from
absolute motion do not occur). A more general analysis
[2, 9, 10], including Fresnel drag, gives

Δt = k2
Lv2P
c3

cos [2(θ − ψ)] , (5)

where k2≈n(n2 − 1), while neglect of the Fitzgerald-
Lorentz contraction effect gives k2≈n3≈ 1 for gases,
which is essentially the Newtonian calibration that Michelson
used. All the rotation-induced fringe shift data from the 1887
Michelson-Morley experiment, as tabulated in [1], is shown
in Fig. 2. The existence of this data continues to be denied
by the world of physics.

The interferometers are operated with the arms horizont-
al, as shown by Miller’s interferometer in Fig. 3. Then in (5)
θ is the azimuth of one arm (relative to the local meridian),
while ψ is the azimuth of the absolute motion velocity
projected onto the plane of the interferometer, with projected
component vP . Here the Fitzgerald-Lorentz contraction is a
real dynamical effect of absolute motion, unlike the Einstein
spacetime view that it is merely a spacetime perspective
artefact, and whose magnitude depends on the choice of
observer. The instrument is operated by rotating at a rate of
one rotation over several minutes, and observing the shift in
the fringe pattern through a telescope during the rotation.

L

A BL

C

D

α

A1 A2
D
B

C

v

(a) (b)

Fig. 1: Schematic diagrams of the Michelson Interferometer, with
beamsplitter/mirror at A and mirrors at B and C on arms from A,
with the arms of equal length L when at rest. D is the detector
screen. In (a) the interferometer is at rest in space. In (b) the
interferometer is moving with speed v relative to space in the
direction indicated. Interference fringes are observed at D. If the
interferometer is rotated in the plane through 90◦, the roles of arms
AC and AB are interchanged, and during the rotation shifts of
the fringes are seen in the case of absolute motion, but only if the
apparatus operates in a gas. By measuring fringe shifts the speed v
may be determined.

Then fringe shifts from six (Michelson and Morley) or twenty
(Miller) successive rotations are averaged, and the average
sidereal time noted, giving in the case of Michelson and
Morley the data in Fig. 2, or the Miller data like that in
Fig. 4. The form in (5) is then fitted to such data, by varying
the parameters vP and ψ. However Michelson and Morley
implicitly assumed the Newtonian value k = 1, while Miller
used an indirect method to estimate the value of k, as he
understood that the Newtonian theory was invalid, but had
no other theory for the interferometer. Of course the Einstein
postulates have that absolute motion has no meaning, and so
effectively demands that k = 0. Using k = 1 gives only a
nominal value for vP , being some 8 km/s for the Michelson
and Morley experiment, and some 10 km/s from Miller; the
difference arising from the different latitude of Cleveland
and Mt. Wilson. The relativistic theory for the calibration of
gas-mode interferometers was first used in 2002 [2].

3 Michelson-Morley data

Fig.2 shows all the Michelson and Morley air-mode inter-
ferometer fringe shift data, based upon a total of only 36
rotations in July 1887, revealing the nominal speed of some
8 km/s when analysed using the prevailing but incorrect
Newtonian theory which has k = 1 in (5); and this value was
known to Michelson and Morley. Including the Fitzgerald-
Lorentz dynamical contraction effect as well as the effect of
the gas present as in (5) we find that nair = 1.00029 gives
k2= 0.00058 for air, which explains why the observed fringe
shifts were so small. We then obtain the speeds shown in
Fig. 2. In some cases the data does not have the expected form
in (5); because the device was being operated at almost the
limit of sensitivity. The remaining fits give a speed in excess
of 300 km/s. The often-repeated statement that Michelson
and Morley did not see any rotation-induced fringe shifts
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Fig. 2: Shows all the Michelson-Morley 1887 data after removal of
the temperature induced linear fringe drifts. The data for each 360◦

full turn (the average of 6 individual turns) is divided into the 1st and
2nd 180◦ parts and plotted one above the other. The dotted curve
shows a best fit to the data using (5), while the full curves show the
expected forms using the Miller direction for v and the location and
times of the Michelson-Morley observations in Cleveland, Ohio in
July, 1887. While the amplitudes are in agreement in general with
the Miller based predictions, the phase varies somewhat. Miller also
saw a similar effect. This may be related to the Hick’s effect [4]
when, necessarily, the mirrors are not orthogonal, or may correspond
to a genuine fluctuation in the direction of v associated with wave
effects. We see that this data corresponds to a speed in excess of
300 km/s, and not the 8 km/s reported in [1], which was based on
using Newtonian physics to calibrate the interferometer.

Fig. 3: Miller’s interferometer with an effective arm length of
L= 32 m achieved by multiple reflections. Used by Miller on
Mt.Wilson to perform the 1925–1926 observations of absolute
motion. The steel arms weighed 1200 kilograms and floated in
a tank of 275 kilograms of Mercury. From Case Western Reserve
University Archives.

is completely wrong; all physicists should read their paper
[1] for a re-education, and indeed their paper has a table
of the observed fringe shifts. To get the Michelson-Morley
Newtonian based value of some 8 km/s we must multiply
the above speeds by k=

√
0.00058= 0.0241. They rejected

their own data on the sole but spurious ground that the value
of 8 km/s was smaller than the speed of the Earth about the
Sun of 30 km/s. What their result really showed was that
(i) absolute motion had been detected because fringe shifts
of the correct form, as in (5), had been detected, and (ii)
that the theory giving k2=1 was wrong, that Newtonian
physics had failed. Michelson and Morley in 1887 should
have announced that the speed of light did depend of the
direction of travel, that the speed was relative to an actual
physical 3-space. However contrary to their own data they
concluded that absolute motion had not been detected. This
bungle has had enormous implications for fundamental the-
ories of space and time over the last 100 years, and the
resulting confusion is only now being finally corrected.

4 Miller interferometer

It was Miller [4] who saw the flaw in the 1887 paper and
realised that the theory for the Michelson interferometer must
be wrong. To avoid using that theory Miller introduced the
scaling factor k, even though he had no theory for its value.
He then used the effect of the changing vector addition of
the Earth’s orbital velocity and the absolute galactic velocity
of the solar system to determine the numerical value of k,
because the orbital motion modulated the data, as shown in
Fig. 5. By making some 12,000 rotations of the interferometer
at Mt. Wilson in 1925/26 Miller determined the first estimate
for k and for the absolute linear velocity of the solar system.
Fig. 4 shows typical data from averaging the fringe shifts
from 20 rotations of the Miller interferometer, performed
over a short period of time, and clearly shows the expected
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Fig. 4: Typical Miller rotation-induced fringe shifts from average
of 20 rotations, measured every 22.5◦, in fractions of a wavelength
Δλ/λ, vs azimuth θ (deg), measured clockwise from North, from
Cleveland Sept. 29, 1929 16:24 UT; 11:29 average sidereal time.
This shows the quality of the fringe data that Miller obtained, and
is considerably better than the comparable data by Michelson and
Morley in Fig. 2. The curve is the best fit using the form in (5)
but including a Hick’s [4] cos (θ−β) component that is required
when the mirrors are not orthogonal, and gives ψ= 158◦, or 22◦

measured from South, and a projected speed of vP = 351 km/s. This
value for v is different from that in Fig. 2 because of the difference
in latitude of Cleveland and Mt. Wilson. This process was repeated
some 12,000 times over days and months throughout 1925/1926
giving, in part, the data in Fig. 5.

form in (5) (only a linear drift caused by temperature effects
on the arm lengths has been removed — an effect also
removed by Michelson and Morley and also by Miller). In
Fig. 4 the fringe shifts during rotation are given as fractions
of a wavelength, Δλ/λ=Δt/T , where Δt is given by (5)
and T is the period of the light. Such rotation-induced fringe
shifts clearly show that the speed of light is different in
different directions. The claim that Michelson interferome-
ters, operating in gas-mode, do not produce fringe shifts
under rotation is clearly incorrect. But it is that claim that
lead to the continuing belief, within physics, that absolute
motion had never been detected, and that the speed of light
is invariant. The value of ψ from such rotations together
lead to plots like those in Fig. 5, which show ψ from the
1925/1926 Miller [4] interferometer data for four different
months of the year, from which the RA= 5.2 hr is readily
apparent. While the orbital motion of the Earth about the Sun
slightly affects the RA in each month, and Miller used this
effect do determine the value of k, the new theory of gravity
required a reanalysis of the data [9, 11], revealing that the
solar system has a large observed galactic velocity of some
420±30 km/s in the direction (RA= 5.2 hr, Dec=−67 deg).
This is different from the speed of 369 km/s in the direction
(RA= 11.20 hr, Dec=−7.22 deg) extracted from the Cosmic
Microwave Background (CMB) anisotropy, and which de-
scribes a motion relative to the distant universe, but not
relative to the local 3-space. The Miller velocity is explained
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Fig. 5: Miller azimuths ψ, measured from south and plotted aga-
inst sidereal time in hrs, showing both data and best fit of theory
giving v= 433 km/s in the direction (α= 5.2hr, δ=−67◦), using
n= 1.000226 appropriate for the altitude of Mt. Wilson. The
variation form month to month arises from the orbital motion of
the Earth about the Sun: in different months the vector sum of the
galactic velocity of the solar system with the orbital velocity and
sun in-flow velocity is different. As shown in Fig. 6 DeWitte using
a completely different experiment detected the same direction and
speed.

by galactic gravitational in-flows∗.
Two old interferometer experiments, by Illingworth [5]

and Joos [6], used helium, enabling the refractive index
effect to be recently confirmed, because for helium, with n=
=1.000036, we find that k2= 0.00007. Until the refractive
index effect was taken into account the data from the helium-
mode experiments appeared to be inconsistent with the data
from the air-mode experiments; now they are seen to be
consistent. Ironically helium was introduced in place of air
to reduce any possible unwanted effects of a gas, but we
now understand the essential role of the gas. The data from
an interferometer experiment by Jaseja et al [7], using two
orthogonal masers with a He-Ne gas mixture, also indicates
that they detected absolute motion, but were not aware of
that as they used the incorrect Newtonian theory and so
considered the fringe shifts to be too small to be real, re-
miniscent of the same mistake by Michelson and Morley.
The Michelson interferometer is a 2nd order device, as the
effect of absolute motion is proportional to (v/c)2, as in (5).

5 1st order experiments

However much more sensitive 1st order experiments are
also possible. Ideally they simply measure the change in
the one-way EM travel-time as the direction of propagation
is changed. Fig. 6 shows the North-South orientated coaxial
cable Radio Frequency (RF) travel time variations measured
by DeWitte in Brussels in 1991 [9, 10, 11], which gives the
same RA of absolute motion as found by Miller. That ex-

∗See online papers http://www.mountainman.com.au/process_physics/
http://www.scieng.flinders.edu.au/cpes/people/cahill_r/processphysics.html
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Fig. 6: Variations in twice the one-way travel time, in ns, for
an RF signal to travel 1.5 km through a coaxial cable between
Rue du Marais and Rue de la Paille, Brussels. An offset has been
used such that the average is zero. The cable has a North-South
orientation, and the data is the difference of the travel times for
NS and SN propagation. The sidereal time for maximum effect
of ∼5 hr and ∼17 hr (indicated by vertical lines) agrees with the
direction found by Miller. Plot shows data over 3 sidereal days and
is plotted against sidereal time. DeWitte recorded such data from
178 days, and confirmed that the effect tracked sidereal time, and
not solar time. Miller also confirmed this sidereal time tracking.
The fluctuations are evidence of turbulence in the flow.

periment showed that RF waves travel at speeds determ-
ined by the orientation of the cable relative to the Miller
direction. That these very different experiments show the
same speed and RA of absolute motion is one of the most
startling discoveries of the twentieth century. Torr and Kolen
[8] using an East-West orientated nitrogen gas-filled coaxial
cable also detected absolute motion. It should be noted that
analogous optical fibre experiments give null results for
the same reason, apparently, that transparent solids in a
Michelson interferometer also give null results, and so be-
have differently to coaxial cables.

Modern resonant-cavity interferometer experiments, for
which the analysis leading to (5) is applicable, use vacuum
with n = 1, and then k = 0, predicting no rotation-induced
fringe shifts. In analysing the data from these experiments the
consequent null effect is misinterpreted, as in [3], to imply
the absence of absolute motion. But it is absolute motion
which causes the dynamical effects of length contractions,
time dilations and other relativistic effects, in accord with
Lorentzian interpretation of relativistic effects. The detection
of absolute motion is not incompatible with Lorentz sym-
metry; the contrary belief was postulated by Einstein, and
has persisted for over 100 years, since 1905. So far the
experimental evidence is that absolute motion and Lorentz
symmetry are real and valid phenomena; absolute motion is
motion presumably relative to some substructure to space,
whereas Lorentz symmetry parameterises dynamical effects
caused by the motion of systems through that substructure.
There are novel wave phenomena that could also be studied;

see footnote on page 28. In order to check Lorentz symmetry
we can use vacuum-mode resonant-cavity interferometers,
but using gas within the resonant-cavities would enable these
devices to detect absolute motion with great precision.

6 Conclusions

So absolute motion was first detected in 1887, and again
in at least another six experiments over the last 100 years.
Had Michelson and Morley been as astute as their younger
colleague Miller, and had been more careful in reporting their
non-null data, the history of physics over the last 100 years
would have totally different, and the spacetime ontology
would never have been introduced. That ontology was only
mandated by the mistaken belief that absolute motion had
not been detected. By the time Miller had sorted out that
bungle, the world of physics had adopted the spacetime
ontology as a model of reality because that model appeared to
be confirmed by many relativistic phenomena, mainly from
particle physics, although these phenomena could equally
well have been understood using the Lorentzian interpreta-
tion which involved no spacetime. We should now under-
stand that in quantum field theory a mathematical spacetime
encodes absolute motion effects upon the elementary particle
systems, but that there exists a physically observable foliation
of that spacetime into a geometrical model of time and a
separate geometrical model of 3-space.
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Novel Gravity Probe B Frame-Dragging Effect
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The Gravity Probe B (GP-B) satellite experiment will measure the precession of on-
board gyroscopes to extraordinary accuracy. Such precessions are predicted by General
Relativity (GR), and one component of this precession is the “frame-dragging” or
Lense-Thirring effect, which is caused by the rotation of the Earth. A new theory of
gravity, which passes the same extant tests of GR, predicts, however, a second and
much larger “frame-dragging” precession. The magnitude and signature of this larger
effect is given for comparison with the GP-B data.

1 Introduction

The Gravity Probe B (GP-B) satellite experiment was launch-
ed in April 2004. It has the capacity to measure the precession
of four on-board gyroscopes to unprecedented accuracy
[1, 2, 3, 4]. Such a precession is predicted by the Einstein
theory of gravity, General Relativity (GR), with two com-
ponents (i) a geodetic precession, and (ii) a “frame-dragging”
precession known as the Lense-Thirring effect. The latter is
particularly interesting effect induced by the rotation of the
Earth, and described in GR in terms of a “gravitomagnetic”
field. According to GR this smaller effect will give a pre-
cession of 0.042 arcsec per year for the GP-B gyroscopes.
However a recently developed theory gives a different ac-
count of gravity. While agreeing with GR for all the standard
tests of GR this theory gives a dynamical account of the so-
called “dark matter” effect in spiral galaxies. It also success-
fully predicts the masses of the black holes found in the
globular clusters M15 and G1. Here we show that GR and the
new theory make very different predictions for the “frame-
dragging” effect, and so the GP-B experiment will be able
to decisively test both theories. While predicting the same
earth-rotation induced precession, the new theory has an
additional much larger “frame-dragging” effect caused by
the observed translational motion of the Earth. As well the
new theory explains the “frame-dragging” effect in terms of
vorticity in a “substratum flow”. Herein the magnitude and
signature of this new component of the gyroscope precession
is predicted for comparison with data from GP-B when it
becomes available.

2 Theories of gravity

The Newtonian “inverse square law” for gravity,

F =
Gm1m2

r2
, (1)

was based on Kepler’s laws for the motion of the planets.
Newton formulated gravity in terms of the gravitational ac-

celeration vector field g (r, t), and in differential form

∇∙g = −4πGρ , (2)

where ρ(r, t) is the matter density. However there is an
alternative formulation [5] in terms of a vector “flow” field
v(r, t) determined by

∂

∂t
(∇∙v) +∇∙

[
(v ∙∇)v

]
= −4πGρ , (3)

with g now given by the Euler “fluid” acceleration

g =
∂v

∂t
+ (v∙∇)v =

dv

dt
. (4)

Trivially this g also satisfies (2). External to a spherical
mass M of radius R a velocity field solution of (2) is

v (r) = −

√
2GM

r
r̂ , r > R , (5)

which gives from (4) the usual inverse square law g field

g (r) = −
GM

r2
r̂ , r > R . (6)

However the flow equation (2) is not uniquely determined
by Kepler’s laws because

∂

∂t
(∇∙v) +∇∙

[
(v∙∇)v

]
+ C(v) = −4πGρ , (7)

where
C(v) =

α

8

[
(trD)2 − tr(D2)

]
, (8)

and

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

, (9)

also has the same external solution (5), because C(v)= 0
for the flow in (5). So the presence of the C (v) would
not have manifested in the special case of planets in orbit
about the massive central sun. Here α is a dimensionless
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constant — a new gravitational constant, in addition to usual
the Newtonian gravitational constant G. However inside a
spherical mass we find [5] that C (v) 6=0, and using the
Greenland borehole g anomaly data [4] we find that α−1=
=139±5, which gives the fine structure constant α=e2~/c≈
≈1/137 to within experimental error. From (4) we can write

∇∙g = −4πGρ− 4πGρDM , (10)

where

ρDM (r) =
α

32πG

[
(trD)2 − tr(D2)

]
, (11)

which introduces an effective “matter density” representing
the flow dynamics associated with the C (v) term. In [5] this
dynamical effect is shown to be the “dark matter” effect.
The interpretation of the vector flow field v is that it is a
manifestation, at the classical level, of a quantum substratum
to space; the flow is a rearrangement of that substratum, and
not a flow through space. However (7) needs to be further
generalised [5] to include vorticity, and also the effect of the
motion of matter through this substratum via

vR {r0(t), t} = v0(t)− v{r0(t), t} , (12)

where v0(t) is the velocity of an object, at r0(t), relative to
the same frame of reference that defines the flow field; then
vR is the velocity of that matter relative to the substratum.
The flow equation (7) is then generalised to, with d/dt =
= ∂/∂t+v∙∇ the Euler fluid or total derivative,

dDij
dt

+
δij
3
tr(D2) +

trD

2

(
Dij −

δij
3
trD

)
+

+
δij
3

α

8

[
(trD)2 − tr(D2)

]
+ (ΩD −DΩ)ij =

= −4πGρ

(
δij
3
+
viRv

j
R

2c2
+ . . .

)

, i, j = 1, 2, 3,

(13)

∇× (∇× v) =
8πGρ

c2
vR , (14)

Ωij =
1

2

(
∂vi
∂xj

−
∂vj
∂xi

)

=

= −
1

2
εijk ωk = −

1

2
εijk (∇× v)k ,

(15)

and the vorticity vector field is ~ω = ∇×v. For zero vorticity
and vR� c (13) reduces to (7). We obtain from (14) the Biot-
Savart form for the vorticity

~ω(r, t) =
2G

c2

∫
d3r′

ρ(r′, t)

|r− r′|3
vR(r

′, t)× (r− r′) . (16)

The path r0(t) of an object through this flow is obtained
by extremising the relativistic proper time

τ [r0] =

∫
dt

(

1−
v2R
c2

)1/2
(17)

giving, as a generalisation of (4), the acceleration

dv0
dt

=

[
∂v

∂t
+ (v∙∇)v

]

+ (∇× v)× vR−

−
vR

1−
v2R
c2

1

2

d

dt

(
v2R
c2

)

.
(18)

Formulating gravity in terms of a flow is probably un-
familiar, but General Relativity (GR) permits an analogous
result for metrics of the Panlevé-Gullstrand class [7],

dτ 2 = gμν dx
μdxν = dt2 −

1

c2
[
dr− v (r, t)dt

]2
. (19)

The external-Schwarzschild metric belongs to this class
[8], and when expressed in the form of (19) the v field is
identical to (5). Substituting (19) into the Einstein equations

Gμν ≡ Rμν −
1

2
Rgμν =

8πG

c2
Tμν , (20)

gives

G00 =
∑

i,j=1,2,3

viG ij vj − c
2
∑

j=1,2,3

G 0j vj −

− c2
∑

i=1,2,3

viG i0 + c
2G 00 ,

Gi0 = −
∑

j=1,2,3

G ij vj + c
2G i0 ,

Gij = G ij , i, j = 1, 2, 3,

(21)

where the Gμν are given by

G 00 =
1

2

[
(trD)2 − tr(D2)

]
,

G i0 = G0i = −
1

2

[
∇× (∇× v)

]
i
,

G ij=
d

dt

(
Dij−δ ij trD

)
+
(
Dij−

1

2
δij trD

)
trD−

−
1

2
δij tr(D

2) + (ΩD −DΩ)ij , i, j = 1, 2, 3

(22)

and so GR also uses the Euler “fluid” derivative, and we
obtain a set of equations analogous but not identical to (13)–
(14). In vacuum, with Tμν =0, we find that (22) demands that

[
(trD)2 − tr(D2)

]
= 0 . (23)

This simply corresponds to the fact that GR does not
permit the “dark matter” dynamical effect, namely that
ρDM =0, according to (10). This happens because GR was
forced to agree with Newtonian gravity, in the appropriate
limits, and that theory also has no such effect. The predictions
from (13)–(14) and from (22) for the Gravity Probe B exper-
iment are different, and provide an opportunity to test both
gravity theories.
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S
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Fig. 1: Shows the Earth (N is up) and vorticity vector field com-
ponent ~ω induced by the rotation of the Earth, as in (24). The
polar orbit of the GP-B satellite is shown, S is the gyroscope
starting spin orientation, directed towards the guide star IM Pegasi,
RA= 22h53′2.26′′, Dec= 16◦50′28.2′′, and VE is the vernal
equinox.

3 “Frame-dragging” as a vorticity effect

Here we consider one difference between the two theories,
namely that associated with the vorticity part of (18), leading
to the “frame-dragging” or Lense-Thirring effect. In GR
the vorticity field is known as the “gravitomagnetic” field
B=−c ~ω. In both GR and the new theory the vorticity is
given by (16) but with a key difference: in GR vR is only
the rotational velocity of the matter in the Earth, whereas in
(13)–(14) vR is the vector sum of the rotational velocity and
the translational velocity of the Earth through the substratum.
At least seven experiments have detected this translational
velocity; some were gas-mode Michelson interferometers
and others coaxial cable experiments [8, 9, 10], and the
translational velocity is now known to be approximately 430
km/s in the direction RA= 5.2h, Dec=−67◦. This direction
has been known since the Miller [11] gas-mode interfero-
meter experiment, but the RA was more recently confirmed
by the 1991 DeWitte coaxial cable experiment performed
in the Brussels laboratories of Belgacom [9]. This flow is
related to galactic gravity flow effects [8, 9, 10], and so is
different to that of the velocity of the Earth with respect to the
Cosmic Microwave Background (CMB), which is 369 km/s
in the direction RA= 11.20h, Dec=−7.22◦.

First consider the common but much smaller rotation

S

VE

v

Fig. 2: Shows the Earth (N is up) and the much larger vorticity
vector field component ~ω induced by the translation of the Earth,
as in (27). The polar orbit of the GP-B satellite is shown, and S is
the gyroscope starting spin orientation, directed towards the guide
star IM Pegasi, RA= 22h53′2.26′′, Dec= 16◦50′28.2′′, VE is the
vernal equinox, and V is the direction RA = 5.2h, Dec=−67◦ of
the translational velocity vc.

induced “frame-dragging” or vorticity effect. Then vR(r) =
=w×r in (16), wherew is the angular velocity of the Earth,
giving

~ω (r) = 4
G

c2
3(r ∙ L)r− r2L

2 r5
, (24)

where L is the angular momentum of the Earth, and r is the
distance from the centre. This component of the vorticity field
is shown in Fig. 1. Vorticity may be detected by observing
the precession of the GP-B gyroscopes. The vorticity term
in (18) leads to a torque on the angular momentum S of the
gyroscope,

~τ =

∫
d3r ρ(r) r×

[
~ω (r)× vR(r)

]
, (25)

where ρ is its density, and where vR is used here to describe
the rotation of the gyroscope. Then dS= ~τdt is the change in
S over the time interval dt. In the above case vR(r)= s× r,
where s is the angular velocity of the gyroscope. This gives

~τ =
1

2
~ω × S (26)

and so ~ω/2 is the instantaneous angular velocity of precession
of the gyroscope. This corresponds to the well known fluid
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Fig. 3: Predicted variation of the precession angle ΔΘ =
= |ΔS (t)|/|S (0)|, in arcsec, over one 97 minute GP-B orbit,
from the vorticity induced by the translation of the Earth, as given
by (28). The orbit time begins at location S. Predictions are for
the months of April, August, September and February, labeled by
increasing dash length. The “glitches” near 80 minutes are caused
by the angle effects in (28). These changes arise from the effects of
the changing orbital velocity of the Earth about the Sun. The GP-
B expected angle measurement accuracy is 0.0005 arcsec. Novel
gravitational waves will affect these plots.

result that the vorticity vector is twice the angular velocity
vector. For GP-B the direction of S has been chosen so that
this precession is cumulative and, on averaging over an orbit,
corresponds to some 7.7×10−6 arcsec per orbit, or 0.042
arcsec per year. GP-B has been superbly engineered so that
measurements to a precision of 0.0005 arcsec are possible.

However for the unique translation-induced precession
if we use vR≈ vC = 430 km/s in the direction RA= 5.2hr,
Dec=−67◦, namely ignoring the effects of the orbital motion
of the Earth, the observed flow past the Earth towards the
Sun, and the flow into the Earth, and effects of the gravita-
tional waves, then (16) gives

~ω (r) =
2GM

c2
vC × r
r3

. (27)

This much larger component of the vorticity field is
shown in Fig. 2. The maximum magnitude of the speed of this
precession component is ω/2 = gvC/c

2 = 8×10−6 arcsec/s,
where here g is the gravitational acceleration at the altitude of
the satellite. This precession has a different signature: it is not
cumulative, and is detectable by its variation over each single
orbit, as its orbital average is zero, to first approximation.
Fig. 3 shows ΔΘ = |ΔS(t)|/|S(0)| over one orbit, where,
as in general,

ΔS(t) =

[ ∫ t

0

dt′
1

2
~ω
(
r(t′)

)
]

× S(t′) ≈

≈

[ ∫ t

0

dt′
1

2
~ω
(
r(t′)

)
]

× S(0) .
(28)

Here ΔS(t) is the integrated change in spin, and where
the approximation arises because the change in S(t′) on the
RHS of (28) is negligible. The plot in Fig. 3 shows this
effect to be some 30× larger than the expected GP-B errors,
and so easily detectable, if it exists as predicted herein. This
precession is about the instantaneous direction of the vorticity
~ω
(
r(t)

)
at the location of the satellite, and so is neither in

the plane, as for the geodetic precession, nor perpendicular
to the plane of the orbit, as for the earth-rotation induced
vorticity effect.

Because the yearly orbital rotation of the Earth about
the Sun slightly effects vC [9] predictions for four months
throughout the year are shown in Fig. 3. Such yearly effects
were first seen in the Miller [11] experiment.
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Relations Between Physical Constants

Roberto Oros di Bartini∗

This article discusses the main analytic relationship between physical constants, and
applications thereof to cosmology. The mathematical bases herein are group theoretical
methods and topological methods. From this it is argued that the Universe was born
from an Inversion Explosion of the primordial particle (pre-particle) whose outer radius
was that of the classical electron, and inner radius was that of the gravitational radius
of the electron. All the mass was concentrated in the space between the radii, and was
inverted outside the particle through the pre-particle’s surface (the inversion classical
radius). This inversion process continues today, determining evolutionary changes in
the fundamental physical constants.

Roberto di Bartini, 1920’s

(in Italian Air Force uniform)

As is well known, group theor-
etical methods, and also topolog-
ical methods, can be effectively
employed in order to interpret
physical problems. We know of
studies setting up the discrete in-
terior of space-time, and also rel-
ationships between atomic quant-
ities and cosmological quantities.

However, no analytic relati-
onship between fundamental phy-
sical quantities has been found.
They are determined only by ex-
perimental means, because there
is no theory that could give a the-
oretical determination of them.

In this brief article we give the results of our own study,
which, employing group theoretical methods and topological
methods, gives an analytic relationship between physical
constants.

Let us consider a predicative unbounded and hence
unique specimen A. Establishing an identity between this
specimen A and itself

A ≡ A , A
1

A
= 1 ,

∗Brief contents of this paper was presented by Prof. Bruno Pontecorvo
to the Proceedings of the Academy of Sciences of the USSR (Doklady Acad.
Sci. USSR), where it was published in 1965 [19]. Roberto di Bartini (1897–
1974), the author, was an Italian mathematician and aircraft engineer who,
from 1923, worked in the USSR where he headed an aircraft project bureau.
Because di Bartini attached great importance to this article, he signed it
with his full name, including his titular prefix and baronial name Oros —
from Orosti, the patrimony near Fiume (now Rijeka, located in Croatian
territory near the border), although he regularly signed papers as Roberto
Bartini. The limited space in the Proceedings did not permit publication of
the whole article. For this reason Pontecorvo acquainted di Bartini with Prof.
Kyril Stanyukovich, who published this article in his bulletin, in Russian.
Pontecorvo and Stanyukovich regarded di Bartini’s paper highly. Decades
later Stanyukovich suggested that it would be a good idea to publish di
Bartini’s article in English, because of the great importance of his idea of
applying topological methods to cosmology and the results he obtained.
(Translated by D. Rabounski and S. J. Crothers.) — Editor’s remark.

is the mapping which transfers images of A in accordance
with the pre-image of A.

The specimen A, by definition, can be associated only
with itself. For this reason it’s inner mapping can, accord-
ing to Stoilow’s theorem, be represented as the superposition
of a topological mapping and subsequently by an analytic
mapping.

The population of images of A is a point-containing
system, whose elements are equivalent points; an n-dimen-
sional affine spread, containing (n+1)-elements of the sys-
tem, transforms into itself in linear manner

x′i =

n+1∑

k=1

aikxk .

With all aik real numbers, the unitary transformation

∑

k

a∗ikalk =
∑

k

a∗kiakl , i, k = 1, 2, 3 . . . , n+ 1 ,

is orthogonal, because det aik=±1. Hence, this transform-
ation is rotational or, in other words, an inversion twist.

A projective space, containing a population of all images
of the object A, can be metrizable. The metric spread Rn

(coinciding completely with the projective spread) is closed,
according to Hamel’s theorem.

A coincidence group of points, drawing elements of the
set of images of the object A, is a finite symmetric system,
which can be considered as a topological spread mapped
into the spherical space Rn. The surface of an (n+1)-
dimensional sphere, being equivalent to the volume of an
n-dimensional torus, is completely and everywhere densely
filled by the n-dimensional excellent, closed and finite point-
containing system of images of the object A.

The dimension of the spread Rn, which consists only of
the set of elements of the system, can be any integer n inside
the interval (1−N ) to (N − 1) where N is the number of
entities in the ensemble.

We are going to consider sequences of stochastic transit-
ions between different dimension spreads as stochastic vector
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quantities, i. e. as fields. Then, given a distribution function
for frequencies of the stochastic transitions dependent on n,
we can find the most probable number of the dimension of
the ensemble in the following way.

Let the differential function of distribution of frequencies
ν in the spectra of the transitions be given by

ϕ(ν) = νn exp[−πν2] .

If n� 1, the mathematical expectation for the frequency
of a transition from a state n is equal to

m(ν) =

∫ ∞

0

νn exp[−πν2]dν

2

∫ ∞

0

exp[−πν2]dν

=
Γ
(n+ 1

2

)

2π
n+1
2

.

The statistical weight of the time duration for a given
state is a quantity inversely proportional to the probability of
this state to be changed. For this reason the most probable
dimension of the ensemble is that number n under which the
function m(ν) has its minimum.

The inverse function of m(ν), is

Φn =
1

m(ν)
= S(n+1) = TVn ,

where the function Φn is isomorphic to the function of the
surface’s value S(n+1) of a unit radius hypersphere located
in an (n+1)-dimensional space (this value is equal to the
volume of an n-dimensional hypertorus). This isomorphism
is adequate for the ergodic concept, according to which the
spatial and time spreads are equivalent aspects of a manifold.
So, this isomorphism shows that realization of the object A
as a configuration (a form of its real existence) proceeds from
the objective probability of the existence of this form.

The positive branch of the function Φn is unimodal;
for negative values of (n+1) this function becomes sign-
alternating (see the figure).

The formation takes its maximum length when n=±6,
hence the most probable and most unprobable extremal dis-
tributions of primary images of the object A are presented in
the 6-dimensional closed configuration: the existence of the
total specimen A we are considering is 6-dimensional.

Closure of this configuration is expressed by the finitude
of the volume of the states, and also the symmetry of distrib-
ution inside the volume.

Any even-dimensional space can be considered as the
product of two odd-dimensional spreads, which, having the
same odd-dimension and the opposite directions, are emb-
edded within each other. Any spherical formation of n di-
mensions is directed in spaces of (n+1) and higher dim-
ensions. Any odd-dimensional projective space, if immersed
in its own dimensions, becomes directed, while any even-
dimensional projective space is one-sided. Thus the form

of the real existence of the object A we are considering is a
(3+3)-dimensional complex formation, which is the product
of the 3-dimensional spatial-like and 3-dimensional time-like
spreads (each of them has its own direction in the (3+3)-
dimensional complex formation).

One of the main concepts in dimension theory and combi-
natorial topology is nerve. Using this term, we come to the
statement that any compact metric space of n dimensions
can be mapped homeomorphicly into a subset located in a
Euclidean space of (2n+1) dimensions. And conversely, any
compact metric space of (2n+1) dimensions can be mapped
homeomorphicly way into a subset of n dimensions. There
is a unique correspondence between the mapping 7 → 3
and the mapping 3 → 7, which consists of the geometrical
realization of the abstract complex A.

The geometry of the aforementioned manifolds is determ-
ined by their own metrics, which, being set up inside them,
determines the quadratic interval

Δs2 = Φ2n

n∑

ik

gikΔx
iΔxk, i, k = 1, 2, . . . , n ,

which depends not only on the function gik of coordinates i
and k, but also on the function of the number of independent
parameters Φn.

The total length of a manifold is finite and constant,
hence the sum of the lengths of all formations, realized in the
manifold, is a quantity invariant with respect to orthogonal
transformations. Invariance of the total length of the form-
ation is expressed by the quadratic form

Nir
2
i = Nkr

2
k ,

where N is the number of entities, r is the radial equivalent
of the formation. From here we see, the ratio of the radii is
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Rρ

r2
= 1 ,

whereR is the largest radius; ρ is the smallest radius, realised
in the area of the transformation; r is the radius of spherical
inversion of the formation (this is the calibre of the area). The
transformation areas are included in each other, the inversion
twist inside them is cascaded

√
Rr

2π
= Re ,

√
Rρ = r,

√
rρ

2π
= ρe .

Negative-dimensional configurations are inversion im-
ages, corresponding to anti-states of the system. They have
mirror symmetry if n= l(2m− 1) and direct symmetry if
n=2(2m), where m=1, 2, 3. Odd-dimensional configurat-
ions have no anti-states. The volume of the anti-states is

V(−n) = 4
−1
Vn

.

Equations of physics take a simple form if we use the LT
kinematic system of units, whose units are two aspects l and
t of the radius through which areas of the space Rn undergo
inversion: l is the element of the spatial-like spread of the
subspace L, and t is the element of time-like spread of the
subspace T . Introducing homogeneous coordinates permits
reduction of projective geometry theorems to algebraic equi-
valents, and geometrical relations to kinematic relations.

The kinematic equivalent of the formation corresponds
the following model.

An elementary (3+3)-dimensional image of the object
A can be considered as a wave or a rotating oscillator,
which, in turn, becomes the sink and source, produced by
the singularity of the transformation. There in the oscillator
polarization of the background components occurs — the
transformation L→ T or T → L, depending on the direction
of the oscillator, which makes branching L and T spreads.
The transmutation L ↔ T corresponds the shift of the field
vector at π/2 in its parallel transfer along closed arcs of radii
R and r in the affine coherence space Rn.

The effective abundance of the pole is

e =
1

2

1

4π

∫

s

Eds .

A charge is an elementary oscillator, making a field
around itself and inside itself. There in the field a vector’s
length depends only on the distance ri or 1/ri from the
centre of the peculiarity. The inner field is the inversion map
of the outer field; the mutual correspondence between the
outer spatial-like and the inner time-like spreads leads to
torsion of the field.

The product of the space of the spherical surface and
the strength in the surface is independent of ri; this value
depends only on properties of the charge q

4πq = SV̇ = 4πr2
d2l

dt2
.

Because the charge manifests in the spread Rn only as
the strength of its field, and both parts of the equations are
equivalent, we can use the right side of the equation instead
of the left one.

The field vector takes its ultimate value

c =
l

t
=

√
SV̇

4πri
= 1

in the surface of the inversion sphere with the radius r. The
ultimate value of the field strength lt−2 takes a place in the
same surface; ν= t−1 is the fundamental frequency of the
oscillator. The effective (half) product of the sphere surface
space and the oscillation acceleration equals the value of the
pulsating charge, hence

4πq =
1

2
4πνr2i

l

t
= 2πric

2.

In LT kinematic system of units the dimension of a
charge (both gravitational and electric) is

dimm = dim e = L3T−2.

In the kinematic system LT , exponents in structural
formulae of dimensions of all physical quantities, including
electromagnetic quantities, are integers.

Denoting the fundamental ratio l/t as C, in the kinematic
system LT we obtain the generalized structural formula for
physical quantities

DΣn = cγTn−γ ,

where DΣn is the dimensional volume of a given physical
quantity, Σn is the sum of exponents in the formula of
dimensions (see above), T is the radical of dimensions, n
and γ are integers.

Thus we calculate dimensions of physical quantities in
the kinematic LT system of units (see Table 1).

Physical constants are expressed by some relations in
the geometry of the ensemble, reduced to kinematic struc-
tures. The kinematic structures are aspects of the probability
and configuration realization of the abstract complex A. The
most stable form of a kinematic state corresponds to the most
probable form of the stochastic existence of the formation.

The value of any physical constant can be obtained in the
following way.

The maximum value of the probability of the state we
are considering is the same as the volume of a 6-dimensional
torus,

V6 =
16π3

15
r3 = 33.0733588 r6.

The extreme numerical values — the maximum of the
positive branch and the minimum of the negative branches
of the function Φn are collected in Table 2.
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Table 1

Quantity DΣn, taken under γ equal to:

Parameter Σn 5 4 3 2 1 0 −1 −2

C5T n−5 C4T n−4 C3T n−3 C2T n−2 C1T n−1 C0T n−0 C−1T n+1 C−2T n+2

Surface power L3T −5

Pressure L2T −4

Current density −2 L1T −3

Mass density, angular
acceleration

L0T −2

Volume charge density L−1T −1

Electromagnetic field
strength

L2T −3

Magnetic displacement,
acceleration

−1 L1T −2

Frequency L0T −1

Power L5T −5

Force L4T −4

Current, loss mass L3T −3

Potential difference 0 L2T −2

Velocity L1T −1

Dimensionless constants L0T 0

Conductivity L−1T 1

Magnetic permittivity L−2T 2

Force momentum, energy L5T −4

Motion quantity, impulse L4T −3

Mass, quantity of mag-
netism or electricity

+1 L3T −2

Two-dimensional
abundance

L2T −1

Length, capacity, self-
induction

L1T 0

Period, duration L0T 1

Angular momentum,
action

L5T −3

Magnetic momentum L4T −2

Loss volume +2 L3T −1

Surface L2T 0

L1T 1

L0T 2

Moment of inertia L5T −2

L4T −1

Volume of space +3 L3T 0

Volume of time L0T 3
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Table 2

n+ 1 +7.256946404 −4.99128410

Sn+1 +33.161194485 −0.1209542108

The ratio between the ultimate values of the function
Sn+1 is

Ē =

∣
∣+S(n+1)max

∣
∣

∣
∣−S(n+1)min

∣
∣ = 274.163208 r12.

On the other hand, a finite length of a spherical layer
of Rn, homogeneously and everywhere densely filled by
doublets of the elementary formations A, is equivalent to a
vortical torus, concentric with the spherical layer. The mirror
image of the layer is another concentric homogeneous double
layer, which, in turn, is equivalent to a vortical torus coaxial
with the first one. Such formations were studied by Lewis
and Larmore for the (3+1)-dimensional case.

Conditions of stationary vortical motion are realized if

V × rotV = gradϕ , 2vds = dΓ ,

where ϕ is the potential of the circulation, Γ is the main
kinematic invariant of the field. A vortical motion is stable
only if the current lines coincide with the trajectory of the
vortex core. For a (3+1)-dimensional vortical torus we have

Vx =
Γ

2πD

[

ln
4D

r
−
1

4

]

,

where r is the radius of the circulation, D is the torus
diameter.

The velocity at the centre of the formation is

V� =
uπD

2r
.

The condition Vx = V�, in the case we are considering,
is true if n = 7

ln
4D

r
= (2π + 0.25014803)

2n+ 1

2n
=

= 2π + 0.25014803+
n

2n+ 1
= 7 ,

D

r
= Ē =

1

4
e7 = 274.15836 .

In the field of a vortical torus, with Bohr radius of the
charge, r= 0.999 9028, the quantity π takes the numerical
value π∗= 0.999 9514π. So E= 1

4e
6.9996968=274.074996.

In the LT kinematic system of units, and introducing the
relation B=V6E/π= 2885.3453, we express values of all
constants by prime relations between E and B

K = δẼαB̃β ,

where δ is equal to a quantized turn, α and β are integers.

Table 3 gives numerical values of physical constants, ob-
tained analytically and experimentally. The appendix gives
experimental determinations in units of the CGS system (cm,
gramme, sec), because they are conventional quantities, not
physical constants.

The fact that the theoretically and experimentally obtain-
ed values of physical constants coincide permits us to suppo-
se that all metric properties of the considered total and unique
specimen A can be identified as properties of our observed
World, so the World is identical to the unique “particle” A.
In another paper it will be shown that a (3+3)-dimensional
structure of space-time can be proven in an experimental
way, and also that this 6-dimensional model is free of logical
difficulties derived from the (3+1)-dimensional concept of
the space-time background∗.

In the system of units we are using here the gravitational
constant is

κ =
1

4π

[
l0

t0

]

.

If we convert its dimensions back to the CGS system, so

that G=
[
l3

mt2

]
, appropriate numerical values of the physic-

al quantities will be determined in another form (Column 5 in
Table 3). Reduced physical quantities are given in Column 8.
Column 9 gives evolutionary changes of the physical quanti-
ties with time according to the theory, developed by Stanyu-
kovich [17]†.

The gravitational “constant”, according to his theory,
increases proportionally to the space radius (and also the
world-time) and the number of elementary entities, according
to Dirac [18], increases proportional to the square of the
space radius (and the square of world-time as well). There-

fore we obtain N = T 2m'B
24, hence B≈T

1
12
m .

Because Tm= t0ω0 ' 1040, where t0' 1017 sec is the
space age of our Universe and ω0 =

c
ρ = 1023 sec−1 is the

frequency of elementary interactions, we obtain B' 10
10
3 =

= 10
1
3 ×1000.

In this case we obtain m∼ e2∼ ~∼T−2m ∼B−24, which
is in good agreement with the evolution concept developed
by Stanyukovich.

Appendix

Here is a determination of the quantity 1 cm in the CGS
system of units. The analytic value of Rydberg constant is

∗Roberto di Bartini died before he prepared the second paper. He died
sitting at his desk, looking at papers with drawings of vortical tori and draft
formulae. According to Professor Stanyukovich, Bartini was not in the habit
of keeping many drafts, so unfortunately, we do not know anything about
the experimental statement that he planned to provide as the proof to his
concept of the (3+3)-dimensional space-time background. — D. R.

†Stanyukovich’s theory is given in Part II of his book [17]. Here T0m
is the world-time moment when a particle (electron, nucleon, etc.) was born,
Tm is the world-time moment when we observe the particle. — D. R.
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[R∞] = (1/4πE
3)l−1= 3.0922328×10−8l−1, the experime-

ntally obtained value of the constant is (R∞)=109737.311±
±0.012cm−1. Hence 1 cm is determined in the CGS system
as (R∞)/[R∞] = 3.5488041×1012l.

Here is a determination of the quantity 1 sec in the CGS
system of units. The analytic value of the fundamental ve-
locity is [c ] = l/t = 1, the experimentally obtained value
of the velocity of light in vacuum is (c) = 2.997930±
± 0.0000080×10−10cm×sec−1. Hence 1 sec is determined in
the CGS system as (c)/l [c ] = 1.0639066×1023t.

Here is a determination of the quantity 1 gramme in the
CGS system of units. The analytic value of the ratio e/mc is
[e/mc ] = B̃6 = 5.7701460×1020l−1t. This quantity, mea-
sured in experiments, is (e/mc)=1.758897±0.000032×107

(cm×gm−1)
1
2 . Hence 1 gramme is determined in the CGS

system as
(e/mc)2

l[e/mc ]2
= 3.297532510×10−15l3t−2, so CGS’

one gramme is 1 gm (CGS)=8.351217×10−7cm3sec−2 (CS).
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for the Standard Tests and the Cosmological Large-Scale
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Relativistic motion in the gravitational field of a massive body is governed by the
external metric of a spherically symmetric extended object. Consequently, any solution
for the point-mass is inadequate for the treatment of such motions since it pertains to a
fictitious object. I therefore develop herein the physics of the standard tests of General
Relativity by means of the generalised solution for the field external to a sphere of
incompressible homogeneous fluid.

1 Introduction

The orthodox treatment of physics in the vicinity of a massive
body is based upon the Hilbert [1] solution for the point-
mass, a solution which is neither correct nor due to Schwarz-
schild [2], as the latter is almost universally claimed.

In previous papers [3, 4] I derived the correct general
solution for the point-mass and the point-charge in all their
standard configurations, and demonstrated that the Hilbert
solution is invalid. The general solution for the point-mass
is however, inadequate for any real physical situation since
the material point (and also the material point-charge) is a
fictitious object, and so quite meaningless. Therefore, I avail
myself of the general solution for the external field of a
sphere of incompressible homogeneous fluid, obtained in a
particular case by K. Schwarzschild [5] and generalised by
myself [6] to,

ds2=

[
(
√
Cn−α)√
Cn

]

dt2−

[ √
Cn

(
√
Cn−α)

]
C ′n

2

4Cn
dr2−

−Cn(dθ
2 + sin2 θdϕ2) ,

(1)

Cn(r)=
(∣
∣ r − r0

∣
∣n + εn

) 2
n

,

α=

√
3

κρ0
sin3

∣
∣χa − χ0

∣
∣ ,

Rca =

√
3

κρ0
sin
∣
∣χa − χ0

∣
∣ ,

ε=

√
3

κρ0

{
3

2
sin3

∣
∣χa − χ0

∣
∣ −

−
9

4
cos
∣
∣χa−χ0

∣
∣
[∣
∣χa−χ0

∣
∣ −

1

2
sin 2

∣
∣χa−χ0

∣
∣
]} 1

3

,

r0 ∈< , r∈< , n ∈ <
+ , χ0 ∈< , χa ∈< ,

arccos
1

3
< |χa − χ0|<

π

2
,

|ra − r0|6 |r − r0|<∞ ,

where ρ0 is the constant density of the fluid, k2 is Gauss’ gra-
vitational constant, the sign a denotes values at the surface
of the sphere, |χ−χ0| parameterizes the radius of curvature
of the interior of the sphere centred arbitrarily at χ0, |r− r0|
is the coordinate radius in the spacetime manifold of Special
Relativity which is a parameter space for the gravitational
field external to the sphere centred arbitrarily at r0 .

To eliminate the infinite number of coordinate systems
admitted by (1), I rewrite the said metric in terms of the
only measurable distance in the gravitational field, i .e. the
circumference G of a great circle, thus

ds2=

(

1−
2πα

G

)

dt2 −

(

1−
2πα

G

)−1
dG2

4π2
−

−
G2

4π2
(
dθ2 + sin2 θdϕ2

)
,

(2)

α=

√
3

κρ0
sin3 |χa − χ0| ,

2π

√
3

κρ0
sin |χa − χ0|6G<∞ ,

arccos
1

3
< |χa − χ0|<

π

2
.

2 Distance and time

According to (1), if t is constant, a three-dimensional mani-
fold results, having the line-element,

ds2=

[ √
Cn

(
√
Cn−α)

]
C ′n

2

4Cn
dr2 + Cn(dθ

2 + sin2 θdϕ2) . (3)
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If α=0, (1) reduces to the line-element of flat spacetime,

ds2= dt2 − dr2 − |r − r0|
2(dθ2 + sin2 θdϕ2) , (4)

06 |r − r0|<∞ ,

since then ra≡ r0 .
The introduction of matter makes ra 6= r0 , owing to the

extended nature of a real body, and introduces distortions
from the Euclidean in time and distance. The value of α is
effectively a measure of this distortion and therefore fixes
the spacetime.

When α=0, the distance D= |r − r0| is the radius of a
sphere centred at r0 . If r0 =0 and r> 0, then D≡ r and is
then both a radius and a coordinate, as is clear from (4).

If r is constant in (3), then Cn(r)=R2c is constant, and
so (3) becomes,

ds2=R2c(dθ
2 + sin2 θdϕ2) , (5)

which describes a sphere of constant radius Rc embedded
in Euclidean space. The infinitesimal tangential distances on
(5) are simply,

ds=Rc

√
dθ2 + sin2 θdϕ2 .

When θ and ϕ are constant, (3) yields the proper radius,

Rp=

∫ √ √
Cn(r)√

Cn(r)− α

C ′n(r)

2
√
Cn(r)

dr =

=

∫ √ √
Cn(r)√

Cn(r)− α
d
√
Cn(r) ,

(6)

from which it clearly follows that the parameter r does not
measure radial distances in the gravitational field.

Integrating (6) gives,

Rp(r)=

√√
Cn(

√
Cn−α)+α ln

∣
∣
∣
√√

Cn+
√√

Cn−α
∣
∣
∣ +K ,

K = const ,

which must satisfy the condition,

r→ r±a ⇒Rp→R+pa ,

where ra is the parameter value at the surface of the body
and Rpa the indeterminate proper radius of the sphere from
outside the sphere. Therefore,

Rp(r)=Rpa +

√
√
Cn(r)

(√
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)
−

−

√
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Cn(ra) +

√√
Cn(ra)− α

∣
∣
∣
∣
∣
∣
,

(7)

which, by the use of (1) and (2), becomes

Rp(r)=Rpa +

√
G

2π

(
G

2π
− α
)
−

−

√√
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sin
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+ α ln
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3
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,

(8)

α=

√
3

κρ0
sin3

∣
∣χa − χ0

∣
∣ .

According to (1), the proper time is related to the coord-
inate time by,

dτ =
√
g00 dt=

√

1−
α

√
Cn(r)

dt . (9)

When α=0, dτ = dt so that proper time and coordinate
time are one and the same in flat spacetime. With the intro-
duction of matter, proper time and coordinate time are no
longer the same. It is evident from (9) that both τ and t are
finite and non-zero, since according to (1),

1

9
< 1−

α
√
Cn(ra)

6 1−
α

√
Cn(r)

,

i .e.
1

9
< cos2 |χa − χ0|6 1−

α
√
Cn(r)

,

or
1

3
dt 6 dτ 6 dt ,

since In the far field, according to (9),

√
Cn(r)→∞⇒ dτ→ dt ,

recovering flat spacetime asymptotically.
Therefore, if a body falls from rest from a point distant

from the gravitating mass, it will reach the surface of the
mass in a finite coordinate time and a finite proper time.
According to an external observer, time does not stop at the
surface of the body, where dt=3dτ , contrary to the orthodox
analysis based upon the fictitious point-mass.

3 Radar sounding

Consider an observer in the field of a massive body. Let the
observer have coordinates, (r1, θ0, ϕ0) . Let the coordinates
of a small body located between the observer and the massive
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body along a radial line be (r2, θ0, ϕ0) . Let the observer emit
a radar pulse towards the small body. Then by (1),
(

1−
α

√
Cn(r)

)

dt2=

(

1−
α

√
Cn(r)

)−1
C

′2
n (r)
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=
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√
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)−1

d
√
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2
,

so
d
√
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dt
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√
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,

or
dr
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= ±

2
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)

.

The coordinate time for the pulse to travel to the small
body and return to the observer is,
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The proper time lapse is, according to the observer,
by formula (1),
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The proper distance between the observer and the small
body is,
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Then according to classical theory, the round trip time is

Δτ̄ =2Rp ,

so Δτ 6=Δτ̄ .
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(10)

G = G(r) = 2π
√
Cn(D(r)) .

Equation (10) gives the time delay for a radar signal in
the gravitational field.

4 Spectral shift

Let an emitter of light have coordinates (tE , rE , θE , ϕE).
Let a receiver have coordinates (tR, rR, θR, ϕR). Let u be
an affine parameter along a null geodesic with the values uE
and uR at emitter and receiver respectively. Then,

(
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,
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where ḡij = − gij . Then,
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and so, for spatially fixed emitter and receiver,
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and therefore,
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If z regular pulses of light are emitted, the emitted and
received frequencies are,
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whence,

Δν

νE
=
νR − νE
νE

≈
α

2



 1
√
Cn(rR)

−
1

√
Cn(rE)



 =

= πα

(
1

GR
−

1

GE

)

=

= π

√
3

κρ0
sin3

∣
∣χa − χ0

∣
∣
(
1

GR
−

1

GE

)

.

5 Advance of the perihelia

Consider the Lagrangian,

L =
1

2

[(

1−
α
√
Cn

)(
dt

dτ

)2]

−

−
1

2

[(

1−
α
√
Cn

)−1(
d
√
Cn
dτ

)2]

−

−
1

2

[

Cn

((
dθ

dτ

)2
+ sin2 θ

(
dϕ

dτ

)2)]

,

(13)

where τ is the proper time. Restricting motion, without
loss of generality, to the equatorial plane, θ= π

2 , the Euler-
Lagrange equations for (13) are,
(

1−
α
√
Cn

)−1
d2
√
Cn

dτ 2
+

α

2Cn

(
dt

dτ

)2
−

−

(

1−
α
√
Cn

)−2
α

2Cn

(
d
√
Cn
dτ

)2
−
√
Cn

(
dϕ

dτ

)2
=0 ,

(14)

(

1−
α
√
Cn

)
dt

dτ
= const=K , (15)

Cn
dϕ

dτ
= const = h , (16)

and ds2= gμν dxμdxν becomes,

(

1−
α
√
Cn

)(
dt

dτ

)2
−

−

(

1−
α
√
Cn

)−1(
d
√
Cn
dτ

)2
− Cn

(
dϕ

dτ

)2
= 1 .

(17)

Rearrange (17) for,

(

1−
α
√
Cn

)
ṫ2

ϕ̇2
−

(

1−
α
√
Cn

)(
d
√
Cn
dϕ

)2
−Cn=

1

ϕ̇2
. (18)

Substituting (15) and (16) into (18) gives,

(
d
√
Cn
dϕ

)2
+ Cn

(

1 +
Cn
h2

)(

1−
α
√
Cn

)

−
K2

h2
C2n = 0 .

Setting u= 1√
Cn

reduces (18) to,

(
du

dϕ

)2
+ u2=E +

α

h2
u+ αu3 , (19)

where E=
(K2−1)
h2

. The term αu3 represents the general-
relativistic perturbation of the Newtonian orbit.

Aphelion and perihelion occur when du
dϕ =0, so by (19),

αu3 − u2 +
α

h2
u+ E=0 , (20)
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Let u=u1 at aphelion and u=u2 at perihelion, so
u16u6u2. One then finds in the usual way that the angle
Δϕ between aphelion and subsequent perihelion is,

Δϕ=

[

1 +
3α

4

(
u1 + u2

)
]

π .

Therefore, the angular advance ψ between successive
perihelia is,

ψ=
3απ

2

(
u1+u2

)
=
3απ

2

(
1

√
Cn(r1)

+
1

√
Cn(r2)

)

=

= 3απ2
(
1

G1
+
1

G2

)

,

(21)

where G1 and G2 are the measurable circumferences of
great circles at aphelion and at perihelion. Thus, to correctly
determine the value of ψ, the values of the said circum-
ferences must be ascertained by direct measurement. Only
the circumferences are measurable in the gravitational field.
The radii of curvature and the proper radii must be calculated
from the circumference values.

If the field is weak, as in the case of the Sun, one may take
G≈ 2πr, for r as an approximately “measurable” distance
from the gravitating sphere to a spacetime event. In such a
situation equation (21) becomes,

ψ≈
3απ

2

(
1

r1
+
1

r2

)

. (22)

In the case of the Sun, α≈ 3000 m, and for the planet
Mercury, the usual value of ψ≈ 43 arcseconds per century
is obtained from (22). I emphasize however, that this value
is a Euclidean approximation for a weak field. In a strong
field equation (22) is entirely inappropriate and equation
(21) must be used. Unfortunately, this means that accurate
solutions cannot be obtained since there is no obvious way
of obtaining the required circumferences in practise. This
aspect of Einstein’s theory seriously limits its utility. Since
the relativists have not detected this limitation the issue has
not previously arisen in general.

6 Deflection of light

In the case of a photon, equation (17) becomes,

(

1−
α
√
Cn

)(
dt

dτ

)2
−

−

(

1−
α
√
Cn

)−1(
d
√
Cn
dτ

)2
− Cn

(
dϕ

dτ

)2
= 1 ,

which leads to,
(
du

dϕ

)2
+ u2=F + αu3 . (23)

Let the radius of curvature of a great circle at closest
approach be

√
Cn(rc). Now when there is no mass present,

(23) becomes (
du

dϕ

)2
+ u2=F ,

and has solution,

u=uc sinϕ⇒
√
Cn(rc)=

√
Cn(r) sinϕ ,

and

u2c =
1

√
Cn(rc)

=F .

If
√
Cn(r)�α,

√
Cn(r)>

√
Cn(ra) ,

and u=uc>ua at closest approach, then

du

dϕ
=0 at u=uc ,

so F =u2c (1− ucα), and (23) becomes,

(
du

dϕ

)2
+ u2=u2c (1− ucα) + αu

3 . (24)

Equation (24) must have a solution close to flat space-
time, so let

u=uc sinϕ+ αw(ϕ) .

Putting this into (24) and working to first order in α,
gives

2

(
dw

dϕ

)

cosϕ+ 2w sinϕ=u2c
(
sin3 ϕ− 1

)
,

or

d

dϕ
(w secϕ) =

1

2
u2c
(
secϕ tanϕ− sinϕ− sec2 ϕ

)
,

and so,

w=
1

2
u2c
(
1 + cos2 ϕ− sinϕ

)
+ A cosϕ ,

where A is an integration constant. If the photon originates at
infinity in the direction ϕ=0, then w(0)= 0, so A= − u2c ,
and

u=uc

(

1−
1

2
αuc

)

sinϕ+
1

2
αu2c (1− cosϕ)

2
, (25)

to first order in α. Putting u=0 and ϕ=π +Δϕ into (25),
then to first order in Δϕ,

0= − ucΔϕ+ 2αu
2
c ,

so the angle of deflection is,

Δϕ=2αuc=
2α

√
Cn(rc)

=
2α

(∣
∣ rc − r0

∣
∣n + εn

) 1
n

=
4πα

Gc
,
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Gc>Ga .

At a grazing trajectory to the surface of the body,

Gc=Ga=2π
√
Cn(ra) ,

√
Cn(ra)=

√
3

κρ0
sin
∣
∣χa − χ0

∣
∣ ,

so then

Δϕ=
2
√

3
κρ0

sin3
∣
∣χa − χ0

∣
∣

√
3
κρ0

sin
∣
∣χa − χ0

∣
∣
=2 sin2

∣
∣χa − χ0

∣
∣ . (26)

For the Sun [5],

sin
∣
∣χa − χ0

∣
∣ ≈

1

500
,

so the deflection of light grazing the limb of the Sun is,

Δϕ≈
2

5002
≈ 1.65′′ .

Equation (26) is an interesting and quite surprising result,
for sin

∣
∣χa − χ0

∣
∣ gives the ratio of the “naturally measured”

fall velocity of a free test particle falling from rest at infinity
down to the surface of the spherical body, to the speed of
light in vacuo. Thus,

the deflection of light grazing the limb of a
spherical gravitating body is twice the square
of the ratio of the fall velocity of a free test
particle falling from rest at infinity down to the
surface, to the speed of light in vacuo, i .e .,

Δϕ=2 sin2
∣
∣χa − χ0

∣
∣ =2

(
va
c

)2
=
4GMg

c2Rca
,

where Rca is the radius of curvature of the body, Mg the
active mass, and G is the gravitational constant. The quantity
va is the escape velocity,

va=

√
2GMg

Rca
.

7 Practical constraints and general comment

Owing to their invalid assumptions about the r-parameter [7],
the relativists have not recognised the practical limitations
associated with the application of General Relativity. It is
now clear that the fundamental element of distance in the
gravitational field is the circumference of a great circle,
centred at the heart of an extended spherical body and passing
through a spacetime event external thereto. Heretofore the
orthodox theorists have incorrectly taken the r-parameter,

not just as a radius in the gravitational field, but also as a
measurable radius in the field. This is not correct. The only
measurable distance in the gravitational field is the aforesaid
circumference of a great circle, from which the radius of
curvature

√
Cn(r) and the proper radius Rp(r) must be

calculated, thus,
√
Cn(r)=

G

2π
,

Rp(r)=

∫ √
−g11 dr .

Only in the weak field, where the spacetime curvature
is very small, can

√
Cn(r) be taken approximately as the

Euclidean value r, thereby making Rp(r)≡
√
Cn(r)≡ r,

as in flat spacetime. In a strong field this cannot be done.
Consequently, the problem arises as to how to accurately
measure the required great circumference? The correct de-
termination, for example, of the circumferences of great
circles at aphelion and perihelion seem to be beyond practical
determination. Any method adopted for determining the re-
quired circumference must be completely independent of any
Euclidean quantity since, other than the great circumference
itself, only non-Euclidean distances are valid in the gravita-
tional field, being determined by it. Therefore, anything short
of physically measuring the great circumference will fail.
Consequently, General Relativity, whether right or wrong as
theories go, suffers from a serious practical limitation.

The value of the r-parameter is coordinate dependent
and is rightly determined from the coordinate independent
value of the circumference of the great circle associated
with a spacetime event. One cannot obtain a circumference
for the great circle of a given spacetime event, and hence
the related radius of curvature and associated proper radius,
from the specification of a coordinate radius, because the
latter is not unique, being conditioned by arbitrary constants.
The coordinate radius is therefore superfluous. It is for this
reason that I completely eliminated the coordinate radius
from the metric for the gravitational field, to describe the
metric in terms of the only quantity that is measurable in the
gravitational field — the great circumference (see also [6]).
The presence of the r-parameter has proved misleading to
the relativists. Stavroulakis [8, 9, 10] has also completely
eliminated the r-parameter from the equations, but does
not make use of the great circumference. His approach is
formally correct, but rather less illuminating, because his
resulting line element is in terms of the a quantity which is
not measurable in the gravitational field. One cannot obtain
an explicit expression for the great circumference in terms
of the proper radius.

As to the cosmological large-scale, I have proved else-
where [11] that General Relativity adds nothing to Special
Relativity. Einstein’s field equations do not admit of solutions
when the cosmological constant is not zero, and they do
not admit of the expanding universe solutions alleged by
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the relativists. The lambda “solutions” and the expanding
universe “solutions” are the result of such a muddleheaded-
ness that it is difficult to apprehend the kind of thoughtless-
ness that gave them birth. Since Special Relativity describes
an empty world (no gravity) it cannot form a basis for any
cosmology. This theoretical result is all the more interesting
owing to its agreement with observation. Arp [12], for in-
stance, has adduced considerable observational data which
is consistent on the large-scale with a flat, infinite, non-
expanding Universe in Heraclitian flux. Bearing in mind
that both Special Relativity and General Relativity cannot
yield a spacetime on the cosmological “large-scale”, there
is currently no theoretical replacement for Newton’s cos-
mology, which accords with deep-space observations for a
flat space, infinite in time and in extent. The all pervasive
rolê given heretofore by the relativists to General Relativity,
can be justified no longer. General Relativity is a theory of
only local phenonomea, as is Special Relativity.

Another serious shortcoming of General Relativity is its
current inability to deal with the gravitational interaction of
two comparable masses. It is not even known if Einstein’s
theory admits of configurations involving two or more mass-
es [13]. This shortcoming seems rather self evident, but app-
rently not so for the relativists, who routinely talk of black
hole binary systems and colliding black holes (e .g. [14]),
aside of the fact that no theory predicts the existence of black
holes to begin with, but to the contrary, precludes them.
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It is pointed out that the usual derivation of the well-known Maxwell electromagnetic
equations holds only for a medium at rest. A way in which the equations may be
modified for the case when the mean flow of the medium is steady and uniform is
proposed. The implication of this for the problem of the origin of planetary magnetic
fields is discussed.

1 Introduction

Maxwell’s electromagnetic equations are surely among the
best known and most widely used sets of equations in phys-
ics. However, possibly because of this and since they have
been used so successfully in so many areas for so many
years, they are, to some extent, taken for granted and used
with little or no critical examination of their range of validity.
This is particularly true of the two equations

∇×E= −
1

c

∂B

∂t

and

∇×H=4πj+
1

c

∂D

∂t
.

Both these equations are used widely but, although the
point is made quite clearly in most elementary, as well as
more advanced, textbooks, it is often forgotten that these
equations apply only when the medium involved is assumed
to be at rest. This assumption is actually crucial in the
derivation of these equations since it is because of it that
it is allowable to take the operator d/dt inside the integral
sign as a partial derivative and so finally derive each of
the above equations. This leaves open the question of what
happens if the medium is not at rest?

As is well known, for a non-conducting medium at rest,
Maxwell’s electromagnetic equations, when no charge is
present, reduce to

∇ ∙E=0 , ∇×E= −
μ

c

∂H

∂t
,

∇ ∙H=0 , ∇×H= −
ε

c

∂E

∂t
,

where D= εE,B=μH and μ, ε are assumed constant in
time.

The first two equations are easily seen to lead to

∇2E=
εμ

c2
∂2E

∂t2
,

and the latter two to

∇2H=
εμ

c2
∂2H

∂t2
.

Therefore, in this special case, provided the medium is
at rest, both E andH satisfy the well-known wave equation.
However, it has been shown [1] that, if the mean flow is stea-
dy and uniform, and, therefore, both homentropic and irro-
tational, the system of equations governing small-amplitude
homentropic irrotational wave motion in such a flow reduces
to the equation

∇2ϕ=
1

c2
D2ϕ

Dt2
.

which is sometimes referred to as the convected, or progress-
ive, wave equation. The question which remains is, for the
case of a medium not at rest, should Maxwell’s electromag-
netic equations be modified so as to reduce to this progressive
wave equation in the case of a non-conducting medium with
no charge present?

2 Generalisation of Maxwell’s equations

In the derivation of

∇×E= −
μ

c

∂H

∂t

it proves necessary to consider the integral

−
μ

c

d

dt

∫
B ∙ dS

and interchange the derivative and the integral. This operat-
ion may be carried out only for a medium at rest. However,
if the medium is moving, then the surface S in the integral
will be moving also, and the mere change of S in the field
B will cause changes in the flux. Hence, following Abraham
and Becker [2], a new kind of differentiation with respect to
time is defined by the symbol Ḃ as follows:

d

dt

∫
B ∙ dS=

∫
Ḃ ∙ dS . (a)
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Here, Ḃ is a vector, the flux of which across the moving
surface equals the rate of increase with time of the flux of
B across the same surface. In order to find Ḃ, the exact
details of the motion of the surface concerned must be
known. Suppose this motion described by a vector u, which
is assumed given for each element dS of the surface and is
the velocity of the element.

Let S1 be the position of the surface S at time (t − dt)
and S2 the position at some later time t. S2 may be obtained
from S1 by giving each element of S1 a displacement udt
. The surfaces S1 and S2, together with the strip produced
during the motion, bound a volume dt

∫
u ∙ dS.

The rate of change with time of the flux of B across S
may be found from the difference between the flux across S2
at time t and that across S1 at time (t− dt); that is

d

dt

∫
B ∙ dS=

∫
Bt ∙ dS2 −

∫
Bt−dt ∙ dS1

dt
,

where the subscript indicates the time at which the flux is
measured.

The divergence theorem may be applied at time t to the
volume bounded by S1, S2 and the strip connecting them.
Here the required normal to S2 will be the outward pointing
normal and that to S1 the inward pointing normal. Also, a
surface element of the side face will be given by ds×udt.
Then, the divergence theorem gives
∫

S2

Bt∙dS2+dt
∮
B∙ds×u−

∫

S1

Bt∙dS1=dt
∫
(∇∙B)u∙dS.

Also
∫
Bt−dt ∙ dS1=

∫
Bt ∙ dS1 −

∫
∂B

∂t
dS1dt .

Hence,
∫
Bt ∙ dS2 −

∫
Bt−dt ∙ dS1= dt

{∫
Ḃ ∙ dS1+

+

∫
(∇ ∙B)u ∙ dS1 −

∮
B ∙ ds× u

}

.

Using Stokes’ theorem, the final term on the right-hand
side of this equation may be written
∮
B ∙ ds× u=

∮
u×B ∙ ds=

∫ {
∇× (u×B)

}
∙ dS ,

and so finally

d

dt

∫
B ∙ dS=

∫ {
∂B

∂t
+u (∇ ∙B)−∇× (u×B)

}

∙ dS .

Therefore, the Ḃ, introduced in (a) above, is given by

Ḃ=
∂B

∂t
+ u (∇ ∙B)−∇× (u×B)

or, noting that

∇× (u×B) =u (∇ ∙B)−B (∇ ∙ u) + (B ∙ ∇)u− (u ∙ ∇)B ,

Ḃ=
∂B

∂t
+ (u ∙ ∇)B+B (∇ ∙ u)− (B ∙ ∇)u .

However, if the mean flow is steady and uniform and, the-
refore, both homentropic and irrotational, the fluid velocity,
u, will be constant and this latter equation will reduce to

Ḃ=
∂B

∂t
+ (u ∙ ∇)B=

DB

Dt
,

that is, for such flow, Ḃ becomes the well-known Euler
derivative. It might be noted, though, that, for more general
flows, the expression for Ḃ is somewhat more complicated.

It follows that, if the mean flow is steady and uniform,
the Maxwell equation, mentioned above, becomes

∇×E= −
μ

c

DH

Dt
= −

μ

c

[
∂H

∂t
+ (u ∙ ∇)H

]

.

Also, in this particular case, the remaining three Maxwell
equations will be

∇ ∙E=0 , ∇ ∙H=0 ,

∇×H=
ε

c

DE

Dt
=
ε

c

[
∂E

∂t
+ (u ∙ ∇)E

]

,

with this form for the final equation following in a manner
similar to that adopted above when noting that, for a steady,
uniform mean flow, ∂/∂t is replaced byD/Dt in the equation
for ∇×E.

These four modified Maxwell equations lead to both E
and H satisfying the above mentioned progressive wave
equation, as they surely must.

3 The origin of planetary magnetic fields

It is conceivable that use of these modified Maxwell electro-
magnetic equations could provide new insight into the prob-
lem of the origin of planetary magnetic fields. This is a
problem which has existed, without a really satisfactory
explanation, for many years. It would seem reasonable to
expect all such fields to arise from the same physical mechan-
ism, although the minute detail might vary from case to case.
The mechanism generally favoured as providing the best
explanation for the origin of these fields was the dynamo
mechanism, although the main reason for its adoption was the
failure of the alternatives to provide a consistent explanation.
However, Cowling [3] showed that there is a limit to the de-
gree of symmetry encountered in a steady dynamo mechan-
ism; this result, based on the traditional electromagnetic
equations of Maxwell, shows that the steady maintenance
of a poloidal field is simply not possible — the result is in
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reality an anti-dynamo theorem which raises difficulties in
understanding the observed symmetry of the dipole field.

Following Alfvén [4], it might be noted that, in a stat-
ionary state, there is no electromagnetic field along a neutral
line because that would imply a non-vanishing ∇×E, and so
a time varying B. The induced electric field v×B vanishes
on the neutral line since B does. Thus, there can be no
electromotive force along the neutral line, and therefore the
current density in the stationary state vanishes, the conduct-
ivity being infinite. On the other hand,∇×B does not vanish
on the neutral line. By Maxwell’s usual equations, the non-
vanishing ∇×B and the vanishing current density are in
contradiction and so the existence of a rotationally symmetric
steady-state dynamo is disproved. However, this conclusion
may not be drawn if the modified Maxwell equations, alluded
to earlier, are used, since, even in the steady state where the
partial derivatives with respect to time will all be zero, the
equation for ∇×B will reduce to

∇×B=
1

μ

[

j+ ε
∂E

∂t
+ εv ∙ ∇E

]

→
ε

μ
v ∙ ∇E

and there is no reason why this extra term on the right-
hand side should be identically equal to zero. Also, the non-
vanishing of ∇× E will not imply a time varying B since,
once again, there is an extra term −v ∙∇B remaining to
equate with the∇×E. It follows that an electromagnetic field
may exist along the neutral line under these circumstances.
Hence, no contradiction occurs; instead, a consistent system
of differential equations remains to be solved.
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Supermassive black holes have been discovered at the centers of galaxies, and also
in globular clusters. The data shows correlations between the black hole mass and
the elliptical galaxy mass or globular cluster mass. It is shown that this correlation is
accurately predicted by a theory of gravity which includes the new dynamics of self-
interacting space. In spiral galaxies this dynamics is shown to explain the so-called
“dark matter” rotation-curve anomaly, and also explains the Earth based bore-hole
g anomaly data. Together these effects imply that the strength of the self-interaction
dynamics is determined by the fine structure constant. This has major implications for
fundamental physics and cosmology.

4 Introduction

Our understanding of gravity is based on Newton’s modelling
of Kepler’s phenomenological laws for the motion of the
planets within the solar system. In this model Newton took
the gravitational acceleration field to be the fundamental
dynamical degree of freedom, and which is determined by
the matter distribution; essentially via the “universal inverse
square law”. However the observed linear correlation be-
tween masses of black holes with the masses of the “host”
elliptical galaxies or globular clusters suggests that either the
formation of these systems involves common evolutionary
dynamical processes or that perhaps some new aspect to
gravity is being revealed. Here it is shown that if rather
than an acceleration field a velocity field is assumed to
be fundamental to gravity, then we immediately find that
these black hole effects arise as a space self-interaction
dynamical effect, and that the observed correlation is simply
that MBH/M =α/2 for spherical systems, where α is the
fine structure constant (α= e2/~c= 1/137.036), as shown
in Fig. 1. This dynamics also manifests within the Earth, as
revealed by the bore hole g anomaly data, as in Fig. 2. It also
offers an explanation of the “dark matter” rotation-velocity
effect, as illustrated in Fig. 3. This common explanation for
a range of seemingly unrelated effects has deep implications
for fundamental physics and cosmology.

5 Modelling gravity

Let us phenomenologically investigate the consequences of
using a velocity field v (r, t) to be the fundamental dynamical
degree of freedom to model gravity. The gravitational accel-
eration field is then defined by the Euler form

g(r, t) ≡ lim
Δt→0

v (r+v (r, t)Δt, t+Δt)−v (r, t)
Δt

=

=
∂v

∂t
+ (v.∇)v.

(1)

This form is mandated by Galilean covariance under
change of observer. A minimalist non-relativistic modelling
of the dynamics for this velocity field gives a direct account
of the various phenomena noted above; basically the New-
tonian formulation of gravity missed a key dynamical effect
that did not manifest within the solar system.

In terms of the velocity field Newtonian gravity dynamics
involves using ∇. to construct a rank-0 tensor that can be
related to the matter density ρ. The coefficient turns out to
be the Newtonian gravitational constant G.

∇.

(
∂v

∂t
+ (v.∇)v

)

= −4πGρ . (2)

This is clearly equivalent to the differential form of
Newtonian gravity, ∇.g=−4πGρ. Outside of a spherical
mass M (2) has solution∗

v (r) = −

√
2GM

r
r̂ , (3)

for which (1) gives the usual inverse square law

g (r) = −
GM

r2
r̂ . (4)

The simplest non-Newtonian dynamics involves the two
rank-0 tensors constructed at 2nd order from ∂vi/∂xj

∇.

(
∂v

∂t
+(v.∇)v

)

+
α

8
(trD)2+

β

8
tr(D2)=−4πGρ, (5)

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

, (6)

and involves two arbitrary dimensionless constants. The ve-
locity in (3) is also a solution to (5) if β=−α, and we then
define

C (v, t) =
α

8

(
(trD)2 − tr(D2)

)
. (7)

∗We assume ∇×v=0, then (v.∇)v= 1
2
∇(v2).
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Hence the modelling of gravity by (5) and (1) now
involves two gravitational constants G and α, with α being
the strength of the self-interaction dynamics, but which was
not apparent in the solar system dynamics. We now show
that all the various phenomena discussed herein imply that
α is the fine structure constant ≈1/137 up to experimental
errors [1]. Hence non-relativistic gravity is a more complex
phenomenon than currently understood. The new key feature
is that (5) has a one-parameter μ class of vacuum
(ρ=0) “black hole” solutions in which the velocity field
self-consistently maintains the singular form

v(r) = −μr−α/4 r̂ . (8)

This class of solutions will be seen to account for the
“black holes” observed in galaxies and globular cluster. As
well this velocity field, from (1), gives rise to a non-“inverse
square law” acceleration

g(r) = −
αμ

4
r−(1+α/4) r̂ . (9)

This turns out to be the cause of the so-called “dark-
matter” effect observed in spiral galaxies. For this reason we
define

ρDM (r) =
α

32πG

(
(trD)2 − tr(D2)

)
, (10)

so that (5) and (1) can be written as

∇.g = −4πGρ− 4πGρDM , (11)

which shows that we can think of the new self-interaction
dynamics as generating an effective “dark matter” density.

6 Spherical systems

It is sufficient here to consider time-independent and spheric-
ally symmetric solutions of (5) for which v is radial. Then
we have the integro-differential form for (5)

v2(r) = 2G

∫
d3s

ρ(s) + ρDM
(
v (s)

)

| r− s |
, (12)

ρDM
(
v(r)

)
=

α

8πG

(
v2

2r2
+
vv′

r

)

. (13)

as ∇2 1
|r−s| = −4πδ

4(r− s). This then gives

v2(r) =
8πG

r

∫ r

0

s2ds
[
ρ(s) + ρDM

(
v (s)

)]
+

+8πG

∫ ∞

r

sds
[
ρ(s) + ρDM

(
v (s)

)]
(14)

on doing the angle integrations. We can also write (5) as a
non-linear differential equation

2
vv′

r
+(v′)2+vv′′=−4πGρ(r)−4πGρDM

(
v(r)

)
. (15)

7 Minimal black hole systems

There are two classes of solutions when matter is present.
The simplest is when the black hole forms as a consequence
of the velocity field generated by the matter, this generates
what can be termed an induced minimal black hole. This is in
the main applicable to systems such as planets, stars, globular
clusters and elliptical galaxies. The second class of solutions
correspond to non-minimal black hole systems; these arise
when the matter congregates around a pre-existing “vacuum”
black hole. The minimal black holes are simpler to deal with,
particularly when the matter system is spherically symmetric.
In this case the non-Newtonian gravitational effects are con-
fined to within the system. A simple way to arrive at this
property is to solve (14) perturbatively. When the matter
density is confined to a sphere of radius R we find on
iterating (14) that the “dark matter” density is confined to
that sphere, and that consequently g (r) has an inverse square
law behaviour outside of the sphere. Iterating (14) once we
find inside radius R that

ρDM (r) =
α

2r2

∫ R

r

sρ(s)ds+O(α2). (16)

and that the total “dark matter”

MDM ≡ 4π
∫ R

0

r2drρDM (r) =

=
4πα

2

∫ R

0

r2drρ(r) + O(α2) =
α

2
M +O(α2) ,

(17)

where M is the total amount of (actual) matter. Hence, to
O(α), MDM/M =α/2 independently of the matter density
profile. This turns out to be a very useful property as know-
ledge of the density profile is then not required in order
to analyse observational data. Fig. 1 shows the value of
MBH/M for, in particular, globular clusters M15 and G1
and highly spherical “elliptical” galaxies M32, M87 and
NGC 4374, showing that this ratio lies close to the “α/2-
line”, where α is the fine structure constant ≈1/137. How-
ever for the spiral galaxies their MDM/M values do not
cluster close to the α/2-line. Hence it is suggested that these
spherical systems manifest the minimal black hole dynamics
outlined above. However this dynamics is universal, so that
any spherical system must induce such a minimal black
hole mode, but for which outside of such a system only
the Newtonian inverse square law would be apparent. So
this mode must also apply to the Earth, which is certainly
a surprising prediction. However just such an effect has
manifested in measurements of g in mine shafts and bore
holes since the 1980’s. It will now be shown that data from
these geophysical measurements give us a very accurate
determination of the value of α in (5).
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Fig. 1: The data shows Log10[MBH/M ] for the “black hole” or “dark matter” masses MBH for a variety of spherical matter systems with
masses M , shown by solid circles, plotted against Log10[M/M0], where M0 is the solar mass, showing agreement with the “α/2-line”
(Log10[α/2] = −2.44) predicted by (17), and ranging over 15 orders of magnitude. The “black hole” effect is the same phenomenon as
the “dark matter” effect. The data ranges from the Earth, as observed by the bore hole g anomaly, to globular cluster M15 [5, 6] and G1
[7], and then to spherical “elliptical” galaxies M32 (E2), NGC 4374 (E1) and M87 (E0). Best fit to the data from these star systems gives
α = 1/134, while for the Earth data in Fig. 2 α = 1/139. A best fit to all the spherical systems in the plot gives α = 1/136. In these
systems the “dark matter” or “black hole” spatial self-interaction effect is induced by the matter. For the spiral galaxies, shown by the
filled boxes, where here M is the bulge mass, the black hole masses do not correlate with the “α/2-line”. This is because these systems
form by matter in-falling to a primordial black hole, and so these systems are more contingent. For spiral galaxies this dynamical effect
manifests most clearly via the non-Keplerian rotation-velocity curve, which decrease asymptotically very slowly, as shown in Fig. 3, as
determined by the small value of α ≈ 1/137. The galaxy data is from Table 1 of [8, updated].

8 Bore hole g anomaly

To understand this bore hole anomaly we need to compute
the expression for g (r) just beneath and just above the
surface of the Earth. To lowest order in α the “dark-matter”
density in (16) is substituted into (14) finally gives via (1)
the acceleration

g (r) =






(1 + α
2 )GM

r2
, r > R ,

4πG

r2

∫ r

0

s2ds ρ(s) +

+
2παG

r2

∫ r

0

(∫ R

s

s′ds′ρ(s′)

)

ds ,

r < R .

(18)

This gives Newton’s “inverse square law” for r >R, but
in which we see that the effective Newtonian gravitational
constant is GN =(1+ α

2 )G, which is different to the fund-
amental gravitational constant G in (2). This caused by the

additional “dark matter mass” in (17). Inside the Earth we
see that (18) gives a g (r) different from Newtonian gravity.
This has actually been observed in mine/borehole measure-
ments of g (r) [2, 3, 4], though of course there had been no
explanation for the effect, and indeed the reality of the effect
was eventually doubted. The effect is that g decreases more
slowly with depth than predicted by Newtonian gravity. Here
the corresponding Newtonian form for g (r) is

g (r) Newton =






GNM

r2
, r > R ,

4πGN
r2

∫ r

0

s2dsρ(s) , r < R ,

(19)

with GN = (1+ α
2 )G. The gravity residual is defined as the

difference between the Newtonian g (r) and the measured
g (r), which we here identify with the g (r) from (18),

Δg (r) ≡ g (r) Newton − g (r) observed . (20)

Then Δg (r) is found to be, to 1st order in R− r, i. e.
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Fig. 2: The data shows the gravity residuals for the Greenland Ice
Cap [4] measurements of the g (r) profile, defined as Δg (r) =
= gNewton − g observed, and measured in mGal (1 mGal= 10−3

cm/sec2), plotted against depth in km. Using (21) we obtain
α−1= 139± 5 from fitting the slope of the data, as shown.

near the surface,

Δg(r) =






0, r > R ,

−2παGNρ(R)(R− r) , r < R ,
(21)

which is the form actually observed [4], as shown in Fig. 2.
Gravity residuals from a bore hole into the Greenland Ice

Cap were determined down to a depth of 1.5km. The ice had
a measured density of ρ= 930 kg/m3, and from (21), using
GN = 6.6742×10−11 m3 s−2 kg−1, we obtain from a linear fit
to the slope of the data points in Fig. 2 that α−1= 139± 5,
which equals the value of the fine structure constant α−1=
= 137.036 to within the errors, and for this reason we identify
the constant α in (5) as being the fine structure constant. Then
we arrive at the conclusion that there is indeed “black hole”
or “dark matter” dynamics within the Earth, and that from
(17) we have again for the Earth that MBH/M =α/2, as is
also shown in Fig. 1.

This “minimal black hole” effect must also occur within
stars, although that could only be confirmed by indirect
observations. This effect results in g (r) becoming large at the
center, unlike Newtonian gravity, which would affect nuclear
reaction rates. This effect may already have manifested in
the solar neutrino count problem [9, 10]. To study this will
require including the new gravity dynamics into solar models.

9 Spiral galaxies

We now consider the situation in which matter in-falls around
an existing primordial black hole. Immediately we see some

Fig. 3: Data shows the non-Keplerian rotation-speed curve v◦ for
the spiral galaxy NGC 3198 in km/s plotted against radius in kpc/h.
Lower curve is the rotation curve from the Newtonian theory for an
exponential disk, which decreases asymptotically like 1/

√
r. The

upper curve shows the asymptotic form from (24), with the decrease
determined by the small value of α. This asymptotic form is caused
by the primordial black holes at the centres of spiral galaxies, and
which play a critical role in their formation. The spiral structure is
caused by the rapid in-fall towards these primordial black holes.

of the consequences of this time evolution: (i) because the
acceleration field falls off much slower than the Newtonian
inverse square law, as in (9), this in-fall would happen very
rapidly, and (ii) the resultant in-flow would result in the
matter rotating much more rapidly than would be predicted
by Newtonian gravity, (iii) so forming a quasar which, after
the in-fall of some of the matter into the black hole has
ceased, would (iv) result in a spiral galaxy exhibiting non-
Keplerian rotation of stars and gas clouds, viz the so-called
“dark matter” effect. The study of this time evolution will be
far from simple. Here we simply illustrate the effectiveness
of the new theory of gravity in explaining this “dark matter”
or non-Keplerian rotation-velocity effect.

We can determine the star orbital speeds for highly non-
spherical galaxies in the asymptotic region by solving (15),
for asymptotically where ρ ≈ 0 the velocity field will be
approximately spherically symmetric and radial; nearer in
we would match such a solution to numerically determined
solutions of (5). Then (15) has an exact non-perturbative
two-parameter (K and RS) analytic solution,

v (r) = K

(
1

r
+

1

RS

(
RS
r

)α
2
)1/2

; (22)

this velocity field then gives using (1) the non-Newtonian
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asymptotic acceleration

g (r) =
K2

2

(
1

r2
+

α

2rRS

(
RS
r

)α
2
)

, (23)

applicable to the outer regions of spiral galaxies.
We then compute circular orbital speeds using v◦(r) =

=
√
rg(r) giving the predicted “universal rotation-speed

curve”

v◦(r) =
K

2

(
1

r
+

α

2RS

(
RS
r

)α
2
)1/2

. (24)

Because of the α dependent part this rotation-speed curve
falls off extremely slowly with r, as is indeed observed for
spiral galaxies. This is illustrated in Fig. 3 for the spiral
galaxy NGC 3198.

10 Interpretation and discussion

Section 2 outlines a model of space developed in [1, 11]
in which space has a “substratum” structure which is in
differential motion. This means that the substratum in one
region may have movement relative to another region. The
substratum is not embedded in a deeper space; the substratum
itself defines space, and requiring that, at some level of des-
cription, it may be approximately described by a “classical”
3-vector velocity field v (r, t). Then the dynamics of space
involves specifying dynamical equations for this vector field.
Here the coordinates r is not space itself, but a means of
labelling points in space. Of course in dealing with this
dynamics we are required to define v (r, t) relative to some
set of observers, and then the dynamical equations must be
such that the vector field transforms covariantly with respect
to changes of observers. As noted here Newtonian gravity
itself may be written in terms of a vector field, as well
as in terms of the usual acceleration field g (r, t). General
Relativity also has a special class of metric known as the
Panlevé-Gullstrand metrics in which the metrics are specified
by a velocity field. Most significantly the major tests of
General Relativity involved the Schwarzschild metric, and
this metric belongs to the Panlevé-Gullstrand class. So in
both cases these putatively successful models of gravity
involved, in fact, velocity fields, and so the spacetime metric
description was not essential. As well there are in total some
seven experiments that have detected this velocity field [12],
so that it is more than a choice of dynamical degree of
freedom: indeed it is more fundamental in the sense that
from it the acceleration field or metric may be mathematically
constructed.

Hence the evidence, both experimental and theoretical,
is that space should be described by a velocity field. This
implies that space is a complex dynamical system which is
best thought of as some kind of “flow system”. However

the implicit question posed in this paper is that, given the
physical existence of such a velocity field, are the Newtonian
and/or General Relativity formalisms the appropriate de-
scriptions of the velocity field dynamics? The experimental
evidence herein implies that a different dynamics is required
to be developed, because when we generalise the velocity
field modelling to include a spatial self-interaction dynamics,
the experimental evidence is that the strength of this dynam-
ics is determined by the fine structure constant, α. This is an
extraordinary outcome, implying that gravity is determined
by two fundamental constants, G and α. As α clearly is not
in Newtonian gravity nor in General Relativity the various
observational and experimental data herein is telling us that
neither of these theories of gravity is complete. The modell-
ing discussed here is non-relativistic, and essentially means
that Newtonian gravity was incomplete from the very beginn-
ing. This happened because the self-interaction dynamics did
not manifest in the solar system planetary orbit motions, and
so neither Kepler nor later Newton were aware of the intrinsic
complexity of the phenomenon of gravity. General Relativity
was of course constructed to agree with Newtonian gravity
in the non-relativistic limit, and so missed out on this key
non-relativistic self-interaction effect.

Given both the experimental detection of the velocity
field, including in particular the recent discovery [11] of an
in-flow velocity component towards the Sun in the 1925/26
Miller interferometer data, and in agreement with the speed
value from (3) for the Sun, together with the data from
various observations herein, all showing the presence of
the α dependent effect, we should also discuss the physical
interpretaion of the vacuum “black hole” solutions. These
are different in character from the so-called “black holes”
of General Relativity: we use the same name only because
these new “black holes” have an event horizon, but otherwise
they are completely different. In particular the mathematical
existence of such vacuum “black holes” in General Relativity
is doubtful. In the new theory of gravity these black holes
are exact mathematical solutions of the velocity equations
and correspond to self-sustaining in-flow singularities, that
is, where the in-flow speed becomes very large within the
classical description. This singularity would then require a
quantum description to resolve and explain what actually
happens there. The in-flow does not involve any conserved
measure, and there is no notion of this in-flow connecting to
wormholes etc. The in-flow is merely a self-destruction of
space, and in [11] it is suggested that space is in essence an
“information” system, in which case the destruction process
is easier to comprehend. As for the in-flow into the Earth,
which is completely analogous to the observed in-flow to-
wards the Sun, the in-flow singularities or “black holes” are
located at the centre of the Earth, but it is unclear whether
there is one such singularity or multiple singularities. The
experimental existence of the Earth-centred in-flow singular-
ity is indirect, as it is inferred solely by the anomalous var-
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iation of g with depth, and that this variation is determined
by the value of α. In the case of the globular clusters and
elliptical galaxies, the in-flow singularities are observed by
means of the large accelerations of stars located near the
centres of such systems and so are more apparent, and as
shown here in all case the effective mass of the in-flow
singularity is α/2 times the total mass of these systems.
It is important to note here that even if we disregard the
theoretical velocity field theory, we would still be left with
the now well established α/2 observational effect. But then
this velocity field theory gives a simple explanation for this
data, although that in itself does not exclude other theories
offering a different explanation. It is hard to imagine however
how either Newtonian gravity or General Relativity could
offer such a simple explanation, seeing that neither involves
α, and involve only G. As well we see that the new theory
of gravity offers a very effective explanation for the rotation
characteristics of spiral galaxies; the effect here being that
the vacuum black hole(s) at the centres of such galaxies do
not generate an acceleration field that falls off with distance
according the inverse square law, but rather according to (23).
Remarkably this is what the spiral galaxy data shows. This
means that the so-called “dark matter” effect is not about
a new and undetected form of matter. So the success of
the new velocity field dynamics is that one theory explains
a whole range of phenomena: this is the hallmark of any
theory, namely economy of explanation.

11 Conclusion

The observational and experimental data confirm that the
massive black holes in globular clusters and galaxies are
necessary phenomena within a theory for gravity which uses
a velocity field as the fundamental degree of freedom. This
involves two constants G and α and the data reveals that α
is the fine structure constant. This suggests that the spatial
self-interaction dynamics, which is missing in the Newtonian
theory of gravity, may be a manifestation at the classical
level of the quantum behaviour of space. It also emerges that
the “black hole” effect and the “dark matter” effect are one
phenomenon, namely the non-Newtonian acceleration caused
by singular solutions. This effect must manifest in planets
and stars, and the bore hole g anomaly confirms that for
planets. For stars it follows that the structure codes should be
modified to include the new spatial self-interaction dynamics,
and to determine the effect upon neutrino count rates. The
data shows that spherical systems with masses varying over
15 orders of magnitude exhibit the α-dependent dynamical
effect. The non-Newtonian gravitational acceleration of pri-
mordial black holes will cause rapid formation of quasars and
stars, explaining why recent observations have revealed that
these formed very early in the history of the universe. In this
way the new theory of gravity makes the big bang theory

compatible with these recent observations. These develop-
ments clearly have major implications for cosmology and
fundamental physics. The various experiments that detected
the velocity field are discussed in [11, 12].
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Is the Biggest Paradigm Shift in the History of Science at Hand?
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According to a growing number of scientists cosmology is at the end of an era. This
era started 100 years ago with the publication of Albert Einstein’s special theory of
relativity and came to its height in the 1920s when the theory of relativity was used
to develop the big bang model. However, at this moment there is a crisis within
cosmology. More and more scientists openly doubt the big bang. There are alternatives
for the theory of relativity as well as for the big bang model, but so far most scientists
are scared to pass over Einstein.

1 Introduction

The big bang model rests on three pillars [1]. This trinity is
the cosmology of the twentieth century.

The first pillar is the Theory of General Relativity. In
1905 Einstein came with his Theory of Special Relativity
which describes the behaviour of light and in 1916 he pub-
lished a theory about gravity, the Theory of General Relat-
ivity. In publications in 1922 and 1924 the Russian math-
ematician Alexander Friedmann used the formulae of the
General Theory of Relativity to prove that the universe
was dynamic: either it expanded or it shrunk. In 1927 it
was the Belgian priest and astronomer-cosmologist Georges
Lemaı̂tre, using the cosmological equations of Friedmann,
who suggested for the first time that the universe once could
have sprung from a point of very high-density, the primaeval
atom. Another link in the realization of the big bang model
was the Dutch astronomer-cosmologist Willem de Sitter,
who suggested in 1917, together with Einstein, the de-Sitter-
universe, which was based on the formulae of the General
Theory of Relativity. The de-Sitter-universe has no mass,
but has the feature that mass particles that form in it will
accelerate away from each other.

The second pillar on which the big bang model rests is
the stretching of light in an expanding universe. In the 1920s
Edwin Hubble discovered that certain dots in the night sky
are not stars but galaxies instead. From 1924 on he measured
the distances of the galaxies and in 1929 he announced
that the wavelength of light of galaxies is shifted towards
a longer wavelength. The further away the galaxy the more
“stretched” the light. At the time this stretching of light was
explained with the big bang model of Lemaı̂tre. The universe
could have sprung from a point of very high-density mass and
ever since the universe would expand as a balloon. Because
of the expansion of the universe space in the universe would
stretch and in that case light would stretch along with space.
The stretching of light of faraway galaxies is still explained
this way, although a lot of astronomers customarily to refer

to this stretching as if it is caused by the recessional velocity
of galaxies in the big bang universe.

The third pillar was discovered in 1965. In 1948 a group
of cosmologists calculated that in the case of a big bang
certain radiation still had to be left over from a period shortly
after the big bang. In 1965 such radiation was measured.
This radiation (of 3 Kelvin) is now known as the cosmic
background radiation and since 1965 it is seen as the big
proof of the big bang model.

2 Alternatives for the theory of relativity

Einstein unfolded his special theory of relativity in an article
in 1905, in which he states that the velocity of light is always
constant relative to an observer. But the apparent constancy
of the velocity of light can be explained differently.

Gravitons or other not yet detected particles may act as
the medium that is needed by light to propagate itself. This
is somewhat comparable to air molecules that are needed
as a medium by sound to propagate itself. A theory that
calls a medium into existence to explain the propagation of
light is called an aether theory. Aether theories created a
furore in the nineteenth century, but fell into oblivion after
1905, because of the rise of the theory of relativity. However,
the last decennium the aether concept is making a come
back and is getting more and more advocates, among whom
is the Italian professor of physics Selleri [2]. (Also more
advocates because despite the announcements by Michelson
and Morley about the “null result”, their famous interfer-
ometer 1887 experiment actually may have detected both
absolute motion and the breakdown of Newtonian phys-
ics [3].)

Albert Einstein’s theory of General Relativity of 1916
describes the movement of light and matter with the curvature
of space-time more accurately than Isaac Newton’s universal
law of gravitation from the seventeenth century. There are
alternatives, both for the Theory of General Relativity and
Newtonian gravity. The physics professors Assis [4] and
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Ghosh [5] look at inertia and gravity as forces that are
caused by all the matter in the universe. This is called the
extended Mach principle, after Ernst Mach who suggested in
the nineteenth century that the inertia of any body is caused
by its interaction with the rest of the universe.

There is also the so-called pushing gravity concept, a
gravity model with gravitons going in and out of matter and
by doing so pushing objects towards each other (on a macro-
scale, for instance a teacup that falls to the ground or stars
that are pushed towards each other; on a subatomic level
things are different). Pushing gravity too is an alternative
for both the Theory of General Relativity and Newtonian
gravity. The pushing gravity concept was first suggested by
Nicolas Fatio de Duillier in the seventeenth century [6].

An aether theory, the extended Mach principle as well as
pushing gravity, takes the line that smaller particles (like
gravitons) that we cannot yet detect do exist. The three
theories can stand alone, but can be combined as well.
The pushing gravity concept for instance, can be used as
an explanation for the extended Mach principle.

In a bizarre way individual photons and individual atoms
seem to interfere with themselves in the famous two-slit
experiment in Quantum Mechanics. An aether theory can
explain the baffling interference in a very simple way [7, 8].
That is why, with an aether theory, Quantum Mechanics may
also be unsettled. Next to that the intriguing black holes,
sprung from the mathematics of the theory of relativity,
may vanish by embracing the pushing gravity concept.
(Besides, black holes may not be predicted by General Rela-
tivity [9, 10].)

3 Alternatives for the big bang

Fritz Zwicky suggested in 1929 that photons may lose energy
while travelling through space, but so far his idea has always
been overshadowed by the big bang explanation with stretch-
ing space. Zwicky’s explanation is known as the tired light
concept and it is used by alternative thinking scientists as
part of a model that looks at the universe as infinite in
time and space. In a tired light theory photons lose energy
by interaction with gravitons or other small particles. The
tired light model can be combined with an aether theory, the
extended Mach principle and pushing gravity.

Next to alternatives for the theory of relativity and the
stretching of light, scientists have found alternatives for the
third pillar of current conventional cosmology, the cosmic
background radiation discovered in 1965. That a cosmic
background radiation can originate as a result of the equi-
librium temperature of the universe was already suggested
by many scientists in the half century preceding 1948, the
year in which cosmologists predicted the cosmic background
radiation of the big bang universe [11]. In a space and time
infinite universe many old cooled down remnants (amongst

which are dust and asteroids) of planets and stars may exist
between the stars, between galaxies and between clusters
of galaxies. Such remnants will eventually reach the very
cold temperature (3 Kelvin) of the universe and send out
radiation that corresponds with that temperature. Other exam-
ples of alternatives that can explain an equilibrium temper-
ature are direct energy exchange between photons or indirect
energy exchange between photons via gravitons or other
small particles. A growing number of scientists looks at the
cosmic background radiation as a result of the equilibrium
temperature of a universe infinite in space and time.

In the sixteenth century Thomass Digges was the first
scientist to advance a universe filled with an infinite number
of stars. In the last decennium more and more scientists have
taken the line of an infinite universe filled with an infinite
number of galaxies. (Also because, despite all beliefs to the
contrary, General Relativity may not predict an expanding
universe; the Friedmann models and the Einstein-de Sitter
model may be invalid [12].)

4 Clusters of galaxies at large distances?

If there was no big bang, and if we live in an infinite
universe, then distances of faraway galaxies are much larger
than presently thought. A few years back big bang cos-
mologists concluded that the big bang ought to have taken
place 13.7 billion years ago. Therefore within the big bang
model objects are always less than 13.7 years old. Big bang
astronomers observe certain galaxies with enormous shifts
of the wavelength of light and therefore think these objects
sent out their light very long ago, for instance 13 billion
years. With the tired light model in an infinite universe
objects with such large shifts of the wavelength of light
will be at distances of more than 70 billion light-years. The
galaxies, which big bang astronomers now think they observe
at these large distances, may therefore be clusters of galaxies
in reality.

In the 1920s Edwin Hubble inaugurated a new era by
finding that certain dots in the night sky are not stars, but
galaxies instead. Only then did scientists realize that certain
objects are at much larger distances than accepted at the
time. Within the years to come new telescopes will deliver
sharper images of faraway objects which are now addressed
as galaxies. The big bang model already has difficulty ex-
plaining galaxies in the very early universe, because in the
big bang formed, loose matter, needs time to aggregate into
stars and galaxies. If it turns out that not only galaxies but
also big clusters of galaxies exist in the very early universe
the big bang model will probably go down. In that case
there will be a lot of change within cosmology, and also the
theory of relativity will then be highly questioned. With the
festivities of 100 years of relativity we may have come close
to the end of a scientific era.
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5 Knowledge and power

If the big bang model goes down then of course the first
question is: What will replace it? If the here named alternat-
ives break through then also another question rises: Why did
the alternatives need so much time to break through?

A good theory needing a lot of time to break through has
happened before. In the third century BC the Greek philo-
sopher and scientist Aristarchus published a book in which
he proposed that the Earth rotates daily and revolves annually
about the Sun. Eighteen hundred years later Copernicus was
aware of the proposition by Aristarchus. Aristarchus and
Copernicus were the heroes of the Copernican Revolution
that followed after the publication of Copernicus’ book Revo-
lutions of the Celestial Spheres in 1543 [1]. The power of
the Sun-centred model was its simplicity compared to the
epicycles of the Earth-centred model.

It took a long time, after the publication of Copernicus’
greatest work, before the Earth-centred model was left en
masse for the Sun-centred model. One of the reasons for this
was that, for a long time, the Earth-centred model described
the movement of planets more accurately than the Sun-
centred model of Copernicus. Formulae of wrong models
stay dominant when alternatives are not sufficiently develop-
ed. The gravity formulae of the theory of relativity and the
law of universal gravitation by Newton don’t explain how
gravity works, but they can be used to calculate with. The
pushing gravity model explains, in a very simple way, how
gravity works, but when it comes to formulae the concept is,
as was the model of Copernicus four centuries ago, still in its
infancy. The same applies for aether theories, the extended
Mach principle, the tired light model and the equilibrium
temperature of the universe as an explanation for the cosmic
background radiation. The power of the aforementioned alt-
ernatives is that they form, in a very simple way, a coherent
whole within an infinite universe model.

Another reason for the late definitive capitulation of the
Sun-centred model was that the new model endangered the
position of authority held by the Catholic Church. Four cen-
turies ago scientific knowledge was dictated by the Catholic
Church. Those who wanted to make a career as a scientist, or
just wanted to stay alive as a human, were forced to canonize
the Earth-centred model.

Right now established science institutes dictate know-
ledge when it comes to the fields of physics, cosmology
and astronomy. Physics professors Assis (Brazil) and Ghosh
(India) independently developed the same alternative for
the theory of relativity. Both have published their work,
but within the established science institutes they don’t find
an audience. Professor of physics, the late Paul Marmet
(Canada), attached questions to the fundamental laws of
nature (like the theory of relativity) and had to leave the sci-
ence institute where he did his research. Right now students
learn to canonize the big bang and the theory of relativity.

At this moment career-fear is the big obstacle when it comes
to progress in physics, cosmology and astronomy.

6 Are time and space properties of our reason?

Isaac Newton (1642–1726) thought that there was something
like “absolute space” and “absolute time” and two centuries
later Albert Einstein (1879–1955) melted these two together
in the “space-time” concept. Newton and Einstein argued
that space and time do exist physically, and ever since con-
ventional scientists think that way too. However, it has been
argued for centuries by scientists and philosophers (often sci-
entists and philosophers at the same time) that space and time
are not physically existing entities. Examples of such alt-
ernative thinkers are the Frenchman Rene Descartes (1596–
1650), the Dutchman Christiaan Huygens (1629–1695), the
German Gottfried Leibniz (1646–1716), the Irishman George
Berkeley (1685–1753), the East-Prussian Immanuel Kant
(1724–1804) and the already mentioned Austrian, Ernst Mach
(1838–1916).

Our current natural sciences have their origin in Newton’s
laws and formulae. Many physicists, cosmologists and astro-
nomers dismiss philosophy because they think it is misty.
They feel safe with the basics and mathematics of the current
conventional standard theories. Still, though mathematics is
needed to do good predictions, sooner or later the whole
bastion falls apart if mathematics is based upon wrong prin-
ciples. Thinking about basic principles needs philosophy.
Centuries ago it was the generalists, with philosophy and
all the natural sciences in their package, who advocated that
space and time were properties of our reason in the first place
and not properties of the world. The theory of relativity has
time as the fourth dimension. If time does not exist then
the theory of relativity can be dismissed, and also the string
theory, which has run wild with the mathematics of the theory
of relativity and works with eleven dimensions.

Processes in an atomic clock slow down when the clock
moves fast, and often this is seen as evidence for the existence
of time. But in the case of an aether, processes in fast moving
atomic clocks slow down because more aether slows down
the processes in the clock. Our brains use time to compare
the movement of mass with the movement of other mass. For
instance the rotation of our Earth (24 hours or one day) and
the orbit of our Earth around the Sun (365 days or one year).
That is all; it does not mean that time really exists. If time
does not exist physically then the whole scientific bastion as
we have known it since Newton and, especially, as we have
known it the last 100 years, falls apart.

7 Revolution by computer?

One can draw a parallel between what is happening now and
what happened four centuries ago. Before Copernicus en-
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tered the scene, the Catholic Church had passed on more
or less definitely settled knowledge for more than thousand
years. However, where knowledge did not change much with
respect to its contents, a strong development took place with
respect to the passing on and propagation of the knowledge.
In the early Middle Ages convents arose, in the twelfth
century came the cathedral-schools and around 1200 the first
universities were founded. In the course of centuries these
universities gained an ever more independent position with
respect to the church, which finally made the church lose its
position of authority with respect to science.

Next to that in the late Middle Ages the church lost its
monopoly with respect to knowledge, faster, because of the
invention of the art of printing. From that moment on more
people could master knowledge themselves and could have
their own thoughts about it and propagate those thoughts by
printing and distributing their own books.

The third development, at the end of the Middle Ages,
that would help the Copernican Revolution, was the invention
of the telescope, which brought new possibilities for astro-
nomy.

A few decennia ago the computer was developed. It
brought the internet, which split itself from science and
obtained its own independent position. The internet brings
knowledge to a lot of people all over the world. Now people
can publish their ideas with respect to physics, cosmology
and astronomy, independently of the universities and estab-
lished periodicals. The universities lose more and more their
monopoly as guardians of science, and the same goes for
the periodicals that serve as their extension piece. Before the
internet alternative thinking scientists were unknown isolated
islands who could not publish their ideas and did not know
of each other’s existence. Now there are web pages which
form a vibrating net of interacting alternative models, a net
that grows every day. Next to that it is thanks to the computer
that very strong telescopes have been put into use these last
decennia, and that ever stronger and better telescopes are on
their way. Perhaps the science historians of the future will
conclude that it was the computer that brought the Second
Copernican Revolution.

8 Conclusions

Established conventional physicists and cosmologists behave
as the church at the time of Galileo. Not by threatening
with the death penalty, but simply by sniffing at alternative
ideas. This will change as soon as the concerning noses smell
funding money instead of career-fear. In our current society
money and careers are the central issues where it comes to
our necessities of life. Like four centuries ago the worries
about the necessities of life are the driving forces behind
the impasse. Still, just as at the time of Copernicus and
Galileo: under the surface of the current standard theories
the revolution may be going on at full speed. In June 2005

dissidents argued at the first ever crisis in cosmology confer-
ence in Monção, Portugal [13] that the big bang theory fails
to explain certain observations. The biggest revolution in the
history of science may be at hand.

References

1. Harrison E. R. Cosmology: the science of the universe.
Cambridge University Press, Cambridge, 2000.

2. Selleri F. Lezioni di relativita’ da Einstein all’ etere di Lorentz.
Progedit, Bari, 2003.

3. Cahill R. T. The Michelson and Morley 1887 experiment and
the discovery of absolute motion. Progress in Physics, 2005,
v. 3, 25–29.

4. Assis A. K. T. Relational Mechanics. Apeiron, Montreal, 1999.

5. Ghosh A. Origin of Inertia. Apeiron, Montreal, 2000.

6. Van Lunteren F. Pushing Gravity, ed. by M. R. Edwards,
2002, 41.

7. Edwards M. R. Pushing Gravity, ed. by M. R. Edwards,
2002, 137.

8. Buonomano V. Pushing Gravity, ed. by M. R. Edwards,
2002, 303.

9. Crothers S. J. On the general solution to Einstein’s vacuum
field and its implications for relativistic degeneracy. Progress
in Physics, 2005, v. 1, 68–73.

10. Crothers S. J. On the ramifications of the Schwarzschild space-
time metric. Progress in Physics, 2005, v. 1, 74–80.

11. Assis A. K. T. and Neves M. C. D. History of the 2.7 K
temperature prior to Penzias and Wilson. Apeiron, 1995, v. 2,
79–84.

12. Crothers S. J. On the general solution of Einstein’s vacuum
field for the point-mass when λ 6=0 and its implications for
relativistic cosmology. Progress in Physics, 2005, v. 3, 7–18.

13. Ratcliffe H. The first crisis in cosmology conference. Progress
in Physics, 2005, v. 3, 19–24.

60 E. Gaastra. Is the Biggest Paradigm Shift in the History of Science at Hand?



October, 2005 PROGRESS IN PHYSICS Volume 3

Sources of Stellar Energy and the Theory of the Internal
Constitution of Stars

Nikolai Kozyrev∗

This is a presentation of research into the inductive solution to the problem on the
internal constitution of stars. The solution is given in terms of the analytic study of
regularities in observational astrophysics. Conditions under which matter exists in stars
are not the subject of a priori suppositions, they are the objects of research.

In the first part of this research we consider two main correlations derived from
observations: “mass-luminosity” and “period — average density of Cepheids”. Results
we have obtained from the analysis of the correlations are different to the standard
theoretical reasoning about the internal constitution of stars. The main results are: (1) in
any stars, including even super-giants, the radiant pressure plays no essential part — it
is negligible in comparison to the gaseous pressure; (2) inner regions of stars are filled
mainly by hydrogen (the average molecular weight is close to 1/2); (3) absorption of
light is derived from Thomson dispersion in free electrons; (4) stars have an internal
constitution close to polytropic structures of the class 3/2.

The results obtained, taken altogether, permit calculation of the physical conditions
in the internal constitution of stars, proceeding from their observational characteristics
L, M , and R. For instance, the temperature obtained for the centre of the Sun is about
6 million degrees. This is not enough for nuclear reactions.

In the second part, the Russell-Hertzsprung diagram, transformed according to
physical conditions inside stars shows: the energy output inside stars is a simple
function of the physical conditions. Instead of the transection line given by the heat
output surface and the heat radiation surface, stars fill an area in the plane of density
and temperature. The surfaces coincide, being proof of the fact that there is only
one condition — the radiation condition. Hence stars generate their energy not in any
reactions. Stars are machines, directly generating radiations. The observed diagram
of the heat radiation, the relation “mass-luminosity-radius”, cannot be explained by
standard physical laws. Stars exist in just those conditions where classical laws are
broken, and a special mechanism for the generation of energy becomes possible. Those
conditions are determined by the main direction on the diagram and the main point
located in the direction. Physical coordinates of the main point have been found using
observational data. The constants (physical coordinates) should be included in the
theory of the internal constitution of stars which pretend to adequately account for
observational data. There in detail manifests the inconsistency of the explanations of
stellar energy as given by nuclear reactions, and also calculations as to the percentage
of hydrogen and helium in stars.

Also considered are peculiarities of some sequences in the Russell-Hertzsprung
diagram, which are interesting from the theoretical viewpoint.

∗Editor’s remark: This is the doctoral thesis of Nikolai Aleksandrovich
Kozyrev (1908–1983), the famous astronomer and experimental physicist
— one of the founders of astrophysics in the 1930’s, the discoverer of lunar
volcanism (1958), and the atmosphere of Mercury (1963) (see the article
Kozyrev in the Encyclopaedia Britannica). Besides his studies in astronomy,
Kozyrev contributed many original experimental and theoretical works in
physics, where he introduced the “causal or asymmetrical mechanics” which
takes the physical properties of time into account. See his articles reporting
on his many years of experimental research into the physical properties of
time, Time in Science and Philosophy (Prague, 1971) and On the Evolu-
tion of Double Stars, Comptes rendus (Bruxelles, 1967). Throughout his
scientific career Kozyrev worked at the Pulkovo Astronomical Observatory
near St. Petersburg (except for the years 1946–1957 when he worked at the

Crimean branch of the Observatory). In 1936 he was imprisoned for 10
years without judicial interdiction, by the communist regime in the USSR.
Set free in 1946, he completed the draft of this doctoral thesis and published
it in Russian in the local bulletin of the Crimean branch of the Observatory
(Proc. Crimean Astron. Obs., 1948, v. 2, and 1951, v. 6). Throughout the
subsequent years he continued to expand upon his thesis. Although this
research was started in the 1940’s, it remains relevant today, because the
basis here is observational data on stars of regular classes. This data has
not changed substantially during the intervening decades. (Translated from
the final Russian text by D. Rabounski and S. J. Crothers.)
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Introduction

Prof. Nikolai Kozyrev, 1970’s

Energy, radiated by the Sun and
stars into space, is maintained by
special sources which should
keep stars radiating light during
at least a few billion years. The
energy sources should be depen-
dent upon the physical conditions
of matter inside stars. It follows
from this fact that stars are stable
space bodies. During the last de-
cade, nuclear physics discover-
ed thermonuclear reactions that
could be the energy source satis-
fying the above requirements.
The reactions between protons
and numerous light nuclei, which

result in transformations of hydrogen into helium, can be
initiated under temperatures close to the possible temperature
of the inner regions of stars — about 20 million degrees.
Comparing different thermonuclear reactions, Bethe con-
cluded that the energy of the Sun and other stars of the main
sequence is generated in cyclic reactions where the main
part is played by nitrogen and carbon nuclei, which capture
protons and then produce helium nuclei [1]. This theory,
developed by Bethe and widely regarded in recent years,
has had no direct astrophysical verification until now. Stars
produce various amounts of energy, e. g. stars of the giants
sequence have temperatures much lower than that which is
necessary for thermonuclear reactions, and the presence of
bulk convection in upper shells of stars, supernova explos-
ions, peculiar ultra-violet spectra lead to the conclusion that
energy is generated even in the upper shells of stars and,
sometimes, it is explosive. It is quite natural to inquire as to
a general reason for all the phenomena. Therefore we should
be more accurate in our attempts to apply the nuclear reaction
theory to stars. It is possible to say (without exaggeration),
that during the last century, beginning with Helmholtz’s
contraction hypothesis, every substantial discovery in physics
led to new attempts to explain stellar energy. Moreover,
after every attempt it was claimed that this problem was
finally solved, despite the fact that there was no verification
in astrophysical data. It is probable that there is an energy
generation mechanism of a particular kind, unknown in an
Earthly laboratory. At the same time, this circumstance can-
not be related to a hypothesis that some exclusive conditions
occur inside stars. Conditions inside many stars (e. g. the
infrared satellite of ε Aurigae) are close to those that can
be realized in the laboratory. The reason that such an energy
generation mechanism remained elusive in experiments is
due to peculiarities in the experiment statement and, possibly,
in the necessity for large-scale considerations in the experi-
ment. Considering physical theories, it is possible that their
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inconsistency in the stellar energy problem arises for the
reason that the main principles of interaction between matter
and radiant energy need to be developed further.

Much of the phenomena and empirical correlations dis-
covered by observational astrophysics are linked to the prob-
lem of the origin of stellar energy, hence the observational
data have no satisfying theoretical interpretation. First, it is
related to behaviour of a star as a whole, i. e. to problems
associated with the theory of the internal constitution of
stars. Today’s theories of the internal constitution of stars
are built upon a priori assumptions about the behaviour of
matter and energy in stars. One tests the truth or falsity
of the theories by comparing the results of the theoretical
analysis to observational data. This is one way to build
various models of stars, which is very popular nowadays.
But such an approach cannot be very productive, because
the laws of Nature are sometimes so unexpected that many
such trials, in order to guess them, cannot establish the correct
solution. Because empirical correlations, characterizing a star
as a whole, are surely obtained from observations, we have
therein a possibility of changing the whole statement of
the problem, formulating it in another way — considering
the world of stars as a giant laboratory, where matter and
radiant energy can be in enormously different scales of states,
and proceeding from our analysis of observed empirical
correlations obtained in the stellar laboratory, having made
no arbitrary assumptions, we can find conditions governing
the behaviour of matter and energy in stars as some un-
known terms in the correlations, formulated as mathematical
equations. Such a problem can seems hopelessly intractable,
owing to so many unknown terms. Naturally, we do not
know: (1) the phase state of matter — Boltzmann gas, Fermi
gas, or something else; (2) the manner of energy transfer —
radiation or convection — possible under some mechanism of
energy generation; (3) the rôle of the radiant pressure inside
stars, and other factors linked to the radiant pressure, namely
— (4) the value of the absorption coefficient; (5) chemical
composition of stars, i. e. the average numerical value of the
molecular weight inside stars, and finally, (6) the mechanism
generating stellar energy. To our good fortune is the fact
that the main correlation of observational astrophysics, that
between mass and luminosity of stars, although giving no
answer as to the origin of stellar energy, gives data about the
other unknowns. Therefore, employing the relation “period
— average density of Cepheids”, we make more precise our
conclusions about the internal constitution of stars. As a
result there is a possibility, even without knowledge of the
origin of stellar energy, to calculate the physical conditions
inside stars by proceeding from their observable charac-
teristics: luminosity L, mass M , and radius R. On this
basis we can interpret another correlation of observational
astrophysics, the Russell-Hertzsprung diagram — the cor-
relation between temperature and luminosity of stars, which
depends almost exclusively on the last unknown (the me-

chanism generating stellar energy). The formulae obtained
are completely unexpected from the viewpoint of theoretical
physics. At the same time they are so typical that we have
in them a possibility of studying the physical process which
generates stellar energy.

This gives us an inductive method for determining a sol-
ution to the problem of the origin of stellar energy. Follow-
ing this method we use some standard physical laws in
subsequent steps of this research, laws which may be violated
by phenomenology . However this circumstance cannot in-
validate this purely astrophysical method. It only leads to
the successive approximations so characteristic of the phe-
nomenological method. Consequently, the results we have
obtained in Part I can be considered as the first order of
approximation.

The problem of the internal constitution of stars has been
very much complicated by many previous theoretical studies.
Therefore, it is necessary to consider this problem from the
outset with the utmost clarity. Observations show that a star,
in its regular duration, is in a balanced or quasi-balanced
state. Hence matter inside stars should satisfy conditions of
mechanical equilibrium and heat equilibrium. From this we
obtain two main equations, by which we give a mathematical
formulation of our problem. Considering the simplest case,
we neglect the rotation of a star and suppose it spherically
symmetric.

P A R T I

Chapter 1

Deducing the Main Equations of Equilibrium in Stars

1.1 Equation of mechanical equilibrium

Let us denote by P the total pressure, i. e. the sum of the
gaseous pressure p and the radiant energy pressure B, taken
at a distance r from the centre of a star. The mechanical
equilibrium condition requires that the change of P in a unit
of distance along the star’s radius must be kept in equilibrium
by the weight of a unit of the gas volume

dP

dr
= −gρ , (1.1)

where ρ is the gas density, g is the gravity force acceleration.
If ϕ is the gravitational potential

g = − gradϕ , (1.2)

and the potential satisfies Poisson equation

∇2ϕ = −4πGρ ,

where G = 6.67×10−8 is the gravitational constant. For
spherical symmetry,

∇2ϕ = div gradϕ =
1

r2
dr2 gradϕ

dr
. (1.4)
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Comparing the equalities, we obtain the equation of me-
chanical equilibrium for a star

1

ρr2
d

dr

[
r2dP

ρdr

]

= −4πG , (1.5)

where
P = p+B . (1.6)

Radiations are almost isotropic inside stars. For this
reason B equals one third of the radiant energy density.
As we show in the next paragraph, we can put the radiant
energy density, determined by the Stephan-Boltzmann law,
in a precise form. Therefore,

B =
1

3
αT 4, (1.7)

where α = 7.59×10−15 is Stephan’s constant, T is the
absolute temperature. The pressure P depends, generally
speaking, upon the matter density and the temperature. This
correlation is given by the matter phase state. If the gas is
ideal, it is

p = nkT =
<T
μ

ρ . (1.8)

Here n is the number of particles in a unit volume of the
gas, k=1.372×10−16 is Boltzmann’s constant, <=8.313×107

is Clapeyron’s constant, μ is the average molecular weight.
For example, in a regular Fermi gas the pressure depends

only on the density

p = Kρ5/3, K = μ5/3e KH , KH = 9.89×1012, (1.9)

where μe is the number of the molecular weight units for
each free electron.

We see that the pressure distribution inside a star can
be obtained from (1.5) only if we know the temperature
distribution. The latter is determined by the heat equilibrium
condition.

1.2 Equation of heat equilibrium

Let us denote by ε the quantity of energy produced per second
by a unit mass of stellar matter. The quantity ε is dependent
upon the physical conditions of the matter in a star, so ε is a
function of the radius r of a star. To study ε is the main task
of this research. The heat equilibrium condition (known also
as the energy balance condition) can be written as follows

divF = ερ , (1.10)

where F is the total flow of energy, being the sum of the
radiant energy flow FR, the energy flow Fc dragged by
convection currents, and the heat conductivity flow FT

F = FR + Fc + FT . (1.11)

First we determine FR. Radiations, being transferred
through a layer of thickness ds, change their intensity I
through the layer of thickness ds, according to Kirchhoff’s
law

dI

ds
= −κρ

(
I − E

)
, (1.12)

where κ is the absorption coefficient per unit mass, E is the
radiant productivity of an absolute black body (calculated
per unit of solid angle ω). In polar coordinates this equation
is

cos θ
∂I

∂r
−
sin θ

r

∂I

∂θ
= −κρ

(
I − E

)
, (1.12a)

where θ is the angle between the direction of the normal to
the layer (the direction along the radius r) and the radiation
direction (the direction of the intensity I). The flow FR and
the radiant pressure B are connected to the radiation intensity
by the relations

FR =

∫
I cos θdω , Bc =

∫
I cos2 θ dω , (1.13)

where c is the velocity of light, while the integration is taken
over all solid angles. We denote

∫
Idω = J . (1.14)

Multiplying (1.12a) by cos θ and taking the integral over
all solid angles dω, we have

c
dB

dr
−
1

r
(J − 3Bc) = −κρFR .

In order to obtain FR we next apply Eddington’s approx-
imation

3Bc = J = 4πE , (1.15)

thereby taking FR to within high order terms. Then

FR = −
c

κρ

dB

dr
. (1.16)

Let us consider the convective energy flow Fc . Everyday
we see huge convection currents in the surface of the Sun (it
is possible this convection is forced by sudden production of
energy). To make the convective energy flow Fc substantial,
convection currents of matter should be rapid and cause
transfer of energy over long distances in a star. Such condit-
ions can be in regions of unstable convection of matter, where
free convection can be initiated. Schwarzschild’s pioneering
research [2], and subsequent works by other astrophysicists
(Unsöld, Cowling, Bierman and others) showed that although
a star is in the state of stable mechanical and heat equi-
librium as a whole, free convection can start in regions where
(1) stellar energy sources rapidly increase their power, or
(2) the ionization energy is of the same order as the heat
energy of the gas.

64 N. Kozyrev. Sources of Stellar Energy and the Theory of the Internal Constitution of Stars



October, 2005 PROGRESS IN PHYSICS Volume 3

We assume convection currents flowing along the radius
of star. We denote byQ the total energy per unit of convection
current mass. Hence, Q is the sum of the inner energy of the
gas, the heat function, the potential and kinetic energies.
We regularly assume that a convection current retains its
own energy along its path, i. e. it changes adiabatically,
and dissipation of its energy occurs only when the current
stops. Then the energy flow transferred by the convection,
according to Schmidt [3], is

Fc = −Aρ
dQ

dr
, A = v̄ λ̄ . (1.17)

The quantity A is the convection coefficient, λ̄ is the
average length travelled by the convection current, v̄ is the
average velocity of the current. If the radiant pressure is
negligible in comparison to the gaseous pressure, in an ideal
gas (according to the 1st law of thermodynamics) we have

dQ

dr
= cv

dT

dr
+ p

d 1ρ
dr

, (1.18)

or, in another form,

dQ

dr
= cp

dT

dr
−
1

ρ

dp

dr
, (1.18)

where cv is the heat capacity of the gas under constant
volume, cpis the heat capacity under constant pressure

cp = cv +
<
μ
.

Denoting
cp
cv
= Γ ,

we have

cp =
Γ

Γ− 1
<
μ
. (1.20)

After an obvious transformation we arrive at the formulae

dQ

dr
= −

1

ρ

dp

dr
u , u = 1−

Γ

4(Γ− 1)
pdB

Bdp
, (1.21)

(for a monatomic gas Γ = 5/3).
The heat conductivity flow has a formula analogous to

(1.17). Because particles move in any direction in a gas, in
the formula for A we have one third of the average velocity
of particles instead of v̄. In this case dQ/dr is equal to only
the first term of equation (1.18), and so dQ/dr has the same-
order numerical value that it has in the energy convective
flow Fc . Therefore, taking A from Fc (1.17) into account,
we see that Fc is much more that FT . In only very rare
exceptions, like a degenerate gas, can the heat conductivity
flow FT be essential for energy transfer.

Using formulae (1.10), (1.16), (1.17), (1.21), we obtain
the heat equilibrium equation

1

ρr2
1

dr

[
r2db

κρdr

]

−
1

cρr2
1

dr

[

r2Au
dp

dr

]

= −
ε

c
. (1.22)

We finally note that, because ε is tiny value in comparison
to the radiation per mass unit, even tiny changes in the state
of matter should break the equalities. Therefore even for large
regions in stars the heat equilibrium condition (1.10) can be
locally broken. The same can be said about the equation for
the convective energy flow, because huge convections in stars
can be statistically interpreted in only large surfaces like that
of a whole star. Therefore the equations we have obtained
can be supposed as the average along the whole radius of a
star, and taken over a long time. Then the equations are true.

The aforementioned limitations do not matter in our
analysis because we are interested in understanding the be-
haviour of a star as a whole.

1.3 The main system of the equations. Transformation
of the variables

In order to focus our attention on the main task of this
research, we begin by considering the equations obtained
for equilibrium in the simplest case: (1) in the mechanical
equilibrium equation we assume the radiant pressure B neg-
ligible in comparison to the gaseous pressure p, while (2) in
the heat equilibrium equation we assume the convection term
negligible. Then we obtain the main system of the equations
in the form

1

ρr2
d

dr

[
r2dp

ρdr

]

= −4πG ,

1

ρr2
d

dr

[
r2dB

κρdr

]

= −
ε

c
.

(I)

The radiant pressure depends only on the gas temperature
T , according to formula (1.7). The absorption coefficient κ
(taken per unit mass) depends p and B. This correlation is
unknown. Also unknown is the energy ε produced by a unit
mass of gas. Let us suppose the functions known. Then in
order to solve the system we need to have the state equation
of matter, connecting ρ, p, and B. In this case only two
functions remain unknown: for instance p and B, whose
dependence on the radius r is fully determined by equations
(I). These functions should satisfy the following boundary
conditions. In the surface of a star the total energy flow is
F0 = FR0 (Fc = FT = 0). According formula (1.13),

FR0 =
1

2
J0 =

3

2
cB0 ,

so, taking formula (1.16) into account, we obtain the con-
dition in the surface of a star

under p = 0 we have B = −
2

3

dB

κρdr
, (1.23)
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From equations (I) we see that the finite solution con-
dition under r = 0 is the same as

under r = 0 we have
dp

dr
= 0 ,

dB

dr
= 0 . (1.24)

The boundary conditions are absolutely necessary, they
are true at the centre of any real star. The theory of the inner
constitution of stars by Milne [4], built on solutions which do
not satisfy these boundary conditions, does not mean that the
boundary conditions are absolutely violated by the theory. In
layers located far from the centre the boundary solutions can
be realized, if derivatives of physical characteristics of matter
are not continuous functions of the radius, but have breaks.
Hence, Milne’s theory permits a break a priori in the state
equation of matter, so the theory permits stellar matter to exist
in at least two different states. Following this hypothetical
approach as to the properties of stellar matter, we can deduce
conclusions about high temerpatures and pressures in stars.
Avoiding the view that “peculiar” conditions exist in stars,
we obtain a natural way of starting our research into the
problem by considering the phase state equations of matter.

Hence we carry out very important transformations of the
variables in the system (I). Instead of r and other variables we
introduce dimensionless quantities bearing the same physical
conditions. We denote by index c the values of the functions
in the centre of a star (r=0). Instead of r we introduce a
dimensionless quantity x according to the formula

x = ar , a = ρc

√
4πG

pc
, (1.25)

and we introduce functions

ρ1 =
ρ

ρc
, p1 =

p

pc
, B1 =

B

Bc
, . . . (1.26)

Then, as it is easy to check, the system (I) transforms to
the form

1

ρ1x
2

d

dx

[
x2dp1
ρ1dx

]

= −1 ,

1

ρ1x
2

d

dx

[
x2dB1
κ1ρ1dx

]

= −λε1 ,

(Ia)

where

λ =
εcκc

4πGc γc
, γc =

Bc
pc
. (1.27)

Numerical values of all functions in the system (Ia) are
between 0 and 1. Then the conditions at in the centre of a
star (x = 0) take the form

p1 = 1 ,
dp1
dx

= 0 , B1 = 1 ,
dB1
dx

= 0 . (1.28)

In the surface of a star (x = x0), instead of (1.23), we
can use the simple conditions

B1 = 0 , p1 = 0 . (1.29)

Here we can write the main system of the equations
in terms of the new variables (Ia), taking convection into
account. Because of (1.22), we obtain

1

ρ1x
2

d

dx

[
x2dp1
ρ1dx

]

=−1 ,

1

ρ1x
2

d

dx

[
x2dB1
κ1ρ1dx

]

−
κcρc
cγc

1

ρ1x
2

[

x2Au
dp1
dx

]

=−λε1 .

(II)

For an ideal gas, equation (1.21) leads to a very simple
formula for u

u = 1−
Γ

4(Γ− 1)
p1dB1
B1 dp1

. (1.30)

Owing to (1.5) and (1.6) it follows at last that the main
system of the equations, taking the radiant pressure into
account in the absence of convection, takes the form

1

ρ1x
2

d

dx

[
x2d(p1 + γcB1)

ρ1dx

]

= −1 ,

1

ρ1x
2

d

dx

[
x2dB1
κ1ρ1dx

]

= −λε1 .

(III)

Chapter 2

Analysis of the Main Equations and
the Relation “Mass-Luminosity”

2.1 Observed characteristics of stars

Astronomical observations give the following quantities
characterizing star: radius R, mass M , and luminosity L (the
total energy radiated by a star per second). We are going to
consider correlations between the quantities and parameters
of the main system of the star equilibrium equations. As
a result, the main system of the equations considered under
any phase state of stellar matter includes only two parameters
characterizing matter and radiation inside a star: Bc and pc.

Because of formula (1.25), we obtain

R =
1

ρc

√
pc
4πG

x0 , (2.1)

where x0 is the value of x at the surface of a star, where
p1=B1 =0. With this formula, and introducing a state eq-
uation of matter, we can easily obtain the correlation R =
= f (Bc, pc). It should be noted that in the general case the
value of x0 in formula (2.1) is dependent on Bc and pc.
At the same time, because the equation system consists of
functions variable between 0 and 1, the value of x0 should
be of the same order (i. e. close to 1). Therefore the first
multiplier in (2.1) plays the main rôle.
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Because of

M = 4π

∫ R

0

ρr2dr ,

we have

M =
p3/2c

G3/2
√
4π ρ2c

Mx0 , (2.2)

where

Mx0 =

∫ x0

0

ρ1x
2dx .

At last, the total luminosity of star is

L = 4π

∫ R

0

ερr2dr ,

and we obtain

L

M
= εc

Lx0
Mx0

, Lx0 =

∫ x0

0

εc ρ1x
2dx . (2.3)

Values of the quantities Mx0 and Lx0 should change a
little under changes of pc and Bc, remaining close to 1. If x0,
Mx0 , and Lx0 are the same for numerous stars, such stars are
homological, so the stars actually have the same structure.

As it is easy to see, the average density ρ̄ of star is
connected to ρc by the formula

ρ̄ = ρc
3Mx0

x30
. (2.4)

We find a formula for the total potential energy Ω of star
thus

Ω = −G
∫ R

0

Mr

r
dMr .

Multiplying the term under the integral by R, and divid-
ing by M2, we obtain

Ω = −
GM2

R
Ωx0 (2.5)

and also

Ωx0 =
x0
M2
x0

∫ x0

0

x ρ1Mxdx .

Under low radiant pressure, taking the equation of me-
chanical equilibrium into account, the system (I) gives

∫ x0

0

x ρ1Mxdx = −
∫ x0

0

x3dp1 = 3

∫ x0

0

x2p1dx , (2.5a)

from which we obtain

Ωx0 =

3x0

∫ x0

0

p1x
2dx

[ ∫ x0

0

ρ1x
2dx

]2 . (2.6)

Because all the functions included in the main system of
equations can be expressed through B1 and p1, we can find
the functions from the system of the differential equations
with respect to two parameters Bc and pc. Boundary condit-
ions (1.28) are enough to find the solutions at the centre of
a star. Hence, boundary conditions at the surface of a star
(1.29) are true under only some relations between Bc and pc.
Therefore all quantities characterizing a star are functions of
only one of two parameters, for instance Bc: R= f1 (Bc),
M = f2 (Bc), L= f3 (Bc). This circumstance, with the same
chemical composition of stars, gives the relations: (1) “mass-
luminosity” L=ϕ1(M) and (2) the Russell-Hertzsprung dia-
gram L=ϕ2(R).

From the above we see that the equilibrium of stars
has this necessary consequence: correlations between M , L,
and R. Thus the correlations discovered by observational
astrophysics can be predicted by the theory of the inner
constitution of stars.

2.2 Stars of polytropic structure

Solutions to the main system of the equations give functions
p1(x) and B1 (x). Hence, solving the system we can as well
obtain B1 (p1). If we set up a phase state, we can as well
obtain the function p1(ρ1).

Let us assume p1(ρ1) as p1(ρ
Γ
1 ), where Γ is a constant.

Such a structure for a star is known as polytropic. Having
stars of polytropic structure, we can easily find all the func-
tions of x. Therefore, in order to obtain a representation of
the solutions in the first instance, we are going to consider
stars of polytropic structure. Emden’s pioneering research on
the internal constitution of stars was done in this way.

The aforementioned polytropic correlation can be used
instead of the heat equilibrium equation, so only the first
equation remains in the system. We introduce a new variable
T1 which, in an ideal gas, equals the reduced temperature

p1
ρ1
= ρΓ−11 = T1 , (2.7)

or, in another form,

ρ1 = Tn1 , n =
1

Γ− 1
, p1 = Tn+11 , (2.7a)

so that we obtain

dp1 = (n+ 1) T
n
1 dT .

Substituting the formulae into the first equation of the
main system (I), we obtain

E
[
T ′1
]
=
1

x21

1

dx1

[

x21
dT1
dx1

]

= −Tn1 , (2.8)

where a new variable x1 is introduced instead of x

x =
√
n+ 1x1 . (2.9)
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Emden’s equation (2.8) can be integrated very easily if
n=0 or n=1. Naturally, under n=0 (a star of constant
density) we obtain

p1 = T1 = 1−
x21
6
, (2.10)

so the remaining characteristics can be calculated just as
easily. Under n=1 the substitution n=T1 x1 reduces the
differential equation (2.8) to the simple form n′′=−n.
Hence, under n=1, we have

T1 =
sinx1
x1

, p1 =
sin2 x1
x21

. (2.11)

With other polytropic indices n, we obtain solutions
which are in series. All odd derivatives of the operator E
should become zero under x1=0. For even derivatives, we
have

E
(2i)
0

[
T ′1
]
=
2i+ 3

2i+ 1
T
(2i+2)
1 (0) . (2.12)

Now, differentiating equation (2.8), we obtain derivatives
in different orders of the function T1 under x1=0, so we
obtain the coefficients of the series expansion. As a result we
obtain the series

T1 = 1−
x21
3!
+
n

5!
x41 −

n(8n− 5)
3×7!

x61+

+
n(122n2 − 183n+ 70)

9×9!
x81 + . . .

(2.13)

Using (2.13), we move far away from the special point
x1=0. Subsequent solutions can be obtained by numerical
integration. As a result we construct a table containing char-
acteristics of stellar structures under different n (see Table 1).

The case of n= 3/2 corresponds to an adiabatic change of
the state of monatomic ideal gas (Γ= 5/3) and also a regular
Fermi gas (1.9). If n=3, we get a relativistic Fermi gas or an
ideal gas under B1= p1 (the latter is known as Eddington’s
solution).

In polytropic structures we can calculate exact values of
Ωx0 . Naturally, the integral of the numerator of (2.6) can be
transformed to

∫ x0

0

p1x
2dx =

∫ x0

0

T1 dMx = −
∫ x0

0

Mx
dT1
dx

dx .

Emden’s equation leads to

Mx = −(n+ 1)x
2 dT1
dx

, (2.14)

so we obtain

∫ x0

0

p1x
2dx =

1

n+ 1

∫ x0

0

M2
x

x2
dx =

= −
M2
x0

x0 (n+ 1)
+

2

n+ 1

∫ Mx0

0

Mx

x
dMx .

Table 1

n x0 Mx0

x20
3Mx0

Ωx0

0 2.45 4.90 1.0 3/5

1 4.52 9.04 3.4 3/4

3/2 5.81 11.1 5.9 6/7

2 7.65 12.7 11.4 1

2.5 10.2 14.4 24.1 6/5

3 13.8 16.1 54.4 3/2

3.25 17.0 17.5 88.2 12/7

Formula (2.5a) leads to another relation between the
integrals. As a result we obtain

[

1−
6

n+ 1

] ∫ x0

0

p1x
2dx = −

M2
x0

x0 (n+ 1)
,

and, substituting this into (2.6), we obtain Ritter’s formula

Ωx0 =
3

5− n
. (2.15)

This formula, in addition to other conclusions, leads to
the fact that a star can have a finite radius only if n< 5.

2.3 Solution to the simplest system of the equations

To begin, we consider the system (Ia), which is true in the
absence of convection and if the radiant pressure is low. The
absorption coefficient κ, the quantity of produced energy ε,
and the phase state equation of matter, can be represented
as products of different power functions p, B, ρ. Then the
functions κ1=κ/κc, ε1= ε/εc, and the phase state equation,
are dependent only on p1, B1 , ρ1; they have no parameters
pc, Bc, ρc. In this case the coefficient λ remains the sole
parameter of the system. In this simplest case we study the
system (Ia) under further limitations: we assume an ideal gas
and κ independent of physical conditions. Thus, we have the
correlations

κ=const: κ1=1, p1=B
1/4

1 ρ1 , ε1=f (p1, B1) , (2.16)

1

ρ1x
2

d

dx

[
x2dp1
ρ1dx

]

= −1 ,

1

ρ1x
2

d

dx

[
x2dB1
ρ1dx

]

= −λε1 ,

(2.17)

where

λ =
εcκc

4πGc γc
γc =

Bc
pc
. (2.18)

Taking integrals on the both parts of (2.17), we obtain

x2

ρ1

dB1
dx

= −λLx ,
x

ρ1

dp1
dx

= −Mx , (2.19)
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where we have introduced the notation

Lx =

∫ x

0

ε1ρ1x
2dx , Mx =

∫ x

0

ρ1x
2dx . (2.20)

Integrating (2.19) using boundary conditions, we obtain

λ =
l

∫ x0

0

Lx
ρ1
x2
dx

, l =

∫ x0

0

Mx
ρ1
x2
dx ,

hence

λ =

∫ x0

0

Mx
ρ1
x2
dx

∫ x0

0

Lx
ρ1
x2
dx

. (2.21)

From formulae (2.21) and (2.20) we conclude that the
more concentrated are the sources of stellar energy, the
greater is λ. If the source’s productivity ε increases towards
the centre of a star, λ> 1. If ε= const along the radius, ε1=1
and hence λ=1. If stellar energy is generated mostly in the
surface layers of a star, λ< 1. Equations (2.19) lead to

dB1
dp1

=
λLx
Mx

. (2.22)

Because of the boundary conditions p1=0, B1 =0 and
p1=1, B1 =1, the derivative dB1/dp1 always takes the
average value 1. Owing to

(
dB1
dp1

)

x=0

= λ ,

(
dB1
dp1

)

x=x0

=
λLx0
Mx0

,

we come to the following conclusions: if energy sources
are located at the centre of a star, λLx0/Mx0 < 1; if energy
sources are located on the surface, λLx0/Mx0 > 1. If energy
sources are homogeneously distributed inside a star,
λLx0/Mx0 =1 and B1 = p1, so we have polytropic class 3,
considered in the previous paragraph. This particular solution
is the basis of Eddington’s theory of the internal constitution
of stars. If n> 3, (dB1/dp1)x0→∞ so we have Lx0→∞.
Therefore we conclude that polytropic classes n> 3 char-
acterize stars where energy sources concentrate near the
surface. Polytropic classes n< 3 correspond to stars where
energy sources concentrate at the centre. Therefore the data
of Table 1 characterize the most probable structures of stars.
It should be noted that if n< 3, formulae (2.7) and (2.7a)
lead to (dB1/dp1)x0=0, and hence Lx0=0. So polytropic
structures of stars where energy sources concentrate at the
centre can exist only if there is an energy drainage in the
upper layer of a star.

Differentiating formula (2.22) step-by-step and using the
system (2.17) gives derivatives of B1 (p1) under p1=1 and,
hence, expansion of B1 (p1) into a Taylor series. The first
terms of the expansion take the form

B1=1+λ(p1−1)+
3

10
λ

[
∂ε1
∂p1

+λ
∂ε1
∂B1

]

1

(p1−1)
2 + . . .

The surface condition B1=0, being applied to this form-
ula under p1=0, gives an equation determining λ. This
method gives a numerical value of λ which can be refined by
numerical integration of the system (2.17). This integration
can be done step-by-step.

The centre of a star, i. e. the point where x=0, is the
singular point of the differential equations (2.17). We can
move far away from the singular point using series and
then (as soon as their convergence becomes poor) we apply
numerical integration. We re-write the system (2.7) as follows

E

[
B1/4

1

p1

dp1
dx

]

= −p1B
−1/4

1 ,

E

[
B1/4

1

p1

dB1
dx

]

= −λε1p1B
−1/4

1 .

(2.23)

Formula (2.12) gives

E
(2i)
0 [u ] =

2i+ 3

2i+ 1
[u ]

(2i+1)
0 . (2.24)

Then, differentiating formula (2.23) step-by-step using
(2.24), we obtain different order derivatives of the functions
p1(x) and B1 (x) under x=0 that yields the possibility of
expanding the functions into Laurent series. Here are the first
few terms of the expansions

p1 = 1−
1

3

x2

2!
+
2

15

[
4− λ

]x4

4!
− . . .

B1 = 1−
λ

3

x2

2!
+

+
2λ

15

[

(4− λ) +
3

2

(
∂ε1
∂p1

+ λ
∂ε1
∂B1

)

0

]
x4

4!
− . . .

(2.25)

In order to carry out numerical integration we use form-
ulae which can be easily obtained from the system (2.23),
namely

p′′1 = −p
2
1B

−1/2

1 + p′1

[
p′1
p1
−

B′1
4B1

−
2

x

]

,

B′′1 = −λε1p
2
1B

−1/2

1 +B′1

[
p′1
p1
−

B′1
4B1

−
2

x

]

.

(2.23a)

In this system, we introduce the reduced temperature T1
instead of B1 , and a new variable u1= p

1/4

1 instead of p1

u′′1 = −
u51
4T 21

+ u′1

[(
u′1
u1
−
T ′1
T1

)

−
2

x

]

,

T ′′1 = −
λε1u

8
1

4T 51
+ T ′1

[

4

(
u′1
u1
−
T ′1
T1

)

−
2

x

]

.

(2.23b)

This substitution gives a great advantage, because of small
slow changes of the functions T1 and u1.
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A numerical solution can be obtained close to the surface
layer, but not in the surface itself, because the equations
(2.23) can be integrated in the upper layers without problems.
Naturally, assuming Mx=Mx0 = const and Lx=Lx0 =
= const in formula (2.19), we obtain

dp1
ρ1

= −
Mx0

x2
dx ,

dB1
ρ1

= −
λLx0
x2

dx ,

B1 =
λLx0
Mx0

p1 .

(2.26)

The ideal gas equation and the last relation of (2.26)
permit us to write down

dp1
ρ1

= B1/4

1

dp1
p1

= B−3/4

1 dB1 .

Integrating the first equation of (2.26), we obtain

4T1 =Mx0

x0 − x
x0x

, (2.27)

which gives a linear law for the temperature increase within
the uppermost layers of a star.

To obtain λ by step-by-step integration, we need to have
a criterion by which the resulting value is true. It is easy to
see from (2.26) that such a criterion can be a constant value
for the quotient B1/p1 starting from x located far away from
the centre of a star. Solutions are dependent on changes of λ,
therefore an exact numerical value of this parameter should
be found. Performing the numerical integration, values of the
functions near the surface of a star are not well determined.
Therefore, in order to calculate Lx0 and Mx0 in would be
better to use their integral formulae (2.20). If energy sources
increase their productivity towards the centre of a star, we
obtain an exact value for Lx0 even in a very rough solution
for the system. The calculation of x0 is not as good, but it
can be obtained for fixedMx0 and x far away from the centre
through formula (2.27)

x0 =
x

1− 4T1
Mx0

x
. (2.27a)

Using the above method, exact solutions to the system are
obtained. Table 2 contains the characteristics of the solutions
in comparison to the characteristics of Eddington’s model∗.

The last column contains a characteristic that is very
important for the “mass-luminosity” relation (as we will see
later).

Let us determine what changes are expected in the char-
acteristics of the internal constitution of stars if the absorption
coefficient κ is variable. If κ is dependent on the physical
conditions, equation (2.22) takes the form

dB1
dp1

=
κ1λLx
Mx

. (2.22a)

∗In his model ε1=1, so the energy sources productivity is ε= const
along the radius (see the first row in the table). — Editor’s remark.

Table 2

ε1 λ x0 Mx0 Lx0
λLx0

M3
x0

1 1 13.8 16.1 16.1 3.8×10−3

B1 1.76 10 12.4 2.01 1.8×10−3

B1 p1 2.32 9 11.5 1.57 2.2×10−3

The variability of κ can be determined by a function of
the general form

κ1 =
pα1

B
β
1

.

At first we consider the simplest case where energy
sources are homogeneously distributed inside a star. In this
case ε1=1, Lx=Mx, and equation (2.22a) can be integrated

B
1+β
1 = λ

1 + β

1 + α
p1+α1 .

Proceeding from the conditions at the centre of any star
(B1 = p1=1), we obtain

λ =
1 + α

1 + β
, B1 = pλ1 .

Hence the star has polytropic structure of class

n =
4

λ
− 1 .

Looking from the physical viewpoint, the most probable
effects are: decrease in the absorption coefficient of a star
with depth, and also α>−1. Because

κ1 = p
α−β
1+β

1 = B
α−β
1+α

1 ,

κ1 decreases with increase of p1 and B1 only if α<β. Then
it is evident that λ< 1 and n> 3. Hence, variability of κ
results in an increase of polytropic class. According to the
theory of photoelectric absorption,

κ1 =
ρ1
T 3.5
1

.

In this case α= 1, β= 1.125 and hence n= 3.25. Table 1
gives respective numerical values of the characteristics x0
and Mx0 . Other calculated characteristics are λ= 0.94 and
λLx0/M

3
x0 = λ/M2

x0 = 3.06×10−3. All the numerical val-
ues are close to those calculated in Table 2. This is expected,
if variability of κ leads to the same order effect for the other
classes of energy source distribution inside stars.

Looking at Table 1 and Table 2 we see that the charact-
eristics x0'Mx0 ' 10 and λLx0/M

3
x0 ' 2×10−3 have tiny
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changes under different suppositions about the internal con-
stitution of stars (the internal distribution of energy sources)∗.
There are three main cases: (1) sources of stellar energy,
homogeneously distributed inside a star, (2) energy sources
are so strongly concentrated at the centre of star that their
productivity is proportional to the 8th order of the temp-
erature, (3) polytropic structures where energy sources are
concentrated at the surface — there is a drainage in the surface
layer of a star. It should be noted that we did not consider
other possible cases of distributed energy sources in a star,
such as production of energy in only an “energetically active”
layer at a middle distance from the centre. In such distributed
energy sources, as it is easy to see from the second equation
of the main system, there should be an isothermal core inside
a star, and such a star is close to polytropic structures higher
than class 3. In this case, instead of the former ε1, we can
build ε/εmax= ε1, 06 ε16 1, which will be subsumed into
λ. However in such a case ε1, and hence all characteristics
obtained as solutions to the system, is dependent on pc and
Bc, and the possibility to solve the system everywhere inside
a star sets up as well correlations between the parameters.
At last we reach the very natural conclusion that energy is
generated inside a star only under specific relations between
B and p in that quantity which is required by the com-
patibility of the equilibrium equations. In order to continue
this research and draw conclusions, it is very important to
note the fact that the characteristic λLx0/M

3
x0 is actually the

same for any stellar structure (see the last column in Table 2).
This characteristic remains almost constant under even exotic
distributions of energy sources in stars (exotic sources of
stellar energy), because of a parallel increase/decrease of its
numerator and denominator. Following a line of successive
approximations, we have a right to accept the tables as
the first order approximation which can be compared to
observational data. All the above conclusions show that it
is not necessary to solve the main system of the equilibrium
equations (2.17) for more detailed cases of the aforement-
ioned structures of stars. Therefore we did not prove the
uniqueness of the parameter λ.

2.4 Physical conditions at the centre of stars

The average density of the Sun is ρ̄�= 1.411. Using this
numerical value in (2.4), we obtain a formula determining
the central density of stars

ρc = 0.470
x30
Mx0

M
M�
(
R
R�

)3 . (2.28)

Taking this into account, formula (2.1) permits calculat-

∗It should be noted that the tables characterize the structure of stars
only if the radiant pressure is low. In the opposite case all the characteristics
x0, Mx0 , and others are dependent on γc.

ion of the gaseous pressure at the centre of a star

pc =
G

4π

(
M�

R2�

)2
x40
M2
x0

(
M
M�

)2

(
R
R�

)4 . (2.29)

BecauseM�=1.985×1033 andR�=6.95×1010, we obtain

pc = 8.9×1014
x40
M2
x0

(
M
M�

)2

(
R
R�

)4 . (2.30)

Thus the pressure at the centre of the Sun should be about
1016 dynes/cm2 (ten billion atmospheres). It should be noted,
as we see from the deductive method, the formulae for ρc
and pc are applicable to any phase state of matter.

Let us assume stars consisting of an ideal gas. Then
taking the ratio of (2.30) to (2.28) and using the ideal gas
equation (1.8), we obtain the temperature at the centre of a
star

Tc = 2.29×107μ
x0
Mx0

M
M�

R
R�

. (2.31)

Hence, the temperature at the centre of the Sun should
be about 10 million degrees. As another example, consider
the infrared satellite of ε Aurigae. For this star we have
M = 24.6M�, log

(
L/L�

)
= 4.46, R= 2,140R� [5]. Calcul-

ating the central density and temperature by formulae (2.30)
and (2.31), we obtain Tc' 2×105 and pc' 2×105: thus the
temperature is about two hundred thousand degrees and the
pressure about one atmosphere. Because the star is finely
located in the “mass-luminosity” diagram (Fig. 1) and the
Russell-Hertzsprung diagram, we have reason to conclude:
the star has the internal constitution regular for all stars.
This conclusion can be the leading arrow pointing to the
supposition that heat energy is generated in stars under phys-
ical conditions close to those which can be produced in an
Earthly laboratory.

Let us prove that only inside white dwarfs (the stars
of the very small radii — about one hundredth of R�), the
degenerate Fermi gas equation (1.9) can be valid. Naturally,
if gas at the centre of a star satisfies the Fermi equation,
we obtain pc= 1×1013ρ5/3c μ−5/3e . Formulae (2.28) and (2.30)
show that this condition is true only if

R

R�

= 3.16×10−3
x0M

1/3
x0(

M
M�

)1/3 μ
−5/3
e . (2.32)

This formula remains true independently of the state of
matter in other parts of the star. The last circumstance can
affect only the numerical value of the factor x0M 1/3

x0 . At the
same time, table 1 shows that we can assume the numerical
value approximately equal to 10.† Formula (2.32) shows that

†For stars of absolutely different structure, including such boundary
instances as the naturally impossible case of equally dense stars, and the
cases where energy sources are located at the surface. — Editor’s remark.
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Fig. 1: The “mass-luminosity” relation. Here points are visual
binaries, circles are spectral-binaries and eclipse variable stars,
crosses are stars in Giades, squares are white dwarfs, the crossed
circle is the satellite of ε Aurigae.

for regular degeneration of gas, stars (underM =M�) should
have approximately the same radius R' 2×109, i. e. about
20,000 km (R= 0.03R�). Such dimensions are attributed
to white dwarfs. For example, the satellite of Sirius has
M = 0.94M� and R= 0.035R� [6]. If the density is more
than the above mentioned (if the radius is less than R=
= 0.03R�) and the mass of the star increases, formula (2.32)
shows that regular degeneration can become relativistic deg-
eneration

p = Kρ4/3, K = KHμ
−4/3
e , KH = 1.23×1015.

We apply these formulae to the centre of a star, and
take equations (2.28) and (2.30) into account. As a result we
see that the radius drops out of the formulae, so relativistic
degeneration can be realized in a star solely in terms of the
mass

M

M�

= 0.356Mx0 , (μe = 1). (2.32a)

Because of Table 1, we see: n=0 only if Mx0 = 16.1.
Hence, the lower boundary of the mass of a non-degenerated
gaseous star is 5.7M�. In order to study degenerated gaseous
stars in detail, we should use the phase state equation that
includes the regular state, the boundary state between the
regular and degenerated states, and the degenerated state.
Applying formulae (2.28) and (2.30) to the above ratio,
we obtain a correlation between the radius and the mass
of a star, which is unbounded for small radii. It should be
noted that introduction of a mass-radius correlation is the
essence of Chandrasekhar’s theory of white dwarfs [7]. On
the other hand, having observable sizes of white dwarfs,
equation (2.32) taken under x0M 1/3

x0 = 10 gives the same

numerical values for radii as Chandrasekhar’s table (his well-
known relation between the radius and mass of star). The
exact numerical value of the ultimate mass calculated by
him coincides with our 5.7M�. In Chandrasekhar’s formula,
as well as in our formula (2.32), radius is correlated opposite
to mass. Today we surely know masses and radii of only
three white dwarfs: the white dwarfs do not confirm the
opposite correlation mass-radius. So, save for the radius of
Sirius’ satellite coinciding with our formula (2.32), we have
no direct astrophysical confirmation about degeneration of
gas inside white dwarfs.

Considering stars built on an ideal gas, we deduce a
formula determining the mass of a star dependent on internal
physical conditions. We can use formulae (2.30) and (2.31) or
formula (2.2) directly. Applying the Boyle-Mariotte equation
(1.8) to formula (2.2), and taking the Stephan-Boltzmann law
(1.7) into account, we obtain

M=C
γ1/2c
μ2

Mx0 , C =
<2

G3/2

√
4
3πα

=2.251×1033. (2.33)

Introducing the mass of the Sun M�= 1.985×1033 into
the equation, we obtain

M = 1.134M�

γ 1/2c

μ2
Mx0 . (2.34)

As we will see below, the “mass-luminosity” correlation
shows γc is close to 1 for blue super-giants. Hence formula
(2.34) gives the observed numerical values for masses of
stars. The fact that we obtain true orders for numerical
values of the masses of stars, proceeding only from numerical
values of the fundamental constants G, <, α, is excellent
confirmation of the theory.

2.5 The “mass-luminosity” relation

In deducing the “mass-luminosity” correlation, we assume:
(1) the radiant pressure is negligible in comparison to the
gaseous pressure everywhere inside a star; (2) stars consist
of an ideal gas; (3) ε and κ can be approximated by functions
like pαBβ . Then the main system of the equilibrium equa-
tions takes the form

1

ρ1x
2

d

dx

[
x2dp1
ρ1dx

]

= −1 ,

1

ρ1x
2

d

dx

[
x2dB1
κ1ρ1dx

]

= −λε1 ,

(2.35)

where

λ =
εcκc

4πGc γc
, γc =

Bc
pc
.

Solving the system, as we know, is possible under a
numerical value of λ close to 1. Hence a star can be in equi-
librium only if the energy generated inside it is determined
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by the formula

εc =
λ4πGc

κc
γc . (2.36)

If a star produces another quantity of energy, it will
contract or expand until its new shape results in production
of energy exactly by formula (2.36). Because γc determines
the mass of a star (2.34) and εc determines the luminosity of
a star, the “mass-luminosity” correlation should be contained
in formula (2.36). In other words, the “mass-luminosity”
correlation is the condition of equilibrium of stars.

Because of (2.3),

εc =
L

M

Mx0

Lx0
.

Substituting this equation into (2.36), we obtain

L =
4πGc

κc

λLx0
Mx0

Mγc .

The quantity γc can be removed with the mass of a star
by (2.33)

L =
4πG44πα

3κc<4
μ4
(
λLx0
M3
x0

)

M3. (2.37)

The luminosity of the Sun is L�= 3.78×1033. Proceeding
from formula (2.37), we obtain

L

L�

= 1.04×104
μ4

κc

(
λLx0
M3
x0

)(
M

M�

)3
. (2.38)

The formula (2.38) gives a very simple correlation: the
luminosity of a star is proportional to the third order of
its mass. In deducing this formula, we accepted that ε is
determined by a function ε∼ pαBα, so ε1 depends on p1
and B1 . It is evident that rejection of this assumption cannot
substantially change the obtained correlation (2.38). Natur-
ally, under arbitrary ε, the quantity ε1 depends on pc and Bc.
Thus the multiplier λLx0/M

3
x0 in formula (2.38) will have

different numerical values for different stellar structures. At
the same time Table 2 shows that this multiplier is approxim-
ately the same for absolutely different structures, including
boundary structures which are exotic. Therefore the “mass-
luminosity” correlation gives no information about sources
of stellar energy — the correlation is imperceptible to their
properties. However, other assumptions are very important.
As we see from the deductive path to formula (2.33), the
correlation between mass and luminosity can be deduced
only if the pressure depends on temperature, so our formula
(2.38) can be obtained only if the gas is ideal. It is also
important to make the absorption coefficient κ constant for
all stars. The rôle of the radiant pressure will be considered
in the next paragraph.

And so forth we are going to compare formula (2.38) to
observational data. Fig. 1 shows masses and luminosities of

stars, according to today’s data. The diagram has been built
on masses of stars taken from Kuiper’s data base [8], and the
monograph by Russell and Moore [9]. We excluded Trumpler
stars [10] from the Kuiper data, because their masses were
measured uncertainly. Naturally, Trumpler calculated masses
of such stars, located in stellar clusters, with the supposition
that the K-term (the term for radiant velocities with respect
to the whole cluster) is fully explained by Einstein’s red shift.
For this reason the calculated masses of Trumpler stars can
be much more than their real masses. Instead of Trumpler
stars, in order to fill the spaces of extremely bulky stars in
the diagram, we used extremely bulky eclipse variable stars
(VV Cephei, V 381 Scorpii) and data for Plasckett’s spectral-
variable star BD+6◦ 1309.

As we see in Fig. 1, our obtained correlation L∼M3 is
in good accord with the observational data in all spectra of
observed masses (having a small deviation inside 1.5m). The
dashed line L∼M 10/3 is only a little different from our line.
Parenago [11], Kuiper [8], Russell [9], and others accept this
L∼M 10/3 line as the best representation of observational
data. Some researchers found the exponent of mass more
than our’s. For instance, Braize [12] obtained L∼M 3.58.
Even if such maximal deviation from our exponential index
3 is real, the theoretical result is excellent for most stars.
The coefficient of proportionality in our formula (2.38) is
very susceptible to μ. For this reason, coincidence of our
theoretical correlation and observational data is evidence that
the chemical composition of stars is the same on the average.
The same should be said about the absorption coefficient κ:
because physical conditions inside stars can be very different
even under the same luminosity (for example, red giants and
blue stars located in the main direction), it is an unavoidable
conclusion that the absorption coefficient of stellar matter is
independent of pressure and temperature. The conclusions
justify our assumption in §1.3, when we solved the main
system of equilibrium equations.

The fact that white dwarfs lie off the main sequence
can be considered as a confirmation of degenerate gas inside
them. Because a large increase of the absorption coefficient in
white dwarfs in comparison to regular stars is not very plau-
sible, another explanation can be given only if the structural
multiplier λLx0/Mx0 in white dwarfs is ∼100 times more
than in other stars. The location of white dwarfs in the
Russell-Hertzsprung diagram can give a key to this problem.

At last, proceeding from observational data, we calculate
the coefficient μ4/κc in our theoretical formula (2.38). The
line L∼M3, which is the best representation of observ-
ational data, lies a little above the point where the Sun is
located. For this reason, under M =M�, we should have
L= 1.8L� in our formula (2.38). According to table 2, we
assume λLx0/M

3
x0 = 2×10−3. Then we obtain

μ4

κc
= 0.08 . (2.39)
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2.6 The radiant pressure inside stars

In the above we neglected the radiant pressure in comparison
to the gaseous one in the equation of mechanical equilibrium
of a star. Now we consider the main system of the equation
(III), which takes the radiant pressure into account. If the
absorption coefficient κ is constant (κ1=1), this system
takes the form

1

ρ1x
2

d

dx

[
x2dp1
ρ1dx

]

= −(1− λγc ε1) ,

1

ρ1x
2

d

dx

[
x2dB1
ρ1dx

]

= −λε1 .

(2.40)

After calculations analogous to those carried out in de-
ducing formula (2.21), we obtain

λ (1 + γc) =

∫ x0

0

Mx
ρ1
x2
dx

∫ x0

0

Lx
ρ1
x2
dx

. (2.41)

The ratio of integrals in this formula depends on the
distribution of energy sources inside a star, i. e. on the struct-
ure of a star. This ratio maintains a numerical value close to 1
under any conditions. Thus λ(1+ γc)∼ 1. If energy sources
are distributed homogeneously throughout the volume of a
star, we have ε1=1, Lx=Mx and hence the exact equality
λ(1+ γc)= 1. If energy sources are concentrated at the
centre of a star, λ(1+ γc)> 1. In this case, if the radiant
pressure takes high values (γc> 1), the internal constitution
of a star becomes very interesting, because in this case
λγc> 1 and the right side term in the first equation of
(2.40) is positive at the centre of a star, our formula (2.41)
leads to p′′1 > 0, and hence at the centre of such a star the
gaseous pressure and the density have a minimum, while
their maximum is located at a distance from the centre∗.

From this we conclude that extremely bulky stars having
high γc can be in equilibrium only if λ(1+ γc)∼ 1, or, in
other words, if the next condition is true

εc ∼
4πGc

κ
. (2.42)

Thus, starting from an extremely bulky stellar mass
wherein γc> 1, the quantity of energy generated by a unit
of the mass should be constant for all such extremely bulky
stars. The luminosity of such stars, following formulae (2.3)
and (2.2), should be directly proportional to their mass:
L∼M . This correlation is given by the straight line drawn
in the upper right corner of Fig. 1. Original data due to

∗This amazing conclusion about the internal constitution of a star is true
under only high values of the radiant pressure. In regular stars the radiant
pressure is so low that we neglect it in comparison to the gaseous pressure
(see previous paragraphs). — Editor’s remark.

Eddington [13] and others showed an inclination of the
“mass-luminosity” line to this direction in the region of bulky
stars (the upper right corner of the diagram). But further more
exact data, as it was especially shown by Russell [9] and
Baize [12], do not show the inclination for even extremely
bulky stars (see our Fig. 2). Therefore we can conclude that
there are no internal structures of stars for γc> 1; the ultimate
case of possible masses of stars is the case where γc=1.
Having no suppositions about the origin of energy sources
in stars†, it is very difficult to give an explanation of this
fact proceeding from only the equilibrium of stars. The very
exotic internal constitution of stars under γc> 1 suggests
that if such stars really exist in nature, they are very rare
exceptions.

In order to ascertain what influence γc has on the structure
of a star, we consider the simplest (abstract) case where
energy sources are distributed homogeneously throughout a
star (ε1=1). In this case, as we know,

λ =
1

1 + γc
, (2.43)

and the system (2.40) takes the form

1

ρ1x
2

d

dx

[
x2dp1
ρ1dx

]

= −
1

1 + γc
,

1

ρ1x
2

d

dx

[
x2dB1
ρ1dx

]

= −
1

1 + γc
.

(2.44)

Introducing a new variable xγc=0 instead of x

x =
√
1 + γc xγc=0 , (2.45)

we obtain the main system in the same form as that in the
absence of the radiant pressure. So, in this case the main
characteristics of the internal constitution of star are

x0 = x0(γc=0)
(
1 + γc

)1/2
,

Mx0 =Mx0(γc=0)

(
1 + γc

)3/2
,

Lx0 = Lx0(γc=0)
(
1 + γc

)3/2
, λ =

λγc=0
1 + γc

.

(2.46)

Characteristics indexed by γc=0 are attributed to the
structures of stars where γc� 1; their numerical values can
be taken from our Table 2. Because Table 2 shows very
small changes in Mx0 for very different structures of stars,
formulae (2.46) should as well give an approximate picture
for other structures of stars. Under high γc, the mass of a star
(2.34) becomes

M ' 1.134M�

γ 1/2c

μ2
(
1 + γc

)3/2
Mx0(γc=0) . (2.47)

†That is the corner-stone of Kozyrev’s research. — Editor’s remark.

74 N. Kozyrev. Sources of Stellar Energy and the Theory of the Internal Constitution of Stars



October, 2005 PROGRESS IN PHYSICS Volume 3

Astronomical observations show that maximum masses
of stars reach ∼120M� — see Fig. 1, showing an inclination
of the “mass-luminosity” correlation near log (M/M�)= 2.
Assuming this mass in (2.47), and assuming γc=1 and
Mx0 = 10 for it, we obtain the average molecular weight
μ= 0.51.

Then in such stars, by formula (2.39), we obtain κ= 0.8.
On the other hand, because the “mass-luminosity” correlation
has a tendency to the line L∼M for extremely bulky masses
(see Fig. 1), we obtain the ultimate value ε̄= 5×104. For
homogeneously distributed energy sources, formula (2.42)
leads to κ= 0.5. If they are concentrated at the centre,
εc> ε̄= εc(Lx0/Mx0). Even in this case formula (2.42) leads
to εc> ε̄. There is some compensation, so the calculated
numerical value of the absorption coefficient κ is true. An
exact formula for ε̄ can be easily obtained as

L

M
= ε̄ =

4πGc

κ

Lx0
Mx0

∫ x0

0

Mx
ρ1
x2
dx

∫ x0

0

Lx
ρ1
x2
dx

γc
1 + γc

. (2.48)

So, having considered the “mass-luminosity” correlation,
we draw the following important conclusions:

1. All stars (except possibly for white dwarfs) are built
on an ideal gas;

2. In their inner regions, where stellar energy is generated,
all stars have the same chemical composition, μ=
= const= 1/2, so they are built on a mix of protons
and electrons without substantial percentage of other
nuclei;

3. The absorption coefficient per unit of mass κ is inde-
pendent of the physical conditions inside stars, it is a
little less than 1.

Thomson dispersion of light in free electrons has the
same properties. Naturally, the Thomson dispersion coeffi-
cient per electron is

σ0 =
8π

3

(
e2

mec2

)2
= 6.66×10−25, (2.49)

where e and me are the charge and the mass of the electron.
In the mix of protons and electrons we obtain

κT =
σ0
mH

=
6.66×10−25

1.66×10−24
= 0.40 . (2.50)

The fact that our calculated approximate value of κ is
close to κT= 0.40 shows that the interaction between light
and matter inside stars is determined mainly by the Thomson
process — acceleration of free electrons by the electric field
of light waves.

Because μ stays in the “mass-luminosity” correlation
(2.38) in fourth degree, the obtained theoretical value of μ is

quite exact with respect to the real one. If κ=κT, as a result
of (2.39) we have μ= 0.43. Because μ cannot be less than
1/2, the obtained ultimate value of κ= 0.8 is twice κT= 0.40.
This fact can be explained by the circumstance that, in this
case of extremely bulky masses, the structural coefficient in
formula (2.38) should be twice as small. It is evident that
we can accept μ= 1/2 to within 0.05. If all heavy nuclei are
ionized, their average molecular weight is 2. If we assume
the average molecular weight in a star to be 0.55 instead of
1/2, the percentage of ionized atoms of hydrogen χH becomes

2χH +
1

2
(1− χH) =

1

0.55
, χ

H ' 90% .

Thus the maximum admissible composition of heavy
nuclei inside stars, permitted by the “mass-luminosity” cor-
relation, is only a few percent. Under μ= 1/2 the mass of
a star, where γc=1, is obtained as 130M�. This value is
indicated by the vertical line in Fig. 1.

At last we calculate the radiant pressure at the centre
of the Sun. Formula (2.34) leads to γc�' 10−3. In this
case the radiant pressure term in the equation of mechanical
equilibrium can be neglected.

2.7 Comparing the obtained results to results obtained
by other researchers

To deduce the “mass-luminosity” correlation by the explana-
tion according to the regular theory of the internal constitut-
ion of stars, becomes very complicated because the theore-
ticians take a priori the absorption coefficient as dependent
on the physical conditions. They supposed the absorption
of light inside stars due to free-connected transitions of
electrons (absorption outside spectral series) or transitions
of electrons from one hyperbolic orbit to another in the field
of positive charged nuclei. The theory of such absorption was
first developed by Kramers, and subsequently by Gaunt, and
especially, by Chandrasekhar [14]. According to Chandra-
sekhar, the absorption coefficient depends on physical cond-
itions as

κCh = 3.9×1025
ρ

T 3.5
(
1− χ2H

)
, (2.51)

where χ2H is the percentage of hydrogen, the numerical factor
is obtained for Russell’s composition of elements. In order
to clarify the possible rôle of such absorption in the “mass-
luminosity” correlation, we assume (for simplicity)

κCh =
κ0
γ
. (2.52)

In this case, having small γc, formulae (2.38) and (2.33)
show L∼M5. This exponent is large, so we cannot neglect
γc in comparison to 1. If γc is large, the formulae show
L∼M 3/2. Thus, in order to coordinate theory and observa-
tions, we are forced to consider “middle” numerical values of
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γc and reject the linear correlation between logL and logM .
Formulae (2.47) and (2.48) show

M2 ∼
γc
(
1 + γc

)2

μ4
, M2 ∼

1− β
μ4β4

,

L ∼M
γ2c

1 + γc
, L ∼M 3/2

(
1− β

)3/2
μ .

(2.53)

Here are formulae where γc has been replaced with the
constant β, one regularly uses in the theory of the internal
constitution of stars

β =
pc
p0
=

1

1 + γc
. (2.54)

Thus the “mass-luminosity” correlation, described by the
two formulae (2.53), becomes very complicated. The form-
ulae are in approximate agreement with Eddington’s form-
ulae [15] and others. The exact formula for (2.51) introduces
the central temperature Tc into them. Under large γc, as we
see from formulae (2.46), the formula for Tc (2.31) includes
the multiplier β

Tc = 2.29×107μβ

(
x0
Mx0

)

γc=0

M
M�

R
R�

. (2.55)

Then, through Tc, the radius and the reduced temperature
of a star can be introduced into the “mass-luminosity” cor-
relation. This is the way to obtain the well-known Eddington
temperature correction.

In order to coordinate the considered case of “middle” γc,
we should accept γc=1 starting from masses M ' 10M�.
So, for the Sun we obtain γc�= 0.08. As we see from form-
ula (2.47), it is possible if μ' 2. Then formula (2.39), using
the numerical value λLx0/M

3
x0 = 3.8×10−3 given by Eddin-

gton’s model, gives κc�= 170 and κ0= 14. The theoretical
value of κ0 can be obtained by comparing (2.52) and (2.51);
it is

κ0 =
αμ

3<
√
Tc�

3.9×1025
(
1− χ2H

)
. (2.56)

According to (2.55) we obtain Tc�= 4×107. Then, by
(2.56), we have κ0= 0.4. So, according to Eddington’s
model, the theoretically obtained value of the absorption
coefficient κ0= 14 is 30 times less than the κ0= 0.4 re-
quired, consistent with the observational data∗. This diver-
gence is the well-known “difficulty” associated with Edding-
ton’s theory, already noted by Eddington himself. According
to Strömgren [16], this difficulty can be removed if we accept
the hypothesis that stars change their chemical composition
with luminosity. Supposing the maximum hydrogen content,
μ can vary within the boundaries 1/26μ6 2. Then, as we

∗As it was shown in the previous paragraph, Kozyrev’s theory
gives κ0= 0.5–0.8 for stars having different internal constitutions, which
corresponds well to observations. — Editor’s remark.

see from (2.56), the theoretical value of κ0 decreases slightly.
On the other hand, the previous paragraph showed that the
value of κ0, obtained from observations, decreases much
more. As a result, the theoretical and observational values of
κ can be matched (which is in accordance with Strömgren’s
conclusion). All theoretical studies by Strömgren’s followers,
who argued for evolutionary changes of relative amounts of
hydrogen in stars, were born from the above hypothesis.
The hypothesis became very popular, because it provided
an explanation of stellar energy by means of thermonuclear
reactions, as suggested by Bethe.

It is evident that the above theories are very strained. On
the other hand, the simplicity of our theory and the general
way it was obtained are evidence of its truth. It should be
noted that our two main conclusions

(1) μ = 1/2 , χ2
H = 1 ; (2) κ = κT ,

obtained independently of each other, are physically con-
nected. Naturally, if χ2H= 1, Chandrasekhar’s formula (2.51)
becomes inapplicable. Kramers absorption (free-connected
transitions) becomes a few orders less; it scarcely reaches
the Thomson process. At the same time, our main result is
that γc< 1 for all stars, and this led to all the results of our
theory. Therefore this result is so important that we mean
to verify it by other astrophysical data. We will do it in the
next chapter, analysing the correlation “period — average
density of Cepheids”. In addition, according to our theory,
the central regions of stars, where stellar energy is generated,
consist almost entirely of hydrogen. This conclusion, despite
its seemingly paradoxical nature, must be considered as an
empirically established fact. We will see further that study of
the problem of the origin of stellar energy will reconcile this
result with spectroscopic data about the presence of heavy
elements in the surface layers of stars.

2.8 The rôle of convection inside stars

In §1.3 we gave the equations of equilibrium of stars (II),
which take convective transfer of energy into account. As-
suming the convection coefficient A= const, the second eq-
uation of the system (the heat equilibrium equation) can be
written as

1

ρ1x
2

d

dx

[
x2dB1
ρ1dx

]

−
κcρcA

c γc

1

ρ1x
2

[

x2u
dp1
dx

]

=−λε1 , (2.57)

where

u = 1−
Γ

4(Γ− 1)
p1
B1

dB1
dp1

. (2.58)

The convection term in (2.57) plays a substantial rôle
only if

κcρcA

c γc
> 1 , A >

c γc
κcρc

. (2.59)

76 N. Kozyrev. Sources of Stellar Energy and the Theory of the Internal Constitution of Stars



October, 2005 PROGRESS IN PHYSICS Volume 3

Table 3

κ x1 Mx1 λLx0 x0 Mx0

x30
3Mx0

λLx0

M3
x0

const 2.4913 3.570 3.018 8.9 11.46 20.5 1.97×10−3

κCh 1.88 1.25 1.25 11.2 12.4 37.0 0.65×10−3

Hence the convection coefficient for the Sun should sat-
isfy A�>5×107. In super-giants, convection would be sub-
stantial only under A>1016. The convection coefficient A,
as we see from formula (1.17), equals the product of the
convective current velocity v̄ and the average length λ̄ tra-
velled by the current. Thus convection can influence energy
transfer inside super-giants if convection currents are about
the size of the star (which seems improbable). At the same
time, if a convection instability occurs in a star, the average
length of travel of the current becomes the size of the whole
convection zone. Then the coefficient A increases so much
that it can reach values satisfying (2.59). If A is much more
than the right side of (2.59), taking into account the fact that
all terms of the equilibrium equation (2.57) are about 1, the
term in square brackets is close to 0. Then, if A is large,

u = 0 , hence B1 = p
4(Γ−1)

Γ
1 , (2.60)

which is the equation of adiabatic changes of state. For a
monatomic gas, Γ= 5/3 (n= 3/2) and hence

B1 = p8/51 . (2.61)

Because, according our conclusions, stars are built up
almost entirely of hydrogen, Γ can be different from 5/3 in
only the upper layers of stars, which is insufficient in our
consideration of a star as a whole. Therefore zones of free
convection can appear because of an exotic distribution of
energy sources.

Free convection can also start in another case, as soon
as the temperature gradient of radiant equilibrium exceeds
the temperature gradient of convective equilibrium. This is
Schwarzschild’s condition, and it can be written as

(
d logB1
d log p1

)

Rad

>

(
d logB1
d log p1

)

Con

,

which, taking (2.22) and (2.61) into account, leads to

λLx
Mx

> 1.6
B1
p1

. (2.62)

From this formula we see that free convection is im-
possible in the surface layers of stars. In central regions we
obtain the next condition for free convection

λ > 1.6.

Table 2 shows that even when ε1=B1 , any star should
contain a convective core. If ε1 depends only on temperature
and can be approximated by function ε1=T

m, the calc-
ulations show that λ reaches its critical value of 1.6 when
m= 3.5. Thus a star has a convective core if m> 3.5. The
radius x1 of the convective core is determined by equality
between the temperature gradients (see above). Writing
(2.62) as an equality, we obtain

λLx1 = 1.6Mx1

(
B1
p1

)

x1

= 1.6Mx1ρx1 . (2.63)

It is evident that the size of the convective core increases
if the energy sources become more concentrated at the centre
of a star. In the case of a strong concentration, all energy
sources become concentrated inside the convective core.
Then inside the region of radiant equilibrium we have
λLx=λLx1 = const. Because the border of the convective
core is determined by equality of the physical characteristics’
gradients in regions of radiant equilibrium and convective
equilibrium, not only are p1 and T1 continuous inside such
stars but so are their derivatives. Therefore such a structure
for a star can be finely calculated by solving the main system
of the equilibrium equations under ε1=0 and boundary
conditions: (1) under some values of x=x1, quantities p1,B1
and their derivatives should have numerical values satisfying
the solution to Emden’s equation under n= 3/2; (2) under
some value x=x0 we should have p1=B1 =0. The four
boundary conditions fully determine the solution. We can
find x1 by step-by-step calculations as done in §2.3 for λ.

The formulated problem, known as the problem of the
internal constitution of a star having a point-source of energy
and low radiant pressure, was first set up by Cowling [17].
In his calculations the absorption coefficient was taken as
variable according to Chandrasekhar’s formula (2.51):
κ=κCh. However in §2.6 we showed that κ=κT inside
all stars. Only in the surface layers of a star should κ
increase to κT. But, because of very slow changes of physical
conditions along the radius of a star, κ remains κT in the
greater part of the volume of a star. Therefore it is very
interesting to calculate the internal structure of a star under
given values of κ= const. We did this, differing thereby
from Cowling’s model, so that there are two alternatives:
our model (κ= const) and Cowling’s model (κT). All the
calculations were carried out by numerical integration of
(2.23b) assuming there that ε1=0.
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Table 4

x T1 p1 ρ1

0.00 1.000 1.000 1.000

0.50 0.983 0.958 0.975

1.00 0.935 0.845 0.904

1.50 0.856 0.677 0.791

2.00 0.762 0.507 0.665

2.50 0.652 0.346 0.530

3.00 0.544 0.211 0.388

3.50 0.451 0.117 0.259

4.00 0.370 0.598×10−1 0.161

4.50 0.328 0.284×10−1 0.936×10−1

5.00 0.245 0.125×10−1 0.510×10−1

5.50 0.195 0.52×10−2 0.266×10−1

6.00 0.154 0.20×10−2 0.129×10−1

6.50 0.118 0.67×10−3 0.57×10−2

7.00 0.087 0.20×10−3 0.23×10−2

7.50 0.060 0.49×10−4 0.82×10−3

8.00 0.036 0.64×10−5 0.18×10−3

8.50 0.015 0.19×10−6 0.79×10−4

8.90 0.000 0.000 0.000

Table 3 gives the main characteristics of the “convective”
model of a star under κ= const and κ=κCh. The κCh are
taken from Cowling’s calculations. Values of λLx0 were
found by formula (2.62). In this model, distribution of energy
sources inside the convective core does not matter. For this
reason, the quantities λ and Lx0 are inseparable. If we would
like to calculate them separately, we should set up the dis-
tribution function for them inside the convective core.

We see that the main characteristics of the structure of a
star, the quantities x0, Mx0 , and λLx0 , are only a little dif-
ferent from those calculated in Table 2. The main difference
between structures of stars under the two values κ= const
and κ=κCh is that under our κ= const the convective core is
larger, so such stars are close to polytropic structures of class
3/2, and there we obtain a lower concentration of matter at the
centre: ρc= 20.5 ρ̄. Table 4 gives the full list of calculations
for our convective model (κ= const).

Chapter 3

The Internal Constitution of Stars, Obtained from the
Analysis of the Relation “Period — Average Density of

Cepheids” and Other Observational Data

In the previous chapter we deduced numerous theoretical
correlations, which give a possibility of calculating the phys-

ical characteristics of matter inside stars if their structural
characteristics are known. In order to be sure of the calc-
ulations, besides our general theoretical considerations, it
would be very important to obtain the structural character-
istics proceeding from observational data, related at least to
some classes of stars.

Properties of the internal structure of a star should mani-
fest in its dynamical properties. Therefore we expect that
the observed properties of variable stars would permit us to
learn of their structures. For instance, the pulsation period
of Cepheids should be dependent on both their physical
characteristics and the distribution of the characteristics in-
side the stars. Theoretical deduction of this correlation can
be done very strictly. Therefore we have a basis for this
deduction in all its details.

Radiation of energy by an oscillating star must result in
a dispersion of mechanical energy of its oscillations. It is
most probable that the oscillation energy of variable stars is
generated and supported by energy sources connected to the
oscillation and radiation processes. In other words, such stars
are self-inducing oscillating systems. Observable arcs of the
oscillating luminosity and speed reveal a nonlinear nature for
the oscillations, which is specific to self-inducing oscillating
systems. The key point of a self-inducing oscillating system
is a harmonic frequency equal to the natural frequency of
the whole oscillating system. Therefore, making no attempt
to understand the nature of the oscillations, we can deduce
the oscillation period as the natural period of weak linear
oscillations.

3.1 The main equation of pulsation

Typical Cepheids have masses less than 10 solar masses. For
instance, δ Cephei hasM ' 9M�. In this case equation (2.34)
leads to γc< 0.1, so Cepheids should satisfy L∼M3, i. e. the
“mass-luminosity” relation. Therefore the radiant pressure
plays no rôle in such stars, so considering their internal
constitutions we should take into account only the gaseous
pressure. In solving this problem we will consider linear
oscillations, neglecting higher order terms. This problem
becomes much simpler because temperature changes in such
a star satisfy adiabatic oscillations in almost its whole volume,
except only for the surface layer. Naturally, in order to
obtain the ratio between observed temperature variations
and adiabatic temperature variations close to 1, the average
change of energy inside 1 gram in one second should be
about ε̄, i. e. ∼102. This is 108 per half period. On the other
hand, the heat energy of a unit of mass should be about
Ω/M (according to the virial theorem), that is ∼1015 ergs
by formula (2.5). Thus during the pulsation the relative
change of the energy is only 107, so pulsations of stars are
adiabatic, with high precision. We assume that the pulsation
of a star can be determined by a simple standing wave with
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a frequency n/2π

V (r, t)=V (r) sinnt, a=
∂2V

∂t2
=−n2V (r) sinnt, (3.1)

where V (r) is the relative amplitude of the pulsation

V (r) =
δr

r
.

By making the above assumptions, Eddington had solved
the problem of pulsation of a star.

Linking the coordinate r to the same particle inside a
star, we have the continuity equation as follows

Mr = const , r2ρdr = const . (3.2)

Using the condition of adiabatic changes δp
p =Γ

δρ
ρ and

taking variation from the second equality, we obtain

δp

p
= −Γ

[

3V + r
dV

dr

]

. (3.3)

It is evident that the equations of motion

dp

ρdr
= −(g + a) , g =

GMr

r2

give, neglecting higher order terms,

dδp

dr
= −aρ+ 4V

dp

dr
.

Substituting formula (3.3) into this equation, we obtain
Eddington’s equation of pulsation

d2V

dr2
+
1

r

dV

dr

[

4 +
r

p

dp

dr

]

+

+
V

rΓ

1

p

dp

dr

[

(3Γ− 4)−
n2r

g

]

= 0 .

(3.4)

We introduce a dimensionless variable x instead of r (we
used this variable in our studies of the internal constitution
of stars). As it is easy to see

g

r
= 4πG

ρ̄r
3
= 4πGρc

Mx

x3
. (3.5)

Substituting (3.5) into formula (3.4), we transform the
pulsation equation to the form

d2V

dr2
+
1

x

dV

dr

[

4 +
x

p1

dp1
dr

]

−

−
V

xΓ

1

p1

dp1
dr

[

(4− 3Γ) +
n2

4πGρc

x3

3Mx

]

= 0 .

(3.6)

We transform this equation to self-conjugated form. Mul-
tiplying it by x4p1, we obtain

d

dx

[

x4p1
dV

dx

]

−V x3
dp1
dx

(4−3Γ)
Γ

[

1−λ
x3

3Mx

]

=0, (3.7)

where

λ =
n2

4πGρc
(
Γ− 4

3

) . (3.8)

So the problem of finding the pulsation period has been
reduced to a search for those numerical values of λ by which
the differential equation (3.7) has a solution satisfying the
“natural” boundary conditions

x4p1
dV

dx

∣
∣
∣
∣

x0

0

= 0. (3.9)

Formula (3.8) gives the correlation “period — average
density of Cepheids” and, hence, the general correlation
“period — average density of a star”. It is evident that λ
depends on the internal structure of a star. Its expected
numerical value should be about 1. For a homogeneously
dense star, x3/(3Mx)= 1 everywhere inside it. In this case
the differential equation (3.7) has the solution: V = const,
λ=1. This solution determines the main oscillation of such
a star. In order to find the main oscillations of differently
structured stars, we proceed from the solution by applying
the method of perturbations.

3.2 Calculation of the mean values in the pulsation
equation by the perturbation method

We write the pulsation equation in general form

(
py ′
)
′ + qy

(
1− λρ

)
= 0 . (3.10)

If we know a solution to this equation under another
function ρ= ρ0

(
py ′0
)
′ + qy0

(
1− λ0ρ0

)
= 0 , (3.11)

hence we know the function y0 and the parameter λ0. After
multiplying (3.10) by y0 and (3.11) by y, we subtract one
from the other. Then we integrate the result, taking the limits
0 and x0. So, we obtain

∫ x0

0

qyy0 [λ0ρ0 − λρ] dx = 0 ,

hence

λ = λ0

∫ x0

0

qyy0ρ0dx

∫ x0

0

qyy0ρdx

. (3.12)

If the oscillations are small, equation (3.10) is the same
as (3.11) with only an infinitely small correction

ρ = ρ0 + δρ , y = y0 + δy , λ = λ0 + δλ .
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Then the exact formula for δλ

δλ = −λ0

∫ x0

0

qyy0 δρ dx

∫ x0

0

qyy0ρdx

can be replaced by

δλ = −λ0

∫ x0

0

qy20 δρ dx

∫ x0

0

qy20ρdx

,

and thus we have

λ = λ0

∫ x0

0

qy20ρ0dx

∫ x0

0

qy20ρdx

. (3.13)

In our case y0=1 and λ0=1. Comparing formulae
(3.10) and (3.7), using (3.13), we obtain

λ = λ0

3

∫ x0

0

xρ1Mxdx

∫ x0

0

x4ρ1dx

. (3.14)

We re-write this equation, according to (2.5a), as follows

λ = λ0

9

∫ x0

0

p1x
2dx

∫ x0

0

ρ1x
4dx

. (3.15)

If we introduce the average density ρ̄ into formula (3.8)
instead of the central one ρc, then according to (2.4),

λ̄ =
n2

4πGρ̄
(
Γ− 4

3

) , (3.16)

λ̄ = λ
ρc
ρ̄
=

x30
3Mx0

λ . (3.17)

Using formulae (2.6) and (3.17) we re-write (3.15) as

λ̄ =
x20Ωx0Mx0

Ix0
, (3.18)

where Ix0 is the dimensionless moment of inertia

Ix0 =

∫ x0

0

ρ1x
4dx . (3.19)

Formulae (3.16) and (3.18) determine the oscillation per-
iod of a star, P =2π/n, independently of its average density

ρ̄. This result was obtained by Ledoux [18] by a completely
different method. It is interesting that our equations (3.16)
and (3.18) coincide with Ledoux’s formulae.

We next calculate λ for stars of polytropic structures. In
such cases Ix0 is

Ix0 = x20Mx0 − 6(n+ 1)
∫ x0

0

T1 x
2dx , (3.20)

where n is the polytropic exponent. Thus

1

λ̄
=
5− n
3





1− 6 (n+ 1)

∫ x0

0

T1 x
2dx

Mx0x
2
0





 . (3.21)

Calculations of the numerical values of λ̄ for cases of
different polytropic exponents are given in Table 5.

Table 5

n λ̄

0 1.00

1 1.91

3/2 2.52

2 3.85

2.5 7.00

3 13.1

Under large λ̄, much different from 1,
the calculations for Table 5 are less
precise. Therefore, in order to check
the calculated results, it is interesting
to compare the results for n=3 to
those obtained by Eddington via his
exact solution of his adiabatic oscil-
lation equation for his stellar model.
For the stars we consider, he obtained,
n2

πGρcΓ
= 3
10
(3 − 4/Γ). Hence, com-

paring his result to our formula (3.8),
we obtain λ= 9/40 and λ̄= 9

40
ρc
ρ̄
=

= 12.23. This is in good agreement with our result λ̄= 13.1
given in Table 5.

3.3 Comparing the theoretical results to observational
data

We represent the “period — average density” correlation in
the next form

P
√
ρ̄0 = c1 , (3.22)

where P is the period (days), ρ̄0 is the average density
expressed in the multiples of the average density of the Sun

n =
2π

86,400P
, ρ̄ = 1.411 ρ̄0 .

Employing formula (3.16), it is easy to obtain a correla-
tion between the coefficients λ̄ and c1

λ̄

(

Γ−
4

3

)

= 0.447
(
10c1

)−2
. (3.23)

By analysis of the “mass-luminosity” relation we have
previously shown that the radiant pressure is much less than
the gaseous pressure in a star. Therefore, because the inner
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regions of a star are primarily composed of hydrogen, the
heat energy there is much more than the energy of ionization.
So we have all grounds to assume Γ= 5/3, the ratio of the
heat capacities for a monatomic gas. Hence

λ̄ = 1.34
(
10c1

)−2
. (3.24)

In order to express c1 in terms of the observed char-
acteristics of a star, we replace ρ̄0 in formula (3.22) with
the reduced temperature and the luminosity, via the “mass-
luminosity” formula. The “mass-luminosity” correlation has
a general form L∼Mα for any star. We denote by T̄ the
reduced temperature of a star (with respect to the temperature
of the Sun), and by Mb its reduced stellar magnitude. Then,
by formula (3.22), we obtain
(

0.30−
1

5α

)
(
Mb−M�

)
+logP+3 log T̄ = log c1 . (3.25)

From this formula we see that, in order to find c1, it is
unnecessary to know the exact value of α (if, of course, α
has a large numerical value). Eddington’s formula for the
“mass-luminosity” relation, taken for huge masses, gives
α∼ 2 (compare with 2.53). Therefore, Eddington’s value
of c1= 0.100 is overstated. Applying another correlation,
L∼M 10/3, Parenago [19] obtained c1= 0.071. Becker [20]
carried out a precise analysis of observational data using
Kuiper’s empirical “mass-luminosity” arc. He obtained the
average value of c1= 0.076 for Cepheids. Formula (2.4)
gives λ̄= 2.7 or λ̄= 2.3, so that Table 5 leads us to conclude
that Cepheids have structures close to the polytropic class 3/2,
like all other stars. Hence Cepheids have a low concentration
of matter at the centre: ρc= 6ρ̄.

This result is in qualitative agreement with the “natural
viewpoint” that sources of stellar energy increase their prod-
uctivity towards the centre of a star. However (as we saw
in §2.8) the model for a point-source of energy and for
a constant absorption coefficient, giving stars of minimal
average densities, leads to a strong concentration at the
centre, ρc/ρ̄= 20.5. Thus λ̄ for such a model should be more

than an observable one. Really, having
∫ x0

0

p1x
2dx= 6.06

and Ix0 = 140.0 calculated by Table 4, formulae (3.15) and
(3.17) give λ̄= 8.0 for models with the ultimate concentra-
tion of energy sources. So, such stars are of the polytropic
class n= 2.5. If the absorption coefficient is variable
(Cowling’s model), calculations give even more: λ̄= 8.4.

Eddington and others, in their theoretical studies of the
pulsation period within the framework of Eddington’s model,
explain the deviation between the theoretical and observed
values of λ̄ by an effect of the radiant pressure. Studies of
pulsations under γc close to 1 show that the obtained formula
for the period under low γc is true even if Γ is the reduced
ratio of the heat capacities (which is, depending on the rôle
of the radiant pressure, 4/36Γ6 5/3).

Equation (3.23) shows that when λ̄= 12.23 and the ob-
servable c1= 0.075 we have Γeff = 1.40. At the same time Γeff
should undergo changes independently of γc, i. e. depending
upon the rôle of the radiant pressure. For a monatomic gas,
Eddington [21] and others obtained this correlation as

Γeff −
4

3
=
1

3

1 + 4γc
(1 + γc)(1 + 8γc)

. (3.26)

Under Γeff = 1.40 we obtain γc= 1.5. We accept this
numerical value in accordance with the average period of
Cepheids, P = 10d. Then, by the “mass-luminosity” relation,
M = 12M�. It is possible to think that this result is in good
agreement with the conventional viewpoint on the rôle of the
radiant pressure inside stars (see §2.7). However, because λc
depends on the mass of a star, other periods give different
Γeff (by formula 3.26) and hence other numerical values
of c1. Using formulae (3.26) and (3,23), we can calculate
c1 for variable stars having longer pulsations, with periods
20d<P < 30d. Instead of the average value log c1=−1.12
found by Becker for the stars, there should be log c1=−1.00.
Despite the small change, observations show no such increase
of c1 [20]. Therefore, our conclusion about the negligible
rôle of the radiant pressure in stars, even inside super-giants,
finds a new verification. This result verifies as well our results
μ= 1/2 and κ=κT, obtained in chapter 3.

3.4 Additional data about the internal constitution of
stars

Some indications of the internal structure of stars can be
obtained from analysis of the elliptic effect in the luminosity
arcs of eclipse variable stars. Observations of such binaries
gives the ratio of diameters at the equator of a star, which
becomes elliptic because of the flow-deforming effect in
such binary systems. For synchronous rotations of the whole
system and each star in it, the compressed polar diameter of
each star should be different (in the first order approximation)
from the average equatorial one with a multiplier dependent
on their masses. Thus, proceeding from the observed com-
pression we can calculate the meridian compression ε. Ac-
cording to Clairaut’s theory ε is proportional to ϕ, the ratio
of the centrifugal force at the equator to the force of gravity

ε = αϕ , ϕ =
ω2

3πGρ̄
,

where α is a constant dependent on the structure of the star.
This constant was calculated for stars of polytropic structures
by numerous researchers: Russell, Chandrasekhar and others.
If n=0 (homogeneous star), α= 1.25. If n=1, we have
α= 15/(2π2)= 0.755. If n= 5 (the ultimate concentration,
Roche’s model), α= 0.50. We see that the constant α is
sensitive to changes in the structure of a star. Therefore
determination of the numerical values of n in this way
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requires extremely precise observations. The values of n
so obtained are very uncertain, despite the simplicity of
the theory. Shapley first concluded that stars are almost
homogeneous. This was verified by Luiten [22] who found
the average value α= 0.57 for a large number of stars like β
Lyrae, and α= 0.71 for stars like Algol. His results corres-
pond to the polytropic structures n= 3/2 and n=1 respect-
ively.

The observed motion of the line of apsides in numerous
eclipse binaries can be explained, in numerous cases, by their
elliptic form. Because matter is more strongly concentrated in
a binary system than in regular stars, the binary components
interact like two point-masses, so there should be no motion
of the line of apsides. Therefore the velocity of the line of
apsides should be proportional (in the first order approxi-
mation) to α− 1/2, where α is sensitive to changes in the
structure of a star (as we showed above). Many theoretical
studies on this theme give contradictory formulae for the
velocity, depending on hypotheses about the properties of
rotation in the pair. Russell, in his initial studies of this
problem, supposed the rotating components solid bodies.
This theory, being applied to the system Y Cygni by Russell
and Dugan [23], gave α− 1/2= 0.034, which is the polytropic
structure 1/2<n<2. Other researchers, having made other
suppositions, obtained larger n: n' 3. It is probable that
we can be most sure only that, because we observe motion
of the line of apsides in binaries, the stars have no strong
concentration of matter at the centre.

Blackett supposed a law according to which the ratio
between the magnetic momentum PH and angular moment-
um U is constant for all rotating space bodies. If this law
is correct, we could have a possibility of determining the
structures of stars in an independent way. We denote by k
the ratio between the moments of the inertia of an arbitrary
structured star rotating with the angular velocity ω and of the
same star if it would be homogeneous throughout. Then

U =
2

5
kωMR2, k =

5

3

Ix0
x2Mx0

,

where Ix0 is the dimensionless moment of inertia. Using
Blanchett’s formula [24]

PH

U
= β

G1/2

2c
(3.27)

(β is a dimensionless multiplier, equal to about 1), and having
the magnetic magnitude at the pole H =2PH/R

3, we can
calculate k. For the Earth (k= 0.88), we obtain β= 0.3.
Supposing k= 0.16 for stars, Blackett has found: β= 1.14
for the Sun and β= 1.16 for 78 Virginis (its magnetic field
has been measured by Babcock).

If Blackett’s law (3.27) is valid throughout the Universe
and β= 0.3 for all space bodies, not just for the Earth, then
k= 0.60 should be accepted for stars. Comparing k= 0.60

Table 6

n k

0 1.00

1 0.65

3/2 0.52

2 0.40

2.5 0.28

3 0.20

with Table 6, we come to the same
conclusion that we have obtained by
completely different methods: that
stars have polytropic structures of
class n= 3/2.

For the convective model of a star
(calculated in §2.8) we obtain k=0.26.
This is much less than required. The
same convective model with a vari-
able absorption coefficient (Cowling’s
model) gives even less: k= 0.19.

The agreement of our value n= 3/2
with other data, obtained by very dif-

ferent methods, verifies Blackett’s law. It is possible his
formula (3.27) should be written without β, but with the
denominator 2πc.

3.5 Conclusions about the internal constitution of stars

The most certain conclusions about the structure of stars
are derived from the theory of pulsation of Cepheids. We
have concluded that Cepheids have structures close to the
polytropic one of class n= 3/2, for which ρc=6 ρ̄. This
conclusion is verified by other data, whereas each of them
could be doubtful when being considered in isolation. At
the same time all the data, characterizing stars of different
classes, lead to the same result. It is probable that stars are
really close to being homogeneous, having a low concentr-
ation of matter at the centre like the bulky planets, Jupiter
and Saturn. Such a distribution of matter, as we saw in the
ultimate case of the convective model, cannot be explained
by a strong concentration of an energy source at the centre,
or by a special kind of absorption coefficient. The real reason
is that the radiant pressure B is included in the mechanical
equilibrium equation through the gaseous pressure in the
exponent 1/4. Therefore the structural characteristics Mx0

and X0, determined by the function ρ1, have small changes
even in very different models. Hence, in order to obtain the
observable low concentration of matter at the centre of stars,
we can search for the reason only in the heat equilibrium
equation. The polytropic model n= 3/2 differs from other
polytropic models by a smaller value of x0. In order to
make x0 smaller, the gaseous pressure should decrease more
strongly in the upper layers of a star. Such a rapid decrease in
the pressure is possible only if the surface layers are heavy.
In other words, in the case of the strong increase of the
molecular weight in the surface layers of a star. Such an
explanation is in complete agreement with our conclusion
about the high concentration of hydrogen in the internal
regions of stars. If the average molecular weight changes
from μ= 1/2 at the centre to μ= 2 at the surface of a star,
such a change of the molecular weight can be sufficient.

What is the goal of introducing the variable μ? Let us
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assume that μ depends on the temperature as

μ1 =
1

T s1
, (3.28)

where s is a positive determined exponent. Increase of the
molecular weight at the surface should result in an increase
of the absorption coefficient κ (transition from κ=κT to
κ=κCh). At the same time, under energy sources concentr-
ated at the centre, the quantity κ1Lx/Mx can remain almost
the same. If κ1Lx/Mx= const=1, equation (2.22a) leads to

p1 = B1 = T 41 , λ = 1 . (3.29)

Instead of T1 we introduce the characteristics

u1 =
T1
μ1

= T 1+s1 = μ
− 1+s

s
1 , (3.30)

which keeps the ideal gas equation in the regular form
p1=u1ρ1. According to (3.29), we have

p1 = u
4

1+s

1 . (3.31)

where we should equate the exponent 4/(1+ s) to n+1
according to formula (2.7a).

Thus we have

ρ1 = un1 , n =
3− s
1 + s

, (3.32)

so the function u1 is determined by Emden’s equation of
class n. Hence, in order to obtain the structure n= 3/2, there
should be s= 3/5 — the very low increase of the molecular
weight: for instance, under such s the molecular weight μ
increases 4 times at the distance x1 where

μ1 =

(
1

4

)8
3

= 0.025 , T1 =

(
1

4

)5
3

= 0.10 . (3.33)

At x>x1 the molecular weight remains unchanged, the
equilibrium of a star is determined by the regular system of
the equilibrium equations. However at the numerical values
(3.33) almost the whole mass of a star is accounted for (see
Table 4, for instance), so we obtain small corrections to
the polytropic structure n= 3/2. Naturally, tables of Emden’s
function taken under n= 3/2 show that x1= 5.6 and Mx1 =
= 11.0. Applying formula (2.27a), we obtain x0= 7.0 instead
of x0= 6, as expected for such a polytropic structure. These
calculations show that the observed structures of stars∗ verify
our result about the high content of hydrogen in the internal
regions of a star, obtained from the “mass-luminosity” rel-
ation. At the same time, it should be taken into account that
the hydrogen content in the surface layers of stars is also

∗The fact that the molecular weight is variable does not change the
formulas, determining the pulsation period of Cepheids. The variability of
μ can include a goal only if the whole structure of star has been changed.

substantial. Therefore on the average we have μ< 2 inside
a star, so the problem about homogeneity of the molecular
weight of stars is not completely solved with the above.

We saw that the dimensionless mass Mx0 is almost the
same in completely different models of stars. For polytropic
structures of the classes n= 3/2 and n= 2, convective mo-
dels, and models described in Table 2, we obtained approxi-
mately the same numerical values of Mx0 . Therefore we can
surely acceptMx0 = 11. What about x0? According to obser-
ved structures of stars, we accept x0= 6. Hence ρ̄c= 6.5 ρ̄. In
order to obtain κ=κ1 from the observed “mass-luminosity”
relation, we should have λLx0/M

3
x0 = 1.0×10−3. Thus we

obtain λLx0 = 1.5. As a result, using these numerical values
in formulae (2.28), (2.30), and (2.31), we have a way of cal-
culating the physical conditions at the centre of any star. We
now make this calculation for the Sun. Assuming μc�= 1/2,
we obtain

ρc� = 9.2 , pc� = 9.5×1015 dynes/cm2,

γc� = 0.4×10−3, Bc� = 3.8×1012 dynes/cm2,

Tc� = 6.3×106 degrees.

(3.34)

Of the data the most soundly calculated is γc�, because
it is dependent only on Mx0 . Thus a low temperature at
the centre of the Sun, about 6 million degrees, is obtained
because of low numerical values of μc� and x0. Having such
low temperatures, it is scarcely possible to explain the origin
of stellar energy by thermonuclear reactions.

The results indicate possible ways to continue our research
into the internal constitution of stars. They open a way for a
physical interpretation of the Russell-Hertzsprung diagram,
which is directly linked to the origin of stellar energy.

P A R T II

Chapter 1

The Russell-Hertzsprung Diagram and the Origin
of Stellar Energy

1.1 An explanation of the Russell-Hertzsprung diagram
by the theory of the internal constitution of stars

The Russell-Hertzsprung diagram connects the luminosity L
of a star to its spectral class or, in other words, the reduced
temperature Teff . The theory of the internal constitution of
stars uses the radius R of a star instead of the effective
temperature Teff . It follows from the Stephan-Boltzmann law

L = 4πR2σT 4eff , σ =
1

4
αc ,

where c is the velocity of light, α is the radiant energy
density constant. Thus, the Russell-Hertzsprung diagram is
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the same for the correlation L(R) or M (R), if we use the
“mass-luminosity” relation. Due to the existence of numerous
sequences in the Russell-Hertzsprung diagram (the main
sequence, the sequences of giants, dwarfs, etc.) the cor-
relations L(R) and M (R) are not sufficiently clear. In this
paragraph we show that for most stars the correlations L(R)
and M (R) are directly connected to the mechanism gener-
ating stellar energy. The essence of the correlation L(R)
becomes clear, as soon as we replace the observable charact-
eristics of stars (the masses M , the luminosities L, and the
radii R) with the parameters which determine the physical
conditions inside stars. The method of such calculations and
the precision of the obtained results were discussed in detail
in Part I of this research.

First we calculate the average density of a star

ρ =
3M

4πR3
. (1.1)

Then, having the mechanical equilibrium of a star, we
calculate the average pressure within. This internal pressure
is in equilibrium with the weight of the column whose
aperture is one square centimeter and whose length is the
radius of the star. The pressure is p= gρR. Because of
g=GM/R2,

p =
3G

4π

M2

R4
. (1.2)

What can be said about the temperature of a star? It
should be naturally calculated by the energy flow of excess
radiation FR

FR =
L

4πR2
, (1.3)

because the flow is connected to the gradient of the temper-
atures. If we know what mechanism transfers energy inside a
star, we can calculate the temperature T by formula
(1.1) or (1.2)

T = f (L,M,R) . (1.4)

For instance, if energy is dragged by radiations, according
to §1.2, we have

FR = −
c

κρ

dB

dr
, (1.5)

where κ is the absorption coefficient per unit mass, B is the
radiant pressure

B =
1

3
αT 4. (1.6)

We often use the radiant pressure B instead of the temp-
erature. By formula (1.3) we can write

B '
κFR
c

ρR ,

which, by using (1.1) and (1.3), gives

B '
3LM

(4π)2cR4
κ . (1.4a)

If we know how κ depends on B and ρ, formula (1.4a)
leads to equation (1.4). So formulae (1.1), (1.2), and (1.4a)
permit calculation of the average numerical values of the
density, the pressure, and the temperature for any star. Exact
numerical values of the physical parameters at a given point
inside a star (at the centre, for instance) can be obtained,
if we multiply the formulae by dimensionless “structural”
coefficients. We studied the structural coefficients in detail in
Part I of this research. We studied them by both mathematical
methods (solving the system of the dimensionless differential
equations and mechanical equilibrium and heat equilibrium
of a star) and empirical methods (the analysis of observable
properties of stars).

Values of ρ, p, and T , calculated by formulae (1.1),
(1.2), and (1.4), should be connected by the equation of the
phase state of matter. Hence, we obtain the first theoretical
correlation

F1 (L,M,R) = 0 , (1.7)

which almost does not depend on the kind of energy gener-
ation in stars.

For instance, a star built on an ideal gas has

p =
<T
μ

ρ .

Dividing (1.2) by (1.1), we obtain

T '
G

<
μ
M

R
, B '

αG4

3<4
μ
M4

R4
, (1.8)

γ =
B

p
'M2μ4. (1.9)

Comparing (1.8) to formula (1.4a), obtained for the en-
ergy transfer by radiation, we obtain the correlation (1.7) in
clear form

L 'M3 μ
4

κ
. (1.7a)

Another instance — a star built on a degenerate gas

p ' ρ
5
3 ,

then formulae (1.1) and (1.2) lead to

RM 1/3 = const , (7.b)

so in this case we just obtain the correlation like (1.7), where
there is no L.

Formula (1.7a), which is true for an ideal gas, can include
R only through κ. Therefore this formula is actually the
“mass-luminosity” relation, which is in good agreement with
observational data L∼M3, if μ4/κ= const= 0.08. The calc-
ulations are valid under the low radiant pressure γ < 1. As
we see from formula (1.9), inside extremely bulky stars the
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value of γ can be more than 1. In such cases formula (1.2)
will determine the radiant pressure

B '
M2

R4
,

not the gaseous one. Comparing to formula (1.4a), we have

L '
M

κ
. (1.7b)

Astronomical observations show that super-giants do not
have the huge variations of M which are predicted by this
formula. Therefore, in Part I, we came to the conclusion that
γ6 1 for stars of regular masses M 6 100M�, so formula
(1.9) gives for them: μ= 1/2. Hence, κ= 0.8, which is ap-
proximately equal to Thomson’s absorption coefficient. This
is very interesting, for we have obtained that the radiant
pressure places a barrier to the existence of extremely large
masses for stars, although there is no such barrier in the
theory based on the equilibrium equations of stars.

Until now, we hardly used the heat equilibrium equation,
which requires that the energy produced inside a star should
be equal to its radiation into space. According to the heat
equilibrium equation, the average productivity of energy by
one gram of stellar matter can be calculated by the formula

ε =
L

M
. (1.10)

On the other hand, if the productivity of energy is de-
termined by some other reactions, ε would be a function of ρ
and T . This function would also be dependent on the kinetics
of the supposed reaction. Thus formulae (1.10), (1.1), (1.4),
and the equation of the reaction demand the existence of the
second correlation

F2 (L,M,R) = 0 , (1.11)

which is fully determined by the mechanism that generates
energy in the reaction. For an ideal gas, R disappears from
the first correlation F1 =0 (1.7). For this reason formula
(1.11) transforms into the relation L(R) or M (R), which
become directly dependent on the kind of energy sources
in stars. For a degenerate gas we obtain another picture: as
we saw above, in this case M (R) is independent of energy
sources, and then M and L are connected by equation (1.11).

1.2 Transforming the Russell-Hertzsprung diagram to
the physical characteristics specific to the central
regions of stars

Our task is to find those processes which generate energy in
stars. In order to solve this problem, we must know physical
conditions inside stars. In other words, we should proceed
from the observed characteristics L, M , R to physical para-
meters.

We denote by a bar all the quantities expressed in terms
of their numerical values in the Sun. Assuming, according to
our conclusion in Part I, that stars have the same structure,
we can, by formulae (1.1), (1.2), and (1.10), strictly calculate
the central characteristics of stars

p̄c =
M̄2

R̄4
, ρ̄c =

M̄

R̄3
, ε̄c =

L̄

M̄
. (1.12)

Even for very different structures of stars, it is impossible
to obtain distorted results by the formulae. As we saw in
the previous paragraph, we can calculate the temperature
(or, which is equivalent, the radiant pressure) in two ways,
either way being connected to suppositions. First, the radiant
pressure can be obtained through the flow of energy, i. e.
through ε by formula (1.4a). The exact formula of that
relation, by equations (1.27) in §1.3 (Part I), is

Bc =
εcκc
4πGcλ

pc , (1.13)

where λ is the structural parameter of the main system of the
dimensionless equations of equilibrium: its numerical value
is about 1. Second, for an ideal gas, the radiant pressure can
be calculated directly from formulae (1.12)

B̄c
μ̄4

=

(
p̄c
ρ̄c

)4
=
M̄4

R̄4
. (1.14)

Formulae (1.13) and (1.14) must lead to the same result.
This requirement leads to the “mass-luminosity” relation.
Our conclusion that all stars (except for while dwarfs) are
built on an ideal gas is so well grounded that it is fair to use
formula (1.14) in order to calculate the temperature or the
radiant pressure in stars. Naturally, Eddington [21] showed:
under temperatures of about a few million degrees, because
of the ionization of matter, the atoms of even heavy elements
take up so little space (about one millionth of their normal
sizes) that van der Waals’ corrections are negligible if the
density is even much more than 1. However, because of
plasma, there could be substantial electrostatic interactions
between particles, making the pressure negative, and the gas
approaches properties of a super-ideal one. The approximate
theory of such phenomena in strong electrolytes has been
developed by Debye and Hückell. Eddington and Rosseland
applied the theory to a gas inside stars. They came to the
conclusion that the electric pressure cannot substantially
change the internal constitution of stars. Giving no details of
that theory, we can show directly that the electric pressure is
negligible in stars built on hydrogen. We compare the kinetic
energy of particles to the energy of Coulomb interaction

kT >
z2e2

r
.

As soon as the formula becomes true in a gas, the gas
becomes ideal. Cubing the equation we obtain

(kT )3

n
=
(kT )4

p
> z6e6,
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where n is the number of particles in a unit volume. Because
the radiant pressure is given by the formula

B =
π2

45
(kT )4

(~c)3
, (1.6a)

a gas becomes ideal as soon as the ratio between the radiant
pressure and the gaseous pressure becomes

γ >
π2z6

45

(
e2

~c

)3
.

Because of formula (1.9), this ratio is determined by the
mass of a star. Because γ=1 under M̄ = 100, we obtain

γ
1
2 ≈ M̄/100. So, for an ideal gas, we obtain the condition

100M� > M >
100π
√

45
z3
(
e2

~c

)3/2
M� . (1.15)

which is dependent only on the mass of a star.
For hydrogen or singly ionized elements, we have z=1.

Hence, for hydrogen contents of stars, the electric pressure
can play a substantial rôle only in stars with masses less than
0.01–0.02 of the mass of the Sun.

It is amazing that of all possible states of matter in stars
there are realized those states which are the most simple from
the theoretical point of view.

Now, if we know M̄ and R̄ for a star, assuming the
same molecular weight μ̄=1 for all stars (by our previous
conclusions), we can calculate its central characteristics ρ̄c
and T̄c by formulae (1.12) and (1.14). The range, within
which the calculated physical parameters are located, is so
large (10−8< ρ̄c<106, 10−2< T̄c<102, 10−3< ε̄c<104),
that we use logarithmic scales. We use the abscissa for
log ρ̄c, while the ordinate is used for log B̄c (or equivalently,
4 log T̄c). If an energy generation law like εc= f (ρc, Tc) ex-
ists in Nature, the points log ε̄c plotted along the z-coordinate
axis will build a surface. On the other hand, the equilibrium
condition requires formula (1.13), so the equilibrium states of
stars should be possible only at the transection of the above
surfaces∗. Hence, stars should be located in the plane (log ρ̄c,
log B̄c) along a line which is actually the relation M (R)
transformed to the physical characteristics inside stars. There
in the diagram, we draw the numerical values of log ε̄c in
order to picture the whole volume.

1.3 The arc of nuclear reactions

The equation for the generation of energy by thermonuclear
reactions is

ε = Aρτ 2ε−τ , τ =
a

T 1/3
m

, (1.16)

∗The energy generation surface, drawn from the energy generation
law εc= f (ρc, Tc), and the energy drainage surface, drawn from for-
mula (1.13).

where Tm is temperature expressed in millions of degrees.
For instance, for the proton-proton reaction, the constants a
and A take the values

a = 33.8, A = 4×103. (1.17)

In order to find the arc of the relation between ρc and Bc,
on which stars should be located if nuclear reactions are the
sources of their energy, we eliminate εc from formula (1.16)
by formula (1.13)

λ4πGcBc = Aκc pc ρcτ
2
c e

−τc . (1.18)

As the exponent indicates (see formula (1.16)), ε is very
sensitive to temperature. Therefore, inside such stars, a core
of free convection should exist, as was shown in detail in
Part I, §2.8. We showed there that λ cannot be calculated
separately for stars within which there is a convective core:
the equilibrium equations determine only λLx0 , where Lx0
is the dimensionless luminosity

Lx0 =

∫ x0

0

ε1ρ1x
2dx . (1.19)

In this formula x0 is the dimensionless radius (see Part I).
The subscript 1 on ε and ρmeans that the quantities are taken
in terms of their numerical values at the centre of a star. In the
case under consideration (stars inside which thermonuclear
reactions occur).

Lx0 =

∫ x0

0

ρ21 τ
2
1 e

−(τ1−τc)x2dx .

Because this integral includes the convective core (where
ρ1=T

3/2

1 ),

Lx0(τc) =

∫ x0

0

T 1/3

1 x2e
−τc
(
T
−1/3
1 −1

)

dx . (1.20)

The integral Lx0(τc) can be easily taken by numerical
methods, if we use Emden’s solution T1 (x) for stars of the
polytropic structure 3/2. The calculations show that numerical
values of the integral taken under very different τc are very
little different from 1. For instance,

Lx0 (33.8) = 0.67, Lx0 (7.3) = 1.15.

For the proton-proton reactions formula (1.17), the first
value of Lx0 is 1 million degrees at the centre of a star,
the second value is one hundred million degrees. Assuming
Lx0≈1 (according to our conclusions in Part I), Table 3 gives
λ≈ 3 in stars where the absorption coefficient is constant.

In Part I of this research we found the average molecular
weight 1/2 for all stars. We also found that all stars have
structures very close to the polytropic structure of the class
3/2. Under these conditions, the central temperature of the Sun
should be 6×106 degrees. Therefore Bethe’s carbon-nitrogen
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cycle is improbable as the source of stellar energy. As an
example, we consider proton-proton reactions. Because of
the numerical values obtained for the constants a and A
(1.17), formula (1.18) gives

log ρc = 0.217τc − 5.5 log τc + 5.26−
1

2
log

κc
μ
. (1.21)

Taking κc/μ constant in this formula, we see that ρc has
the very slanting minimum (independent of the temperature)
at τc= 11 that is Tc= 30×106 degrees. In a hydrogen star
where the absorption coefficient is Thomson, the last term
of (1.21) is zero and the minimal value of ρc is 100. Hence,
stars undergoing proton-proton reactions internally should be
located along the line ρc≈100 in the diagram for (ρc, Bc).
It appears that stars of the main sequence satisfy the require-
ment (in a rude approximation). Therefore, it also appears
that the energy produced by thermonuclear reactions could
explain the luminosity of most of stars. But this is only an
illusion. This illusion disappears completely as soon as we
construct the diagram for ( log ρ̄c, log B̄c) using the data of
observational astronomy.

1.4 Distribution of stars on the physical conditions dia-
gram

Currently we know all three parameters (the mass, the bolo-
metric absolute stellar magnitude, and the spectral class) for
approximately two hundred stars. In our research we should
use only independent measurements of the quantities. For
this reason, we cannot use the stellar magnitudes obtained
by the spectroscopic parallax method, because the basis of
this method is the “mass-luminosity” relation.

For stars of the main sequence we used the observational
data collection published in 1948 by Lohmann [26], who
generalized data by Parenago and Kuiper. For eclipse variable
stars we used data collections mainly by Martynov [27],
Gaposchkin [28], and others. Finally, we took particularly
interesting data about super-giants from collections by Pare-
nago [29], Kuiper [7], and Struve [30]. Some important data
about the masses of sub-dwarfs were given to the writer
by Prof. Parenago in person, and I’m very grateful to him
for his help, and critical discussion of the whole research.
Consequently, we used the complete data of about 150 stars.

The stellar magnitudes were obtained by the above ment-
ioned astronomers by the trigonometric parallaxes method
and the empirically obtained bolometric corrections (Petit,
Nickolson, Kuiper). In order to go from the spectral class
to the effective temperature, we used Kuiper’s temperature
scale. Then we calculated the radius of a star by the formula

5 log R̄ = 4.62−mb − 10 log T̄eff , (1.22)

where mb is the bolometric stellar magnitude of the star.
Then, by formulae (1.12) and (1.14), we calculated log ρ̄c,

log B̄c, log ε̄c. We calculated the characteristics for every star
on our list. The results are given in Fig. 2∗. There the abscissa
takes the logarithm of the matter density, log ρ̄c, while the
ordinate takes the logarithm of the radiant energy density,
log B̄c, where both values are taken at the centre of a star†.
Each star is plotted as a point in the numerical value of log ε̄c
— the energy productivity per second from one gramme of
matter at the centre of a star with respect to the energy
productivity per second at the centre of the Sun. In order to
make exploration of the diagram easier, we have drawn the
net values of the fixed masses and radii. Bold lines at the left
side and the right side are the boundaries of that area where
the ideal gas law is true (stars land in exactly this area).
The left bold line is the boundary of the ultimately large
radiant pressure (γ=1). The bold line in the lower part of
the diagram is the boundary of the ultimately large electric
pressure, drawn for hydrogen by formula (1.15). This line
leads to the right side bold lines, which are the boundaries
of the degeneration of gas calculated for hydrogen (the first
line) and heavy elements (the second line).

We built the right boundary lines in the following way.
We denote by ne the number of free electrons inside one
cubic centimetre, and μe the molecular weight per electron.
Then

ρ = μemHne ,

so Sommerfeld’s condition of degeneration

ne~3

2

1

(2πmekT )
3/2

> 1 (1.23)

can be re-written as

ρ > 10−8μe T
3/2. (1.24)

For the variables p and ρ, we obtain the degeneration
boundary equation‡

p = kμ5/3e ρ5/3,

p̄ = k
ρ5/3
�

p�
ρ̄ 5/3μ5/3e ,

(1.25)

which coincides with the Fermi gas state equation p=Kρ5/3=
=KHμ

5/3
e ρ5/3 (formula 1.9 in Part I), if

K ≈ KH = 9.89×1012.

∗Of course not all the stars are shown in the diagram, because that
would produce a very dense concentration of points. At the same time,
the plotted points show real concentrations of stars in its different parts. —
Editor’s remark.

†The bar means that both values are expressed in multiples of the
corresponding values at the centre of the Sun. — Editor’s remark.

‡The degeneration boundary equation is represented here in two forms:
expressed in absolute values of p and in multiples of the pressure in
the Sun. — Editor’s remark.
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At the centre of the Sun, as obtained in Part I of this
research (see formula 3.34),

ρc� = 9.2 , pc� = 9.5×1015,

γc� = 0.4×10−3, Bc� = 3.8×1012,

Tc� = 6.3×106,

(1.26)

then we obtain

p̄ = 4×10−2 ρ̄ 5/3μ5/3e .

The right side boundaries drawn in the diagram are con-
structed for μe=1 and μe=2. At the same time these are
lines along which stars built on a degenerate gas (the lines of
Chandrasekhar’s “mass-radius” relation) should be located.
In this case the ordinate axis has the meaning log (p̄/ρ̄)4 that
becomes the logarithm of the radiant energy density log B̄
for ideal gases only. In this sense we have drawn white
dwarfs and Jupiter on the diagram. Under low pressure, near
the boundary of strong electric interactions, the degeneration
lines bend. Then the lines become constant density lines,
because of the lowering of the ionization level and the
appearance of normal atoms. The lines were constructed
according to Kothari’s “pressure-ionization” theory [31].
Here we see a wonderful consequence of Kothari’s theory:
the maximum radius which can be attained by a cold body
is about the radius of Jupiter.

Finally, this diagram contains the arc along which should
be located stars whose energy is generated by proton-proton
reactions. The arc is built by formula (1.21), where we used
the central characteristics of the Sun (1.26) obtained in Part I.

The values log ε̄c plotted for every star builds the system
of isoergs — the lines of the same productivity of energy.
The lines were drawn through the interval of ten changes of
ε̄c. If a “mass-luminosity” relation for stars does not contain
their radii, ε̄c should be a function of only the masses of
stars. Hence, the isoergs should be parallel to the constant
mass lines. In general, we can suppose the “mass-luminosity”
relation as the function

L ∼Mα, (1.27)

then the interval between the neighbouring isoergs should
decrease with increasing α according to the picture drawn
in the upper left part of the diagram. We see that the real
picture does not correspond to formula (1.27) absolutely.
Only for giants, and the central region of the main sequence
(at the centre of the diagram) do the isoergs trace a path ap-
proximately parallel to the constant mass lines at the interval
α= 3.8. In all other regions of the diagram the isoergs ε̄c
are wonderfully curved, especially in the regions of super-
giants (the lower left part of the diagram) and hot sub-
dwarfs (the upper right part). As we will soon see, the
curvilinearity can be explained. In the central concentration

of stars we see two opposite tendencies of the isoergs to be
curved. We have a large dataset here, so the isoergs were
drawn very accurately. The twists are in exact agreement
with the breaks, discovered by Lohmann [26], in the “mass-
luminosity” relation for stars of the main sequence. It is
wonderful that this tendency, intensifying at the bottom,
gives the anomalously large luminosities for sub-giants (the
satellites of Algol) — the circumstance, considered by Struve
[30]. For instance, the luminosity of the satellite of XZ
Sagittarii, according to Struve, is ten thousand times more
than that calculated by the regular “mass-luminosity” rel-
ation. There we obtain also the anomalously large luminosity,
discovered by Parenago [29], for sub-dwarfs of small masses.
The increase of the opposite tendency at the top verifies the
low luminosity of extremely hot stars, an increase which
leads to Trumpler stars. It is very doubtful that masses of
Trumpler stars measured through their Einstein red shift are
valid. For this reason, the diagram contains only Trumpler
stars of “intermediate” masses. Looking at the region of sub-
giants and sub-dwarfs (of large masses and of small ones)
we see that ε is almost constant there, and independent of the
masses of the stars. Only by considering altogether the stars
located in the diagram we can arrive at the result obtained in
Part I of this research: L∼M3.

So, the first conclusion that can be drawn from our
consideration of the diagram is: deviations from the “mass-
luminosity” relation are real, they cannot be related to sys-
tematic errors in the observational data. The possibility of
drawing the exact lines of constant ε̄c itself is wonderful: it
shows that ε is a simple function of ρ and B. Hence, the
luminosity L is a simple function of M and R. Some doubts
can arise from the region located below and a little left of
the central region of the diagram, where the isoergs do not
coincide with L for sub-dwarfs of spectral class F–G and L
of normal dwarfs of class M. It is most probable that the
inconsistency is only a visual effect, derived from errors in
experimental measurements of the masses and radii of the
sub-dwarfs.

As a whole our diagram shows the plane image of the
surface ε (ρ,B). We obtained much more than expected:
we should obtain only one section of the surface, but we
obtained the whole surface, beautifully seen in the central
region of the diagram. Actually, we see no tendency for stars
to be distributed along a sequence ε= const. Thus, of the two
equations determining ε, there remains only one: the energy
productivity in stars is determined by the energy drainage
(radiation) only. This conclusion is very important. Thus the
mechanism that generates energy in stars is not of any kid of
reactions, but is like the generation of energy in the process
of its drainage. The crude example is the energy production
when a star, radiating energy into space, is cooling down:
the star compresses, so the energy of its gravitational field
becomes free, cooling the star (the well-known Helmholtz-
Kelvin mechanism). Naturally, in a cooling down (compress-
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Fig. 2: The diagram of physical conditions inside stars (the stellar energy diagram): the productivity of stellar energy sources independence
of the physical conditions in the central regions of stars. The abscissa is the logarithm of the density of matter, the ordinate is the logarithm
of the radiant energy density (both are taken at the centre of stars in multiples of the corresponding values at the centre of the Sun). The
small diagram at the upper left depicts the intervals between the neighbouring isoergs.
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ing) star the quantity of energy generated is determined by
the speed of this process. At the same time the speed is
regulated by the heat drainage. Of course, the Helmholtz-
Kelvin mechanism is only a crude example, because of the
inapplicable short period of the cooling (a few million years).
At the same time the mechanism that really generates energy
in stars should also be self-regulating by the radiation. In
contrast to reaction, such a mechanism should be called a
machine.

It should be noted that despite many classes of stars in
the diagram, the filling of the diagram has some limitations.

First there is the main direction along which stars are
concentrated under a huge range of physical conditions —
from the sequence of giants, then the central concentration in
our diagram (the so-called main sequence of the Hertzsprung-
Russel diagram), to sub-dwarfs of class A and white dwarfs.
In order to amplify the importance of this direction, we
indicated the main location of normal giants by a hatched
strip. The main direction wonderfully traces an angle of
exactly 45◦. Hence, all stars are concentrated along the line,
determined by the equation∗

B ∼ ρμ4. (1.28)

Because stars built on a degenerate gas satisfy this dir-
ection, a more accurate formula is

p ∼ ρ5/5 (1.28a)

Second, there is in the main direction (1.28) a special
point — the centre of the main sequence†, around which stars
are distributed at greater distances, and in especially large
numbers.

Thus, there must exist two fundamental constants which
determine the generation of energy in stars:

1. The coefficient of proportionality of equation (1.28);

2. One of the coordinates of the “main point”, because
its second coordinate is determined by the eq. (1.28).

The above mentioned symmetry of the surface ε (ρ,B) is
connected to the same two constants.

Concluding the general description of the diagram, we
note: this diagram can also give a practical profit in calculat-
ions of the mass of a star by its luminosity and the spectral
class. Naturally, having the radius calculated, we follow the
line R= const to that point where log ε̄+ log M̄ gives the
observed value of log L̄.

1.5 Inconsistency of the explanation of stellar energy by
Bethe’s thermonuclear reactions

It is seemingly possible that the existence of the uncovered
main direction along which stars are concentrated in our

∗See formula (1.14). — Editor’s remark.
†The main sequence in the sense of the Russell-Hertzsprung diagram,

is here the central concentration of stars. — Editor’s remark.

diagram support a stellar energy mechanism like reactions.
In the real situation the equation of the main direction (1.28)
contradicts the kinetics of any reaction. Naturally, equation
(1.28) can be derived from the condition of energy drainage
(1.13) only if

ε ∼
1

T
, under ρ ∼ T 4, (1.29)

i. e. only if the energy productivity increases with decrease
in temperature and hence the density. The directions of all
the isoergs in the diagram, and also the numerical values
ε= 103–104 in giants and super-giants under the low temp-
eratures inside them (about a hundred thousands degrees)
cannot be explained by nuclear reactions. It is evident there-
fore, that the possibility for nuclear reactions is just limited
by the main sequence of the Russell-Hertzsprung diagram
(the central concentration of stars in our diagram).

The proton-proton reaction arc is outside the main seq-
uence of stars. If we move the arc to the left, into the region
of the main sequence stars, we should change the constant
A in the reaction equation (1.16) or change the physical
characteristics at the centre of the Sun (1.26) as we found
in Part I. Equation (1.18) shows that the shift of the proton-
proton reaction arc along the density axis is proportional to
the square of the change of the reaction constant A. Hence, in
order to build the proton-proton reaction arc through the main
concentration of stars we should take at least A= 105–106

instead of the well-known value A= 4×103. This seems very
improbable, for then we should ignore the central charact-
eristics of the Sun that we have obtained, and hence all
conclusions in Part I of this research which are in fine
agreement with observational data. Only in a such case could
we arrive at a temperature of about 20 million degrees at the
centre of the Sun; enough for proton-proton reactions and
also Bethe’s carbon-nitrogen cycle.

All theoretical studies to date on the internal constitution
of stars follow this approach. The sole reason adduced as
proof of the high concentration of matter in stars, is the slow
motion of the lines of apsides in compact binaries. However
the collection published by Luyten, Struve, and Morgan [32]
shows no relation between the velocity of such motion and
the ratio of the star radius to the orbit semi-axis. At the same
time, such a relation would be necessary if the motion of
the lines of apsides in a binary system is connected to the
deformations of the stars. Therefore we completely agree
with the conclusion of those astronomers, that no theory
correctly explains the observed motions of apsides. Even if
we accept that the arc of nuclear reactions could intersect
the central concentration of stars in our diagram (the stars of
the main sequence in the Russell-Hertzsprung diagram), we
should explain why the stars are distributed not along this
arc, but fill some region around it. One could explain this
circumstance by a “dispersion” of the parameters included in
the main equations. For instance, one relates this dispersion
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to possible differences in the chemical composition of stars,
their structure etc. Here we consider the probability of such
explanations.

The idea that stars can have different chemical com-
positions had been introduced into the theory in 1932 by
Strömgren [16], before Bethe’s hypothesis about nuclear
sources for stellar energy. He used only the heat drainage
condition (1.13), which leads to the “mass-luminosity” relat-
ion (1.7a) for ideal gases. In chapter 2 of Part I we showed in
detail that the theoretical relation (1.7a) is in good agreement
(to within the accuracy of Strömgren’s data) with the observ-
ed correlation for hydrogen stars (where we have Thomson’s
absorption coefficient, which is independent of physical con-
ditions). Introducing some a priori suppositions (see §2.7,
Part I), Eddington, Strömgren and other researchers followed
another path; they attempted to explain non-transparency of
stellar matter by high content of heavy elements, which build
the so-called Russell mix. At the same time the absorption
theory gives such a correlation κ(ρ,B) for this mix which,
being substituted into formula (1.7a), leads to incompatibility
with observational data. Strömgren showed that such a “dif-
ficulty” can be removed if we suppose different percentages
of heavy elements in stars, which substantially changes the
resulting absorption coefficient κ. Light element percentages
X can be considered as the hydrogen percentage. Comparing
the theoretical formula to the observable “mass-luminosity”
relation gives the function X (ρ,B) or X (M,R). Looking
at the Strömgren surface from the physical viewpoint we
can interpret it as follows. As we know, the heat drainage
equation imposes a condition on the energy generation in
stars. This is condition (1.13), according to which κ and
μ depend on the chemical composition of a star. Let us
suppose that the chemical composition is determined by one
parameter X . Then

ε = f1 (ρ,B,X) . (I)

For processes like a reaction, the energy productivity ε
is dependent on the same variables by the equation of this
reaction

ε = f2 (ρ,B,X) . (II)

So we obtain the condition f1 = f2 , which will be true
only if a specific relation X (ρ,B) is true in the star. The
parameter X undergoes changes within the narrow range
06X 6 1, so stars should fill a region in the plane (ρ,B).
Some details of the Russell-Hertzsprung diagram can be
obtained as a result of an additional condition, imposed
on X (ρ,B): Strömgren showed that arcs of X = const can
be aligned with the distribution of stars in the Russell-
Hertzsprung diagram. Kuiper’s research [33] is especially
interesting in this relation. He discovered that stars collected
in open clusters are located along one of Strömgren’s arcs
X = const and that the numerical values ofX are different for
different clusters. Looking at this result, showing that stellar

clusters are different according to their hydrogen percentage,
one can perceive an evolutionary meaning — the proof of the
nuclear transformations of elements in stars.

Strömgren’s research prepared the ground for checking
the whole nuclear hypothesis of stellar energy: substituting
the obtained correlation X (ρ,B) into the reaction equation
(II), we must come to the well-known relation (I). The
nuclear reaction equation (1.16), whereX is included through
A, had not passed that examination. Therefore they intro-
duced the second parameter Y into the theory — the percent-
age of helium. As a result, every function f1 and f2 can
be separately equated to the function ε(ρ,B) known from
observations. Making the calculations for many stars, it is
possible to obtain two surfaces:X (ρ,B) and Y (ρ,B). How-
ever, both surfaces are not a consequence of the equilibrium
conditions of stars. It remains unknown as to why such
surfaces exist, i. e. why the observed ε is a simple function
of ρ and B? It is very difficult to explain this result by
evolutionary transformations of X and Y , if the transform-
ation of elements procedes in only one direction. Of course,
taking a very small part of the plane (ρ,B), the evolution
of elements can explain changes of X and Y . For instance,
calculations made by Masevich [34] gave a monotone de-
crease of hydrogen for numerous stars located between the
spectral classes B and G. To the contrary, from the class
G to the class M, the hydrogen percentage increases again
(see the work of Lohmann work [26] cited above). As a
result we should be forced to think that stars evolve in two
different ways. In such a case the result that the chemical
composition of stars is completely determined by the physical
conditions inside them can only be real if there is a balanced
transformation of elements. Then the mechanism that gen-
erates energy in stars becomes the Helmholtz-Kelvin mech-
anism, not reactions. Nuclear transformations of elements
only become an auxiliary circumstance which changes the
thermal capacity of the gas. At the same time, the balanced
transformation of elements is excluded from consideration,
because it is possible only if the temperature becomes tens
of billions of degrees, which is absolutely absent in stars.

All the above considerations show that the surfaces
X (ρ,B) and Y (ρ,B) obtained by the aforementioned res-
earchers are only a result of the trimming of formulae (I)
and (II) to the observed relation ε(ρ,B). Following this
approach, we cannot arrive at a solution to the stellar energy
problem and the problem of the evolution of stars. This con-
clusion is related not only to nuclear reactions; it also shows
the impossibility of any sources of energy whose productivity
is not regulated by the heat drainage condition. Naturally,
the coincidence of the surfaces (I) and (II) manifests their
identity. In a real situation the second condition is not present∗.

∗For reactions, the energy productivity increases with the increase of
the density. In the heat drainage condition we see the opposite: equation
(1.13). Therefore the surfaces (I) and (II), located over the plane (ρ,B),
should be oppositely inclined — their transection should be very sharp.
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So we get back to our conclusion of the previous paragraph:
there are special physical conditions, the main direction
(1.28) and the main point in the plane (ρ,B), about which
stars generate exactly as much energy as they radiate into
space. In other words, stars are machines which generate
radiant energy. The heat drainage is the power regulation
mechanism in the machines.

1.6 The “mass-luminosity” relation in connection with
the Russell-Hertzsprung diagram

The luminosity of stars built on an ideal gas, radiant transfer
of energy and low radiant pressure, is determined by formula
(1.7a). This formula is given in its exact form by (2.38) in
Part I. We re-write formula (2.38) as

ε̄ =
L̄

M̄
= 1.04×104

μ4

κc

(
λLx0
M3
x0

)

M̄2, (1.30)

where Mx0 is the dimensionless mass of a star, κc is the
absorption coefficient at its centre. It has already been shown
that the structural multiplier of this formula has approxim-
ately the same numerical value

λLx0
M3
x0

' 2×10−3 (1.31)

for all physically reasonable models of stars. The true “mass-
luminosity” relation is shown in Fig. 2 by the system of
isoergs ε̄= L̄/M̄ = const. If we do not take the radius of a
star into account, we obtain the correlation shown in Fig. 1,
Part I. There L is approximately proportional to the cube of
M , although we saw a dispersion of points near this direction
L∼M3. As we mentioned before, in Part I, the comparison
of this result to formula (1.30) indicates that: (1) the radiant
pressure plays no substantial rôle in stars, (2) stars are built
on hydrogen.

Now we know that the dispersion of points near the
average direction L∼M3 is not stochastic. So we could
compare the exact correlation to the formula (1.30), and also
check our previous conclusions.

Our first conclusion about the negligible rôle of the rad-
iant pressure is confirmed absolutely, because of the mech-
anical equilibrium of giants. Naturally, comparing formula
(1.7b) to (1.7a), we see that the greater the rôle of the
radiant pressure, the less ε is dependent onM , so the interval
between the neighbouring isotherms should increase for large
masses. Such a tendency is completely absent for bulky
stars (see the stellar energy diagram, Fig. 2). This result,
in combination with formula (1.9) (its exact form is formula
2.47, Part I), leads to the conclusion that giants are built
mainly on hydrogen (the molecular weight 1/2). Thus we
calculate the absorption coefficient for giants. We see in the
diagram that red giants of masses ≈ 20M� have log ε̄= 3.

By formulae (1.30) and (1.31), we obtain

κc
μ4
= 8 . (1.32)

If μ= 1/2, we obtain κc= 0.5. This result implies that
the non-transparency of giants is derived from Thomson’s
dispersion of light in free electrons (κT= 0.40), as it should
be in a pure hydrogen star.

The main peculiarity of the “mass-luminosity” relation
is the systematic curvilinearity of the isoergs in the plane
(ρ,B). Let us show that this curvilinearity cannot be ex-
plained by the changes of the coefficient in formula (1.30).
First we consider the multiplier containing the molecular
weight and the absorption coefficient.

The curvilinearity of the isoergs shows that for the same
mass the diagram contains anomalous low luminosity stars at
the top and anomalous bright stars at the bottom. Hence, the
left part of (1.32) should increase under higher temperatures,
and should decrease with lower temperatures. Looking from
the viewpoint of today’s physics, such changes of the absorpt-
ion coefficient are impossible. Moreover, for the ultimate
inclinations of the isoergs, we obtain absolutely impossible
numerical values of the coefficient (1.32). For instance, in
the case of super-giants, the lower temperature stars, this
coefficient is 100 times less than that in giants. Even if we
imagine a star built on heavy elements, we obtain that κ
is about 1. In hot super-giants (the direction of Trumpler
stars) the coefficient (1.32) becomes 200. Because of high
temperatures in such stars, the absorption coefficient cannot
be so large.

In order to explain the curvilinearity by the structural
multiplier (1.31), we should propose that it be anomalously
large in stars of high luminosity (sub-giants) and anomal-
ously small in stars like Trumpler stars. We note that the
dimensionless mass Mx0 included in (1.31) cannot be sub-
stantially changed, as shown in Part I. So the structural
multiplier (1.31) can be changed by only λLx0 . Employing
the main system of the dimensionless equations of equilibr-
ium of stars, we easily obtain the equation

dB1
dp1

=
λLx
Mx

, (1.33)

which is equation (2.22) of Part I, where B1 and p1 are
the radiant pressure and the gaseous pressure expressed in
multiples of their values at the centre of a star. Here the
absorption coefficient κ is assumed constant from the centre
to the surface, i. e. κ1=1. Applying this equation to the
surface layers of a star, we deduce that the structural coef-
ficient is

λLx0
Mx0

=
B1
p1

. (1.34)

We denote the numerical values of the functions at the
boundary between the surface layer and the “internal” layers
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of a star by the subscript 0. We consider two ultimate cases
of the temperature gradients within the “internal” layers:

1. The “internal” zone of a star is isothermal:

λLx0
Mx0

=
1

p10
, (1.34a)

2. The “internal” zone of a star is convective (B1 = p
8/5

1 ):

λLx0
Mx0

= p10 . (1.34b)

In the first theoretical case, spreading the isothermal zone
to almost the surface of a star, we can make the structural
coefficient as large as we please. This case is attributed
to sub-giants and anomalous bright stars in general. The
second theoretical case can explain stars of anomalously low
luminosity. Following this way, i. e. spreading the convective
zone inside stars, Tuominen [35] attempted to explain the low
luminosity of Trumpler stars.

The isothermy can appear if energy is generated mainly
in the upper layers of a star. The spreading of the convective
zone outside the Schwarzschild boundary can occur if energy
is generated in moved masses of stellar gas, i. e. under forced
convection. A real explanation by physics should connect the
above peculiarities of the energy generation to the physical
conditions inside stars or their general characteristics L, M ,
R. Before attempting to study the theoretical possibility of
such relations, it is necessary to determine them first from
observational data. Dividing ε̄ by M̄2 for every star, we
obtain the relation of the structural coefficient of formula
(1.30) for ρ and B. But, at the same time, the determination
of this relation in this way is somewhat unclear. There are no
clear sequences or laws, so we do not show it here. Generally
speaking, a reason should be simpler than its consequences.
Therefore, it is most probable that the structural coefficient
is not the reason. It is most probable that the reason for the
incompatibility of the observed “mass-luminosity” relation
with formula (1.30) is that equation (1.30) itself is built
incorrectly. This implies that the main equations of equi-
librium of stars are also built incorrectly. This conclusion is
in accordance with our conclusion in the previous paragraph:
energy is generated in stars like in machines — their workings
are incompatible with the standard principles of today’s
mechanics and thermodynamics.

1.7 Calculation of the main constants of the stellar en-
ergy state

The theoretical “mass-luminosity” relation (1.30) is obtained
as a result of comparing the radiant energy B calculated by
the excess energy flow (formula 1.4a or 1.13) to the same
B calculated by the phase state equation of matter (through
p and ρ by formula 1.14). Therefore the incompatibility of
the theoretical correlation (1.30) to observational data can be

considered as the incompatibility of both the values of B.
So we denote by B∗ the radiant pressure calculated by the
ideal gas equation. For the radiant transport of energy in a
star, formulae (1.4a) and (1.13) lead to

B̄∗

κ̄
= ε̄p̄ . (1.35)

By this formula we can calculate B̄∗/κ̄ for every star
of the stellar energy diagram (Fig. 2). As a result we can
find the correlation of the quantity B̄∗/κ̄ to p̄ and ρ̄. Fig. 3
shows the stellar energy diagram transformed in this fashion.
Here the abscissa is log ρ̄, while the ordinate is log p̄. In
order to make the diagram readable, we have not plotted all
stars. We have plotted only the Sun and a few giants. At the
same time we drawn the lines of constant B̄∗/κ̄ through ten
intervals. The lines show the surface log B̄∗/κ̄ (log ρ̄, log p̄).
For the constant absorption coefficient κ, the lines show the
system of isotherms. If B∗=B, there should be a system
of parallel straight lines, inclined at 45◦ to the log p̄ axis
and following through the interval 0.25. As we see, the real
picture is different in principle. There is in it a wonderful
symmetry of the surface log B̄∗/κ̄. Here the origin of the
coordinates coincides with the central point of symmetry of
the isoergs. At the same time it is the main point mentioned
in relation in the stellar energy diagram. The coordinates of
the point with respect to the Sun are

log ρ̄0 = −0.58, log p̄0 = −0.53,

log B̄0 = +0.22, log B̄∗0 = +0.50.
(1.36)

Using the data, we deduce that the main point is attributed
to a star of the Russell-Hertzsprung main sequence, which
has spectral class A4. Rotating the whole diagram around the
main point by 180◦, we obtain almost the same diagram, only
the logarithms of the isotherms change their signs. Hence, if

B∗

κ
B∗
0

κ

= f

(
p

p0
,
ρ

ρ0

)

,

we have

f

(
p

p0
,
ρ

ρ0

)

f

(
p0
p
,
ρ0
ρ

)

= 1 . (1.37)

The relation (1.37) is valid in the central region of the
diagram. An exception is white dwarfs, in which B∗/κ is
100 times less than that required by formula (1.37), i. e. 100
times less than that required for the correspondence to giants
after the 180◦ rotation of the diagram. It is probable that this
circumstance is connected to the fact that white dwarfs are
located close to the boundary of degenerate gas.

Besides the isotherms, we have drawn the main direction
along which stars are distributed. Now the equation of the
direction (1.28) can be written in the more precise form

log
B̄

ρ̄
= +0.80. (1.38)
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Fig. 3: Isotherms of stellar matter. The coordinate axes are the logarithms of the matter density and the gaseous pressure. Dashed lines
show isotherms of an ideal gas.

Because of the very large range of the physical states in
the diagram, the main direction is drawn very precisely (to
within 5%). It should be noted that, despite their peculiarities,
white dwarfs satisfy the main direction like all regular stars.

A theory of the internal constitution of stars, which could
explain observational data (the relation 1.37, for instance),
should be built on equations containing the coordinates of the
main point. This circumstance is very interesting: it shows
that there is an absolute system of “physical coordinates”,
where physical quantities of absolutely different dimensions
can be combined. Such combinations can lead to a com-
pletely unexpected source of stellar energy. Therefore it is
very important to calculate the absolute numerical values of
the constants (1.36). Assuming in (1.36) a mostly hydrogen
content for stars μ= 1/2, and using the above calculated
physical characteristics at the centre of the Sun (1.26), we
obtain

ρ0 = 2.4, p0 = 2.8×1015, B0 = 6.3×1012. (1.39)

We calculate B∗0 by formula (1.13). Introducing the aver-
age productivity of energy ε

B∗c =
εκcpc
4πGc

Mx0

λLx0
, (1.40)

assuming κc equal to Thomson’s absorption coefficient, ε�=
= 1.9, Mx0 = 11, and the structural multiplier according to
(1.31). We then obtain for the Sun, B∗c�= 1.1×1012 instead
of Bc�= 3.8×1012. Hence,

B∗0 = 4.1×1012 ≈ B0 . (1.41)

We introduce the average number of electrons in one
cubic centimetre ne instead of the density of matter: ρ= 1.66
×10−24ne. Then the equation of the main direction becomes

3B

ne
= 1.4×10−11 = 8.7 eV, (1.42)

which is close to the hydrogen ionization potential, i. e. χ0=
= 13.5 eV. Thus the average radiant energy per particle in
stars (calculated by the ideal gas formula) is constant and

is about the ionization energy of the hydrogen atom. Fig. 3
shows that, besides the main direction, the axis ρ= ρ0 is
also important. Its equation can be formulated through the
average distance between particles in a star

r = 0.55 (ne)
−1/3

as follows

r = 0.51×10−8 = rH =
e2

2χ0
, (1.43)

where rH is the radius of the hydrogen atom, e is the charge of
the electron. As a result we obtain the very simple correlation
between the constants of the lines (1.42) and (1.43), which
bears a substantial physical meaning.

In the previous paragraph we showed that the peculiarit-
ies of the “mass-luminosity” relation∗ cannot be explained by
changes of the absorption coefficient κ. Therefore the lines
B∗/κ= const should bear the properties of the isotherms.
The isotherms drawn in Fig. 3 are like the isotherms of the
van der Waals gas. The meaning of this analogy is that there
is a boundary near which the isotherms become distorted,
at which the regular laws of thermodynamics are violated.
The asymptotes of the boundary line (the boundary between
two different phases in the theory of van der Waals) are axes
(1.42) and (1.43). The distortion of the isotherms increases
with approach to the axis ρ= ρ0 or r= rH. That region is
filled by stars of the Russell-Hertzsprung main sequence. The
wonderful difference from van der Waals’ formula is the fact
that there are two systems of the distortions, equation (1.37),
which become smoothed with the distance from the axis
ρ= ρ0 (for both small densities and large densities).

Stars can radiate energy for a long time only under
conditions close to the boundaries (1.42) and (1.43). This
most probably happens because the mechanism generating
energy in stars works only if the standard laws of classical
physics are broken.

The results are completely unexpected from the view-
point of contemporary theoretical physics. The results show

∗The dispersion of showing-stars points around the theoretically
calculated direction “mass-luminosity”. — Editor’s remark.
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that in stars the classical laws of mechanics and thermody-
namics are broken much earlier than predicted by Einstein’s
theory of relativity, and it occurs under entirely different cir-
cumstances. The main direction constants (1.42) and (1.43)
show that the source of stellar energy is not Einstein’s con-
version of mass and energy (his mass-energy equivalence
principle), but by a completely different combination of
physical quantities.

Here we limit ourselves only to conclusions which follow
from the observational data. A generalization of the results
and subsequent theoretical consequences will be dealt with
in the third part of this research. In the next chapter we only
consider some specific details of the Russell-Hertzsprung
diagram, not previously discussed.

Chapter 2

Properties of Some Sequences in the Russell-
Hertzsprung Diagram

2.1 The sequence of giants

The stellar energy diagram (see Fig. 2) shows that the “mass-
luminosity” relation has the most simple form for stars of the
Russell-Hertzsprung main sequence

L ∼Mα, α = 3.8. (2.1)

Cepheids, denoted by crosses in the diagram, also satisfy
the relation (2.1). Using the pulsation equation P

√
ρ= c1 we

obtained (see formula 3.25 of Part I)
(

0.30−
1

5α

)
(
mb−4.62

)
+ logP+3 log T̄eff= log c1 , (2.2)

where T̄eff is the reduced temperature of a star, expressed in
multiples of the reduced temperature of the Sun, mb is the
absolute stellar magnitude, P is the pulsation period (days).
We plot stars in a diagram where the abscissa is mb− 4.62,
while the ordinate is logP + log T̄eff . As a result we should
obtain a straight line, which gives both the constant c1 (see
§3.3 of Part I) and the angular coefficient 0.30− 1/5α. Fig. 4
shows this diagram, built using the collected data of Becker
[36], who directly calculated T̄eff and mb by the radiant
velocities arc (independently of the distances). As a result the
average straight line satisfying all the stars has the angular
coefficient 0.25 and c1= 0.075. Hence, α= 4, which is in
fine accordance with the expected result (α= 3.8). Such a
coincidence makes Melnikov’s conclusion unreasonable: that
Cepheids have the same masses (α=∞), as shown by the
dashed line in Fig. 4.

In §1.5 of Part I we showed that the “mass-luminosity”
relation for giants is explained by the fact that the structural
coefficient λLx0/M

3
x0 has the same value ' 2×10−3 (1.31)

for all stars. In order to obviate difficulties which appear if

Fig. 4: Finding the exponent index α in the L ∼ Mα relation for
Cepheids.

one attempts to explain the luminosity of giants by nuclear
reactions, one attributes to them an exotic internal constit-
ution (the large shell which covers a normal star). Therefore,
the simple structure of giants we have obtained gives an
additional argument for the inconsistency of the nuclear
sources of stellar energy. At the same time, because of their
simple structure, giants and super-giants are quite wonderful.
For instance, for a giant like the satellite of ε Aurigae we
obtain its central density at 10−4 of the density of air, and
the pressure at about 1 atmosphere. Therefore, it is quite
possible that in moving forward along the main direction we
can encounter nebulae satisfying the condition (1.42). Such
nebulae can generate their own energy, just like stars.

Because of the physical conditions in giants, obtained
above, the huge amounts of energy radiating from them can-
not be explained by nuclear reactions. Even if this were true,
their life-span would be very short. For reactions, the upper
limit of the life-span of a star (the full transformation of its
mass into radiant energy) can be obtained as the ratio of ε̄ to
c2. So, by formula (1.40), we obtain

t =
t0
4γc

(
Mx0

λLx0

)

, (2.3)

where

t0 =
κTc

πG
= 6×1016 sec = 2×109 years (2.4)

and γc=Bc/pc is the ratio of the radiant pressure to the
gaseous one. As obtained, the structural multiplier here is
about 4. Therefore

t =
t0
γc
. (2.5)

In giants γc≈ 1, so we obtain that t is almost the same as
t0. At the same time, as we know, the percentage of energy
which could be set free in nuclear reactions is no more than
0.008. Hence, the maximum life-span of a giant is about
1.6×107 years, which is absolutely inapplicable. This gives
additional support for our conclusion that the mechanism of
stellar energy is not like reactions.
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It is very interesting that the constant (2.4) has a numer-
ical value similar to the time constant in Hubble’s relation
(the red shift of nebulae). It is probable that the exact form
of the Hubble equation should be

ν = ν0 e
−t/t0 , (2.6)

where ν is the observed frequency of a line in a nebula
spectrum when it is located at t light years from us, ν0 is
its normal frequency. According to the General Theory of
Relativity the theoretical correlation between the constant t0
and the average density ρ̄ of matter in the visible part of the
Universe

t0 '
1

√
πGρ̄

, (2.7)

which, independently of its theoretical origin, is also the very
interesting empirical correlation. Because of (2.4) and (2.7),
we re-write equation (2.6) as follows

ν = ν0 e
−κTρ̄x, (2.8)

where x= ct is the path of a photon. Formula (2.8) is like the
formula of absorption, and so may give additional support to
the explanation of the nebula red shift by unusual processes
which occur in photons during their journey towards us. It is
possible that in this formula ρ̄ is the average density of the
intergalactic gas.

2.2 The main sequence

The contemporary data of observational astronomy has suf-
ficiently filled the Russell-Hertzsprug diagram, i. e. the “lum-
inosity — spectral class” plane. As a result we see that there
are no strong arcs L(T̄eff) and L(R), but regions filled
by stars. In the previous chapter we showed that such a
dispersion of points implies that the energy productivity in
stars is regulated exclusively by the energy drainage (the
radiation). So the mechanism generating stellar energy is not
like any reactions. It is possible that only the main sequence
of the Russell-Hertzsprung diagram can be considered a line
along which stars are located. According to Parenago [38],
this direction is

mb = m� − 1.62x, x = 10 log T̄eff . (2.9)

An analogous relation had been found by Kuiper [8] as the
M (R) relation

log R̄ = 0.7 log M̄ . (2.10)

Using formulae (1.12) and (1.14), we could transform
formula (2.10) to a correlation B(ρ). At the same time,
looking at the stellar energy diagram (Fig. 2), we see that the
stars of the Russell-Hertzsprung “main sequence” have no
B(ρ) correlation, but fill instead a ring at the centre of the
diagram. This incompatibility should be considered in detail.

In the stellar energy diagram, the Russell-Hertzsprung
main sequence is the ring of radius c filled by stars. The
boundary equation of this region is

log2 B̄ + log2 ρ̄ = c2. (2.11)

We transform this equation to the variables M̄ and R̄ by
formulae (1.12) and (1.14). We obtain

17 log2 M̄ − 38 log M̄ log R̄+ 25 log2 R̄ = c2. (2.12)

As we have found, for stars located in this central region
(the Russell-Hertzsprung main sequence), the exponent of
the “mass-luminosity” relation is about 4. Therefore, using
formulae

log M̄ = −0.1mb , 5 log R̄ = −mb − x ,

we transform (2.12) to the form

m2
b + 2×1.51mbx+ 2.44x2 = c21 . (2.13)

The left side of this equation is almost a perfect square,
hence we have the equation of a very eccentric ellipse, with
an angular coefficient close to 1.51. The exact solution can
be found by transforming (2.13) to the main axes using the
secular equation. As a result we obtain

a

b
= 8.9, α = −1.58 , (2.14)

where a and b are the main axis and the secondary axis
of the ellipse respectively, α is the angle of inclination of
its main axis to the abscissa’s axis. Because of the large
eccentricity, there is in the Russell-Hertzsprung diagram the
illusion that stars are concentrated along the line a, the
main axis of the ellipse. The calculated angular coefficient
α=−1.58 (2.14) is in close agreement with the empirically
determined α=−1.62 (2.9).

Thus the Russell-Hertzsprung main sequence has no
physical meaning: it is the result of the scale stretching used
in observational astrophysics. In contrast, the reality of the
scale used in our stellar energy diagram (Fig. 2) is confirmed
by the homogeneous distribution of the isoergs.

As obtained in Part I of this research, from the viewpoint
of the internal constitution of stars, stars located at the op-
posite ends of the main sequence (the spectral classes O
and M) differ from each other no more than stars of the
same spectral class, but of different luminosity. Therefore the
“evolution of a star along the main sequence” is a senseless
term.

The results show that the term “sequence” was applied
very unfortunately to groups of stars in the Russell-
Hertzsprung diagram. It is quite reasonable to change this
terminology, using the term “region” instead of “sequence”:
the region of giants, the main region, etc.
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2.3 White dwarfs

There is very little observational data related to white dwarfs.
Only for the satellite of Sirius and for o2 Eridani do we know
values of all three quantities L,M , andR. For Sirius’ satellite
we obtain

M̄ = 0.95, R̄ = 0.030, ε = 1.1×10−2,

ρ = 104, ρc = 3×105, pc = 1×1022.
(2.15)

For an ideal gas and an average molecular weight μ= 1/2,
we obtain Tc= 2×108 degrees. The calculations show that
white dwarfs generate energy hundreds of times smaller
than regular stars. Looking at the isoergs in Fig. 2 and
the isotherms in Fig. 3, we see that the deviation of white
dwarfs from the “mass-luminosity” relation is of a special
kind; not the same as that for regular stars. At the same time
white dwarfs satisfy the main direction in the stellar energy
diagram: they lie in the line following giants. Therefore it
would be natural to start our brief research into the internal
constitution of white dwarfs by proceeding from the general
supposition that they are hot stars whose gas is at the bound-
ary of degeneration

ρ = AT 3/2, A = 10−8μe . (2.16)

We now show that, because of high density of matter in
white dwarfs, the radiant transport of energy FR is less than
the transport of energy by the electron conductivity FT

FR = −
1

3
v̄e λ̄ c̄vne

dT

dr
,

where λ̄ is the mean free path of electrons moved at the
average velocity v̄e, c̄v is the average heat capacity per
particle. Also

λ =
1

niσ
, ni =

ne
z
, σ = πr2, cv =

3

2
k , (2.18)

where ni is the number of ions deviating the electrons, σ is
the ion section determined by the 90◦ deviation condition

mev
2
e =

ze2

r
, (2.19)

i. e. the condition to move along a hyperbola.
Substituting (2.19) and (2.18) into formula (2.17) and

eliminating v̄ by the formula

v̄5 =
12
√
π

(
2kT

me

)5/2
,

we obtain

FT = −
24
ze4

(
2k7T 5

π3me

)1/2
dT

dr
. (2.20)

The radiant flow can be written as

FR = −
4

3

cαT 3

κρ

dT

dr
, (2.21)

hence

FR
FT

=
zT 1/2

κρ

(
αce4π3/2m1/2

e

k7/218
√
2

)

=
2.6zT 1/2

κρ
. (2.22)

Using (2.15) it is easily seen that even if κ' 1, FR<FT
in the internal regions of white dwarfs. We can apply the
formulae obtained to the case of the conductive transport
of energy, if we eliminate κ with the effective absorption
coefficient κ∗

κ∗ =
2.6zT 1/2

ρ
. (2.23)

Thus, if white dwarfs are built on an ideal gas whose
state is about the degeneration boundary, their luminosity
should be more than that calculated by the “mass-luminosity”
formula (the heat equilibrium condition).

We consider the regular explanation for white dwarfs,
according to which they are stars built on a fully degenerate
gas. For the full degeneration, we use Chandrasekhar’s
“mass-radius” formula (see formula 2.32, Part I). With M̄ =1
we obtain

R̄ = 0.042 (μe = 1) , R̄ = 0.013 (μe = 2) .

The observable radius (2.15) cannot be twice as small, so
we should take Sirius’ satellite as being composed of at least
50% hydrogen. From here we come to a serious difficulty:
because of the high density of white dwarfs, even for a
few million degrees internally, they should produce much
more energy than they can radiate.We now show that such
temperatures are necessary for white dwarfs.

Applying the main equations of equilibrium to the surface
layer of a star, we obtain

B

p
=

Lκ

4πGcM
=

εκ

4πGc
, (2.24)

where κ is the absorption coefficient in the surface layer. At
the boundary of degeneration we can transform the left side
by (2.16)

ρ0 =
3εκ

4πGc

A2<
μα

so that

ρ0 = 125 εκ

(
μ2e
μ

)

,

T 3/2

0 = 1.25×1010 εκ

(
μe
μ

)

.

(2.25)

We see from formula (2.22) that even in the surface layer
the quantity FT can be greater than FR. Substituting κ∗

(2.23) into (2.25), we obtain

T0 = 2.5×107 ε2/5
(
z

μ

)2/5
. (2.26)

N. Kozyrev. Sources of Stellar Energy and the Theory of the Internal Constitution of Stars 97



Volume 3 PROGRESS IN PHYSICS October, 2005

For ε= 10−2, μ=1, and z=1, we obtain

T0 = 4×106, ρ0 = 80, κ∗0 = 65,

thus for such conditions, κ>κ∗.
We know that in the surface layer the temperature is

linked to the depth h as follows

T =
gμ

4<
h . (2.27)

In the surface of Sirius’ satellite we have g= 3×107.
Hence h0= 3×107. Therefore the surface layer is about 2%
of the radius of the white dwarf, so we can take the radius at
the observed radius of the white dwarf.

It should be isothermal in the degenerated core, because
the absorption coefficient rapidly decreases with increasing
density. For a degenerate gas we can transform formula (2.23)
in a simple way, if we suppose the heat capacity proportional
to the temperature. Then, in the formula for FR (2.20), the
temperature remains in the first power, while T 3/2

0 should be
eliminated with the density by (2.16). As a result we obtain
FR∼ ρT and also

κ∗1 ' 2.6×10−8
(
T

ρ

)2
zμe . (2.28)

Even for 4×106 degrees throughout a white dwarf, the
average productivity of energy calculated by the proton-
proton reaction formula (1.16) is ε= 102 erg/sec, which is
much more than that observed. In order to remove the contra-
diction, we must propose a very low percentage of hydrogen,
which contradicts the calculation above,∗ which gives hyd-
rogen as at least 50% of its contents. So the large observed
value of the radius of Sirius’ satellite remains unexplained.

So we should return to our initial point of view, according
to which white dwarfs are hot stars at the boundary of
degeneration, but built on heavy elements. The low lumi-
nosity of such stars is probably derived from the presence of
endothermic phenomena inside them. That is, besides energy
generating processes, there are also processes where ε is
negative. This consideration shows again that the luminosity
of stars is unexplained within the framework of today’s
thermodynamics.
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