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The Theory of Vortical Gravitational Fields

Dmitri Rabounski
E-mail: rabounski@yahoo.com

This paper treats of vortical gravitational fields, a tensor of which is the rotor of
the general covariant gravitational inertial force. The field equations for a vortical
gravitational field (the Lorentz condition, the Maxwell-like equations, and the
continuity equation) are deduced in an analogous fashion to electrodynamics. From
the equations it is concluded that the main kind of vortical gravitational fields is
“electric”, determined by the non-stationarity of the acting gravitational inertial force.
Such a field is a medium for traveling waves of the force (they are different to the
weak deformation waves of the space metric considered in the theory of gravitational
waves). Standing waves of the gravitational inertial force and their medium, a vortical
gravitational field of the “magnetic” kind, are exotic, since a non-stationary rotation of
a space body (the source of such a field) is a very rare phenomenon in the Universe.

1 The mathematical method

There are currently two methods for deducing a formula for
the Newtonian gravitational force in General Relativity. The
first method, introduced by Albert Einstein himself, has its
basis in an arbitrary interpretation of Christoffel’s symbols
in the general covariant geodesic equations (the equation of
motion of a free particle) in order to obtain a formula like
that by Newton (see [1], for instance). The second method is
due to Abraham Zelmanov, who developed it in the 1940’s
[2, 3]. This method determines the gravitational force in
an exact mathematical way, without any suppositions, as
a part of the gravitational inertial force derived from the
non-commutativity of the differential operators invariant in
an observer’s spatial section. This formula results from Zel-
manov’s mathematical apparatus of chronometric invariants
(physical observable quantities in General Relativity).

The essence of Zelmanov’s mathematical apparatus [4]
is that if an observer accompanies his reference body, his
observable quantities are the projections of four-dimensional
quantities upon his time line and the spatial section— chrono-
metrically invariant quantities, via the projecting operators
bα= dxα

ds
and hαβ =−gαβ + bαbβ , which fully define his

real reference space (here bα is his velocity relative to his
real references). So the chr.inv.-projections of a world-vector
Qα are bαQα=

Q0√
g00

and hiαQ
α=Qi, while the chr.inv.-

projections of a 2nd rank world-tensor Qαβ are bαbβQαβ =

= Q00

g00
, hiαbβQαβ =

Qi
0√
g00

, hiαh
k
βQ

αβ =Qik. The principal
physical observable properties of a space are derived from
the fact that the chr.inv.-differential operators

∗∂
∂t
= 1√

g00
∂
∂t

and
∗∂
∂xi
= ∂
∂xi
+ 1
c2
vi

∗∂
∂t

are non-commutative as
∗∂2

∂xi∂t
−

−
∗∂2

∂t ∂xi
= 1

c2
Fi

∗∂
∂t

and
∗∂2

∂xi∂xk
−

∗∂2

∂xk∂xi
= 2

c2
Aik

∗∂
∂t

, and
also that the chr.inv.-metric tensor hik=−gik+ bi bk may
not be stationary. The principal physical observable charac-
teristics are the chr.inv.-vector of the gravitational inertial

force Fi, the chr.inv.-tensor of the angular velocities of the
space rotation Aik, and the chr.inv.-tensor of the rates of the
space deformations Dik:

Fi=
1

√
g00

(
∂w

∂xi
−
∂vi
∂t

)

, w = c2 (1−
√
g00) , (1)

Aik=
1

2

(
∂vk
∂xi

−
∂vi
∂xk

)

+
1

2c2
(Fivk−Fkvi) , (2)

Dik=
1

2

∗∂hik
∂t

, Dik=−
1

2

∗∂hik

∂t
, D=Dk

k=
∗∂ ln

√
h

∂t
, (3)

where w is the gravitational potential, vi=−
c g0i√
g00

is the

linear velocity of the space rotation, hik=−gik+ 1
c2
vivk

is the chr.inv.-metric tensor, h=det‖hik‖, hg00=−g, and
g=det‖gαβ‖. The observable non-uniformity of the space
is set up by the chr.inv.-Christoffel symbols

Δijk=h
imΔjk,m=

1

2
him

( ∗∂hjm
∂xk

+
∗∂hkm
∂xj

−
∗∂hjk
∂xm

)

, (4)

which are constructed just like Christoffel’s usual symbols
Γαμν = g

ασΓμν,σ using hik instead of gαβ .
A four-dimensional generalization of the chr.inv.-quanti-

ties Fi, Aik, and Dik is [5]

Fα=−2c
2bβaβα , (5)

Aαβ = ch
μ
αh

ν
βaμν , (6)

Dαβ = ch
μ
αh

ν
βdμν , (7)

where

aαβ =
1

2
(∇α bβ−∇β bα) , dαβ =

1

2
(∇α bβ+∇β bα) . (8)

For instance, the chr.inv.-projections of Fα are

ϕ = bαF
α =

F0
√
g00

= 0 , qi = hiαF
α = F i. (9)
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Proceeding from the exact formula for the gravitational
inertial force above, we can, for the first time, determine
vortical gravitational fields.

2 D’Alembert’s equations of the force

It is a matter of fact that two bodies attract each other due
to the transfer of the force of gravity. The force of gravity
is absent in a homogeneous gravitational field, because the
gradient of the gravitational potential w is zero everywhere
therein. Therefore it is reasonable to consider the field of the
vector potential Fα as a medium transferring gravitational
attraction via waves of the force.

D’Alembert’s equations of the vector field Fα without
its inducing sources

Fα = 0 (10)

are the equations of propagation of waves traveling in the
field∗. The equations have two chr.inv.-projections

bσ F σ = 0 , hiσ F σ = 0 , (11)

which are the same as

bσ g
αβ∇α∇βF

σ = 0 , hiσ g
αβ∇α∇βF

σ = 0 . (12)

These are the chr.inv.-d’Alembert equations for the field
Fα=−2c2a∙ασ∙b

σ without its-inducing sources. To obtain the
equations in detailed form isn’t an easy process. Helpful
here is the fact that the chr.inv.-projection of Fα upon a
time line is zero. Following this path, after some algebra,
we obtain the chr.inv.-d’Alembert equations (11) in the final
form

1

c2

∗∂

∂t

(
FkF

k
)
+
1

c2
Fi

∗∂F i

∂t
+Dk

m

∗∂Fm

∂xk
+

+hik
∗∂

∂xi
[(Dkn + Akn)F

n]−
2

c2
AikF

iF k+

+
1

c2
FmF

mD +Δm
knD

k
mF

n−

−hikΔm
ik (Dmn + Amn)F

n = 0 ,

1

c2

∗∂2F i

∂t2
− hkm

∗∂2F i

∂xk∂xm
+
1

c2

(
Di
k + A

∙i
k∙

) ∗∂F k

∂t
+

+
1

c2

∗∂

∂t

[(
Di
k+A

∙i
k∙

)
F k
]
+
1

c2
D

∗∂F i

∂t
+
1

c2
F k

∗∂F i

∂xk
+

+
1

c2

(
Di
n+A

∙i
n∙

)
FnD−

1

c2
Δi
kmF

kFm+
1

c4
FkF

kF i−

−hkm
{

∗∂

∂xk

(
Δi
mnF

n
)
+
(
Δi
knΔ

n
mp−Δ

n
kmΔ

i
np

)
F p+

+Δi
kn

∗∂Fn

∂xm
−Δn

km

∗∂F i

∂xn

}
= 0 .






(13)

∗The waves travelling in the field of the gravitational inertial force
aren’t the same as the waves of the weak perturbations of the space metric,
routinely considered in the theory of gravitational waves.

3 A vortical gravitational field. The field tensor and
pseudo-tensor. The field invariants

We introduce the tensor of the field as a rotor of its four-
dimensional vector potential Fα as well as Maxwell’s tensor
of electromagnetic fields, namely

Fαβ = ∇αFβ −∇β Fα =
∂Fβ
∂xα

−
∂Fα
∂xβ

. (14)

We will refer to Fαβ (14) as the tensor of a vortical
gravitational field, because this is actual a four-dimensional
vortex of an acting gravitational inertial force Fα.

Taking into account that the chr.inv.-projections of the
field potential Fα=−2c2a∙ασ∙b

σ are F0√
g00
=0, F i=hikFk,

we obtain the components of the field tensor Fαβ :

F00 = F 00 = 0 , F0i = −
1

c

√
g00

∗∂Fi
∂t

, (15)

Fik =
∗∂Fi
∂xk

−
∗∂Fk
∂xi

+
1

c2

(

vi
∗∂Fk
∂t

− vk
∗∂Fi
∂t

)

, (16)

F ∙00∙ =
1

c2
vk

∗∂Fk
∂t

, F ∙i0∙ =
1

c

√
g00 h

ik
∗∂Fk
∂t

, (17)

F ∙0k∙ =
1

√
g00

[
1

c

∗∂Fk
∂t

−
1

c3
vkv

m
∗∂Fm
∂t

+

+
1

c
vm
(∗∂Fm
∂xk

−
∗∂Fk
∂xm

)]

,

(18)

F ∙ik∙ = him
( ∗∂Fm
∂xk

−
∗∂Fk
∂xm

)

−
1

c2
himvk

∗∂Fm
∂t

, (19)

F 0k =
1

√
g00

[
1

c
hkm

∗∂Fm
∂t

+

+
1

c
vnhmk

( ∗∂Fn
∂xm

−
∗∂Fm
∂xn

)]

,

(20)

F ik = himhkn
( ∗∂Fm
∂xn

−
∗∂Fn
∂xm

)

. (21)

We see here two chr.inv.-projections of the field tensor
Fαβ . We will refer to the time projection

Ei=
F ∙i0∙√
g00

=
1

c
hik

∗∂Fk
∂t

, Ei=hikE
k=

1

c

∗∂Fi
∂t

(22)

as the “electric” observable component of the vortical gravi-
tational field, while the spatial projection will be referred to
as the “magnetic” observable component of the field

Hik = F ik = himhkn
( ∗∂Fm
∂xn

−
∗∂Fn
∂xm

)

, (23)

Hik = himhknH
mn =

∗∂Fi
∂xk

−
∗∂Fk
∂xi

, (24)
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which, after use of the 1st Zelmanov identity [2, 3] that
links the spatial vortex of the gravitational inertial force to
the non-stationary rotation of the observer’s space

∗∂Aik
∂t

+
1

2

( ∗∂Fk
∂xi

−
∗∂Fi
∂xk

)

=0 , (25)

takes the form

Hik = 2himhkn
∗∂Amn
∂t

, Hik = 2
∗∂Aik
∂t

. (26)

The “electric” observable component Ei of a vortical
gravitational field manifests as the non-stationarity of the
acting gravitational inertial force F i. The “magnetic” ob-
servable component Hik manifests as the presence of the
spatial vortices of the force F i or equivalently, as the non-
stationarity of the space rotation Aik (see formula 26). Thus,
two kinds of vortical gravitational fields are possible:

1. Vortical gravitational fields of the “electric” kind
(Hik=0, Ei 6=0). In this field we have no spatial
vortices of the acting gravitational inertial force F i,
which is the same as a stationary space rotation. So a
vortical field of this kind consists of only the “electric”
component Ei (22) that is the non-stationarity of the
force F i. Note that a vortical gravitational field of the
“electric” kind is permitted in both a non-holonomic
(rotating) space, if its rotation is stationary, and also
in a holonomic space since the zero rotation is the
ultimate case of stationary rotations;

2. The “magnetic” kind of vortical gravitational fields is
characterized by Ei=0 and Hik 6=0. Such a vortical
field consists of only the “magnetic” components Hik,
which are the spatial vortices of the acting force F i

and the non-stationary rotation of the space. Therefore
a vortical gravitational field of the “magnetic” kind is
permitted only in a non-holonomic space. Because the
d’Alembert equations (13), with the condition Ei=0,
don’t depend on time, a “magnetic” vortical gravita-
tional field is a medium for standing waves of the
gravitational inertial force.

In addition, we introduce the pseudotensor F ∗αβ of the
field dual to the field tensor

F ∗αβ =
1

2
EαβμνFμν , F∗αβ =

1

2
EαβμνF

μν , (27)

where the four-dimensional completely antisymmetric dis-
criminant tensors Eαβμν = eαβμν√

−g and Eαβμν = eαβμν
√
−g

transform tensors into pseudotensors in the inhomogeneous
anisotropic four-dimensional pseudo-Riemannian space∗.

Using the components of the field tensor Fαβ , we obtain

∗Here eαβμν and eαβμν are Levi-Civita’s unit tensors: the four-
dimensional completely antisymmetric unit tensors which transform tensors
into pseudotensors in a Galilean reference frame in the four-dimensional
pseudo-Euclidean space [1].

the chr.inv.-projections of the field pseudotensor F ∗αβ :

H∗i =
F ∗∙i0∙√
g00

=
1

2
εikm

( ∗∂Fk
∂xm

−
∗∂Fm
∂xk

)

, (28)

E∗ik = F ∗ik = −
1

c
εikm

∗∂Fm
∂t

, (29)

where εikm= b0E
0ikm=

√
g00E

0ikm= eikm√
h

and εikm=

= b0E0ikm=
E0ikm√
g00

= eikm
√
h are the chr.inv.-discriminant

tensors [2]. Taking into account the 1st Zelmanov identity
(25) and the formulae for differentiating εikm and εikm [2]

∗∂εimn
∂t

= εimnD ,
∗∂εimn

∂t
= −εimnD , (30)

we write the “magnetic” component H∗i as follows

H∗i = εikm
∗∂Akm
∂t

= 2

( ∗∂Ω∗i

∂t
+Ω∗iD

)

, (31)

where Ω∗i= 1
2 ε

ikmAkm is the chr.inv.-pseudovector of the
angular velocity of the space rotation, while the trace D=
=hikDik=D

n
n of the tensor Dik is the rate of the relative

expansion of an elementary volume permeated by the field.
Calculating the invariants of a vortical gravitational field

(J1=FαβFαβ and J2=FαβF ∗αβ), we obtain

J1=h
imhkn

(∗∂Fi
∂xk

−
∗∂Fk
∂xi

)(∗∂Fm
∂xn

−
∗∂Fn
∂xm

)

−

−
2

c2
hik

∗∂Fi
∂t

∗∂Fk
∂t

,

(32)

J2 = −
2

c
εimn

( ∗∂Fm
∂xn

−
∗∂Fn
∂xm

) ∗∂Fi
∂t

, (33)

which, with the 1st Zelmanov identity (25), are

J1 = 4h
imhkn

∗∂Aik
∂t

∗∂Amn
∂t

−
2

c2
hik

∗∂Fi
∂t

∗∂Fk
∂t

, (34)

J2 = −
4

c
εimn

∗∂Amn
∂t

∗∂Fi
∂t

=

= −
8

c

( ∗∂Ω∗i

∂t
+Ω∗iD

) ∗∂Fi
∂t

.

(35)

By the strong physical condition of isotropy, a field is
isotropic if both invariants of the field are zeroes: J1=0
means that the lengths of the “electric” and the “magnetic”
components of the field are the same, while J2=0 means
that the components are orthogonal to each other. Owning
the case of a vortical gravitational field, we see that such a
field is isotropic if the common conditions are true

himhkn
∗∂Aik
∂t

∗∂Amn
∂t

=
1

2c2
hik

∗∂Fi
∂t

∗∂Fk
∂t

∗∂Amn
∂t

∗∂Fi
∂t

= 0





(36)
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however their geometrical sense is not clear.
Thus the anisotropic field can only be a mixed vortical

gravitational field bearing both the “electric” and the “mag-
netic” components. A strictly “electric” or “magnetic” vort-
ical gravitational field is always spatially isotropic.

Taking the above into account, we arrive at the necessary
and sufficient conditions for the existence of standing waves
of the gravitational inertial force:

1. A vortical gravitational field of the strictly “magnetic”
kind is the medium for standing waves of the gravita-
tional inertial force;

2. Standing waves of the gravitational inertial force are
permitted only in a non-stationary rotating space.

As soon as one of the conditions ceases, the acting grav-
itational inertial force changes: the standing waves of the
force transform into traveling waves.

4 The field equations of a vortical gravitational field

It is known from the theory of fields that the field equations
of a field of a four-dimensional vector-potential Aα is a
system consisting of 10 equations in 10 unknowns:

• Lorentz’s condition ∇σAσ =0 states that the four-
dimensional potential Aα remains unchanged;

• the continuity equation ∇σ jσ =0 states that the field-
inducing sources (“charges” and “currents”) can not
be destroyed but merely re-distributed in the space;

• two groups (∇σFασ = 4π
c j

α and ∇σF ∗ασ =0) of the
Maxwell-like equations, where the 1st group determ-
ines the “charge” and the “current” as the components
of the four-dimensional current vector jα of the field.

This system completely determines a vector field Aα and
its sources in a pseudo-Riemannian space. We shall deduce
the field equations for a vortical gravitational field as a field
of the four-dimensional potential Fα=−2c2a∙ασ∙b

σ .
Writing the divergence ∇σF σ = ∂Fσ

∂xσ
+ΓσσμF

μ in the
chr.inv.-form [2, 3]

∇σF
σ=

1

c

( ∗∂ϕ

∂t
+ϕD

)

+
∗∂qi

∂xi
+qi

∗∂ln
√
h

∂xi
−
1

c2
Fiq

i (37)

where
∗∂ ln

√
h

∂xi
=Δ

j
ji and

∗∂qi

∂xi
+ qiΔ

j
ji=

∗∇i qi, we obtain
the chr.inv.-Lorentz condition in a vortical gravitational field

∗∂F i

∂xi
+ F iΔ

j
ji −

1

c2
FiF

i = 0 . (38)

To deduce the Maxwell-like equations for a vortical gra-
vitational field, we collect together the chr.inv.-projections
of the field tensor Fαβ and the field pseudotensor F ∗αβ . Ex-
pressing the necessary projections with the tensor of the rate
of the space deformation Dik to eliminate the free hik terms,
we obtain

Ei =
1

c
hik

∗∂Fk
∂t

=
1

c

∗∂F i

∂t
+
2

c
FkD

ik, (39)

Hik = 2himhkn
∗∂Amn
∂t

=

= 2
∗∂Aik

∂t
+ 4

(
Ai∙∙nD

kn − Ak∙∙mD
im
)
,

(40)

H∗i = εimn
∗∂Amn
∂t

= 2
∗∂Ω∗i

∂t
+ 2Ω∗iD , (41)

E∗ik = −
1

c
εikm

∗∂Fm
∂t

. (42)

After some algebra, we obtain the chr.inv.-Maxwell-like
equations for a vortical gravitational field
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∗∂2F i

∂xi∂t
+
2

c

∗∂

∂xi

(
FkD

ik
)
+
1

c

(
∗∂F i

∂t
+2FkD

ik

)
Δj
ji−

−
2

c
Aik

(
∗∂Aik

∂t
+Ai∙∙nD

kn

)
= 4πρ

2
∗∂2Aik

∂xk∂t
−
1

c2

∗∂2F i

∂t2
+4

∗∂

∂xk

(
Ai∙∙nD

kn−Ak∙∙mD
im
)
+

+2
(
Δj
jk−

1

c2
Fk

){∗∂Aik

∂t
+2
(
Ai∙∙nD

kn−Ak∙∙mD
im
)
}
−

−
2

c2

∗∂

∂t

(
FkD

ik
)
−
1

c2

(
∗∂F i

∂t
+2FkD

ik

)
D=

4π

c
ji






G
ro

up
I,

(43)
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(44)

The chr.inv.-continuity equation ∇σjσ=0 for a vortical
gravitational field follows from the 1st group of the Maxwell-
like equations, and is
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1
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)(
Δl
lk−

1

c2
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)]
= 0 .

(45)

To see a simpler sense of the obtained field equations, we
take the field equations in a homogeneous space (Δikm=0)
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free of deformation (Dik=0)∗. In such a space the chr.inv.-
Maxwell-like equations obtained take the simplified form

1

c

∗∂2F i

∂xi∂t
−
2

c
Aik

∗∂Aik
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= 4πρ

2
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∗∂2Ω∗i

∂xi∂t
+
1
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Ω∗m

∗∂Fm
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εikm
∗∂2Fm
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−
1

c2
εikmFk

∗∂Fm
∂t

+ 2
∗∂2Ω∗i

∂t2
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(47)

where the field-inducing sources are

ρ =
1

4πc

( ∗∂2F i

∂xi∂t
− 2Aik

∗∂Aik

∂t

)

, (48)

ji =
c

2π

( ∗∂2Aik

∂xk∂t
−
1

c2
Fk

∗∂Aik

∂t
−

1

2c2

∗∂2F i

∂t2

)

, (49)

and the chr.inv.-continuity equation (45) takes the form

∗∂2

∂xi∂xk

(∗∂Aik

∂t

)

−
1

c2
Aik

∗∂2Aik

∂t2
−
1

c2

∗∂Aik
∂t

∗∂Aik

∂t
−

−
1

c2

( ∗∂Fk
∂xi

−
1

c2
FiFk

) ∗∂Aik

∂t
= 0 .

(50)

The obtained field equations describe the main properties
of vortical gravitational fields:

1. The chr.inv.-Lorentz condition (38) shows the inho-
mogeneity of a vortical gravitational field depends on
the value of the acting gravitational inertial force F i

and also the space inhomogeneity Δjji in the direction
the force acts;

2. The 1st group of the chr.inv.-Maxwell-like equations
(43) manifests the origin of the field-inducing sources
called “charges” ρ and “currents” ji. The “charge” ρ
is derived from the inhomogeneous oscillations of the
acting force F i and also the non-stationary rotation
of the space (to within the space inhomogeneity and
deformation withheld). The “currents” ji are derived
from the non-stationary rotation of the space, the spa-
tial inhomogeneity of the non-stationarity, and the
non-stationary oscillations of the force F i (to within
the same approximation);

3. The 2nd group of the chr.inv.-Maxwell-like equations
(44) manifests the properties of the “magnetic” com-
ponent H∗i of the field. The oscillations of the acting
force F i is the main factor making the “magnetic”
component distributed inhomogeneously in the space.

∗Such a space has no waves of the space metric (waves the
space deformation), however waves of the gravitational inertial force are
permitted therein.

If there is no acting force (F i=0) and the space is free
of deformation (Dik=0), the “magnetic” component
is stationary.

4. The chr.inv.-continuity equation (50) manifests in the
fact that the “charges” and the “currents” inducing
a vortical gravitational field, being located in a non-
deforming homogeneous space, remain unchanged
while the space rotation remains stationary.

Properties of waves travelling in a field of a gravitational
inertial force reveal themselves when we equate the field
sources ρ and ji to zero in the field equations (because a
free field is a wave):

∗∂2F i

∂xi∂t
= 2Aik

∗∂Aik

∂t
, (51)

∗∂2Aik

∂xk∂t
=
1

c2
Fk

∗∂Aik

∂t
+

1

2c2

∗∂2F i

∂t2
, (52)

which lead us to the following conclusions:

1. The inhomogeneous oscillations of the gravitational
inertial force F i, acting in a free vortical gravitational
field, is derived mainly from the non-stationary rota-
tion of the space;

2. The inhomogeneity of the non-stationary rotations of
a space, filled with a free vortical gravitational field, is
derived mainly from the non-stationarity of the oscil-
lations of the force and also the absolute values of the
force and the angular acceleration of the space.

The foregoing results show that numerous properties of
vortical gravitational fields manifest only if such a field is
due strictly to the “electric” or the “magnetic” kind. This fact
forces us to study these two kinds of vortical gravitational
fields separately.

5 A vortical gravitational field of the “electric” kind

We shall consider a vortical gravitational field strictly of the
“electric” kind, which is characterized as follows

Hik =
∗∂Fi
∂xk

−
∗∂Fk
∂xi

= 2
∗∂Aik
∂t

= 0 , (53)

Hik = 2himhkn
∗∂Amn
∂t

= 0 , (54)

Ei =
1

c

∗∂Fi
∂t

6= 0 , (55)

Ei =
1

c
hik

∗∂Fk
∂t

=
1

c

∗∂F i

∂t
+
2

c
FkD

ik 6= 0 , (56)

H∗i = εimn
∗∂Amn
∂t

= 2
∗∂Ω∗i

∂t
+ 2Ω∗iD = 0 , (57)

E∗ik = −
1

c
εikm

∗∂Fm
∂t

6= 0 . (58)
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We are actually considering a stationary rotating space
(if it rotates) filled with the field of a non-stationary gravita-
tional inertial force without spatial vortices of the force. This
is the main kind of vortical gravitational fields, because a
non-stationary rotation of a space body is very rare (see the
“magnetic” kind of fields in the next Section).

In this case the chr.inv.-Lorentz condition doesn’t change
to the general formula (38), because the condition does not
have the components of the field tensor Fαβ .

The field invariants J1=FαβF
αβ and J2=FαβF

∗αβ

(34, 35) in this case are

J1 = −
2

c2
hik

∗∂Fi
∂t

∗∂Fk
∂t

, J2 = 0 . (59)

The chr.inv.-Maxwell-like equations for a vortical gravi-
tational field strictly of the “electric” kind are
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1
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Group II, (61)

and, after Ei and E∗ik are substituted, take the form
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1
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+ εikm
(
Δj
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1

c2
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) ∗∂Fm
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Group II. (63)

The chr.inv.-continuity equation for such a field, in the
general case of a deforming inhomogeneous space, takes the
following form
( ∗∂F i

∂t
+ 2FkD

ik

)( ∗∂Δ
j
ji

∂t
−

∗∂D

∂xi
+
D

c2
Fi

)

= 0 , (64)

and becomes the identity “zero equal to zero” in the absen-
ce of space inhomogeneity and deformation. In fact, the chr.
inv.-continuity equation implies that one of the conditions

∗∂F i

∂t
= −2FkD

ik,
∗∂Δ

j
ji

∂t
=

∗∂D

∂xi
−
D

c2
Fi (65)

or both, are true in such a vortical gravitational field.

The chr.inv.-Maxwell-like equations (62, 63) in a non-
deforming homogeneous space become much simpler

1
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∂xi∂t
= 4πρ

1

c2

∗∂2F i

∂t2
= −

4π
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1
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∂xk∂t

−
1

c2
εikmFk
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Group II. (67)

The field equations obtained specify the properties for
vortical gravitational fields of the “electric” kind:

1. The field-inducing sources ρ and ji are derived mainly
from the inhomogeneous oscillations of the acting gra-
vitational inertial force F i (the “charges” ρ) and the
non-stationarity of the oscillations (the “currents” ji);

2. Such a field is permitted in a rotating space Ω∗i 6=0, if
the space is inhomogeneous (Δikn 6=0) and deforming
(Dik 6=0). The field is permitted in a non-deforming ho-
mogeneous space, if the space is holonomic (Ω∗i=0);

3. Waves of the acting force F i travelling in such a field
are permitted in the case where the oscillations of the
force are homogeneous and stable;

4. The sources ρ and qi inducing such a field remain
constant in a non-deforming homogeneous space.

6 A vortical gravitational field of the “magnetic” kind

A vortical gravitational field strictly of the “magnetic” kind
is characterized by its own observable components

Hik =
∗∂Fi
∂xk

−
∗∂Fk
∂xi

= 2
∗∂Aik
∂t

6= 0 , (68)

Hik = 2himhkn
∗∂Amn
∂t

6= 0 , (69)

Ei =
1

c

∗∂Fi
∂t

= 0 , (70)

Ei =
1

c
hik

∗∂Fk
∂t

=
1

c

∗∂F i

∂t
+
2

c
FkD

ik = 0 , (71)

H∗i = εimn
∗∂Amn
∂t

= 2
∗∂Ω∗i

∂t
+ 2Ω∗iD 6= 0 , (72)

E∗ik = −
1

c
εikm

∗∂Fm
∂t

= 0 . (73)

Actually, in such a case, we have a non-stationary rotat-
ing space filled with the spatial vortices of a stationary grav-
itational inertial force Fi. Such kinds of vortical gravita-
tional fields are exotic compared to those of the “electric”
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kind, because a non-stationary rotation of a bulky space body
(planet, star, galaxy) — the generator of such a field — is a
very rare phenomenon in the Universe.

In this case the chr.inv.-Lorentz condition doesn’t change
to the general formula (38) or for a vortical gravitational
field of the “electric” kind, because the condition has no
components of the field tensor Fαβ .

The field invariants (34, 35) in the case are

J1 = 4h
imhkn

∗∂Aik
∂t

∗∂Amn
∂t

, J2 = 0 . (74)

The chr.inv.-Maxwell-like equations for a vortical gravi-
tational field strictly of the “magnetic” kind are
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which, after substituting for Hik and H∗i, are
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(78)

The chr.inv.-continuity equation for such a field, in a de-
forming inhomogeneous space, is
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If the space is homogeneous and free of deformation, the
continuity equation becomes
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In such a case (a homogeneous space free of deforma-
tion) the chr.inv.-Maxwell-like equations (77, 78) become
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∗∂2Aik

∂xk∂t
−
1

c2
Fk

∗∂Aik

∂t
=
2π

c
ji





Group I, (81)

∗∂2Ω∗i

∂xi∂t
= 0

∗∂2Ω∗i

∂t2
= 0





Group II. (82)

The obtained field equations characterizing a vortical
gravitational field of the “magnetic” kind specify the prop-
erties of such kinds of fields:

1. The field-inducing “charges” ρ are derived mainly
from the non-stationary rotation of the space, while
the field “currents” ji are derived mainly from the
non-stationarity and its spatial inhomogeneity;

2. Such a field is permitted in a non-deforming homoge-
neous space, if the space rotates homogeneously at a
constant acceleration;

3. Waves in such a field are standing waves of the acting
gravitational inertial force. The waves are permitted
only in a space which is inhomogeneous (Δikn 6=0)
and deforming (Dik 6=0);

4. The sources ρ and ji inducing such a field remain
unchanged in a non-deforming homogeneous space
where F i 6=0.

7 Conclusions

According the foregoing results, we conclude that the main
kind of vortical gravitational fields is “electric”, derived from
a non-stationary gravitational inertial force and, in part, the
space deformation. Such a field is a medium for traveling
waves of the gravitational inertial force. Standing waves
of a gravitational inertial force are permitted in a vortical
gravitational field of the “magnetic” kind (spatial vortices
of a gravitational inertial force or, that is the same, a non-
stationary rotation of the space). Standing waves of the grav-
itational inertial force and their medium, a vortical gravita-
tional field of the “magnetic” kind, are exotic, due to a non-
stationary rotation of a bulky space body (the source of such
a field) is a very rare phenomenon in the Universe.

It is a matter of fact that gravitational attraction is an
everyday reality, so the traveling waves of the gravitational
inertial force transferring the attraction should be incontro-
vertible. I think that the satellite experiment, propounded
in [6], would detect the travelling waves since the amplitudes
of the lunar or the solar flow waves should be perceptible.
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Forces of Space Non-Holonomity as the Necessary Condition
for Motion of Space Bodies

Larissa Borissova
E-mail: lborissova@yahoo.com

The motion of a satellite in the gravitational field of the Earth is studied. The condition
of weightlessness in terms of physical observable quantities is formulated. It is shown
that the motion of all planets in the Solar system satisfy this condition. The exact
solution of non-null geodesic lines describing the motion of a satellite in a state of
weightlessness is obtained. It is shown that two kinds of rotational forces (forces of
non-holonomity) exist: the inner force is linked to a gravitational potential, the outer
force changes geometric properties of a space. The latter force causes both anisotropy
of the velocity of light and additional displacement of mass-bearing bodies.

1 Introduction

We continue studies commenced in [1], where, using General
Relativity, the space metric along the Earth’s trajectory in the
Galaxy was constructed. This metric was constructed in two
steps: (i) the metric along the Earth’s transit in the gravita-
tional field of the Sun; (ii) using the Lorenz transformation
to change to the reference frame moving along the z-axis
coinciding with the direction in which the Earth moves in the
Galaxy. The behaviour of a light ray in a reference body’s
space described by the obtained metric was studied in [1]. It
follows from exact solutions of the isotropic geodesic lines
equations for the obtained metric, that an anisotropy of the
velocity of light exists in the z-direction. This anisotropy is
due to the motion of the Earth in the Galaxy. The Earth’s
motion in the Galaxy causes additional spreading of the
light ray in this direction: harmonic oscillations with a 24-
hour period and amplitude v

2 , where v is the velocity of
concomitant motion of the Earth with the Solar system in
the Galaxy.

The metric describing a satellite’s motion around the
Earth as it moves concomitantly with the Earth in the gravi-
tational field of the Sun is applied in this paper. The motion
of a satellite by means of non-isotropic (non-null) geodesic
lines equations is described. The motion of a satellite in a
state of weightlessness is realised. The strong mathematical
definition of this state in terms of physically observed (chro-
nometrically invariant) quantities of A. L. Zelmanov [2, 3] is
formulated. It is shown that the condition of weightlessness
means that gravitational-inertial forces are absent in the
region in which a satellite moves. The condition of weight-
lessness is a condition of a equilibrium between the gravita-
tional (Newtonian) force FN attracting a satellite towards the
Earth’s centre and the force Fω directing it from the Earth.
We called it the inner force of non-holonomity. We describe
this force as a vector product of two quantities: (1) a pseudo-
vector of the angular velocity of the Earth’s daily rotation ω;
(2) a vector of the linear velocity V of orbital motion of

a satellite. The result of vectorial multiplication of these
quantities is a pseudo-vector, directed always in the direction
opposite to the force of gravitational attraction. If the forces
of attraction and rejection are not equal one to other, a
satellite: (1) falls to Earth if Fω <FN ; (2) escapes Earth
if Fω >FN . It is shown that the condition of weightlessness
applies to all planets of the Solar system. Moreover, it is in
accordance with Kepler’s third law: the cube of the mean dis-
tance of a planet from the Sun is proportional to the square
of the period of rotation of the planet around the Sun.

We obtain the exact solution of the non-isotropic (non-
null) geodesic lines equations. It follows from them that the
relativistic mass of a satellite in a state of weightlessness
is constant; space velocities and space displacements in the
r- and z-directions include additions caused by the Earth’s
daily rotation; the motion in the z-direction coinciding with
the Earth’s motion in the Solar system includes the effect
which is described by harmonic oscillations having a period
of 24 hours and an amplitude of 13 cm.

The question as to why the z-direction is preferred, is
studied. It is shown that motion along the z-axis is also a
rotational motion, with the angular velocity Ω, around the
gravitational centre of a greater body. This body attracts the
studied body and the gravitational centre around which the
studied body rotates with the angular velocity ω. In order
that this situation can be realized it is necessary that both
these motions satisfy the condition of weightlessness.

It is shown that two kinds of forces exist, linked to a ro-
tational motion. Because rotation of a space means that this
space is non-holonomic [2, 3], we called these forces the
inner and the outer force of non-holonomity, respectively.
They have a different physical nature. From the physical
viewpoint the inner force Fω counteracts the Newtonian
force FN , the outer force FΩ causes the motion in the z-
direction. This action is an interaction of two rotations with
the angular velocities ω and Ω, respectively. From the math-
ematical viewpoint these forces are different, because they
are included in different terms of the space-time metric.
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2 The weightlessness condition in terms of physical
observable quantities

We consider, using the methods of General Relativity, the
space of a body which: (1) rotates on its own axis, passing
through its centre of gravity; (2) moves as a whole around
the centre of gravity of a greater body. For example, the
Earth rotates on its axis and simultaneously rotates around
the Sun. The period of one rotation of the Earth on its axis
is one astronomical day, or 86,400 sec. The linear velocity
vrot of this rotation depends on geographic latitude φ: vrot=
= 500 cosφ m/sec (vrot=0 at the Earth’s poles). The Earth
rotates around the Sun with the velocity v= 30 km/sec. The
period of this rotation is one astronomical year, or 365.25
of astronomical days. The Earth’s radius is 6,370 km, the
distance between the Earth and the Sun is 150×106 km, and
therefore we can consider the orbital motion of the Earth
approximately as a forward motion.

We will consider every parallel of the Earth as a cylinder
oriented in interplanetary space along the Earth’s axis, pas-
sing through its poles. Every point of the Earth: (1) rotates
around the axis with a velocity depending on its geographic
latitude; (2) moves together with the Earth in the Sun’s space
with the velocity 30 km/sec. It is necessary to note that the
points of the Earth space, which are on the Earth axis, move
forward only. It is evident that, not only for the Earth’s poles
but also for all points along this direction, the linear velocity
of rotation is zero. The combined motion of every point of
the Earth’s space (except axial points) is a very elongated
spiral [1].

This metric is applicable to the general case of one body
rotating around another body, moving concomitantly with
the latter in the gravitational field of a greater body. For
example, the Earth rotates around the Sun with the velocity
30 km/sec and simultaneously moves together with the Sun
in the galactic space with the velocity 222 km/sec. The com-
bined motion of the Earth motion in the Galaxy is described
by a very elongated spiral. This case is studied in detail
in [1]. The combined motion of every point of the Earth’s
surface in the Galaxy is more complicated trajectory.

The metric describing the space of a body which rotates
around another body (or around its own centre of gravity)
and moves together with the latter in the gravitational field
of a greater body is [1]:

ds2 =

(

1−
2GM

c2r

)

c2dt2 +
2ωr2

c
cdtdϕ−

−

(

1 +
2GM

c2r

)

dr2 − r2dϕ2 +
2ωvr2

c2
dϕdz − dz2,

(1)

where G= 6.67×10−8 cm3/g×sec2 is Newton’s gravitational
constant, ω is the angular velocity of the rotation around
the axis, v is the orbital velocity of the body, r, ϕ and
z are cylindrical coordinates. We direct the z-axis along

a direction of a forward motion. This metric describes the
motion of all points of the rotating body, besides axial points.

We apply Zelmanov’s theory of physically observed
quantities (chronometrically invariants) [2, 3] in order to de-
scribe this gravitational field. The three-dimensional observ-
ed space of the space-time (1) has a metric hik (i=1, 2, 3).
Its components are

h11 = 1 +
2GM

c2r
, h22 = r2

(

1 +
ω2r2

c2

)

,

h23 = −
ωr2v

c2
, h33 = 1;

h11 = 1−
2GM

c2r
, h22 =

1

r2

(

1−
ω2r2

c2

)

,

h23 =
ωv

c2
, h33 = 1 .

(2)

Physically observed (chronometrically invariant) char-
acteristics of this space are

F 1 =

(

ω2r −
GM

r2

)(

1 +
ω2r2

c2

)

, (3)

A12 = −
ω

r

(

1−
2GM

c2r
+
ω2r2

2c2

)

, A31 =
ω2vr

c2
, (4)

where F i is a vector of a gravitational-inertial force, Aik is a
tensor of an angular velocity of a rotation (a tensor of a non-
holonomity). The third characteristic is a tensor of velocities
of a deformation Dik = 0.

Geometric space characteristics of (2) are chronometric-
ally invariant Christoffel symbols Δkij of the second kind:

Δkij=h
kmΔij,m=

1

2
hkm

( ∗∂him
∂xj

+
∗∂him
∂xi

−
∗∂hij
∂xm

)

, (5)

where Δij,m are Christoffel symbols of the first kind, while
∗∂
∂xi
= ∂
∂xi
− 1
c2
vi

∗∂
∂t

is chronometric differentiation with res-

pect to spatial coordinates, and
∗∂
∂t

is chronometric different-
iation with respect to time. Because the gravitational field
described by the metric (1) is stationary, we have

∗∂
∂xi

= ∂
∂xi

The non-zero components of Δkij for (1) are

Δ111 =
GM

c2r
, Δ122 = −r

(

1−
2GM

c2r
+
2ω2r2

c2

)

,

Δ123=
ωvr

c2
, Δ212=

1

r

(

1+
ω2r2

c2

)

, Δ213=−
ωv

c2r
.

(6)

Let’s consider the particular case of this motion when the
gravitational-inertial force is absent:

F i = 0 . (7)

We rewrite it for the metric (1) in the form

GM

r
= ω2r2 = V 2, (8)
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where V is the linear velocity of a rotational motion.
Substituting into (8) the Earth’s mass M⊕= 6×1027g and

the Earth’s radius R⊕= 6.37×108 cm we obtain the value of
a velocity of a rotation V= 7.9 km/sec. This value is the
first space velocity, which we denote by VI . If we accelerate
a body located on the Earth in this way, so that its velocity
acquires the value 7.9 km/sec, it will move freely in the grav-
itational field of the Earth as an Earth satellite. This means
that condition (7) is the weightlessness condition in General
Relativity, formulated in terms of physically observed quan-
tities.

Substituting into (8) the mass of the Sun M�= 2×1033 g
and the distance between the Earth and the Sun r=
=15×1012 cm we obtain v=30 km/sec — the orbital velocity
of the Earth in the gravitational field of the Sun. This means
that the Earth rotates around the Sun in the state of weight-
lessness.

Analogous calculations show [4] that the orbital motion
of the Moon around the Earth and orbital motions of all pla-
nets of the Solar system satisfy the weightlessness condition.
We conclude that the weightlessness condition is the con-
dition by which the force of Newton’s attraction FN equals
the force Fω connected with a rotational motion. It is evident
that this force must be directed opposite to that of the New-
tonian force. It is possible to consider this force as a vector
product of two quantities: (1) a pseudo-scalar of an angular
velocity of rotation ω directed along the Earth’s axis;
(2) a vector V =ω× r in a direction tangential to the sat-
ellite’s orbit. Thus we have

Fω = ω × V = ω ×
[
ω × r

]
. (9)

This force is directed opposite to the Newtonian force in
a right coordinate frame. Its value is ωV sinα, α the angle
between these vectors; it equals ω2r if these quantities are
orthogonal to one another.

We call this force the inner force of non-holonomity,
because it acts on a body moving in the inner gravitational
field of another body. This force is included in the g00-
component of the fundamental metric tensor gαβ .

It is necessary to explain why we consider ω a pseudo-
vector. In general, Zelmanov defines a pseudo-vector of an
angular velocity Ωi= 1

2 ε
imnAmn, where εimn is a comple-

tely antisymmetric chronometrically invariant unit tensor.
For it we have ε123= 1√

h
, where h is the determinant of

a three-dimensional fundamental metric tensor hik.
Taking (8) into account, we calculate for the metric (1):

h = r2
(

1 +
3ω2r2

c2

)

, (10)

A12 = −ωr

(

1 +
3ω2r2

2c2

)

, (11)

with the other components of Aik all zero. Consequently
only the component Ω3=−ω is not zero for this metric.

It is easy to calculate for all planets that orbital motion
satisfies Kepler’s third law.

3 The motion of a satellite in the gravitational field of
the Earth

We consider the motion of a satellite in the gravitational field
of the Earth rotating around the its own axis and moving
in the gravitational field of the Sun (rotating around its
centre). This is a motion of a free body, so it is consequently
described by the geodesic equations

d2xα

ds2
+ Γαμν

dxμ

ds

dxν

ds
= 0, (12)

where dxα

ds is a vector of a four-dimensional velocity, Γαμν are
four-dimensional Christoffel symbols. In terms of observed
quantities, these equations have the form

dm

dτ
−
m

c2
FiV

i +
m

c2
DikV

iV k = 0,

d(mV i)

dτ
+2m

(
Di
k+A

∙i
k∙

)
V k−mF i+mΔinkV

nV k=0,

(13)

where τ is proper (observed) time, V i= dxi

dτ is a three-
dimensional observed velocity, m is the relativistic mass of a
satellite. It is evident that its gravitational field is negligible.

Substituting into these equations the calculated values
of Aik and Δkij for the metric (1) and taking into account
the condition of weightlessness (8), we obtain a system of
equations

dm

dτ
= 0 , (14)

d

dτ

(

m
dr

dτ

)

+2mωr

(

1−
ω2r2

2c2

)
dϕ

dτ
+
mω2r

c2

(
dr

dτ

)2
−

−mr

(
dϕ

dτ

)2
+
2mωvr

c2
dϕ

dτ

dz

dτ
= 0 ,

(15)

d

dτ

(

m
dϕ

dτ

)

−
2mω

r

(

1 +
ω2r2

2c2

)
dr

dτ
+

+
2m

r

(

1 +
ω2r2

c2

)
dr

dτ

dϕ

dτ
−
2mωv

c2r

dr

dτ

dz

dτ
= 0 ,

(16)

d

dτ

(

m
dz

dτ

)

−
2mω2vr

c2
dr

dτ
= 0. (17)

We obtain from equation (14) that the relativistic mass of
a space body is, by a condition of weightlessness, constant:
m= const. Using this condition we calculate the first integr-
al of equation (17)

ż = ż0 +
ω2v

(
r2 − r20

)

c2
, (18)

where ż denotes differentiation with respect to τ , ż0 and r0
are initial values.
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Taking into account that m= const and also GM
c2r

= ω2r2

c2

(the condition of weightlessness) we rewrite (15) and (16) as

r̈+2ωr

(

1−
ω2r2

2c2

)

ϕ̇+
ω2r

c2
ṙ2−rϕ̇2+

2ωvr

c2
ϕ̇ż = 0, (19)

ϕ̈−
2ω

r

(

1+
ω2r2

c2

)

ṙ+
2

r

(

1+
ω2r2

c2

)

ṙϕ̇−
2ωv

c2r
ṙż = 0. (20)

The linear velocity of the Earth’s rotation around its
axis, ωr cosφ, has the maximum value, at the equator, ωr=
500 m/sec, and consequently the maximum value of ω2r2

c2
=

= 6×10−11. Substituting (18) into (19–20) and neglecting the
terms ω2r2

c2
and ω2rṙ2

c2
, we obtain

r̈ + 2ωrϕ̇− rϕ̇2 +
2ωvr

c2
ϕ̇ż0 = 0 , (21)

ϕ̈− 2ω
ṙ

r
+ 2ϕ̇

ṙ

r
−
2ωvż0
c2

ṙ

r
= 0 . (22)

We rewrite (24) in the form

ϕ̈+ 2 (ϕ̇− ω̃)
ṙ

r
= 0 , (23)

where ω̃ = ω
(
1 + vż0

c2

)
. The quantity ω̃ is the angular vel-

ocity of an Earth point daily rotation containing a correction
vż0
c2

which is due to the orbital motion of the Earth around

the Sun. It is necessary that we do not neglect the term vż0
c2

,
because its order is 2.7×10−9: we propose v= 30 km/sec
(the orbital velocity of the Earth) and ż0= 8 km/sec (the
initial value of the satellite velocity).

The variable in equation (23) can be separated, and there-
fore it is easily integrated. The first integral is

ϕ̇ = ω̃ +
(ϕ̇0 − ω̃) r20

r2
, (24)

where ϕ̇ and r0 are initial values.
Substituting (24) into (21) we obtain, after transforma-

tions, the second order differential equation relative to r

r̈ + ω̃2r −
(ϕ̇0 − ω̃) r40

r3
= 0 . (25)

We introduce the new variable p = ṙ. Then r̈ = p dp
dr

and
(25) becomes

p dp =
(ϕ̇0 − ω̃)

2
r40

r3
dr − ω̃2rdr = 0 , (26)

the variables of which are also separable. It is easily integ-
rated to

ṙ2 =

(
dr

dτ

)2
= −ω2r2 −

(ϕ̇0 − ω̃)
2
r40

r2
+K, (27)

where the constant of integration K is

K = ṙ20 + r
2
0

[
2ω̃2 + ϕ̇0 (ϕ̇0 − 2ω̃)

]
. (28)

We obtain

ṙ =
dr

dτ
= ±

√

K − ω̃2r2 −
(ϕ̇0 − ω̃)

2
r40

r2
. (29)

This too is an equation with separable variables. Consi-
dering the positive sign we obtain, after elementary transfor-
mations,

dτ =
rdr

√
−ω̃2r4 +Kr2 − (ϕ̇0 − ω̃)

2
r40

. (30)

Introducing the new variable y = r2 we have

dτ =
1

2

dy
√
−ω̃2y2 +Ky − (ϕ̇0 − ω̃)

2
r40

. (31)

Integrating (31) and returning to the old variable r we
obtain the expression for τ

τ = −
1

2ω̃
arcsin

K − 2ω̃2r2
√
K2 − 4ω̃2 (ϕ̇0 − ω̃) r40

+B, (32)

where B is a constant of integration. Calculating B = 0 for
the initial value of τ0 = 0 we rewrite (32) as

sin 2ω̃τ =
2ω̃2

(
r2 − r20

)

√
K2 − 4ω̃2 (ϕ̇0 − ω)

2
r40

, (33)

where r0 is the initial value of r. It is easy to express r2 as

r2 = r20 +

√
K2 − 4ω̃2 (ϕ̇0 − ω̃)

2ω̃2
sin 2ω̃τ. (34)

Expressing K2−4ω̃2B2 through initial values we obtain

r =

√

r20 +
Q

2ω̃2
sin 2ω̃τ , Q = const, (35)

where Q =
√
(ṙ20 + r

2
0 ϕ̇

2
0)
[
ṙ20 + r

2
0(ϕ̇0 + 2ω̃)

2
]
.

Substituting (35) into (18) and integrating the resulting
expression we have

z = ż0τ +
vQ

2ω̃c2
(1− cos 2ω̃τ ) + z0 , (36)

where z0 and ż0 are initial values.
Substituting (34) into (24) and integrating we obtain for

ϕ the expression

ϕ = ω̃τ +
2ω̃2r20 (ϕ̇0 − ω̃)√
Q2 − 4ω̃4r40

×

× ln

∣
∣
∣
∣
∣
2ω̃2r20 tan ω̃τ +Q−

√
Q2 − 4ω̃4r40

2ω̃2r20 tan ω̃τ +Q+
√
Q2 − 4ω̃4r40

∣
∣
∣
∣
∣
+ P ,

(37)

where the integration constant equals P =ϕ0−
2ω̃2r20(ϕ̇0−ω̃)
Q2−4ω̃4r40

×

× ln

∣
∣
∣
∣
Q−
√
Q2−4ω̃4r40

Q+
√
Q2−4ω̃4r40

∣
∣
∣
∣.
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We see from (35–37) that trajectories of a freely falling
satellite in the Earth’s gravitational field conclude correc-
tions for the daily rotation of the Earth. Besides that, the
motion in the z-direction coinciding with a forward motion
of the Earth includes the velocity of the orbital motion of the
Earth around the Sun. Let’s estimate the correction in the z-
direction caused the orbital motion of the Earth with velocity
30 km/sec. In order to estimate the value Q, we propose
that the satellite moved vertically at the initial moment. This
means that only the radial component of the initial velocity
is not zero: ṙ0 6=0. Let it be equal to the first space velocity:
ṙ0'VI = 8 km/sec. In this case Q=V 2I ' 64 km2/sec2.
Taking into account the angular velocity of the daily rotation
ω= 8×10−5 sec−1 we obtain the correction vQ

2ω̃c2
= 13 cm.

This means that a satellite not only moves forward with a
velocity ż0 in the z-direction, it also undergoes harmonic
oscillations with the amplitude 13 cm during the 24-hour
period.

It is necessary to take into account these corrections in
relation to some experiments with satellites. For example,
experiments, the aim of which is to discover gravitational
waves: two geostationary satellites are considered as two
free particles. Measuring changes of the distance between
them by means of laser interferometer, scientists propose
to discover gravitational waves emitted by different space
sources. It is evident, it is necessary to take into account
changes of this distance caused by motion of satellites in the
gravitational field of the Sun.

Let’s study in detail why the z-direction is preferred.
The displacement in the z-direction includes the velocity
v= 30 km/sec of the Earth’s motion in the gravitational field
of the Sun. We consider this motion as a “forward” motion.
On the other hand, this motion is as well rotation, because
the Earth rotates around the Sun. Therefore we can consider
v as a vector product of two quantities

v = Ω×R , (38)

where Ω=2×10−7sec−1 is the angular velocity of the Earth’s
orbital rotation, R= 150×106 km is the distance between the
Earth and the Sun.

Now we define the outer force of non-holonomity FΩ as a
force of a kind different toFω . This definition corresponds to
the case where one body rotates around another as the latter
rotates around a greater body. We define this force also as
a force of non-holonomity, because Zelmanov proved that a
rotation of a three-dimensional space means that this space
is non-holonomic. The metric of the corresponding space-
time in this case necessarily includes the mixed (space-time)
terms g0i, because it is impossible to transform coordinates
in such a way that all g0i = 0.

We define the outer force of non-holonomity as

FΩ = ω ×
[
Ω×R

]
, (39)

where ω and Ω are angular velocities of two different rota-
tions: ω is the angular velocity of rotation of a space body
around a centre of attraction; Ω is the angular velocity of
rotation of the concomitant rotation of a space body and
its centre of attraction around a greater space body. The
interaction of both rotations produces a real force, acting
on masses the fields of which are in the region of this force.

We see that this force is included in metric (1) as an off-
diagonal term ωvr2

c2
. It is also contained in the chronometric-

ally invariant Christoffel symbols (6). Solving the null geo-
desic lines equations for this metric, we obtained in [1]
that an anisotropy of the velocity of light exists in the z-
direction. The z-axis in (1) coincides with the direction of
the concomitant motion of the Earth with the Solar system.
This motion realises the velocity 222 km/sec. The anisotropy
correction appearing in this direction as

Δż =
v

2
sin 2ω̃τ , (40)

where ż= dz
dτ , ω̃ is the angular velocity of the Earth’s orbital

motion. thus the value of ż is realised during one astronomic
year harmonic oscillation, with the amplitude 111 km/sec.

4 Conclusion. Further perspectives

We studied in this paper the motion of a satellite in the
Earth’s gravitational field. This motion is realised by the
condition of weightlessness, defined as a state of equilibrium
between two forces: the Newtonian force of attraction FN
and the force of repulsion Fω , caused by a rotational motion.
The existence of a rotation means the existence of a field of
non-holonomity, and, consequently, the existence of forces
of non-holonomity. The inner force of non-holonomity Fω
is a pseudo-tensor, always directed opposite to the direction
to the centre of attraction. This is a real force countering
the Newtonian force FN . The equality of these two forces
means that a satellite moves around the Earth in a state of
weightlessness.

A satellite moves freely, and consequently moves along
non-isotropic geodesic lines. We obtain from these equations
that the relativistic mass of a satellite is constant. Displace-
ments of a satellite in the r- and ϕ-directions include com-
ponents caused by the daily rotation of the Earth. Solving
the non-null geodesic lines equations describing its motion,
we obtained from formula (36)

Δż =
vQ

2c2
'
vV 2I
2c2

= 10−8 km, (41)

where v= 30 km/sec, VI = 8 km/sec is the first space veloc-
ity. This correction is very small, but it has the same origin
as the anisotropy of the velocity of light. Calculating the
displacement of a satellite in the z-direction, we obtain the
correction as a harmonic oscillation with the amplitude 13
cm and of 24-hour period.
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The expression (36) is the exact solution of the equation
(17). It is easy to see that the second term of (17) includes the
quantity mωv=mωΩR, where R is the distance between
the Earth and the Sun. We can rewrite it as the angular
momentum L of the outer force of non-holonomity

L = mFΩR = mωΩR . (42)

We conclude that:

1. If a body rotating around a centre of attraction also
rotates with the latter around a greater origin of attrac-
tion, these fields of rotation interact.

This interaction exists only by the condition that both bodies
rotate. The interaction of two fields of non-holonomity (the
inner and the outer) causes an anisotropy in the velocity of
light in the direction of the motion in the gravitational field
of a greater body [1]. This interaction causes the displace-
ment in this equation of a mass-bearing body (a satellite) ob-
tained in the present paper. Both effects have the same natu-
re: the angular moment of the outer force of non-holonomity
deviates null and non-null trajectories of light-like particles
and mass-bearing bodies.

We conclude that the inner and the outer forces of non-
holonomity have a different nature, and therefore produce
different effects on the motion of space bodies (and light).

2. The inner force of non-holonomity counters the New-
tonian force of attraction. It is included in a three-
dimensional potential of a gravitational field

w = c2 (1−
√
g00) '

GM

r
+
ω2r2

2
. (43)

This field of non-holonomity is linked to the weightless-
ness condition: the motion of a space body satisfies the
weightlessness condition if ∂w

∂r
= 0. This result follows from

the definition of a gravitational-inertial force vector

Fi =
1

1− w
c2

(
∂w

∂xi
−
∂vi
∂t

)

. (44)

We see that if a rotation is stationary (i. e. ∂vi
∂t
=0) the

condition of weightlessness has the form ∂w
∂xi
=0. It is evi-

dent that if a rotation is non-stationary, the condition of the
weightlessness takes the form

∂w

∂xi
=
∂vi
∂t

. (45)

It is interesting to note that a stationary rotation of a
three-dimensional space is linked with motions of the space-
time. It is shown in [4] that a stationary rotation of a three-
dimensional space is a motion of the space-time itself due to
the fact that a Lie derivative for this metric is zero.

3. The outer force of non-holonomity acts on the geo-
metry of the space of transit of a body which rotates
around another body and moves with the latter in the

gravitational field of a greater body. It imparts energy
to a moving (rotating) system of bodies, the gravita-
tional fields of which are part of the gravitational field.
We obtain the following chain: the gravitational field
of the Earth (and all other planets) is a part of the Sun’s
gravitational field; the gravitational field of the Sun is
a part of the galactic gravitational field, etc. All these
space bodies are linked by gravitational forces and
forces of non-holonomity. Its equilibrium is a necess-
ary condition of existence for the Universe.

A study of spaces with non-stationary rotation is the theme
of further papers. A necessary consideration of this problem
involves the microwave radiation in the observed Universe.
We have shown in the second part of [1] that the space-time
satisfying to metric (1) can be permeated only by matter
with stationary characteristics: a density, a stream of energy,
a stress tensor, etc. Proposing that the Universe is filled by an
ideal fluid (gas) and electromagnetic radiation, we showed
that the electromagnetic field can only be stationary. If we
consider this electromagnetic field as an electromagnetic
wave, we conclude that these waves can only be standing
waves. But observations show that in our Universe a micro-
wave electromagnetic radiation exists. We therefore must
initially choice a non-stationary metric. Such a metric can
allow non-stationary electromagnetic radiation. It is possible
that microwave radiation is linked with non-stationary fields
of non-holonomity. But this is a theme for further studies.
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Quantum entanglement is ubiquitous in the microscopic world and manifests itself
macroscopically under some circumstances. But common belief is that it alone cannot
be used to transmit information nor could it be used to produce macroscopic non-
local effects. Yet we have recently found evidence of non-local effects of chemical
substances on the brain produced through it. While our reported results are under
independent verifications by other groups, we report here our experimental findings of
non-local chemical, thermal and gravitational effects in simple physical systems such
as reservoirs of water quantum-entangled with water being manipulated in a remote
reservoir. With the aids of high-precision instruments, we have found that the pH
value, temperature and gravity of water in the detecting reservoirs can be non-locally
affected through manipulating water in the remote reservoir. In particular, the pH value
changes in the same direction as that being manipulated; the temperature can change
against that of local environment; and the gravity apparently can also change against
local gravity. These non-local effects are all reproducible and can be used for non-local
signalling and many other purposes. We suggest that they are mediated by quantum
entanglement between nuclear and/or electron spins in treated water and discuss the
implications of these results.

1 Introduction

Scientific methods require that one conform one’s know-
ledge of nature to repeatable observations. Thus, it is unsci-
entific to reject what’s observed repeatedly and consistently.
With this in mind, we comment that quantum entanglement
has been recently shown to be physically real in many labo-
ratories [1, 2]. Indeed, spins of electrons, photons and nuclei
have now been successfully entangled in various ways for
the purposes of quantum computation and communication
[3, 4]. On the other hand, we have recently observed non-
local effects of chemical substances on the brain produced
through quantum entanglement [5, 6] which are commonly
thought to be impossible [7]. Here we report our work carried
out on simple physical systems, in particular, water, using
simple physical/chemical observables such as pH, tempera-
ture and gravity measured with high-precision instruments.
Our motivation for measuring pH change of water in one
reservoir, while manipulating water in a remote reservoir
quantum-entangled with the former, is to investigate whether
and how pH value in the water being measured shifts under
non-local influences. Our motivation for measuring tempera-
ture variation of water in one reservoir, while manipulating
water in a remote reservoir quantum-entangled with the
former, is to investigate whether and how the thermodynam-
ics of water being measured changes under non-local influ-
ences. Our motivation for measuring gravity change of one
reservoir of water, while manipulating water in a remote re-
servoir quantum-entangled with the former, is to investigate
whether gravity also change under non-local influences.

The successes of the experiments described herein were
achieved with the aids of high-precision analytical instru-
ments. They include an Ohaus Voyager Analytical Balance
with capacity 210 g, resolution 0.1 mg, repeatability 0. 1mg
and sensitivity drift 3PPM/◦C, a Control Company traceable-
calibration digital thermometer with resolution 0.001◦C and
repeatability 0.002◦C near 25◦C in liquid such as water (esti-
mated from calibration data provided), and a Hanna micro-
processor pH meter Model 213 with resolution 0.001 and
repeatability 0.002. The other key apparatus is a 25-litre
Dewar filled with liquid nitrogen and positioned remotely
at a desired distance which not only provided the drastic
changes in the water being manipulated but also served as a
natural Faraday cage blocking any possible electromagnetic
influence between the water being measured and the water
being manipulated. Also vital to the success of the experi-
ments described herein was the stable environment found
in an underground room which shields many external noises
such as mechanical vibration, air turbulence and large tempe-
rature change.

2 Materials and methods

Quantum-entangled stock water in individual volumes of
500 ml or similar quantities was prepared as described pre-
viously [5] which might then be split into smaller volumes
or combined into larger ones based on needs.Briefly, in one
procedure 500 ml fresh tap water in a closed plastic reservoir
was exposed to microwave radiation in a 1500 W microwave
oven for 2 min and then left in room temperature for 24 hours
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Fig. 1: Illustration of the key experimental setup. Several variations
of this setup were also used in the actual experiments as described
in the text. For example, in one variation, the manipulation was
heating the water in the 3rd reservoir to boiling point and then
cooling it down. In a second variation, the gravity measurement
was eliminated and the manipulations were first adding 5 ml
concentrated HCl (38%) to the third reservoir, then adding 20 g
NaOH to the same and third heating the same to boiling point.
In a third variation, the Dewar was located more than 500 feet
away from the site of measurement. In fourth variation, the
gravity and pH measurements were eliminated and the temperature
measurements were carried out more than 50 miles away from the
location of the Dewar.

before use. In a second procedure 500 ml fresh tap water in
the closed plastic reservoir was exposed to audio-frequency
radiations of a 20 W magnetic coil for 30 min and then left
in room temperature for 24 hours before use. In a third
procedure, 500 ml bottled natural water was simply left in
room temperature for at least 30 days before use. In a fourth
procedure, 500 ml bottled distilled water was simply left in
room temperature for at least 30 days before use. It was
found previously that the stock water prepared according to
these procedures is quantum-entangled [5].

Figure 1 shows a diagram of the key experimental setup.
It includes (1) the analytical balance calibrated internally
and stabilized in the underground room for more than one
week before use and a tightly closed plastic first reservoir
containing 175 ml water split from the 500 ml stock water
which is placed on the wind-shielded pan of the balance
with 1-inch white foam in between as insulation; (2) the
digital thermometer and calibrated pH meter placed into the
middle of a glass second reservoir containing 75 ml water
split from the 500 ml stock water which is closed to prevent
air exchange; and (3) the 25-litre Dewar containing 15–25
litres of liquid nitrogen which is located at a distant of 50
feet from the underground room and a tightly closed plastic

pH Meter

50 mW Red Laser

1st Reservoir
200ml Water

2nd Reservoir
100ml HCl(38%)

Fig. 2: Illustration of the second experimental setup which allows
the measurement of pH value in the presence or absence of
concentrated HCl about 500 cm away from and behind the water
being measured. If no quantum entanglement is involved, the
presence or absence of the HCl should not affect the pH value.

third-reservoir containing 250 ml water split from the 500 ml
stock water to be submerged into the liquid nitrogen in the
Dewar at a specified time.

Experiments with the above first-setup were carried out
as follows: (1) prepare the 500 ml quantum entangled stock
water, divide the same into 175ml, 75ml and 250ml portions
and put them into their respective reservoirs described above;
(2) set up the experiment according to Figure 1 and let the
instruments to stabilize for 30 min before any measurements
is taken; (3) record for 20 min minute-by-minute changes of
pH value and temperature of the water in the first-reservoir
and weight of the second reservoir with water before sub-
merging the third reservoir into liquid nitrogen; (4) submerge
the third-reservoir with water into liquid nitrogen for 15 min
or another desired length of time and record the instrument
readings as before; and (5) take the third-reservoir out of
liquid nitrogen, thaw the same in warm water for 30 min or
longer and, at the same time, record the instrument readings
as before. Control experiments were carried out in same
steps with nothing done to the water in the third-reservoir.

In one variation of the above setup, the closed plastic
third-reservoir was replaced with a metal container and in-
stead of freeze-thaw treatment the water in the metal con-
tainer was quickly heated to boiling within 4–5 minutes
and then cooled in cold water. In a second variation of
the above setup, the gravity portion of the experiment was
eliminated and the water in the first and second reservoirs
was combined into a closed thermal flask which prevents
heat exchange between the water being measured and its
local environment. In a third variation of the above setup,
the gravity portion of the experiment was eliminated and the
water in the first and second reservoirs was combined into
a fourth plastic container in which 5 ml concentrated HCl
(38% by weight) was first added, then 20 g NaOH powder
was added and next the same water was transferred to a
metal container and heated to boiling on a stove. In a fourth

18 H. Hu, M. Wu. Evidence of Non-local Chemical, Thermal and Gravitational Effects



April, 2007 PROGRESS IN PHYSICS Volume 2

Fig. 3: pH variations under remote manipulations of water
quantum-entangled with water being measured. The pH value at
the starting point is set to zero and the results shown were obtained
from one batch of quantum-entangled water. The difference in
pH values from control in which no freeze-thaw was done at
the point of thawing is about 0.010. However, if the water being
measured was kept in a thermal flask to prevent energy exchange
with the local environment, no effect on pH value was observed
during freeze-thaw treatment of remote water. Statistical analysis
on data collected after freezing for 10 min show that the results are
significantly different under the different treatments/settings shown.

variation of the above first-setup, the 25-litre Dewar con-
taining liquid nitrogen was replaced by a large water tank
located 20-feet above the underground room which con-
tained 200-gallon tap water sitting in room temperature for
months and, instead of submersion, the water in the third-
reservoir was poured into the large water tank the purpose
of which was to quantum-entangle the poured water with the
water in the large tank. In a fifth variation of the above setup,
the gravity portion of the experiment was eliminated and the
water in the first and second reservoirs was combined into a
closed glass fourth-reservoir which was moved to a location
more than 50 miles away from the Dewar for temperature
measurement.

Figure 2 shows a diagram of the second experimental
setup. It includes: (1) a red laser with a 50 mW output and
wavelengths 635–675 nm placed next and pointed to a flat
glass first-reservoir containing 200 ml tap water sitting in
room temperature for more than a week without air exchange;
(2) the calibrated pH meter and optionally the digital thermo-
meter placed into the middle of the said flat glass reservoir
which was closed to prevent air exchange; and (3) a round
glass second-reservoir containing 100 ml concentrated HCl
(38% by weight) to be placed 500 cm away from the first-
reservoir at a specified time.

Experiments with the above second setup were carried
out as follows: (1) prepare the 200 ml tap water and set
up the experiment according Figure 2; turn on the laser so
that the laser light first passes through the first-reservoir and
then gets scattered on a nearby concrete wall, and let the

Fig. 4: Temperature variations under remote manipulations of water
quantum-entangled with water being measured. The temperature at
the starting point is set to zero and the results shown were obtained
from one batch of quantum-entangled water. The temperature
difference from control in which no freeze-thaw was done at the
point of thawing is about 0.05◦C. However, if the water being
measured is kept in a thermal flask to prevent heat exchange with
the local environment, no dropping of temperature were observed
under freeze-thaw treatment. Statistical analysis performed on
data collected after freezing for 10 min show that the results are
significantly different under the different treatments/settings shown.

instruments to stabilize for 30 min before any measurement
is taken; (2) record for 10 min minute-by-minute changes
of pH value and optionally temperature of the water in the
first-reservoir; and (3) place the second reservoir containing
100 ml HCl on the path of the laser light and at a distance
of 500 cm from the first reservoir and record for 60 min or
longer instrument readings as before. Control experiments
were carried out in same steps in the absence of HCl.

3 Results

Figures 3, 4 and 5 summarize the results obtained from ex-
periments conducted with the key setup and one batch of
quantum-entangled water which were simply bottled natural
water with a shelf time of more than 90 days. Similar results
were also obtained with water prepared according to other
quantum entanglement methods mentioned above and other
quantum-entangled liquid such as olive oil, alcohol and even
Coca Cola as discussed later. The different distances of the
Dewar from the underground room where most measure-
ments were done made no noticeable differences with respect
to the results obtained.

Figure 3 shows changes of pH value of the water in the
second-reservoir during the three stages of manipulations of
the water in the remote third-reservoir. As shown, within
minutes after the remote third-reservoir was submerged into
liquid nitrogen, during which the temperature of water being
manipulated would drop from about 25◦C to −193◦C, the
pH value of the water in the second reservoir steadily stopped
dropping and then started rising, but about 20 min after the
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Fig 4A: One particular example detailing temperature variations
under remote manipulation. The temperature difference from
control at the point of thawing is about 0.08◦C. However, if the
water being measured is kept in a thermal flask, no dropping of
temperature were observed under freeze-thaw treatment.

frozen water was taken out of liquid nitrogen and thawed in
warm water the pH value of the same steadily levelled off
and started dropping again. In contrast, the control experi-
ments did not show such dynamics. It is known that the pH
value of water increases as its temperature goes down to
0◦C. Therefore, the pH value of water being measured goes
in the same direction as the remote water when the latter
is manipulated. The difference in pH values from control in
which no freeze-thaw was done at the point of thawing is
about 0.010. However, if the water being measured is kept
in a thermal flask to prevent heat exchange with the local
environment, no effect on pH value was observed under
freeze-thaw treatment of the remote water. Statistical analysis
performed on data collected after freezing for 10 minutes
show that the results are significantly different under these
different treatments/settings.

Figure 4 shows temperature variations of the water in the
second-reservoir during the three stages of manipulations of
the water in the remote third-reservoir. As shown, before the
submersion of the remote third-reservoir into liquid nitrogen
the temperature of the water in the second-reservoir rose in
small increments due to, by design, the slight temperature
difference between the local environment and the water in-
side the second reservoir; but within about 4–5 minutes after
the remote third-reservoir was submerged into liquid nitro-
gen, during which the temperature of water being manipula-
ted would drop from about 25◦C to −193◦C, the temperature
of the water in the second reservoir first stopped rising and
then steadily dropped in small increments; and then within
about 4–5 minutes after the frozen water was taken out of
liquid nitrogen and thawed in warm water the temperature of
the same first stopped dropping and then steadily rose again
in small increments. In contrast, the control experiments
did not show such dynamics. The temperature difference

Fig 4B: One example showing temperature variation of a different
liquid, Coca Cola, under remote manipulation of a portion of the
said liquid quantum-entangled with another portion of the liquid
being measured. Other liquids such as distilled water, olive oil
and alcohol also showed similar qualitative results under the same
treatment.

from control in which no freeze-thaw was done at the point
of thawing is about 0.05◦C. However, if the water being
measured is kept in a thermal flask to prevent heat exchange
with the local environment, no dropping of temperature were
observed under freeze-thaw treatment of the remote water.
Statistical analysis performed on data collected after freezing
for 10 minutes show that the results are significantly differ-
ent under these different treatments/settings.

In addition, Figure 4A shows one particular example of
temperature variations under remote manipulation of water
quantum-entangled with water being measured. In this case,
the temperature difference from control at the point of thaw-
ing is about 0.08◦C. Further, Figure 4B shows one example
of temperature variation of a different liquid, Coca Cola,
under remote manipulation of a portion of the said liquid
quantum-entangled with another portion being measured.
Other liquids such as distilled water, olive oil and alcohol
also showed similar qualitative results under the same freeze-
thaw treatment. Furthermore, preliminary experiments con-
ducted with the temperature measurement done at a location
more than 50 miles way from the Dewar also show results
similar to those obtained at distances of 50 and 500 feet
respectively.

Figure 5 shows weight variations of the first reservation
during the three stages of manipulation of the water in the
remote third-reservoir. Before the submersion of the remote
third-reservoir into liquid nitrogen the weight being mea-
sured drifted lower very slowly. But almost immediately after
the remote third-reservoir was submerged into liquid nitro-
gen, during which the temperature and physical properties of
water being manipulated drastically changed, the weight of
the first-reservoir dropped at an increased rate, and after the
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Fig 5: Weight variations under remote manipulations of water
quantum-entangled with water being weighed. The weight at the
starting point is set to zero and the results shown were obtained
from one batch of quantum-entangled water. The weight differences
from control in which no freeze-thaw was done at the point of
thawing is about 2.5 mg. In some cases, the weight of the water
being weighed not only briefly stop dropping for several minutes
but also rose briefly for several seconds to minutes as shown in
Figure5A. Also when the remote water was quickly heated to
boiling on a stove instead of being frozen in liquid nitrogen, a
brief rise of weight in the range of about 0.5 mg were repeated
observed in one variation of the key setup. Further, when the remote
water was poured into a 200-gallon water tank, small but noticeably
increased weight losses were also observed in several experiments
conducted to date. Statistical analysis performed on data collected
after freezing for 10 min show that the results are significantly
different under the different treatments/settings shown.

frozen water was taken out the liquid nitrogen and thawed
in warm water the weight of the same first stopped dropping
and, in some cases, even rose before resuming drifting lower
as further discussed below. In contrast, the control experi-
ments did not show such dynamics. The weight difference
from control in which no freeze-thaw was done at the point
of thawing is about 2.5 mg. Statistical analysis performed
on data collected after freezing for 10 minutes show that
the results are significantly different under these different
treatments/settings.

As shown in Figure 5A, in some cases, the weight of the
water being measured not only stopped dropping for several
minutes but also rose. The signatures of freezing induced
weight decreases and thawing induced weight increases for
three different thawing times are very clear. In addition,
Figure 5B shows one example of weight and temperature
variations under the same remote manipulation of water
quantum-entangled with water being weighed and measured
respectively. Again, the signatures of freezing and thawing
induced weight and temperature decreases and increases are
respectively very clear. Further, Figure 5C shows another
example of weight and temperature variations under another

Fig 5A: Examples of weight variations under remote manipulations
of water quantum-entangled with water being weighed. The onset
of increased weight loss started either at the time of freezing
treatment or slightly later. The signatures of thawing induced
weight increases were clear for the three different thawing times.
The distances shown are the respectively distances of the Dewar to
the location of measurement in each experiment.

same remote manipulation in which the Dewar was located
about 500 feet away from where the measurements were
taken. The general background trend of decreasing tempera-
ture was due to environmental temperature change. Yet again,
the signatures of freezing and thawing induced weight and
temperature variations were respectively are very clear. Also,
when the remote water was quickly heated to boiling on a
stove instead of being frozen in liquid nitrogen, a brief rise of
weight in the range of about 0.5 mg were repeated observed
in several experiments conducted so far.

Furthermore, when the remote water was poured into
the 200-gallon water tank instead of being frozen in liquid
nitrogen, small but noticeably increased weight losses were
repeatedly observed in the several experiments conducted
to date. More specifically, before mixing of the water in
the remote third-reservoir with water in the water tank the
measured weight drifted lower very slowly, but within short
time measured in minutes after the water in the remote third-
reservoir was poured into the water tank, during which the
water in the said tank got quantum-entangled with the water
in the third-reservoir, the weight of the first-reservoir dropped
at small but increased rate for a period of time. In contrast,
the control experiments did not show such dynamics.

Figure 6 shows an example of temperature variations
under the respective treatments of adding 5 ml concentrated
HCl (38%) to the third reservoir, then adding 20 g NaOH to
the same and third heating the same to boiling point. The
signatures of these remote treatments induced temperature
changes were clear and repeatedly observable in quite a few
experiments conducted to date.

Figure 7 shows the variations of pH value of the water in
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Fig 5B: One example of weight and temperature variations under
the same remote manipulation of water quantum-entangled with
water being weighed and measured respectively. The onset of
increased weight loss started at the time of freezing treatment
but the onset of temperature decrease against environmental
temperature started a few minutes later after freezing treatment
started. The signatures of thawing induced weight and temperature
increases were clear. The distance shown is the distance of the
Dewar to the location of measurement.

the first reservoir in experiments done with the setup in Figu-
re 2. As shown, in about 30 min after the second-reservoir
containing 100 ml concentrated HCl (38% by weight) was
placed behind the first-reservoir at a distance of 500 cm and
on the path of the laser beam, during which the water in
the first-reservoir got quantum-entangled with the content in
the second reservoir, the pH value of the water in the first-
reservoir steadily decreased. In contrast, the control experi-
ments did not show such dynamics. Also, the 50 mW red
laser did not affect the temperature of the water in the first
reservoir significantly during the whole treatment. The dif-
ference in pH value from control in which HCl was absence
is about 0.070 after 50 min of exposure to HCl. Statistical
analysis performed on data collected after exposure to HCl
for 30 min show that the results are significantly different
from control. Various experiments done with direct additions
of HCl to the remote water also repeated showed decreases
in pH value in the water being measured.

4 Discussions

With all experimental setups and their variations described
herein, we have observed clear and reproducible non-local
effects with the aids of high-precision analytical instruments
and under well-controlled conditions. The physical observ-
ables used for measuring the non-local effects are simple
ones which can be measured with high precisions. These
effects are, even under the most stringent statistical analysis,
significantly above and beyond what were noticeable in the
control experiments.

Fig 5C: Second example of weight and temperature variations
under another same remote manipulation of water quantum-
entangled with water being weighed and measured respectively.
The general background trend of decreasing temperature was
due to environmental temperature change. The onset of increased
weight loss started at the time of freezing treatment but the
onset of increased temperature loss started a few minutes later
after freezing treatment started. The signatures of thawing induced
weight increase and slow down of temperature loss were again
clear. The distance shown is the distance of the Dewar to the
location of measurement.

Through careful analysis, we have likely excluded the
possibility that the observed weight variation was a second-
ary local effect due to heat loss and/or sensitivity drift of
balance associated with temperature change induced by the
remote manipulation. First, during the period of remote ma-
nipulation the total temperature change was less than 0.08◦C
so the total heat loss for the 175 ml water in the first-reservoir
is about 60 J. In contrast, the weight loss during remote ma-
nipulation was on average about 2.5 mg which is 22.5×109 J
in energy unit. Second, the first-reservoir and the pan of the
balance were separated by 1-inch white foam to prevent heat
transfer to the analytic balance. Even in the highly unlikely
scenario that this temperature change somehow affected the
overall temperature of the balance, the associated sensitivity
drift of the balance was about 0.03 mg which is 10 times
smaller than what’s actually observed. In addition, Figures
5A, 5B and 5C also show several other signatures of remote
freeze-thaw treatment as the sole cause of the observed weight
variations. Therefore, we cautiously suggest that the observ-
ed gravity variation is a genuine and direct non-local effect
associated with quantum entanglement. However, as with
many other important new results, replications by others are
the key to independently confirm our results reported here.

We chose to use liquid nitrogen in a large Dewar placed
at a distant location for manipulating water in our experi-
ments because it can provide drastic changes in temperature
and properties of water in a very short period of time. Our
expectation was that, if the quantum entities inside the water
being measured are able to sense the changes experienced by
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Fig 6: An example of temperature variations under the respective
treatments of adding 5 ml concentrated HCl (38%) to the third
reservoir, then adding 20 g NaOH to the same and third heating the
same to boiling point. The signatures of these remote treatments
induced temperature changes were clear and repeatedly observable
in quite a few experiments conducted to date. The general
background trend of the temperature first increasing, flattening and
decreasing was due to environmental temperature change.

the quantum entities in the water being manipulated through
quantum entanglement and further utilize the information
associated with the said changes, the chemical, thermal and
even possibly gravitational properties of the water might
be affected through quantum entanglement mediated non-
local processes [5, 6]. The most logical explanation for these
observed non-local effects is that they are the consequences
of non-local processes mediated by quantum entanglement
between quantum entities in the water being measured and
the remote water being manipulated as more specifically
illustrated below.

First, when pH value of the water in the manipulation
reservoir is high or low or is changing under direct manipu-
lation such as extreme cooling or heating or addition of
acidic or alkaline chemical, the measured pH in the detecting
reservoir shifts in the same direction under the non-local
influence of the water in the manipulation reservoir mediated
through quantum entanglement and, under the condition that
the detecting reserve is able to exchange energy with its
local environment, as if H+ in the latter is directly available
to water in the detecting reservoir.

Second, when the temperature in the manipulation re-
servoir is extremely low or high or is changing under direct
manipulation such as extreme cooling or heating or addition
of heat-generating and/or property-changing chemical such
as concentrated HCl or NaOH powder, the temperature in the
detecting reservoir changes in the same direction under non-
local influence of the water in the manipulation reservoir
mediated through quantum entanglement and, under the con-
dition that the detecting reserve is able to exchange heat with

Fig 7: pH variations under laser treatment in the presence and
absence of concentrated HCl with the setup in Figure 2. The pH
value at the starting point is set to zero. The difference in pH value
from control in which HCl was absence is about 0.07 after 50 min
of exposure to HCl. Various experiments done with direct additions
of HCl to the remote water also repeated showed decreases in pH
value in the water being measured. Statistical analysis performed
on data collected after exposure to HCl for 30 min show that the
results are significant different from control.

its local environment so that the local thermodynamic energy
is conserved, as if the heat or lack of it in manipulation
reservoir is directly available to the water in the detecting
reservoir.

Third, when water in manipulation reservoir is manipu-
lated though extreme cooling, heating or mixing with large
quantum-entangled mass, e.g., water, such that, it is hereby
cautiously suggested, the quantum entanglement of the water
under manipulation with its local environment changes, the
weight of the water in the detecting reservoir also changes
under the presumed non-local influence of the manipulation
reservoir mediated through quantum entanglement. However,
independent and vigorous replications should be carried out
before a definite conclusion is drawn.

We suggest here that the said quantum entities inside
water are likely nuclear spins for the reasons discussed below.
Water contains vast numbers of nuclear spins carried by 1H.
These spins form complex intra- and inter-molecular net-
works through various intra-molecular J- and dipolar coup-
lings and both short- and long-range intermolecular dipolar
couplings. Further, nuclear spins have relatively long relaxa-
tion times after excitations [8]. Thus, when a nematic liquid
crystal is irradiated with multi-frequency pulse magnetic
fields, its 1H spins can form long-lived intra-molecular quan-
tum coherence with entanglement for information storage
[9]. Long-lived entanglement of two macroscopic electron
spin ensembles in room temperature (0.05 ms) has also been
achieved [1]. Furthermore, spin is a fundamental quantum
process and was shown to be responsible for the quantum
effects in both Hestenes and Bohmian quantum mechanics
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[10, 11]. Thus, we suggest that quantum-entangled nuclear
spins and/or electron spins are likely the mediators of all
observed non-local effects reported here [5, 6].

5 Conclusions

Several important conclusions can be drawn from our find-
ings. First, we have realized non-local signalling using three
different physical observables, pH value, temperature and
apparently gravity. Second, we have shown that the tempera-
ture of water in a detecting reservoir quantum entangled with
water in a remote reservoir can change against the tempera-
ture of its local environment when the latter is manipulated
under the condition that the water the detecting reservoir
is able to exchange heat with its local environment. Third,
we have also shown that the gravity of water in a detecting
reservoir quantum entangled with water in a remote reservoir
apparently also change when the latter was remotely manipu-
lated. Our findings imply that the properties of all matters
can be affected non-locally through quantum entanglement
mediated processes.

Finally, with respect applications, our findings enable
various quantum entanglement assisted technologies be de-
veloped. Some of these technologies can be used to manipu-
late and/or affect remotely various physical, chemical and/or
biological systems including human bodies. Other such tech-
nologies can be used for non-local signalling and communi-
cations between remote locations of arbitrary distances in
various ways. Potentially, other novel and practical applica-
tions can also be developed based on our experimental find-
ings.
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On Line-Elements and Radii: A Correction

Stephen J. Crothers

Queensland, Australia
E-mail: thenarmis@yahoo.com

Using a manifold with boundary various line-elements have been proposed as solutions
to Einstein’s gravitational field. It is from such line-elements that black holes,
expansion of the Universe, and big bang cosmology have been alleged. However, it
has been proved that black holes, expansion of the Universe, and big bang cosmology
are not consistent with General Relativity. In a previous paper disproving the black
hole theory, the writer made an error which, although minor and having no effect on
the conclusion that black holes are inconsistent with General Relativity, is corrected
herein for the record.

1 Introduction

In a previous paper [1] (see page 8 therein) the writer made
the following claim:

“the ratio χ
Rp
> 2π for all finite Rp”

where Rp is the proper radius and χ is the circumference
of a great circle. This is not correct. In fact, the ratio χ

Rp
is

greater than 2π for some values of Rp and is less than 2π
for other values of Rp. Furthermore, there is a value of χ
for which χ

Rp
=2π, thereby making Rp=Rc, where Rc is

the radius of curvature. Thus, if the transitional value of the
circumference of a great circle is χe, then

χ < χe ⇒
χ

Rp
> 2π,

χ = χe ⇒
χ

Rp
= 2π,

χ > χe ⇒
χ

Rp
< 2π.

2 Correction — details

Consider the general static vacuum line-element

ds2 = A(r)dt2 −B(r)dr2 − C(r)
(
dθ2 + sin2θdϕ2

)
, (1)

A(r), B(r), C(r) > 0.

It has been shown in [1] that the solution to (1) is

ds2 =

(

1−
α

√
C(r)

)

dt2−
1

1− α√
C(r)

d
√
C(r)

2
−

−C(r)
(
dθ2 + sin2θdϕ2

)
,

α <
√
C(r) <∞,

(2)

where, using c=G=1,

Rc = Rc(r) =
√
C(r) =

(∣
∣r − r0

∣
∣n + αn

)1
n

,

Rp = Rp(r) =
√
Rc(r) (Rc(r)− α)+

+α

∣
∣
∣
∣
∣
Rc(r) +

√
Rc(r)− α√
α

∣
∣
∣
∣
∣
,

r ∈ <, n ∈ <+, r 6= r0,

(3)

and where r0 and n are entirely arbitrary constants, and α
is a function of the mass M of the source of the gravitational
field: α=α(M). Clearly, limr→r±0

Rp(r)= 0
+ and also

limr→r±0
Rc(r)=α

+ irrespective of the values of r0 and n.

Usually α = 2m ≡ 2GM/c2 by means of a comparision
with the Newtonian potential, but this identification is rather
dubious.

Setting Rp = Rc, one finds that this occurs only when

Rc ≈ 1.467α.
Then

χe ≈ 2.934πα.

Thus, at χe the Euclidean relation Rp = Rc holds. This
means that when χ = χe the line-element takes on a Euclid-
ean character.

An analogous consideration applies for the case of a
point-mass endowed with charge or with angular momentum
or with both. In those cases α is replaced with the corres-
ponding constant, as developed in [2].

3 Summary

The circumference of a great circle in Einstein’s gravitational
field is given by

χ = 2πRc ,

2πα < χ <∞ .
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In the case of the static vacuum field, the great circle
with circumference χ=χe≈ 2.934πα takes on a Euclidean
character in that Rp=Rc≈ 1.467α there, and so χe marks
a transition from spacetime where χ

Rp
< 2π to spacetime

where χ
Rp
> 2π. Thus,

lim
r→∞±

χ

Rp(r)
= 2π,

lim
r→r±0

χ

Rp(r)
= ∞ ,

lim
χ→χ±e

χ

Rp(r)
= 2π.

Similar considerations must be applied for a point-mass
endowed with charge, angular momentum, or both, but with
α replaced by the corresponding constant β in the expression
for Rp [2],

β =
α

2
+

√
α2

4
− (q2 + a2 cos2 θ) ,

q2 + a2 <
α2

4
, a =

2L

α
,

where q is the charge and L is the angular momentum, and so

Rc = Rc(r) =
(∣
∣r − r0

∣
∣n + βn

) 1
n

,

r ∈ <, n ∈ <+, r 6= r0,

where both r0 and n are entirely arbitrary constants.
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Relativistic Cosmology Revisited

Stephen J. Crothers

Queensland, Australia
E-mail: thenarmis@yahoo.com

In a previous paper the writer treated of particular classes of cosmological solutions
for certain Einstein spaces and claimed that no such solutions exist in relation thereto.
In that paper the assumption that the proper radius is zero when the line-element is
singular was generally applied. This general assumption is unjustified and must be
dropped. Consequently, solutions do exist in relation to the aforementioned types,
and are explored herein. The concept of the Big Bang cosmology is found to be
inconsistent with General Relativity.

1 Introduction

In a previous paper [1] the writer considered what he thought
was a general problem statement in relation to certain Ein-
stein spaces, and concluded that no such solutions exist for
those types. However, the problem statement treated in the
aforementioned paper adopted an unjustified assumption —
that the proper radius is zero when the line-element is sing-
ular. Although this occurs in the case of the gravitational
field for Rμν =0, it is not a general principle and so it
cannot be generally applied, even though it can be used
to amplify various errors in the usual analysis of the well
known cosmological models, as done in [1]. By dropping
the assumption it is found that cosmological solutions do
exist, but none are consistent with the alleged Big Bang
cosmology.

2 The so-called “Schwarzschild — de Sitter model”

Consider the line-element

ds2 =

(

1−
α

Rc
−
λ

3
R2c

)

dt2−

−

(

1−
α

Rc
−
λ

3
R2c

)−1
dR2c −R

2
c

(
dθ2 + sin2θdϕ2

)
,

(1)

where Rc = Rc(r) is the radius of curvature, r a parameter,
and α a function of mass. This has no solution for some
function Rc(r) on Rc(r)→∞ [1].

If α = 0, (1) reduces to

ds2 =

(

1−
λ

3
R2c

)

dt2−

−

(

1−
λ

3
R2c

)−1
dR2c −R

2
c

(
dθ2 + sin2θdϕ2

)
.

(2)

This has no solution for some function Rc (r) on values√
3
λ <Rc(r)<∞ [1].

For 1− λ
3R

2
c > 0 and Rc > 0, it is required that

0 6 Rc <

√
3

λ
. (3)

The proper radius on (2) is

Rp =

∫
dRc√
1− λ

3R
2
c

=

√
3

λ
arcsin

√
λ

3
R2c +K ,

where K is a constant. Rp=0 is satisfied if Rc=0=K, in
accord with (3). Then

Rp =

√
3

λ
arcsin

√
λ

3
R2c .

Now
√
3

λ
arcsin 1 =

√
3

λ

(1 + 4n)π

2
=

= lim
Rc→

√
3
λ

−

√
3

λ
arcsin

√
λ

3
Rc = lim

Rc→
√

3
λ

−
Rp ,

n = 0, 1, 2, . . .

(4)

in accord with (3). Thus, Rp can be arbitrarily large. More-
over, Rp can be arbitrarily large for any Rc satisfying (3)
since

Rp =

√
3

λ
arcsin

√
λ

3
Rc =

√
3

λ
(ψ + 2nπ) ,

n = 0, 1, 2, . . .

where ψ is in radians, 0 6 ψ < π
2 .

In the case of (1), the mutual constraints on the radius of
curvature are

λ

3
R3c −Rc + α < 0

0 < Rc (r) .
(5)

The proper radius on (1) is

Rp(r) =

∫
dRc√

1− α
Rc
− λ

3R
2
c

+K, (6)

where K is a constant, subject to Rp > 0. The difficulty
here is the cubic in (5) and (6). The approximate positive

roots to the cubic are α and
√

3
λ . These must correspond
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to limiting values in the integral (6). Both Rc(r) and Rp(r)
also contain α and λ.

In addition, it was argued in [1] that the admissible form
for Rc(r) in (1) must reduce, when λ = 0, to the Schwarz-
schild form

Rc(r) =
(
|r − r0|

n
+ αn

) 1
n

n ∈ <+, r ∈ <, r 6= r0 ,
(7)

where r0 and n are entirely arbitrary constants. Note that
when α = 0 and λ = 0, (1) reduces to Minkowski space and
(7) reduces to the radius of curvature in Minkowski space,
as necessary.

Determination of the required general parametric expres-
sion for Rc(r) in relation to (1), having all the required prop-
erties, is not a simple problem. Numerical methods suggest
however [1], that there may in fact be no solution for Rc(r)
in relation to (1), subject to the stated constraints. At this
time the question remains open.

3 Einstein’s cylindrical model

Consider the line-element

ds2 = dt2 −
[
1− (λ− 8πP0)R

2
c

]−1
dR2c −

−R2c
(
dθ2 + sin2θdϕ2

)
.

(8)

This of course has no Lorentz signature solution in Rc(r)
for 1√

λ− 8πP0
<Rc(r)<∞ [1].

For 1− (λ−8πP0)R2c > 0 and Rc=Rc(r)> 0,

0 6 Rc <
1

√
λ− 8πP0

. (9)

The proper radius is

Rp =

∫
dRc√

1− (λ− 8πP0)R2c
=

=
1

√
λ− 8πP0

arcsin
√
(λ− 8πP0)R2c +K,

where K is a constant. Rp=0 is satisfied for Rc=0=K,
so that

Rp =
1

√
λ− 8πP0

arcsin
√
(λ− 8πP0)R2c ,

in accord with (9).
Now

1
√
λ− 8πP0

arcsin 1 =
(1 + 4n)π

2
√
λ− 8πP0

=

= lim
Rc→ 1√

λ−8πP0

−

1
√
λ− 8πP0

arcsin
√
(λ− 8πP0)R2c

n = 0, 1, 2, . . .

in accord with (9). Thus Rp can be arbitrarily large. More-
over, Rp can be arbitrarily large for any Rc satisfying (9),
since

Rp =
1

√
λ−8πP0

arcsin
√
(λ−8πP0)R2c =

(ψ+2nπ)
√
λ−8πP0

,

n = 0, 1, 2, . . .

where ψ is in radians, 0 6 ψ < π
2 .

4 De Sitter’s spherical model

Consider the line-element

ds2 =

(

1−
λ+ 8πρ00

3
R2c

)

dt2−

−

(

1−
λ+8πρ00

3
R2c

)−1
dR2c−R

2
c

(
dθ2+ sin2θdϕ2

)
.

(10)

This has no Lorentz signature solution in some Rc(r) on√
3

λ+8πρ00
<Rc(r)<∞ [1].

For 1− λ+8πρ00
3 R2c > 0 and Rc=Rc(r)> 0,

0 6 Rc <

√
3

λ+ 8πρ00
. (11)

The proper radius is

Rp =

∫
dRc√(

1− λ+8πρ00
3

)
R2c

=

=

√
3

λ+ 8πρ00
arcsin

√(
λ+ 8πρ00

3

)

R2c +K,

where K is a constant. Rp=0 is satisfied for Rc=0=K, so

Rp =

√
3

λ+ 8πρ00
arcsin

√(
λ+ 8πρ00

3

)

R2c ,

in accord with (11).
Now

√
3

λ+ 8πρ00
arcsin 1 =

√
3

λ+ 8πρ00

(1 + 4n)π

2
=

= lim
Rc→

√
3

λ+8πρ00

−

√
3

λ+8πρ00
arcsin

√(
λ+8πρ00

3

)

R2c ,

n = 0, 1, 2, . . .

in accord with (11). Thus Rp can be arbitrarily large. More-
over, Rp can be arbitrarily large for any Rc satisfying (11),
since

Rp =

√
3

λ+ 8πρ00
arcsin

√(
λ+ 8πρ00

3

)

R2c =

=

√
3

λ+ 8πρ00
(ψ + 2nπ) , n = 0, 1, 2, . . .

where ψ is in radians, 0 6 ψ < π
2 .
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5 Cosmological models of expansion

Transform (10) by

R̄c =
Rc√
1− R2c

W 2

e−
t
W , t̄ = t+

1

2
W ln

(

1−
R2c
W 2

)

,

W 2 =
3

λ+ 8πρ00
,

to get

ds2 = dt̄2 − e
2t̄
W

(
dR̄2c + R̄

2
cdθ

2 + R̄2c sin
2θdϕ2

)
, (12)

where according to (11), 06 R̄c<∞. Clearly the proper
radius on (12) is

R̄p = lim
R̄c→∞

e
t̄
W

∫ R̄c

0

dR̄c =∞ ,

therefore (12) describes an infinite Universe for all t̄.
Consider the line-element

ds2 = dt2−
eg(t)

(
1+k

4G
2
)2
[
dG2+G2(dθ2+sin2θdϕ2)

]
, (13)

where G=G(r), r a parameter. If k=0 a form of (12) is
obtained. If k > 0,

Rp = e
1
2 g(t)

∫
dG

1 + k
4 G

2
= e

1
2 g(t)

[
2
√
k
arctan

√
k

2
G+K

]

,

where K is a constant. Rp=0 is satisfied by G=0=K, so

Rp = e
1
2 g(t)

∫
dG

1 + k
4 G

2
= e

1
2 g(t)

2
√
k
arctan

√
k

2
G.

Now for (13), the radius of curvature is

Rc =
G

1 + k
4 G

2
, (14)

which is maximum when G= 2√
k
, i. e.

Rcmax
= Rc

(
2
√
k

)

=
1
√
k
.

Also, limG→∞Rc = 0. Therefore, on (13),

0 6 Rc 6
1
√
k
, (15)

or equivalently

0 6 G 6
2
√
k
. (16)

Now

Rp

(

G =
2
√
k

)

= e
1
2 g(t) arctan 1 = e

1
2 g(t) arctan 1 =

= e
1
2 g(t)

(1 + 4n)π

4
, n = 0, 1, 2, . . .

which is arbitrarily large. Moreover, Rp is arbitrarily large
for any Rc satisfying (15), or equivalently for any G satis-
fying (16), since

Rp = e
1
2 g(t)

2
√
k
(ψ + nπ) , n = 0, 1, 2, . . .

where ψ is in radians, 0 6 ψ 6 π
4 .

If k < 0, set k = −s, s > 0. Then

Rp = e
1
2 g(t)

∫
dG

1+ s
4G

2
= e

1
2 g(t)

[
1
√
s
ln

∣
∣
∣
∣
∣

G+ 2√
s

G− 2√
s

∣
∣
∣
∣
∣
+K

]

,

where K is a constant. Rp=0 is satisfied for G=0=K.
Then

Rp = e
1
2 g(t)

1
√
s
ln

∣
∣
∣
∣
∣

G+ 2√
s

G− 2√
s

∣
∣
∣
∣
∣
.

To maintain signature in (13),

−
2
√
s
< G <

2
√
s
.

However, since a negative radius of curvature is mean-
ingless, and since on (13) the radius of curvature in this
case is

Rc(G) =
G

1− s
4G

2
, (17)

it is required that

0 6 G <
2
√
s
. (18)

Now

lim
G→ 2√

s

−
e
1
2 g(t)

1
√
s
ln

∣
∣
∣
∣
∣

G+ 2√
s

G− 2√
s

∣
∣
∣
∣
∣
=∞,

in accord with (18). The proper radius of the space and the
radius of curvature of the space are therefore infinite for all
time t.

The usual transformation of (13) to obtain the Robertson-
Walker line-element involves expressing (13) in terms of the
radius of curvature of (13) instead of the quantity G, thus

Ḡ =
G

1 + k
4 G

2
,

carrying (13) into

ds2 = dt2−eg(t)
[

dḠ2

1−k
4 Ḡ

2
+Ḡ2

(
dθ2+sin2θdϕ2

)
]

. (19)

If k = 0 a form of (12) is obtained.
Comparing Ḡ with (14) it is plain that Ḡ=Rc(G), where

06Rc6 1√
k

by (15), k> 0, and therefore 06 Ḡ6 1√
k
. Now

Rp= e
1
2 g(t)

∫
dRc√
1− k

4R
2
c

= e
1
2 g(t)

(
2
√
k
arcsin

√
k

2
Rc+K

)

,
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where K is a constant. Rp=0 is satisfied for Rc=0=K, so

Rp = e
1
2 g(t)

2
√
k
arcsin

√
k

2
Rc ,

in accord with (15).
Then

Rp

(

Rc =
1
√
k

)

= e
1
2 g(t)

2
√
k

(π
6
+ 2nπ

)
, (20)

n = 0, 1, 2, . . .

in accord with (15), and so Rp is arbitrarily large for all
time t. When making the transformation to the Robertson-
Walker form the limits on the transformed coordinate cannot
be ignored. Moreover, RP is arbitrarily large for all time for
any Rc satisfying (15), since

Rp = e
1
2 g(t)

2
√
k
(ψ + 2nπ) , n = 0, 1, 2, . . .

where ψ is in radians, 06ψ6 π
6 .

If k< 0 set k=−s where s> 0, then (19) becomes

ds2 = dt2 − eg(t)
[

dR2c
1+ s

4R
2
c

+R2c
(
dθ2 + sin2θdϕ2

)
]

. (21)

The proper radius is

Rp= e
1
2
g(t)

∫
dRc√
1+ s

4
R2c

= e
1
2
g(t)

[
2
√
s
ln

(
Rc+

√

R2c+
4

s

)
+K

]

where K is a constant. Rp=0 is satisfied for Rc=0 and
K =− 2√

s
ln 2√

s
, in accord with (17) and (18). So

Rp = e
1
2 g(t)

2
√
s
ln




Rc +

√
R2c +

4
s

2√
s



 .

Now Rp→∞ as Rc→∞, in accord with (17) and (18).
Thus, (21) describes an infinite Universe for any time t.

6 Conclusions

By the foregoing types of spacetimes, General Relativity
permits cosmological solutions, contrary to the claims made
in [1]. However, the Big Bang theory is not consistent with
General Relativity, since the spacetimes permitted are all
spatially infinite (arbitrarily large) for any time t.
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Distant redshifted SNe1a light sources from the Universe that are usually interpreted
as cosmological redshifts are shown to be universal gravitational redshifts seen by
all observers in the quantum celestial mechanics (QCM) approach to cosmology. The
increasingly negative QCM gravitational potential dictates a non-linear redshift with
distance and an apparent gravitational repulsion. No space expansion is necessary.
QCM is shown to pass the test of the five kinematical criteria for a viable approach
to cosmology as devised by Shapiro and Turner, so the role of QCM in understanding
the behavior of the Universe may be significant.

1 Introduction

The observed redshift from distant sources can be interpreted
as (1) a velocity redshift called the Doppler Effect, (2) a cos-
mological redshift in which space itself is expanding during
the transit time of the photons, and/or (3) a gravitational
redshift as introduced by the General Theory of Relativity
(GTR). High-z redshifts from distant SNe1a light sources
in galaxies are presently being interpreted as cosmological
redshifts, apparently providing observational evidence for
the expansion of the Universe.

A new theory, Quantum Celestial Mechanics(QCM), de-
veloped from GTR by H. G. Preston and F. Potter [1, 2],
accurately predicts the observed SNe1a redshifts from near
and distant galaxies. For the Universe, there exists in QCM
a previously unknown gravitational potential that is used to
derive all of the observed SNe1a redshifts. In addition, QCM
predicts no mass currents in any coordinate direction, i.e., no
galaxies moving away anywhere. These results eliminate the
need for a space expansion. The presently known average
baryonic density of the Universe is sufficient for QCM to
explain the critical matter/energy density of the Universe.

Observations of galaxies and distributions of galaxies are
beginning to suggest conflicts with the standard concept of
an expanding Universe and its interpretation of a high-z
redshift as a cosmological redshift. For example, galaxies
at z= 2.5 are reported [3] to be extremely dense when using
the expanding Universe assumptions and standard galaxy
modeling. However, if the Universe is not expanding, the
linear scales of these galaxies would be much larger, elimi-
nating the high density conflict and revealing galaxies much
similar to galaxies seen locally.

Theoretical approaches are also beginning to inquire
about what we really know about cosmic expansion and
its acceleration. In an interesting paper, C. A. Shapiro and
M. S. Turner [4] relax the assumption of GTR but retain
the weaker assumption of an isotropic and homogeneous

space-time described by a metric theory of gravity. Using
the Robertson-Walker metric to describe the Universe and
accepting the dimming and redshifting of a gold set of SNe1a
data [5], they determine the cosmic acceleration kinematic-
ally and provide a list of five kinematical criteria that must
be met by any approach to cosmology.

In this paper, we compare the QCM predictions for the
state of the Universe to the five criteria provided by Shapiro
and Turner. Our new result is that QCM agrees with the
five criteria. Therefore, SNe1a redshifts can be interpreted
as universal gravitational redshifts instead of cosmological
redshifts. There is no need for space expansion.

2 Reviewing the QCM potential

In a series of papers [1, 2, 6] we derived and applied QCM
to the Solar System, to other solar system-like systems such
as the satellites of the Jovian planets and exoplanet systems,
to the Galaxy, to other galaxies in general, and to clusters of
galaxies [7]. In all these cases there is reasonable agreement
with the observational data, i.e., the predicted QCM states of
the gravitationally-bound systems were shown to be actual
states of the systems without the need for dark matter. Recall
that the QCM general wave equation derived from the gene-
ral relativistic Hamilton-Jacobi equation is approximated by
a Schrödinger-like wave equation and that a QCM quantiza-
tion state is completely determined by the system’s total
baryonic mass M and its total angular momentum HΣ.

These agreements with the data strongly suggest that
QCM applies universally and that all gravitationally-bound
systems should obey the quantization conditions dictated by
QCM. Therefore, not only should the large-scale gravitation-
ally bound systems like a solar system exhibit QCM behav-
ior, but even a torsion balance near an attractor mass should
have quantization states. And the largest gravitationally-
bound system of all, the Universe, should also be describable
by QCM. The QCM states of a torsion bar system will be
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discussed in a future paper. In this paper we concentrate on
the QCM Universe.

For gravitationally-bound smaller systems, we found that
the Schwarzschild metric approximation produced an efffect-
ive gravitational potential for a particle of mass μ in orbit

Veff = −
GM

r
+
l (l+ 1)H2c2

2r2
, (1)

where G is the gravitational constant, c is the speed of light
in vacuum, the characteristic length scale H =HΣ/Mc, the
angular momentum quantization number l originates from
the θ-coordinate symmetry, and r is the r-coordinate dis-
tance from the origin in spherical coordinates. Therefore, in
QCM the total angular momentum squared is l (l+1)μ2H2c2

instead of the classical Newtonian expression. Consequently,
the quantization of angular momentum dictates which parti-
cular circular orbit expectation values <r> in QCM corres-
pond to equilibrium orbital radii, in contrast to Newtonian
gravitation for which all radii are equilibrium radii.

In the case of the Universe we used the GTR interior
metric approximation, which is directly related to the general
Robertson-Walker type of metric. Omitting small terms in
the r-coordinate equation, we derived a new Hubble rela-
tion that agrees with the SNe1a data. At the same time we
showed that our QCM approach produced the required aver-
age matter/energy density of about 2×10−11 J/m3, corres-
ponding to the critical density ρc= 8×10−27 kg×m−3, with
only a 5% contribution from known baryonic matter, i.e.,
without needing dark energy.

The QCM effective gravitational potential for all observ-
ers inside a static dust-filled, constant density universe with
no pressure is

Veff ≈ −
kr2c2

2 (1− kr2)2
+
l (l+ 1)H2c2

2r2(1− kr2)
, (2)

where k=8πGρc/3c2. Figure 1 shows this QCM gravita-
tional potential for an r-coordinate distance up to about 10
billion light-years.

If the total angular momentum of the Universe is zero or
nearly zero, H can be ignored and then the negative gradient
of the first term in Veff produces an average positive radial
acceleration

<r̈> = kc2
r (1 + kr2)

(1− kr2)3
(3)

from which we derive a new Hubble relation

<ṙ> = r
c
√
k

1− kr2
. (4)

For r-coordinate distances up to about one billion light-
years, when kr2� 1, we recover the standard Hubble rela-
tion and have a Hubble constant h∼ 2×10−18 s−1, about
62 km per second per megaparsec, an acceptable value [8].
Without the kr2 in the denominator, v/c→ 1 at about 14.1
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Fig. 1: QCM gravitational potential to 10 billion light-years.

billion light-years; otherwise, the maximum visible coordi-
nate distance r= 8.74 billion light-years, with more of the
Universe beyond this distance.

Notice that the QCM effective gravitational potential is
negative (when H can be ignored) but produces an apparent
repulsive gravitational radial acceleration! Each observer
anywhere in this Universe will determine that the incoming
photons are redshifted. Why? Because the photons originate
in a source that is in a more negative gravitational potential
where the clock rates are slower than the clock rates at the
observer. And this redshift increases non-linearly because the
potential becomes more negative more rapidly with increas-
ing distance away. There is no need for expansion of space
and its cosmological redshift to explain the SNe1a data.
There is no need for dark energy to explain the accelerated
expansion.

3 The kinematical criteria

Our QCM approach to cosmology and an understanding of
the behavior of the Universe must meet specific kinematical
criteria. By analyzing the gold set of SNe1a data, Shapiro
and Turner list these five kinematical criteria to be met by
any viable approach to a cosmology:

1. Very strong evidence that the Universe once accele-
rated and that this acceleration is likely to have been
relatively recent in cosmic history.

2. Strong evidence that the acceleration q was higher in
the past and that the average dq/dz is positive, where
z is the redshift.

3. Weak evidence that the Universe once decelerated, but
this result may be a model-dependent feature.

4. Little or no evidence that the Universe is presently
accelerating, i.e., it is difficult to constrain q for z< 0.1
with SNe1a data.

5. No particular models of the acceleration history pro-
vide more acceptable fits to the SNe1a data than any
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others, i.e., several different kinematic models fit the
data as well as the cold dark matter hypotheses called
ΛCDM and wCDM.

The QCM effective gravitational potential Veff and the
new Hubble relation provide QCM explanations for these
five criteria:

1. The light now just reaching us from farther and farther
away exhibits an increasing redshift because the Veff is
increasingly more and more negative with increasing
distance. Without QCM, the interpretation would be
that the acceleration is recent.

2. The Veff is increasingly more and more negative with
increasing distance. Without QCM, a higher accelera-
tion in the past is required for the space expansion
approach to cosmology.

3. QCM shows no deceleration at the level of mathemat-
ical approximation we used.

4. The new Hubble relation of QCM reduces to the linear
dependence of the standard Hubble relation for z small,
agreeing with there being no acceleration presently.

5. Our QCM approach fits the SNe1a data as well as
the other approaches, producing about a 12% increase
from the linear Hubble when kr2∼ 0.11, consistent
with the data.

QCM explains the five criteria in its unique way because
the SNe1a redshift now originates in the properties of the
static interior metric and its QCM gravitational potential.
The important consequence is that QCM cannot be elimi-
nated by any of the five criteria and must be considered as a
viable approach to cosmology.

4 Final comments

The existence of a repulsive gravitational potential in the
QCM wave equation for the Universe removes the necessity
for invoking dark matter and dark energy. According to
QCM, the Universe is not expanding and does not require
dark energy in order for us to understand its behavior. Pre-
viously labelled cosmological redshifts are actually gravita-
tional redshifts of the photons reaching us from distant
sources in the Universe that are in greater negative gravita-
tional potentials than the observer. Each and every observer
experiences this same behavior. This static Universe is
always in equilibrium.
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The conventional representation of the H2 molecule characterizes a 4-body system
due to the independence of the orbitals of the two valence electrons as requested by
quantum chemistry, under which conditions no exact solution is possible. To overcome
this problem, Santilli and Shillady introduced in 1999 a new model of the H2-molecu-
le in which the two valence electrons are deeply bounded-correlated into a single
quasi-particle they called isoelectronium that is permitted by the covering hadronic
chemistry. They pointed out that their new H2-model is a restricted 3-body system
that, as such, is expected to admit an exact solution and suggested independent studies
for its identification due to its relevance, e.g., for other molecules. In 2000, Aringazin
and Kucherenko did study the Santilli-Shillady restricted 3-body model of the H2

molecules, but they presented a variational solution that, as such, is not exact. In any
case, the latter approach produced significant deviations from experimental data, such
as a 19.6% inter-nuclear distance greater than the experimental value. In this paper we
present, apparently for the first time, an exact solution of the Santilli-Shillady restricted
3-body model of the Hydrogen molecule along the lines of its originators and show
that it does indeed represent correctly all basic data. Intriguingly, our solution confirms
that the orbital of the isoelectronium (referred to as its charge distribution around the
nuclei) must be concentrated in a limited region of space given by the Santilli-Shillady
oo-shaped orbits. Our exact solution is constructed by following the Ley-Koo solution
to the Schrödinger equation for a confined hydrogen molecular ion, H+

2 . We show
that a confined model to the 3-body molecule reproduces the ground state curve as
calculated by Kolos, Szalewics and Monkhorst with a precision up to the 4-th digit
and a precision in the representation of the binding energy up to the 5-th digit.

1 Introduction

As it is well known, the conventional representation of the
Hydrogen molecule characterizes a four-body system due to
the independence of the orbitals of the two valence electrons
as requested by quantum chemistry, under which conditions
no exact solution is possible. To overcome this problem,
R. M. Santilli and D. Shillady introduced in 1999 a new
model of the H2-molecule [1, 2], in which the two valence
electrons are deeply bounded-correlated into a single quasi-
particle they called isoelectronium that is permitted by the
covering hadronic chemistry [3a].

They pointed out that their new model of Hydrogen mo-
lecule is a restricted three-body system that, as such, is ex-
pected to admit an exact solution; they suggested to carry out
independent studies for its identification due to its relevance,
e.g., for other molecules. In 2000, Aringazin and Kuche-
renko [4] did study the Santilli-Shillady restricted three-
body model of the Hydrogen molecule, but they presented a
variational solution that, as such, is not exact. In any case,
the latter approach produced significant deviations from
experimental data, such as a 19.6% inter-nuclear distance
greater than the experimental value.

In this paper we present, apparently for the first time,
an exact solution of the Santilli-Shillady restricted three-
body model of the Hydrogen molecule along the lines of its
originators and show that it does indeed represent correctly
all basic data. Intriguingly, our solution confirms that the
orbital of the isoelectronium (referred to as its charge distrib-
ution around the nuclei) must be concentrated in a limited
region of space given by the Santilli-Shillady oo-shaped
orbits. Our exact solution is constructed by following the
E. Ley-Koo and A. Cruz solution to the Schrödinger equation
for a confined hydrogen molecular ion, H+

2 [5]. We show
that a confined model to the three-body molecule reproduces
the ground state curve as calculated by Kolos, Szalewics and
Monkhorst [6] with a precision up to the 4-th digit and a
precision in the representation of the binding energy up to
the 5-th digit.

The suggestion that a kind of correlated state of electrons
is present while they surround in closed paths the nuclei sti-
mulates the search of a complementary quantum mechanical
approach. In addition, Pérez-Enrı́quez [7], while working on
high-Tc superconductivity, found that by using a Möbius-
type orbital for Cooper pairs, there is a structural parameter
in perovskite type superconductors that correlates linearly
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with the critical temperature. Other contributions to the dis-
cussion about correlation between electrons were presented
by Taut [8] in 1999. He reported that a one-particle represen-
tation could apply to systems with high densities of charge,
based upon a pair-correlation function and density of charge
for a system of two electrons in an external potential.

In our approach as it has been mentioned, we use the
idea of a system under confinement as worked by E. Ley-
Koo and A. Cruz for the hydrogen molecular ion and by
other authors for molecules under pressure [9, 10]. Besides,
previous studies related to the present discussion concerning
hydrogenic impurities and excitons in quantum dots have
been carried out by our team and others [11, 12, 13].

The main features of the restricted three-body Santilli-
Shillady model, we discuss here, are summarized in sec-
tion 2; special attention is drawn to the isoelectronium pro-
posal. In this section, we also compare the results from this
model with a standard ground state energy curve calculated
by Kolos, Szalewics and Monkhorst (KSM curve) [6]. In
section 3, we describe how to calculate the exact solution
to the three-body model including a spheroidal confinement
and a defect of mass parameters in order to reproduce the
standard KSM curve, using a variational calculation. Finally,
in section 4, some conclusions are made with regard to the
accuracy of our results.

2 Iso-chemical model of the hydrogen molecule

The point of departure of the iso-chemical model of the
hydrogen molecule, presented for the first time in 1999 by
Santilli and Shillady [1], resides in the fact that the distance
between nuclei is large; hence, the force binding them to-
gether comes form the orbiting electrons. The main hypo-
thesis of the model describes how the valence electrons
become involved in a binding process when they are at very
short distance giving rise to a new state or quasi-particle,
called isoelectronium. This particle would be responsible for
the stability of the molecule and would describe a oo-shaped
orbit around the nuclei “in a similar way as a planet orbits
around binary stars” [1].

This hydrogen molecule model is forbidden by quantum
mechanics and quantum chemistry since the proximity of
electrons creates a repulsive Coulomb force between them;
however, the authors assume that this difficulty can be over-
ruled by a non-Hamiltonian interaction based on the over-
lapping of wave packets associated with each electron. This
force surmounts the electrostatic one and allows the quasi-
particle formation. They affirm that “the attractive force
coming from the deep wave-overlapping does not have an
equivalent in quantum mechanics and requires the new the-
ory” [1]. This is the reason to introduce the so called iso-
mechanics and iso-chemistry theories as part of hadronic
mechanics [3b].

Our approach, however, uses the isoelectronium hypo-

thesis and at the same time looks for a compatible state in the
frame of quantum chemistry. We will show that there exists
a state reproducing the ground state energy of the hydrogen
molecule in the frame of the restricted three-body Santilli-
Shillady model.

The two basic notions of hadronic chemistry that we
need for understanding the iso-chemical model of the hydro-
gen molecule are:

(a) Hadronic horizon. The hadronic horizon is a distance
between electrons, rc, which measures one femtometer
(1 fm= 10−15 m). Outside this range quantum chem-
istry applies and within it hadronic chemistry is valid;

(b) The trigger, which is given by external (conventional)
interactions, causes the identical electrons to move
one toward the other and penetrate the hadronic hor-
izon against Coulomb interaction (once inside the said
horizon, the attractive hadronic force overcomes the
repulsive Coulomb one), resulting in a bound state.

Santilli presented for the first time the hypothesis of a
bound state between electrons in 1978 [3], while explaining
the structure of a π0 meson as a hadronic bound state of
one electron and one positron. Later, Animalou [14] and
Animalou and Santilli [15] extended the model to consider
the Cooper pair in superconductivity as a hadronic bound
state of two identical electrons.

According to Santilli, in the case of π0 there is no need
for a trigger because the involved particles have opposite
charges. However, the existence of the Cooper pair requires a
trigger, which Santilli and Animalou identified as the field of
the copper ions. In the case of the hydrogen molecule, they
conjecture that the trigger, constituted by the field between
nuclei, is sufficiently intense (attractive for the electrons)
enough to draw them together. They assume, essentially, that
atom attraction is sufficient to cause the overlapping between
wave packets, thus pushing electrons beyond the hadronic
horizon.

2.1 Four-body Santilli-Shillady model

The iso-chemical model of the hydrogen molecule uses the
conventional quantum model of the H2 subject to a non-
unitary transformation for the condition rc = r12. This inter
electronic distance is small given that the electrons are inside
the hadronic horizon. After using this transformation, one
can reduce the problem to an equation that uses a Hulthén
potential, recalling that at short distances, this behaves like
a Coulomb potential,
{

−
}2

2μ1
∇21 −

}2

2μ2
∇22 − V0

e−r12/rc

1− e−r12/rc
+
e2

r12
−

−
e2

r1a
−
e2

r2a
−
e2

r1b
−
e2

r2b
+
e2

R

}

|ψ̂ 〉 = E |ψ̂ 〉 .

(1)

As Santilli and Shillady affirm, this equation exhibits a
new explicitly attractive force among neutral atoms of the
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Fig. 1: Hydrogen molecule in the restricted three-body Santilli-
Shillady model; a stable isoelectronium moves around nuclei in a
oo-shaped orbit (figure taken from Santilli 1999, ref. [1]).

molecule in a way that is not possible within the quantum
chemistry framework. They claim that Eq. (1) explains why
only two hydrogen atoms make up the molecule and allows
the exact representation of the binding energy in the full 4-
body configuration.

A further simplification of the iso-chemical model can be
introduced by making the two iso-electrons (electrons inside
the hadronic horizon) be bound together into a state called
isoelectronium as mentioned above. With this approximation,
Equation (1) is reduced to a restricted three-body problem
because one can consider r1a≈ r2a= ra and r1b≈ r2b= ra
as r12� ra, rb. In this manner, an exactly solvable problem
similar to the conventional ion is obtained. One remarkable
idea proposed by the authors consists in representing the
isotopic model of the molecule as two H-protons at rest and
the isoelectronium moving around them in a oo-shaped orbit,
as it is shown in Figure 1 and described by the following
structural equation:
{

−
}2

2μ1
∇21 −

}2

2μ2
∇22 − V0

e−r12/rc

1− e−r12/rc
+
e2

r12
−

−
2e2

ra
−
2e2

rb
+
e2

R

}

|ψ̂ 〉 = E | ψ̂ 〉 .
(2)

This simplification, impossible in a quantum chemistry
environment, could be used to reach an exact solution of
the H-molecule. At this point, it is worth mentioning that
with the aid of this model, Santilli and Shillady extended
their analysis to other molecules; in particular, they studied
the hydrogen and oxygen atoms in order to form HO. This
gave them elements to present, for the first time, an exact
solution to the water molecule, treated as an HOH molecule,
using an isotopic intersection of an HO and an OH [2]. They
have further their research to extend their model to another
type of molecular chains and molecules.

Results for the Santilli-Shillady model of molecular hyd-
rogen were obtained by the standard Boys-Reeves model [1],
using an attractive Gaussian-screened-Coulomb potential.
These authors used their SASLOBE programme (Santilli-
Animalou-Shillady LOBE) to calculate the energies reported
in columns three and four of Table 1, which in turn are
compared with the quantum chemical results (first column).

Results from Table 1 show that the energy calculated
by the SASLOBE program (−1.174444 au) differs from the
exact result in the 6th digit (a 3×10−5 error) with a 20 hours

Concept/species H2 a) Ĥ2 b) H̃2 c)

Energy (variational) −1.12822497 −7.61509174 *
Energy SCF (au) 1.14231305 * −1.13291228
Energy SAS (au) * * −1.174444
Energy exactd) (au) −1.174474 * −1.174474
Bond length (bohr) 1.4011 0.2592 1.4011
Isoelectronium

radius (bohr) * * 0.01124995

Notes: a)Normal molecule in the quantum-chemical model
b)Molecule in the restricted three-body model (see)
c)Molecule in the iso-chemical model (stable isoelectronium)
d)Ground state energy by Kolos, Szalewicz and Monhorst

Table 1: Comparison of results from Iso-chemical model. Taken
from Santilli 1999, ref. [1].

process time in a 320 MFLOPS Silicon Graphics computer.
Notice that some changes in the most expensive routines
in the iso-chemical model improve by a factor of 1000 the
time used to compute a Boys-Reeves C.I. calculation. An im-
portant result is that with their method, they found a bound
length (R= 1.4011 bohr) which coincides with that of the
C.I. value.

This new way to represent chemical bonding has allowed
the opening of a whole field named Hadronic Mechanics.
With this new tool, several problems of physics and chem-
istry have been worked, leading to new proposals that range
from energetic problems to superconductivity issues [16].
Our work has not taken that road; it considers the solution of
the restricted three-body in the frame of Quantum Mechan-
ics, two protons bound by an orbiting stable isoelectronium.
This approach uses the solution of an H+

2 ion but with a
charge q=−2e for the quasi-particle.

2.2 Restricted three-body Santilli-Shillady model

The four-body Santilli-Shillady model, as described by
Eq. (2), was modified by Aringazin and Kucherenko [4] in
order to restrict it to an explicit three-body approach. Within
this restricted three-body Santilli-Shillady model (M3CS-S),
these authors found a set of two equations that can be solved
exactly. In this section we follow the main features of their
method and show some of their results to contrast them
with the results from our approach. The restricted Santilli-
Shillady model assumes three basic conditions:

(a) A stable isoelectronium;

(b) The size of the isoelectronium can be neglected as
compared with the inter nuclear distance; and,

(c) The Born-Oppenheimer approximation is valid.

When we combine these conditions with Eq. (2), re-
presenting a four-body equation, we arrive at a couple of
differential equations which can be exactly solved. Aringazin
and Kucherenko assumed that:

μ1 = μ2 = me . (3)

And that the isoelectronium mass and reduced mass were
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M = μ1 + μ2 ; m =
μ1μ2
M

. (4)

In order to simplify expressions, they transformed the
momentum operators

pi = −i}
∂

∂ ri
, i = 1, 2; (5)

into generalized ones:

PM = −i}
∂

∂ rab
, p12 = −i}

∂

∂ r12
. (6)

Through them, Aringazin and his colleague arrived to a
new equation from which the three-body equation can be
derived by a variable separation method; i.e., from equation
{

−
}2

2M
∇2ab −

}2

2m
∇212 − V0

e−r12/rc

1− e−r12/rc
+
e2

r12
−

−
2e2

ra
−
2e2

rb
+
e2

R

}

|ψ̂ 〉 = E |ψ̂ 〉
(7)

they got two equations, one describing the electrons inside
the hadronic horizon in terms of the distance between them:

−
}2

2m
∇212 χ+ V (r12)χ = εχ ; (8)

and, the second for the isoelectronium interaction with the
nuclei:

−
}2

2M
∇2abψ +W (ra, rb, R)ψ = (E − ε)ψ, (9)

where
|ψ̂ 〉 = χ (r12)ψ(ra, rb) (10)

with

V (r12) =
e2

r12
− V0

e−r12/rc

1− e−r12/rc
, (11)

and

W (ra, rb, R) = −
2e2

ra
−
2e2

rb
+
e2

R
. (12)

The Aringazin-Kucherenko proposal, Eqs. (9) and (12),
becomes the restricted three-body Santilli-Shillady Model
(M3CS-S) with which we are going to compare our results.
On the other hand, Eqs. (8) and (11) become the description
of the electrons involved in the isoelectronium itself. They
have also considered that since the size of isoelectronium is
small, the energy must be near zero, ε≈ 0; a point we are
not going to discuss here.

ν a) E Ropt
b)

0.3 −1.142556 1.722645
0.307 −1.169215 1.683367
0.308 −1.173024 1.677899
0.308381c) −1.174475 1.675828
0.309 −1.176832 1.672471

Notes: a)Mass parameter in
b)Optimum bond length (bohr)
c)Parameter to obtain best energy

Table 2: Minimum energy dependence on the mass parameter

The direct solution of these equations gives results for the
energy and bond length far from the experimentally observ-
ed; for example, the minimum energy, E=−7.614289 au,
is much lower than Ee=−1.17447567 au, while the bond
length, R= 0.25 bohr, markedly differs from R= 1.4011
bohr.

2.3 Results from the Aringazin-Kucherenko approach

As it has just been mentioned, the application of the restricted
three-body Santilli-Shillady model gives results far from the
experimental values for both, energy and bond length. In
order to correct this problem, Aringazin and his team have
chosen a scaling method to equalize their energy value with
that experimentally observed. By assuming a charge equal to
−2e for the isoelectronium and its mass M = νme, they as-
signed to E the formula E=W+1/R (W is isoelectronium
energy) and R in Eq. (9) to get a scaling rule for their original
calculated data. The summary of the scaling process is:

(R,W ) −→ (R, W+1/R) −→

(
R

2ν
, 4ν W

)

−→

−→

(
R

2ν
, 4ν W+

2ν

R

)

.

(13)

Values in Table 2 show energy variations with respect to
mass parameter and allows the identification of as the best
parameter for the estimation of energy, E=−1.174475 au.
While we have a 7th significant digit precision to the desired
energy, the correspondent bond length disagrees 19.6% from
the expected value.

There are, in the literature, a great number of studies and
estimates for the ground state energy of molecular hydrogen.
This elemental molecule is the most studied one and has
compelled researchers in this field to design tools and other
quantum mechanical theories. To compare our results with
those of Aringazin-Kucherenko, we are going to use as the
ground state energy curve the values reported by Kolos,
Szalewicz y Monkhorst [6] as reference. Though there are
already other studies reporting higher precision values, up to
12 significant digits [17], for example, we will not employ
them here for we do not need such precision as our method
gives numbers up to the 6th significant digit. These data are
going to be identified as Kolos data or KSM curve.

With the aid of the data for the electronic energy W as
a function of the distance between nuclei in the molecule
(we remit the reader to Table 2 in ref. [4]), it is possible to
construct a curve for the molecular energy according to the
M3CS-S model. In Figure 2, we present a graph comparing
the corresponding curve with Kolos data. It is self evident
that both curves are very different, mainly in the region
R> 2.0, though profiles are similar for lower R values.

On the other hand, the optimum bond length, R=
= 1.675828 bohr, of this curve is deviated from the experi-
mentally observed value by 19.6%. These observations to
the M3CS-S model imply that some kind of adjustment is
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Fig. 2: Comparison between KSM’s ground state energy data and
scaled Aringazin-Kucherenko curve.

needed; probably a change in one of the features of the
isoelectronium model could suppress these differences. In
next section, we will present one such modification: the
finite extension of isoelectronium.

3 Confined isoelectronium approach

We have shown until this point that the M3CS-S model
satisfies the established conditions for the existence of iso-
electronium with two drawbacks: it lacks the precision to
represent the ground state potential energy curve of the hyd-
rogen molecule and does not give a good approximation to
its optimum bond length. In this section, we are going to in-
troduce a condition directly related to the isoelectronium de-
finition, a condition on the extension of isoelectronium wave
function that will provide a modified three-body Santilli-
Shillady model reproducing the behavior of the KSM curve
in an appreciable range of distances between nuclei in the
molecule.

The isoelectronium, as proposed by iso-chemistry, is a
particle that brings together both electrons in the Hydrogen
molecule, bound firmly (stable isoelectronium) by a Hulthén
type potential. With a charge twice of the electron this quasi-
particle has to orbit around protons in a very compact way.
For an M =2me particle, the results of the calculations give
very low energies and small bond length values. From this
picture, we consider that the four-body problem of the hydro-
gen molecule can be converted into a compatible three-body
approach if some aspects of the quasi-particle formation
and molecule structure are taken into account. First of all,
the formation of particles involves the transformation of
mass into energy as it is observed for example in nuclear
reactions; this means that while electrons come together to
form an isoelectronium, there must be an effective mass
factor present in the description of the molecule. As seen
from the Schrödinger equation, this parameter would appear
as a scaling factor for the energy and bond length.

This kind of scaling has been suggested in the literature
before, not just by Aringazin and Kucherenko but by other

authors as well. In particular, Svidzinsky and collaborators
[18] have recently published a paper on the role of scaling
while they attempt to represent the hydrogen molecule from
Bohr’s model. They make a dimensional scaling of the
energy in this pre-quantum mechanical description. In our
approach, scaling comes from an effective mass factor.

Another factor that must be considered in our model
arises from the fact that a double charged particle surround-
ing both nuclei in the molecule can not extend in the same
way as an electron does in the molecular ion. This small but
heavily charged quasi-particle must have to limit its motion
to confined orbits. Thus, the Hydrogen molecule with the
isoelectronium orbiting two protons has to appear as a con-
fined system. Therefore, as a way to improve the restricted
three-body Santilli-Shillady model, a pair of conditions was
introduced to understand the kind of movement an isoelect-
ronium would describe. We have hypothesized the following
additional restrictions for the isoelectronium model:

(a) The formation of the quasi-particle from the two elec-
trons involves an effective mass transformation; i.e.,
the mass and charge of isoelectronium are M = νme

and q=−2e, respectively, where ν is the effective
mass parameter, also called “iso-renormalization of
mass”; and

(b) The spatial extension of the orbits of isoelectronium
is limited to a defined region of space: the isoelectro-
nium must orbit in a spheroidal shaped region of space.

Using these two hypotheses we have worked out two
methods for the solution of the hydrogen molecule problem.
First, the solution of Eq. (9) is considered in a way similar
to the Ley-Koo and Cruz solution for the molecular ion
confined by a spheroidal box [5]. They arrive to an exact
solution for the differential equation by using separation of
variables and the condition of a vanishing wave function on
the spheroidal border. The second, whose results are reported
here, uses a variational approach to solve Eq. (9) as it was
done by Marı́n and Muñoz [19], with the same border con-
dition: ψ(ξ0, η, ϕ)= 0 and ξ0 defines the shape of the box.

3.1 Exact solution to the confined model

Our variational approach to solve the modified three-body
Santilli-Shillady model of the hydrogen molecule (modified
M3CS-S) arrives to the following equation after applying
the Hamiltonian for H+

2 , but including the above stated
conditions on the mass, M = νme, where ν is the mass
parameter, and the q = −2e is the charge:
{
−

}
2νme

4

ρ2(ξ2−η2)

[
∂

∂ξ
(ξ2−1)

∂

∂ξ
+
∂

∂η
(1−η2)

∂

∂η

]
+

+
ξ2−η2

(ξ2−1)(1−η2)
∂2

∂ϕ2
−
4e2

ρ

(Z1+Z2)ξ+(Z2−Z1)η
ξ2−η2

+

+
Z1Z2 e

2

ρ

}
ψ(ξ, η, ϕ) = E′ ψ(ξ, η, ϕ) ,

(14)
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subject to the following restriction:

ψ(ξ0, η, ϕ) = 0, (15)

which specifies a spheroidal shaped region of space where
the particle moves (ξ 6 ξ0). Moreover, the wave function
must vanish at the border. Due to the symmetry of the mole-
cule in the ground state (m = 0), the azimuthal variable, can
be suppressed so the problem is reduced to the z − x plane.
In addition, we introduce atomic units:

a0 =
}2

mee2
; E′ =

e2

2a0
E ; R =

ρ

a0
.

Thus, the equation is rewritten as

H̃φ = Eφ
or
{
−

4

νR2(ξ2−η2)

[
∂

∂ξ
(ξ2−1)

∂

∂ξ
+
∂

∂η
(1−η2)

∂

∂η

]
−

−
8

R

(Z1+Z2)ξ + (Z2−Z1)η
ξ2−η2

+
Z1Z2
R

}
φ(ξ, η)=Eφ(ξ, η).

(16)

With this reduction, the above stated conditions can be
met by a simple variational function considering one para-
meter and a cut off factor:

φ(α; ξ, η) = (ξ0 − ξ)
(
exp
[
−α(ξ + η)

]
+

+exp
[
−α(ξ − η)

])
.

(17)

The minimum energy of this modified M3CS-S molecule
can be obtained by minimization of the functional of energy

E (α) =
〈φ |H̃ |φ〉
〈φ |φ〉

(18)

subject to the condition

∂E

∂α

∣
∣
∣
∣
E=Emin

= 0 , (19)

But really such a minimum energy, Emin, will depend on
several parameters

Emin = Emin(ν, ξ0, R) , (20)

i.e., mass scale, spheroidal box and nuclei separation para-
meters. If we leave free all three parameters and use a sim-
plex optimization method, a Nelder-Mead method for exam-
ple [20], we will find that this energy is located at a point
near the one reported by Santilli-Shillady and included here
in Table 1 (E=−7.61509174 au and R= 0.2592 bohr).
However, we can choose a fixed value for the mass para-
meter and find the minimum energy suitable for the ground
state energy of free H2.

Effectively, in order to obtain the minimum energy cor-
responding to a given mass parameter, ν, we have optimized
the energy using the Nelder-Mead algorithm for two para-
meters: ξ0 — spheroidal box shape; and, R — bond length.

ξ0 a) R b) ν c) E d)

48.46714783 1.41847181 0.37030 −1.1741987
48.46714783 1.41847181 0.37035 −1.1743573
48.46714783 1.41847181 0.37038 −1.1744523
48.46714783 1.41847181 0.37039 −1.1744840e)

48.46714783 1.41847181 0.37040 −1.1745157
48.46714783 1.41847181 0.37050 −1.1748325
48.46714783 1.41847181 0.37060 −1.1751492

Notes: a)Shape parameter inverse of eccentricity (optimization)
b)Bond length parameter (optimization)
c)Mass parameter up to five digits (fixed)
d)Minimum energy (calculated by program)
e)Nearest value to exact energy (error)

Table 3: Minimum energy from parameter optimization for the
confined model.

One relevant aspect resulting from these calculations is that
for all mass parameter values the convergence of the method
yields always identical values for both parameters as can be
seen in Table 3 (ξ0= 48.46714783; R= 1.41847181 bohr).
Furthermore, the minimum energy for ν= 0.37039 gives
an energy E=−1.1744840 au; that is, we have obtained
the energy of the experimentally observed ground state of
molecular hydrogen with a precision of 1×10−5 and a corres-
ponding error in bond length of just 1.24%. This last result
must be compared with the difference calculated by Aringa-
zin and Kucherenko, 19.6%, to appreciate the importance of
our finding.

Our approach to the hydrogen molecule, named from
here onward as the Pérez-Marı́n-Riera approach to the res-
tricted three-body Santilli-Shillady of the hydrogen molecule
or M3CPM-R, encompasses more than the sole calculation
of the minimum energy. With it, we can reproduce the whole
set of data points of the KSM ground state curve in the
R ∈ [0.8, 3.2] interval.

3.2 Comparison of our data with KSM curve

As we have just mentioned, our approach to the isoelectro-
nium movement provides an effective way to represent the
ground state of H2. Using the box shape and effective mass
parameters found for the closest value to the exact energy
of the ground state minimum, we have calculated the energy
for several values of the distance between protons ranging
from 0.4 to 6.0 bohr. The values obtained in this manner
show a very significant behavior, a least in a defined interval
R ∈ [0.8, 3.2]. We reproduce the values that Kolos and his
collaborators obtained with a highly sophisticated computing
method, shown with ours in Table 4 for comparison. As
can be seen while reviewing the las column in the table,
a difference appears in the fourth significant digit for the
worst result and up to the fifth digit for the best, which is
located at R= 1.40 bohr.

Figure 3 illustrates the values for the energy as a function
of R found by Kolos (big points) together with the curve
(line) representing our data. Both data sets are identical to

R. Perez-Enriquez, J. L. Marı́n and R. Riera. Exact Solution of the Santilli-Shillady Model of the Hydrogen Molecule 39



Volume 2 PROGRESS IN PHYSICS April, 2007

Fig. 3: Comparison between Kolos data and our exact restricted
three-body model for the Hydrogen molecule (parameters are: ν -
mass; ξ0 - spheroidal shape).

each other up to the 4th significant digit; this is confirmed
by a χ2 statistical test (χ2= 1.3522 with gl= 17), with a
confidence level of 0.9999998 We state that by confining
the isoelectronium, it is possible to reproduce the standard
curve with a minimum computational calculation effort.

Again, if compare this result with that of the Aringazin-
Kucherenko curve (χ2= 410.239 with gl= 17), we state that
the Aringazin curve differs completely from the KSM curve,
as it was shown in Figure 2.

Both findings, up to six digit precision in minimum en-
ergy coincidence and whole curve reproduction, give support
to our approach to the three-body Santilli-Shillady model.
We can establish that the hypothesis on the isoelectronium
movement is correct; that is, the orbiting of isoelectronium
around both nuclei limits itself to a spheroidal region of spa-
ce. Another way to express this behavior is that the forma-
tion of isoelectronium could be favored by the confinement
of the molecule without changing its general properties.

The isoelectronium movement in a bound state together
with the charge distribution confirms the explanation given
by iso-chemistry to the following question: Why has the
hydrogen molecule only two atoms? In our view, as soon as
the molecule forms (isoelectronium) it becomes a bound sys-
tem thus limiting the possibility of another hydrogen atom to
be part of the molecule. In fact, the Pauli principle requires
that the two valence electrons are correlated-bounded in a
singlet state; as a result, the isoelctronium has spin zero.
Consequently, no third electron can be bound via a conven-
tional valence (see [3c] for details).

4 Conclusions

The value for the minimum energy of the ground state of the
hydrogen molecule has been obtained using the three-body
Santilli-Shillady model. Other parameters involved, such as
the optimum bond length or energies for several distances
between nuclei, can not be verified with it. We have shown
that after modifying the model, by introducing a condition on

R a) α b) M3CP-M c) KSM d) Diff. e)

0.80 0.4188965 −1.024900 −1.0200565 0.0048435
0.90 0.4585059 −1.085753 −1.0836432 0.0021098
1.00 0.4964746 −1.125001 −1.1245396 0.0004614
1.10 0.5331055 −1.149680 −1.1500574 0.0003774
1.20 0.5686328 −1.164305 −1.1649352 0.0006302
1.30 0.6032813 −1.171876 −1.1723471 0.0004711
1.40 0.6371875 −1.174438 −1.1744757 0.0000377f)

1.50 0.6705273 −1.173416 −1.1728550 0.0005610
1.60 0.7033789 −1.169826 −1.1685833 0.0012427
1.70 0.7358594 −1.164397 −1.1624586 0.0019384
1.80 0.7680469 −1.157664 −1.1550686 0.0025954
2.00 0.8319141 −1.141767 −1.1381329 0.0036341
2.20 0.8953906 −1.124237 −1.1201321 0.0041049
2.40 0.9589063 −1.106267 −1.1024226 0.0038444
2.60 1.0228130 −1.088534 −1.0857913 0.0027427
2.80 1.0871880 −1.071422 −1.0706831 0.0007389
3.00 1.1521880 −1.055136 −1.0573262 0.0021902
3.20 1.2179690 −1.039776 −1.0457995 0.0060235

Notes: a)Bond length (in bohr)
b)Non linear variational parameter
c)Our data in the present work with ξ0= 48.467148

and ν= 0.37039
d)Kolos, Szalewicz and Monhorst data from 1986 [6]
e)Absolute value of the difference.
f)Best approximation up to 6th significant digit

Table 4: Energies for the M3CP-M model and KSM curve

the isoelectronium orbit, it is possible to calculate a minimum
energy for the ground state coincident with the experimental
values up to the sixth significant digit. Furthermore, the
modified three-body model of the hydrogen molecule, a con-
fined three-body system, enables the reproduction of the
whole curve of ground state energy in the range [0.80, 3.20]
for the bond length. The physical interpretation to the con-
fined isoelectronium model comprehends the isoelectronium
itself, since the interaction between electrons while the quasi-
particle is forming, implies its movement to be restricted
to a defined region of space. The Santilli-Shillady orbits,
the oo-shaped orbits, go beyond a way of speaking, they
are a condition for the movement of the electron pair. This
limitation in movement could be present in other states of
electron pairs, such as the Cooper pairs of superconductivity,
mainly in high Tc Superconductivity, for example.

The M3CP-M-R model of the hydrogen molecule intro-
duced here represents an appropriate approach to study this
molecule and gives support to the isoelectronium model in-
troduced by Santilli and Shillady.
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Laser-induced breakdown spectroscopy (LIBS) has been applied to perform a study
of the matrix effect on the plasma characterization of Fe, Mg, Be, Si, Mn, and Cu in
aluminum alloy targets. The generated plasma emissions due to focusing of a 100 mj
Nd: YAG pulsed laser at 1064 nm at the target surface were detected using a portable
Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma
evolution of laser produced plasmas has been characterized in terms of their spectra,
electron density Ne and electron temperature Te assuming the LTE and optically
thin plasma conditions. The obtained average values of Te and Ne were 7600 K and
3×1017 cm−3, respectively, for the six elements in the aluminum alloy samples. The
electron density increases with the element concentration while the plasma temperature
does not has significance change with concentration. For industrial applications, LIBS
with the portable Echelle spectrometer could be applied in the on-line production
control that following up elemental concentration in metals and pharmaceuticals by
only measuring Ne.

1 Introduction

Laser Induced Plasma Spectroscopy (LIPS or LIBS) is an
alternative elemental analysis technology based on the optic-
al emission spectra of the plasma produced by the interaction
of high-power laser with gas, solid and liquid media. The
increasing popularity of this technique is due to easiness of
the experimental set-up and to the wide flexibility in the
investigated material that doesn’t need any pre-treatment of
the sample before the analysis. Obvious tasks for LIBS are
certification of metal contents in alloys, trace detection of
metals for environmental pollution analysis in soils, on-line
control of laser induced industrial processes (e.g. cutting
and welding, thin film deposition), quick characterization
of material in archaeological objects and works of art, and
many others [1–5].

LIBS is based on analysis of line emission from the
laser-induced plasma, obtained by focusing a pulsed laser
beam onto the sample. The physical and chemical properties
of the sample can affect the produced plasma composition,
a phenomenon known as the matrix effect. The interaction
between the laser and the target in LIBS is influenced signi-
ficantly by the overall composition of the target, so that the
intensity of the emission lines observed is a function of both
the concentration of the elements of interest and the prop-
erties of the matrix that contains them. Plasma composition
is dependent not only on composition of the sample, but also
on laser parameters, sample surface conditions as well as
on thermal and optical properties of the sample. Previously
published works studied the matrix effect under different

experimental conditions to specify causes and find out the
methods of correction [6–11]. The different approaches have
been undertaken to discriminate the problems resulting from
the fractionation of the ablation and matrix effects. The most
convenient approach is to determine elemental abundance
comparing the analytic line intensities with signals obtained
from the proper reference standards having the similar
matrix composition. But, it is not always possible to obtain
such calibration curves because there are no available stan-
dard samples, or it is impossible to have an internal standard
of known concentration [12, 13]. In addition, plasma forma-
tion dynamics, sample ablation and associated processes are
highly non-linear and not fully understood and may also play
an important role as reasons of the matrix effect.

Recently an alternative procedure, based on the LIBS
technique, for quantitative elemental analysis of solid mater-
ials has been proposed, which can, in principle, provide
quantitative data with no need of calibration curves or intern-
al standards [14, 15]. The method relies on the assumption
about the existence the stoichiometric ablation and local
thermodynamic equilibrium (LTE) i.e. Boltzmann distribu-
tion and Saha equation amongst the level population of any
species and electron density and temperature of the plasma.
However for application of this method experimentally one
needs to obtain both equilibrium and thin plasma conditions,
a task that may not be always possible to perform. Thus,
in spite of the many advantages of LIBS the realization of
a quantitative analytical method, which is able to measure
main constituents in samples from different matrices, still
remains a difficult task because of the complex laser-sample
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and laser-plasma interaction mechanisms. As a rule, laser
ablation plasma is characterized by complex spatial and tem-
poral structures, and one meets a wide range of varying of
parameters during the plasma existence time.

In this paper, we report the optimized conditions for
LIBS to analyze the emission spectrum of aluminum alloy
samples with high resolution using a portable Echelle spec-
trometer Mechelle 7500 equipped with ICCD camera. Spec-
troscopic analysis of plasma evolution of laser produced
plasmas has been characterized in terms of their spectra,
electron density and electron temperature. The LTE and op-
tically thin plasma conditions were verified for the produced
plasma. The electron temperature and density were deter-
mined using the emission intensity and stark broadening,
respectively, of the spectral lines of six elements Fe, Mg,
Be, Si, Mn, and Cu in the aluminum alloys. The dependence
of the electron density and temperature on the concentrations
of these elements was studied.

2 Experimental setup

2.1 Instrumentation

A typical LIBS experimental setup, described in details by
the author elsewhere [6], is used throughout the present
investigations. The plasma formation was attained with the
aid of a Q-switched Nd: YAG laser (surelite I, continuum,
USA) operating at 1064 nm (pulse duration of 7 ns) and
repetition rate of 0.1 Hz – 10 Hz. The laser pulse energy of
100 mJ was adjusted by a suitable combination of beam
splitters at constant operating high voltage (1.3 kV) and Q-
switch delay (1.65μs) to ensure spatial and temporal beam
profile stability. An energy meter (Nova 978, Ophir Optron-
ics Ldt., USA) was employed to monitor the shot to shot
pulse energy. The laser beam was focused on aluminum
alloy samples by a 10 cm focal length quartz lens to generate
the plasma. A one meter length fused-silica optical fiber
(600μm diameter) mounted on a micro xyz-translation stage
is used to collect the emission light from the plasma plume
and feed it to a portable Echelle spectrometer of a 0.17 m
focal length (Mechelle 7500, Multichannel Instruments,
Sweden). The Echelle grating spectrometers designed for
operation in high orders and high angles of incidence and
diffraction, can provide high resolution in a more compact
size and cover a much wider spectral range than convention-
al grating spectrometers [16]. The Mechelle 7500 provides
a constant spectral resolution (CSR) of 7500 corresponding
to 4 pixels FWHM over a wavelength range 200–1000 nm
displayable in a single spectrum. A gateable, intensified
CCD camera, (DiCAM-Pro-12 bit, UV enhanced, 43000
channels, PCO Computer Optics, Germany) coupled to the
spectrometer was used for detection of the dispersed light.
The overall linear dispersion of the spectrometer camera sys-
tem ranges from 0.006 (at 200 nm) to 0.033 nm/pixel
(at 1000 nm). To avoid the electronic interference and jitters,

the intensifier high voltage was triggered optically. Echelle
spectra display, control, processing and analysis were done
using both Mechelle software (Multichannel Instruments,
Stockholm, Sweden) and GRAMS/32 version 5.1 Spectro-
scopic Data Analysis Software (Galactic Industries, Salem,
NH, USA).

2.2 Optimization of data acquisition procedure

Many optimization procedures were performed to improve
our LIBS resolution and sensitivity and to minimize the
measurements fluctuations and problems due to the sample
heterogeneity.

To improve data reproducibility, and to avoid electronic
jittering problem, the laser was set to single shot mode.
Then, the Nd:YAG laser beam was focused onto the sample
surface at 90◦ angle. This was done using a 25 mm diameter
dichroic mirror that reflects 99% of high energy 1064 nm
wavelength. This mirror placed just before the laser-focusing
lens as shown in Figure 1. The focal point was set 5 mm
below the surface of the sample in order to generate plasma
of 800μm spot diameter. This also minimize breakdown
above the surface of any particles and aerosols generally
present above the sample. Moreover, for each new sample,
before spectral collection, 20 laser pulses were performed
to clean the sample surface and removes surface oxides and
contamination to ensure that the observed spectrum is repre-
sentative of the sample composition. Furthermore, we found
that enhancement of the data reproducibility can be achieved
by accumulation of consecutive measured spectra for expo-
sures of duration 1000 ns, each delayed 2500 ns from the
laser pulse. These values of delay time and exposure window
time (gate time) for the ICCD camera produced spectra with
minimal background and signals from major lines that did
not saturate the detector.

On the other hand, the use of a micro xyz-translation
stage as a holder for fused-silica optical fiber facilities maxi-
mum intensity of the observed emission light from the plas-
ma plume. We investigated a set of eight standard samples of
aluminum alloy to study the dependence of the electron den-
sity and temperature on the concentrations of six elements
Be, Mg, Si, Mn, Fe and Cu by the proposed LIBS setup. So
that, these samples, which have never been treaded before
using LIBS with Mechelle 7500, were selected to have the
six elements with a range of concentrations. We used disk
shaped standard samples of aluminum alloy provided by
Alcan International Limited (0.5 cm; φ= 5 cm). The concen-
trations of Mg, Si, Be, Cu, Mn and Fe in the aluminum alloy
samples are given in Table 1.

Now, we aim to produce LIBS spectra with high preci-
sion. Precision is the measure of the degree of reproducibility
of a measurement. Laser shot-to-shot variation causes diffe-
rences in the plasma properties, therefore affects the mag-
nitude of the element signal, and hence degrades the LIBS
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Sample Be Mg Si Fe Cu Mn Al

AL 3104 0.0011 1.15 0.21 0.42 0.17 0.92 Balance

AL 4104 0.0017 1.56 9.63 0.7 0.12 0.046 Balance

AL 5052 0.0043 2.51 0.087 0.33 0.042 0.09 Balance

AL 5182 0.0012 4.67 0.11 0.27 0.061 0.35 Balance

AL 5754 0.0022 2.54 0.22 0.35 0.1 0.29 Balance

AL 6063 0.00030 0.54 0.43 0.2 0.085 0.081 Balance

AL 7010 0.0007 2.44 0.11 0.22 1.88 0.082 Balance

AL a380.2 0.00036 0.028 9.17 0.41 3.61 0.042 Balance

Table 1: Beryllium, copper, iron, magnesium, silicon and manganese con-
centrations (in w/w %) in the standard aluminum alloy samples.

precision. To improve LIBS precision, spectra from several
laser shots have to be averaged in order to reduce statistical
error due to laser shot-to-shot fluctuation. We reproduced
the measurements at five locations on the sample surface
in order to avoid problems linked to sample heterogeneity.
Twenty shots were fired at each location and saved in sepa-
rated files and the average was computed and saved to serve
as the library spectrum. For each recorded spectrum, the
peak intensity, the Lorentzian curve fitting, the full width
at half maximum FWHM, and the center wavelength of
each line, as well as the background emission continuum are
determined. Data treatment preprocessing of the averaged
spectra data was performed in the Windows environment on
a Pentium 4 PC using GRAMS/32, Excel (Microsoft Office
Excel 2003) and Origin software version 7.0220 (Origin Lab
Co., USA). The averages of peak tables (lists of wavelengths
and intensities) of the averaged spectra were roll generated
in GRAMS/32 and exported for data evaluation.

3 Results and discussion

3.1 LIBS spectrum

Figure 1 shows a typical plasma emission spectrum for alu-
minum alloy sample AL 7010. This spectrum is the average
of 100 single shot spectra recorded at 2.5 μs delay time and
1μs gate width. The panoramic Echelle spectra in the spect-
ral range 200–700 nm show the UV emission lines of alumi-
num as a major element and the emission lines of Si, Cu, Be,
Fe, Mn and Mg in the aluminum alloy sample. Moreover, our
observed spectra reflect the wide spectral range and the high
resolution of the used spectroscopic system.

3.2 Electron temperature measurements

In LIBS experiments, assuming optically thin plasma and the
local thermodynamic equilibrium (LTE) conditions are hold,
the re-absorption effects of plasma emission are negligible
(i.e. the main ionization process is produced through impact
excitation by thermal electrons). Upon these conditions, a
Boltzmann population distribution can be assumed in de-
scribing the actual thermodynamics parameters of the plas-

Fig. 1: Typical LIBS spectrum for aluminum alloy sample AL
7010. The laser energy was 100 mJ at wavelength 1064 nm, plasma
emissions are accumulated with delay 2.5 μs, and gate width 1μs.

ma. So, the emitted spectral line intensity I is a measure
of the population of the corresponding energy level of this
element in the plasma. Then I corresponding to the transition
between levels Ek and Ei of the atomic species α with
concentration Cα, can be expressed as

Ikiα = F Cα
gkAki e

−Ek
KBT

Uα (T )
, (1)

where KB is the Boltzmann constant, Uα(T ) is the partition
function, Aki is the transition probability, gk is the statistical
weight for the upper level, Ek is the excited level energy,
T is the temperature (in LTE all temperatures are assumed
to be equal, i.e. Te≈Tion≈Tplasma) and F is a constant
depending on experimental conditions.

Equation (1) allows also for evaluating Cα when the
sample and reference plasma temperature are different, once
the atomic parameters are derived from atomic databases.
In order to evaluate the plasma temperature, they take the
natural logarithm of Equation (1), obtaining

ln

(
Ikiα
gkAki

)

=
Ek
KB T

+ ln

(
CαF

Uα (Tα)

)

. (2)

In the two-dimensional Boltzmann plane identified by
the left hand term of Equation (2) and by Ek, different
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Fig. 2: Six Boltzmann plots were determined form the emission
line intensities of Si, Mg, Fe, Be, Mn and Cu observed in the laser-
induced plasma of aluminum alloy sample AL 7010. The slope of
the plotted curves yields temperatures of 7606 K, 7562 K, 7817 K,
7511 K, 7842 K, and 7224 K for the elements Si, Mg, Fe, Be, Mn,
and Cu respectively.

emission lines intensities belonging to the same element in
the same spectrum lie along a straight line with a slope of
−1/KBT [21].

In our experiment, the temperatures were determined
form the emission line intensities of Mg, Si, Be, Cu, Mn
and Fe observed in the laser-induced plasma of aluminum
alloys. Figure 2 show six Boltzmann plots of Eqn. (2), for
each of these six elements in the aluminum alloy sample AL
7010 where the data were fitted with the least-square ap-
proximation. The spectral lines wavelengths, energies of the
upper levels, statistical weights, and transition probabilities
used for each element are obtained from NIST [17] and
Griem [21], and listed in Table 2. The slope of the plotted
curves yields temperatures 7606 K, 7562 K, 7817 K, 7511 K,
7842 K, and 7224 K for the elements Si, Mg, Fe, Be, Mn, and
Cu respectively. The average value of the plasma tempera-
ture is 7600 K which agrees with the value obtained by
Sabsabi and Cielo [20] under conditions similar to ours. The
difference in the plasma temperature of the six elements may
be attributed to the difference in the excitation and ionization

Fig. 3: Electron temperature measured at 2.5 μs delay time and
1μs gate width using Boltzmann plot for different concentrations
of beryllium in different aluminum alloy samples.

potentials between these elements.
Then the matrix effect on the plasma temperature was

studied using the variety of concentrations of the six ele-
ments in the eight aluminum samples. This was done by plot-
ting the corresponding temperature for each element versus
its concentration in the aluminum alloy samples. Under our
experimental conditions, no significance change was found
for the plasma temperature with the concentration of the
six elements, especially for low concentration elements as
shown in Figure 3 as an example for Beryllium. This is
could be understanding as follows; for optical thin plasma,
increasing the element concentration returns an increasing of
the intensity of its corresponding spectral lines with roughly
the same ratio, which leads to have the same slope of Boltz-
mann plot and results in the same plasma temperature.

3.3 Electron density measurements

The usual method for determination of electron density is the
measuring of the broadening of a suitable emission line of
the laser-plasma spectrum. There are several possible mech-
anisms of line broadening in plasma: self-absorption, pres-
sure broadening, Doppler broadening, Stark broadening, etc.
Lida reported that the line broadening and the spectral shift
of the emission line are due mainly to self-absorption phen-
omenon [18]. In the present study line splitting and the
spectral shift, which are good evidence of self-absorption,
were monitored carefully. No evidence of line splitting or
spectral shift was observed.

Nemet and Kozma reported the broadening of transition
lines as pressure, Stark, and Doppler broadening [19]. But
pressure and Doppler broadening should not be so much
different among transition lines as is the case for plasma of
solids. Kyuseok Song et al. stated that Stark broadening may
be one of the reasons since the broadening effect increases
as the energy level increases [22]. Stark broadening results
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Si 221.89 1.50E+06 45276.18 3 — Fe 376.01 4.47E+06 45978.00 15 —

Si 243.87 7.40E+05 40991.88 3 — Fe 376.38 5.44E+07 34547.21 5 —

Si 250.69 4.66E+07 39955.05 5 — Fe 376.55 9.80E+07 52655.00 15 —

Si 251.43 6.10E+07 39760.28 3 — Fe 376.72 6.40E+07 34692.14 3 —

Si 251.61 1.21E+08 39955.05 5 — Fe 378.60 4.20E+06 46026.94 13 —

Si 252.41 1.81E+08 39683.16 1 — Fe 538.33 5.6E+07 53352.98 13 5.3E-03 [29]

Si 252.85 7.70E+07 39760.28 3 — Cu 240.00 2.00E+06 67911.85 4 4.1E-3 [21, 28]

Si 288.15 1.89E+08 40991.88 3 0.74E-3 [21] Cu 261.84 3.07E+07 49382.95 4 —

Si 300.67 1.10E+03 33326.05 5 — Cu 276.64 9.60E+06 49382.95 4 —

Si 302.00 3.30E+03 33326.05 5 — Cu 282.44 7.80E+06 46598.34 6 —

Si 390.55 1.18E+07 40991.88 3 1.46E-3 [21] Cu 296.12 3.76E+06 44963.22 8 —

Mg 277.66 1.32E+08 57873.94 5 — Cu 306.34 1.55E+06 45879.31 4 —

Mg 277.82 1.82E+08 57833.4 3 — Cu 319.41 1.55E+06 44544.15 4 —

Mg 277.98 4.09E+08 57873.94 5 — Cu 324.75 1.39E+08 30783.69 4 —

Mg 278.14 5.43E+08 57812.77 1 — Cu 327.40 1.37E+08 30535.30 2 —

Mg 278.29 2.14E+08 57833.4 3 — Cu 333.78 3.80E+05 41153.43 8 —

Mg 279.07 4.01E+08 71491.06 4 — Cu 402.26 1.90E+07 55387.67 4 —

Mg 279.55 2.60E+08 35760.88 4 — Cu 406.26 2.10E+07 55391.29 6 —

Mg 279.79 4.79E+08 71490.19 6 — Cu 427.51 3.45E+07 62403.32 8 —

Mg 280.27 2.57E+08 35669.31 2 — Cu 465.11 3.80E+07 62403.32 8 —

Mg 281.11 1.96E+08 83520.47 5 — Cu 510.55 2.00E+06 30783.69 4 —

Mg 281.17 2.11E+08 83511.25 3 — Cu 515.32 6.00E+07 49935.20 4 —

Mg 285.21 4.91E+08 35051.26 3 3.6E-04 [27] Cu 521.82 7.50E+07 49942.06 6 —

Mg 291.54 4.09E+08 80693.01 5 — Cu 529.25 1.09E+07 62403.32 8 —

Mg 292.86 1.15E+08 69804.95 2 — Cu 570.02 2.40E+05 30783.69 4 —

Mg 293.65 2.30E+08 69804.95 2 — Cu 578.21 1.65E+06 30535.30 2 —

Fe 370.11 4.80E+07 51192.27 9 — Mn 258.97 2.6E+08 38543.08 7 5.91E-03 [30]

Fe 370.56 3.22E+06 27394.69 7 — Mn 401.81 2.54E+07 41932.64 8 —

Fe 371.99 1.62E+07 26874.55 11 — Mn 403.08 1.70E+07 24802.25 8 —

Fe 372.26 4.97E+06 27559.58 5 — Mn 403.31 1.65E+07 24788.05 6 —

Fe 372.71 2.00E+07 50534.39 7 — Mn 403.45 1.58E+07 24779.32 4 —

Fe 373.33 6.20E+06 27666.35 3 — Mn 404.14 7.87E+07 41789.48 10 —

Fe 373.53 2.40E+07 50475.29 9 — Mn 404.88 7.50E+07 42143.57 4 —

Fe 373.71 1.42E+07 27166.82 9 — Mn 405.55 4.31E+07 41932.64 8 —

Fe 373.83 3.80E+07 53093.52 13 — Mn 405.89 7.25E+07 42198.56 2 —

Fe 374.56 1.15E+07 27394.69 7 — Mn 406.17 1.90E+07 49415.35 6 —

Fe 374.59 7.33E+06 27666.35 3 — Mn 406.35 1.69E+07 42053.73 6 —

Fe 374.83 9.15E+06 27559.58 5 — Mn 407.92 3.80E+07 42143.57 4 —

Fe 375.82 6.34E+07 34328.75 7 — Mn 408.29 2.95E+07 42053.73 6 —

Mn 408.36 2.80E+07 41932.64 8 — Be 265.08 1.80E+08 59695.07 3 —

Mn 423.51 9.17E+07 46901.13 6 — Be 313.04 1.15E+08 31935.32 4 2.81E-05 [21]

Mn 441.49 2.93E+07 45940.93 6 — Be 313.11 1.15E+08 31928.744 2 —

Mn 445.16 7.98E+07 45754.27 8 — Be 324.16 1.37E+07 127335.12 2 —

Mn 446.20 7.00E+07 47207.28 10 — Be 324.18 2.73E+07 127335.12 2 —

Mn 475.40 3.03E+07 39431.31 8 — Be 327.46 1.43E+07 118761.32 4 —

Mn 478.34 4.01E+07 39431.31 8 — Be 327.47 1.43E+07 118760.51 2 —

Mn 482.35 4.99E+07 39431.31 8 — Be 332.10 6.90E+06 52080.94 3 —

Be 265.05 1.08E+08 59697.08 5 — Be 332.11 2.10E+07 52080.94 3 —

Be 265.06 1.44E+08 59695.07 3 — Be 332.13 3.40E+07 52080.94 3 —

Table 2: A list of the spectroscopic data of the spectral lines used for the determination of plasma temperature and
density of aluminum alloy samples.

46 Walid Tawfik. The Matrix Effect on the Plasma Characterization of Six Elements in Aluminum Alloys



April, 2007 PROGRESS IN PHYSICS Volume 2

Fig. 4: The 285.21 nm line with sufficient resolution to measure
the full width at half-maximum (λ1/2) at different concentrations
of Mg in the aluminum alloys. For each line, the data points were
fitted with Lorentzian fitting function using the Origin software to
determine (λ1/2).

from Coulomb interactions between the radiator and the
charged particles present in the plasma. Both ions and elec-
trons induce Stark broadening, but electrons are responsible
for the major part because of their higher relative velocities.
Therefore, in our conditions, the profile of a line is mainly
contributed to linewidths arises from the Stark effect while
the contribution of other mechanisms of broadening (Dop-
pler effect, Van der Waals broadening, and resonance broad-
ening) can be neglected, as shown under conditions similar
to ours by Sabsabi and Cielo [20].

The electrons in the plasma can perturb the energy levels
of the individual ions which broaden the emission lines ori-
ginating from these excited levels. Stark broadening of well-
isolated lines in the plasma is, thus, useful for estimating the
electron number densities provided that the Stark-broadening
coefficients have been measured or calculated. The line pro-
file for stark broadened is well described by a Lorentzian
function

Since the instrumental line-broadening exhibit Gaussian
shape, then the stark line width ΔλFWHM can be extracted
from the measured line width Δλobserved by subtracting the
instrumental line broadening Δλinstrument:

ΔλFWHM = Δλobserved −Δλinstrument . (3)

In our case Δλinstrument was 0.05 nm (determined by
measuring the FWHM of the Hg lines emitted by a standard
low pressure Hg lamp).

The width of stark broadening spectral line depends on
the electron density Ne. Both the linear and the quadratic
stark effect are encountered in spectroscopy. Only the hydro-
gen atom and H-like ion exhibit the linear stark effect. For
the linear stark effect the electron density should be deduced

from H line width from the formula [21]

Ne = C (Ne, T )Δλ
3/2
FWHM (4)

the values of the parameter C (Ne, T ) are tabulated in the
literature [21], which determine the relative contribution of
the electron collision on the electrostatic fields, and depend
weakly on Ne and T .

For a non-H-like line, the electron density (in cm−3)
could be determined from the FWHM of the line from the
formula [21]:

Ne ≈

(
ΔλFWHM

2w

)

× 1016, (5)

where w is the electron impact parameter (stark broadening
value) and it is given in Table 2. The last formula is generally
used for calculations of plasma generated from solid targets
[7, 8, 20].

Six lines were identified as candidates for electron-
density measurements: 390.55 nm, 285.21 nm, 538.33 nm,
240.00 nm, 258.97 nm and 313.04 nm for Si, Mg, Fe, Cu, Mn
and Be respectively. Figure 4 shows, as an example for Mg,
the 285.21 nm line with sufficient resolution to measure the
full width at half-maximum (λ1/2) at different concentrations
of Mg in the aluminum alloys. All the six lines data points
were fitted with Lorentzian fitting function using the Origin
software to determine (λ1/2) as shown in Fig. 4 for Mg as an
example. Substituting the values of λ1/2 in Eqn. (3) and the
corresponding values of stark broadening w from Table 2
in Eqn. (6) the electron density for Mg was determined.
These steps were repeated for each concentration of the
six elements in the eight aluminum alloy samples. Then
the obtained electron density values were plotted versus the
element concentration. Figure 5 shows six plots for the varia-
tion of the electron density values versus the concentrations
of Mg, Si, Be, Fe, Cu and Mn in different aluminum alloy
samples. These plots reveal that, in case of Mg, Si, Fe,
Cu and Mn, electron density increases with the element
concentration. For the case of low concentration elements
like Be, the increase of the electron density with the element
concentration is very weak. This result might occur because
increasing the “element” concentration comprises increasing
portion of the laser-target interaction volume which agrees
with O. Samek [24] and Rusak et al. [25].

Finally, by knowing the electron density and the plasma
temperature we can determine whether the local thermo-
dynamic equilibrium (LTE) assumption is valid applying the
criterion given by McWhirter [26].

The lower limit for electron density for which the plasma
will be in LTE is:

Ne > 1.4×1014ΔE3T 1/2, (6)

where ΔE is the largest energy transition for which the
condition holds and T is the plasma temperature [23].

In the present case ΔE = 3.65 eV for Al (see Ref. [20])
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Fig. 5: Six plots for the variation of the electron density values
versus the concentrations of Mg, Si, Be, Fe, Cu and Mn in different
aluminum alloy samples.

and the electron density lower limit value given by Eqn. (7)
is 6×1015 cm−3. The experimentally calculated densities are
greater than this value, which is consistent with the assump-
tion that the LTE prevailing in the plasma.

4 Conclusion

In summary, we have carried out an accurate LIBS setup
using portable commercial Echelle spectrometer equipped
with ICCD detector to study aluminum alloys matrix effects
on the plasma characterization. The electron density and
plasma temperature were determined for six elements (Fe,
Mg, Be, Si, Mn, and Cu) in the aluminum alloy targets. The
electron density increases with the element concentration
while the plasma temperature does not has significance
change with the element concentration.

For a plasma diagnostics perspective, the target physical
properties play an important role in the obtained values of
the laser induced plasma temperature Te and electron density
Ne. For industrial application, LIBS could be applied in
the on-line industrial process that following up elemental
concentration in metals and pharmaceuticals by only mea-
suring Ne of that element.
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A Letter by the Editor-in-Chief:

Twenty-Year Anniversary of the Orthopositronium Lifetime Anomalies:
The Puzzle Remains Unresolved

This letter gives a history of two observed anomalies of orthopositronium annihilation,
of which the 20th anniversary occurs this year. The anomalies, breaking the basics of
Quantum Electrodynamics, require more experimental study, in view of the recent
claim of the Michigan group of experimentalists, which alleges resolution of one of
the anomalies.

It is now the 20th anniversary of the observation of ano-
malies of orthopositronium annihilation (both discovered in
1987) in experiments conducted by two groups of research-
ers: one group in the USA, headed by the late Prof. Arthur
Rich in the University of Michigan at Ann Arbor, and the
other group in Russia, headed by Dr. Boris Levin of the
Institute of Chemical Physics in Moscow, but then at the
Gatchina Nuclear Centre in St. Petersburg.

The anomalies dramatically break the basics of Quantum
Electrodynamics.

Recently my long-time colleague, Boris Levin, one of
the discoverers of the anomalies, suggested that the last ex-
periment of the Michigan group, by which it has claimed
resolution of one of the anomalies [1], was set up so that an
electric field introduced into the experiment (it accelerates
the particle beam before the target) mere suppressed the ano-
maly despite the electric field helps to reach complete ther-
malization of orthopositronium in the measurement cell. As
a dry rest the anomaly, remaining represented but suppressed
by the field, became mere invisible in the given experiment.

Now Levin proposes a modification of the last Michigan
experiment in order to demonstrate the fact that the anomaly
remains. He describes his proposed experiment in his brief
paper appearing in this issue of Progress in Physics.

I would give herein a brief introduction to the anomalies
(otherwise dispersed throughout many particular papers in
science journals).

Positronium is an atom-like orbital system that contains
an electron and its anti-particle, the positron, coupled by
electrostatic forces. There are two kinds of positronium: pa-
rapositronium p-Ps, in which the spins of the electron and
the positron are oppositely directed so that the total spin is
zero, and orthopositronium o-Ps, in which the spins are co-
directed so that the total spin is one. Because a particle-anti-
particle system is unstable, life span of positronium is rather
small. In vacuum parapositronium decays in ∼1.25×10−10 s,
while orthopositronium in ∼1.4×10−7 s. In a medium the life
span is even shorter because positronium tends to annihilate
with electrons of the medium. Due to the law of conservation
of charge parity, parapositronium decays into an even number
of γ-quanta (2, 4, 6, . . . ) while orthopositronium annihilates
into an odd number of γ-quanta (3, 5, 7, . . . ). The older
modes of annihilation are less probable and their contribu-

tions are very small. For instance, the rate of five-photon
annihilation of o-Ps compared to that of three-photon anni-
hilation is as small as λ5≈ 10−6λ3. Hence parapositronium
actually decays into two γ-quanta p-Ps→2γ, while ortho-
positronium decays into three γ-quanta o-Ps→3γ.

In the laboratory environment positronium can be obtain-
ed by placing a source of free positrons into matter, a mon-
atomic gas for instance. The source of positrons is β+-decay,
self-triggered decays of protons in neutron-deficient atoms
p→ n + e++ νe. It is also known as positron β-decay.

Some of free positrons released into a gas from a β+-
decay source quite soon annihilate with free electrons and
electrons in the container’s walls. Other positrons capture
electrons from gas atoms thus producing orthopositronium
and parapositronium (in ratio 3:1).

The time spectrum of positron annihilations (number of
events vs. life span) is the basic characteristic of their anni-
hilation in matter. In particular, in such spectra one can see
parts corresponding to annihilation with free electrons and
annihilation of p-Ps and o-Ps.

In inert gases the time spectrum of annihilation of quasi-
free positrons generally forms an exponential curve with a
plateau in its central part, known as a “shoulder” [2, 3].

In 1965 P. E. Osmon published [2] pictures of observed
time spectra of annihilation of positrons in inert gases (He,
Ne, Ar, Kr, Xe). In his experiments he used 22NaCl as a
source of β+-decay positrons. Analyzing the results of the
experiments, Levin noted that the spectrum in neon was
peculiar compared to those in other monatomic gases: in
neon, points in the curve were so widely scattered that the
presence of a “shoulder” was uncertain. Repeated measure-
ments of time spectra of annihilation of positrons in He, Ne,
and Ar, later accomplished by Levin [4, 5], have proven
the existence of anomaly in neon. A specific feature of the
experiments conducted by Osmon, Levin and some other
researchers is that the source of positrons was 22Na, while
the moment of appearance of the positron was registered
according to the γn-quantum of decay of excited 22∗Ne,
22∗Ne→ 22Ne + γn , from one of the products of β+-decay
of 22Na. This method is quite justified and is commonly
used, because the life span of excited 22∗Ne is as small as
τ ' 4×10−12 s, which is a few orders of magnitude less than
those of the positron and parapositronium.
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In his further experiments [6, 7] Levin discovered that
the peculiarity of the annihilation spectrum in neon (abnor-
mally widely scattered points) is linked to the presence in
natural neon of a substantial quantity of its isotope 22Ne
(around 9%). Levin called this effect the isotope anomaly.
Time spectra were measured in neon environments of two
isotopic compositions: (1) natural neon (90.88% of 20Ne,
0.26% of 21Ne, and 8.86% of 22Ne); (2) neon with reduced
content of 22Ne (94.83% of 20Ne, 0.26% of 21Ne, and 4.91%
of 22Ne). Comparison of the time spectra of positron decay
revealed that in natural neon (composition 1) the shoulder
is fuzzy, while in neon poor in 22Ne (composition 2) the
shoulder is always pronounced. In the part of the spectrum
to which o-Ps decay mostly contributes, the ratio between
intensity of decay in 22Ne-poor neon and that in natural neon
(with more 22Ne) is 1.85±0.1 [7].

The relationship between the anomaly of positron annihi-
lation in neon and the presence of 22Ne admixture, as shown
in [6, 7], hints at the existence in gaseous neon of collective
nuclear excitation of 22Ne isotopes. In the terminal stage of
β+-decay nuclear excitation of 22∗Ne (life time ∼ 4×10−12 s)
is somehow passed to a set of 22Ne nuclei around the source
of positrons and is carried away by a nuclear γn-quantum
after a long delay in the moment of self-annihilation of
orthopositronium (free positrons and parapositronium live
much shorter). Hence collective excitation of 22Ne atoms
seems to be the reason for the isotope anomaly. On the
other hand, the nature of the material carrier that passes
excitation of nuclear 22∗Ne to the surrounding 22Ne atoms
is still unclear, as is the means by which orthopositronium is
linked to collective excitation — collective nuclear excitation
is only known in crystals (Mössbauer effect, 1958).

In 1990 Levin [8] suggested, as a result of a relationship
between orthopositronium and collective nuclear excitation,
that a 1-photon mode of its annihilation should be observed.
But decay of o-Ps into one γ-quantum would break the laws
of conservation of Quantum Electrodynamics. To justify this
phenomenological conclusion without breaking QED laws,
Levin, in his generalised study [9], suggested that in the spe-
cific experimental environment, annihilation of some ortho-
positronium atoms releases one γ-quantum into our world
and two γ-quanta into a mirror Universe, placing them be-
yond observation. But before any experiments are designed
to prove or disprove the existence of such a “1-photon”
mode, or any theory is developed to explain the observed
effect, the problem still requires discussion.

Another anomaly is the substantially higher measured
rate of annihilation of orthopositronium (the reciprocal to its
life span) compared to that predicted by QED.

Measurement of the orthopositronium annihilation rate is
among the main tests aimed at experimental verification of
QED. Before the mid 1980’s no difference between theory
and experiment was observed, as measurement precision re-
mained at the same low level.

In 1987, thanks to new precision technology, a group of
researchers based at the University of Michigan (Ann Arbor)
made a breakthrough in this area. The experimental results
showed a substantial gap between experiment and theory.
The anomaly that the Michigan group revealed was that mea-
sured rates of annihilation at λT(exp)=7.0514±0.0014μs−1

and λT(exp)=7.0482±0.0016μs−1 (to a precision of 0.02%
and 0.023% using gas and vacuum methods [10–13] were
much higher compared to λT(theor)=7.00383±0.00005μs−1

as predicted by QED [14–17]. The 0.2% effect was ten times
greater than the measurement precision, and was later called
the λT-anomaly [9].

In 1986 Robert Holdom [18] suggested that “mixed type”
particles may exist, which, being in a state of oscillation, stay
for some time in our world and for some time in a mirror
Universe. In the same year S. Glashow [18] gave further de-
velopment to the idea and showed that in the case of 3-
photon annihilation o-Ps will “mix up” with its mirror twin,
thus producing two effects: (1) a higher annihilation rate
due to an additional mode of decay, o-Ps→nothing, because
products of decay passed into the mirror Universe cannot be
detected; (2) the ratio between orthopositronium and para-
positronium numbers will decrease from o-Ps :p-Ps= 3:1 to
1.5:1. But because at that time (1986) no such effects were
reported, Glashow concluded that no oscillation is possible
between our-world and mirror-world orthopositronium.

On the other hand, by the early 1990’s these theoretical
studies motivated many researchers worldwide to an experi-
mental search for various “exotic” (unexplained by QED)
modes of o-Ps decay, which could shed some light on the
abnormally high rate of decay. These were, to name just a
few, search for o-Ps→nothing mode [20], check of possible
contribution from 2-photon mode [21–23] or from other exo-
tic modes [24–26]. As a result it has been shown that no
exotic modes can contribute to the anomaly, while contribu-
tion of the o-Ps→nothing mode is limited to < 5.8×10−4 of
o-Ps→3γ.

In a generalised study in 1995 [9] it was pointed out
that the programme of critical experiments was limited to
a search for the 1-photon mode o-Ps→γ\2γ′ involving the
mirror Universe and to a search for the mode o-Ps→nothing.
The situation has not changed significantly over the past five
years. The most recent publication on this subject, in May
2000 [27], still focused on the Holdom-Glashow suggestion
of a possible explanation of the λT-anomaly by interaction of
orthopositronium with its mirror-world twin, and on a search
for the o-Ps→nothing mode. But no theory has yet been
proposed to account for the possibility of such an interaction
and to describe its mechanism.

The absence of a clear explanation of the λT-anomaly en-
couraged G. S. Adkins et al. [28] to suggest the experiments
made in Japan [29] in 1995 as an alternative to the basic Mi-
chigan experiments. No doubt, the high statistical accuracy
of the Japanese measurements [29] puts them on the same
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level as the basic experiments [10–13]. But all the Michigan
measurements possessed the property of a “full experiment”,
which in this particular case means no external influence
could affect the wave function of positronium. Such an in-
fluence is inevitable due to the electrodynamic nature of po-
sitronium, and can be avoided only using special techniques.
As was shown later, by Levin [31], this factor was not taken
into account in Japanese measurements [29] and thus they
do not possess property of a “full experiment”.

As early as 1993 S. G. Karshenboim, one of the leaders
in the theory, showed that QED had actually exhausted its
theoretical capabilities to explain the orthopositronium ano-
malies [30]. The puzzle remains unresolved.

January 30, 2007 Dmitri Rabounski
Editor-in-Chief
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A Proposed Experimentum Crucis for the Orthopositronium
Lifetime Anomalies

Boris M. Levin
E-mail: bormikhlev@mail.ru, bormikhlev@mail.ioffe.ru

Expansion of the Standard Model (SM) for the quantitative description of the
orthopositronium lifetime anomalies allows formulation of additional experimental
tests of supersymmetry in the final state of the positron beta-decay of nuclei such as
22Na, 68Ga, and resolution of the results of the last Michigan experiment (2003).

In 2003, at the University of Michigan (Ann Arbor), a mea-
surement of the o-Ps annihilation rate was carried out, and
the researchers reported complete agreement between the ex-
perimental value, λT= 7.0404(10)(8)μs−1, and the value
calculated in the frame of QED, λT(theor)=7.039979(11)μs−1

[1]. These measurements were performed by a different tech-
nique, namely, a dc electric field of 7 kV/cm was introduced
into the measurement cell. For this reason, and since they
disregarded the “isotope anomaly” of o-Ps in gaseous neon
in “resonance conditions” [2, 3], authors [1] could not in-
clude the additional action of the electric field on the observ-
ed o-Ps self-annihilation rate λT(exp) [3], notwithstanding the
provisions they undertook to ensure complete o-Ps thermal-
ization. The additional action of the electric field E∼7kV/cm
oriented parallel to the force of gravity should suppress the
excessΔλT'0.19÷0.14% over the calculated value λT(theor),
which had been reported earlier by the Michigan group and
referred to quantitatively as the macroscopic quantum effect
(the “λT-anomaly” [3])∗.

This is why rejection [1] of the conclusions drawn from
the earlier high-precision λT measurements does not appear
unambiguous.

The uncertainty we are presently witnessing can be re-
solved only by performing a program of additional measure-
ments.

Consider the scheme of a Gedanken experiment for a
measuring cell filled with a gas (Fig. 1).

Could one substantiate a program of comparative measu-
rements which would yield as a final result the doubling of
the parameter V to be measured with the external dc electric
field orientation changed from horizontal to vertical? This
would be certainly impossible within the SM. An analysis
of the o-Ps anomalies within the concept of spontaneously
broken complete relativity opens up such a possibility; indeed,
restoration of the symmetry under discussion “should be
accompanied by doubling of the space-time dimension” [4].

The uniqueness of orthopositronium dynamics (virtual
single-quantum (!) annihilation, CP -invariance) make it an
intriguing probe to double the space-time (see [5]).

∗Here and so forth the sign ÷ means that the values were obtained in
the gas and vacuum experiments respectively.

Fig. 1: Scheme and the result of a Gedanken experiment with an
electric field in a laboratory on Earth. The measuring cell is filled
with gas. ~E is orientation and dc voltage of an electric field; V is
the value of the parameter to be measured.

Consider in this connection again the standard experi-
mental technique used to measure positron/orthopositronium
annihilation lifetime spectra.

Figure 2 presents a block diagram of a fast-slow lifetime
spectrometer of delayed γn– γa coincidences.

Recording of real coincidences (in the start-stop arrange-
ment) with a time resolution of 1.7×10−9 s [2] between the
signal produced by a nuclear γn quantum of energy '1.28
MeV (“start”) with the signal generated by the detected γa
annihilation quantum of energy '0.34÷0.51 MeV (“stop”,
corresponding, accordingly, to 3γ and 2γ-annihilation) is
accompanied by the energy (amplitude) discrimination in
the slow (“side”) coincidence channels (with a resolution
δτs∼ 10−6 s between the corresponding signals from the
last-but-one dynodes of the lifetime PM tubes, an approach
that cuts efficiently random coincidence noise.

After subtraction of the random coincidence background,
the positron annihilation lifetime spectra of inert gases would
represent the sums of exponentials with characteristic anni-
hilation rate constants λi

N(t) =

i=2∑

i=0

Ii e
−λi t,

where λ0 and I0 are, respectively, the rate and intensity of
two-quantum annihilation of the para-positronium compo-
nent (p-Ps), λ1 and I1 are the components of two-quantum
annihilation of the quasi-free positrons that have not formed
positronium (with so-called “shoulder” peculiarity [5]), and
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Fig. 2: Block-diagram of the lifetime spectrometer (fast-slow γn–
γa coincidences). ID is for Integral Discriminator (excludes γa
detection in the “start” channel); DD is for Differential Discrimi-
nator (restricts γn detection in the “stop” channel); SCM is for Slow
Coincidence Module; TAC is for Time-to-Amplitude Converter
(Δt→ amplitude); MPHA is multichannel pulse-height analyzer.

λ2 and I2 are those of three-quantum annihilation of the
orthopositronium component.

Experimental bounds accumulated in the two decades of
intense studies of the orthopositronium problem lead one
to the conclusion that the additional single-quantum mode
of orthopositronium annihilation involves not a photon but
rather a notoph (γ◦ is a zero-mass, zero-helicity particle
which is complementary in properties to the photon) [7]
and two mirror photons γ′ with a negative total energy of
3.6×10−4 eV [3, 5]:

o-Ps\ p-Ps′ (p-Ps′) −→ γ◦\2γ′.

This was how the broadening of the framework in which
the nature of the o-Ps anomalies could be analyzed (from
QED to SQED) and the phenomenology of the mechanism
of energy and momentum deficit compensation in a single-
quantum mode were first formulated [7].

Treated from the SM standpoint, however, detection of
a quantum of energy 1.022 MeV in the “stop” channel of
the fast-slow coincidences is forbidden (see the “lower” and
“upper” detection thresholds of ∼0.34÷0.51 MeV, respecti-
vely, in Fig. 2).

We now come back to the principal question of how the
additional realization of supersymmetry would be establish-
ed in the experiment.

Detection of a single-notoph o-Ps annihilation mode
should also be accompanied by observation of an energy

Fig. 3: Scheme of additional measurements: is there a connection
between gravity and electromagnetism?

deficit in the “stop” channel of the lifetime spectrometer:
indeed, single-notoph annihilation is identified in the scintil-
lator by the Compton-scattered electron e, which is bound in
the long-range atom “shell” in a “pair” eē with the “electron-
ic hole” ē (negative mass) in the “C-field/mirror Universe”
structure. Half of the notoph energy, ∼0.51 MeV, is transfer-
red to the e hole (ē) and, thus, “disappears” (anti-Compton
scattering). As a result, the additional single-notoph mode is
detected by the lifetime spectrometer in the “stop” channel
by Compton scattering of an electron e of energy 6 0.51 eV.

The experiment is in agreement with the phenomenology
proposed for quantitative description of the o-Ps anomalies
provided we assume that the additional single-notoph anni-
hilation mode contributes to the instantaneous coincidence
peak [5]. This means that one half of the intensity of the
long-lived lifetime spectral component obtained under “reso-
nance conditions” for neon of natural isotope abundance (I2)
transfers to the t∼ 0 region. An electric field of 7 kV/cm
applied parallel to the force of gravity should suppress the
additional mode and double the orthopositronium compo-
nent (2I2). Accordingly, in the Michigan experiment (non-
resonance conditions) an electric field oriented along the
force of gravity would bring about complete agreement be-
tween λT(exp) with the QED-calculated value λT(theor); and
the disagreement of about ΔλT/λT' 0.19÷0.14% found
previously (in experiments without electric field) should
again appear after the action of the electric field has been
neutralized (by applying it perpendicular to the force of grav-
ity) [3].

The term “anti-Compton scattering” has been borrowed
from J. L. Synge [8]; it appears appropriate to cite here an
excerpt from the abstract of this paper written by a celebrated
proponent of the theory of relativity:

“The purpose of this paper is to answer the following
question in terms of concepts of classical relativistic
mechanics: How is Compton scattering altered if we
replace the photon by a particle of zero rest mass
and negative energy, and apply the conservation of 4-
momentum? [ . . . ] Since particles with negative ener-
gies are not accepted in modern physics, it is perhaps
best to regard this work as a kinematical exercise in
Minkowskian geometry, worth recording because the
results are not obvious”.
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Observation of orthopositronium anomalies gives one
physical grounds to broaden the present-day SM. It now
appears appropriate to analyze “anti-Compton scattering”
in connection with the detection of notoph in the proposed
program of additional measurements, which aim at proving
the existence of a connection between gravity and electro-
magnetism [3].

We may add that the concept of the supersymmetric
version of a spin-1/2 quasi-particle and a hole as supersym-
metric partners has been discussed in the literature [9].

To sum up: one should carry out additional measure-
ments because the result, inconceivable in the frame of the
SM, becomes an expected result in the program of experi-
mentum crucis (Fig. 3).

A positive result of this crucial experiment would mean
the birth of new physics that would be complementary to the
Standard Model.

Submitted on January 24, 2007
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In recent years, there are attempts to describe quantization of planetary distance
based on time-independent gravitational Schrödinger equation, including Rubcic &
Rubcic’s method and also Nottale’s Scale Relativity method. Nonetheless, there is
no solution yet for time-dependent gravitational Schrödinger equation (TDGSE). In
the present paper, a numerical solution of time-dependent gravitational Schrödinger
equation is presented, apparently for the first time. These numerical solutions
lead to gravitational Bohr-radius, as expected. In the subsequent section, we also
discuss plausible extension of this gravitational Schrödinger equation to include
the effect of phion condensate via Gross-Pitaevskii equation, as described recently
by Moffat. Alternatively one can consider this condensate from the viewpoint
of Bogoliubov-deGennes theory, which can be approximated with coupled time-
independent gravitational Schrödinger equation. Further observation is of course
recommended in order to refute or verify this proposition.

1 Introduction

In the past few years, there have been some hypotheses sug-
gesting that quantization of planetary distance can be derived
from a gravitational Schrödinger equation, such as Rubcic
& Rubcic and also Nottale’s scale relativity method [1, 3].
Interestingly, the gravitational Bohr radius derived from this
gravitational Schrödinger equation yields prediction of new
type of astronomical observation in recent years, i.e. extra-
solar planets, with unprecedented precision [2].

Furthermore, as we discuss in preceding paper [4], using
similar assumption based on gravitational Bohr radius, one
could predict new planetoids in the outer orbits of Pluto
which are apparently in good agreement with recent observa-
tional finding.. Therefore one could induce from this observ-
ation that the gravitational Schrödinger equation (and gravi-
tational Bohr radius) deserves further consideration.

In the meantime, it is known that all present theories
discussing gravitational Schrödinger equation only take its
time-independent limit. Therefore it seems worth to find out
the solution and implication of time-dependent gravitational
Schrödinger equation (TDGSE). This is what we will discuss
in the present paper.

First we will find out numerical solution of time-inde-
pendent gravitational Schrödinger equation which shall yield
gravitational Bohr radius as expected [1, 2, 3]. Then we ex-
tend our discussion to the problem of time-dependent grav-
itational Schrödinger equation.

In the subsequent section, we also discuss plausible ex-
tension of this gravitational Schrödinger equation to include the

effect of phion condensate via Gross-Pitaevskii equation,
as described recently by Moffat [5]. Alternatively one can
consider this phion condensate model from the viewpoint of
Bogoliubov-deGennes theory, which can be approximated
with coupled time-independent gravitational Schrödinger
equation. To our knowledge this proposition of coupled time-
independent gravitational Schrödinger equation has never
been considered before elsewhere.

Further observation is of course recommended in order
to verify or refute the propositions outlined herein.

All numerical computation was performed using Maple.
Please note that in all conditions considered here, we use
only gravitational Schrödinger equation as described in Rub-
cic & Rubcic [3], therefore we neglect the scale relativistic
effect for clarity.

2 Numerical solution of time-independent gravitational
Schrödinger equation and time-dependent gravita-
tional Schrödinger equation

First we write down the time-independent gravitational
Schrödinger radial wave equation in accordance with Rubcic
& Rubcic [3]:

d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2GMm2

H2
R−

` (`+ 1)

r2
R = 0 .

(1)

When H , V , E′ represents gravitational Planck constant,
Newtonian potential, and the energy per unit mass of the
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orbiting body, respectively, and [3]:

H = h

(

2π f
Mmn

m2
0

)

, (2)

V (r) = −
GMm

r
, (3)

E′ =
E

m
. (4)

By assuming that R takes the form:

R = e−αr (5)

and substituting it into equation (1), and using simplified
terms only of equation (1), one gets:

Ψ = α2 e−αr −
2αe−αr

r
+
8πGMm2 e−αr

rH2
. (6)

After factoring this equation (7) and solving it by equat-
ing the factor with zero, yields:

RR = −
2
(
4πGMm2 −H2α

)

α2H2
= 0 , (7)

or
RR = 4πGMm2 −H2α = 0 , (8)

and solving for α, one gets:

a =
4π2GMm2

H2
. (9)

Gravitational Bohr radius is defined as inverse of this
solution of α, then one finds (in accordance with Rubcic &
Rubcic [3]):

r1 =
H2

4π2GMm2
, (10)

and by substituting back equation (2) into (10), one gets [3]:

r1 =

(
2πf

αc

)2
GM . (11)

Equation (11) can be rewritten as follows:

r1 =
GM

ν20
, (11a)

where the “specific velocity” for the system in question can
be defined as:

ν0 =

(
2πf

αc

)−1
= αg c . (11b)

The equations (11a)-(11b) are equivalent with Nottale’s
result [1, 2], especially when we introduce the quantization
number: rn= r1n2 [3]. For complete Maple session of these
all steps, see Appendix 1. Furthermore, equation (11a) may
be generalised further to include multiple nuclei, by rewrit-
ing it to become: r1=(GM)/v2 ⇒ r1=(GΣM)/v

2, where
ΣM represents the sum of central masses.

Solution of time-dependent gravitational Schrödinger

equation is more or less similar with the above steps, except
that we shall take into consideration the right hand side
of Schrödinger equation and also assuming time dependent
form of r:

R = e−αr(t) . (12)

Therefore the gravitational Schrödinger equation now
reads:

d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2GMm2

H2
R−

` (`+ 1)

r2
R = H

dR

dt
,

(13)

or by using Leibniz chain rule, we can rewrite equation
(15) as:

−H
dR

dr (t)

dr (t)

dt
+
d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2GMm2

H2
R−

` (`+ 1)

r2
R = 0 .

(14)

The remaining steps are similar with the aforementioned
procedures for time-independent case, except that now one
gets an additional term for RR:

RR′ = H3α

(
d

dt
r(t)

)

r(t)− α2r(t)H2+

+8πGMm2 − 2H2α = 0 .

(15)

At this point one shall assign a value for d
dt r(t) term,

because otherwise the equation cannot be solved. We choose
d
dt r(t)= 1 for simplicity, then equation (15) can be rewritten
as follows:

RR′ : =
rH3α

2
+
rH2α2

2
+4π2GMm2−H2α = 0 . (16)

The roots of this equation (16) can be found as follows:

a1 : = −r2H+2H+
√
r4H4−4H3r+4H2−32rGMm2π2

2rH
,

a2 : = −r2H+2H−
√
r4H4−4H3r+4H2−32rGMm2π2

2rH
.

(17)

Therefore one can conclude that there is time-dependent
modification factor to conventional gravitational Bohr radius
(10). For complete Maple session of these steps, see Ap-
pendix 2.

3 Gross-Pitaevskii effect. Bogoliubov-deGennes appro-
ximation and coupled time-independent gravitational
Schrödinger equation

At this point it seems worthwhile to take into consideration a
proposition by Moffat, regarding modification of Newtonian
acceleration law due to phion condensate medium, to include
Yukawa type potential [5, 6]:

a(r) = −
G∞M

r2
+K

exp (−μφ r)
r2

(1 + μφ r) . (18)
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Therefore equation (1) can be rewritten to become:

d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2
(
GM −K exp(−μφ r)(1 + μφ r)

)
m2

H2
R−

−
`(`+ 1)

r2
R = 0 ,

(19)

or by assuming μ = 2μ0 = μ0r for the exponential term,
equation (19) can be rewritten as:

d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2
(
GM−Ke−2μ0(1+μ0r)

)
m2

H2
R−

`(`+1)

r2
R=0 .

(20)

Then instead of equation (8), one gets:

RR′′=8πGMm2−2H2α−8π2m2Ke−μ0(1+μ)= 0 . (21)

Solving this equation will yield a modified gravitational
Bohr radius which includes Yukawa effect:

r1 =
H2

4π2(GM −Ke−2μ0)m2
(22)

and the modification factor can be expressed as ratio between
equation (22) and (10):

χ =
GM

(GM −Ke−2μ0)
. (23)

(For complete Maple session of these steps, see Appendix 3.)
A careful reader may note that this “Yukawa potential

effect” as shown in equation (20) could be used to explain
the small discrepancy (around ±8%) between the “observed
distance” and the computed distance based on gravitational
Bohr radius [4, 6a]. Nonetheless, in our opinion such an
interpretation remains an open question, therefore it may be
worth to explore further.

There is, however, an alternative way to consider phion
condensate medium i.e. by introducing coupled Schrödinger
equation, which is known as Bogoliubov-deGennes theory
[7]. This method can be interpreted also as generalisation of
assumption by Rubcic-Rubcic [3] of subquantum structure
composed of positive-negative Planck mass. Therefore,
taking this proposition seriously, then one comes to hypo-
thesis that there shall be coupled Newtonian potential, in-
stead of only equation (3).

To simplify Bogoliubov-deGennes equation, we neglect
the time-dependent case, therefore the wave equation can be
written in matrix form [7, p.4]:

[A] [Ψ] = 0 , (24)

where [A] is 2×2 matrix and [Ψ] is 2×1 matrix, respectively,
which can be represented as follows (using similar notation

with equation 1):

[
A
]
=






8πGMm2e−αr

rH2
α2e−αr−

2αe−αr

r

α2e−αr−
2αe−αr

r
−
8πGMm2 e−αr

rH2




 (25)

and
[
Ψ
]
=

(
f (r)

g (r)

)

. (26)

Numerical solution of this matrix differential equation
can be found in the same way with the previous methods,
however we leave this problem as an exercise for the readers.

It is clear here, however, that Bogoliubov-deGennes ap-
proximation of gravitational Schrödinger equation, taking
into consideration phion condensate medium will yield non-
linear effect, because it requires solution of matrix differen-
tial equation∗ (21) rather than standard ODE in conventional
Schrödinger equation (or time-dependent PDE in 3D-
condition). This perhaps may explain complicated structures
beyond Jovian Planets, such as Kuiper Belt, inner and outer
Oort Cloud etc. which of course these structures cannot be
predicted by simple gravitational Schrödinger equation. In
turn, from the solution of (21) one could expect that there are
numerous undiscovered celestial objects in the Oort Cloud.

Further observation is also recommended in order to
verify and explore further this proposition.

4 Concluding remarks

In the present paper, a numerical solution of time-dependent
gravitational Schrödinger equation is presented, apparently
for the first time. This numerical solution leads to gravita-
tional Bohr-radius, as expected.

In the subsequent section, we also discuss plausible ex-
tension of this gravitational Schrödinger equation to include
the effect of phion condensate via Gross-Pitaevskii equation,
as described recently by Moffat. Alternatively one can con-
sider this condensate from the viewpoint of Bogoliubov-
deGennes theory, which can be approximated with coupled
time-independent gravitational Schrödinger equation.

It is recommended to conduct further observation in order
to verify and also to explore various implications of our pro-
positions as described herein.
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Appendix 1 Time-independent gravitational Schrödinger equation

> restart;
> with (linalg);
> R:= exp (−(alpha*r));

R := e
−αr

> D1R:=diff (R,r); D2R:=diff (D1R,r);

D1R := −αe−αr

D2R := −α2 e−αr

> SCHEQ1:=D2R+D1R*2/r+8*piˆ2*m*E*R/hˆ2+8*piˆ2*G*M*mˆ2*R/(r*hˆ2)−
l*(l+1)*R/rˆ2=0;
> XX1:=factor (SCHEQ1);
> #Using simplified terms only from equation (A*8, of Rubcic & Rubcic, 1998)
> ODESCHEQ:=D2R+D1R*2/r+8*piˆ2*G*M*mˆ2*R/(r*hˆ2)=0;

ODESCHEQ := α
2
e
−αr −

2αe−α r

r
+
8π2GMm2e−α r

rH2
= 0

> XX2:=factor (SCHEQ2);

XX2 :=
e−αr

(
α2rH2 − 2H2α+ 8π2GMm2

)

rH2
= 0

> RR:= solve (XX2, r);

RR := −
2(4π2GMm2 −H2α)

α2H2

> #Then solving for RR=0, yields:

> SCHEQ3:=4*piˆ2*G*M*mˆ2−hˆ2*alpha=0;

SCHEQ3 := 4π2GMm2 −H2α = 0

> a:= solve (SCHEQ3, alpha);

a :=
4π2GMm2

H2

> #Gravitational Bohr radius is defined as inverse of alpha:
> gravBohrradius:=1/a;

rgravBohr :=
H2

4π2GMm2

Appendix 2 Time-dependent gravitational Schrödinger equation

> #Solution of gravitational Schrodinger equation (Rubcic, Fizika 1998);
> restart;
> #with time evolution (Hagendorn’s paper);
> S:=r(t); R:=exp(−(alpha*S)); R1:=exp(−(alpha*r));

S := r(t)

R := e
−αr

> D4R:=diff(S,t); D1R:=−alpha*exp(−(alpha*S)); D2R:=−alphaˆ2*
exp(−(alpha*S)); D5R:=D1R*D4R;

D4R :=
d

dt
r(t)

D1R := −αe−αr(t)

D2R := −α2 e−αr(t)

D1R := −αe−αr(t)
d

dt
r(t)

> #Using simplified terms only from equation (A*8)
> SCHEQ3:=−h*D5R+D2R+D1R*2/S+8*piˆ2*G*M*mˆ2*R/(S*hˆ2);
> XX2:=factor(SCHEQ3);

XX2 :=
e−αr(t)

(
H3α

dr(t)
dt r(t)−α2r(t)H2−2H2α+8π2GMm2

)

r(t)H2
= 0

> #From standard solution of gravitational Schrodinger equation, we know (Rubcic,
Fizika 1998):
> SCHEQ4:=4*piˆ2*G*M*mˆ2−hˆ2*alpha;

SCHEQ4 := 4π
2
GMm

2 −H2
α

> #Therefore time-dependent solution of Schrodinger equation may introduce new
term to this gravitational Bohr radius.
> SCHEQ5:=(XX2*(S*hˆ2)/(exp(−(alpha*S))))−2*SCHEQ4;

ODESCHEQ5 := H
3
α
dr(t)

dt
r(t)− α2r(t)H2

> #Then we shall assume for simplicity by assigning value to d[r(t)]/dt:
> D4R:=1;
> Therefore SCHEQ5 can be rewritten as:
> SCHEQ5:= Hˆ3*alpha*r/2+alphaˆ2*r*Hˆ2/2−4*piˆ2*G*M*mˆ2−Hˆ2*alpha=0;

SCHEQ5 :=
rH3α

2
+
rH2α2

2
+ 4π

2
GMm

2 −H2
α = 0

> Then we can solve again SCHEQ5 similar to solution of SCHEQ4:
> a1:=solve(SCHEQ5,alpha);

a1 :=
−r2H + 2H +

√
r4H4 − 4H3r + 4H2 − 32rGMm2π2

2rH

a2 :=
−r2H + 2H −

√
r4H4 − 4H3r + 4H2 − 32rGMm2π2

2rH

> #Therefore one could expect that there is time-dependent change of gravitational
Bohr radius.
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Appendix 3 Time-independent gravitational Schrödinger equation
with Yukawa potential [5]

> #Extension of gravitational Schrodinger equation (Rubcic, Fizika 1998);
> restart;
> #departure from Newton potential;
> R:=exp (−(alpha*r));

R := e
−αr

> D1R:=diff (R,r); D2R:=diff (D1R,r);

D1R := −αe−αr

D2R := −α2 e−αr

> SCHEQ2:=D2R+D1R*2/r+8*piˆ2*(G*M−K*exp (−2*mu)*(1+mu*r))*mˆ2*R/
(r*hˆ2)=0;

ODESCHEQ := α2 e−αr −
2αe−α r

r
+

+
8π2(GM −Ke−2μ(1 + μr))m2e−α r

rH2
= 0

> XX2:=factor(SCHEQ2);
> RR1:=solve(XX2,r);

RR1 := −
2(−H2α+ 4π2GMm2 − 4π2m2Ke−2μ)

−α2H2 + 8π2m2Ke−2μ

> #from standard gravitational Schrodinger equation we know:
> SCHEQ3:=4*piˆ2*G*M*mˆ2−hˆ2*alpha=0;
> a:=solve(SCHEQ3, alpha);
> #Gravitational Bohr radius is defined as inverse of alpha:
> gravBohrradius:=1/a;

rgravBohr :=
H2

4π2GMm2

> #Therefore we conclude that the new terms of RR shall yield new terms (YY) into
this gravitational Bohr radius:
> PI:= (RR*(alphaˆ2*hˆ2)−(−8*piˆ2*G*M*mˆ2+2*hˆ2*alpha));
> #This new term induced by pion condensation via Gross-Pitaevskii equation may
be observed in the form of long-range potential effect. (see Moffat J., arXiv: astro-
ph/0602607, 2006; also Smarandache F. and Christianto V. Progress in Physics, v. 2,
2006, & v. 1, 2007, www.ptep-online.com)
> #We can also solve directly:
> SCHEQ5:=RR*(alphaˆ2*hˆ2)/2;

SCHEQ5 :=
α2H2(−H2α+ 4π2GMm2 − 4π2m2Ke−2μ)

−α2H2 + 8π2m2Ke−2μ

> a1:=solve(SCHEQ5, alpha);

a1 := 0, 0,
4π2m2(GM −Ke−2μ)

H2

> #Then one finds modified gravitational Bohr radius in the form:
> modifgravBohrradius:=1/(4*piˆ2*(G*M−K*exp (−2*mu))*mˆ2/hˆ2);

rmodified.gravBohr :=
H2

4π2m2(GM −Ke−2μ)

> #This modification can be expressed in chi-factor:
> chi:=modifgravBohrradius/gravBohrradius;

χ :=
GM

GM −Ke−2μ
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In the light of some recent hypotheses suggesting plausible unification of thermo-
statistics where Fermi-Dirac, Bose-Einstein and Tsallis statistics become its special
subsets, we consider further plausible extension to include non-integer Hausdorff
dimension, which becomes realization of fractal entropy concept. In the subsequent
section, we also discuss plausible extension of this unified statistics to include
anisotropic effect by using quaternion oscillator, which may be observed in the
context of Cosmic Microwave Background Radiation. Further observation is of course
recommended in order to refute or verify this proposition.

1 Introduction

In recent years, there have been some hypotheses suggesting
that the spectrum and statistics of Cosmic Microwave Back-
ground Radiation has a kind of scale invariant character [1],
which may be related to non-integer Hausdorff dimension.
Interestingly, in this regard there is also proposition some-
time ago suggesting that Cantorian spacetime may have deep
link with Bose condensate with non-integer Hausdorff dim-
ension [2]. All of these seem to indicate that it is worth to
investigate further the non-integer dimension effect of Bose-
Einstein statistics, which in turn may be related to Cosmic
Microwave Background Radiation spectrum.

In the meantime, some authors also consider a plausible
generalization of known statistics, i.e. Fermi-Dirac, Bose-
Einstein, and Tsallis statistics, to become more unified stat-
istics [3, 4]. This attempt can be considered as one step for-
ward from what is already known, i.e. to consider anyons as
a generalization of bosons and fermions in two-dimensional
systems [5, p. 2] Furthermore, it is known that superfluidity
phenomena can also be observed in Fermi liquid [6].

First we will review the existing procedure to generalize
Fermi-Dirac, Bose-Einstein, and Tsallis statistics, to become
more unified statistics [3, 4]. And then we explore its plau-
sible generalization to include fractality of Tsallis’ non-
extensive entropy parameter.

In the subsequent section, we also discuss plausible ex-
tension of this proposed unified statistics to include aniso-
tropic effect, which may be observed in the context of Cos-
mic Microwave Background Radiation. In particular we con-
sider possibility to introduce quaternionic momentum. To
our knowledge this proposition has never been considered
before elsewhere.

Further observation is of course recommended in order
to verify or refute the propositions outlined herein.

2 Unified statistics including Fermi-Dirac, Bose-
Einstein, and Tsallis statistics

In this section we consider a different theoretical framework
to generalize Fermi-Dirac and Bose-Einstein statistics, from
conventional method using anyons, [5] in particular because
this conventional method cannot be generalized further to
include Tsallis statistics which has attracted some attention
in recent years.

First we write down the standard expression of Bose
distribution [9, p. 7]:

n̄(εi) =
1

exp
(
β (εi − μ)

)
− 1

, (1)

where the harmonic energy levels are given by [9, p. 7]:

εi =

(

nx + ny + nz +
3

2

)

h̄ω0 . (2)

When we assume that bosons and fermions are g-ons
obeying fractional exclusion statistics, then we get a very
different picture. In accordance with [3], we consider the
spectrum of fractal dimension (also called generalized Renyi
dimension [11]):

Dq = lim
δ→0

1

q − 1
lnΩq
ln δ

, (3)

(therefore the spectrum of fractal dimension is equivalent
with Hausdorff dimension of the set A [11]).

Then the relation between the entropy and the spectrum
of fractal dimension is given by: [3]

Sq = −KB lim
δ→0

ln δDq , (4)

where KB is the Boltzmann constant.
The spectrum of fractal dimension may be expressed in

terms of p:
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Dq ≈
1

q − 1

k∑

i=1

p
q
i − 1

ln δ
. (5)

Then, substituting equation (6) into (4), we get the Tsallis
non-extensive entropy [3]:

Sq = −KB

k∑

i=1

p
q
i − 1

q − 1
. (6)

After a few more assumptions, and using g-on notation
[3], i.e. g=1 for generalized Fermi-Dirac statistics and g=0
for generalised Bose-Einstein statistics, then one gets the
most probable distribution for g-ons [3]:

n̄k (εi, g, q) =
1

(
1− (q − 1)β (εi − μ)

) 1
q−1 + 2g − 1

, (7)

Which gives standard Planck distribution for μ=0, g=0
and q=1 [3, 9]. In other words, we could expect that g-
ons gas statistics could yield more generalized statistics than
anyons’.

To introduce further generality of this expression (8), one
may consider the parameter q as function of another non-
integer dimension, therefore:

n̄k (εi, g, q,D)=
1

(
1−(qD−1)β(εi−μ)

) 1

qD−1+2g−1
, (8)

where D=1 then equation (9) reduces to be (8).
Of course, the picture described above will be different

if we introduce non-standard momentum [5, p. 7]:

p2 = −
d2

dx2
+

λ

x2
. (9)

In the context of Neutrosophic logic as conceived by one
of these writers [8], one may derive a proposition from the
arguments presented herein, i.e. apart from common use of
anyons as a plausible generalization of fermion and boson,
perhaps an alternative method for generalization of fermion
and boson can be described as follows:

1. If we denote fermion with (f) and boson with (b), then
it follows that there could be a mixture composed of
both (f) and (b)→ (f)∩ (b), which may be called as
“anyons”;

2. If we denote fermion with (f) and boson with (b), and
because g=1 for generalized Fermi-Dirac statistics
and g=0 for generalised Bose-Einstein statistics, then
it follows that the wholeness of both (f) and (b)→
(f)∪ (b), which may be called as “g-on”;

3. Taking into consideration of possibility of “neither-
ness”, then if we denote non-fermion with (¬f) and
non-boson with (¬b), then it follows that there shall
be a mixture composed of both (¬f) and also (¬b)→
(¬f)∩ (¬b), which may be called as “feynmion” (after
physicist the late R. Feynman);

4. Taking into consideration of possibility of “neither-
ness”, then it follows that the wholeness of both (¬f)
and (¬b)→ (¬f)∪ (¬b), which may be called as “anti-
g-on”.

Therefore, a conjecture which may follow from this propo-
sition is that perhaps in the near future we can observe some
new entities corresponding to g-on condensate or feynmion
condensate.

3 Further extension to include anisotropic effect

At this section we consider the anisotropic effect which may
be useful for analyzing the anisotropy of CMBR spectrum,
see Fig. 1 [13].

For anisotropic case, one cannot use again equation (2),
but shall instead use [7, p. 2]:

εi=

(

nx+
1

2

)

h̄ωx+

(

ny+
1

2

)

h̄ωy+

(

nz+
1

2

)

h̄ωz , (10)

where nx, ny , nz are integers and >0. Or by neglecting
the 1/2 parts and assuming a common frequency, one can
re-write (10) as [7a, p.1]:

εi = (nxr + nys+ nzt) h̄ω0 , (11)

where r, s, t is multiplying coefficient for each frequency:

r =
ωx
ω0

, s =
ωy
ω0

, t =
ωz
ω0

. (12)

This proposition will yield a different spectrum com-
pared to isotropic spectrum by assuming isotropic harmonic
oscillator (2). See Fig. 2 [7a]. It is interesting to note here
that the spectrum produced by anisotropic frequencies yields
number of peaks more than 1 (multiple-peaks), albeit this is
not near yet to CMBR spectrum depicted in Fig. 1. None-
theless, it seems clear here that one can expect to predict the
anisotropy of CMBR spectrum by using of more anisotropic
harmonic oscillators.

In this regard, it is interesting to note that some authors
considered half quantum vortices in px+ ipy superconduc-
tors [14], which indicates that energy of partition function
may be generalized to include Cauchy plane, as follows:

E = px c+ ipyc ≈ h̄ωx + ih̄ωy , (13)

or by generalizing this Cauchy plane to quaternion number
[12], one gets instead of (13):

Eqk = h̄ω + ih̄ωx + j h̄ωy + kh̄ωz , (14)

which is similar to standard definition of quaternion number:

Q ≡ a+ bi+ cj + dk . (15)

Therefore the partition function with anisotropic harmon-
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Fig. 1: Anisotropy of CMBR (after Tkachev [13]). Left panel: comparison of CMB power spectra in the models with adiabatic and
isocurvature initial perturbations. Right panel: adiabatic power spectra in comparison with spectra appearing in models seeded by
topological defects. In this panel some older, pre-WMAP, data are also shown.

ic potential can be written in quaternion form. Therefore in-
stead of (11), we get:

εi =
(
nxr+nys+nzt+inxr+jnys+knzt

)
h̄ω0 , (16)

which can be written as:

εi = (1 + qk)(nk rk) h̄ω0 , (17)

where k=1, 2, 3 corresponding to index of quaternion num-
ber i, j, k. While we don’t obtain numerical result here, it
can be expected that this generalisation to anisotropic quater-
nion harmonic potential could yield better prediction, which
perhaps may yield to exact CMBR spectrum. Numerical so-
lution of this problem may be presented in another paper.

This proposition, however, may deserve further conside-
rations. Further observation is also recommended in order to
verify and also to explore various implications of.

4 Concluding remarks

In the present paper, we review an existing method to gene-
ralize Fermi-Dirac, Bose-Einstein, and Tsallis statistics, to
become more unified statistics. And then we explore its
plausible generalization to include fractality of Tsallis non-
extensive entropy parameter .

Therefore, a conjecture which may follow this proposi-
tion is that perhaps in the near future we can observe some
new entities corresponding to g-on condensate or feynmion
condensate.

In the subsequent section, we also discuss plausible ex-
tension of this proposed unified statistics to include aniso-
tropic effect, which may be observed in the context of Cos-
mic Microwave Background Radiation. In particular we con-
sider possibility to introduce quaternionic harmonic oscilla-
tor. To our knowledge this proposition has never been con-
sidered before elsewhere.

Fig. 2: Spectrum for anisotropic
harmonic oscillator potential
(after Ligare [7a]).

It is recommended to conduct further observation in
order to verify and also to explore various implications of
our propositions as described herein.
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We have derived in this paper, the relationship that needs to be satisfied when length
measurements are expressed in two different units. Interesting relationships emerge
when the smaller of the two units chosen is a function of time. We relate these results to
the expected periodicities in the observed data when a system of objects are revolving
around a common center of mass. We find that these results are highly intriguing and
can equally well account for some of the major results in the field of astrophysics.

1 Introduction

In an earlier paper (Rajamohan and Satya Narayanan [1])
we derived the condition that needs to be satisfied for signal
from a relatively stationary emitter to meet an observer mov-
ing transverse to the line of sight. A receiver moving across
the line of sight is equivalent of the receiver accelerating
away along the line of sight from the emitter. In this paper,
we have derived the period and period derivative for this
equivalent situation.

It is well known that signals with uniform period Pe from
an emitter will arrive at a receiver, moving with uniform
relative velocity V along the line of sight, with a period P
given by the equation

P =
Pe

(1− V/C)
,

where C is the signal speed. Instead if the receiver or the
emitter were to be accelerating with a as the value of accele-
ration, it is generally assumed that the observed rate of
change of period Ṗ per unit time is governed by the equation
(Shklovski [2])

Ṗ =
aP

C
. (1)

The above equation does not
take into account the relation-
ship between space intervals and
time intervals properly. When
acceleration is involved, the time
interval Δt that corresponds to
a given space interval Δx is a
function of time. That is, the space
interval Δx corresponds to smaller
and smaller time interval (along the
direction of motion) as the velocity
of the accelerating receiver is a
function of time.

The space-time relationship
when properly taken into account
leads to an additional term which

Q

Q

A

O

D

R

α

Fig. 1: Schematic repre-
sentation of the observer
and the emitter meeting
at a point.

is enormously larger than that given by equation (1).

2 Relationship between time, length and the unit of
length-measurement

Consider the general case when the observer is at a distance
A (km) from the emitter moving with uniform velocity V at
an angle α to the line of sight as shown in Figure 1. Let the
emitter at position O emit signals at regular intervals of Pe
seconds.

At time t=0, let a signal start from O when the observer
is at Q (at t=0). Let this signal meet the observer at R
at time t. Let the initial distance OQ=A at t=0 and the
distance OR=D at time t.

From triangle OQR

(OR)2 = (OQ)2 + (QR)2 − 2(OQ)(QR) cosα

or

D2=A2+V 2t2−2AV cosαt=A2
[

1+
V 2t2

A2
−
2V cosαt

A

]

,

D = A

[

1 +
V 2t2

A2
−
2V cosαt

A

]1
2

≈ A+
1

2

V 2t2

A
−

−V cosαt−
1

2

V 2 t2cos2α

A
=A−V cosαt+

1

2

V 2sin2α

A
t2.

Therefore

D − A = −V cosαt+
1

2

V 2 sin2α

A
t2.

We can rewrite D − A as

D − A = ut+
1

2
at2;

u is positive when α is greater than 90◦ and negative when α
is less than 90◦. However, a=V 2sin2α/A is always positive.
If the angle α were to be 0 or 180◦, the observer will be
moving uniformly along the line of sight and the signals
from O will be equally spaced in time. If the observer were
to move in a circular orbit around the emitter then too, the
period observed would be constant. In all other cases the
acceleration due to transverse component that leads to the
period derivative will always be positive.

Draw a circle with A as radius. Let it intercept the line
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OR at Q′. Therefore OQ=OQ′. Let the signal from O
reach Q′ at time te

D − A = Q′R = C (t− te) = ut+
1

2
at2.

The signal from O meeting the uniformly moving ob-
server along QR is equivalent to the same signal chasing an
observer from Q′ to R with initial velocity u and accele-
ration a

C (t− te) = ut+
1

2
at2 =

= u
[
te + (t− te)

]
+
1

2
a
[
te + (t− te)

]2
=

= ute +
1

2
at2e + (u+ ate)(t− te) +

1

2
a(t− te)

2.

Let C (t− te)=X and ute+ 1
2 at

2
e =Xe. The space in-

tervalXe containsN signals where N =Xe/CPe which will
get folded in the space interval X −Xe as the train of signals
moving along OR will be spaced at CPe km.

Therefore

t− te =
X

C
=
Xe
C
+
u+ ate
C

(t− te) +
1

2

a

C
(t− te)

2.

Hence the average observed period in the time interval
(t− te) is

P̄ =
(t− te)
N

=
(t− te)CPe

Xe
=

X

Xe
Pe ,

P̄ =
X

Xe
Pe = Pe +

u(t− te)CPe
CXe

+
ate(t− te)CPe

CXe
+

+
1
2 a(t− te)

2CPe

CXe
,

P̄ = Pe +
u

C

X

Xe
Pe +

ate
C

X

Xe
Pe +

1

2

a(t− te)
C

X

Xe
Pe .

For N signals in the time interval (t− te), we can write

(t− te) = PiN +
1

2
ṖPiN

2,

where Pi is the initial period. Hence

P̄ =
t− te
N

= Pi +
1

2
ṖPiN .

Comparing this with

P̄ = Pe +
u

C

X

Xe
Pe +

ate
C

X

Xe
Pe

[

1 +
1

2

t− te
te

]

we derive

P̄ = Pi +
ate
C

X

Xe
Pe

[

1 +
1

2

(t− te)
te

]

as Pi=Pe/(1−u/C). Hence 1
2 ṖN ≈

ate
C

[
1+ 1

2
(t−te)
te

]
or

Ṗ =
2ate
CN

[

1 +
1

2

t− te
te

]

=
2ate(CPe)

CXe

[

1 +
1

2

t− te
te

]

.

Fig. 2: log Ṗ /P plotted as a function of logD.

As |Xe|= |u|te+ 1
2 at

2
e,

Ṗ ≈
2a

|u|
+
aPe
C

.

The second term on the right hand side of the above
equation is the Shklovski’s [2] solution which is u/C times
smaller than the first term

Ṗ =
2ate
Xe

Pe

(
1+

u

C

)
=
2ate
|u|

(
1+

u

C

)
≈
2Pe
te

(
1+

u

C

)
.

The acceleration a due to transverse component of veloc-
ity is always positive and hence Ṗ will be positive even
when the observer is moving toward the emitter at an angle
α less than 90◦.

3 The period derivatives of pulsars

If Vτ is the relative transverse velocity between the Sun
and the Pulsar, then the relative acceleration is V 2τ/d. As√
2d/Vτ = t is the relative time of free fall over π

2 radians,
we can write Ṗ =2Pe/t= 1

2Vτ/d=
π
2Vτ/d. This is of the

order of the average observed period derivate of pulsars.
If we assume that an inverse square law is applicable the
average observed period derivatives of pulsars must increase
as a function of distance from the Sun.

Figure 2, is a plot of log Ṗ /P versus logD of all pulsars
in the period range 0.1 to 3 seconds and in the distance
range logD=−0.3 to +1.3. The data is taken from Taylor
et al. [3]. Table 1 gives the values of log Ṗ /P averaged
in different distance bins. N is the number of pulsars in
each bin. Leaving the two points that are slightly further
away from the mean relationship, the best fit straight line
Y =mX + k gives a slope of 0.872 and the constant as
−15.0506. The constant k gives the value of

√
2Vτ/d at

an average distance of the Sun. In short we expect that this
should more or less correspond with the accepted values for
the Sun’s motion around the galactic center. Taking V�=210
km×s−1 and d�= 8 kpc , we get

√
2V�/d�= 1.24×10−15

and the value from k is 1.12×10−15.
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log D log Ṗ /P N

−0.25 −15.3353 10
−0.15 −15.1632 17
−0.05 −15.6460 12

0.05 −15.0711 16
0.15 −15.0231 27
0.25 −14.6667 38
0.35 −14.6620 46
0.45 −14.6205 51
0.55 −14.7416 78
0.65 −14.5052 66
0.75 −14.2172 49
0.85 −14.1072 51
0.95 −14.1509 30
1.05 −14.4594 12
1.15 −14.0552 10
1.25 −14.6030 3

Table 1: log Ṗ /P as a func-
tion of logD and the number
of pulsars in each bin.

This is given more as an
illustration of the application
of this effect. The real (true)
spin down rates of the large
majority of pulsars, may be
much lower than the canonical
value of 3×10−15. Hence the
average observed period deri-
vatives of pulsars is due to
the differential galactic rotation
effect. This result is fully in
conformity with the observed
relationship between transverse
motion and Ṗ by Anderson
and Lyne [4] and Cordes [5]
and that the correlation found
by them cannot be accounted
for purely by selection effects
alone (Stollman and Van den
Heuvel [6]).

4 Bending of light

As the photon angle accelerates in the gravitational field of
the Sun, the angle Δφ at which the light from the limb of the
Sun would be seen to meet the observer is the instantaneous
value of the second derivative of α with respect to time at
the distance of the earth. This is given by

Δφ =
π

2

d2α

dt2
t (1s) =

π

2

2CVτ
d2

(1s)
d

C
=
πVτ (1s)

d
,

where π
2 is introduced as a scale factor to relate the free-fall

height to the actual arc length that an object traverses in a
gravitational field; Vτ is the relative transverse velocity and
d is the distance between the Sun and the Earth. This will
result in an observed bending of light as

Δφ =
πVτ (1s)

d
=

407π

1.5×108 radians
= 1.76 arc sec.

5 Precession of Mercury’s orbit

The arrival time acceleration when not taken into account
will appear as though the orbit is precessing. A good exam-
ple is the precesion of Mercury’s orbit. Treating Mercury as
a rotating object with a period equal to its synodic period
Ps= 115.88 days,

Δω =
πVτ
d

=
3.14×18.1

0.917×108
= 61.98×10−8 rad,

which is the change per synodic period. Hence,

Δω

Ps
=

61.98×10−8

115.88×86400
=

= 6.19×10−14 rad×s−1 = 40 arc sec/century.

6 Binary pulsars

In the case of a binary pulsar, the relative transverse motion
of the common centre of mass of the binary system and the
Sun will lead to a secular increase in the period. Over and
above this effect, the acceleration of the pulsar in the grav-
itational field of its companion will lead to further periodic
deceleration in the arrival times. In analogy with Mercury,
we can therefore expect a similar phenomenon in the case
of binary pulsars. That is, the orbit might appear to precess
if the arrival time delays caused by the pulsar acceleration
in the gravitational field of the companion is not taken into
account. The apparent precesion per pulse period Pe will be
(Rajamohan and Satya Narayanan [1])

Δω =
π

4

V 2

a2
P 2e .

Approximating the orbit to be circular and expressing the
above equation in terms of well determined quantities,

Δω ≈ π3P 2e /P
2
b ,

Pb is the orbital period and a is the semi-major axis of the
orbit. Introducing appropriate values for PSR1913+16, we
find

Δω ≈ 1.386×10−10 rad/pulse ≈ 4.24◦ yr−1,

which is in very good agreement with the observed value of
4.2261◦ yr−1 by Taylor and Weisberg [7]. For PSR1534+12
we find

Δω ≈ 0.337×10−10 rad/pulse ≈ 1.61◦ yr−1,

while the observed value is 1.756◦ yr−1 (Taylor et al. [8]).
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The usual interpretations of solutions for Einstein’s gravitational field satisfying
the spherically symmetric condition contain anomalies that are not mathematically
permissible. It is shown herein that the usual solutions must be modified to account
for the intrinsic geometry associated with the relevant line elements.

1 Introduction

The standard interpretation of spherically symmetric line
elements for Einstein’s gravitational field has not taken into
account the fundamental geometrical features of spherical
symmetry about an arbitrary point in a metric manifold. This
has led to numerous misconceptions as to distance and radius
that have spawned erroneous theoretical notions.

The nature of spherical symmetry about an arbitrary point
in a three dimensional metric manifold is explained herein
and applied to Einstein’s gravitational field.

It is plainly evident, res ipsa locquitur, that the standard
claims for black holes and Big Bang cosmology are not con-
sistent with elementary differential geometry and are conse-
quently inconsistent with General Relativity.

2 Spherical symmetry of three-dimensional metrics

Denote ordinary Efcleethean∗ 3-space by E3. Let M3 be
a 3-dimensional metric manifold. Let there be a one-to-one
correspondence between all points of E3 and M3. Let the
point O∈E3 and the corresponding point inM3 be O′. Then
a point transformation T of E3 into itself gives rise to a
corresponding point transformation ofM3 into itself.

A rigid motion in a metric manifold is a motion that
leaves the metric d`′2 unchanged. Thus, a rigid motion
changes geodesics into geodesics. The metric manifold M3

possesses spherical symmetry around any one of its points
O′ if each of the ∞3 rigid rotations in E3 around the corres-
ponding arbitrary point O determines a rigid motion inM3.

The coefficients of d`′2 ofM3 constitute a metric tensor
and are naturally assumed to be regular in the region around
every point inM3, except possibly at an arbitrary point, the
centre of spherical symmetry O′ ∈M3.

Let a ray i emanate from an arbitrary point O∈E3.
There is then a corresponding geodesic i′ ∈M3 issuing from
the corresponding point O′ ∈M3. Let P be any point on
i other than O. There corresponds a point P ′ on i′ ∈M3

different to O′. Let g′ be a geodesic inM3 that is tangential
to i′ at P ′.

Taking i as the axis of ∞1 rotations in E3, there corres-

∗For the geometry due to Efcleethees, usually and abominably rendered
as Euclid.

ponds∞1 rigid motions inM3 that leaves only all the points
on i′ unchanged. If g′ is distinct from i′, then the ∞1 rigid
rotations in E3 about i would cause g′ to occupy an infinity
of positions in M3 wherein g′ has for each position the
property of being tangential to i′ at P ′ in the same direction,
which is impossible. Hence, g′ coincides with i′.

Thus, given a spherically symmetric surface Σ in E3 with
centre of symmetry at some arbitrary point O∈E3, there cor-
responds a spherically symmetric geodesic surface Σ′ inM3

with centre of symmetry at the corresponding point O′∈M3.
Let Q be a point in Σ∈E3 and Q′ the corresponding

point in Σ′ ∈M3. Let dσ be a generic line element in Σ issu-
ing from Q. The corresponding generic line element dσ′ ∈Σ′

issues from the point Q′. Let Σ be described in the usual
spherical-polar coordinates r, θ, ϕ. Then

dσ2 = r2(dθ2 + sin2θ dϕ2), (1)

r = |OQ|.

Clearly, if r, θ, ϕ are known, Q is determined and hence
also Q′ in Σ′. Therefore, θ and ϕ can be considered to be
curvilinear coordinates for Q′ in Σ′ and the line element
dσ′ ∈Σ′ will also be represented by a quadratic form similar
to (1). To determine dσ′, consider two elementary arcs of
equal length, dσ1 and dσ2 in Σ, drawn from the point Q in
different directions. Then the homologous arcs in Σ′ will be
dσ′1 and dσ′2, drawn in different directions from the corres-
ponding point Q′. Now dσ1 and dσ2 can be obtained from
one another by a rotation about the axis OQ in E3, and
so dσ′1 and dσ′2 can be obtained from one another by a
rigid motion in M3, and are therefore also of equal length,
since the metric is unchanged by such a motion. It therefore
follows that the ratio dσ′

dσ is the same for the two different
directions irrespective of dθ and dϕ, and so the foregoing
ratio is a function of position, i.e. of r, θ, ϕ. But Q is an
arbitrary point in Σ, and so dσ′

dσ must have the same ratio

for any corresponding points Q and Q′. Therefore, dσ
′

dσ is a
function of r alone, thus

dσ′

dσ
= H(r),

and so

dσ
′2 = H2(r)dσ2 = H2(r)r2(dθ2 + sin2θ dϕ2), (2)
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where H(r) is a priori unknown. For convenience set Rc=
=Rc(r)=H(r)r, so that (2) becomes

dσ
′2 = R2c(dθ

2 + sin2θ dϕ2), (3)

where Rc is a quantity associated with M3. Comparing (3)
with (1) it is apparent that Rc is to be rightly interpreted in
terms of the Gaussian curvature K at the point Q′, i.e. in
terms of the relation K = 1

R2c
since the Gaussian curvature

of (1) is K = 1
r2 . This is an intrinsic property of all line ele-

ments of the form (3) [1, 2]. Accordingly, Rc can be regarded
as a radius of curvature. Therefore, in (1) the radius of curva-
ture is Rc= r. Moreover, owing to spherical symmetry, all
points in the corresponding surfaces Σ and Σ′ have constant
Gaussian curvature relevant to their respective manifolds
and centres of symmetry, so that all points in the respective
surfaces are umbilic.

Let the element of radial distance from O∈E3 be dr.
Clearly, the radial lines issuing from O cut the surface Σ
orthogonally. Combining this with (1) by the theorem of
Pythagoras gives the line element in E3

d`2 = dr2 + r2(dθ2 + sin2θ dϕ2). (4)

Let the corresponding radial geodesic from the point
O′ ∈M3 be dg. Clearly the radial geodesics issuing from
O′ cut the geodesic surface Σ′ orthogonally. Combining this
with (3) by the theorem of Pythagoras gives the line element
inM3 as,

d`
′2 = dg2 +R2c(dθ

2 + sin2θ dϕ2), (5)

where dg is, by spherical symmetry, also a function only of
Rc. Set dg=

√
B(Rc)dRc, so that (5) becomes

d`
′2 = B(Rc)dR

2
c +R

2
c(dθ

2 + sin2θ dϕ2), (6)

where B(Rc) is an a priori unknown function.
Setting dRp=

√
B(Rc)dRc carries (6) into

d`
′2 = dR2p +R

2
c(dθ

2 + sin2θ dϕ2). (7)

Expression (6) is the most general for a metric manifold
M3 having spherical symmetry about some arbitrary point
O′ ∈M3 [1, 3].

Considering (4), the distance Rp= |OQ| from the point
at the centre of spherical symmetry O to a point Q∈Σ, is
given by

Rp =

∫ r

0

dr = r = Rc .

Call Rp the proper radius. Consequently, in the case of
E3, Rp and Rc are identical, and so the Gaussian curvature
at any point in E3 can be associated with Rp, the radial dis-
tance between the centre of spherical symmetry at the point
O∈E3 and the point Q∈Σ. Thus, in this case, we have
K = 1

R2c
= 1

R2p
= 1

r2 . However, this is not a general relation,

since according to (6) and (7), in the case of M3, the radial
geodesic distance from the centre of spherical symmetry at
the point O′ ∈M3 is not given by the radius of curvature,
but by

Rp =

∫ Rp

0

dRp =

∫ Rc(r)

Rc(0)

√
B(Rc(r)) dRc(r) =

=

∫ r

0

√
B(Rc(r))

dRc(r)

dr
dr ,

where Rc(0) is a priori unknown owing to the fact that
Rc(r) is a priori unknown. One cannot simply assume that
because 06 r <∞ in (4) that it must follow that in (6)
and (7) 06Rc(r)<∞. In other words, one cannot simply
assume that Rc(0)= 0. Furthermore, it is evident from (6)
and (7) that Rp determines the radial geodesic distance from
the centre of spherical symmetry at the arbitrary point O′ in
M3 (and correspondingly so from O in E3) to another point
in M3. Clearly, Rc does not in general render the radial
geodesic length from the centre of spherical symmetry to
some other point in a metric manifold. Only in the particular
case of E3 does Rc render both the Gaussian curvature and
the radial distance from the centre of spherical symmetry,
owing to the fact that Rp and Rc are identical in that special
case.

It should also be noted that in writing expressions (4) and
(5) it is implicit that O∈E3 is defined as being located at the
origin of the coordinate system of (4), i.e. O is located where
r=0, and by correspondence O′ is defined as being located
at the origin of the coordinate system of (5), i.e. using (7),
O′ ∈M3 is located where Rp=0. Furthermore, since it is
well known that a geometry is completely determined by the
form of the line element describing it [4], expressions (4)
and (6) share the very same fundamental geometry because
they are line elements of the same form.

Expression (6) plays an important rôle in Einstein’s grav-
itational field.

3 The standard solution

The standard solution in the case of the static vacuum field
(i.e. no deformation of the space) of a single gravitating
body, satisfying Einstein’s field equations Rμν =0, is (using
G= c=1),

ds2 =

(

1−
2m

r

)

dt2 −

(

1−
2m

r

)−1
dr2−

− r2(dθ2 + sin2θ dϕ2) ,

(8)

where m is allegedly the mass causing the field, and upon
which it is routinely claimed that 2m<r<∞ is an exterior
region and 0<r< 2m is an interior region. Notwithstanding
the inequalities it is routinely allowed that r=2m and r=0
by which it is also routinely claimed that r=2m marks
a “removable” or “coordinate” singularity and that r=0
marks a “true” or “physical” singularity [5].
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The standard treatment of the foregoing line-element
proceeds from simple inspection of (8) and thereby upon
the following assumptions:

(a) that there is only one radial quantity defined on (8);

(b) that r can approach zero, even though the line-element
(8) is singular at r=2m;

(c) that r is the radial quantity in (8) (r=2m is even routi-
nely called the “Schwarzschild radius” [5]).

With these unstated assumptions, but assumptions none-
theless, it is usual procedure to develop and treat of black
holes. However, all three assumptions are demonstrably false
at an elementary level.

4 That assumption (a) is false

Consider standard Minkowski space (using c=G=1) de-
scribed by

ds2 = dt2 − dr2 − r2dΩ2, (9)

0 6 r <∞ ,

where dΩ2= dθ2+ sin2θ dϕ2. Comparing (9) with (4) it is
easily seen that the spatial components of (9) constitute a
line element of E3, with the point at the centre of spherical
symmetry at r0=0, coincident with the origin of the coordi-
nate system.

In relation to (9) the calculated proper radius Rp of the
sphere in E3 is,

Rp =

∫ r

0

dr = r , (10)

and the radius of curvature Rc is

Rc = r = Rp . (11)

Calculate the surface area of the sphere:

A =

2π∫

0

π∫

0

r2 sin θdθdϕ = 4πr2 = 4πR2p = 4πR
2
c . (12)

Calculate the volume of the sphere:

V=

2π∫

0

π∫

0

r∫

0

r2 sin θdrdθdϕ=
4

3
πr3=

4

3
πR3p=

4

3
πR3c . (13)

Then for (9), according to (10) and (11),

Rp = r = Rc . (14)

Thus, for Minkowski space, Rp and Rc are identical.
This is because Minkowski space is pseudo-Efcleethean.

Now comparing (8) with (6) and (7) is is easily seen
that the spatial components of (8) constitute a spherically
symmetric metric manifoldM3 described by

d`
′2 =

(

1−
2m

r

)−1
dr2 + r2dΩ2,

and which is therefore in one-to-one correspondence with
E3. Then for (8),

Rc = r ,

Rp =

∫ √
r

r − 2m
dr 6= r = Rc .

Hence, RP 6=Rc in (8) in general. This is because (8) is
non-Efcleethean (it is pseudo-Riemannian). Thus, assump-
tion (a) is false.

5 That assumption (b) is false

On (8),

Rp = Rp(r) =

∫ √
r

r − 2m
dr =

=
√
r (r − 2m) + 2m ln

∣
∣
∣
√
r +

√
r − 2m

∣
∣
∣+K,

(15)

where K is a constant of integration.
For some r0, Rp(r0)= 0, where r0 is the corresponding

point at the centre of spherical symmetry in E3 to be deter-
mined from (15). According to (15), Rp(r0)= 0 when r=
= r0=2m and K =−m ln 2m. Hence,

Rp(r) =
√
r (r − 2m)+2m ln

(√
r +

√
r − 2m

√
2m

)

. (16)

Therefore, 2m<r<∞⇒ 0<Rp<∞, where Rc= r.
The inequality is required to maintain Lorentz signature,
since the line-element is undefined at r0=2m, which is the
only possible singularity on the line element. Thus, assump-
tion (b) is false.

It follows that the centre of spherical symmetry of E3,
in relation to (8), is located not at the point r0=0 in E3 as
usually assumed according to (9), but at the point r0=2m,
which corresponds to the point Rp(r0=2m)= 0 in the met-
ric manifold M3 that is described by the spatial part of (8).
In other words, the point at the centre of spherical symmetry
in E3 in relation to (8) is located at any point Q in the
spherical surface Σ for which the radial distance from the
centre of the coordinate system at r=0 is r=2m, owing
to the one-to-one correspondence between all points of E3

and M3. It follows that (8) is not a generalisation of (9),
as usually claimed. The manifold E3 of Minkowski space
corresponding to the metric manifold M3 of (8) is not de-
scribed by (9), because the point at the centre of spherical
symmetry of (9), r0=0, does not coincide with that required
by (15) and (16), namely r0=2m.

In consequence of the foregoing it is plain that the ex-
pression (8) is not general in relation to (9) and the line
element (8) is not general in relation to the form (6). This is
due to the incorrect way in which (8) is usually derived from
(9), as pointed out in [6, 7, 8]. The standard derivation of (8)
from (9) unwittingly shifts the point at the centre of spheri-
caly symmetry for the E3 of Minkowski space from r0=0
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to r0=2m, with the consequence that the resulting line
element (8) is misinterpreted in relation to r=0 in the E3

of Minkowski space as described by (9). This unrecognised
shift actually associates the point r0=2m∈E3 with the
point Rp(2m)= 0 in the M3 of the gravitational field. The
usual analysis then incorrectly associates Rp=0 with r0=0
instead of with the correct r0=2m, thereby conjuring up a
so-called “interior”, as typically alleged in [5], that actually
has no relevance to the problem — a completely meaningless
manifold that has nothing to do with the gravitational field
and so is disjoint from the latter, as also noted in [6, 9,
10, 11]. The point at the centre of spherical symmetry for
Einstein’s gravitational field is Rp=0 and is also the origin
of the coordinate system for the gravitational field. Thus the
notion of an “interior” manifold under some other coordinate
patch (such as the Kruskal-Szekeres coordinates) is patently
false. This is clarified in the next section.

6 That assumption (c) is false

Generalise (9) so that the centre of a sphere can be located
anywhere in Minkowski space, relative to the origin of the
coordinate system at r=0, thus

ds2 = dt2 − (d |r − r0|)
2 − |r − r0|

2
dΩ2 =

= dt2 −
(r − r0)

2

|r − r0|
2 dr

2 − |r − r0|
2
dΩ2 =

= dt2 − dr2 − |r − r0|
2
dΩ2,

(17)

0 6 |r − r0| <∞ ,

which is well-defined for all real r. The value of r0 is
arbitrary. The spatial components of (17) describe a sphere of
radius D= |r− r0| centred at some point r0 on a common
radial line through r and the origin of coordinates at r=0
(i.e. centred at the point of orthogonal intersection of the
common radial line with the spherical surface r= r0). Thus,
the arbitrary point r0 is the centre of spherical symmetry in
E3 for (17) in relation to the problem of Einstein’s gravita-
tional field, the spatial components of which is a spherically
symmetric metric manifold M3 with line element of the
form (6) and corresponding centre of spherical symmetry
at the point Rp(r0)= 0 ∀ r0. If r0=0, (9) is recovered from
(17). One does not need to make r0=0 so that the centre
of spherical symmetry in E3, associated with the metric
manifoldM3 of Einstein’s gravitational field, coincides with
the origin of the coordinate system itself, at r=0. Any
point in E3, relative to the coordinate system attached to
the arbitrary point at which r=0, can be regarded as a point
at the centre of spherical symmetry in relation to Einstein’s
gravitational field. Although it is perhaps desirable to make
the point r0=0 the centre of spherical symmetry of E3

correspond to the point Rp=0 at the centre of symmetry of
M3 of the gravitational field, to simplify matters somewhat,

this has not been done in the usual analysis of Einstein’s
gravitational field, despite appearances, and in consequence
thereof false conclusions have been drawn owing to this fact
going unrecognised in the main.

Now on (17),

Rc = |r − r0| ,

Rp =

|r−r0|∫

0

d |r−r0| =

r∫

r0

(r−r0)
|r−r0|

dr = |r−r0| ≡ Rc,
(18)

and so Rp≡Rc on (17), since (17) is pseudo-Efcleethean.
Setting D= |r− r0| for convenience, generalise (17) thus,

ds2=A
(
C(D)

)
dt2−B

(
C(D)

)
d
√
C(D)

2
−C(D)dΩ2, (19)

where A
(
C(D)

)
, B
(
C(D)

)
, C (D)> 0. Then for Rμν =0,

metric (19) has the solution,

ds2 =

(

1−
α

√
C(D)

)

dt2−

−
1

1− α√
C(D)

d
√
C(D)

2
− C (D)dΩ2,

(20)

where α is a function of the mass generating the gravitational
field [3, 6, 7, 9]. Then for (20),

Rc = Rc(D) =
√
C(D),

Rp = Rp(D) =

∫ √ √
C(D)

√
C(D)− α

d
√
C(D) =

=

∫ √
Rc(D)

Rc(D)−α
dRc(D)=

√
Rc(D)

(
Rc(D)−α

)
+

+α ln

(√
Rc(D) +

√
Rc(D)− α√
α

)

,

(21)

where Rc(D)≡Rc (|r− r0|)=Rc(r). Clearly r is a para-
meter, located in Minkowski space according to (17).

Now r= r0⇒D=0, and so by (21), Rc(D=0)=α
and Rp(D=0)=0. One must ascertain the admissible form
of Rc(D) subject to the conditions Rc(D=0)=α and
Rp(D=0)=0 and dRc(D)/dD> 0 [6, 7], along with the
requirements that Rc(D) must produce (8) from (20) at will,
must yield Schwarzschild’s [12] original solution at will
(which is not the line element (8) with r down to zero),
must produce Brillouin’s [13] solution at will, must produce
Droste’s [14] solution at will, and must yield an infinite
number of equivalent metrics [3]. The only admissible form
satisfying these conditions is [7],

Rc=Rc(D)= (D
n+αn)

1
n ≡

(
|r−r0|

n
+αn

)1
n =Rc(r), (22)

D > 0, r ∈ <, n ∈ <+, r 6= r0,

where r0 and n are entirely arbitrary constants.
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Choosing r0=0, r > 0, n=3,

Rc(r) =
(
r3 + α3

) 1
3 , (23)

and putting (23) into (20) gives Schwarzschild’s original
solution, defined on 0 < r <∞.

Choosing r0=0, r > 0, n=1,

Rc(r) = r + α, (24)

and putting (24) into (20) gives Marcel Brillouin’s solution,
defined on 0 < r <∞.

Choosing r0=α, r >α, n=1,

Rc(r) = (r − α) + α = r, (25)

and putting (25) into (20) gives line element (8), but defined
on α<r<∞, as found by Johannes Droste in May 1916.
Note that according to (25), and in general by (22), r is not
a radial quantity in the gravitational field, because Rc(r)=
= (r−α)+α=D+α is really the radius of curvature in (8),
defined for 0<D<∞.

Thus, assumption (c) is false.
It is clear from this that the usual line element (8) is

a restricted form of (22), and by (22), with r0=α=2m,
n=1 gives Rc= |r− 2m|+2m, which is well defined on
−∞<r<∞, i.e. on 06D<∞, so that when r=0,
Rc(0)= 4m and RP (0)> 0. In the limiting case of r=2m,
then Rc(2m)= 2m and Rp(2m)= 0. The latter two rela-
tionships hold for any value of r0.

Thus, if one insists that r0=0 to match (9), it follows
from (22) that,

Rc =
(
|r|n + αn

) 1
n ,

and if one also insists that r > 0, then

Rc = (r
n + αn)

1
n , (26)

and for n=1,
Rc = r + α,

which is the simplest expression for Rc in (20) [6, 7, 13].
Expression (26) has the centre of spherical symmetry

of E3 located at the point r0=0 ∀n∈<+, corresponding
to the centre of spherical symmetry of M3 for Einstein’s
gravitational field at the point Rp(0)= 0 ∀ n∈<+. Then
taking α=2m it follows that Rp(0)=0 and Rc(0)=α=2m
for all values of n.

There is no such thing as an interior solution for the line
element (20) and consequently there is no such thing as an
interior solution on (8), and so there can be no black holes.

7 That the manifold is inextendable

That the singularity at Rp(r0) ≡ 0 is insurmountable is clear
by the following ratio,

lim
r→r±0

2πRc(r)

Rp(r)
= lim
r→r±0

2π
(
|r − r0|

n
+ αn

) 1
n

Rp(r)
=∞,

since Rp(r0)= 0 and Rc(r0)=α are invariant.
Hagihara [15] has shown that all radial geodesics that do

not run into the boundary at Rc(r0)=α (i.e. that do not run
into the boundary at Rp(r0)= 0) are geodesically complete.

Doughty [16] has shown that the acceleration a of a
test particle approaching the centre of mass at Rp(r0)= 0
is given by,

a =

√
−g00

(
−g11

)
|g00,1|

2g00
.

By (20) and (22), this gives,

a =
α

2R
3
2
c

√
Rc(r)− α

.

Then clearly as r→ r±0 , a→∞, independently of the
value of r0.

J. Smoller and B. Temple [10] have shown that the
Oppenheimer-Volkoff equations do not permit gravitational
collapse to form a black hole and that the alleged interior of
the Schwarzschild spacetime (i.e. 06Rc(r)6α) is therefore
disconnected from Schwarzschild spacetime and so does not
form part of the solution space.

N. Stavroulakis [17, 18, 19, 20] has shown that an object
cannot undergo gravitational collapse into a singularity, or to
form a black hole.

Suppose 06
√
C(D(r))<α. Then (20) becomes

ds2 = −

(
α
√
C
− 1

)

dt2 +

(
α
√
C
− 1

)−1
d
√
C
2
−

−C (dθ2 + sin2θ dϕ2),

which shows that there is an interchange of time and length.
To amplify this set r= t̄ and t= r̄. Then

ds2 =

(
α
√
C
− 1

)−1
Ċ2

4C
dt̄2 −

(
α
√
C
− 1

)

dr̄2−

−C (dθ2 + sin2θ dϕ2),

where C =C(t̄) and the dot denotes d/dt̄. This is a time
dependent metric and therefore bears no relation to the prob-
lem of a static gravitational field.

Thus, the Schwarzschild manifold described by (20) with
(22) (and hence (8)) is inextendable.

8 That the Riemann tensor scalar curvature invariant
is everywhere finite

The Riemann tensor scalar curvature invariant (the Kretsch-
mann scalar) is given by f =RμνρσR

μνρσ . In the general
case of (20) with (22) this is

f =
12α2

R6c(r)
=

12α2

(
|r − r0|

n
+ αn

)6
n

.

A routine attempt to justify the standard assumptions on
(8) is the a posteriori claim that the Kretschmann scalar
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must be unbounded at a singularity [5, 21]. Nobody has ever
offered a proof that General Relativity necessarily requires
this. That this additional ad hoc assumption is false is clear
from the following ratio,

f(r0) =
12α2

(
|r0 − r0|

n
+ αn

)6
n

=
12

α4
∀ r0 .

In addition,

lim
r→±∞

12α2

(
|r − r0|

n
+ αn

)6
n

= 0 ,

and so the Kretschmann scalar is finite everywhere.

9 That the Gaussian curvature is everywhere finite

The Gaussian curvature K of (20) is,

K = K
(
Rc(r)

)
=

1

R2c(r)
,

where Rc(r) is given by (22). Then,

K(r0) =
1

α2
∀ r0 ,

and
lim

r→±∞
K(r) = 0 ,

and so the Gaussian curvature is everywhere finite.
Furthermore,

lim
α→0

1

α2
=∞,

since when α=0 there is no gravitational field and empty
Minkowski space is recovered, wherein Rp and Rc are ident-
ical and 06Rp<∞. A centre of spherical symmetry in
Minkowski space has an infinite Gaussian curvature because
Minkowski space is pseudo-Efcleethean.

10 Conclusions

Using the spherical-polar coordinates, the general solution to
Rμν =0 is (20) with (22), which is well-defined on

−∞ < r0 <∞,

where r0 is entirely arbitrary, and corresponds to

0 < Rp(r) <∞, α < Rc(r) <∞,

for the gravitational field. The only singularity that is possib-
le occurs at g00=0. It is impossible to get g11=0 because
there is no value of the parameter r by which this can be
attained. No interior exists in relation to (20) with (22),
which contain the usual metric (8) as a particular case.

The radius of curvature Rc(r) does not in general deter-
mine the radial geodesic distance to the centre of spherical
symmetry of Einstein’s gravitational field and is only to
be interpreted in relation to the Gaussian curvature by the
equation K =1/R2c(r). The radial geodesic distance from

the point at the centre of spherical symmetry to the spherical
geodesic surface with Gaussian curvature K =1/R2c(r) is
given by the proper radius, Rp(Rc(r)). The centre of spher-
ical symmetry in the gravitational field is invariantly located
at the point Rp(r0)= 0.

Expression (20) with (22), and hence (8) describes only
a centre of mass located at Rp(r0)= 0 in the gravitational
field, ∀ r0. As such it does not take into account the distribu-
tion of matter and energy in a gravitating body, since α(M)
is indeterminable in this limited situation. One cannot gener-
ally just utilise a potential function in comparison with the
Newtonian potential to determine α by the weak field limit
because α is subject to the distribution of the matter of the
source of the gravitational field. The value of α must be
calculated from a line-element describing the interior of the
gravitating body, satisfying Rμν − 1

2Rgμν =κTμν 6=0. The
interior line element is necessarily different to the exterior
line element of an object such as a star. A full description
of the gravitational field of a star therefore requires two line
elements [22, 23], not one as is routinely assumed, and when
this is done, there are no singularities anywhere. The stand-
ard assumption that one line element is sufficient is false.
Outside a star, (20) with (22) describes the gravitational
field in relation to the centre of mass of the star, but α
is nonetheless determined by the interior metric, which, in
the case of the usual treatment of (8), has gone entirely
unrecognised, so that the value of α is instead determined
by a comparison with the Newtonian potential in a weak
field limit.

Black holes are not predicted by General Relativity. The
Kruskal-Szekeres coordinates do not describe a coordinate
patch that covers a part of the gravitational manifold that is
not otherwise covered - they describe a completely different
pseudo-Riemannian manifold that has nothing to do with
Einstein’s gravitational field [6, 9, 11]. The manifold of
Kruskal-Szekeres is not contained in the fundamental one-
to-one correspondence between the E3 of Minkowski space
and theM3 of Einstein’s gravitational field, and is therefore
a spurious augmentation.

It follows in similar fashion that expansion of the Uni-
verse and the Big Bang cosmology are inconsistent with
General Relativity, as is easily demonstrated [24, 25].
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According to an idea underlying the classical relativity, a pulsating (or simply
expanding or simply contracting) spherical source does not generate an external
dynamical (i.e. non-stationary) gravitational field. The relativists believe that this idea
is well based on account of the so-called Birkhoff’s theorem, which, contrary to the
fundamental principles of general relativity, states that the external gravitational field
of a non-stationary spherical mass is necessarily static. However, as shown in several
papers [2, 3, 4, 7, 8], Birkhoff’s theorem is, in fact, a vicious circle arising from the
introduction of inadmissible implicit transformations which eliminate in advance the
boundary conditions defining the radial motion of the sphere bounding the matter,
namely the boundary conditions inducing the non-stationary states of the gravitational
field. In the present paper we deal with the rigorous mathematical theory of the subject
and put forward the corresponding form of the spacetime metric in order to prepare
a thorough study of the equations of gravitation related to the dynamical states of the
gravitational field.

1 SΘ(4)-invariant metrics and gravitational disturb-
ances

Let us first consider a general spacetime metric
3∑

i,j=0

gijdxidxj (1.1)

namely a form of signature (+1,−1,−1,−1) on a open set
U ⊂ R× R3. In order that the local time and the proper time
of the observes be definable, the timelike character of x0
must be clearly indicared together with its distinction from
the spacelike character of the coordinates x1, x2, x3. This
is why, according to Levi-Civita [l], the components g00,
g11, g22, g33 of the metric tensor must satisfy the conditions
g00> 0, g11< 0, g22< 0, g33< 0.

Our investigation of an SΘ(4)-invariant (or Θ(4)-invar-
iant) metric follows Levi-Civita’s point of view by allowing
at the same time a slight generalization which will be fully
justified. More precisely, an allowable SΘ(4)-invariant (or
Θ(4)-invariant) metric will satisfy the conditions g00> 0,
g11 6 0, g22 6 0, g33 6 0. We recall [9] the explicit form
of such a metric

ds2 =
(
fdx0 + f1 (xdx)

)2
− `21dx

2 −
`2 − `21
ρ2

(xdx)
2
,

x0 = t, ` (t, 0) = `1 (t, 0) ,

which is invariant by the action of the group SΘ(4) consist-
ing of the matrices of the form
(

1 OH
OV A

)

, OH = (0, 0, 0) , OV =




0
0
0



 ,

A ∈ SO(3)

as well as by the action of the group Θ(4) consisting of the
matrices of the same form for which A ∈ O(3). Note that
the given form of the metric does not contain the important
functions

h = ρf1 = ρf1 (t, ρ) , g = ρ`1 = ρ`1 (t, ρ) ,

because they are not C∞ on the subspace R× {(0, 0, 0)}.
However, as already noted [9], on account of their geometr-
ical and physical significance, it is very convenient to insert
them into the metric, thus obtaining

ds2 =

(

fdx0 +
h

ρ
(xdx)

)2
−

(
g

ρ

)2
dx2−

−
1

ρ2

(

`2 −

(
g

ρ

)2)

(xdx)
2

(1.2)

and then

g00 = f2, gii =
(
h2 − `2

) x2i
ρ2
−

(
g

ρ

)2(

1−
x2i
ρ2

)

,

(i = 1, 2, 3) .

We contend that gii 6 0, (i = 1, 2, 3), if and only if
|h| 6 `. In fact, if |h| 6 `, we have obviously gii6 0,
(i = 1, 2, 3). On the other hand, if |h| >`, by choosing
x1= ρ, x2=x3=0, we have g11=h

2− `2> 0.
The SΘ(4) -invariant metric (1.2), considered with the

condition |h| 6 `, is assumed to represent the gravitational
field generated by a spherical isotropic non-rotating, in gene-
ral pulsating, distribution of matter. This field is related in-
tuitively to a radial uniform propagation of spherical gravita-
tional (and possibly electromagnetic) disturbances issuing
from the matter and governed by the time according to the
following rule:

N. Stavroulakis. On the Propagation of Gravitation from a Pulsating Source 75



Volume 2 PROGRESS IN PHYSICS April, 2007

The emission of a disturbance takes place at a given
instant from the entirety of the sphere bounding the
matter (namely from the totality of the points of this
sphere) and reaches the totality of any other sphere
Sρ :‖ x ‖= ρ> 0 outside the matter at another instant.

The assignment of a given instant t to every point of the
sphere Sρ means that we consider an infinity of simultaneous
events {(t, x) |x ∈ Sρ } related to Sρ. This conception of
simultaneity is restricted to the considered sphere Sρ and
cannot be extended radially (for greater or less values of ρ).
So the present situation differs radically from that encount-
ered in special relativity. In particular, the synchronization of
clocks in Sρ cannot be carried out by the standard method
put forward by Einstein, because there are no null geodesies
of the metric associated with curves lying on Sρ. The idea
of synchronization in Sρ :‖x‖= ρ> 0 is closely related to
the very definition of the SΘ(4)-invariant field: For any
fixed value of time t, the group SΘ(4) sends the subspace
{t} × Sρ of R× R3 onto itself, so that the group SΘ(4)
assigns the value of time t to every point of the sphere Sρ.
Specifically, given any two distinct points x and y of Sρ,
there exists an operation of SΘ(4) sending (t, x) onto (t, y).
This operation appears as an abstract mathematical mapping
and must be clearly distinguished from a rotation in R3 in
the sense of classical mechanics. Such a rotation in R3 is a
motion defined with respect to a pre-existing definition of
time, whereas the assignment of the value of time t to every
point of Sρ, is an “abstract operation” introducing the time
in the metric.

Let Sm be the sphere bounding the matter. As will be
shown later on, the “synchronization” in Sm induces the
synchronization in any other sphere Sρ outside the matter
by means of the propagation process of gravitation. In a
stationary state, the radius of Sm reduces to a constant, say
σ, and every point of Sm can be written as x = ασ where
α = (α1, α2, α3) ∈ S1, S1 being the unit sphere:

S1 =
{
α = (α1, α2, α3) ∈ R3

∣
∣

‖ α ‖=
√
α21 + α

2
2 + α

2
3 = 1

}
.

Now, in a non-stationary state, the radius of Sm will be
a function of time, say σ (t), and the equation of Sm can be
written as x=ασ (t) with α ∈ S1. So each value of time t
defines both the radius σ (t) and the “simultaneous events”
{(t, ασ (t)) |α ∈ S1}. This simultaneity is also closely relat-
ed to the definition of the SΘ(4) invariant field: {(t, ασ(t)) |
α ∈ S1} remains invariant by the action of SΘ(4). From
these considerations it follows that the first principles related
to the notion of time must be introduced axiomatically on the
basis of the very definition of the SΘ(4)-invariance. Their
physical justification is to be sought a posteriori by taking
into account the results provided by the theory itself.

This being said, according to our assumptions, it makes

sense to consider as a function of time the curvature radius
g (t, ρ) = ρ`1(t, ρ) of a sphere ‖x‖= ρ= const> 0 outside
the matter. The same assumptions allow to define, as func-
tions of time, the radius σ (t) and the curvature radius, de-
noted by ζ(t), of the sphere bounding the matter. These po-
sitive functions, σ (t) and ζ(t), constitute the boundary con-
ditions at finite distance for the non-stationary field outside
the pulsating source. They are assumed to be C∞, but they
cannot be analytic, because the vanishing of |σ′(t)|+|ζ ′(t)|
on certain compact time intervals does not imply its va-
nishing on R.

Since the internal field extends to the external one through
the sphere ‖x‖=σ (t), the non-stationary (dynamical) states
of the gravitational field outside the pulsating source are
induced by the radial motion of this sphere, namely by the
motion defined mathematically by the boundary conditions
σ (t) and ζ(t). So, it is reasonable to assume that, if σ′(t) =
= ζ ′(t) = 0 on a compact interval of time [t1, t2], no propa-
gation of gravitational disturbances takes place in the extern-
al space during [t1, t2] (at least if there is no diffusion of dis-
turbances). It follows that the gravitational radiation in the
external space depends on the derivatives σ′(t) and ζ ′(t),
so that we may identify their pair with the gravitational dis-
turbance inducing the dynamical states outside the matter.
More precisely, the non-stationary-states are generated by
the propagation of the gravitational disturbance in the ex-
terior space, so that we have first to clarify the propagation
process. Our intuition suggests that the propagation of grav-
itation is closely related to the radial propagation of light,
and this is why we begin by defining the function governing
the radial propagation of light from the sphere bounding the
matter.

2 Radial null geodesics

We recall that a curve x(υ) = (x0(υ), x1(υ), x2(υ), x3(υ))
is a geodesic line with respect to (1.1) if

D

dυ

dx(υ)

dυ
= q(υ)

dx(υ)

dυ
.

So we are led to introduce the vector

Y j =
d2xj
dυ2

+

3∑

k,`=0

Γ
j
k`

dxk
dυ

dx`
dυ

−q(υ)
dxj
dυ

, (j = 0, 1, 2, 3),

which allows to write the equations of a geodesic in their
general form

Y 0 = 0 , Y 1 = 0 , Y 2 = 0 , Y 3 = 0 .

On the other hand, a null line (not necessarily geodesic)
is defined by the condition

3∑

i,j=0

gij
dxi
dυ

dxj
dυ

= 0 , (υ 6= s),
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which implies

∑
gij
dxi
dυ

d2xj
dυ2

+
∑

Γi,k`
dxi
dυ

dxk
dυ

dx`
dυ

= 0

so that by setting

Xj =
∑

gij
dxi
dυ

we deduce by an easy computation the relation
3∑

j=0

XjY
j = 0

which is valid for every null line.
Now, let

dt =
{
x1 = α1ρ, x2 = α2ρ, x3 = α3ρ,

α21 + α
2
2 + α

2
3 = 1, ρ > σ(t)

}

be a half-line issuing from a point of the sphere ‖x‖=σ (t).
The vanishing of (1.2) on dt gives rise to two radial null
lines defined respectively by the equations

dt

dρ
=
−h(t, ρ) + `(t, ρ)

f (t, ρ)
(2.1)

dt

dρ
=
−h(t, ρ)− `(t, ρ)

f (t, ρ)
(2.2)

Proposition 2.1. The above defined null lines are null geo-
desics.

Proof. By using a transformation defined by an element
of the group SΘ(4), we may assume, without restriction
of generality, that dt is defined by the equations x1= ρ,
x2=0, x3=0, where ρ>σ (t). Then taking into account
the expressions of the Christoffel symbols [9], we see that

Γ200 = Γ
2
01 = Γ

2
11 = 0, Γ300 = Γ

3
01 = Γ

3
11 = 0,

so that the equations Y 2=0, Y 3=0 are identically verified.
Moreover x2=x3=0 imply

Y 0 =
d2t

dυ2
+ Γ000

(
dt

dυ

)2
+ Γ011

(
dρ

dυ

)2
+

+2Γ001
dt

dυ

dρ

dυ
− q (υ)

dt

dυ
,

Y 1 =
d2ρ

dυ2
+ Γ100

(
dt

dυ

)2
+ Γ111

(
dρ

dυ

)2
+

+2Γ101
dt

dυ

dρ

dυ
− q (υ)

dρ

dυ
.

Now, let t= ξ (ρ) be a solution of (2.1) and take υ= ρ.
Then the equation Y 1=0 gives

Γ100
(
ξ (ρ), ρ

)(
ξ′(ρ)

)2
+ Γ111

(
ξ (ρ), ρ

)
+

+2Γ101
(
ξ (ρ), ρ

)
ξ′(ρ) = q (ρ)

so that it defines the function q (ρ). Next, since the equa-
tions Y 1=0, Y 2=0, Y 3=0 are fulfilled, the condition∑3
j=0XjY

j =0 reduces to X0Y 0=0, and since

X0 = g00
dt

dυ
+ g01

dx1
dυ

= f2
dt

dρ
+ fh =

= f2
(
−h+ `
f

)

+ fh = f` > 0 ,

it follows also that Y 0=0. In the same way taking into ac-
count that −f`< 0, we prove the assertion regarding (2.2).

Corollary 2.1. The equation (2.1), resp. (2.2), defines the ra-
dial motion of the photons issuing from (resp. approach-
ing to) the pulsating spherical mass.

In fact, since |h| 6 `, we have −h+` > 0, which impies
dt/dρ > 0, and −h− ` 6 0 which implies dt/dρ 6 0.
Remark 2.1. The condition |h| 6 ` has been introduced in
order to ensure the physical validity of the spacetime metric.
Now we see that it is absolutely indispensable in order to
define the radial motion of light. In fact, if h> ` (resp.
−h> `), the photons issuing from (resp. approaching to) the
spherical mass would be inexistent for the metric. A detailed
discussion of the inconsistencies resulting from the negation
of the condition |h| 6 ` is given in the paper [6].

Remark 2.2. As already remarked, the propagation of the
gravitation from the pulsating source is closely related to the
radial propagation of te outgoing light which is defined by
(2.1). Regarding the equation (2.2), which defines the radial
propagation of the incoming light, it is not involved in our
study, because there are no gravitational disturbances coming
from the “infinity”.

3 On the solutions of (2.1)

Let us consider a photon emitted radially at an instant u from
the sphere bounding the matter. Its velocity at this instant,
namely

dρ

dt
=

f
(
u, σ (u)

)

`
(
u, σ (u)

)
− h

(
u, σ (u)

)

is greater than the radial velocity |σ′(u)| of this sphere,
whence the condition

`
(
u, σ (u)

)
− h

(
u, σ (u)

)

f
(
u, σ (u)

) |σ′(u)| < 1

which implies in particular the validity of the condition

`
(
u, σ (u)

)
− h

(
u, σ (u)

)

f
(
u, σ (u)

) σ′(u) < 1 (3.1)

which is trivially valid if σ′(u) 6 0.
This being said, let us consider the open set

U =
{
(t, ρ) ∈ R2 | ρ > σ(t)

}

and denote by F its frontier:

F =
{
(t, ρ) ∈ R2 | ρ = σ (t)

}
.
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Since the equation (2.1) is conceived on the closed set
U =U ∪ F , the functions f , h, ` are defined on U . However,
since we have to define the solutions of (2.1) by using initial
conditions in F , we are led to extend the function

α (t, ρ) =
−h (t, ρ) + ` (t, ρ)

f (t, ρ)

to a C∞ function α̂ (t, ρ) > 0 on an open set W containing
U . It is not necessary to indicate a precise extension on W
because its values on W−U play an auxiliary part and are
not involved in the final result.

This remark applies also to the derivatives of the func-
tions f , h, ` at the points of F . In fact, although the defi-
nition of these derivatives takes into account the extension
α̂ (t, ρ), their values on F , on account of the continuity, are
defined uniquely by their values on U .

This being said, for each fixed point (u, σ (u)) ∈ F , the
differential equation

dt

dρ
= α̂ (t, ρ)

possesses a unique local solution t= ξ̂ (u, ρ) taking the value
u for ρ=σ (u). Let ] ρ1(u), ρ2(u) [ be the maximal interval
of validity of this local solution (ρ1(u)<σ (u)<ρ2(u)).

Lemma 3.1. There exists a real number ε> 0 such that
σ (u)<ε<ρ2(u) and (ξ̂ (u, ρ), ρ)∈U for every ρ∈ ]σ (u), ε ].
Proof. Assume that such a number does not exist. Then
we can find a sequence of values ρn>σ (u) converging to
σ (u) and such that (ξ̂ (u, ρn), ρn) /∈ U , which means that
σ (ξ̂ (u, ρn))> ρn, and implies, in particular ξ̂ (u, ρn) 6=u. It
follows that

ξ̂ (u, ρn)− u
ρn − σ (u)

∙
σ
(
ξ̂ (u, ρn)

)
− σ (u)

ξ̂(u, ρn)− u
=

=
σ
(
ξ̂ (u, ρn)

)
− σ (u)

ρn − σ (u)
> 1

and since ξ̂ (u, σ (u))=u, ρn → σ (u), we obtain

∂ξ̂
(
u, σ (u)

)

∂ρ
σ′(u) > 1 ,

or
−h
(
u, σ (u)

)
+ `
(
u, σ (u)

)

f
(
u, σ (u)

) σ′(u) > 1

which contradicts (3.1 ). This contradiction proves our as-
sertion.
Lemma 3.2. We also have ( ξ̂ (u, ρ), ρ) ∈ U for every ρ ∈
] ε, ρ2(u) [ .

Proof. If not, the set of values ρ ∈ ] ε, ρ2(u) [ for which
σ ( ξ̂ (u, ρ))= ρ is not empty. Let ρ0 be the greatest lower
bound of this set. Then σ (ξ̂ (u, ρ0))= ρ0. Let ξ̂ (u, ρ0)= t0
and let ψ (t0, ρ) be the local solution of the differential equa-
tion

dt

dρ
= α̂(t, ρ)

for which ψ (t0, ρ0)= t0. The uniqueness of the solution
implies obviously that ψ(t0, ρ)= ξ̂ (u, ρ). On the other hand,
for every ρ∈ ]σ (u), ρ0[ , we have σ (ξ̂ (u, ρ))<ρ. Moreover
ξ̂ (u, ρ0) 6= ξ̂ (u, ρ) because the equality ξ̂ (u, ρ0)= ξ̂ (u, ρ)
would imply

ρ0 = σ
(
ξ̂ (u, ρ0)

)
= σ

(
ξ̂ (u, ρ)

)
< ρ

contradicting the choice of ρ. On the other hand

σ
(
ξ̂ (u, ρ0)

)
− σ

(
ξ̂ (u, ρ)

)
=

= ρ0 − σ
(
ξ̂ (u, ρ)

)
> ρ0 − ρ > 0

so that we can write

ξ̂ (u, ρ0)− ξ̂ (u, ρ)
ρ0 − ρ

∙
σ
(
ξ̂ (u, ρ0)

)
− σ

(
ξ̂ (u, ρ)

)

ξ̂ (u, ρ0)− ξ̂ (u, ρ)
=

=
σ
(
ξ̂ (u, ρ0)

)
− σ

(
ξ̂ (u, ρ)

)

ρ0 − ρ
> 1

or

ψ (t0, ρ0)− ψ (t0, ρ)
ρ0 − ρ

∙
σ (t0)− σ

(
ψ(t0, ρ)

)

t0 − ψ(t0, ρ)
> 1

and for ρ→ ρ0 we find

∂ψ (t0, ρ0)

∂ρ
σ′(t0) > 1

or
−h
(
t0, σ (t0)

)
+ `
(
t0, σ (t0)

)

f (t0, σ (t0))
σ′(t0) > 1

which contradicts (3.1). This contradiction proves our as-
sertion.

Proposition 3.1. Let ξ (u, ρ) be the restriction of the solution
ξ̂ (u, ρ) to the interval [σ (u), ρ2(u) [ . Then ξ (u, ρ) does not
depend on the extension α̂(t, ρ) of α(t, ρ), so that it is the
unique local solution of (2.1) in U satisfying the condition
ξ (u, σ (u))=u.

In fact, since ξ̂ (u, σ (u))=u and (ξ̂ (u, ρ), ρ)∈U for
ρ>σ (u), the definition of ξ (u, ρ) on [σ (u), ρ2(u)[ depends
uniquely on the function α(t, ρ) which is defined on U

In general, the obtained solution ξ (u, ρ) is defined on
a bounded interval [σ (u), ρ2(u) [ . However the physical
conditions of the problem require that the emitted photon
travel to infinity. In fact, the pulsating source (whenever it
is expanding) can not overtake the photon emitted radially
at the instant u. Consequently the functions f , h, ` involved
in the metric must be such that, for each value of u∈R,
the solution ξ (u, ρ) of (2.1) be defined on the half-line
[σ (u),+∞ [ , so that ρ2 (u)=+∞ and (ξ (u, ρ), ρ)∈U for
every ρ∈ ]σ (u),+∞ [ . Then the corresponding curves
(ξ (u, ρ), ρ) issuing from the points of F are the leaves of a
foliation of U representing the paths of the photons emitted
radially from the sphere bounding the matter (see Figure 1
shown in Page 79).
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Fig. 1: Foliation representing the paths of the photons emitted
radially from the sphere bounding the matter.

4 Propagation function of light and canonical metric

The solution ξ (u, ρ) appears as a function of two variables:
On the one hand the time u ∈ R on the sphere bounding
the matter, and on the other hand the radial coordinate ρ ∈
[σ (u),+∞ [ .

Proposition 4.1. The function ξ (u, ρ), (u, ρ) ∈ U , fulfils the
conditions

∂ξ (u, ρ)

∂u
> 0,

∂ξ (u, ρ)

∂ρ
> 0

the first of which allows to solve with respect to u the
equation t= ξ (u, ρ), where ξ (u, σ (u))=u, and obtain thus
the instant u of the radial emission of a photon as a function
of (t, ρ): u=π(t, ρ). The so obtained function π(t, ρ) on U
satisfies the conditions

∂π(t, ρ)

∂t
> 0 ,

∂π(t, ρ)

∂ρ
6 0 , π

(
t, σ (t)

)
= t .

Proof. Since −h + ` > 0, the condition ξ (u, ρ)/∂ρ > 0 is
obvious on account of (2.1). On the other hand, taking the
derivatives of both sides of the identity ξ (u, σ (u))=u we
obtain

∂ξ
(
u, σ (u)

)

∂u
+
∂ξ
(
u, σ (u)

)

∂ρ
σ′(u) = 1

or

∂ξ
(
u, σ (u)

)

∂u
+
−h
(
u, σ (u)

)
+ `
(
u, σ (u)

)

f
(
u, σ (u)

) σ′(u) = 1

whence, on account of (3.1),

∂ξ
(
u, σ (u)

)

∂u
> 0

for every u ∈ R. It remains to prove that, for each fixed
value u0 ∈ R, and for each fixed value ρ0>σ (u0), we have
∂ξ (u0, ρ0)/∂u > 0.

Now, ρ0 > σ (u0) implies that there exists a straight line
segment

[
−ε1 + ξ (u0, ρ0), ε1 + ξ (u0, ρ0)

]
× {ρ0} , ε1 > 0,

contained in U . Let us denote by L1, L0, L2 respectively
the leaves containing the points
(
−ε1+ξ(u0, ρ0), ρ0

)
,
(
ξ(u0, ρ0), ρ0

)
,
(
ε1+ξ(u0, ρ0), ρ0

)
.

L0 is defined by the solution ξ (u0, ρ) of (2.1), whereas
L1 and L2 are defined respectively by two solutions ξ (u1, ρ)
and ξ (u2, ρ) with convenient values u1 and u2. Since L1 ∩
L0=Ø, L0 ∩L2=Ø, it follows obviously that u1<u0 and
u0<u2. The same reasoning shows that, if u1<u′<u0<
u′′<u2, then

ξ (u1, ρ0) < ξ (u′, ρ0) < ξ (u0, ρ0) < ξ (u′′, ρ0) < ξ (u2, ρ0),

so that ξ (u, ρ0) is a strictly increasing function of u on the
interval [u1, u2]. It follows that ∂ξ (u0, ρ0)/∂u> 0 as as-
serted. Regarding the last assertion, it results trivially from
the identity ξ (π(t, ρ), ρ)= t, which implies

∂ξ

∂u
∙
∂π

∂t
= 1 ,

∂ξ

∂u
∙
∂π

∂ρ
+
∂ξ

∂ρ
= 0 .

Remark. Let u1 and u2 be two instants such that u1<u2,
and let ρ be a positive length. If the values ξ(u1, ρ) and
ξ(u2, ρ) are both definable, which implies, in particular,
ξ(u1, ρ)>u1 and ξ(u2, ρ)>u2, then ξ(u1, ρ) < ξ(u2, ρ).

The function π(t, ρ) characterizes the radial propagation
of light and will be called propagation function. Its physical
significance is the following : If a photon reaches the sphere
‖x‖= ρ at the instant t, then π(t, ρ) is the instant of its
radial emission from the sphere bounding the matter.

Proposition 4.2 If a photon emitted radially from the sphere
bounding the matter reaches the sphere ‖x‖= ρ at the in-
stant t, then its radial velocity at this instant equals

−
∂π(t, ρ)/∂t

∂π(t, ρ)/∂ρ
.

In fact, since

dt

dρ
=
−h+ `
f

=
∂ξ (u, ρ)

∂ρ
,

the velocity in question equals

dρ

dt
=

(
∂ξ (u, ρ)

∂ρ

)−1
= −

(
∂ξ (u, ρ)

∂u

∂π(t, ρ)

∂ρ

)−1
=

= −
∂π(t, ρ)/∂t

∂π(t, ρ)/∂ρ
.

Remark. The preceding formula applied to the classical
propagation function t− ρ

c , gives the value c.
Since the parameter u appearing in the solution ξ (u, ρ) re-
presents the time on the sphere bounding the matter and
describes the real line, we are led to define a mapping Γ :
U → U , by setting Γ(t, ρ)= (π(t, ρ), ρ)= (u, ρ).
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Proposition 4.3. The mapping Γ is a diffeomorphism which
reduces to the identity on the frontier F of U . Moreover it
transforms the leaf

{
(t, ρ) ∈ U | t= ξ (u, ρ)

}
issuing from

a point (u, σ (u)) ∈ F into a half-line issuing from the
same point and parallel to the ρ-axis. Finally it transforms
the general Θ(4) invariant metric (1.2) into another Θ(4)-
invariant metric for which h= `, so that the new propagation
function is identical with the new time coordinate.

Proof. The mapping Γ is one-to-one and its jacobian deter-
minant ∂π(t, ρ)/∂t is strictly positive everywhere. Conse-
quently Γ is a diffeomorphism. Moreover, since each leaf
is defined by a fixed value of u, its transform in the new
coordinates (u, ρ) is actually a half-line parallel to the ρ-
axis. Finally, since t= ξ (u, ρ) and ∂ξ/∂ρ=(−h+ `)/f , it
follows that

fdt+
h

ρ
(xdx) =

(

f
∂ξ

∂u

)

du+

(

f
∂ξ

∂ρ

)

dρ+ hdρ

=

(

f
∂ξ

∂u

)

du+

(

f

(
−h+`
f

)

+ h

)

dρ

=

(

f
∂ξ

∂u

)

du+ `dρ

=

(

f
∂ξ

∂u

)

du+ `
(xdx)

ρ
with

f = f
(
ξ(u, ρ), ρ

)
, h = h

(
ξ(u, ρ), ρ

)
, ` = `

(
ξ(u, ρ), ρ

)
.

So the remarkable fact is that, in the transformed Θ(4)-
invariant metric, the function h equals `. The corresponding
equation (2.1) reads

du

dρ
= 0

whence u= const, so that the new propagation function is
identified with the time coordinate u. (This property follows
also from the fact that the transform of π(t, ρ) is the function
π(ξ (u, ρ), ρ) = u.)

The Canonical Metric. In order to simplify the notations,
we writef (u, ρ), `(u, ρ), g(u, ρ) respectively instead of

f
(
ξ (u, ρ), ρ

)∂ξ (u, ρ)
∂u

, `
(
ξ (u, ρ), ρ

)
, g

(
ξ (u, ρ), ρ

)

so that the transformed metric takes the form

ds2 =

(

f (u, ρ)du+ `(u, ρ)
(xdx)

ρ

)2
−

−

[(
g(u, ρ)

ρ

)2
dx2+

(
(
`(u, ρ)

)2
−

(
g(u, ρ)

ρ

)2)
(xdx)2

ρ2

] (4.1)

which will be termed Canonical.
The equality h= ` implies important simplifications:

Since the propagation function of light is identified with
the new time coordinate u, it does not depend either on the
unknown functions f , `, g involved in the metric or on the

boundary conditions at finite distance σ (u), ζ (u). The radial
motion of a photon emitted radially at an instant u0 from the
sphere ‖x‖=σ (u) will be defined by the equation u=u0,
which, when u0 describes R, gives rise to a foliation of U
by half-lines issuing from the points of F and parallel to
the ρ-axis (Figure 2). This property makes clear the physical
significance of the new time coordinate u. Imagine that the
photon emitted radially at the instant u0 is labelled with
the indication u0. Then, as it travels to infinity, it assigns
the value of time u0 to every point of the corresponding ray.
This conception of time differs radically from that introduced
by special relativity. In this last theory, the equality of values
of time at distinct points is defined by means of the process
of synchronization. In the present situation the equality of
values of time along a radial half-line is associated with the
radial motion of a single photon. The following proposition
is obvious (although surprising at first sight).

Fig. 2: The rise to a foliation of U by half-lines issuing from the
points of F and parallel to the ρ-axis.

Proposition 4.4. With respect to the canonical metric,
the radial velocity of propagation of light is infinite.
Note that the classical velocity of propagation of light,
namely c, makes sense only with respect to the time defined
by synchronized clocks in an inertial system.

We emphasize that the canonical metric is conceived on
the closed set

{
(u, x) ∈ R× R3 | ‖x‖>σ (u)

}
namely on

the exterior of the matter, and it is not possible to assign to
it a universal validity on R × R3. In fact, ` is everywhere
strictly positive, whereas h vanishes for ρ=0, so that the
equality h(t, ‖x‖)= `(t, ‖x‖) cannot hold on a neighbour-
hood of the origin. It follows that the canonical metric is
incompatible with the idea of a punctual source.

5 Propagation function of gravitational disturbances

We recall that, σ (u) and ζ(u) being respectively the radius
and the curvature radius of the sphere bounding the matter,
we are led to identify the pair of derivatives (σ′(u), ζ ′(u))
with the gravitational disturbance produced at the instant u
on the entirety of the sphere in question. This local disturb-
ance induces a radial propagation process with propagation
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paths identified with the radial geodesies and wave fronts
covering successively the spheres ‖x‖= ρ= const. This pro-
cess modifies step by step the field outside the matter and
thus gives rise to a non-stationary (dynamical) state of the
gravitational field. It follows that apart from any theory
aimed at determining the gravitational field, we have first
to elucidate the propagation process of the gravitational dis-
turbance. In order to carry out this investigation, we refer
constantly to the canonical metric (4.1) which, without re-
striction of generality, gives rise to significant simplifications.
This being said, the gravitational disturbance being produced
at the instant u on the sphere bounding the matter, let us
consider the instant t=ψ(u, ρ) at which it reaches the sphere
‖x‖= ρ, so that we have, in particular, ψ(u, σ (u))=u. We
assume naturally that the pulsating source does not hinder
the propagation of gravitation outside the matter. In other
words, every time that the sphere bounding the matter is
expanding, it can not overtake the advancing gravitational
disturbance. This is the case if and only if (ψ(u, ρ), ρ) ∈ U
for every ρ>σ (u). On the other hand, on account of the

physical conditions of the problem, the derivative
∂ψ(u, ρ)
∂ρ

cannot be negative, so that the equation t = ψ(u, ρ) defines
non decreasing functions of ρ giving rise to a foliation of
U by curves issuing from the points of F . Because of this
foliation, we have the condition

∂ψ(u, ρ)

∂u
> 0 (5.1)

which allows to solve the equation t = ψ(u, ρ) with respect
to u, thus obtaining the propagation function of the grav-
itational disturbance u= e(t, ρ) relative to the canonical
metric (4.1). Note that, on account of (5.1), by setting
Δ(u, ρ)= (ψ(u, ρ), ρ)= (t, ρ), we define a diffeomorphism
Δ : U → U , the restriction of which to F is the identity.

Proposition 5.1 If the gravitational disturbance emitted at
the instant u reaches the sphere ‖x‖= ρ at the instant t,
then its radial velocity at this instant equals

−
∂e(t, ρ)/∂t

∂e(t, ρ)/∂ρ
.

Proof. The velocity in question equals

dρ

dt
=

1

dt/dρ
=

1

∂ψ(u, ρ)/∂ρ

and since the derivation of the identity

e
(
ψ(u, ρ), ρ

)
= u

with respect to ρ gives

∂e

∂t

∂ψ

∂ρ
+
∂e

∂ρ
= 0 ,

we obtain
1

∂ψ(u, ρ)/∂ρ
= −

∂e(t, ρ)/∂t

∂e(t, ρ)/∂ρ

as asserted.

Remark. Since the radial velocity of propagation of light is
infinite with respect to the canonical metric (4.1), the veloc-
ity of radial propagation of the gravitational disturbance is
necessarily less than (or possibly equal to) that of light. In
fact, we can establish the identity of the two propagation
functions on the basis of a hypothesis which suggests itself
quite naturally.

Proposition 5.2. If the diffeomorphism Δ transforms the
canonical metric (4.1) into another physically admissible
Θ(4)-invariant metric on U , then the propagation function of
the gravitational disturbance is identical with the propaga-
tion function of light.

Proof. In order to transform (4.1) by means of Δ, we have
simply to replace u in (4.1) by e(t, ρ) thus obtaining the
Θ(4)-invariant metric

ds2 =

(

Fdt+
H

ρ
(xdx)

)2
−

−

[(
G

ρ

)2
dx2 +

(

L2−

(
G

ρ

)2)
(xdx)

2

ρ2

] (5.2)

where

F = F (t, ρ) = f
(
e(t, ρ), ρ

)∂e(t, ρ)
∂t

, (5.3)

H = H (t, ρ) = f
(
e(t, ρ), ρ

)∂e(t, ρ)
∂ρ

+ `
(
e(t, ρ), ρ

)
,

(5.4)

G = G(t, ρ) = g
(
e(t, ρ), ρ

)
,

L = L(t, ρ) = `
(
e(t, ρ), ρ

)
.

In the new metric (5.2), each value of t=ψ(u, ρ) is
the instant at which the disturbance emitted at the instant u
reaches the sphere ‖x‖= ρ. Consequently e(t, ρ) is also the
propagation function of the gravitational disturbance with
respect to (5.2).

We now prove that the derivative ∂e(t, ρ)/∂ρ vanishes
identically on U .

We argue by contradiction. If this derivative does not
vanish, the propagation function e(t, ρ) of the gravitational
disturbance is distinct from the propagation function of light
with respect to (4.1), hence also with respect to the trans-
formed metric (5.2). This last being admissible, according to
our assumption, it satisfies the condition

|H (t, ρ)| 6 L(t, ρ) ,

so that the radial motion of the photons issuing from the
matter is defined by the equation

dt

dρ
=
−H (t, ρ) + L(t, ρ)

F (t, ρ)
.

On account of (5.3) and (5.4), we have

−H (t, ρ) + L(t, ρ)
F (t, ρ)

= −
∂e(t, ρ)/∂ρ

∂e(t, ρ)/∂t
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so that the preceding equation reads

∂e(t, ρ)

∂t
dt+

∂e(t, ρ)

∂ρ
dρ = 0

whence e(t, ρ)= const and since e(t, σ (t))= t, e(t, ρ) is the
propagation function of light with respect to (5.2) contrary
to our assumptions. This contradiction proves our assertion,
namely that ∂e(t, ρ)/∂ρ = 0 on U .

This being proved, since the condition ψ(e(t, ρ), ρ) = t
implies

∂ψ

∂u

∂e

∂ρ
+
∂ψ

∂ρ
= 0 ,

the derivative ∂ψ/∂ρ vanishes identically on U . In other
words, ψ(t, ρ) does not depend on ρ, so that

ψ(u, ρ) = ψ
(
u, σ (u)

)
= u

for every ρ > σ (u). It follows that the propagation function
of the gravitational disturbance is the same as that of light
with respect to (4.1), hence also with respect to any admis-
sible transformation of (4.1).

From now on we will not distinguish the propagation
function of gravitational disturbances from that of light. So
we can begin by the consideration of the canonical metric
(4.1) for the study of the equations of gravitation related to a
spherical pulsating source. This investigation will be carried
out in another paper.
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Effect from Hyperbolic Law in Periodic Table of Elements
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Hyperbola curves Y =K/X and Y =(mx+n)/(px+ q) at determination of the
upper limit of the Periodic System have been studied. Their interdependence is shown
by the example of mathematical calculations in chemistry.

1 Introduction. Mathematical basis

Our previous article shows that the Y content of any element
K in a chemical compound is decreasing in case molecular
mass X is increasing in the range from 1 up to any desired
value in compliance with rectangular hyperbole law Y = K

X .
Simultaneously, fraction (1−Y ) is increasing in inverse pro-
portion in compliance with formula 1−Y = K

X or

Y =
X −K
X

. (1)

It is known that the function

y =
ax+ b

cx+ d
(2)

is called a linear-fractional function [2]. If c=0 and d 6=0,
then we get linear dependence y= a

d
x+ b

d
. If c 6=0, then

y =
a

c
+

bc−ad
c2

x+ d
c

. (3)

Supposing that X=x+ d
c ,

bc−ad
c2

= k 6=0, Y = y− a
c , we

get Y = K
X , i.e. rectangular hyperbole formula which center

is shifted from coordinates origin to point C (−d
c ;

a
c ).

As we can see, formula (1) is a special case of the
function (2), cause coefficient d=0. Then, determinant
D (ad− bc) degenerates into −bc. There exists a rule: when
D< 0, (K> 0), real axis together with X axis (abscissa
axis) makes an angle +45◦; and if D> 0, then the angle
is −45◦. In our case D= a× 0−(−K)× 1=K. Therefore,
real axis, on which tops of all new hyperboles will be located,
shall be in perpendicular position to the axis y= k

x . At that,
the center is shifted from the coordinates origin C (0; 0) to
the point C (0; 1). That means, in our case, semi-axes

a = b =

√
2|D|
c2

=
√
2K . (4)

Then the coordinates of the top of the other hyperbole
Beryllium will be: X0=Y0=

√
K =

√
9.0122= 3.00203 and

X ′= 60.9097, Y ′=1−Y =1− 0.14796= 0.85204.
In order to avoid possible mistakes let us use the follow-

ing terminology: hyperbole of y= k
x kind is called straight,

and linear-fractional — an adjoining one.

Figure 1 demonstrates these curves which represent five
elements from different groups: chlorine (No. 17), zirconium
(No. 40), wolfram (No. 74), mendelevium (No. 101), and the
last one (No. 155). Peculiarity of the diagrams is symmetry
axis at content of elements equal to 0.5. It is clear that both
hyperboles of the last element and ordinate axis limit the
existence area of all chemical compounds related to one
gram-atom.

Previously [1], we proved that all the elements of Period-
ic System can be described by means of rectangular hyper-
bole formulas. That is why, it is quite enough to present
several diagrams in order to illustrate this or that depend-
ence. The same is valid for linear-fractional functions which
curves are directed bottom-up. If we put the picture up by
symmetry axis, we shall see that they fully coincide with
straight hyperboles. At the cross point of straight and adjoin-
ing hyperboles on this line, abscissa is equal to doubled
atomic mass of the element. Coordinates of another cross
points for each pair of hyperboles have the following para-
meters: X is equal to the sum of atomic mass of two ele-
ments (K1+K2), and Y has two values K1

K1+K2
and K2

K1+K2
.

Mentioned above is valid up to the upper bound of Periodic
System inclusive.

As we can see on Figure 2, (А00) and (В01) are real
axes of straight and adjoining hyperboles accordingly; and,
АС and BD, (00Е) and (01Е) are tangents to them. Real axes
are perpendicular to each other and to tangents. And all of
them are equal to each other. Diagonals (00D) and (01С)
divide straights АЕ and ВЕ in halves.

There are formulas of mentioned lines. Cross points of
these lines are also calculated. Abscissa of cross sections
are values divisible by atomic mass of the last element:
0; 205.83; 274.44; 329.328; 411.66; 548.88; 617.49; 823.32
(0; 0.5; 0.667; 0.8; 1.0; 1.333; 1.5; 2.0).

For reference, Figure 3 demonstrates graphical construc-
tion for tungsten.

We can see, that knowing real axes (normal to the top
of hyperboles), it is very easy to build up tangents to any
element, if required, in order to check accuracy of chosen
tops. For that, it is necessary to calculate formula of the
straight which passes through the point M1 (x1; y1) and pa-
rallel y= ax+ b:

y− y1= a(x−x1) . (5)
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Fig. 1: Dependence of Y and 1−Y content from molecular mass in straight and
adjoining hyperboles accordingly.

Fig. 2: Main lines of straight and adjoining hyperboles of the last element: real axes,
tangents, diagonals etc.

Fig. 3: Hyperboles of the last element and tungsten, their cross points and tangents.
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Fig. 4: Dependence of content of Y (OH) and 1−Y in hydroxides from their molecular
mass counting on 1 gram-mole ОН (of hyperbole). Broken curves are overall (summarized)
content of ОН in a substance.

Fig. 5: Application of mathematic methods at calculating of the diagram containing
hyperboles of sodium, chlorine and groups CO3, SO4. Building up of a new hyperbole
based on these data.
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2 Application of law of hyperboles for chemical com-
pounds

As it has already been mentioned above, the law is based on
the following: the content of the element we are determining
in the substance should be referred to its gram-atom. It was
shown in detail by the example of oxygen. In compliance
with the formula y= k

x element is a numerator, and any com-
pound is a denominator. For example, in order to determine
content of sodium (Na) in compounds with molecular mass
NaOH (39.9967), Na2CO3 (105.9872), Na3PO4 (163.941),
NaCl (58.443), Na2SO4 (142.0406) it is necessary, before
the formula, to put coefficients, reducing amount of sodium
in it to a unit: 1, 12 , 13 , 1, 12 , accordingly. Then, numerically,
part of element (Y ) will be: 0.5748, 0.4338, 0.4207, 0.3934,
and 0.3237. I.e. it is in one range with decreasing, and value
(1−Y ) with increasing. Both these curves (in pairs) which
are built based on these data are referred to one element.

Method of rectangular hyperboles is worked out in order
to determine the last element of the Periodic System of
D. I. Mendeleev. But its capabilities are much bigger.

Let us build straight and adjoining hyperboles for sod-
ium, chlorine and also for groups CO3 and SO4, which
form, accordingly, carbonates and sulphates. As we can see
in formula y= k

x they replace elements in a numerator. In
our last work, we said that hyperboles can by formed by
any numbers within location of their tops on a real axis.
However, there is a rule for groups, similar to that of 1 gram-
atom of the element: their quantity in calculated compounds
should not exceed a unit. Otherwise we get a situation shown
on Figure 4.

As we can see, it is necessary to put coefficient 1
2 before

the formula of hydroxide at bivalent barium. Then, his com-
pounds will be on hyperboles. In case of non-observance of
this rule, their points will be on broken line (circle).

Now we can start to solve a problem of building up new
hyperboles, based on existing ones (Figure 5).

Let’s mark on them several general points related to the
known compounds. On sodium curves there are two points
(on each curve) 1

2 Na2CO3 and 1
2 Na2SO4, which are also

located on respective hyperboles but without the coefficient
1
2 (Na2CO3 and Na2SO4). Thus, the point 12 Na2SO4, located
on the straight hyperbole of sodium, and its cross points with
hyperboles CO3 and SO4 form imaginary broken line located
between chlorine and СO3.

In a similar manner it works with adjoining hyperboles.
Let’s build a formula (by three points) Y = 63.257X−1.0658

of a power function (or ln y= 4.1472− 1.0658 lnx). With
the help of mentioned formula we will find some more co-
ordinates, including (obligatory) their crossing center (93.85;
0.5). Then we divide the abscissa of this point by 2 (straight
and adjoining hyperboles cross at doubled value of atomic
mass) we get X , equal to 46.925, and that is a numerator in
a formula of new hyperboles (y= 46.925

x ).

3 Conclusion

Method of rectangular hyperboles makes it possible to do
the following:

• to create mathematical basis for using hyperboles of
the kind y=1− k

x in chemistry;

• to determine existence area of the chemical com-
pounds;

• to calculate formulas of the main lines and cross points
of all the hyperboles, including the last element;

• to show the possibility of building up hyperboles
whose numerator is a group of elements, including the
rule of 1 gram-atom (in this case it is 1 gram-mole);

• to calculate and to build unknown in advance hyper-
boles by several data of known chemical compounds
located on respective curves;

• to control (with high accuracy) the content of synthes-
ized substances;

• to design chemical compounds.

Due to the fact that it is inconvenient to call each time
the element 155 (that we calculated in this paper) “the last
element” and by the right of the discoverer we decided to
call it KHAZANIUM (Kh).
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Laser-induced breakdown spectroscopy (LIBS) has been applied to analysis aluminum
alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on
the target in air at atmospheric pressure. Such plasma emission spectrum was collected
using a one-meter length wide band fused-silica optical fiber connected to a portable
Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma
evolution of laser produced plasmas has been characterized in terms of their spectra,
electron density and electron temperature assuming the LTE and optically thin plasma
conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace
elements. The electron temperature and density were determined using the emission
intensity and stark broadening, respectively, of selected aluminum spectral lines. The
values of these parameters were found to change with the aluminum alloy matrix, i.e.
they could be used as a fingerprint character to distinguish between different aluminum
alloy matrices using only one major element (aluminum) without needing to analysis
the rest of elements in the matrix. Moreover, It was found that the values of Te and
Ne decrease with increasing the trace elements concentrations in the aluminum alloy
samples. The obtained results indicate that it is possible to improve the exploitation
of LIBS in the remote on-line industrial monitoring application, by following up
only the values of Te and Ne for aluminum in aluminum alloys as a marker for
the correct alloying using an optical fiber probe.

1 Introduction

The interaction of high-power pulsed laser light with a target
or solid samples has been an active topic not only in plasma
physics but also in the field of analytical chemistry. During
the paste decade, the use of Laser Induced Plasma Spectro-
scopy (LIBS) as an alternative elemental analysis technology
based on the optical emission spectra of the plasma produced
by the interaction of high-power laser with a target has been
studied by several authors [1–7]. Because of the lack of pre-
treatment of the material as well as the speed of analysis, not
mentioning the possibility of in situ analysis, this technique
offers an attractive solution for a wide range of industrial ap-
plications. However, the existent commercial instruments are
still not sufficient to guarantee reproducibility and precise
quantitative results. In fact, the analytical performance of the
LIBS technique depends strongly on the choice of experi-
mental conditions that influence the laser-produced plasma
characteristics [8]. The main parameters affecting the per-
formance of LIBS results are as follows: laser intensity, exci-
tation wavelength, laser pulse duration, and the surrounding
atmosphere [9]. Moreover, the physical and chemical prop-
erties of the sample can affect the produced plasma compo-
sition, a phenomenon known as the matrix effect. The inter-
action between the laser and the target in LIBS is influenced
significantly by the overall composition of the target, so that
the intensity of the emission lines observed is a function

of both the concentration of the elements of interest and
the properties of the matrix that contains them. The author
published works studied the matrix effect under different
experimental conditions to specify causes and find out the
methods of correction [4, 6, 7].

On the other hand, from a more fundamental point of
view, LIBS diagnostic studies of electron temperature Te
and number density Ne have all been based on assumptions,
most importantly those of the existence of local thermo-
dynamic equilibrium LTE conditions and of optically thin
plasma [10]. Ciucci et al. [11] have discussed the possibility
of devising a calibration free method, i.e. some kind of an
“absolute analysis” approach. The success of such approach
heavily relies upon the accurate knowledge of the parameters
and the validity of the assumptions cited above. Apparently
LIBS plasmas fulfill LTE conditions even though during the
measurement time, the plasma parameters rapidly change
due to expansion. In this connection, one needs to determine
the conditions for expanding high density plasmas to be
in an equilibrium state as well as of the time duration for
the existence of such equilibrium. The aim of the present
paper is to study the variation of the plasma parameters
with aluminum lines in different aluminum alloy matrices.
This will help not only clarifying the constraints to be taken
into account when measuring Te and Ne but also using
the matrix effect to distinguish different aluminum alloy
matrices.
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Sample Be Mg Si Fe Cu Ca Mn Al

AL 6063 0.00030 0.54 0.43 0.2 0.085 0.0021 0.081 Balance

AL 4104 0.0017 1.56 9.63 0.7 0.12 0.0021 0.046 Balance

AL 5754 0.0022 2.54 0.22 0.35 0.1 0.0011 0.29 Balance

AL 3104 0.0011 1.15 0.21 0.42 0.17 0.0031 0.92 Balance

Table 1: Beryllium, Copper, iron, magnesium, silicon, calcium and manganese
concentrations (in w/w %) in the standard aluminum alloy samples.

2 Experimental setup

A typical LIBS experimental setup, described in details by
the author elsewhere [4, 6], is used throughout the present
investigations. The plasma formation was attained with the
aid of a Q-switched Nd: YAG laser (NY81.30, continuum,
USA) operating at 1064 nm (pulse duration of 7 ns) and
repetition rate of 0.1 Hz–30 Hz. The laser pulse energy of
100–300 mJ was adjusted by a suitable combination of beam
splitters at constant operating high voltage (1.3 kV) and Q-
switch delay (1.65μs) to ensure spatial and temporal beam
profile stability. An energy meter (Nova 978, Ophir Optron-
ics Ldt., USA) was employed to monitor the shot to shot
pulse energy. The laser beam was focused on aluminum alloy
samples by a 10 cm focal length quartz lens to generate the
plasma. The emitted light from the plasma plume is collected
via a one-meter length wide band fused-silica optical fiber
connected to a 0.17 m focal length Echelle spectrometer
(Mechelle 7500, Multichannel Instruments, Sweden). The
Mechelle 7500 provides a constant spectral resolution of
7500 corresponding to 4 pixels FWHM, over a wavelength
range 200–1000 nm displayable in a single spectrum. A gate-
able, intensified CCD camera, (DiCAM-Pro, PCO Computer
Optics, Germany) coupled to the spectrometer was used for
detection of the dispersed light. The overall linear dispersion
of the spectrometer-camera system ranges from 0.006 nm/
pixel (at 200 nm) to 0.033 nm/pixel (at 1000 nm). To avoid
the electronic interference and jitters, the CCD intensifier
high voltage was triggered optically. The ICCD camera con-
trol was performed via Mechelle software (Multichannel In-
struments, Stockholm, Sweden). The emission spectra
display, processing and analysis were done using 2D- and
3D-GRAMS/32 version 5.1 spectroscopic data analysis soft-
ware (Galactic Industries, Salem, NH, USA). To improve
data reproducibility, and to avoid electronic jittering problem,
the laser was set to single shot mode. Then, the Nd:YAG
laser beam was focused onto the sample surface at 90◦ angle.
This was done using a 25 mm diameter dichroic mirror that
reflects 99% of high energy 1064 nm wavelength. The focal
point was set 5 mm below the surface of the sample in
order to generate plasma of 800μm spot diameter. This also
minimize breakdown above the surface of any particles and
aerosols generally present above the sample. Moreover, for
each new sample, before spectral collection, 20 laser pulses
were performed to clean the sample surface and removes

surface oxides and contamination to ensure that the observed
spectrum is representative of the sample composition.

On the other hand, the use of a micro xyz-translation
stage as a holder for fused-silica optical fiber facilities max-
imum intensity of the observed emission light from the plas-
ma plume. Now, we aim to produce LIBS spectra with high
precision. Precision is the measure of the degree of repro-
ducibility of a measurement. Laser shot-to-shot variation
causes differences in the plasma properties, therefore affects
the magnitude of the element signal, and hence degrades the
LIBS precision. To improve LIBS precision, spectra from
several laser shots have to be averaged in order to reduce
statistical error due to laser shot-to-shot fluctuation. We rep-
roduced the measurements at five locations on the sample
surface in order to avoid problems linked to sample hetero-
geneity. Twenty shots were fired at each location and saved
in separated files and the average was computed and saved
to serve as the library spectrum. For each recorded spectrum,
the peak intensity, the Lorentzian curve fitting, the full width
at half maximum FWHM, and the center wavelength of
each line, as well as the background emission continuum are
determined. Data treatment preprocessing of the averaged
spectra data was performed in the Windows environment on
a Pentium 4 PC using GRAMS/32, Excel (Microsoft Office
Excel 2003) and Origin software version 7.0220 (Origin Lab
Corp., USA). The averages of peak tables (lists of wave-
lengths and intensities) of the averaged spectra were roll
generated in GRAMS/32 and exported for data evaluation.

We investigated a set of five standard samples of alum-
inum alloy to study the dependence of the electron density
and temperature on the matrix effect. So that, these samples
were selected to have trace elements with a range of concen-
trations. We used disk shaped standard samples of aluminum
alloy provided by Alcan international limited (0.5 cm;
φ= 5 cm). The concentrations of the trace elements “Mg,
Si, Be, Cu, Mn, Fe, Ca” in the aluminum alloy samples are
given in Table 1.

3 Results and discussion

3.1 Optimizing LIBS spectrum

Optimizing LIBS for a high resolution aluminum alloy was
done by optimizing the experimental conditions including
the time delay, the gate delay (the integration time) and the
laser irradiance. In fact, the timing of the recorded signal
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Fig. 1: The figure contains three spectra as follows: A — the
panoramic LIBS spectrum in the spectral range 200–700 nm shows
the UV-visible emission lines of aluminum as a major element
and the emission lines of the trace elements in the aluminum
alloy sample AL 6063. B — a zoomed segment showing the
copper lines 324.7 nm and 327.4 nm in the UV region recorded
at 1.5μs delay time and 1μs gate width using laser irradiance of
108 W/cm2 for sample AL 6063 containing copper concentration
of 0.085% (w/w) where S/N= 8. C — the same copper lines using
the optimized conditions of 2.5μs delay time and 1.5μs gate width
at 1010 W/cm2 laser irradiance where S/N= 25.

depend on the laser energy and wavelength, so we firstly
increased the laser energy from 70 mJ, as used before by
the author [6], to 300 mJ. In this case, the laser irradiance
increased from ≈108 W/cm2 to ≈1010 W/cm2 which found
to be suitable for the case of aluminum alloy samples having
trace elements with concentrations in the ppm range. Then
under the late laser irradiance, the delay time, at which the
spectrum is recorded from the laser start, was optimized by
scanning the delay time with the signal intensity as done
previously by the author [6]. It was found that the optimized
conditions are 2.5μs delay time and 1.5μs gate width at
1010 W/cm2 laser irradiance at the sample surface. The gate
delay was limited to 1.5μs to avoid saturation of the detec-
tor. Optimizing LIBS spectrum was done in order to reduce

the background signal and increase the signal to noise ratio
(S/N). Figure 1 shows a typical plasma emission spectrum
for aluminum alloy sample AL 6063. The figure contains
three spectra as follows: A — the panoramic LIBS spectrum
in the spectral range 200–700 nm shows the UV-visible emis-
sion lines of aluminum as a major element and the emission
lines of the trace elements in the aluminum alloy sample.
B — a zoomed segment showing the copper lines 324.7 nm
and 327.4 nm in the UV region recorded at 1.5 μs delay time
and 1μs gate width using laser irradiance of 108 W/cm2 for
sample AL 6063 containing copper concentration of 0.085%
(w/w) where S/N= 8. C — the same copper lines using
the optimized conditions of 2.5μs delay time and 1.5μs
gate width at 1010 W/cm2 laser irradiance where S/N= 25.
This, of course, makes LIBS to be a very high-resolution
spectroscopic system for the trace elements with concentra-
tions in the ppm range.

3.2 Plasma parameters and matrix effect

The main factors that influence the light emitted by the plas-
ma are its temperature, the number density of the emitting
species, and the electronic density. The number density of
the emitting species (e.g. atoms, ions, etc) depends on the
total mass ablated by the laser, the plasma temperature, and
the degree of the excitation and/or ionization of the plasma.
The vaporized amount, in turn, depends on the absorption
of the incident laser radiation by the surface, the plasma
shielding [12], which is related to the electron density of the
plasma, and the laser fluence. Therefore, the knowledge of
the plasma temperature and the density of plasma species are
vital for the understanding of the dissociation–atomization,
excitation, and ionization processes occurring in the plasma.
For this reason, study the variation of these plasma parame-
ters with aluminum lines in different aluminum alloy matri-
ces. This will help not only clarifying the constraints to be
taken into account when measuring Te and Ne but also using
the matrix effect to distinguish different aluminum alloy
matrices.

For plasma in local thermodynamic equilibrium (LTE),
the population density of atomic and ionic electronic states
is described by a Boltzmann distribution. For optically thin
plasma, the re-absorption effects of plasma emission are
negligible. So, the emitted spectral line intensity I is a mea-
sure of the population of the corresponding energy level
of this element in the plasma. For the LTE plasma, the
population of an excited level can be related to the total
density N(T ) of neutral atom or ion of this element by
Boltzmann equation [13] as:

I =
hc

4πλ
N(T )

Aki gk
U(T )

exp

(

−
Ek
KT

)

, (1)

where λ is the wavelength, Aki is the transition probability,
gk is the statistical weight for the upper level, Ek is the
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Wavelength
(nm)

Aki (s−1) Ek (cm−1) gk

Stark
broadening
parameter
W (nm)

281.62 3.83E+08 95351 1 4.2900E-04

308.85 1.50E+07 139289.2 5 —

364.92 1.50E+07 132823 3 —

364.92 1.50E+07 132823 3 —

365.11 2.10E+07 132822.8 5 —

365.11 2.10E+07 132822.8 5 —

365.50 2.70E+07 132822.9 7 —

365.50 2.70E+07 132822.9 7 —

370.32 3.80E+07 133916.4 5 —

373.20 4.30E+06 132215.5 3 —

373.39 1.30E+07 132215.5 3 —

373.80 2.10E+07 132215.5 3 —

386.62 3.70E+07 132778.6 1 —

390.07 4.80E+05 85481.35 5 —

559.33 1.10E+08 124794.1 5 —

624.34 1.10E+08 121483.5 7 —

Table 2: A list of the spectroscopic data of the aluminum spec-
tral lines used for the determination of plasma temperature and
density of aluminum alloy samples.

excited level energy, T is the temperature (in LTE all tempe-
ratures are assumed to be equal, i.e. Te≈Tion≈Tplasma),K
is the Boltzmann constants, U(T ) is the partition function.

The emitted spectral line intensity from a given state of
excitation can be used to evaluate the plasma temperature.
The lines must be well resolved for accurately evaluating
their wavelengths λ, intensities I , and their transition proba-
bilities Aki must be know.

Reformulating Eqn. (1) gives;

ln
Iλ

Aki gk
= −

1

KT
Ek + ln

C F

U(T )
, (2)

where F is an experimental factor and C is the species
concentration.

By plotting the left hand side of Eqn. (2) vs. the excited
level energy Ek, the plasma temperature can be obtained
from the slope of obtained straight line.

During the early stages of plasma formation, the emitted
spectrum is dominated by an intense continuum (Bremsstra-
hlung radiation), on which several heavily broadened ionic
lines of the elements present are superimposed. The broaden-
ing of the ionic lines is due to the high electron densities
occurring at this initial period (Stark broadening). At the
same time, the excited neutral atoms’ spectral lines are rela-
tively weak; they are superimposed on the continuum and
often overlap with the ionic lines. Hence, they cannot be
easily isolated and measured. As a consequence, the measu-
rement of their intensity for the construction of Boltzmann
plots becomes problematic at early times (e.g. the first few

Fig. 2: Four Boltzmann plots were determined form the emission
line intensities of aluminum observed in the laser-induced plasma
of aluminum alloys. The slope of the plotted curves yields
temperatures 13960 K, 12974 K, 11871 K, and 10841 K for the
samples AL 6063, AL 5754, AL 3104 and AL 4104 respectively.

hundred nanoseconds) and the use of time delay is compul-
sory. However, each spectral line exhibits different temporal
evolution that is element and atomic energy level specific.
Under our experimental conditions, a delay time of 2.5 μs
delay time and 1.5μs gate width at 1010 W/cm2 laser irradi-
ance have been determined as optimum conditions (as de-
scribed in Section 3.1 before). Under these experimental
conditions, the plasma temperatures were determined form
the emission line intensities of sixteen selected aluminum
lines (see Table 2) observed in the laser-induced plasma of
different aluminum alloy targets. Figure 2 show four Boltz-
mann plots of Eqn. (2), for these lines where the data were
fitted with the least-square approximation. The spectral lines
wavelengths, energies of the upper levels, statistical weights,
and transition probabilities used for these lines were obtained
from NIST [14] and Griem [13], and listed in Table 3. The
slope of the plotted curves yields temperatures 13960 K,
12974 K, 11871 K, and 10841 K for the samples AL 6063,
AL 5754, AL 3104 and AL 4104 respectively as listed in
Table 3).

On the other hand, the electron number density can be
obtained from the Stark-broadening of the emission lines
[15]. This is because, Stark-broadening results from Cou-
lomb interactions between the radiator and the charged par-
ticles present in the plasma. Both ions and electrons induce
Stark broadening, but electrons are responsible for the major
part because of their higher relative velocities. The electrons
in the plasma can perturb the energy levels of the individual
ions which broaden the emission lines originating from these
excited levels. Stark broadening of well-isolated lines in the
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Plasma parameters Sample AL6063 Sample AL 5754 Sample AL 3104 Sample AL 4104

Electron Temperature (Kelvin) 13960 12974 11871 10841

Electron Density (cm−3) 7.28×1018 4.28×1018 4.44×1018 2.28×1018

Table 3: The plasma electron temperature Te and density Ne determined from aluminum spectral lines in the four
standard aluminum alloy samples.

plasma is, thus, useful for estimating the electron number
densities provided that the Stark-broadening coefficients
have been measured or calculated. The line profile for stark
broadened is well described by a Lorentzian function. Since
the instrumental line-broadening exhibit Gaussian shape,
then the stark line width ΔλFWHM can be extracted from the
measured line width Δλobserved by subtracting the instru-
mental line broadening Δλinstrument:

ΔλFWHM = Δλobserved −Δλinstrument . (3)

In our case Δλinstrument was 0.05 nm (determined by
measuring the FWHM of the Hg lines emitted by a standard
low pressure Hg lamp).

The width of stark broadening spectral line depends on
the electron density Ne. Both the linear and the quadratic
stark effect are encountered in spectroscopy. Only the hydro-
gen atom and H-like ion exhibit the linear stark effect. For
the linear stark effect the electron density should be deduced
from H line width from the formula [13]

Ne = C (Ne, T )Δλ
3/2
FWHM (4)

the values of the parameter C (Ne, T ) are tabulated in the
literature [13], which determine the relative contribution of
the electron collision on the electrostatic fields, and depend
weakly on Ne and T .

For a non-H-like line, the electron density (in cm−3)
could be determined from the FWHM of the line from the
formula [13]:

Ne ≈

(
ΔλFWHM

2W

)

× 1016, (5)

W is the electron impact parameter (stark broadening value)
and it is given in Table 2). The last formula is generally used
for calculations of plasma generated from solid targets [7, 12].

The aluminum line 281.62 nm was identified as candi-
date for electron-density measurements. Figure 3 shows, the
281.62 nm line with sufficient resolution to measure the full
width at half-maximum (λ1/2) at four different aluminum
alloy samples. All the data points were fitted with Lorentzian
fitting function using the Origin software to determine (λ1/2)
as shown in Fig. 3 and found to be 0.113 nm, 0.070 nm,
0.092 nm and 0.088 nm for the samples AL6063, AL 4104,
AL 5754, and AL 3104 respectively. Substituting the values
of λ1/2 in Eqn. (3) and the corresponding value of stark
broadening W (4.29×10−4 nm from Griem [13] at plasma
temperature of 10000 K) in Eqn. (5) the electron density
values of 7.28×1018, 4.28×1018, 4.44×1018, and 2.28×1018

Fig. 3: The 281.62 nm line with sufficient resolution to measure
the full width at half-maximum (λ1/2) at four different aluminum
alloy samples. All the data points were fitted with Lorentzian fitting
function using the Origin software and the values of λ1/2 found
to be 0.113 nm, 0.070 nm, 0.092 nm and 0.088 nm for the samples
AL6063 , AL 4104, AL 5754, and AL 3104 respectively.

were obtained for the samples AL 6063, AL 5754, AL 3104
and AL 4104 respectively as listed in Table 3.

The above obtained results reveal that plasma parameters
(Te, Ne) change with changing the aluminum alloy matrix
i.e. matrix dependent. Moreover, by comparing the results
of the four samples in Table 3 with the concentrations of
the trace elements in Table 1, one could recognized that
while the concentrations of trace elements increase both
values of Te and Ne decrease. This is well clear by compar-
ing the two samples AL 6063 and AL 4104 thus while all
the trace elements, except Mn, increase (silicon concentra-
tion increases from 0.43% to 9.63%), both values of Te
and Ne decrease from 13960 K, 7.28×1018cm−3 to 10841 K,
2.28×1018cm−3, respectively. This result might occur be-
cause increasing the “trace element” concentration compri-
ses increasing portion of the laser-target interaction volume
of that trace element and decreases the laser-target interac-
tion volume of the major element (aluminum). Moreover,
aluminum “the major element” species are easy to be ionized
than the species of the seven trace elements which leads
to higher electron density for aluminum alloy samples with
low trace elements concentrations than for relatively high
trace elements concentrations. Moreover, this is clear since,
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the ionization potential of Al, Ca, Be, Mg, Si, Mn, Fe,
and Cu are (in eV) 5.98, 6.11, 9.32, 7.64, 8.15, 7.43, 7.87
and 7.72 respectively. The last observed result agrees with
previously observed results obtained by O. Samek [15] and
Rusak et al. [16].

Finally, by knowing the electron density and the plasma
temperature we can determine whether the local thermo-
dynamic equilibrium (LTE) assumption is valid applying the
criterion given by McWhirter [17], Bekefi [18] where the
lower limit for electron density for which the plasma will be
in LTE is:

Ne > 1.4×1014ΔE3 T 1/2, (6)

ΔE is the largest energy transition for which the condition
holds and T is the plasma temperature.

In the present case ΔE= 4.34 eV for Mg (see Ref. [13])
and the highest temperature is 1.2 eV (13960 K), then
the electron density lower limit value given by Eqn. (6) is
1.25×1016 cm−3. The experimentally calculated densities are
greater than this value, which is consistent with the assump-
tion that the LTE prevailing in the plasma.

4 Conclusion

LIBS technique has been used to analysis different alumi-
num alloy samples. The LIBS spectrum was optimized for
high S/N ratio especially for trace elements. The character-
istic plasma parameters (Te, Ne) were determined using
selected aluminum spectral lines. The values of these para-
meters were found to change with the aluminum alloy
matrix, i.e. they could be used as a fingerprint character
to distinguish between different aluminum alloy matrices
using only one major element (aluminum) without needing
to analysis the rest of elements in the matrix. Moreover,
It was found that the values of Te and Ne decrease with
increasing the trace elements concentrations in the aluminum
alloy samples.

For industrial application, LIBS could be applied in the
on-line industrial process that following up elemental con-
centration in aluminum alloys by only measuring Te and Ne
for the aluminum using an optical fiber probe. This could
be done by building a database containing the determined
values of Te and Ne for a range of standard aluminum alloy
matrices. Then the unknown aluminum alloy sample could
be identified just by comparing its measured Te and Ne
values with the previously stored values in our database.
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Use of satellite shift formula emerging in Quaternion (Q-) model of relativity theory
for explanation of Pioneer anomaly [1] is critically discussed. A cinematic scheme
more suitable for the case is constructed with the help of Q-model methods. An
appropriate formula for apparent deceleration resulting from existence of observer-
object relative velocity is derived. Preliminary quantitative assessments made on the
base of Pioneer 10/11 data demonstrate closure of the assumed “relativistic decele-
ration” and observed “Doppler deceleration” values.

1 Introduction. Limits of satellite-shift formula

Recently [1] there was an attempt to give an explanation
of Pioneer anomaly essentially using formula for relativistic
shift of planet’s fast satellites observed from the Earth. This
formula was derived within framework of Q-method deve-
loped to calculate relativistic effects using SO(1, 2) form-
invariant quaternion square root from space-time interval
rather than the interval itself [2]; in particular this advanta-
geously permits to describe relativistic motions of any non-
inertial frames. The last option was used to find mentioned
formula that describes cinematic situation comprising three
Solar System objects: the Earth (with observer on it), a
planet, and its satellite revolving with comparatively large
angular velocity. Due to existence of Earth-planet relative
velocity, not great though and variable but permanent, the
cycle frequency of satellite rotation (observed from the
Earth) is apparently less that in realty, i.e. the “planet’s
clock” is slowing down, and calculation shows that the gap is
growing linearly with time. Visually it looks that the satellite
position on its orbit is apparently behind an expected place.
For very fast satellites (like Jupiter’s Metis and Adrastea)
and for sufficiently long period of time the effect can probab-
ly be experimentally detected. Same effect exists of course
for Mars’s satellites and it is computed that monthly apparent
shift on its orbit of e.g. Phobos is about 50 meters (that is
by the way can be important and taken into account when
planning expedition of spacecraft closely approaching the
moon).

In paper of F. Smarandache and V. Christianto [1] the dis-
cussed formula was used to describe famous Pioneer effect,
implying that the last great acceleration the space probe
received when approached very close to Jupiter; in particular
data concerning Adrastea, whose location was as close to
Jupiter as the space probe, were cited in [1]. Combined with
ether drift effect the formula gives good coincidence (up to

0.26%) with value of emission angle shift required to explain
observation data of Pioneer’s signal Doppler residuals [3].

This surprisingly exact result nevertheless should not
lead to understanding that obtained by Q-method mathema-
tical description of a specific mechanical model can bear uni-
versal character and fit to arbitrary relativistic situation. One
needs to recognize that Pioneer cinematic scheme essentially
differs from that of the Earth-planet-satellite model; but if
one tries to explain the Pioneer effect using the same rela-
tivistic idea as for satellite shift then an adequate cinematic
scheme should be elaborated. Happily the Q-method readily
offers compact and clear algorithm for construction and de-
scription of any relativistic models. In Section 2 a model
referring observed frequency shift of Pioneer spacecraft sig-
nals to purely relativistic reasons is regarded; some quantita-
tive assessments are made as well as conclusions on ability
of the model to explain the anomaly. In Section 3 a short
discussion is offered.

2 Earth-Pioneer Q-model and signal frequency shift

Paper [3] enumerates a number of factors attracted to analyze
radio data received from Pioneer 10/11 spacecraft, among
them gravitational planetary perturbations, radiation pres-
sure, interplanetary media, General Relativity∗, the Earth’s
precession and nutation. It is worth noting here that one sig-
nificant factor, time delay caused by relative probe-observer
motion, is not distinguished in [3]. The fact is understand-
able: relative motion of spacecraft and observer on the Earth
is utterly non-inertial one; Special Relativity is not at all
able to cope with the case while General Relativity methods
involving specific metric and geodesic lines construction

∗Unfortunately paper [3] does not indicate to what depth General
Relativity is taken into account: whether only Newtonian gravity is modi-
fied by Schwarzschild, Kerr (or other) metrics, or cinematic effects are
regarded too.
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(with all curvature tensor components zero) or additional
vector transport postulates are mathematically difficult. Con-
trary to this the Q-relativity method easily allows building of
any non-inertial relativistic scheme; an example describing
a spacecraft (probe) and an Earth’s observer is given below.

Assume that Pioneer anomaly is a purely relativistic ef-
fect caused by existence of Earth-Pioneer relative velocity,
variable but permanent. Construct respective model using the
Q-method algorithm. Choose Q-frames. Let Σ=(q1,q2,q3)
be the Earth’s frame whose Cartesian directing vectors are
given by quaternion “imaginary” units qk obeying the multi-
plication rule∗

1qk = qk 1 = qk , qkql = −δkl + εklj qj . (1)

Let Q-frame Σ′ = {qk′} belong to a probe. Suppose for
simplicity that vectors q2, q3 are in the ecliptic plane as
well as (approximately) the probe’s trajectory. Assume that
vector q2 of Σ is always parallel to Earth-probe relative
velocity V . Now one is able to write rotational equation,
main relation of Q-relativity, which ties two frames

Σ′ = O
−iψ
1 Σ , (2)

here O−iψ1 is 3×3 orthogonal matrix of rotation about axis
No.1 at imaginary angle −iψ

O
−iψ
1 =




cos(iψ) − sin(iψ) 0

sin(−iψ) cos(iψ) 0

0 0 1



=




coshψ −i sinhψ 0

i sinhψ coshψ 0

0 0 1





thus “converting” frame Σ into Σ′. The first row in the
matrix equation (2)

q1′ = q1 coshψ − q2 i sinhψ

after straightforward algebra

q1′ = coshψ (q1−q2 i tanhψ) ⇒ q1′ =
dt

dt′
(q1−q2 iV ψ)

with usual relativistic relations

V = tanhψ, dt = dt′ coshψ (3)

acquires the form of basic cinematic space-time object of
Q-relativity

idt′q1′ = idtq1 + drq2 ,

a specific quaternion square root from space-time interval of
Special Relativity

(idt′q1′)(idt
′q1′) = (idtq1 + drq2)(idtq1 + drq2) ⇒

⇒ dt′2 = dt2 − dr2,

dt′ being proper time segment of the probe. Eq. (3) yields
ratio for probe-Earth signal period (small compared to time
of observation) T = T ′ coshψ, i.e. observed from Earth the

∗Latin indices are 3-dimensional (3D), δkl is 3D Kroneker symbol,
εjkl is 3D Levi-Civita symbol; summation convention is assumed.

period is apparently longer than it really is. Vice versa, ob-
served frequency f =1/T is smaller than the real one f ′

f =
1

T
=

1

T coshψ
=

f ′

coshψ
= f ′

√
1− (V/c)2, (4)

or for small relative velocity

f ∼= f ′
(

1−
V 2

2c2

)

.

This means that there exists certain purely apparent re-
lativistic shift of the probe’s signal detected by the Earth
observer

Δ f = f ′ − f = f ′
V 2

2c2
, or

Δ f

f ′
=
V 2

2c2
=

ε

c2
, (5)

ε being the probe’s kinetic energy per unit mass computed
in a chosen frame. Contrary to pure Doppler effect the shift
given by Eq. (5) does not depend on the direction of relative
velocity of involved objects since in fact it is just another
manifestation of relativistic delay of time. Light coming to
observer from any relatively (and arbitrary) moving body is
universally “more red” than originally emitted signal; as well
all other frequencies attributed to observed moving bodies
are smaller then original ones, and namely this idea was
explored for derivation of satellite shift formula.

Experimental observation of the frequency change (5)
must lead to conclusion that there exists respective “Doppler
velocity” VD entering formula well known from Special Re-
lativity

f =
f ′

√
1− (VD/c)2

(

1−
VD
c
cosβ

)

, (6)

β being angle between velocity vector and wave vector of
emitted signal. If β=0 and smaller relativistic correction are
neglected then Eq. (6) can be rewritten in the form similar
to Eq. (5)

Δ f

f ′
∼=
VD
c2
; (7)

comparison of Eqs. (7) and (5) yields very simple formula
for calculated (and allegedly existent) “Doppler velocity”
corresponding to observed relativistic frequency change

VD ∼=
ε

c
. (8)

Estimation of the value of VD can be done using picture
of Pioneer 10/11 trajectories (Fig.1) projected upon ecliptic
plane (provided in NASA report [4]); other spacecraft traces
are also shown, the Earth’s orbit radius too small to be
indicated.

Schematically the cinematic situation for Pioneer 10 is
shown at Fig. 2 where the trajectory looks as a straight line
inclined at constant angle λ to axis q2, while the Earth’s
position on its orbit is determined by angle α=Ωt, Ω=
= 3.98×10−7 s−1 being the Earth’s orbital angular velocity.
Vectors of the probe’s and Earth’s velocities in Solar Ecliptic
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Fig. 1: Spacecraft trajectories on the ecliptic plane. (After NASA
original data [4]. Used by permission.)

(SE) coordinate system∗ are respectively denoted as VP
and VE ; their vector subtraction gives relative Earth-probe
velocity V = VP −VE so that

VD(t) =
V 2

2c
=
V 2P + V

2
E − 2VPVE cos(Ωt−λ)

2c
, (9)

and respective “Doppler acceleration” is

aD = V̇D(t) =

=
VP V̇P−V̇PVE cos(Ωt−λ)+ΩVPVE sin(Ωt−λ)

c
.

(10)

In Eq. (10) the first term in the numerator claims exist-
ence of secular deceleration, since escaping from the Sun’s
and Jupiter’s gravity the probe is permanently decelerated,
V̇p< 0; the result is that the frequency gap shrinks giving
rise to pure relativistic blue shift. Other sign-changing terms
in right-hand-side of Eq. (10) are periodic (annual) ones;
they may cause blue shift as well as red shift. Thus Eq. (10)
shows that, although relative probe-Earth velocity incorpo-
rates into difference between real and observed frequency,
nevertheless secular change of the difference is to be related
only to relative probe-Sun velocity. Distinguish this term
temporary ignoring the annual modulations; then the secular
deceleration formula is reduced as

aSD ∼=
V̇P VP
c

. (11)

∗The SE is a heliocentric coordinate system with the z-axis normal to
and northward from the ecliptic plane. The x-axis extends toward the first
point of Aries (Vernal Equinox, i.e. to the Sun from Earth in the first day
of Spring). The y-axis completes the right handed set.

Fig. 2: Earth-Pioneer 10 cinematic scheme, where the trajectory
looks as a straight line inclined at constant angle λ to axis q2.

Below only radial components of the probe’s velocity
and acceleration in Newtonian gravity are taken into account
in Eq. (11); it is quite a rough assessment but it allows to
conceive order of values. The probe’s acceleration caused
by the Sun’s Newtonian gravity is

V̇P = −
GM�

R2
, (12)

G= 6.67×10−11 m3/kg×s2, M�= 1.99×1030 kg are respec-
tively gravitational constant and mass of the Sun. NASA
data [5] show that in the very middle part (1983–1990) of the
whole observational period of Pioneer 10 its radial distance
from the Sun changes from R∼= 28.8 AU= 4.31×1012 m to
R∼= 48.1 AU= 7.2×1012 m, while year-mean radial velocity
varies from VP = 15.18×103 m/s to VP = 12.81×103 m/s. Re-
spective values of the secular “relativistic deceleration” va-
lues for this period computed with the help of Eqs. (11), (12)
vary from aSD =−3.63×10−10 m/s2 to aSD =−1.23×10−10

m/s2. It is interesting (and surprising as well) that these re-
sults are very close in order to anomalous “Doppler decele-
ration” of the probe aP =−(8±3)×10−10 m/s2 cited in [3].

Analogous computations for Pioneer 11, as checking
point, show the following. Full time of observation of Pio-
neer 11 is shorter so observational period is taken from 1984
to 1989, with observational data from the same source [5].
Radial distances for beginning and end of the period are
R∼=15.1AU=2.26×1012m, R∼=25.2AU=3.77×1012m; re-
spective year-mean radial velocities are VP = 11.86×103 m/s,
VP = 12.80×103 m/s. Computed “relativistic deceleration”
values for this period are then aSD =−10.03×10−10 m/s2,
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aSD =−5.02×10−10 m/s2: this is even in much better cor-
relation (within limits of the cited error) with experimental
value of aP .

3 Discussion

Quantitative estimations presented above allow to conclude:
additional blue shift, experimentally registered in Pioneer 10
and 11 signals, and interpreted as Sun-directed acceleration
of the spacecraft to some extent, support the assumption
of pure relativistic nature of the anomaly. Of course one
notes that while Pioneer 11 case shows good coincidence
of observed and calculated values of deceleration, values of
aSD for Pioneer 10 constitute only (45–15)% of observed
Doppler residual; moreover generally in this approach “rela-
tivistic deceleration” is a steadily decreasing function, while
experimentally (though not directly) detected deceleration
aP is claimed nearly constant. These defects could find ex-
planation first of all in the fact that a primitive “Newtonian
radial model” was used for assessments. Preliminary but
more attentive reference to NASA data allows noticing that
observed angular acceleration of the probes too could signi-
ficantly incorporate to values of “relativistic deceleration”.
This problem remains to be regarded elsewhere together with
analysis of the angular acceleration itself.
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Single photon experiments have been used as one of the most striking illustrations of
the apparently nonclassical nature of the quantum world. In this review we examine
the mathematical basis of the principle of complementarity and explain why the
Englert-Greenberger duality relation is not violated in the configurations of Unruh
and of Afshar.

1 Introduction

In classical physics if we have two distinct physical states
ψ1 6=ψ2 of a physical system and we know that ψ1ORψ2
is a true statement we can easily deduce that ψ1XORψ2 is
a true statement too. In Quantum Mechanics however we
encounter a novel possibility for quantum coherent superpo-
sition. It has been verified in numerous experiments that a
qubit can be prepared in a linear combination of two ortho-
gonal states, and this parallel existence in the quantum realm,
in the form ψ1ANDψ2, is what requires caution when we
draw conclusions from a given set of premises — the truth of
ψ1ORψ2 now does not lead to the truth of ψ1XORψ2.∗ If a
qubit at point x is in a state ψ1XORψ2 then ψ1 and ψ2 are
called distinguishable states. Logically, if the qubit at point
x is in a state ψ1XNORψ2 the two states ψ1 and ψ2 will
be indistinguishable. From the requirement for mathematical
consistency it follows that two states ψ1 and ψ2 cannot be
both distinguishable and indistinguishable at the same time.

The concept of distinguishability is intimately tied with
the notion of quantum complementarity. While the quantum
amplitudes evolve linearly according to the Schrödinger eq-
uation, the physical observables are obtained from the under-
lying quantum amplitudes through nonlinearity prescribed
by Born’s rule.

Thus if quantum states ψ1(x) 6=0 and ψ2(x) 6=0 are in-
distinguishable at a point x (coherent superposition), that
is ψ1(x)ANDψ2(x), the probability distribution (observed
intensity) is given by P = |ψ1(x) + ψ2(x)|2. The density

matrix of the setup is a pure type one, ρ̂=
(
|ψ1|

2 ψ1ψ
∗
2

ψ2ψ
∗
1 |ψ2|

2

)
, and

ρ̂= ρ̂2 holds. The two quantum states do quantum mechan-
ically interfere. In Hilbert space the two functions are not

∗Such a direct interpretation of the AND gate as having corresponding
quantum coherent superposed reality is consistent with the prevailing view
among working physicists that resembles Everett’s many worlds interpreta-
tion (MWI) of Quantum Mechanics in many ways (Tegmark and Wheeler
[11]). However, the reality of quantum superposition is not a characteristic
feature only of MWI. The transactional interpretation (TI) proposed by
Cramer [4] and quantum gravity induced objective reduction (OR) proposed
by Penrose [8] both admit of the reality of superposed quantum waves,
respectively superposed space-times.

ψ1 ψ2 XOR output

0 0 0

0 1 1

1 0 1

1 1 0

ψ1 ψ2 XNOR output

0 0 1

0 1 0

1 0 0

1 1 1

Table 1: Distinguishable –vs– indistinguishable states

orthogonal and the overlap integral is not zero (Vedral [12]):
∫
ψ∗1(x) ψ2(x) dx 6= 0 . (1)

Alternatively, if quantum states ψ1(x) and ψ2(x) are dis-
tinguishable at a point x (incoherent superposition), that is
ψ1(x)XORψ2(x), then the probability distribution is given
by P = |ψ1(x)|2 + |ψ2(x)|2. The (reduced) density matrix

is mixed type one, ρ̂ =
(
|ψ1|

2 0

0 |ψ2|
2

)
, and ρ̂ 6= ρ̂2. The two

quantum states do not quantum mechanically interfere but
just sum classically. In Hilbert space the two functions are
orthogonal and the overlap integral is zero:

∫
ψ∗1(x) ψ2(x) dx = 0 . (2)

The observable value given by P should not necessarily
describe an incoherently superposed state. It might as well
describe a fictious statistical average of two single amplitude
experiments in which either only ψ1(x) or only ψ2(x) parti-
cipates. In this case however ψ1(x) and ψ2(x) should be
separately normalized to 1, and as elements in the main
diagonal of the density matrix must be taken the statistical
probabilities defining the mixture (Zeh [14]).

Next, despite the fact that qubits generally might take
more than one path in a coherent superposition (Feynman
and Hibbs [7]), we will still show that the “which way”
claims (“welcher weg”, in German) can be derived rigour-
ously within the quantum mechanical formalism. The “which
way” claim will be defined as an existent one-to-one corres-
pondence (bijection) between elements of two sets (typically
input state and observable).
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L1[
|ψ〉
]
→

path 1[

i
1
√
2
|ψ1〉

]

+

path 2[
1
√
2
|ψ2〉

]

→

path 3[

−
1
√
2
|ψ1〉

]

+

path 4[

i
1
√
2
|ψ2〉

]

→

D1[

−
1

2
|ψ1〉 −

1

2
|ψ2〉

]

+

D2[

−i
1

2
|ψ1〉+ i

1

2
|ψ2〉

]

(3)

Fig. 1: Mach-Zehnder interferometer. Incoming photon at L1
quantum mechanically self-interferes in order to produce its own
full cancelation at detector D2 and recover itself entirely at detector
D1. The opposite holds for the photon entering at L2. Legend: BS,
beam splitter, M, fully silvered mirror.

2 The Mach-Zehnder interferometer

In order to illustrate the “which way” concept let us introdu-
ce the Mach-Zehnder interferometer, from which more com-
plicated interferometers can be built up. The setup is sym-
metric and contains two half-silvered and two fully silvered
mirrors positioned at angle π

4 to the incoming beam (Fig. 1).
The action of the beam splitter (half-silvered mirror) will
be such as to transmit forward without phase shift 1√

2
ψ of

the incoming quantum amplitude ψ, while at the same time
reflects perpendicularly in a coherent superposition i 1√

2
ψ of

it. The action of the fully silvered mirrors will be such as to
reflect perpendicularly all of the incoming amplitude ψ with
a phase shift of π

2 , which is equivalent to multiplying the
state by ei

π
2 = i (Elitzur and Vaidman [6]; Vedral [12]).

In this relatively simple setup it can be shown that a pho-
ton entering at L1 will always be detected by detector D1,
whilst a photon entering at L2 will always be detected by de-
tector D2. It is observed that the photon quantum mechanic-
ally destructively self-interferes at one of the detectors, whilst
it quantum mechanically constructively self-interferes at the
other detector, creating a one-to-one correspondence between
the entry point and the exit point in the Mach-Zehnder inter-
ferometer.

Let the incoming amplitude Ψ at L1 be normalized so
that |Ψ|2=1. The evolution of the wave package in the
interferometer branches is described by formula (3), where
|ψ1〉 refers to passage along path 1 and |ψ2〉 refers to passage
along path 2.

Since the two interferometer paths are indistinguishable

one easily sees that at D1 one gets constructive quantum
interference, while at D2 one gets destructive quantum inter-
ference. The inverse will be true if the photon enters at L2.
Therefore we have established a one-to-one correspondence
(bijection) between the entry points and detector clicks. The
indistinguishability of ψ1 and ψ2 allows for quantum self-
interference of Ψ at the detectors. Insofar as we don’t specify
which path of the interferometer has been traversed, allow
quantum interference of amplitudes at the exit gates coming
from both interferometer paths, so ψ1ANDψ2 (indistin-
guishable ψ1 and ψ2), we will maintain the one-to-one cor-
respondence between entry points and detectors (distinguish-
able D1 and D2).

If we however block one of the split beams ψ1 or ψ2,
or we label ψ1 and ψ2, e.g. by different polarization filters,
V (vertical polarization) and H (horizontal polarization), we
will lose the quantum interference at the exit gates and the
one-to-one correspondence between entry points and exit
points will be lost. Thus we have encountered the phenom-
enon of complementarity. We can determine which of the
interferometer paths has been taken by the photon, hence
ψ1XORψ2 (distinguishable ψ1 and ψ2), and destroy the
one-to-one correspondence between entry points and exit
gates (indistinguishable D1 and D2). A photon entering at
L1 (or L2) will not self-interfere and consequently could be
detected by either of the detectors with probability of 1

2 .
Thus we have shown that quantum coherent superposi-

tion of photon paths itself does not preclude the possibility
for one to establish one-to-one correspondence (bijection)
between two observables (entry and exit points). However,
it will be shown that the bijection L1→D1, L2→D2 is
valid for the discussed mixed case in which we have input
L1XORL2, yet might not be true in the case where the input
points L1 and L2 are in quantum coherent superposition
(L1ANDL2) as is the case in Unruh’s setup.

3 Unruh’s interferometer

Unruh’s thought experiment is an arrangement that tries to
create a more understandable version of Afshar’s experiment,
which will be discussed later. Unruh’s interferometer is es-
sentially a multiple pass interferometer with two elementary
building blocks of the Mach-Zehnder type. In Fig. 2 each
arm of the interferometer is labelled with a number, and a
photon enters at L1.

Application of Feynman’s sum over histories approach
leads us to the correct quantum mechanical description of
the experiment. Expression (4) is Dirac’s ket notation for
the quantum states evolving in the interferometer arms.
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L1[
|ψ〉
]
→

path 1[

i
1
√
2
|ψ1〉

]

+

path 2[
1
√
2
|ψ2〉

]

→

path 3[

−
1
√
2
|ψ1〉

]

+

path 4[

i
1
√
2
|ψ2〉

]

→

→

path 5[

−i
1

2
|ψ1〉+ i

1

2
|ψ2〉

]

+

path 6[

−
1

2
|ψ1〉 −

1

2
|ψ2〉

]

→

path 7[
1

2
|ψ1〉 −

1

2
|ψ2〉

]

+

path 8[

−i
1

2
|ψ1〉 − i

1

2
|ψ2〉

]

→

→

D1[[
1
√
8
|ψ1〉 −

1
√
8
|ψ2〉

]

+

[
1
√
8
|ψ1〉+

1
√
8
|ψ2〉

]]

+

D2[[

i
1
√
8
|ψ1〉 − i

1
√
8
|ψ2〉

]

+

[

−i
1
√
8
|ψ1〉 − i

1
√
8
|ψ2〉

]]

(4)

Fig. 2: Unruh’s version of a multiple pass interferometer setup that
captures the essence of Afshar’s experiment. It is composed of two
elementary building blocks described in the text, and the incoming
photon at L1 has an equal chance to end either at D1, or at D2.

3.1 Unruh’s “which way” claim

Unruh obstructed path 1 and correctly argues that the pho-
tons coming from the source that pass the first half-silvered
mirror and take path 2 (that is they are not reflected to be
absorbed by the obstruction located in path 1) will all reach
detector D2. These are exactly 50% of the initial photons.
The explanation is the one provided in the analysis of the
Mach-Zehnder interferometer. So Unruh shows that there is
a one-to-one corespondence between path 2 and detector
D2 when path 1 is blocked. Similarly he argues that in
the inverted setup with the obstruction in path 2, all the
photons that take path 1 (that is they are not absorbed by
the obstruction located in path 2) will reach detector D1.
This suggests a one-to-one correspondence between path 1
and detector D1 when path 2 is blocked.

Note at this stage that Unruh investigates a statistical
mixture of two single path experiments. Therefore the case
is ψ1XORψ2, both paths ψ1 and ψ2 are distinguishable
because of the existent obstruction, and ψ1 and ψ2 do not
quantum cross-interfere with each other in the second block
of the interferometer (in the first block they are separated

spatially, in the second branch they are separated temporally).
Thus in the mixed setup there is a one-to-one correspondence
between paths and exit gates due to the distinguishability of
ψ1 and ψ2, that is, there is no quantum interference between
ψ1 and ψ2 in the second building block of Unruh’s inter-
ferometer.

Unruh then unimpedes both paths ψ1 and ψ2, and consi-
dering the statistical mixture of the two single path experi-
ments argues that photons that end up at detector D1 have
taken path ψ1, while those ending at detector D2 come from
path ψ2. The logic is that the second building block of the
interferometer has both of its arms open, and the one-to-
one correspondence is a result of self-interference of ψ1 and
self-interference of ψ2 respectively.

The problem now is to secure the conclusion that “which
way” information in the form of a one-to-one correspon-
dence between paths ψ1 and ψ2 and the two detectors still
“remains” when both paths 1 and 2 are unimpeded? The
only way to justify the existence of the bijection is to take
the following two statements as axioms: (i) ψ1 and ψ2 do
not quantum cross-interfere with each other; (ii) ψ1 and ψ2
can only quantum self-interfere. Concisely written together,
both statements reduce to one logical form, ψ1XORψ2 i.e.
ψ1 and ψ2 are orthogonal states. Thus Unruh’s “which way”
statement when both paths of the interferometer are unim-
peded is equivalent to the statement that the density matrix
of the photons at the detectors is a mixed one. Thus stated
Unruh’s “which way” claim, which is mathematically equiv-
alent with the claim for a mixed state density matrix of the
setup, is subject to experimental test. Quantum mechanically
one may perform experiments to find whether or not two in-
coming beams are quantum coherent (pure state) or incohe-
rent (mixed state). Hence Unruh’s thesis is experimentally
disprovable, and in order to keep true his thesis Unruh must
immunize it against experimental test by postulating that
one cannot experimentally distinguish the mixed state from
the pure state. Otherwise one may decide to let the two
beams (led away from the detectors) cross each other. If
an interference pattern is build up then one will have experi-
mental verification that the density matrix of the setup is
not of the mixed type (ψ1XORψ2, ρ̂ 6= ρ̂2), but one of pure
type (ψ1ANDψ2, ρ̂= ρ̂2). It is not conventional to think that
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the mixed state cannot be experimentally distinguished from
the pure state, and that is why Unruh’s “which way” claim
for the double path coherent setup is incorrect. One notices
however that if each of the paths 1 and 2 is labelled by
different polarization filters, e.g. V and H, then the density
matrix of the setup will be a mixed one (incoherent superpo-
sition in the second interferometer block), and the “which
way” claim will be correct because the different polariza-
tions will convert ψ1 and ψ2 into orthogonal states. If the
two beams lead away from the detectors and cross, they will
not produce an interference pattern.

3.2 Correct “no which way” thesis

We have already shown that if one argues that there is “which
way” correspondence, he must accept that ψ1 and ψ2 are
distinguishable, and hence that they will not be able to cross-
interfere at arms 5–8 of the interferometer.

Now we will show the opposite; that postulating “unmea-
sured destructive interference” in arms 5 and 7 of the inter-
ferometer, regardless of the fact that the interference is not
measured, is sufficient to erase completely the “which way”
information. Postulating quantum interference in arms 5–8
is equivalent to postulating indistinguishability (quantum co-
herent superposition) of ψ1 and ψ2, which is equivalent to
saying that ψ1 and ψ2 can annihilate each other.

The quantum amplitude at D1 is:

D1 :

[
1
√
8
|ψ1〉 −

1
√
8
|ψ2〉

]

+

[
1
√
8
|ψ1〉+

1
√
8
|ψ2〉

]

. (5)

The first two members in the expression have met each
other earlier, so they annihilate each other. What remains
is 1√

8
|ψ1〉+ 1√

8
|ψ2〉 and when squared gives 1

2 |Ψ|
2, where

ψ1 and ψ2 contribute equally to the observed probability
of detecting a photon. Now is clear why one cannot hold
consistently both the existence of “which way” one-to-one
correspondence and existent but undetected interference at
paths 5 and 6.

• If one postulates ψ1XORψ2 then 1√
8
|ψ2〉 − 1√

8
|ψ2〉

will interfere at the exit and the resulting observable
intensity 1

2 |Ψ|
2 will come from squaring 1√

8
|ψ1〉+

+ 1√
8
|ψ1〉 i.e. only from path 1.

• If one postulates ψ1ANDψ2 then 1√
8
|ψ1〉 − 1√

8
|ψ2〉

will interfere first, and the resulting observable inten-
sity 1

2 |Ψ|
2 will come from squaring 1√

8
|ψ1〉 + 1√

8
|ψ2〉

i.e. both paths 1 and 2.

The “mixing of the two channels” at D2 is analogous.

D2:

[

i
1
√
8
|ψ1〉−i

1
√
8
|ψ2〉

]

+

[

−i
1
√
8
|ψ1〉−i

1
√
8
|ψ2〉

]

. (6)

• If one postulates ψ1XORψ2 then i 1√
8
|ψ1〉− i 1√

8
|ψ1〉

will interfere at the exit and the obtained observable

intensity 1
2 |Ψ|

2 will come from squaring −i 1√
8
|ψ2〉−

− i 1√
8
|ψ2〉 i.e. only from path 2.

• If one postulates ψ1ANDψ2 then i 1√
8
|ψ1〉 − i 1√

8
|ψ2〉

will interfere first, and the obtained observable inten-
sity 1

2 |Ψ|
2 will come from squaring of −i 1√

8
|ψ1〉−

− i 1√
8
|ψ2〉 i.e. both paths 1 and 2.

3.3 Inconsistent interpretation: “which way” + pure
state density matrix

It has been suggested in web blogs and various colloquia,
that only measurement of the interference at arms 5–8 dis-
turbs the “which way” interpretation, and if the destructive
quantum interference is not measured it can peacefully co-
exist with the “which way” claim. Mathematically formu-
lated the claim is that there is “which way” one-to-one cor-
respondence between paths 1 and 2, and D1 and D2 respec-
tively, while at the same time the whole setup is described
by a pure state density matrix. Afshar [1–3] claims an equiv-
alent statement for his setup insisting on a “which way” +
pure state density matrix.

We will prove that assuming a “which way” + pure state
density matrix leads to mathematical inconsistency. In order
to show where the inconsistency arises we should rewrite the
expressions of the quantum amplitudes at the two detectors
in a fashion where each of the wavefunctions ψ1 and ψ2 is
written as a superposition of its own branches |ψ15〉, |ψ16〉
and |ψ25〉, |ψ26〉, respectively, where the second subscript
5 or 6 denotes a branch in the second building block of
Unruh’s interferometer:

D1 :
1
√
8
|ψ15〉 −

1
√
8
|ψ25〉+

1
√
8
|ψ16〉+

1
√
8
|ψ26〉 (7)

D2 : i
1
√
8
|ψ15〉−i

1
√
8
|ψ25〉−i

1
√
8
|ψ16〉−i

1
√
8
|ψ26〉. (8)

From the “which way” claim it follows that the contribu-
tions to the final intensity (squared amplitude) detected at
D1 or D2 must come from ψ1 or ψ2 only. This is possible if
and only if the individual branches 5 or 6 of each function
are indistinguishable, so that the claim mathematically yields
quantum destructive interference (annihilation) between ψ15
and ψ16, and between ψ25 and ψ26, respectively.

However to postulate at the same time that the density
matrix is a pure type one i.e. there is “undetected negative
quantum cross-interference” at branch 5 between ψ1 and ψ2
(self-interference of Ψ) is equivalent to saying that paths
5 and 6 are distinguishable. We have arrived at a logical
inconsistency.

Paths 5 and 6 cannot be both distinguishable and indis-
tinguishable for the quantum state Ψ — this is what the
complementarity principle says.

Due to basic arithmetic axiom ψ15 cannot entirely anni-
hilate both ψ16 and ψ25. Thus the complementarity principle
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itself is a manifestation of the underlying mathematical for-
malism and one ends up with an XOR bifurcation of two
inconsistent with each other outcomes. The two alternative
outcomes do not “complement” each other instead they lo-
gically exclude each other.

We have therefore proved that within standard Quantum
Mechanics one cannot claim both “which way” and pure
state of the density matrix at the same time. Whether the
quantum interference at branch 5 is measured or not does
not matter. Its consistent postulation is sufficient to rule out
the “which way information”.

3.4 Retrospective reconstructions and complementarity

Now notice that arguing that photons possess “which way”
information implies that the photon density matrix at detec-
tors is that of a mixed type. We have denoted the quantum
amplitude through path 1 by ψ1, and the quantum amplitude
through path 2 by ψ2. Therefore when we retrospectively
reconstruct the photon probability distribution function we
should use the correct complementarity rule P = |ψ1|2 +
+ |ψ2|2, and we must logically and consistently argue that
there is no negative interference at path 5 — simply, we
do not just add ψ1 to ψ2 but first square each of those
amplitudes. Basically, if the two paths ψ1 and ψ2 are distin-
guishable, then the interference terms must be zero, and the
(reduced) density matrix will be of mixed type i.e. one with
off-diagonal elements being zeroes. To accept that there is
“which way” information is equivalent to accepting that the
setup with both paths unobstructed is a statistical mixture of
the two single path setups with obstructions so the comple-
mentarity rule for making retrospective predictions is P =
= |ψ1|2+ |ψ2|2. This alternative formulation of the principle
of complementarity is in a form of instruction as to how
to make the correct retrospective reconstruction of a mixed
state setup — it says that mixed state setups should be retro-
spectively reconstructed with P = |ψ1|2+ |ψ2|2 distribution.

However, if the beams along paths 1 and 2 interfere so
that no photons are expected along path 5, the setup is a “no
which way” pure state setup. In this case the retrospective
photon probability distribution should be calculated as P =
= |ψ1+ψ2|2. Thus the alternative formulation of the prin-
ciple of complementarity in a form of instruction as to how
to make the correct retrospective reconstruction of pure state
setup is — pure state setups should be retrospectively recon-
structed with the P = |ψ1+ψ2|2 distribution.

Taken together the above two instructions provide a clear
idea of complementarity — one cannot retrospectively re-
cover a given setup with both types of probability distribu-
tions P = |ψ1|2+ |ψ2|2 and P = |ψ1+ψ2|2 at the same
time, because otherwise you will produce a mathematical
inconsistency.

One sees that, in some special cases for a given point x
both probability distributions coincide, so P(x)=P (x), and

if one observes only the point x the choice of how to retro-
spectively reconstruct the setup might be tricky. It is unwise
to retrospectively reconstruct a pure state setup with P =
= |ψ1|2+ |ψ2|2 probability distribution. One will not arrive
at a direct experimental contradiction if he looks only within
the region where P(x)=P (x). Yet, any measurement out-
side this region will reveal the improper retrospective recon-
struction.

4 Afshar’s setup

In Afshar’s setup, light generated by a laser passes through
two closely spaced circular pinholes. After the dual pinholes,
a lens refocuses the light so that each image of a pinhole is
received by a separate photo-detector. Considering a mixture
of single pinhole trials Afshar argues that a photon that
goes through pinhole 1 impinges only on detector D1, and
similarly, if it goes through pinhole 2 impinges only on
detector D2. Exactly as in Unruh’s setup, Afshar investigates
a statistical mixture ψ1XORψ2 and after that draws non
sequitur conclusions for the ψ1ANDψ2 setup. Thus accord-
ing to Afshar, there is a one-to-one correspondence between
pinholes and the corresponding images even when the light
coherently passes through both pinholes. While in classical
optics this is a straightforward conclusion, in quantum cohe-
rent setups we will shortly prove that each image of a pinhole
in the coherent dual pinhole setup is counter-intuitively as-
sembled by light coming from both pinholes at once.

Afshar [1, 2] claimed (erroneously) that Unruh’s setup
(originally intended to disprove Afshar’s reasoning) is not eq-
uivalent to Afshar’s setup, and therefore that the “plane con-
structed by Unruh has no wings”. At first glance one might
argue that in Afshar’s setup at image 1 comes only quantum
amplitude from pinhole 1, and zero amplitude from pinhole
2, and at image 2 comes amplitude from pinhole 2 and zero
from pinhole 1. The putative difference between Unruh’s
setup and Afshar’s setup at first glance seems to be this:

• Afshar’s setup: image 1: 1√
2
ψ1+0×ψ2 and image 2:

1√
2
ψ2 + 0 × ψ1. The zero looks “physically unstruc-

tured”, not a result of negative interference of positive
and negative amplitudes contributed from the alternat-
ive pinhole.

• Unruh’s setup: D1: 1√
2
ψ1+

[
1√
8
ψ2− 1√

8
ψ2
]

and D2:
1√
2
ψ2 +

[
1√
8
ψ1 − 1√

8
ψ1
]
. In this case the zero mani-

fests “with physical structure”, and is a result of negat-
ive interference of positive and negative amplitudes
contributed from the alternative path.

If one shows that the “no which way” proof applied to
Unruh’s setup is not applicable to Afshar’s setup, he will
also show that Unruh’s plane is indeed without wings. If
in contrast, one can prove that in Afshar’s setup the zero
pinhole amplitude contribution at the opposite image is gene-
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Fig. 3: Action of a lens in a dual pinhole setup — pinholes 1 and
2 create two peak images, 1′ and 2′, F denotes the focal plane of
the lens, I denotes the image planes of the lens, G is the grid that
can be used to verify the existence of an interference pattern in the
coherent setup when both pinholes are open. The image is released
under GNU free documentation licence by A. Drezet.

rated by negative quantum interference, he will show that
Unruh’s setup is completely equivalent to Afshar’s setup.
Thus our criticism of Afshar will be the same as in Unruh’s
case — logical fallacy and mathematical error in claiming
both pure state and “which way”.

It will now be shown that Afshar’s setup is equivalent
to Unruh’s setup. In brief Afshar has dual pinholes, a lens,
and detectors that record photons streaming away from the
pinhole images created at the image plane of the lens (Afshar
[3]). Analogously to Unruh’s setup one closes pinhole 1 and
sees that light goes only to image 2, then closes pinhole 2
and sees that light goes only to image 1. One may, analog-
ously to Unruh’s setup, inconsistently postulate “which way”
+ pure state density matrix. However, one should note that,
in the single pinhole experiments, at the image plane of
the lens the zero light intensity outside the central Airy
disc of the pinhole image is a result of destructive quantum
interference. There are many faint higher order maxima and
minima outside the central Airy disc resulting from quantum
interference. In order for the two pinhole images to be resolv-
able∗ the image of the second pinhole must be outside the
central Airy disc, and located in the first negative Airy ring
of the first pinhole image (or further away). Therefore in the
case of open pinhole 2 at image 1 there are destructively
interfering quantum amplitudes contributed by pinhole 2 be-
cause image 1 resides in an Airy minimum of image 2. In
contrast at image 2 the waves from pinhole 2 will construc-
tively interfere. If both pinholes are open and some of the
waves coming from pinhole 1 cross-interfere with waves
coming from pinhole 2 in the space before the lens, there
will remain a contribution by pinhole 2 at image 1 that will
compensate exactly the decrease of quantum waves contri-
buted by pinhole 1 at image 1. Now one has to “choose”

∗One should cautiously note that resolvable images of a pinhole is not
equivalent with distinguishable pinholes. Resolvable means that the two
images of a pinhole are separated and not fused into a single spot. The
distinguishability of the pinholes has to be proven by existent bijection
between an image and a pinhole.

which amplitudes will annihilate, and which will remain to
be squared. If one postulates the existent interference in the
space before the lens (or after the lens as is the case at the
focal plane of the lens) then the annihilation between ψ1 and
ψ2 at the dark fringes will be equivalent to the interference at
path 5 of Unruh’s setup, and the final observed intensities at
the detectors cannot be claimed to come only from one of the
pinholes. Thus Afshar is wrong to say that “Unruh’s plane
is without wings”. Afshar’s setup is equivalent to Unruh’s
setup. The treatment of complementarity is analogous. In
the case with both pinholes open there is no “which way”
information in Afshar’s experiment. Counter-intuitively each
image of a pinhole is assembled from light coming by half
from both pinholes.

An exact calculation is adduced by Qureshi [9] where he
shows that the quantum state at the overlap region where the
dark interference fringes are detected can be written as

ψ(y, t) = aC(t) e
−
y2+y2

0
Ω(t)

[

cosh
2yy0
Ω(t)

+ sinh
2yy0
Ω(t)

]

+

+ bC(t) e
−
y2+y2

0
Ω(t)

[

cosh
2yy0
Ω(t)

− sinh
2yy0
Ω(t)

]

,

(9)

where C(t)= 1

(π/2)1/4
√
ε+2i h̄t/mε

, Ω(t)= ε2+2i h̄t/m, a is

the amplitude contribution from pinhole 1, b is the amplitude
contribution from pinhole 2, ε is the width of the wave-
packets, 2y0 is the slit separation.

For Afshar’s setup a = b = 1√
2

so the sinh terms cancel
out at the dark fringes and what is left is

ψ(y, t) =
1

2
aC(t)

[

e
− (y−y0)

2

Ω(t) + e
− (y+y0)

2

Ω(t)

]

+

+
1

2
bC(t) e

−
y+y2

0
Ω(t)

[

e
− (y−y0)

2

Ω(t) + e
− (y+y0)

2

Ω(t)

]

.

(10)

If a lens is used, after the interference has occurred,

to direct the e−
(y−y0)

2

Ω(t) part into one detector and the part

e
− (y+y0)

2

Ω(t) into the other detector, one easily sees that the
amplitudes from each slit evolve into a superposition of two
parts that go to both detectors. Note that the coefficient of
the part from a slit to each of the detectors becomes exactly
1√
8

as we have obtained via analysis of Unruh’s setup.

5 Englert-Greenberger duality relation

Afshar claimed he has violated the Englert-Greenberger dua-
lity relation V 2 +D2 6 1, where V stands for visibility and
D stands for distinguishability and are defined as:

D =

∣
∣|ψ1|2 − |ψ2|2

∣
∣

|ψ1|2 + |ψ2|2
, (11)

V =
2|ψ1||ψ2|

|ψ1|2 + |ψ2|2
. (12)
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Since the duality relation is a mathematically true state-
ment (theorem) then it cannot be disproved by experiment
and certainly means that Afshar’s arguments, through which
he violates the duality relation, are inconsistent. Indeed the
calculation of V and D depends on the principle of comple-
mentarity and distinguishability of the states ψ1 and ψ2. The
calculation of V and D in Unruh’s and Afshar’s setup is
different for pure state and mixed state setups.

5.1 Mixed state setup

In view of the foregoing explanation for Unruh’s claim with
mixed density matrix, the calculation simply yields D = 1
and V = 0. This will be true if we label the paths by different
polarization filters, or if we investigate a statistical mixture
of two single path/slit experiments.
D1: |ψ1| = 1√

2
, |ψ2| = 0 ,

D2: |ψ1| = 0, |ψ2| = 1√
2

.

Thus the two paths 1 and 2 are distinguishable and they
do not quantum mechanically cross-interfere. This cannot
be said for the quantum coherent setup with both paths/slits
unimpeded.

5.2 Pure state setup

The correct analysis of Unruh’s and Afshar’s setup suggests
a pure state density matrix, and amplitudes for each of the
exit gates being |ψ1| = |ψ2| = 1√

8
. Thus one gets D = 0

and V = 1:
D1:|ψ1| = 1√

8
, |ψ2| = 1√

8
,

D2:|ψ1| = 1√
8
, |ψ2| = 1√

8
.

The two paths 1 and 2 are indistinguishable, and they
quantum mechanically cross-interfere.

6 Conclusions

It is wrongly believed that the lens at the image plane always
provides “which way” information (Afshar [1, 2]; Drezet [5]).
However we have shown that Afshar’s analysis is inconsis-
tent, and that the distinguishability and visibility in Afshar’s
setup are erroneously calculated by Afshar and colleagues
[3]. The two peak image at the image plane in Afshar’s
setup, even without wire grid in the path of the photons, is an
interference pattern and does not provide any “which way”
information. Exact calculations for the lens setup have been
performed by Qureshi [9] and Reitzner [10], showing that
once the two paths interfere the interference cannot be un-
done, and the “which way” information cannot be regained.
The probability distribution can look like the one in a mixed
setup, but the retrospective reconstruction of the setup for
times before the detector click must be done with interfering
waves which do not carry the “which way” information.
Afshar’s mathematics is inconsistent, hence Afshar’s setup

does not disprove MWI, or any other rival interpretation of
Quantum Mechanics that opposes the standard Copenhagen
paradigm.
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Upper Limit of the Periodic Table and Synthesis of Superheavy Elements
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For the first time, using the heaviest possible element, the diagram for known nuclides
and stable isotopes is constructed. The direction of search of superheavy elements is
indicated. The Periodic Table with an eighth period is tabulated.

1 Shell construction of a nucleus, magic numbers

The nucleus of an atom is the central part of the atom,
consisting of positively charged protons (Z) and electrically
neutral neutrons (N). They interact by means of the strong
interaction.

If a nucleus of an atom is consider as a particle with a
certain number of protons and neutrons it is called a nuclide.
A nuclide is that version of an atom defined by its mass
number (A=Z+N), its atomic number (Z) and a power
condition of its nucleus. Nuclei with identical numbers of
protons but different numbers of neutrons are isotopes. The
majority of isotopes are unstable. They can turn into other
isotopes or elements due to radioactive disintegration of the
nucleus by one of the following means: β-decay (emission of
electron or positron), α-decay (emission of particles consist-
ing of two protons and two neutrons) or spontaneous nuclear
fission of an isotope. If the product of disintegration is also
unstable, it too breaks up in due course, and so on, until a
stable product is formed.

It has been shown experimentally that a set of these par-
ticles becomes particularly stable when the nuclei contain
“magic” number of protons or neutrons. The stable structure
can be considered as shells or spherical orbits which are
completely filled by the particles of a nucleus, by analogy
with the filled electronic shells of the noble gases. The num-
bers of particles forming such a shell are called “magic”
numbers. Nuclei with magic number of neutrons or protons
are unusually stable and in nuclei with one proton or other
than a magic number, the neutron poorly binds the super-
fluous particle. The relevant values of these numbers are 2,
8, 20, 28, 50, 82, and 126, for which there exists more stable
nuclei than for other numbers. Calculations indicate exist-
ence of a nucleus with filled shell at Z = 114 and N= 184
(298114) which would be rather stable in relation to spontan-
eous division. There is experimental data for the connexion
of magic numbers to a nucleus with Z= 164 [1, 2]. J. Oga-
nesyan [3] has alluded to a Rutherford-model atom which as-
sumes existence of heavy nuclei with atomic numbers within
the limits of Z∼ 170. At the same time there is a point of
view holding that superheavy elements (SHEs) cannot have
Z> 125 [4]. In October 2006 in was reported that element
118 had been synthesized in Dubna (Russia), with atomic
weight 293 [5]. (It is known however, that this weight is

understated, owing to technical difficulties associated with
the experiments.)

2 The N-Z diagram of nuclei, islands of stability

The search for superheavy nuclei, both in the Nature and by
synthesis as products of nuclear reactions, has intensified. In
the 1970’s 1200 artificially produced nuclei were known [6].
Currently the number is ∼3000, and it is estimated that this
will increase to ∼6500 [7].

In Fig. 1 the neutron-proton diagram of nuclei of stable
and artificial isotopes [8–10] is presented.

Light stable or long-lived nuclei which arrangement can
be arranged in a valley of stability as shown by small circles.
The top set of border points represents a line of proton
stability and bottom a line of neutron stability. Beyond these
limits begins the so-called, “sea of instability”. There is
apparently only a narrow strip of stability for which there
exists a quite definite parity, N/Z. For nuclei with atomic
weight below 40, the numbers of protons and neutrons are
approximately identical. With increase in the quantity of
neutrons the ratio increases, and in the field of A=(N+Z)=
= 250 it reaches 1.6. The growth in the number of neutrons
advances the quantity of protons in heavy nuclei, which in
this case become energetically more stable. To the left of
the stable nuclei are proton excess nuclei, and on the right
neutron excess nuclei. These and others are called exotic
nuclei.

The diagram terminates in the last element from the
table IUPAC [11] at No. 114, with mass number 289, while
scientists suspect nucleus No. 114–298. Such isotopes should
possess the increased stability and lifetime of superheavy
elements.

This diagram is specially constructed, only on the basis
of tabulated data, but augmented by the theoretical upper
limit of the Periodic Table [12]. Up to the Z∼60 the line
of trend approaches the middle of a valley of stability, with
N/Z∼ 1.33. Furthermore, N/Z increases steadily to ∼1.5 up
to Z∼ 100. The equation of the line of trend represents a
polynomial of the fourth degree. It is noteworthy that this
implies rejection of the upper magic number for neutrons
heretofore theoretically supposed.

It is particularly evident from Fig. 2, in which small frag-
ment of the N–Z diagram is amplified and augmented with
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Fig. 1: N–Z diagram of nuclides.

Fig. 2: N–Z diagram of nuclides with elements. For increase in scale the diagram is reduced after
carrying out of a line of a trend.

some theoretically determined nuclei, including the heaviest
element Z= 155, that the equations of lines of trend and
the values of R2 are practically identical in both Figures.
When the line of trend for Fig. 1, without element 155,
is extrapolated beyond Z= 114, it passes through the same
point in Fig. 2 for Z= 155, indicating that element 155 is
correctly placed by theory.

The predicted element No. 114–184 is displaced from the
line of a trend. With a nuclear charge of 114 it should have
179 neutrons (А= 293) whereas 184 neutrons has atomic
number 116. In the first case there is a surplus 5 neutrons,
in the second a deficit of 2 protons. For an element 126
(on hypothesis) the mass number should be 310, but by our
data it is 327. The data for mass number 310 corresponds to
Z= 120.

It is important to note that there is a close relation be-
tween the mass number and the atomic weight. The author’s
formulation of the Periodic law of D. I. Mendeleev stipulates
that the properties of elements (and of simple compounds)
depend upon periodicity in mass number. It was established
in 1913, in full conformity with the hypothesis of Van den
Brook, that the atomic numbers of the chemical elements
directly reflect the nuclear charge of their atoms. This law
now has the following formulation: “properties of elements
and simple substances have a periodic dependence on the
nuclear charge of the atoms of elements”.

In the Periodic Table the last, practically stable element
is bismuth, Z= 83. The six following elements (No.’s 84 to
89) are radioactive and exist in Nature in insignificant quan-
tities, and are followed by the significant radioactive ele-
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Fig. 3: Dependence of element mass number (1) and corresponding numbers of neutrons (2) on the atomic
number in the Periodic Table.

Fig. 4: Dependence of total isotopes (circle) and stable elements (square) on atomic number. The triangle
designates the beginning of the periods.

Fig. 5: Distribution of isotopes on the periods: an S-shaped summarizing curve, lower-quantity at each point.
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1 2A 3A 4A 5A 6A 7A 2
H 2 13 14 15 16 17 He

3 4 5 6 7 8 9 10
Li Be B C N O F Ne

11 12 3B 4B 5B 6B 7B 8 1B 2B 13 14 15 16 17 18
Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P S Cl Ar

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

87 88 89 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
Fr Ra Ac Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup

Table 1: The standard table of elements (long) with addition of the theoretical eighth period.

58 59 60 61 62 63 64 65 66 67 68 69 70 71
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

90 91 92 93 94 95 96 97 98 99 100 101 102 103
Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Table 2: Lanthanides (upper line) and actinides (lower line).

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

140 141 142 143 144 145 146 147 148 149 150 151 152 153

Table 3: The eight period: super actinides (18g and 14f elements)

119 120 121 154 155
Kh

Table 4: The eight period: s-elements (No. 119, 120), g–elements (No. 121),
d–elements (No. 154, 155). Element No. 155 must be analogous to Ta, as Db.

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

137 138 139 154 155

140 141 142 143 144 145 146 147 148 149 150 151 152 153

Table 5: Variation of the Periodic Table of D. I. Mendeleev with heaviest element in the eighth period. A structure for
super actinides is offered in a series in work [2].
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ments thorium, protactinium and uranium (Z= 90, 91, and
92 respectively). The search for synthetic elements (No.’s
93 to 114) continues. In the IUPAC table, mass numbers for
elements which do not have stable nuclides, are contained
within square brackets, owing to their ambiguity.

It is clear in Fig. 3 that the reliability (R2) of approxima-
tion for both lines of trend is close to 1. However, in the field
of elements No. 104 to No. 114, fluctuations of mass number,
and especially the number of neutrons, are apparent.

According to the table, the most long-lived isotope of an
element violates the strict law of increase in mass number
with increase in atomic number. To check the validity of
element No. 155 in the general line of trend of elements for
all known and theoretical [12] elements, the two following
schedules are adduced:

1. For element numbers 1 to 114, y= 1.6102x1.099 at
R2= 0.9965;

2. For element numbers 1 to 155, y= 1.6103x1.099 at
R2= 0.9967.

Upon superposition there is a full overlapping line of
trend that testifies to a uniform relation of dependences.
Therefore, in analyzing products of nuclear reactions and
in statement of experiment it is necessary to consider an
element No. 155 for clarification of results.

3 The eighth period of the Periodic Table of elements

Our theoretical determination of the heaviest element at
Z= 155 allows for the first time in science a presentation
of Mendeleev’s Table with an eighth period. Without going
into details, we shall note that at the transuranium elements,
electrons are located in seven shells (shells 1 to 7 inclusive),
which in turn contain the subshells s, p, d, f. In the eighth
period there is an 8th environment and a subshell g.

G. T. Seaborg and V. I. Goldanski, on the basis of the
quantum theory, have calculated in the eighth period internal
transitive superactinoid a series containing 5g-subshells for
elements No. 121 to No. 138 and 6f subshells for No. 139 to
No. 152. By analogy with the seventh period, No. 119 should
be alkaline, No. 120 a alkaline ground metal, No. 121 similar
to actinium and lanthanium, No. 153 to No. 162 contain a 7d
subshell, and No. 163 to No. 168 an 8р subshell [2]. The
latter class resulted because these scientists assumed the
presence not only of an 8th, but also a 9th periods, with
50 elements in each.

However, distribution of isotopes depending on a atomic
number of the elements (Fig. 4) looks like a parabola, in
which branch Y sharply decreases, reaching the value 1 at
the end of the seventh period. It is therefore, hardly possible
to speak about the probability of 100 additional new ele-
ments when in the seventh period there is a set of unresolved
problems.

Our problem consisted not so much in development of
methods for prediction of additional elements, but in an ex-
planation as to why their number should terminate No. 155.
Considering the complexities of synthesis of heavy elements,
we have hypothesized that their quantity will not be more
than one for each atomic. Then, from Fig. 5 it can be seen
that the S-figurative summarizing curve already in the se-
venth period starts to leave at a horizontal, and the eighth
reaches a limit. The bottom curve shows that after a max-
imum in the sixth period the quantity of isotopes starts to de-
crease sharply. This provides even more support for our theo-
retical determination [12] of the heaviest possible element at
Z= 155.

In July 2003 an International conference took place in
Canada, resulting in publication [13], wherein it is asked,
“Has the Periodic Table a limit?”

The head of research on synthesis of elements in Dubna
(Russia), J. Oganesyan, has remarked that the question of the
number of chemical elements concerns fundamental prob-
lems of science, and therefore the question, what is the
atomic number of the heaviest element?

Despite the fact that hundreds of versions of the Periodic
Table have been offered of the years, none have designated
the identity of the heaviest element. The heaviest element is
offered in Tables shown in Page 107.

4 Conclusions

With this third paper in a series on the upper limit of the
Periodic Table of the Elements, the following are concluded.

1. As the fact of the establishment of the upper limit in
Periodic Table of Elements until now is incontestable
(on October, 25th 2005 appeared the first publication
on the Internet), it is obviously necessary to make
some correction to quantum-mechanical calculations
for electronic configurations in the eighth period.

2. In modern nuclear physics and work on the synthesis
of superheavy elements it is necessary to consider the
existence of a heaviest element at Z= 155 with the
certain mass number that follows from the neutron-
proton diagram.

3. For discussion of the number of the periods and ele-
ments in them it is necessary to carry out further re-
search into the seventh period.

4. From the schedules for distribution of isotopes, it is
apparent that the end of the seventh period of elements
is accounted for in units because of technical difficul-
ties: No. 94 to No. 103 have been known for 20 years,
and No. 104 to No. 116 for 40. Hence, to speak about
construction of the Table of Elements with the eighth
and ninth periods (100 elements), even for this reason,
is not meaningful.

108 A. Khazan. Upper Limit of the Periodic Table and Synthesis of Superheavy Elements



April, 2007 PROGRESS IN PHYSICS Volume 2

5. The variants of the Periodic Table of Mendeleev con-
structed herein with inclusion of the heaviest element
No. 155 opens a creative path for theoretical physicists
and other scientists for further development of the
Table.
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