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Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Vahan N. Minasyan and Valentin N. Samoylov

Scientific Center of Applied Research, JINR, Dubna, 141980, Russia.
E-mail: mvahan n@yahoo.com

We propose a novel approach for investigation of the motion of Bose or Fermi liquid (or
gas) which consists of decoupled electrons and ions in the uppermost hyperfine state.
Hence, we use such a concept as the fluctuation motion of “charged fluid particles”
or “charged fluid points” representing a charged longitudinal elastic wave. In turn,
this elastic wave is quantized by spinless longitudinal Bose charged sound particles
with the rest mass m and charge e0. The existence of spinless Bose charged sound
particles allows us to present a new model for description of Bose or Fermi liquid
via a non-ideal Bose gas of charged sound particles. In this respect, we introduce a
new postulation for the superfluid component of Bose or Fermi liquid determined by
means of charged sound particles in the condensate, which may explain the results of
experiments connected with ultra-cold Fermi gases of spin-polarized hydrogen, 6Li and
40K, and such a Bose gas as 87Rb in the uppermost hyperfine state, where the Bose-
Einstein condensation of charged sound particles is realized by tuning the magnetic
field.

1 Introduction

The Bose-Einstein condensation (BEC) has a wide applica-
tion for investigation of superconductivity of metals and su-
perfluidity of liquids. The primary experimental challenge
to evaporative cooling of spin-polarized hydrogen was made
by a dilution refrigerator, demonstrating that spin-polarized
hydrogen can be confined in a statistic magnetic trap and
thermally decoupled from the walls [1–3]. At the density
N
V ≈ 1013 cm−3 it is observed that the gas consisting of de-
coupled electrons and ions in the uppermost hyperfine state is
evaporatively cooled to a temperature approximately equal to
40 mK.

Here, we remark about BEC that was produced in a va-
por of 87Rb bosonic ions confined by magnetic fields and
evaporatively cooled [4]. The condensate fraction first ap-
peared near a temperature of 170 nanokelvin at the density
N
V = 2.6 × 1012 cm−3. The experiment has shown that the
value of temperature 170 nK is reduced to 20 nK. In reality,
the strongly interacting spin- 1

2
6Li and 40K fermionic gases

were realized via tuning the magnetic field [5]. These experi-
mental achievements in the field of ultra-cold Fermi gases are
based mainly on the possibility of tuning the scattering length
a which becomes much larger in magnitude than the mean in-
teratomic distance by changing the external magnetic field.
In this respect, the concept of Fermi surface loses its mean-
ing due to the broadening produced by pairing of fermions,
the so-called Feshbach resonances in ultracold atomic Fermi
gases. However, in this letter we predict a new method of
liquid cooling which is based on the formation of oscilla-
tors at every point of liquid by tuning the magnetic field,
which in turn leads to vibration of “charged fluid particles”.
These “charged fluid particles” reproduce charged spinless
quasiparticles which determine the superfluidity component

of Bose or Fermi liquid by action of the static magnetic field.
In order to investigate the motion of quantum liquid (or

quantum gas) in the uppermost hyperfine state, we consider
the motion of “charged fluid particles” by means of a charged
longitudinal elastic wave [6]. This longitudinal elastic wave
is quantized by spinless Bose charged sound particles with
the mass m and charge e0. Further, we present a new model
for description of charged Bose or Fermi liquid via a non-
ideal Bose gas consisting of charged sound particles. As op-
posed to London’s postulation about the superfluid compo-
nent of liquid 4He [7], we introduce a new postulation about
the superfluid component of Bose or Fermi liquid via charged
sound particles in the condensate. On the other hand, we es-
timate the zero sound speed which leads to the correct expla-
nation of the experimental result connected with the BEC of
a gas consisting of spin-polarized hydrogen.

2 Quantization of quantum liquid or quantum gas in the
uppermost hyperfine state

Now let us analyze quantization of quantum liquid (or quan-
tum gas) in the uppermost hyperfine state. This quantum liq-
uid (or quantum gas) consists of N Bose or Fermi positive
charged ions with the charge e and mass M confined in the
volume V where they are in a negative electron background
since the entire system of liquid is electro-neutral. Consider-
ing quantum liquid as a continuous medium, we investigate
the fluctuation motion of the number n of “charged fluid par-
ticles” on the basis of hydrodynamics (where a “charged fluid
particle” is defined as a very small volume V0 in regard to the
volume V of the liquid (V0 � V) with the mass m and charge
e0. The volume V0 contains the number N

′
= N

n of liquid
ions, therefore the charge e0 is expressed via the ion charge
as e0 =

eN
n .

V. N. Minasyan and V. N. Samoylov. Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles 3
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In accordance with the laws of hydrodynamics [6], the
mass density ρ and pressure p of liquid are presented as

ρ = ρ0 + ρ
′

and
p = p0 + p

′
,

where ρ0 =
MN
V and p0 are, respectively, the equilibrium mass

density and pressure; ρ
′

and p
′

are the relative fluctuations of
the mass density and pressure.

As is known, the continuity equation has the form:

∂ρ
′

∂t
= −ρ0 div~v, (1)

which may present as:

ρ
′
= −ρ0 div~u, (2)

where ~v = ∂~u
∂t is the speed of a charged fluid particle; ~u =

~u(~r, t) is the displacement vector of a charged fluid particle
which describes a charged longitudinal sound wave.

On the other hand, Euler’s equation in the first-order-of-
smallness approximation takes the reduced form:

∂~v

∂t
+
∇p

′

ρ0
= 0. (3)

Hence, we consider the fluctuation motion of charged
fluid particles as adiabatic, deriving the following equation:

p
′
=

(
∂p
∂ρ0

)
S
ρ
′
= c2

l ρ
′
, (4)

where S is the entropy; cl =

√(
∂p
∂ρ0

)
S

is the speed of the
charged longitudinal elastic wave.

As is known, the fluctuation motion of charged fluid par-
ticles represents as a potential one:

curl~v = curl
∂~u
∂t
= 0. (5)

Thus, by using the above equation we may get to the wave
equation for the vector of displacement ~u = ~u(~r, t):

∇2~u(~r, t) − 1
c2

l

∂2~u(~r, t)
∂t2 = 0, (6)

which in turn describes the longitudinal charged sound wave.
Now, we state that the longitudinal elastic wave consists

of spinless Bose charged sound particles with the non-zero
rest mass m. Then, the displacement vector u(~r, t) is expres-
sed via a secondary quantization vector of the wave function
of spinless Bose charged sound particles directed along the
wave vector ~k:

~u(~r, t) = ul

(
~φ(~r, t) + ~φ+(~r, t)

)
, (7)

where ul is the normalization constant which is the amplitude
of oscillations; ~φ(~r, t) is the secondary quantization of vector
wave functions for creation and annihilation of one longitudi-
nal charged sound particle with the mass m whose direction ~l
is directed towards the wave vector ~k:

~φ(~r, t) =
1
√

V

∑
~k

~a~k ei(~k~r−kclt) (8)

~φ+(~r, t) =
1
√

V

∑
~k

~a+~k e−i(~k~r−kclt) (9)

with the condition∫
~φ+(~r, t) ~φ(~r, t) dV = n0 +

∑
~k,0

â+~k â~k = n̂, (10)

where ~a+
~k

and ~a~k are, respectively, the Bose vector-operators
of creation and annihilation for a free charged sound particle
with the energy ~

2k2

2m , described by the vector ~k whose direc-
tion coincides with the direction ~l of a traveling charged lon-
gitudinal elastic wave; n̂ is the operator of the total number
of charged sound particles; n̂0 is the total number of charged
sound particles at the condensate level with the wave vector
~k = 0.

Thus, as is seen, the displacement vector ~u(~r, t) satisfies
wave-equation (6) and in turn takes the form:

~u(~r, t) = ~u0 +
ul√
V

∑
~k,0

(
~a~k ei(~k~r−kclt) + ~a+~k e−i(~k~r−kclt)

)
. (11)

While investigating a superfluid liquid, Bogoliubov [8]
separated the atoms of helium in the condensate from those
atoms filling the states above the condensate. In an analo-
gous manner, we may consider the vector operator ~a0 = ~l

√
n0

and ~a+0 = ~l
√

n0 as c-numbers (where ~l is the unit vector in
the direction of propagation of the sound wave) within the
approximation of a macroscopic number of sound particles
in the condensate n0 � 1. These assumptions lead to a bro-
ken Bose-symmetry law for sound particles in the conden-
sate. To extend the concept of a broken Bose-symmetry law
for sound particles in the condensate, we apply the definition
of BEC of sound particles in the condensate as was postulated
by the Penrose-Onsager for the definition of BEC of helium
atoms [9]:

lim
n0,n→∞

n0

n
= const. (12)

On the other hand, we may observe that presence of
charged sound particles filling the condensate level with the
wave vector ~k = 0 leads to the appearance of the constant

displacement ~u0 =
2ul~l
√

n0√
V

of charged sound particles.
To find the normalization constant ul, we introduce the

following condition which allows us to suggest that at abso-
lute zero all sound particles fill the condensate level ~k= 0.

4 V. N. Minasyan and V. N. Samoylov. Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles
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This reasoning implies that at n0 = n the constant displace-
ment takes the maximal value 2d =

√
|~u0|2 which represents

the maximal distance between two neighboring charged
sound particles. On the other hand, this distance is deter-

mined by the formula d =
(

3V
4πn

) 1
3 , which is in turn substituted

into the expression 2d =
√
|~u0|2. Then, consequently, we get

to the normalization constant ul = 0.65
(

n
V

)− 5
6 .

The condition for conservation of density at each point of
liquid stipulates that

ρ0 =
MN
V
=

mn
V
, (13)

which represents a connection of the mass and density of the
charged sound particles with the mass and density of the ions.
Thus, we argue that liquid (or gas) can be described by the
model of an ideal gas of n charged sound particles with the
mass m and charge e0 in the volume V . Hence, we remark
that the Coulomb scattering between charged sound particles
is neglected in the considered theory.

3 “Charged fluid particles” in trapped static magnetic
field

Now, we consider the Hamiltonian operator Ĥl of liquid [6]
in a trapped static magnetic field [10]:

Ĥl =
ρ0

2

∫ (
∂~u
∂t

)2

dV +
1
2

∫ (
clρ

′

√
ρ0

)2

dV+

+
ρ0

2

∫ (
Ω~ul

)2 dV,

(14)

where Ω = e0H
mc is the trapping frequency of a “charged fluid

particle”; e0 is the charge of a “fluid particle”; H is the ab-
solute value of the magnetic strain; c is the velocity of light
in vacuum. Hence, we note that the charge of a fluid particle
equals e0 = eN

′
= Ne

n , where N
′

is the number of ions in a
small volume V0 of one charged fluid particle.

Substituting ρ
′

from (2) into (14), we obtain

Ĥl =
ρ0

2

∫ (
∂~u
∂t

)2

dV +
ρ0

2

∫ (
cl div~u

)2 dV+

+
ρ0

2

∫ (
Ω~ul

)2 dV.

(15)

Using Dirac’s approach in [11] for quantization of the
electromagnetic field, we have:

∂~u(~r, t)
∂t

= − icl~ul√
V

∑
~k

k
(
~a~k e−ikclt − ~a+−~k eikclt

)
ei~k~r, (16)

as well as

div~u(~r, t) =
i~ul√

V

∑
~k

~k
(
~a~k e−ikclt + ~a+−~k eikclt

)
ei~k~r. (17)

Now, introducing (16) and (17) into (15) and using

1
V

∫
ei(~k1+~k2)~r = δ3

~k1+~k2
,

we obtain the terms in the right side of the Hamiltonian of the
system presented in (15):

ρ0

2

∫ (
∂~u
∂t

)2

dV = −
ρ0c2

l u2
l

2

∑
~k

k2
(
~a~k − ~a

+

−~k

) (
~a−~k − ~a

+
~k

)
,

ρ0

2

∫ (
div~u

)2 dV =
ρ0c2

l u2
l

2

∑
~k

k2
(
~a~k + ~a

+

−~k

) (
~a−~k + ~a

+
~k

)
and

ρ0

2

∫ (
Ω~ul

)2 dV =
ρ0Ω

2u2
l

2

∑
~k

(
~a~k + ~a

+

−~k

) (
~a−~k + ~a

+
~k

)
.

These expressions determine the reduced form of the
Hamiltonian operator Ĥl by the form:

Ĥl =
∑
~k

(
2ρ0u2

l c2
l k2 + ρ0Ω

2u2
l

)
~a+~k a~k+

+
ρ0Ω

2u2
l

2

∑
~k

(
~a+−~k~a

+
~k
+ ~a~k~a−~k

)
,

(18)

where u2
l is defined by the first term in the right side of (18)

which represents the kinetic energy of a charged sound parti-
cle ~

2k2

2m , if we suggest:

2ρ0u2
l c2

l k2 =
~2k2

2m
. (19)

Then,

u2
l =

~2

4c2
l mρ0

,

which allows one to determine the mass m of a charged sound
particle using the value of the normalization constant ul =

0.65
(

n
V

)− 5
6 and (13):

m =
~

cl

( n
V

) 1
3
. (20)

Thus, the main part of the Hamiltonian operator Ĥl takes
the form:

Ĥl=
∑
~k,0

(
~2k2

2m
+mv2

)
~a+~k a~k+

mv2

2

∑
~k,0

(
~a+−~k ~a

+
~k
+~a~k ~a−~k

)
, (21)

where we denote v = ~Ω√
2mcl

, which in turn is the speed of
charged sound in a Bose or Fermi liquid excited by static
magnetic field; n0 is the number of charged sound particles
in the condensate.

V. N. Minasyan and V. N. Samoylov. Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles 5
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For the evolution of the energy level, it is necessary to
diagonalize the Hamiltonian Ĥl, which can be accomplished
by introducing the vector Bose-operators ~b+

~k
and ~b~k [12]:

~a~k =
~b~k + L~k ~b

+

−~k√
1 − L2

~k

, (22)

where L~k is the unknown real symmetrical function of the
wave vector ~k.

By substituting (22) into (21), we obtain

Ĥl =
∑
~k,0

ε~k
~b+~k
~b~k, (23)

where ~b+
~k

and ~b~k are the creation and annihilation operators of
charged Bose quasiparticles with the energy:

ε~k =

(~2k2

2m

)2

+ ~2k2v2
1/2

. (24)

In this context, the real symmetrical function L~k of the
wave vector ~k is found to be

L2
~k
=

~2k2

2m + mv2 − ε~k
~2k2

2m + mv2 + ε~k
. (25)

Thus, the average energy of the system takes the form:

Ĥl =
∑
~k,0

ε~k
~b+
~k
~b~k, (26)

where ~b+
~k
~b~k is the average number of charged Bose quasipar-

ticles with the wave vector ~k at the temperature T :

~b+
~k
~b~k =

1

e
ε~k
kT − 1

. (27)

Thus, we have found the spectrum of free charged spin-
less quasiparticles excited in a Bose or Fermi liquid which is
similar to Bogoliubov’s one [8]. In fact, the Hamiltonian of
system (24) describes an ideal Bose gas consisting of charged
spinless phonons at a small wave number k � 2mv

~
but at

k � 2mv
~

the Hamiltonian operator describes an ideal gas
of charged sound particles. This reasoning implies that the
tuning magnetic field forms the superfluidity component of a
Bose or Fermi liquid which is been in the uppermost hyper-
fine state.

4 BEC of charged sound particles

As opposed to London’s postulation concerning BEC of
atoms [7], we state that charged sound particles in the con-
densate define the superfluid component of Bose and Fermi

liquids. Consequently, statistical equilibrium equation (10)
takes the following form:

n0,T +
∑
~k,0

~a+
~k
~a~k = n, (28)

where ~a+
~k
~a~k is the average number of charged sound particles

with the wave vector ~k at the temperature T .
To find the form ~a+

~k
~a~k, we use the linear transformation

presented in (22):

~a+
~k
~a~k =

1 + L2
~p

1 − L2
~p

~b+
~k
~b~k +

L~k
1 − L2

~k

(
~b+
~k
~b+
−~k
+ ~b~k~b−~k

)
+

L2
~k

1 − L2
~k

.

According to the Bloch-De-Dominicis theorem, we have

~b+
~k
~b+
−~k
= ~b~k~b−~k = 0.

In this respect, the equation for the density of charged
sound particles in the condensate takes the following form:

n0,T

V
=

n
V
− 1

V

∑
~k,0

L2
~k

1 − L2
~k

− 1
V

∑
~k,0

1 + L2
~k

1 − L2
~k

~b+
~k
~b~k. (29)

Obviously, at the lambda transition T = Tλ the density
of charged sound particles

n0,Tλ
V = 0. Hence, we note that

the mass m and density n
V of charged sound particles are ex-

pressed via the mass of ions M and density of ions N
V when

solving a system of two equations presented in (13) and (20):

n
V
=

( Mcl

~

N
V

) 3
4

(30)

and

m =
(
~

cl

) 3
4 ( MN

V

) 1
4

. (31)

In conclusion, it should be noted that the given approach
opens up a new direction for investigation of BEC of charged
sound particles in Fermi gases of spin-polarized hydrogen,
6Li and 40K, and in a Bose gas such as 87Rb, because the
model of quantum liquid in the uppermost hyperfine state is
considered in the same way as superfluid liquid helium. In
this letter, we argue for the first time that the superfluid com-
ponent of Bose or Fermi liquid in the uppermost hyperfine
state is determined by means of charged sound particles in the
condensate. In fact, we argue that the lambda transition point
depends on the strain of static magnetic field due to equation
(29) and condition for the density of charged sound particles
n0,Tλ

V = 0.
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We present a new model for solid which is based on such a concept as the fluctuation
motion of “solid particles” or “solid points”. The fluctuation motion of “solid particles”
in solid 4He represents a longitudinal elastic wave which is in turn quantized by neutral
longitudinal Bose sound particles with spin 1 with the rest mass m. Thus, first we re-
move a concept of “lattice” for solid by presentation of new model of one as a vibration
of sound particles by natural frequency Ωl. In this respect, we first postulate that the
superfluid component of a solid 4He is determined by means of sound particles with
spin 1 in the condensate.

1 Introduction

The quantum solid is remarkable object which reveal macro-
scopic quantum phenomena, such as superfluidity and Bose-
Einstein condensation (BEC) of solid 4He [1] which were re-
ported by many authors [2, 3].

The original theory proposed by Einstein in 1907 was of
great historical relevance [4]. In the Einstein model, each
atom oscillates relatively to its neighbors in the lattice which
execute harmonic motions around fixed positions, the knots
of the lattice. He treated the thermal property of the vibration
of a lattice of N atoms as a 3N harmonic independent oscil-
lator by identical own frequency Ω0 which was quantized by
application of the prescription developed by Plank in connec-
tion with the theory of Black Body radiation. The Einstein
model could obtain the Dulong and Petit prediction at high
temperature but could not reproduce an adequate represen-
tation of the the lattice at low temperatures. In 1912, De-
bye proposed to consider the model of the solid [5], by sug-
gestion that the frequencies of the 3N harmonic independent
oscillators are not equal as it was suggested by the Einstein
model. In addition to his suggestion, the acoustic spectrum
of solid may be treated as if the solid represented a homoge-
neous medium, except that the total number of independent
elastic waves is cut off at 3N, to agree with the number of
degrees of freedom of N atoms. In this respect, Debye stated
that one longitudinal and two transverse waves are excited in
solid. These velocities of sound cannot be observed in a solid
at frequencies above the cut-off frequency. Also, he suggested
that phonon is a spinless. Thus, the Debye model correctly
showed that the heat capacity is proportional to the T 3 law
at low temperatures. At high temperatures, he obtained the
Dulong-Petit prediction compatible to experimental results.

The other model of solid was presented by the authors of
this letter in [6] where the solid was considered as continuum
elastic medium consisting of neutral Fermi-atoms, fixed in the
knots of lattice. In this case, we predicted that the lattice rep-
resents as the Bose-gas of Sound-Particles with finite masses
ml and mt, corresponding to a longitudinal and a transverse

elastic field. On the other hand, the lattice was considered as a
new substance of matter consisting of sound particles, which
excite the one longitudinal and one transverse elastic waves
(this approach is differ from Debye one). These waves act on
the Fermi-atoms which are stimulating a vibrations with the
natural frequencies Ωl and Ωt. In this context, we introduced
a new principle of elastic wave-particle duality, which allows
us to build the lattice model. The given model leads to the
same results as presented by Debye’s theory.

However, we consider the model of solid by new way by
introducing of such a concept as the fluctuation motion of
“solid particles” or “solid points”. In this respect, we remove
a concept as a lattice of solid or an atoms, fixed in the knots of
lattice because we deal with the “solid particle” which exist
in any point of the solid. This “solid particle” is a similar to
the “fluid particle” on the basis of hydrodynamics [7] (where
“fluid particle” is determined as a very small volume V0, in re-
gard to the volume V of the liquid (V0 � V), which consists
of a macroscopic number of liquid atoms). The motion of
“solid particle” describes the longitudinal elastic wave which
in turn represents a Bose gas of neutral sound particles with
spin 1 with finite mass m. In this letter, we present a new
model of solid which describes a vibration of sound particles
by natural frequency Ωl. We postulate also that the super-
fluid component of a solid is determined by means of sound
particles in the condensate.

2 Analysis

For beginning let us analyze quantization of a quantum liq-
uid (or quantum gas) which consists of N Bose or Fermi
atoms with the mass M confined in the volume V . Consid-
ering a quantum liquid as a continuum medium, we investi-
gate the fluctuation motion of “fluid particles” on the basis
of hydrodynamics (where “fluid particle” is determined as a
very small volume V0, in regard to the volume V of the liquid
(V0 � V), which consists of a macroscopic number of liquid
atoms).

In accordance with the hydrodynamics laws, the mass
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density ρ and pressure p for a liquid are presented as

ρ = ρ0 + ρ
′

and
p = p0 + p

′
,

where ρ0 =
MN
V and p0 are, respectively, the equilibrium mass

density and pressure; ρ
′

and p
′

are the relative fluctuations of
the mass density and pressure.

As is known, the continuity equation has the form:

∂ρ
′

∂t
= −ρ0 div ~v, (1)

which may present as:

ρ
′
= −ρ0 div ~u, (2)

where ~v = ∂~u
∂t is the speed of a fluid particle; ~u = ~u(~r, t) is

the displacement vector of a fluid particle which describes a
longitudinal sound wave.

On the other hand, Euler’s equation in the first-order-of-
smallness approximation takes the reduced form:

∂~v

∂t
+
∇p

′

ρ0
= 0. (3)

Hence, we consider the fluctuation motion of fluid parti-
cles as adiabatic, deriving the following equation:

p
′
=

(
∂p
∂ρ0

)
S
ρ
′
= c2

l ρ
′
, (4)

where S is the entropy of liquid; cl =

√(
∂p
∂ρ0

)
S

is the speed of
the longitudinal elastic wave.

As is known, the fluctuation motion of fluid particles rep-
resents as a potential one:

curl~v = curl
∂~u
∂t
= 0. (5)

Thus, by using the above equation we may get to the wave
equation for the vector of displacement ~u = ~u(~r, t):

∇2~u(~r, t) − 1
c2

l

∂2~u(~r, t)
∂t2 = 0, (6)

which in turn gives a description of the longitudinal sound
wave.

Now, we state that the longitudinal elastic wave consists
of neutral spinless Bose sound particles with the non-zero rest
mass m. Then, the displacement vector u(~r, t) is expressed via
a secondary quantization vector of the wave function of spin-
less Bose sound particles directed along the wave vector ~k:

~u(~r, t) = ul

(
~φ(~r, t) + ~φ+(~r, t)

)
, (7)

where ul is the normalization constant which is the ampli-
tude of oscillations; ~φ(~r, t) is the second quantization vector
wave functions for creation and annihilation of one longitu-
dinal sound particle with the mass m whose direction ~l is di-
rected towards the wave vector ~k:

~φ(~r, t) =
1
√

V

∑
~k

~a~k ei(~k~r−kclt) (8)

~φ+(~r, t) =
1
√

V

∑
~k

~a+~k e−i(~k~r−kclt) (9)

with the condition∫
~φ+(~r, t) ~φ(~r, t) dV = n0 +

∑
~k,0

â+~k â~k = n̂, (10)

where ~a+
~k

and ~a~k are, respectively, the Bose vector-operators
of creation and annihilation for a free sound particle with the
energy ~

2k2

2m , described by the vector ~k whose direction coin-
cides with the direction ~l of a traveling longitudinal elastic
wave; n̂ is the operator of the total number of sound particles;
n̂0 is the total number of sound particles at the condensate
level with the wave vector ~k = 0.

Thus, as is seen, the displacement vector ~u(~r, t) satisfies
wave-equation (6) and in turn takes the form:

~u(~r, t) = ~u0 +
ul√
V

∑
~k,0

(
~a~k ei(~k~r−kclt) + ~a+~k e−i(~k~r−kclt)

)
. (11)

While investigating a superfluid liquid, Bogoliubov [8]
separated the atoms of liquid helium 4He in the condensate
from those atoms filling the states above the condensate. In an
analogous manner, we may consider the vector operator ~a0 =
~l
√

n0 and ~a+0 = ~l
√

n0 as c-numbers (where ~l is the unit vec-
tor in the direction of propagation of the sound wave) within
the approximation of a macroscopic number of sound parti-
cles in the condensate n0 � 1. These assumptions lead to
a broken Bose-symmetry law for sound particles in the con-
densate. To extend the concept of a broken Bose-symmetry
law for sound particles in the condensate, we apply the def-
inition of BEC of sound particles in the condensate as was
postulated by the Penrose-Onsager for the definition of BEC
of helium atoms [9]:

lim
n0,n→∞

n0

n
= const. (12)

On the other hand, we may observe that presence of sound
particles filling the condensate level with the wave vector ~k =
0 leads to the appearance of the constant displacement ~u0 =
2ul~l
√

n0√
V

of the sound particles.
To find the normalization constant ul, we introduce the

following condition which allows us to suggest that at abso-
lute zero all sound particles fill the condensate level ~k = 0.
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This reasoning implies that at n0 = n the constant displace-
ment takes a maximal value 2d =

√
|~u0|2 which represents the

maximal distance between two neighboring sound particles.
On the other hand, this distance is determined by the formula

d =
(

3V
4πn

) 1
3 , which is in turn substituted into the expression

2d =
√
|~u0|2. Then, consequently, we get to the normaliza-

tion constant ul = 0.65
(

n
V

)− 5
6 .

The condition of conservation of density at each point of
the solid stipulates that

ρ0 =
MN
V
=

mn
V
, (13)

which represents a connection of the mass m and density ρ0 of
sound particles with the mass M and density ρ0 of the liquid
helium atoms with mass M.

Now, we consider the Hamiltonian operator Ĥl of a liquid
[8]:

Ĥl =
ρ0

2

∫ (
∂~u
∂t

)2

dV +
1
2

∫ (
clρ

′

√
ρ0

)2

dV. (14)

Substituting ρ
′

from (2) into (14), we obtain

Ĥl =
ρ0

2

∫ (
∂~u
∂t

)2

dV +
ρ0

2

∫ (
cl div ~u

)2 dV. (15)

Using Dirac’s approach in [10] for quantization of the
electromagnetic field, we have:

∂~u(~r, t)
∂t

= − icl~ul√
V

∑
~k

k
(
~a~k e−ikclt − ~a+−~k eikclt

)
ei~k~r (16)

as well as

div~u(~r, t) =
i~ul√

V

∑
~k

~k
(
~a~k e−ikclt + ~a+−~k eikclt

)
ei~k~r. (17)

Now, introducing (16) and (17) into (15) and using

1
V

∫
ei(~k1+~k2)~r = δ3

~k1+~k2
,

we obtain the terms in the right side of the Hamiltonian of the
system presented in (15):

ρ0

2

∫ (
∂~u
∂t

)2

dV = −
ρ0c2

l u2
l

2

∑
~k

k2
(
~a~k − ~a

+

−~k

) (
~a−~k − ~a

+
~k

)
and

ρ0

2

∫ (
∂~u
∂t

)2

dV =
ρ0c2

l u2
l

2

∑
~k

k2
(
~a~k + ~a

+

−~k

) (
~a−~k + ~a

+
~k

)
.

These expressions determine the reduced form of the
Hamiltonian operator Ĥl by the form:

Ĥl = 2
∑
~k

ρ0u2
l c2

l k2~a+~k a~k, (18)

where u2
l is defined by the first term in the right side of (18)

which represents the kinetic energy of a sound particle ~
2k2

2m ,
if we suggest:

2ρ0u2
l c2

l k2 =
~2k2

2m
. (19)

Then,

u2
l =

~2

4c2
l mρ0

,

which allows one to determine the mass m of a sound particle

using the value of the normalization constant ul = 0.65
(

n
V

)− 5
6

and (13):

m =
~

cl

( n
V

) 1
3
. (20)

Thus, the Hamiltonian operator Ĥl describes an ideal
Bose gas of a spinless sound particles:

Ĥl =
∑
~k

~2k2

2m
~a+~k a~k. (21)

3 Bose quasiparticles in solid

Now let us analyze quantization of a solid 4He which con-
sists of N atoms with the mass M confined in the volume V .
Considering a solid 4He as a continuum medium, we inves-
tigate the fluctuation motion of “solid particles” on the basis
of hydrodynamics (where “solid particle” is determined as a
very small volume V0, in regard to the volume V of the solid
(V0 � V), which consists of a macroscopic number of 4He
atoms in solid).

To do the transition from quantum liquid to the solid 4He,
we introduce a concept as the fluctuation motion of “solid par-
ticles” or “solid points”. In this respect, we remove such con-
cept as a “lattice” of solid 4He or such concept as an atoms,
fixed in the knots of lattice because “solid particles” exist in
any point of the solid. The motion of “solid particles” de-
scribe an elastic wave consisting of the sound particles with
spin 1 which in turn are vibrated by the natural frequency Ωl.

In this respect, we may express the vector displacement of
a longitudinal ultrasonic wave ul(~r, t) via the second quantiza-
tion vector wave functions of one sound particle with spin 1.
Then, Eqs. (8) and (9) take the forms:

~φ(~r, t) =
1
√

V

∑
~k,σ

~a~k,σei(~k~r−kclt) (22)

~φ+(~r, t) =
1
√

V

∑
~k,σ

~a+~k,σe−i(~k~r−kclt) (23)

with condition∫
φ+(~r, σ) φ(~r, σ) dV = n0 +

∑
~k,0,σ

â+~k,σâ~k,σ = n̂, (24)
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where a free sound particles have the mass m and the value of
its spin z-component σ = 0;±1. In this respect, the vector-
operators ~a+

~k,σ
, ~a~k,σ satisfy the Bose commutation relations as:[

â~k,σ, â
+
~k′ ,σ′

]
= δ~k, ~k′ · δσ,σ′

[â~k,σ, â~k′ ,σ′ ] = 0

[â+~k,σ, â
+
~k′ ,σ′

] = 0.

In this case, the Hamiltonian operator Ĥ of the solid 4He
is represented by the form:

Ĥ =
ρ0

2

∫ (
∂~u
∂t

)2

dV +
1
2

∫ (
clρ

′

√
ρ0

)2

dV+

+
ρ0

2

∫ (
Ωl~ul

)2 dV,

(25)

where

ρ0

2

∫ (
∂~u
∂t

)2

dV = −
ρ0c2

l u2
l

2

∑
~k,σ

k2
(
~a~k,σ−~a

+

−~k,σ

) (
~a−~k,σ−~a

+
~k,σ

)
,

ρ0

2

∫ (
div~u

)2 dV =
ρ0c2

l u2
l

2

∑
~k

k2
(
~a~k,σ+~a

+

−~k,σ

) (
~a−~k,σ+~a

+
~k,σ

)
and

ρ0

2

∫ (
Ωl~ul

)2 dV =
ρ0Ω

2u2
l

2

∑
~k

(
~a~k,σ + ~a

+

−~k,σ

) (
~a−~k,σ + ~a

+
~k,σ

)
.

These expressions determine the reduced form of the
Hamiltonian operator Ĥ:

Ĥl =
∑
~k,0,σ

(
~2k2

2m
+ mv2

)
~a+~k,σa~k,σ+

+
mv2

2

∑
~k,0,σ

(
~a+−~k,σ~a

+
~k,σ
+ ~a~k,σ~a−~k,σ

)
,

(26)

where we denote v = ~Ωl√
2mcl

, which in turn is the speed of
sound particle in a solid.

For the evolution of the energy level, it is necessary to
diagonalize the Hamiltonian Ĥl, which can be accomplished
by introducing the vector Bose-operators ~b+

~k
and ~b~k [11]:

~a~k,σ =
~b~k,σ + L~k ~b

+

−~k,σ√
1 − L2

~k

, (27)

where L~k is the unknown real symmetrical function of the
wave vector ~k.

By substituting (27) into (26), we obtain

Ĥ =
∑
~k,0

ε~k
~b+~k,σ
~b~k,σ, (28)

where ~b+
~k,σ

and ~b~k,σ are the creation and annihilation operators
of Bose quasiparticles with spin 1 with the energy:

ε~k =

(~2k2

2m

)2

+ ~2k2v2
1/2

. (29)

In this context, the real symmetrical function L~k of the
wave vector ~k is found to be

L2
~k
=

~2k2

2m + mv2 − ε~k
~2k2

2m + mv2 + ε~k
. (30)

Thus, the average energy of the system takes the form:

Ĥ =
∑
~k,0

ε~k
~b+
~k,σ
~b~k,σ, (31)

where ~b+
~k,σ
~b~k,σ is the average number of Bose quasiparticles

with spin 1 with the wave vector ~k at the temperature T :

~b+
~k,σ
~b~k,σ =

1

e
ε~k
kT − 1

. (32)

Thus, we have found the spectrum of free quasiparticles
with spin 1 which is similar to Bogoliubov’s one [8]. In fact,
the Hamiltonian of system (31) describes an ideal Bose gas
consisting of phonons with spin 1 at a small wave number
k � 2mv

~
but at k � 2mv

~
the Hamiltonian operator describes

an ideal gas of sound particles.

4 BEC of sound particles

As opposed to London’s postulation concerning BEC of
atoms [12], we state that sound particles in the condensate
define the superfluid component of solid 4He. Consequently,
statistical equilibrium equation (10) takes the following form:

n0,T +
∑
~k,0

~a+
~k,σ
~a~k,σ = n, (33)

where ~a+
~k,σ
~a~k,σ is the average number of sound particles with

the wave vector ~k at the temperature T .
To find the form ~a+

~k,σ
~a~k,σ, we use the linear transformation

presented in (22):

~a+
~k,σ
~a~k,σ =

1 + L2
~p

1 − L2
~p

~b+
~k,σ
~b~k,σ+

+
L~k

1 − L2
~k

(
~b+
~k,σ
~b+
−~k,σ
+ ~b~k,σ~b−~k,σ

)
+

L2
~k

1 − L2
~k

.
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According to the Bloch-De-Dominicis theorem, we have

~b+
~k,σ
~b+
−~k,σ
= ~b~k,σ~b−~k,σ = 0.

In this respect, the equation for the density of sound par-
ticles in the condensate takes the following form:

n0,T

V
=

n
V
− 1

V

∑
~k,0,σ

L2
~k

1 − L2
~k

− 1
V

∑
~k,0,σ

1 + L2
~k

1 − L2
~k

~b+
~k,σ
~b~k,σ. (34)

Obviously, at the lambda transition T = Tλ the density of
sound particles

n0,Tλ
V = 0. Hence, we note that the mass m and

density n
V of sound particles are expressed via the mass of

ions M and density of ions N
V when solving a system of two

equations presented in (13) and (20):

n
V
=

( Mcl

~

N
V

) 3
4

(35)

and

m =
(
~

cl

) 3
4 ( MN

V

) 1
4

. (36)

At T → 0 it follows ~b+
~k,σ
~b~k,σ = 0. Then taking into ac-

count the coefficient with number 3 before integral on the
right side of equation (34) because it reflects the value of spin
z-component σ = 0;±1, we obtain

n0,T

n
= 1 − m3v3

~3π2 n
V
. (37)

5 Conclusions

Thus, in this letter, we propose new model for solids which is
different from the well-known models of Einstein and Debye
because: 1) we suggest that the atoms are the Fermi particles
which are absent in the Einstein and Debye models; 2) we
remove such concept as lattice of solid by introducing a con-
cept as the fluctuation motion of “solid particles” or “solid
points”. Thus, we deal with the “solid particle” which ex-
ist in any point of the solid; 3) In our model, we argue that
the phonons in solid have spin 1 which is different from one
presented by Einstein and Debye models; 4) in fact, in this
letter, we first postulate that the superfluid component of a
solid 4He is determined by means of sound particles in the
condensate as opposed to London’s postulation concerning
BEC of atoms [12]. Consequently, such reasoning allows us
to consider the model of solid in a new light.
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Fermion-Antifermion Asymmetry

Gunn Quznetsov
Chelyabinsk State University, Chelyabinsk, Ural, Russia. E-mail: gunn@mail.ru, quznets@yahoo.com

An event with positive energy transfers this energy photons which carries it on recorders
observers. Observers know that this event occurs, not before it happens. But events with
negative energy should absorb this energy from observers. Consequently, observers
know that this event happens before it happens. Since time is irreversible then only the
events with positive energy can occur. In single-particle states, events with a fermion
have positive energy and occurrences with an antifermion have negative energy. In
double-particle states, events with pair of antifermions have negative energy and events
with pair of fermions and with fermion-antifermion pair have positive energy.

1 Introduction

Let t, x1, x2,x3 be real numbers, and let x := 〈x1, x2, x3〉.
LetA be some pointlike event.
Let ϕ(t, x) be a 4 × 1-complex matrix such that

ϕ†(t, x)ϕ(t, x) = ρ(t, x) (1)

where ρ(t, x) is the probability density ofA.
Let∗ ρ(t, x) = 0 if t > πc

h and/or |x| > πc
h .

In that case ϕ(t, x) obeys some generalization of the Dirac
equation [1]. The Dirac equation for free fermion does have
the following form:


1
c
∂

∂t
−

3∑

s=1

β[s] ∂

∂xs
− i

h
c

nγ[0]

ϕ(t, x) = 0.

Here n is a natural number and

β[1] : =



0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


, β[2] :=



0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0


,

β[3] : =



1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


, γ[0] :=



0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


.

In this case operator Ĥ0 is the free Dirac Hamiltonian if

Ĥ0 := c


3∑

s=1

β[s]i
∂

∂xs
+

h
c

nγ[0]

 .

Let k be a vector 〈k1, k2, k3〉 where ks are integer numbers
and let

ω (k) :=
√

k2
1 + k2

2 + k2
3 + n2

where n is a natural number.

∗c := 299792458, h := 6.6260755−34

Let

e1 (k) :=
1

2
√
ω (k) (ω (k) + n)



ω (k) + n + k3
k1 + ik2

ω (k) + n − k3
−k1 − ik2


,

e2 (k) :=
1

2
√
ω (k) (ω (k) + n)



k1 − ik2
ω (k) + n − k3
−k1 − ik2

ω (k) + n + k3


,

e3 (k) :=
1

2
√
ω (k) (ω (k) + n)



−ω (k) − n + k3
k1 + ik2

ω (k) + n + k3
k1 + ik2


,

e4 (k) :=
1

2
√
ω (k) (ω (k) + n)



k1 − ik2
−ω (k) − n − k3

k1 − ik2
ω (k) + n − k3


.

In that case, functions
e1(k)(2c/h)3/2 exp(−i(h/c)kx) and
e2(k)(2c/h)3/2 exp(−i(h/c)kx)
are eigenvectors of Ĥ0 with eigenvalues (+hω(k)),
and functions
e3(k)(2c/h)3/2 exp(−i(h/c)kx) and
e4(k)(2c/h)3/2 exp(−i(h/c)kx)
are eigenvectors of Ĥ0 with eigenvalues (−hω(k)).

2 Single-Particle States

Let H be some unitary space. Let 0̃ be the zero element of H.
That is any element F̃ of H obeys to the following conditions:

0F̃ = 0̃, 0̃ + F̃ = F̃, 0̃†F̃ = F̃, 0̃† = 0̃.

Let 0̂ be the zero operator on H. That is any element F̃ of
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H obeys to the following condition:

0̂F̃ = 0F̃, and if b̂ is any operator on H then

0̂ + b̂ = b̂ + 0̂ = b̂, 0̂̂b = b̂̂0 = 0̂.

Let 1̂ be the identy operator on H. That is any element F̃
of H obeys to the following condition:

1̂F̃ = 1F̃ = F̃ , and if b̂ is any operator on H then
1̂̂b = b̂̂1 = b̂.

Let linear operators bs,k (s ∈ {1, 2, 3, 4}) act on all ele-
ments of this space. And let these operators fulfill the follow-
ing conditions:

{
b†s,k, bs′,k′

}
:= b†s,kbs′,k′ + bs′,k′b

†
s,k =

(
h

2πc

)3

δk,k′δs,s′ 1̂,

{
bs,k, bs′,k′

}
= bs,kbs′,k′ + bs′,k′bs,k =

{
b†s,k, b

†
s′,k′

}
= 0̂.

Hence,
bs,kbs,k = b†s,kb†s,k = 0̂.

There exists element F̃0 of H such that F̃†0 F̃0 = 1 and for
any bs,k: bs,kF̃0 = 0̃. Hence, F̃†0b†s,k = 0̃.

Let

ψs (x) :=
∑

k

4∑

r=1

br,ker,s (k) exp
(
−i

h
c

kx
)

.

Because
4∑

r=1

er,s (k) er,s′ (k) = δs,s′

and ∑

k

exp
(
−i

h
c

k
(
x − x′

))
=

(
2πc
h

)3

δ
(
x − x′

)

then
{
ψ†s (x) , ψs′

(
x′

)}
:= ψ†s (x)ψs′

(
x′

)
+ ψs′

(
x′

)
ψ†s (x)

= δ
(
x − x′

)
δs,s′ 1̂.

And these operators obey the following conditions:

ψs (x) F̃0 = 0̃, {ψs (x) , ψs′ (x′)} =
{
ψ†s (x) , ψ†s′ (x′)

}
= 0̂.

Hence,

ψs (x)ψs′ (x′) = ψ†s (x)ψ†s′ (x′) = 0̂.

Let

Ψ (t, x) :=
4∑

s=1

ϕs (t, x)ψ†s (x) F̃0.

These functions obey the following condition:

Ψ†
(
t, x′

)
Ψ (t, x) = ϕ†

(
t, x′

)
ϕ (t, x) δ

(
x − x′

)
.

Hence,
∫

dx′ · Ψ† (t, x′) Ψ (t, x) = ρ (t, x) .

Let a Fourier series of ϕs (t, x) has the following form:

ϕs (t, x) =
∑

p

4∑

r=1

cr (t,p) er,s (p) exp
(
−i

h
c

px
)

.

In that case:

Ψ (t,p) :=
(

2πc
h

)3 4∑

r=1

cr (t,p) b†r,pF̃0.

If
H0 (x) := ψ† (x) Ĥ0ψ (x) (2)

thenH0 (x) is called a Hamiltonian Ĥ0 density.
Because

Ĥ0ϕ (t, x) = i
∂

∂t
ϕ (t, x)

then ∫
dx′ · H0

(
x′

)
Ψ (t, x) = i

∂

∂t
Ψ (t, x) . (3)

Therefore, if

Ĥ :=
∫

dx′ · H0
(
x′

)

then Ĥ acts similar to the Hamiltonian on space H.
And if

EΨ

(
F̃0

)
:=

∑

p
Ψ† (t,p) ĤΨ (t,p)

then EΨ

(
F̃0

)
is an energy of Ψ on vacuum F̃0.

Operator Ĥ obeys the following condition:

Ĥ =

(
2πc
h

)3 ∑

k

hω (k)


2∑

r=1

b†r,kbr,k −
4∑

r=3

b†r,kbr,k

 .

This operator is not positive defined and in this case

EΨ

(
F̃0

)
=

(
2πc
h

)3 ∑

p
hω (p)


2∑

r=1

|cr (t,p)|2 −
4∑

r=3

|cr (t,p)|2
 .

This problem is usually solved in the following way [2, p.
54]:

Let:

v1 (k) : = γ[0]e3 (k) ,
v2 (k) : = γ[0]e4 (k) ,

d1,k : = −b†3,−k,

d2,k : = −b†4,−k.
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In that case:

e3 (k) = −v1 (−k) ,
e4 (k) = −v2 (−k) ,

b3,k = −d†1,−k,

b4,k = −d†2,−k.

Therefore,

ψs (x) : =
∑

k

2∑

r=1

(
br,ker,s (k) exp

(
−i

h
c

kx
)

+

+d†r,kvr,s (k) exp
(
i
h
c

kx
))

Ĥ =

(
2πc
h

)3 ∑

k

hω (k)
2∑

r=1

(
b†r,kbr,k + d†r,kdr,k

)

−2
∑

k

hω (k) 1̂.

The first term on the right side of this equality is posi-
tive defined. This term is taken as the desired Hamiltonian.
The second term of this equality is infinity constant. And this
infinity is deleted (?!) [2, p. 58]

But in this case dr,kF̃0 , 0̃. In order to satisfy such condi-
tion, the vacuum element F̃0 must be replaced by the follow-
ing:

F̃0 → Φ̃0 :=
∏

k

4∏

r=3

(
2πc
h

)3

b†r,kF̃0.

But in this case:

ψs (x) Φ̃0 , 0̃.

And condition (3) isn’t carried out.
In order to satisfy such condition, operators ψs (x) must

be replaced by the following:

ψs (x)→ φs (x) :=

:=
∑

k

2∑

r=1

(
br,ker,s (k) exp

(
−i

h
c

kx
)

+ dr,kvr (k) exp
(
i
h
c

kx
))

.

Hence,

Ĥ =

∫
dx · H (x) =

∫
dx · φ† (x) Ĥ0φ (x) =

=

(
2πc
h

)3 ∑

k

hω (k)
2∑

r=1

(
b†r,kbr,k − d†r,kdr,k

)
.

And again we get negative energy.
Let’s consider the meaning of such energy: An event with

positive energy transfers this energy photons which carries it

on recorders observers. Observers know that this event oc-
curs, not before it happens. But event with negative energy
should absorb this energy from observers. Consequently, ob-
servers know that this event happens before it happens. This
contradicts Theorem 3.4.2 [3]. Therefore, events with nega-
tive energy do not occur.

Hence, over vacuum Φ̃0 single fermions can exist, but
there are no single antifermions.

3 Two-Particle States

A two-particle state is defined the following field operator [4]:

ψs1,s2 (x, y) :=

∣∣∣∣∣∣
φs1 (x) φs2 (x)
φs1 (y) φs2 (y)

∣∣∣∣∣∣ .

In that case:

Ĥ = 2h
(

2πc
h

)6 (
Ĥa + Ĥb

)

where

Ĥa : =
∑

k

∑

p
(ω (k) − ω (p))

2∑

r=1

2∑

j=1

×

×
{
v†j (−k) v j (−p) e†r (p) er (k) ×

×
(
+b†r,pd†j,−kd j,−pbr,k

)
+

+
(
+d†r,−pb†j,kb j,kdr,−p

)
+

+v†j (−p) v j (−k) e†r (k) er (p) ×
×

(
−b†r,kd†j,−pd j,−kbr,p

)
+

+
(
−b†r,pd†j,−kd j,−kbr,p

)}

and

Ĥb : =
∑

k

∑

p
(ω (k) + ω (p))

2∑

r=1

2∑

j=1

×

×
{
v†j (−p) v j (−k) v†r (−k) vr (−p) ×

×
(
−d†r,−kd†j,−pd j,−kdr,−p

)
+

+
(
−d†r,−pd†j,−kd j,−kdr,−p

)

+e†r (k) er (p) e†j (p) e j (k) ×
×

(
+b†r,kb†j,pb j,kbr,p

)
+

+
(
+b†r,pb†j,kb j,kbr,p

)}
.

If velocities are small then the following formula is fair.

Ĥ = 4h
(

2πc
h

)6 (
Ĥa + Ĥb

)
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where

Ĥa : =
∑

k

∑

p
(ω (k) − ω (p)) ×

×
2∑

r=1

2∑

j=1

(
d†j,−pb†r,kbr,kd j,−p − b†j,pd†r,−kdr,−kb j,p

)

and

Ĥb : =
∑

k

∑

p
(ω (k) + ω (p)) ×

×
2∑

j=1

2∑

r=1

(
b†j,pb†r,kbr,kb j,p − d†j,−pd†r,−kdr,−kd j,−p

)
.

Therefore, in any case events with pairs of fermions and
events with fermion-antifermion pairs can occur, but events
with pairs of antifermions can not happen.

4 Conclusion

Therefore, an antifermion can exist only with a fermion.
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This letter presents an insight into Planck’s natural-units, that they are geometric-mean-
values of astronomical-quantities, like total-mass of the universe M0 and mass cor-
responding to Hubble’s-constant

(
hH0/c2

)
, providing a theoretical support to the ob-

servational findings of Ragazzoni, R., Turatto, M. & Gaessler [Astrophysical Jour-
nal,587, L1–L4], Lieu, R. & Hillman, L.W [Astrophysical Journal, 585, L77–L80]
and a news item published in Nature [Published on line on 31 March 2003 Nature
DOI 10.1038/news030324-13] that there is no observational evidence for the quantum
structure of space-time. Physicists have been expecting unification of gravitational and
electric forces at Planck’s energy; so they wanted to experimentally create a pair of par-
ticles whose gravitational-radius is equal to their Compton-wavelength. Whereas this
paper shows that in nature there exists a “pair of unequal masses” which satisfies the
condition of equality of gravitational and electrostatic potential-energies of the pair. If
the universe with its total-mass M0 and a particle of mass hH0/c2 both are electrically
charged bodies, then the strengths of electric force and gravitational-force experienced
by them will be equal. It is also pointed-out here that P.A.M. Dirac’s observation of re-
currences of the large-number 1040 and its explanation proposed by Tank [Proceedings
of Indian National Sci. Acad. A, Vol. 63, No. 6, 469–474 (1997)] in 1997, by Sidharth
[arXiv:gen-ph/0509026] in 2005, and by Funkhouser [arXiv:gen-ph/0611115] in 2006,
should be viewed as attempts in search of natural system of units; and the recurrences
R0/re = e2/Gme, mp =

[
M0/mp

]1/2
should be taken more seriously than a mere coin-

cidence, because its explanation by Tank also helped explaining the recurrences of the
critical-acceleration of MOND noticed by Sivaram [Astrophys. and Space Sci. 215,
(1994), 185–189].

1 Introduction

It has been realized by physicists since long that the conven-
tional system of units, like meter, kilogram and second are
arbitrarily chosen units; they do not correspond with any fun-
damental physical quantities; so we find it difficult to observe
any regular pattern. Max Plank proposed a set of natural-
units. Physicists have been expecting unification of gravita-
tional and electric forces at the energies where protons at-
tain the masses close to Planck’s-mass. Large Hadrons Col-
lider [LHC] was expected to yield some interesting results,
because protons were to attain Planck’s mass. It was be-
lieved that space and time are quantized; Planck-length is
the “least-count” for “space” and Planck’s unit of “time” is
the “least-count” for “time”. Whereas this letter shows that
Planck’s units are statistical-quantities, they are geometric-
mean-values of the astronomical-quantities like total-mass of
the universe M0 and mass corresponding to Hubble’s constant
(hH0/c2).

(i) Planck’s length L∗ is a geometric-mean of: Gravita-
tional-Radius corresponding to total mass of the universe M0
and Compton-wavelength corresponding to the total-mass M0

of the universe, i.e.

L∗ =
[(

GM0/c2
)

(h/M0c)
]1/2

.

Also, L∗ is a geometric-mean of: gravitational-radius of the
universe and that of the lightest-particle of mass

(
hH0/c2

)
. L∗

is also a geometric-mean of Compton-wavelengths of M0 and(
hH0/c2

)
.

(ii) Planck’s unit of time T ∗ is a geometric-mean of age-
of-the-universe T0 and the period corresponding the total
mass of the universe h/M0c2.

(iii) Planck’s unit of mass M∗ is a geometric-mean of
total-mass-of the-universe M0 and mass-of-the-lightest-par-
ticle. So, this letter provides a theoretical explanation for the
experimental observations by Ragazzoni et al [1] and Lieu
et. al. [2] that there is no evidence for quantum structure of
space-time.

(iv) The total mass of the universe M0 and mass corre-
sponding to Hubble’s constant

(
hH0/c2

)
form an interesting

pair, that: Gravitational-Radius corresponding to total-mass
of the universe is equal to Compton-wavelength of the light-
est particle, of mass hH0/c2.
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(v) Gravitational-radius of the lightest particle is equal to
the Compton-wavelength of the total-mass of the universe,
M0. Physicists have been trying to generate a pair of particles
of equal masses whose gravitational-radius is equal to their
Compton-wavelength. But in nature, there exists a pair of
unequal masses which satisfies the condition for unification
of forces, that their gravitational-potential-energy should be
equal to the electrostatic-potential-energy. So this pair is ex-
pected to provide some clue to a deeper understanding needed
for unification of gravitational and electric forces.

It is also pointed-out here that P. A. M. Dirac’s observa-
tion of recurrences of the large-number 1040 and its explana-
tion proposed by Tank [4] in 1997, by Sidharth [5] in 2005,
and by Funkhouser [6] in 2006, should be viewed as attempts
in search of natural system of units; and the recurrences
R0/re = e2/Gme, mp =

[
M0/mp

]1/2
should be taken more

seriously than a mere coincidence, because their explanation
by Tank also helped explaining the recurrences of the critical-
acceleration of MOND noticed by Sivaram [7] and led to fur-
ther conclusions discussed in the references [8–10].

2 The Derivations

(i) Gravitational-Radius of the universe is equal to Comp-
ton-wavelength of the lightest particle, of mass hH0/c2:

The gravitational-radius-of-the-universe R0 = GM0/c2;
Here M0 is total-mass of the universe. And Compton-wave-
length of the lightest-particle of mass hH0/c2 ; where H0 is
Hubble’s constant, is:

h/
(
hH0/c2

)
c

i.e. = c/H0,
i.e. = R0,
i.e. = GM0/c2.

(ii) Gravitational-radius of the lightest particle is eq-
ual to Compton-wavelength of the total-mass of the uni-
verse, M0.

i.e. = G
(
hH0/c2

)
/c2,

i.e = GhH0/c4,
i.e. = GhH0/GH0M0c

(Because GH0M0 = c3, based on this author’s previous work
[4]), i.e.= h/M0c which is the Compton-wavelength corre-
sponding to the total-mass-of-the-universe.

(iii-a) Planck’s length L∗ is a geometric-mean of: Gra-
vitational-Radius of the universe and Compton-wave-
length corresponding to the total-mass of the universe:

i.e. L∗ =
[(

GM0/c2
)

(h/M0c)
]1/2

,

i.e. =
[
hG/c3

]1/2
.

Similarly, Planck’s length is a geometric-mean of gravita-
tional-radius and Compton-wavelengths of every particle of
any mass.

(iii-b) Planck’s length L∗ is also a geometric-mean of:
gravitational-radius of the universe and that of the light-
est-particle of mass hH0/c2:

That is: [(
GM0/c2

) (
GhH0/c4

)]1/2
,

i.e. =
[
G2M0hH0/GM0H0c3

]1/2
(Because GH0M0 = c3, based on this author’s previous work
[4]),

i.e. =
[
hG/c3

]1/2
,

i.e. = L∗.

(iii-c) L∗ is also a geometric-mean of Compton-wave-
lengths of M0 and

(
hH0/c2

)
:

That is: [
(h/M0c)

{
h/
(
hH0/c2

)
c
}]1/2

,

i.e. = [(h/M0c) (c/H0)]1/2 ,
i.e. = [(h/M0c) (R0)]1/2 ,

i.e. =
[
(h/M0c)

(
GM0/c2

)]1/2
,

i.e. =
[
hG/c3

]1/2
,

i.e. = L∗.

The references [1–3] also lead to a conclusion that noth-
ing very special is observed at Planck length; there is no ev-
idence for any quantum structure of space-time. This pa-
per has shown that Planck-length is a statistical-quantity, a
geometric-mean-value, not a length of any fundamental-
entity.

(iv) Planck’s unit of time T ∗ is a geometric-mean of
age-of-the-universe and the period corresponding the to-
tal-mass of the universe h/M0c2

Age-of-the-universe T0 = 1/H0.
So the product of the two periods is:

(1/H0)
(
h/M0c2

)
,

i.e. = h/H0M0c2,
i.e. = hG/c5

(Because GH0M0 = c3, based on this author’s previous work
[4])

i.e. = T ∗2,

i.e. T ∗ =
[
(T0)
(
h/M0c2

)]1/2
.

(v) Planck’s unit of mass M∗ is a geometric-mean of
total-mass-of the-universe M0 and mass-of-the-lightest-
-particle :

i.e. =
[
(M0)

(
hH0/c2

)]1/2
,

i.e. =
[
M0hH0c/c3

]1/2
,

i.e. = [M0hH0c/GM0H0]1/2
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(Because GH0M0 = c3, based on this author’s previous work
[4]),

i.e. = [hc/G]1/2 ,
i.e. = M∗.

(vi) P.A.M. Dirac took the classical-radius of the elec-
tron e2/mec2 as a natural unit of length; and found an in-
teresting relation:

R0/re = e2/Gmemp =
[
M0/mp

]1/2
= 1040.

Tank [4] explained the above relation and reached a con-
clusion that the relation implies: (i) Gravitational potential-
energy of the universe is equal to the energy-of-mass of the
universe; (ii) Electrostatic potential-energy of the electron is
equal to the energy-of-mass of it; and (iii) Strengths of elec-
tric-force, strong-force and gravitational-force are proportio-
nal to densities of matter within the electron, the pi-meson
and the universe respectively. Sidharth [5] and Funkhouser
[6] have given a similar explanation for the recurrences of the
Large-Number, but they have not drawn any conclusions for
further application.

From the above comparison of Planck’s natural units and
Dirac’s natural units we are led to a conclusion that Dirac’s
choice of natural units leads to interesting new relations.
These relations should not be ignored as mere coincidences,
because these relations have emerged from right choice of
natural-units.

Sivaram [7] noticed the recurrences of the same value of
acceleration, equal to the “critical-acceleration” of MOND,
at the radial-distance R in the case of the electron, the pro-
ton, the nucleus, the globular-clusters, the spiral-galaxies, the
galactic-clusters and the universe. Tank [8–10] could explain
these recurrences based on equality of potential-energy and
energy-of-mass of these systems, the equality which helped
him to explain Dirac’s large-number-ratios in 1997. Thus,
Dirac’s attempt to choose natural-units has led to a conclu-
sion, of equality of potential-energy and energy-of-mass of
various systems of matter, which helped explaining another
set of recurrences noticed by Sivaram, and to draw further
conclusions discussed in the references [8–10]

Also, if we measure distances in the units of radius-of-
the-universe R0 and measure masses of bodies in the units of
total-mass-of-the-universe M0 then the gravitational-constant
G becomes unity; as follows:

Gravitational-potential-energy of a system of masses
M and m at a distance r is

= (M/M0)
(
mc2
)
/ (r/R0) .
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We analyzed the numerical values of half-lifes of excited electronic states of the H, He
and Li atom, as well as the Li+ ion. By means of a fractal scaling model originally
published by Müller in this journal, we interprete these half-lifes as proton resonance
periods. On the logarithmic scale, the half-lifes were expressed by short continued
fractions, where all numerators are Euler’s number. From this representation it was
concluded that the half-lifes are heavily located in nodes or sub-nodes of the spectrum
of proton resonance periods.

1 Introduction

The model of a chain of similar harmonic oscillators was pro-
posed by Müller [1–3] as a phenomenological theory describ-
ing physical quantities as proton resonance oscillation modes.

In the most general case, the spectrum of eigenfrequen-
cies of a chain system of many proton harmonic oscillators is
given by the continuous fraction equation [2]

f = fp exp S , (1)

where f is any natural oscillation frequency of the chain sys-
tem, fp the oscillation frequency of one proton and S the con-
tinued fraction corresponding to f . S was suggested to be in
the canonical form with all partial numerators equal 1 and the
partial denominators are positive or negative integer values

S = n0 +
1

n1 +
1

n2 +
1

n3 + ...

. (2)

Particularly interesting properties arise when the numer-
ator equals 2 and all denominators are divisible by 3. Such
fractions divide the logarithmic scale in allowed values and
empty gaps, i.e. ranges of numbers which cannot be ex-
pressed with this type of continued fractions. He showed that
these continued fractions generate a self-similar and discrete
spectrum of eigenvalues [1], that is also logarithmically in-
variant. Maximum spectral density areas arise when the free
link n0 and the partial denominators ni are divisible by 3.

In two previous articles [4, 5] we applied a slightly modi-
fied model, where all numerators were substituted by Euler’s
number. This model was particularly successful describing
specific features of the solar system [5].

However, the true physical meaning of the numerator e is
not yet clear. It must now be investigated, for which type of
data exactly this type of continued fractions can be applied.
There might be some data sets, where the numerator is 2, as
it was suggested by Müller in a patent [6].

In this article we analyzed a set of very accurately deter-
mined half-lifes of excited states of atoms on the logarithmic
scale. We show that continued fractions with Euler’s number
as numerator are adequate to describe these data.

2 Data source and computational details

All atomic spectral data were taken from the web site of the
National Institute of Standards and Technology (NIST) [7].
NIST maintains a critical selection of spectral data previously
published in regular scientific journals. For the H, He and Li
atom, reference was given to a publication by Wiese [8].

Table 1 shows such a data compilation for the Hydrogen
atom. We consider here only experimentally observed emis-
sion lines (i.e. not Ritz lines), for which the transition proba-
bilities have been determined. We numbered these lines in the
order of increasing wavelength and eliminated lines with an
already previously listed transition probability. For the Hy-
drogen atom, this procedure resulted then in a set of 109 lines
which have all different transition probabilities. Also, if a
transition probability has a numerical error higher than 1%
(according to NIST), the corresponding line was ignored.

The transition probability as given by NIST has the unit
of frequency [s−1] and is also called the Einstein A coefficient
of spontaneous emission. Consider a large number of atoms
in an excited state i, decaying to the ground state k (k could
also be any lower lying excited state). Equation (3) is then
the rate law

∂N
∂t
= −AikN, (3)

which results in

N(t) = N0 exp(−Aikt), (4)

where N(t) is the number of excited atoms at time t, N0 the
number of excited atoms at t = 0 and Aik the Einstein A co-
efficient for the transition i → k. From this exponential law,
the half-life T1/2 of the transition i→ k can be calculated as

T1/2 =
ln(2)
Aik
. (5)
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Table 1: Observed emission lines of the Hydrogen atom with cor-
responding wavelengths and transition probabilities. Obs.: Line no.
18 represents a forbidden transition.

Line Wavelength Transition Line Wavelength Transition
no. [Å] probability no. [Å] probability

[s−1] [s−1]

1 918.125 5.0659 × 104 56 6562.72482 2.2448 × 107

2 919.342 7.8340 × 104 57 6562.77153 2.2449 × 107

3 920.947 1.2631 × 105 58 6562.79 4.4101 × 107

4 923.148 2.1425 × 105 59 6562.85175 6.4651 × 107

5 926.249 3.8694 × 105 60 8392.40 1.5167 × 103

6 930.751 7.5684 × 105 61 8413.32 1.9643 × 103

7 937.801 1.9728 × 107 62 8437.95 2.5804 × 103

8 937.814 1.6440 × 106 63 8467.26 3.4442 × 103

9 949.742 3.4375 × 107 64 8502.49 4.6801 × 103

10 949.742 4.1250 × 106 65 8545.38 6.4901 × 103

11 972.517 1.2785 × 107 66 8598.39 9.2117 × 103

12 972.541 6.8186 × 107 67 8665.02 1.3431 × 104

13 1025.728 1.6725 × 108 68 8750.46 2.0207 × 104

14 1025.728 5.5751 × 107 69 8862.89 3.1558 × 104

15 1215.6699 6.2648 × 108 70 9015.3 5.1558 × 104

16 1215.6699 6.2649 × 108 71 9229.7 8.9050 × 104

17 1215.6701 4.6986 × 108 72 9546.2 1.6506 × 105

18 1215.67312 2.495 × 10−6 73 10049.8 3.3585 × 105

19 3656.65 9.9657 × 101 74 10938.17 7.7829 × 105

20 3657.25 1.1430 × 102 75 12818.072 2.2008 × 106

21 3658.04 1.3161 × 102 76 15560.46 3.6714 × 103

22 3658.65 1.5216 × 102 77 16411.36 1.6205 × 104

23 3659.41 1.7669 × 102 78 16811.10 2.5565 × 104

24 3660.32 2.0612 × 102 79 17366.885 4.2347 × 104

25 3661.27 2.4162 × 102 80 18179.21 7.4593 × 104

26 3662.22 2.8474 × 102 81 18751.3 8.9860 × 106

27 3663.41 3.3742 × 102 82 21661.178 3.0415 × 105

28 3664.65 4.0224 × 102 83 26258.71 7.7110 × 105

29 3666.08 4.8261 × 102 84 32969.8 6.9078 × 104

30 3667.73 5.8304 × 102 85 37405.76 1.3877 × 105

31 3669.45 7.0963 × 102 86 40522.79 2.6993 × 106

32 3671.32 8.7069 × 102 87 46537.8 3.2528 × 105

33 3673.81 1.0777 × 103 88 51286.5 3.6881 × 104

34 3676.376 1.3467 × 103 89 74599.0 1.0254 × 106

35 3679.370 1.7005 × 103 90 75024.4 1.5609 × 105

36 3682.823 2.1719 × 103 91 81548.4 3.3586 × 103

37 3686.831 2.8093 × 103 92 86644.60 5.0098 × 103

38 3691.551 3.6851 × 103 93 87600.64 3.9049 × 104

39 3697.157 4.9101 × 103 94 93920.3 7.8037 × 103

40 3703.859 6.6583 × 103 95 105035.07 1.2870 × 104

41 3711.978 9.2102 × 103 96 108035.9 2.2679 × 103

42 3721.946 1.3032 × 104 97 113086.81 8.2370 × 104

43 3734.369 1.8927 × 104 98 115395.4 3.3253 × 103

44 3750.151 2.8337 × 104 99 123719.12 4.5608 × 105

45 3770.633 4.3972 × 104 100 123871.53 2.3007 × 104

46 3797.909 7.1225 × 104 101 125870.5 5.0797 × 103

47 3835.397 1.2156 × 105 102 190619.6 2.2720 × 105

48 3889.064 2.2148 × 105 103 278035.0 1.2328 × 105

49 3970.075 4.3889 × 105 104 690717 2.7989 × 104

50 4101.734 9.7320 × 105 105 887610 1.8569 × 104

51 4340.472 2.5304 × 106 106 1118630 1.2709 × 104

52 4861.28694 9.6680 × 106 107 1387500 8.9344 × 103

53 4861.29776 9.6683 × 106 108 1694230 6.4283 × 103

54 4861.35 8.4193 × 106 109 3376000 2.0659 × 103

55 6562.70969 5.3877 × 107

Finally, the numerical values of continued fractions were
always calculated using the the Lenz algorithm as indicated
in reference [9].

3 Results and discussion

Half-lifes of exited states of atoms are abundantly available
from the NIST web site, however, only for the light atoms

such as H, He and Li these data have a very high accuracy.
Considering for instance Fe as a heavy element, most of the
Einstein A coefficients have uncertainties of 10-18% and are
consequently not suitable for a numerical analysis.

Due to results form our previous publications, we suspect
that Müller’s continued fraction formalism with Euler’s num-
ber as numerator can still be applied to many data sets, so
we set all partial numerators in Müller’s continued fractions
(given in equation (2)) to Euler’s number.

We strictly follow the formalism of previous publications
[4–6] and introduce a phase shift p in equation (2). According
to [6] the phase shift can only have the values 0 or ± 3

2 . So we
write for the half-lifes of the excited states:

ln
T1/2

τ
= p + S , (6)

where S is the continued fraction

S = n0 +
e

n1 +
e

n2 +
e

n3 + ...

(7)

and τ = λC
c is the oscillation period of a hypothetical photon

with the reduced Compton wavelength of the proton (λC =
h

2πmc = 2.103089086 × 10−16 m) and traveling at light speed
(numerical value 7.015150081 × 10−25 s).

We abbreviate p + S as [p; n0 | n1, n2, n3, . . .]. The free
link n0 and the partial denominators ni are integers divisible
by 3. For convergence reason, we have to include |e+1| as
allowed partial denominator. This means the free link n0 is
allowed to be 0,±3,±6,±9 . . . and all partial denominators ni

can take the values e+1, -e-1, ±6,±9,±12 . . ..
For the calculation of the continued fractions we did not

consider any standard deviation of the published data. Prac-
tically, we developed the continued fraction and determined
only 18 partial denominators. Next we calculated repeatedly
the data value from the continued fraction, every time consid-
ering one more partial denominator. As soon as considering
further denominators did not improve the experimental data
value significantly (on the linear scale), we stopped consider-
ing further denominators and gave the resulting fraction in Ta-
ble 2. This means we demonstrate how accurately the calcu-
lated half-lifes can be expressed through continued fractions.
Additionally we also report the numerical error, which is de-
fined as absolute value of the difference between the half-life
calculated from the NIST transition probability and the value
calculated from the continued fraction representation.

If this numerical error is higher than 1%, we interpret the
result as “no continued fraction found”, otherwise the contin-
ued fraction representation is in satisfying agreement with the
experimental data.

As can be seen from Table 2, with one exception, all half-
lifes could be expressed in a satisfactory manner by a con-
tinued fraction representation. Only one outlier was found,
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which underlines the statistical nature of Müller’s continued
fraction model.

We believe that spectral line number 71 is a true outlier
rather than a bad data point, since the Hydrogen spectrum has
been thoroughly investigated and is definitely the most easiest
one to interpret.

In most cases the numerical errors are several orders of
magnitude lower than the data value. This changes when cal-
culating the continued fractions with number 2 as numerator,
as it was suggested by Müller in a patent [6]. In this case
the number of outliers increases to 12 and the numerical er-
rors of the continued fraction representations are frequently
very slightly lower than the 1% limit. So the numerator e is
definitely the better choice.

It can be seen that around 25% of the half-lifes could be
expressed by two continued fractions, so there is no preferred
accumulation of the half-lifes in the neutral zones. The major-
ity of the continued fraction representations terminates with
a high partial denominator (±9,±12,±15 . . .). This means
there is a general tendency that the half-lifes accumulate in
nodes and sub-nodes of the spectrum of the proton resonance
periods.

Additionally, in the same manner as here described for the
spectral lines of the Hydrogen atom, we analyzed the spectral
data of He, Li (neutral atoms) and the Li+ ion. From the NIST
database resulted 142 spectral lines for the He atom, 57 lines
for the Li atom and 129 lines for the Li+ ion.

Again, it was analogously possible to express the half-
lifes on the logarithmic scale by continued fraction represen-
tations with Euler’s number as numerators. Very few out-
liers were found, 6 in the He data set, only one in the Li data
set and 7 in the set of the Li+ lines (continued fractions not
given). Regarding the numerical errors, no significant differ-
ences were detected, when comparing with the Hydrogen set.

This result is a contribution to the importance of Euler’s
number as a possible numerator in the model of oscillations
in a chain system. We have now identified the half-lifes of ex-
cited states with respect to individual electronic transitions as
a further data set where this (still phenomenological) model
can be applied. For the half-lifes, apparently it does not mat-
ter how many nucleons are in the atom and whether the atom
is neutral or charged. It even seems to be that the model ap-
plies for both, allowed and forbidden transitions, however,
this should be verified with further data; we have here only
one forbidden transition in our data set.

4 Conclusions

Numerical investigation of a large data set of 437 half-lifes
of electronic transitions from different atoms revealed that
Müller’s continued fraction model with e as numerator is ad-
equate to express these data on the logarithmic scale. There
is a general tendency that half-lifes accumulate in nodes and
sub-nodes of the spectrum of proton resonance periods. This

accumulation does not seem to be influenced by the atomic
charge or the atomic number (chemical element). It can be
said that every excited state of an atom (with corresponding
transition), has different oscillation properties and goes in res-
onance with the appropriate proton oscillation. Then, during
one proton oscillation period, 50% of the excited atoms be-
come de-excited to a lower-lying state.

This viewpoint has some similarity to the teaching of
modern quantum electrodynamics. This theory states that
spontaneous emission from atoms is caused by a 50:50 contri-
bution from radiation reaction and vacuum fluctuations [10].
So both models assume an external influence coupled to the
atoms, either the proton resonance spectrum or the vacuum
fluctuations.
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Table 2: Continued fraction representation of half-lifes of excited
states of the Hydrogen atom

Line Half-life [s] Numerical
no. Continued fraction representation error [s]

1 1.36826068529 × 10−5

[0; 45 | -e-1, -e-1, e+1, -6, 6, -e-1, 6] 2.5 × 10−11

[1.5; 42 | e+1, -e-1, 24, -6, 9] 1.5 × 10−11

2 8.84793439571 × 10−6

[1.5; 42 | 6, -9, e+1] 3.7 × 10−8

3 5.48766669749 × 10−6

[1.5; 42 | 765] 3.0 × 10−11

4 3.23522604695 × 10−6

[0; 42 | e+1, -e-1, e+1, -9, 12] 4.2 × 10−11

[1.5; 42 | -6, e+1, -6, -e-1, -9] 1.6 × 10−11

5 1.79135571551 × 10−6

[0; 42 | 6, e+1, -e-1] 1.7 × 10−8

6 9.15843745785 × 10−7

[0; 42 | -9, -6, 9, 6, -21, 117] 1.7 × 10−19

7 3.51351977169 × 10−8

[0; 39 | -6, e+1, -e-1] 4.7 × 10−10

[1.5; 36 | e+1, -e-1, e+1, e+1, -e-1] 4.4 × 10−11

8 4.21622372603 × 10−7

[1.5; 39 | 6, 12, e+1, 6] 6.2 × 10−12

9 2.01642816163 × 10−8

[1.5; 36 | 6, e+1, -6, 6, -e-1, 18] 2.0 × 10−15

10 1.68035680136 × 10−7

[1.5; 39 | -6, 6, e+1, -e-1, e+1] 3.4 × 10−10

11 5.42156574548 × 10−8

[0; 39 | -24, 27, -24, -18] 3.6 × 10−17

12 1.01655351621 × 10−8

[1.5; 36 | -9, -6, -42] 4.2 × 10−14

13 4.1443777612 × 10−9

[0; 36 | 9, -6, -e-1] 4.8 × 10−12

14 1.24329102717 × 10−8

[1.5; 36 | -33] 4.9 × 10−11

15 1.106415497 × 10−9

[1.5; 33 | 6, -6, e+1, e+1, -e-1, 12] 1.1 × 10−15

16 1.10639783645 × 10−9

[1.5; 33 | 6, -6, e+1, e+1, -e-1, 6, 15] 4.3 × 10−17

17 1.47522066267 × 10−9

[0; 36 | -e-1, -39, -e-1, e+1, 9, 6] 4.8 × 10−17

[1.5; 33 | e+1, -12, e+1, -9, 12, 12] 8.9 × 10−18

18 277814.501226
[0; 69 | -e-1, 6, -e-1, -141] 0.17
[1.5; 66 | e+1, 6, -81] 0.97

19 0.00695532858264
[0; 51 | -9, e+1, -e-1, e+1] 9.2 × 10−5

20 0.00606427979493
[0; 51 | -6, 6, 15] 5.7 × 10−7

21 0.00526667563681
[0; 51 | -e-1, -e-1, -e-1, 6, 12] 4.2 × 10−8

[1.5; 48 | e+1, -e-1, -e-1, 6, -e-1, e+1, -30] 6.8 × 10−10

22 0.00455538367876
[0; 51 | -e-1, 12, e+1, -e-1, 12, 9] 8.9 × 10−10

[1.5; 48 | e+1, 90, -e-1, e+1, 9] 7.1 × 10−10

23 0.00392295648062
[0; 51 | -e-1, e+1, -12, -12, 54] 1.2 × 10−10

24 0.00336283320668
[1.5; 48 | 6, 6, 39, -6, -18] 2.1 × 10−11

25 0.00286874919527
[1.5; 48 | 9, e+1, -e-1, e+1, -e-1] 2.7 × 10−5

26 0.00243431615003
[1.5; 48 | 27, e+1, e+1, -18] 3.2 × 10−9

27 0.00205425635872
[1.5; 48 | -39, e+1, -e-1, -e-1, e+1, -33] 2.2 × 10−11

Line Half-life [s] Numerical
no. Continued fraction representation error [s]
28 0.00172321793099

[1.5; 48 | -12, e+1, -e-1, e+1, -e-1, e+1, 12] 2.3 × 10−9

29 0.00143624703293
[1.5; 48 | -6, -9, e+1, -6, e+1] 3.7 × 10−8

30 0.00118885013131
[0; 48 | e+1, -e-1, -e-1, -e-1, e+1] 1.4 × 10−6

[1.5; 48 | -e-1, -e-1, -9, -6, 9] 1.6 × 10−9

31 0.000976772656962
[0; 48 | e+1, 12, -e-1, e+1] 5.4 × 10−7

32 0.000796089515855
[0; 48 | 6, -9, e+1, -e-1] 6.6 × 10−7

33 0.000643172664526
[0; 48 | 9, e+1, -e-1] 4.4 × 10−6

34 0.000514700512779
[0; 48 | 60, e+1, -e-1, -60] 2.0 × 10−11

35 0.000407613749227
[0; 48 | -15, e+1, e+1, -e-1, -9] 1.8 × 10−9

36 0.000319143229688
[0; 48 | -6, -9, -e-1, e+1, -6] 4.3 × 10−9

37 0.000246733058256
[0; 48 | -e-1, -12, -6, 6] 3.3 × 10−9

38 0.000188094537614
[0; 48 | -e-1, e+1, -e-1, -9, 6] 6.2 × 10−9

[1.5; 45 | 6, -e-1, e+1, -6, e+1, -351] 6.9 × 10−13

39 0.000141167630101
[1.5; 45 | 12, -e-1, e+1] 8.2 × 10−7

40 0.000104102726005
[1.5; 45 | -51, 9] 4.2 × 10−9

41 7.525864591 × 10−5

[1.5; 45 | -6, -e-1, e+1, -e-1] 9.0 × 10−7

42 5.31880893616 × 10−5

[0; 45 | e+1, -12, -e-1, e+1, -9] 5.3 × 10−10

[1.5; 45 | -e-1, -90, e+1, 60] 5.1 × 10−13

43 3.66221366598 × 10−5

[0; 45 | 6, e+1, -15, -e-1, -e-1, 18] 5.8 × 10−13

44 2.44608526153 × 10−5

[0; 45 | -1446] 3.6 × 10−11

45 1.57633762522 × 10−5

[0; 45 | -6, -18, e+1] 3.1 × 10−9

46 9.73179614686 × 10−6

[0; 45 | -e-1, e+1, -12, -e-1, e+1, 9] 1.8 × 10−11

[1.5; 42 | e+1, e+1, -e-1, e+1, -e-1, e+1, -6, 6] 2.0 × 10−11

47 5.70209921487 × 10−6

[1.5; 42 | 66, -e-1, e+1, -e-1] 4.6 × 10−10

48 3.12961522738 × 10−6

[0; 42 | e+1, -e-1, 6, -31650] 7.5 × 10−17

49 1.57931869161 × 10−6

[0; 42 | 12, -e-1, e+1, -e-1] 1.8 × 10−8

50 7.12235080723 × 10−7

[0; 42 | -6, e+1, -e-1, 6] 6.3 × 10−10

[1.5; 39 | e+1, -e-1, e+1, 9] 4.4 × 10−10

51 2.73927908852 × 10−7

[1.5; 39 | 441, e+1, 12] 1.6 × 10−14

52 7.16949917832 × 10−8

[0; 39 | 15, e+1, -e-1] 3.7 × 10−10

53 7.16927671421 × 10−8

[0; 39 | 15, e+1, -e-1] 3.7 × 10−10

54 8.23283622819 × 10−8

[0; 39 | 9, -48] 5.0 × 10−12

55 1.2865363338 × 10−8

[1.5; 36 | -51, -e-1] 4.8 × 10−12

56 3.08779036244 × 10−8

[0; 39 | -e-1, -9, -30] 8.1 × 10−13

[1.5; 36 | e+1, -6, -6, e+1, -9] 4.1 × 10−13
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Line Half-life [s] Numerical
no. Continued fraction representation error [s]
57 3.08765281554 × 10−8

[0; 39 | -e-1, -9, -27, e+1, 30] 5.5 × 10−16

[1.5; 36 | e+1, -6, -6, e+1, -6, -69] 2.4 × 10−16

58 1.57172667413 × 10−8

[1.5; 36 | 18, 9] 7.5 × 10−12

59 1.07213682783 × 10−8

[1.5; 36 | -12, 6, e+1, 9] 8.2 × 10−14

60 0.000457010074873
[0; 48 | -36, -e-1, -e-1, 72] 8.3 × 10−12

61 0.000352872361941
[0; 48 | -9, e+1, -6, 66] 6.5 × 10−11

62 0.000268620051372
[0; 48 | -e-1, -e-1, 15, -6, 6] 8.3 × 10−10

[1.5; 45 | e+1, -e-1, -9, -6, e+1, 6, -135] 3.4 × 10−14

63 0.000201250560525
[0; 48 | -e-1, e+1, 9, 6] 2.9 × 10−8

[1.5; 45 | e+1, e+1, -15, e+1, 6, e+1, -72] 4.0 × 10−14

64 0.000148105207273
[1.5; 45 | 9, 30, -6, e+1, -6, e+1, e+1] 7.5 × 10−13

65 0.00010680069345
[1.5; 45 | -96, -e-1, e+1] 6.3 × 10−9

66 7.52463910635 × 10−5

[1.5; 45 | -6, -e-1, e+1, -e-1] 8.9 × 10−7

67 5.16080098697 × 10−5

[0; 45 | e+1, -39, -e-1, 6, -e-1, -9, -6, 18] 1.6 × 10−15

[1.5; 45 | -e-1, 24] 6.5 × 10−8

68 3.43023299134 × 10−5

[0; 45 | 9, -e-1, e+1, -27, -6] 3.1 × 10−11

69 2.19642303238 × 10−5

[0; 45 | -24, -e-1, 6, e+1] 4.6 × 10−10

70 1.34440277078 × 10−5

[0; 45 | -e-1, -e-1, 9, -e-1, e+1] 9.5 × 10−9

[1.5; 42 | e+1, -e-1, -15, 12, -e-1, -15] 6.3 × 10−13

71 7.78379764806 × 10−6

[1.5; 42 | 9, -e-1, e+1, -e-1, e+1, -e-1, e+1, -e-1] 1.0 × 10−7

no continued fraction found error 1.3%
72 4.19936496159 × 10−6

[1.5; 42 | -9, -e-1, e+1, -e-1, e+1, -e-1] 3.3 × 10−8

73 2.06385940319 × 10−6

[0; 42 | 6, -e-1, 6, 12, 6, 12] 1.3 × 10−13

[1.5; 42 | -e-1, e+1, -e-1, 9, e+1, 12] 4.2 × 10−12

74 8.90602706652 × 10−7

[0; 42 | -9, 6, e+1, -e-1] 9.1 × 10−10

75 3.14952372119 × 10−7

[1.5; 39 | 18, e+1, 6, 9, -e-1, -6, 9, -9] 2.6 × 10−17

76 0.000188796421136
[0; 48 | -e-1, e+1, -e-1, -e-1, -e-1, e+1] 7.0 × 10−8

[1.5; 45 | 6, -e-1, e+1, -e-1, 6] 6.1 × 10−8

77 4.27736612502 × 10−5

[1.5; 45 | -e-1, e+1, -6, 15] 4.4 × 10−9

78 2.71131304737 × 10−5

[0; 45 | 27, -27, e+1, e+1, 9] 2.0 × 10−13

79 1.63682712013 × 10−5

[0; 45 | -6, -e-1, 138] 3.9 × 10−11

80 9.29238910568 × 10−6

[0; 45 | -e-1, e+1, -e-1, 33] 6.2 × 10−10

[1.5; 42 | 6, -e-1, e+1, e+1, -15] 1.3 × 10−10

81 7.71363432628 × 10−8

[0; 39 | 12, -e-1, -e-1, -9] 2.2 × 10−12

82 2.27896492047 × 10−6

[0; 42 | e+1, e+1, e+1, e+1, -e-1, e+1, -6, -15] 1.3 × 10−13

[1.5; 42 | -e-1, e+1, e+1, 45] 2.9 × 10−11

Line Half-life [s] Numerical
no. Continued fraction representation error [s]
83 8.9890699074 × 10−7

[0; 42 | -9, 27] 7.5 × 10−11

84 1.00342682266 × 10−5

[0; 45 | -e-1, e+1, 9, -9] 7.6 × 10−10

[1.5; 42 | e+1, e+1, -21] 2.9 × 10−9

85 4.9949353647 × 10−6

[1.5; 42 | -30, -105, 6] 3.2 × 10−13

86 2.56787752588 × 10−7

[1.5; 39 | -48, e+1] 2.5 × 10−10

87 2.130924682 × 10−6

[1.5; 42 | -e-1, e+1, -6, 39, -30] 8.3 × 10−14

88 1.87941536444 × 10−5

[0; 45 | -9, -e-1, e+1, -e-1] 1.4 × 10−7

89 6.75977355725 × 10−7

[0; 42 | -e-1, -e-1, e+1, 6, -6, 12] 8.3 × 10−13

[1.5; 39 | e+1, -e-1, -312, 24] 5.5 × 10−15

90 4.44068922135 × 10−6

[1.5; 42 | -12, -e-1, e+1, -e-1] 6.5 × 10−9

91 0.000206379795319
[0; 48 | -e-1, e+1, e+1, -e-1, -e-1, -e-1,
e+1, 909] 1.2 × 10−14

[1.5; 45 | e+1, e+1, e+1, -e-1, -e-1, -e-1, -12] 5.0 × 10−11

92 0.000138358253934
[1.5; 45 | 12, -12, 111] 1.5 × 10−11

93 1.77507024651 × 10−5

[0; 45 | -9, e+1, e+1] 2.7 × 10−8

94 8.88228892141 × 10−5

[1.5; 45 | -12, -e-1, 9, -e-1, e+1, e+1, -6, -6] 4.5 × 10−13

95 5.38575897871 × 10−5

[0; 45 | e+1, -9, -e-1, e+1, -e-1] 8.3 × 10−8

[1.5; 45 | -e-1, -27] 4.5 × 10−8

96 0.000305633925905
[0; 48 | -6, 9, 15, 21, -e-1, -12, -e-1, -18] 1.9 × 10−16

97 8.41504407624 × 10−6

[1.5; 42 | 6, 9, -24, 6, -33, -e-1, 12] 7.3 × 10−17

98 0.000208446510258
[0; 48 | -e-1, 6, -e-1, e+1, -e-1] 8.3 × 10−7

[1.5; 45 | e+1, 6, -e-1, 6] 5.7 × 10−8

99 1.51979297614 × 10−6

[0; 42 | 12, 6, e+1] 7.1 × 10−10

100 3.01276646481 × 10−5

[0; 45 | 12, e+1, -e-1, e+1] 9.4 × 10−8

101 0.000136454353714
[1.5; 45 | 12, 6, -e-1, 6, e+1, -6, -12] 1.6 × 10−12

102 3.0508238581 × 10−6

[0; 42 | e+1, -e-1, 27] 7.5 × 10−10

[1.5; 42 | -e-1, -e-1, e+1, -6, -9] 8.1 × 10−11

103 5.62254364504 × 10−6

[1.5; 42 | 99, -e-1, e+1] 6.6 × 10−10

104 2.476498555 × 10−5

[0; 45 | 261, -e-1] 7.8 × 10−10

105 3.73281911013 × 10−5

[0; 45 | 6, 6, -30, -6, -6] 2.1 × 10−12

106 5.45398678543 × 10−5

[0; 45 | e+1, -9, 6, -e-1, -30] 4.0 × 10−11

[1.5; 45 | -e-1, -18, e+1] 7.3 × 10−8

107 7.75818387983 × 10−5

[1.5; 45 | -9, e+1, -e-1, e+1, -e-1] 6.5 × 10−7

108 0.000107827447468
[1.5; 45 | -147, -6, e+1] 4.3 × 10−10

109 0.000335518263498
[0; 48 | -6, -e-1, e+1, -e-1, e+1] 1.9 × 10−6
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The Schrödinger equation is derived classically assuming that particles present local
random spatial fluctuations compatible with the presence of the zero-point field. With-
out specifying the forces arising from this permanent matter-field interaction but ex-
ploring its fundamental properties (homogeneity, isotropy and random aspect) to justify
the emergence of the continuity equation in one-particle context, these fluctuations are
described in terms of the probability density. Specifically, the starting point is the as-
sumption that the local activities, which turn the path followed by the particle totally
unpredictable, must be associated with an energy proportional to ∂P/∂t. The polar form
of the wave function, which connects the obtained classical equations with the corre-
sponding quantum equation, emerges as a by-product of the approach.

1 Introduction

The evolution of the wave function in single-particle quantum
systems is described by the Schrödinger equation

− ~
2

2m
∇2ψ + Vψ = i~

∂ψ

∂t
, (1)

where m is the mass and V is a potential. The complex wave
function is generally presented in its polar form

ψ =
√

P exp(iS/~), (2)

where P= |ψ|2 is the probability density, and S/~ is a phase.
Substituting (2) into (1) results in two equations

∂P
∂t

+ ∇ ·
(
P
∇S
m

)
= 0, (3)

and

∂S
∂t

+
(∇S )2

2m
+ V + Q = 0, (4)

where

Q = − ~
2

4m

[∇2P
P
− 1

2
(∇P)2

P2

]
(5)

is known as quantum potential. At the classical limit (~→ 0)
Q vanishes and (4) reduces to the Hamilton-Jacobi equation.
For this reason, Bohm [1] suggested that S is the classical ac-
tion function, which relates to the actual velocity, v =∇S/m,
of the particle. In this way (3) simply expresses the conserva-
tion of probability.

This alternative way of writing the Schrödinger equation
presents advantages as regards its interpretation in terms of
classical variables. However, the problem of ignoring the path
followed by the particle persists. And more, we have an ob-
vious increase in complexity: The Schrödinger equation is a

single function and quite simple, on the other hand, the equa-
tion (4) is somewhat complicated - and still requires the con-
tinuity equation to account local activities. And above all,
thinking that the quantum revolution, highly non-classical,
has its origin in a classical equation with an additional po-
tential is not very easy. In reality, Q is not a traditional po-
tential, but part of the description of the motion, that is, P is
playing the role of a dynamical variable at the same footing
as S . Thus S and P can be said to codetermine each other.
However, in approximate schemes to get information about
quantum systems it can be used as a potential [2].

Equation (4) is referred as stochastic Hamilton-Jacobi-
Bohm equation. Despite the fact that P is unique for a given
quantum system, it is interpreted as a differential equation de-
scribing an ensemble of trajectories. This is grounded in the
fact that the action S was originally defined as a field variable
related with a set of potential trajectories [3].

It is paid much attention to equation (4) and less concern
about (3). From a dynamical point of view, the emergence
of the continuity equation is the most remarkable result: It
highlights the local loss of determinism (∂P/∂t , 0), is valid
for one-particle systems (it was obtained in this way), and
contains inherently the multiple path aspect of quantum sys-
tems [4], exactly how is assigned to equation (4).

Fundamentally, to have ∂P/∂t , 0 (change of probability
at a given position), and thus to justify the emergence of the
equation (3), it is necessary that the particle runs local random
spatial fluctuations. Otherwise, there are local preferences,
and these combined with the dynamics that emanates from
the potential V (deterministic) results in a classical trajectory.
Therefore these fluctuations require the presence of external
forces with special features. Indeed, these forces exist and
are related with the zero-point field (ZPF). They are formally
treated in the context of the stochastic electrodynamics [5,6],
and under certain conditions they may be measured [7, 8].
However, their definition is outside the scope of this work;
just let’s enumerate its indispensable characteristics to justify
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the continuity equation in the context of one-particle dynam-
ics.

The above rewriting of the Schrödinger equation starts
from propositions valid within the quantum formalism and
arrives at seemingly classical equations. What will be done
in the present paper is to follow an inverse path. The starting
point is the fact that the local changes of the probability den-
sity — associated with isotropic random spatial fluctuations
impressed by the ZPF — must be related with an energy.

2 The multi path aspect of the motion

Suppose a particle of mass m performing a motion with ve-
locity v. If the associated probability density P is a continu-
ous function of the coordinates and time, then its dynamical
evolution along the trajectory is given by

dP
dt

=
∂P
∂t

+ v · ∇P, (6)

where ∂P/∂t refers to the change of probability at a given po-
sition, and the second term accounts for the spatial changes.
As P is a probability, then we cannot precise the angle be-
tween ∇P and v. Moreover, in principle, ∇P can show an
isotropic distribution around each position. Indeed, as P is a
conserved quantity, then the change of the probability density
inside a given volume Ω (arbitrary), containing the instanta-
neous position of the particle, must be equal to the probability
flux through a surface A surrounding this volume. Formally,
we have

∂

∂t

∫

Ω

PdΩ = −
∫

A
Pṙ · dA, (7)

where ṙ is a velocity, and the vector field Pṙ represents all
possible probability currents that cross the surface A. Obvi-
ously, if the particle is inside this volume, it emerges follow-
ing one of these possibilities. In accordance with the proper-
ties of the ZPF, the field Pṙ must present an isotropic distri-
bution, however, as the velocity of the particle is dictated by
the dynamics of the system as a whole, then there are some
privileged probability currents (the resulting motion is not a
random walk). According to Green’s theorem and equation
(7), each one of the possible currents obeys

∂P
∂t

+ ∇ · (Pṙ) = 0. (8)

As this process is repeated at all positions where the parti-
cle can be found, linking the successive probability currents,
according to which the particle emerges from each volume Ω,
is defined a path described by the velocity

v =
∇S
m
, (9)

where S is the Hamilton-Jacobi function of one possible path
[3, see p. 36]. Therefore equation (8) must be written as (3).

If the local activities are ignored (classical limit), then the
function S is defined on a single trajectory. This also can be
easily inferred making ∂P/∂t = 0 in equation (7). In this case
the probability flux that enters the volume Ω equals the one
that emerges from it. This means that the particle has only
one possibility (probability current) to leave each successive
volume Ω.

If the external field acts on the particle everywhere (ho-
mogeneously), without preferred directions (isotropic) and in
a totally unpredictable (random) way, that is, like the ZPF,
then we will have a local motion compatible with the con-
tinuity equation. Therefore, as the particle has several pos-
sibilities to leave each position (following one possible cur-
rent Pṙ), this assigns a multi path aspect to the motion. This
means that the particle can travel on each one of them indis-
criminately; there is no preferred path. Note, not having a
preferred path means that all are equally probable. We realize
that this fact is consistent with the formulation of quantum
mechanics in terms of path integrals, where Feynman and Hi-
bbs [4, see p. 28] begin with the following statement: “Now
we can give the quantum-mechanical rule. We must say how
much each trajectory contributes to the total amplitude to go
from a to b. It is not that just the particular path of extreme
action contributes; rather, it is that all the paths contribute.
They contribute in equal amounts to the total amplitude, but
contribute as different phases. The phase of the contribution
from a given path is the action S for that path in units of the
quantum of action ~”. Coincidently, this is a description of the
evolution operator exp (iS/~) (unitary), present in (2), which
is the core of the path integrals.

3 The main proposition

In a classical system, the particles are actuated by forces in
such a way that they move along single predictable trajecto-
ries, and this leads to ∂P/∂t = 0 everywhere (the local activ-
ities are ignored). By other side, if particles are being actu-
ated by a field, with the characteristics pointed above, local
exchange of energy between them occurs in such a way that
∂P/∂t , 0. Admitting that this is a fact, let’s write an effective
stationary action function S e f f that, in addition to describing
a path through the function S , also takes into account the local
activities described in terms of probability density, that is,

S e f f = S + S l, (10)

where S l is a local action that depends only on P. Follow-
ing the same formalism obeyed by the stationary Hamilton’s
function, the energy and momentum of the particle over a pos-
sible path are, respectively, written as

H = −∂S e f f

∂t
= −∂S

∂t
− F

∂P
∂t
, (11)

and
p = ∇S e f f = ∇S + F∇P, (12)
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where F = ∂S l/∂P should be a function of P which must
comply the dynamics of the system. Specifically, this func-
tion must obey the conservation of probability and the lo-
cal conservation of energy (the particle cannot extract energy
from the field indefinitely).

The motion equations of the system can be obtained in the
following way: As S and P are taking values on a volume,
then the average energy of the multi path system need to be
written in the form

H̄ =

∫
d3rPH =

∫
d3rH , (13)

where the integral is taken over whole space. Here,H has the
role of Hamiltonian density. With H given by (11) we have

H̄ =

∫
d3rP

(
−∂S
∂t
− F

∂P
∂t

)
. (14)

As H̄, written in this way, is a functional of the func-
tions S and P, taking the functional derivatives with respect
to these functions, according to the well known rules

δH̄
δξ

=
∂H
∂ξ
− ∂

∂xα

(
∂H

∂(∂ξ/∂xα)

)
, (15)

where xα = x, y, z, t and ξ = S or P, we obtain respectively

δH̄
δS

=
∂P
∂t

(16)

and
δH̄
δP

= −∂S
∂t
. (17)

This shows that the proposition (10) preserves the shapes
of the canonical equations, where S and P behave as dynami-
cal conjugate variables of the canonically transformed Hamil-
tonian H̄ [1].

Taking into account the momentum (12), the energy (11)
can be expressed by

H =
|∇S + F∇P|2

2m
+ V, (18)

then (13) can also be written as

H̄ =

∫
d3rP

( |∇S + F∇P|2
2m

+ V
)
, (19)

and, consequently, the canonical equation (16) takes the form
[
∂P
∂t

+ ∇ ·
(
P
∇S
m

)]
+ (F + PF

′
)
(∇P)2

m
+ PF

∇2P
m

= 0, (20)

where F
′
= ∂F / ∂P. The first term, being the continuity equa-

tion, is zero, and the trivial solution of the resulting equation
gives simultaneously F = cte/P and F = 0. However, if this

trivial solution is valid, F is not defined in the field of real
numbers.

Generalizing the constant to complex numbers, the non
zero solution is written as F = (S 1 + iS 0)/P, where S 1 and
S 0 are real constants (they have dimension of action). Thus,
returning this complex shape of F into (19), from (16), results

[
∂P
∂t

+ ∇ ·
(
P
∇S
m

)]
+ S 1

∇2P
m

= 0, (21)

which shows that probability conservation is obeyed if F is a
pure imaginary (S 1 = 0). As this occurs independently of the
P−1 functionality, then it only justifies the complex aspect of
the trivial solution of (20).

Another evidence that F is pure imaginary comes from
the fact that the momentum (12) is apparently incompatible
with the actual velocity (9); it seems that we should have

v =
∇S
m

+ F
∇P
m
. (22)

In reality, this behavior is not entirely unexpected, since,
as we saw earlier, the actual velocity is the end result of the
system dynamics as a whole, that is, S is also dictated by
the local activities. Therefore, to reconcile these equations, F
shall be such that (9) refers to the real part of (22).

The resulting apparent complex character of the energy
(11) and the momentum (12) is only a stage of the calcula-
tions. In effect, the canonical equations (16) and (17) can
also be obtained even making

∫
d3rP

(
−F

∂P
∂t

)
= 0 (23)

in Eq. (14), which makes the average energy (14) real. How-
ever, this implies that, on average, the exchange of energy
between the particle and the field is zero, meaning that the
energy provided by field is promptly returned to it in equal
amount. This, besides constituting the desired local energy
balance — it can be related with atomic stability [9] — also
puts some insight in the complex shape of the mentioned real
quantities.

In fact, the local energy balance (23) is satisfied by the
trivial solution of (20), expressed by

F =
∂S l

∂P
= ı

S o

P
, (24)

as can be easily verified from the normalization of P. So this
proven the P−1 functionality, which is not achieved only from
probability conservation, as pointed above.

Substituting (24) into (19), results in

H̄ =

∫
d3rP

(
(∇S )2

2m
+

S 2
o

2m
(∇P)2

P2 + V
)
, (25)

which, with the canonical equations (16) and (17), reproduces
the equations (3) and (4), respectively, if S 0 is identified with
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~/2. Therefore, to complete the classical derivation of the
Schrödinger equation, the anzatz (2) must also be obtained in
a classical context. This is the subject of the next section.

4 Parameterization of the equations

Knowing any one of the solutions (one of the paths) of the
motion equations resulting from (25), the energy and momen-
tum at each position, according to the equations (13), (12) and
(24), are, respectively, given by

H = −∂S
∂t
− ıS o

P
∂P
∂t

(26)

and

p = ∇S +
ıS o

P
∇P. (27)

Integrating these partial differential equations (minus a
possible constant), we obtain the following dimensionless
equation

1
2ıS o


∑

i

∫ xi

0
pidxi −

∫ t

0
Hdt

 =
S

2ıS o
+ ln

√
P, (28)

as can be easily verified by following the inverse procedure.
The upper limits of the integrals are the coordinates and time
of the positions occupied by the particle along a possible path,
therefore the left hand side of (28) is a complex function of
these parameters, which will be defined in the following way:

lnψ =
1

2ıS o


∑

i

∫ qi

0
pidqi −

∫ t

0
Edt

 . (29)

As both sides of (28) are independent of the path followed
by the particle, we can write the following relation between
S and P, valid for all paths:

lnψ =
S

2ıS o
+ ln

√
P, (30)

or

ψ =
√

P exp
(

S
2ıS o

)
. (31)

This equation with S 0 = ~/2 is in full agreement with (2).
And more, for constant energy and momentum the function
defined in (29) is a solution of the Schrödinger equation for a
free particle.

Finally, let’s re-write the equations obtained in this work
in terms of ψ. From (30) and its complex conjugate we obtain
the following parametric shapes for S and P:

S =
ı~

2
(
lgψ − lnψ∗

)
(32)

and
P = ψ∗ψ. (33)

Consequently, the equations (25), (26) and (27) can be
re-written, respectively, in the forms:

H̄ =

∫
d3r

(
~2

2m
∇ψ∗ · ∇ψ + ψ∗Vψ

)
, (34)

ı~
∂ψ

∂t
= Hψ, (35)

and
−ı~∇ψ = pψ. (36)

Applying the divergence operator on both sides of equa-
tion (36), allied to fact that p is coordinate independent (it is
independent of the followed path), gives

−ı~∇ · ∇ψ = p · ∇ψ, (37)

and expressing p in terms of the complex conjugate of (36),
we obtain the equality

−ψ∗∇2ψ = ∇ψ∗ · ∇ψ. (38)

Therefore the equation (34) can be written in the well
known quantum form

H̄ =

∫
d3rψ∗

(
− ~

2

2m
∇2 + V

)
ψ. (39)

5 Conclusion

The approach shows that the Schrödinger equation and its ac-
cessory are necessary and natural equations, parameterized
shapes of the complicated — not to say unsolvable — equa-
tions resulting from a classical treatment including a special
field with homogeneous, isotropic and random characteris-
tics.
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The paper introduces a simple quantum model to calculate in a general way allowed
frequencies and energy levels of the anharmonic oscillator. The theoretical basis of
the approach has been introduced in two early papers aimed to infer the properties of
quantum systems exploiting the uncertainty principle only. Although for clarity the
anharmonic oscillator is described having in mind the lattice oscillations of atoms/ions,
the quantum formalism of the model and approach have general character and can be
extended to any oscillating system. The results show that the harmonic energy levels
split into a complex system of anharmonic energy levels dependent upon the number of
terms of the Hamiltonian that describes the anharmonicity.

1 Introduction

The anharmonic phenomena, well known in physics [1], re-
gard a wide range of properties of practical and theoretical
interest; e.g. in acoustics they account for large variations of
sound velocity in solids [2], in optics for non-linear interac-
tion of powerful light with lattice vibrations [3]. Moreover are
known physical effects that lead to a behavior impossible in
harmonic oscillators, like the “foldover effect” [4] and “super-
harmonic resonance” [5]; both are due to the dependency of
the eigenfrequency of nonlinear oscillators on the amplitude
and to the non-harmoniticity of the oscillations. In solid state
physics, non-linear effects occur when atoms consisting of a
positively charged nucleus surrounded by a cloud of electrons
are subjected to an electric field; the displacement of nucleus
and electrons causes an electric dipole moment, whose inter-
action with the applied field is linear for small field intensities
only [6].

The present paper aims to propose a quantum mechani-
cal approach to tackle the problem of non-harmonic oscilla-
tions in a general way, i.e. regardless of the particular issue of
specific interest, and in line with the concepts introduced in
two papers [7,8] concerning simple quantum systems, many-
electron atoms/ions and diatomic molecules. The basic idea
of these papers starts from a critical review of the concepts
of positions and momenta of interacting particles in a quan-
tum system, where the dynamical variables are perturbed in
a complex way by mutual interactions and change within ap-
propriate ranges of values in agreement with boundary con-
ditions like the minimum total energy.

Consider for instance the hydrogenlike atoms. It is rea-
sonable to regard radial momentum pρ and distance ρ be-
tween electron and nucleus as variables included within
proper ranges of values; so it is certainly possible to write
0 < ρ ≤ ∆ρ and 0 < pρ ≤ ∆pρ if ∆ρ and ∆pρ have arbi-
trary sizes, including even the chance of infinite sizes. The
only basic hypothesis of the quoted papers was that in gen-
eral any ranges of conjugate dynamical variables ∆x and ∆px

have physical meaning of quantum uncertainty ranges, thus to

be regarded according to the basic ideas of quantum statistics;
hence

∆x∆px = n~, (1.1)

with n arbitrary integer.
No hypothesis is necessary about ∆x and ∆px, which are

by definition arbitrary, unknown and unpredictable. Eq. (1.1)
was the unique assumption in [7, 8] and does so also in the
model proposed here. Despite the apparently agnostic char-
acter of eq. (1.1), the results inferred in the quoted papers
were in all cases completely analogous to that of the usual
wave mechanics formalism; in particular it was found that
the quantum numbers actually coincide with the numbers of
allowed states in the phase space for the concerned systems.
Eq. (1.1) only is enough to give the classical Hamiltonian,
Hcl, the physical meaning of quantum Hamiltonian, Hq; it
simply requires considering the ranges of dynamical variables
rather than the dynamical variables themselves, which are
therefore disregarded since the beginning. For instance, in
a one-dimensional problem like that of a mass constrained to
oscillate along a fixed direction, it means that hold the posi-
tions

Hcl(x, px)⇒ Hq(∆x,∆px)⇒ Hq(∆px, n). (1.2)

The uncertainty is regarded in this way as fundamental
principle of nature rather than as mere consequence of com-
mutation rules of quantum operators. The case of the har-
monic oscillator, already introduced in [7], has central impor-
tance here; its quantum formulation according to eq. (1.1)
and positions (1.2) is so short and simple that it is sketched
in the next section 2 to make the present paper clearer and
self-consistent.

The next section aims also to emphasize how the concepts
so far introduced enable the quantum approach. For clarity
the anharmonic oscillator is regarded in section 3 having in
mind the lattice oscillations of atoms/ions, yet through a very
general approach that can be extended to any quantum sys-
tem. The discussion on the results of the model and the con-
clusion are reported in sections 4 and 5.
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2 The harmonic oscillator

With the positions 1,2, the classical energy equation E =
p2/2m + khar(x − xo)2/2 of the oscillating mass around the
equilibrium position xo reads ∆E = ∆p2/2m+khar∆x2/2, hav-
ing omitted for simplicity the subscript x; owing to eq. (1.1),
E = E(∆p, n) is now because of n a random quantity within
an energy range ∆E that corresponds to local uncertainty of
dynamical variables within ∆x and ∆p. Both these latter and
∆E are assumed positive by definition. Then, one finds

∆E =
∆p2

2m
+

m(n~ωhar)2/2
∆p2 , ω2

har =
khar

m
. (2.1)

Eq. (2.1) has a minimum as a function of ∆p, i.e.

∆pmin =
√

mn~ωhar, ∆Emin = n~ωhar, (2.2)

being now n the number of vibrational states. Although for
n = 0 there are no vibrational states, the necessity that ∆p , 0
compels ∆E , 0 and thus ∆E0 = ∆p2

0/2m , 0 with ∆p0 =

∆pmin(n = 0). In this particular case, the problem reduces to
that of a free particle in the box, i.e. ∆p0 is related to the zero
point energy. This requires ∆p0 = ∆pmin(n = 1), because the
minimum quantum uncertainty of ∆p can be nothing else but
that of ∆pmin for n = 1. The numerical correspondence be-
tween non-vibrational momentum range, ∆p0, and first vibra-
tional momentum range, ∆pmin(n = 1), means that at the zero
point energy state the mass m is delocalized in a space range,
∆x0 = ∆x(n = 0), equal to that, ∆x(n = 1), pertinent to the
lowest vibrational state. In other words, the oscillation am-
plitude at the ground energy level is the same as the delocal-
ization range size of the particle with zero point energy only.
Hence ∆p0 =

√
m~ωhar defines E0 = ∆p2

0/2m = ~ω/2. The
minimum of ∆E must be ∆Emin = Emin − ~ωhar/2; then, re-
garding Emin = Ehar as the harmonic energy level, the known
result

Ehar = n~ωhar +
~ωhar

2
(2.3)

is obtained considering uncertainty ranges of eq. (1.1) only,
and without any further hypothesis. Note that with ∆p =
∆phar

∆p2

2m
=
ω2

harmn2~2

2∆p2 =
n~ωhar

2
,

in agreement with the virial theorem as Emin is given by the
sum of kinetic and potential terms, whereas the zero point
term has kinetic character only. Also note in this respect that
∆pmin and ∆p0 are merely particular range sizes, among all
the ones allowed in principle, fulfilling the condition of min-
imum Emin and E0.

These results do not contradict the complete arbitrariness
of ∆p and ∆x, since in principle there is no compelling rea-
son to regard the particular ranges of eqs. (2.2) in a different
way with respect to all the other ones allowed by eq. (1.1);
rather the results merely show the preferential propensity of

nature for the states of minimum energy. In effect it is not
surprising that the energy calculated with extremal values of
dynamical variables in the ranges of eq. (2.1) does not coin-
cide, in general, with the most probable energy. In conclu-
sion, this example highlights that the physical properties of
a quantum system can be inferred without solving any wave
equation simply replacing the local dynamical variables with
the respective quantum uncertainty ranges: the key problem
becomes then that of counting correctly case by case the ap-
propriate number of allowed states, as shown in [7,8] for more
complex quantum systems.

It appears that, once accepting the eq. (1.1) and the conse-
quent positions 1,2, have actual physical meaning the uncer-
tainty ranges rather than the dynamical variables themselves;
these latter are considered here random, unknown and unpre-
dictable within the respective ranges and thus are disregarded
since the beginning when formulating the physical problem.
Just this is the essence of eq. (2.1). Eventually note that the
vibrational quantum number n appears to be here the num-
ber of quantum states allowed to the oscillator. Since the
present approach gives sensible results for harmonic oscil-
lations, there is no reason to exclude that the same holds for
anharmonic oscillations as well. The next paragraph aims to
generalize the kind of approach just introduced to the case of
anharmonic oscillations.

3 The anharmonic oscillator

The classical Hamiltonian reads now

E = p2/2m +
N∑

i=2

a′i(n~)
−i(x − xo)i, (3.1)

being N the arbitrary number of terms of the series including
quadratic and anharmonic terms and a′i proper coefficients as-
sumed known; indeed the values of these coefficients charac-
terize distinctively the specific kind of oscillating system. The
signs of a′3 and a′4 are taken here negative [9]; the former ex-
presses the asymmetry of the mutual repulsion between atoms
or ions, e.g. in a metallic lattice, the latter describes the soft-
ening of the vibration at large amplitudes. The higher order
terms allow to describe these effects in a more general way, so
their sign and values must agree with the idea that the global
consequence of anharmonicity is to lower the potential en-
ergy of oscillation; indeed the potential energy reads a′2(x −
xo)2 f (x), i.e. it consists of a quadratic term with x-dependent
correction factor f (x) = 1 +

∑N
i=3(a′i/a

′
2)(x − xo)i−2 < 1.

By analogy with the harmonic case, the coefficient of the
quadratic term, anyway related to the force constant kan, is
reasonably expected to have still the form m(n~ωan)2/2 with
oscillation frequency defined now by ω2

an = kan/m. Moreover
the dependence of this term on ωan suggests that in general
a′i = a′i(ωan) are to be expected as well.

The following discussion aims to guess this dependence
and the relationship between ωan and ωhar through the same
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approach shown previously; so, as done in section 2, we aim
to calculate ∆Emin and infer next the anharmonic vibrational
levels Ean and zero point energy E0, being clearly ∆Emin =

Emin − E0 and Ean = Emin.
According to the position (1.2) and eq. (1.1), the quantum

energy equation corresponding to eq. (3.1) reads

∆E =
∆p2

2m
+

N∑
i=2

a′i
∆pi . (3.2)

This equation, minimized with respect to the range ∆p,
yields

∆pmin = m
N∑

i=2

ia′i∆p−(i+1)
min , (3.3)

being

∆Emin = ∆E(∆pmin), ∆pmin = ∆pmin(ωan).

For assigned coefficients a′i , the first equation admits in
general N + 2 solutions ∆pmin, some of which can be how-
ever imaginary. Being the momentum uncertainty range ∆p
real positive by definition, let I′ ≤ N + 2 be the number of
positive real roots; so I′ possible values of ∆pmin describe
the allowed momentum ranges of the oscillating particle that
fulfil the minimum condition. A further limitation to these
values is that the series must converge. Disregard also the
values of ∆pmin that with the given a′i possibly do not ful-
fil the inequality

∣∣∣(i + 1)a′i+1∆p−(i+2)
min

∣∣∣ << ∣∣∣ia′i∆p−(i+1)
min

∣∣∣ inferred
from eq. (3.2), i.e. ∣∣∣a′i+1

∣∣∣ << ∣∣∣a′i∆pmin
∣∣∣ . (3.4)

Then I ≤ I′ is the number of real roots of physical interest
to be considered in the following. Trivial manipulations of eq.
(3.2) to eliminate m with the help of eq. (3.3) yield

∆E =
1
2

(
∆p
∆pmin

)2 N∑
i=2

ia′i
∆pi

min

+

N∑
i=2

a′i
∆pi . (3.5)

To extract the allowed physical information from this
equation one should minimize with respect to ∆p and then
proceed as shown in the harmonic case. Actually this mini-
mum condition has been already exploited to infer eq. (3.3)
itself, which suggests that eq. (3.5) should not need being
minimized once more. To understand this point replace ∆p
with ∆pmin in eq. (3.5) and consider first the resulting equa-
tion ∆E(∆pmin) =

∑N
i=2(1+ i/2)a′i∆p−i

min in the harmonic case;
then N = 2, i.e. a′i>2 = 0, yields 3a′2∆p−2

min/2. By comparison
with eq. (2.1) this result takes a more familiar form replacing
a′2 with a2∆p4

min/m where a2 is a dimensionless proportional-
ity coefficient linking a′2 and ∆pmin; in this way one obtains

∆E(∆pmin) =
3a2∆p2

min

2m
,

which has the same form of eqs. (2.2) a proportionality fac-
tor apart. As expected, an immediate connection with the
harmonic case is possible uniquely on the basis of the con-
dition 3,3 without introducing explicitly neither ωhar nor the
equations of ∆phar and ∆Ehar. Express thus in general the
coefficients a′i as a function of ∆pmin as follows

a′i =
∆pi+2

min

m
ai,

N∑
i=2

iai = 1, 1 ≤ j ≤ I (3.6)

where ai are new constants that fulfil the boundary condi-
tion expressed by the second equation, straightforward conse-
quence of eq. (3.3). Note that a′i are uniquely defined for the
specific oscillating system, whereas the appropriate notation
of the various ai should be a( j)

i to emphasize that a set of these
coefficients is defined by each solution ∆p( j)

min of physical in-
terest calculated through eq. (3.3). This would also compel
indicating in eq. (3.5) ∆E( j) and then ∆E( j)

min. To simplify the
notations the superscript ( j) will be omitted, stressing how-
ever once for all that if N > 2 then eq. (3.5) actually rep-
resents anyone among I admissible equations. Replacing a′i
into the energy equation (3.5), one finds

∆E =

( ∆p
∆pm

)2 1
2
+

N∑
i=2

ai

(
∆pm

∆p

)i ∆p2
min

m
.

This suggests putting

q
∆E
∆Emin

=
1
2

(
∆p
∆pmin

)2

+

N∑
i=2

ai

(
∆pmin

∆p

)i

, (3.7)

∆Emin = q
∆p2

min

m
, a2 =

1
2

1 − N∑
i=3

iai

 .
The proportionality factor q aims to fulfil the reasonable

condition ∆E = ∆Emin for ∆p = ∆pmin and express in a gen-
eral way the expected link between ∆Emin and ∆p2

min/m. Triv-
ial calculations yield

q = 1 +
N∑

i=3

(1 − i/2)ai. (3.8)

Of course q must be intended here as q( j) likewise as a( j)
i .

Whatever ai might be, eq. (3.7) does not need being min-
imized; it simply expresses as a function of ∆p/∆pmin the
energy deviation from the harmonic condition for assigned
values of the coefficients a′i≥2 , 0. Eq. (3.7) and a2 are
uniquely defined in the particular case ai>2 = 0 only, which
corresponds to q = 1 as well. Moreover the form of the sec-
ond equation, analogous to that of eqs. (2.2), suggests that
∆pmin and ∆Emin must be also equal or proportional to the
respective harmonic quantities ∆phar and ∆Ehar. So putting
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in general ∆Emin = w
2∆Ehar and ∆pmin = w∆phar, with w

proportionality factor, one finds

q
w2

∆E
∆Ehar

=
1

2w2

(
∆p
∆phar

)2

+

N∑
i=2

aiw
i
(
∆phar

∆p

)i

, (3.9)

ωan = w
2ωhar.

Likewise q, also w must be intended in general as w( j). So
eqs. (3.9) define I anharmonic frequencies ω( j)

an , ωhar, here
designated shortlyωan, corresponding to the unique harmonic
frequency ωhar; i.e. the various ∆Emin describe the splitting
of each n-th vibrational energy level n~ωhar. The anharmonic
potential of eq. (3.9) is expected to depend upon ωan through
the dimensionless coefficients ai, by analogy with the depen-
dence of the harmonic term upon ω2

har. Thus, to complete the
task of the present section it is necessary: (i) to define the fac-
tor w of eq. (3.9); (ii) to highlight the analytical form of the
functions ai = ai(ωan); (iii) to express the potential energy of
equation (3.9) as a function of ωan through these coefficients.

Rewrite to this purpose the coefficients of eq. (3.2) as
shown in following series

q∆E =
1
2
∆p2

m
+

N∑
i=2

a′′i
mi/2(n~ωan)i/2+1

∆pi , (3.10)

where the powers of n~ωan and m have been determined by
dimensional consistency of the various terms with both ∆E
and ∆pi. Minimizing with respect to ∆p and equating to zero,
one finds

RE =
1
2

R2
p +

N∑
i=2

a′′i R−i
p , (3.11)

where

RE = q
∆E
∆Ehar

, Rp =
∆p
∆phar

, a′′i = aiw
i+2.

With the coefficients a′′i and ai linked by the last posi-
tion, eq. 3,(11) is identical to eq. (3.9); this consistency sup-
ports therefore the positions of both eqs. (3.6) and (3.10). To
specify w put first N = 2 in eq. (3.9); minimizing R2

p/2w
2 +

a2w
2/R2

p with respect to Rp yields R4
p = 2a2w

4. Since the
minimum of Rp can be nothing else but 1 by definition, w =
(2a2)−1/4 yields w = 1, whereas in this particular case a2 =

1/2. As expected, eq. (3.9) is thus uniquely defined for
ai>2 = 0 only. Note that the coefficient of the quadratic term
of eq. (3.10) reads a′′2 m(n~ωan)2; if the result w = (2a2)−1/4

previously obtained for N = 2 still holds for any N with
a2 given now by the last eq. (3.7), then a′′2 = a2w

4 yields
a′′2 = 1/2 and thus the expected form m(n~ωan)2/2 formerly
quoted whatever ai>2 might be.

This consideration encourages one to conclude with the
help of eq. (3.7)

w2 = (2a2)−1/2 =

1 − N∑
i=3

iai

−1/2

,

a′′i = ai

1 − N∑
i=3

iai

−i/4−1/2

.

Replacing a′′i in eq. (3.10) one finds

∆E =
1
2q
∆p2

m
+

+

N∑
i=2

q−1ai
mi/2(n~ωhar)i/2+1

∆pi

1 − N∑
i=3

iai

−
3
4 (i+2)

.

(3.12)

This is the sought generalization of eq. (2.1) when a′i>2 ,
0; the positions so far introduced link eq. (3.2) with the har-
monic case. Moreover eq. (3.9) yields

ωan =

1 − N∑
i=3

iai

−1/2

ωhar. (3.13)

With the given choice of w2, therefore, ai≥3 = 0 yield not
only ωan = ωhar but also ∆pmin = ∆phar and ∆Emin = ∆Ehar.
Hence

∆Emin = n~ωan =

1 − N∑
i=3

iai

−1/2

n~ωhar, (3.14)

∆pmin =
√

mn~ωan =

1 − N∑
i=3

iai

−1/4 √
mn~ωhar.

As concerns the zero point energy E0 hold the consid-
erations of the previous section, i.e. ∆Emin = Emin − E0;
moreover also now for n = 0 the minimum of eq. (3.12)
reduces to ∆p2

0/2qm, with ∆p2
0 = ∆p2

min(n = 0). As ex-
plained before, even in lack of vibrational states ∆pmin , 0
compels putting ∆p0 = ∆p(0)

min(n = 1) by virtue of eq. (3.14)

so that E0 =

(
1 −

N∑
i=3

ia(0)
i

)−1/2

~ωhar/2q; since in general are

allowed several values of ∆pmin, the notation emphasizes that
one must consider here the set of values of a( j)

i corresponding
to the smallest among the various ∆p( j)

min.
In conclusion, since the anharmonic energy and momen-

tum must correspond to the respective ∆Emin and ∆pmin, it is
possible to summarize the previous results, with full notation
for clarity, as follows with the help of eq. (3.8)

E( j)
an =

1 − N∑
i=3

ia( j)
i

−1/2

n( j)~ωhar+

+
1
2

1 + N∑
i=3

(1 − i/2)a(0)
i

−11 − N∑
i=3

ia(0)
i

−1/2

~ωhar,

(3.15)

with
1 ≤ j ≤ I,
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∆p( j)
an =

1 − N∑
i=3

ia( j)
i

−1/4 √
mn( j)~ωhar,

ω
( j)
an =

1 − N∑
i=3

ia( j)
i

−1/2

ωhar,

a( j)
i =

ma′i(
∆p( j)

min

)i+2 .

4 Discussion

The strategy of the papers [7, 8] to exploit via eq. (1.1) the
classical Hamiltonians of the system of interest was outlined
in section 2 and then extended in section 3 to the anharmonic
case. The first task of the discussion aims to clarify the clas-
sical and quantum ways to regard the harmonic and anhar-
monic oscillation. The classical potential energy of eq. (3.1),
Ucl = Ucl(x− xo), concerns a withholding force progressively
increasing as a function of x − xo while the oscillation turns
gradually from harmonic into anharmonic behaviour. More-
over if momentum and position of m are both exactly known,
Ucl can be defined with arbitrary accuracy simply increasing
the number of terms of the series.

This description is clearly inadequate for the potential en-
ergy, Uq = Uq(∆p, n), of the quantum eq. (3.2); in principle
the exact elongation of m with respect to the rest position and
the corresponding momentum are not jointly specifiable, i.e.
the limit ∆x → 0 could not be described by finite values of
∆pmin. Indeed ∆pmin → ∞ compels ∆p → ∞ that yields
∆E = ∆p2/2m regardless of a′i ; this limit corresponds to the
classical case of a free particle in a one-dimensional box, of
no interest here, rather than to the harmonic limit expected
for ∆x→ 0. Eventually the quantum uncertainty compels re-
garding in a different way also the number of terms of Ucl and
of Uq: in the former case N is in principle arbitrary, being sig-
nificant its actual ability to provide a description as detailed
as possible of the local state of motion of m, in the latter case
does not, being instead significant its actual ability to intro-
duce the allowed physical information into the system.

If for instance the model aims to describe softening and
asymmetry effects only, then are justified terms like ∆xi with
powers and signs [9] pertinent to these effects only. Solving
eq. (3.1) requires exploiting the functional relationship Ucl

upon ∆x through numerical methods, solving eq. (3.2) re-
quires instead a different reasoning because the anharmonic
effects inherent the various ∆xi are related to the respective
∆p−i through eq. (1.1) only: the previous results show that
a general physical principle, the minimum energy, is enough
to this purpose. According to the classical eq. (3.1) the har-
monicity requires a′i≥3∆xi << a′2∆x2 in agreement with the
convergence condition (3.4); the quantum eq. (3.2) requires
a′i≥3∆p−i << a′2∆p−2, which is still a statement of “small” os-
cillation amplitudes since a′i∆p−i ∝ a′i∆xi. Both definitions

are thus equivalent, yet the latter is more interesting because
it involves eq. (1.1) and allows further considerations on the
classical and quantum concepts of harmonicity. Eq. (3.4) and
the first eq. (3.3) yield for i ≥ 3

a′i≥3∆p−i << a′2∆p−2 ⇒ ai

(
∆pmin

∆p

)i

<< a2

(
∆pmin

∆p

)2

.

Noting that ∆p is arbitrary by assumption and that ∆pmin
≤ ∆p by definition, it turns out that the second inequality can
be merely fulfilled by ∆p/∆pmin >> 1 regardless of the val-
ues of the ratios a2/ai and a′2/a

′
i . Since in principle a′i only are

required to fulfil the convergence condition (3.4), whereas the
values of ai are ineffective in this respect because their values
are consequently defined in the successive eq. (3.6) only, the
conclusion is that small oscillation amplitudes do not require
necessarily vanishing ai>2. According to eq. (3.13), how-
ever, just these latter define w that in turn control ωan and
thus the splitting of energy levels. The fact that in general
w ≡ w( j) , 1 even for small oscillations supports the idea
that the quantum harmonicity is a particular case, but not a
limit case, of the quantum anharmonicity; in other words, an
oscillating quantum system does not change gradually from
harmonic to anharmonic behaviour.

This conclusion is confirmed also considering the depen-
dence of the constants w on ai. In eq. (3.6) large values of
∆pmin entail small ai and thus w such that the correspond-
ing allowed frequencies ωan are expected to have values sim-
ilar to ωhar; the contrary holds for small values of ∆pmin, to
which correspond larger values of w and therefore larger gaps
ωan − ωhar.

Hence, when considering the totality of allowed frequen-
cies consistent with the different sizes of all ranges ∆pmin,
even small values of a′i classically compatible with the har-
monic condition entail anyway relevant splitting and gap of
energy levels with respect to ωhar typical of the anharmonic-
ity; otherwise stated, the quantum harmonicity requires a′i≥3 =

0 exactly. The harmonic ground level is a reference energy
rather than an attainable limit energy because fails the classi-
cal expectation of anharmonic frequencies progressively de-
viating from ωhar along with a′i ; the last eq. (3.7) shows in-
deed that even the first quadratic coefficient a2 of potential
energy differs from the corresponding harmonic coefficient
unless ai≥3 = 0. It is also significant the fact that the unique
ωhar, classically defined in eq. (2.1) through the force con-
stant khar of Hooke law only, never corresponds to a unique
ωan whatever a′i≥3 , 0 might be; this latter, although formally
introduced in the early eq. (3.3) as ω2

an = kan/m, has quan-
tum character after being subsequently redefined by eq. (3.9)
through the multiplicity of values of w.

It is however worth noting in this respect a further chance
to define the oscillation frequency in a mere quantum way
through an uncertainty equation having a form seemingly dif-
ferent but conceptually equivalent to eq. (1.1). Introduce the
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time range ∆t necessary to displace m by ∆x with finite aver-
age velocity vx; defining then ∆t = ∆x/vx and ∆E = ∆pvx, eq.
(1.1) takes a form that introduces new dynamical variables
t and E having random, unpredictable and unknown values
within the respective uncertainty ranges defined by the same
n~. Of course ∆t and ∆E are completely arbitrary, as they
must be, likewise ∆x and vx. Thus, with the constrain of equal
n, eq. (1.1) reads equivalently as

∆E∆t = n~, ∆t = t − to, (4.1)

being the constant to the arbitrary origin of time coordinates.
Eq. (4.1) is not a trivial copy of eq. (1.1): it introduces new
information through vx and shows that during successive time
steps ∆t the energy ranges ∆E change randomly and unpre-
dictably depending on n. Of course the eq. (1.1) could have
been inferred itself in the same way from eq. (4.1), i.e. re-
garding this latter as the fundamental statement. Relating eqs.
(1.1) and (4.1) via the same arbitrary integer n, whatever it
might be, means describing the oscillation of m through en-
ergy and time uncertainty ranges. This is equivalent to say
that the time coordinate is regarded in an analogous way as
the space coordinate hitherto concerned.

To show the consequences of this assertion, consider that
1/∆t has in general physical dimensions of frequency; then
eq. (4.1) can be rewritten as ∆En = n~ω§, being ω§ a function
somehow related to any frequency ω. If in particular ω§ is
specified to be just the previous frequency ωhar, whatever the
value of this latter might be, eq. (4.1) reads

∆En = n~ωhar. (4.2)

The notation emphasizes that the particular case ω§ ≡
ωhar enables a direct conceptual link with eq. (2.3), i.e. it
concerns the harmonicity; having found that n is according to
eq. (1.1) the number of vibrational states of the oscillator and
n~ωhar their energy levels, then without need of minimizing
anything one infers that ∆En is again the energy gap between
the n-th excited state of the harmonic oscillator and its ground
state of zero point energy; the condition of minimum energy
and ∆pmin are now replaced by the specific meaning of ∆t.

This conclusion shows that a particular property of the
oscillating system is correlated to a particular property of the
uncertainty ranges, thus confirming the actual physical mean-
ing of these latter. So En falling within ∆En are still now
random, unpredictable and unknown because of n. While
ωhar was formerly defined by the formal position 2,1, now
eq. (4.1) reveals its actual quantum meaning due to its direct
link with the time uncertainty ∆t.

This last result is significant for the present discussion: it
justifies the different outcomes of the quantum approach with
respect to the classical expectation in terms of uncertainty
about the dynamical variables of m only; thus, as shown in [7,
8], this result disregards any phenomenological/classical hint
to describe the system. In other words, instead of thinking to

a withholding spring bound to a mass moving back and forth,
the oscillation can be imagined in a more abstract way. It is
enough to introduce an arbitrary energy range ∆En to which
corresponds a respective quantum frequency 1/∆tn; then the
form of eq. (1.1) is suitable to introduce an appropriate po-
tential energy with elongation extent described by a unique
quadratic term or by a series of terms, whose coefficients are
respectively expressed as a function of ωhar or ωan like in eqs.
(2.1) or (3.10).

The worth of this conclusion is due to the generality of
the resulting concept of oscillation, which skips any informa-
tion on actual kind of motion of m, particular property of the
oscillating mass, specific nature of the withholding force and
hypothesis on the allowed range of frequencies. Both time
and space uncertainties allow thus to describe an oscillating
system in a fully quantum way, without writing and solving
its wave equation. The previous results highlight the link of
the allowed frequencies to the terms of Uq, see in particu-
lar the remarks about eqs. (3.5) and 3,13. A consequence
of this point of view is that replacing Ucl with Uq compels
the existence of several momentum uncertainty ranges ∆pmin
and thus of as many ωan even when one would expect a mere
perturbation of the unique ωhar: the physical information pro-
vided by the quadratic term only is uniquely defined, instead
the various values of ∆pmin and ωan for N > 2 in eq. (3.2)
reveal according to the last eq. (3.7) multiple anharmonic
effects that influence also the quadratic term. The quantum
uncertainty is therefore crucial in describing the oscillation.

For instance let us show that, at least for certain frequen-
cies, the anharmonic oscillator appears to be a system intrin-
sically unstable. Let i be the index of any high order term of
the series such that a′i/∆pi << a′2/∆p2 is true by definition
because of the convergence condition; so a′i/∆pi represents
a small contribution to the total energy of oscillation. Let
δa′i/∆pi be its value altered by the change of the coefficient
ai because of an external perturbation acting on the oscilla-
tor; if for instance an impurity diffuses through the lattice in
proximity of the given oscillating atom/ion, the stress field
around this impurity or its possible charge field reasonably
modify the local repulsion between atoms/ions or the soften-
ing effects at large oscillation amplitudes, as a consequence of
which the anharmonic coefficients a′3 and/or a′4 are expected
to change.

Let us exemplify any perturbation like this through a suit-
able change of some a′i of the i-th energy terms in eq. (3.2);
here however we consider for simplicity one term only to de-
scribe the local effect. The proof that some ∆pmin and result-
ing ∆Emin are strongly affected even by a very small change
of any a′i>2 is easy in the particular case where the series de-
scribing the potential energy converges very quickly. Differ-
entiating eq. (3.6) one finds

δa′i = a′i

(
(i + 2)

δ∆pmin

∆pmin
+
δai

ai

)
.
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Fix the value of δa′i ; if the local perturbation of the lattice
affects a′i in such a way that δa′i >> a′i , i.e. it alters signifi-
cantly ai, then the quantity in parenthesis is very large. If this
happens while holds for δa′i also the condition δa′i/∆pi <<
a′2/∆p2, still possible because no hypothesis has been made
on the strength of the perturbation, then considering that the
quadratic term provides the most essential contribution to the
total potential energy the result is: even a small perturbation
δa′i/∆pi of the whole oscillation energy is able to change sig-
nificantly both ∆pmin and ai that define ωan, see eqs. (3.13) to
(3.15). The altered size of the range ∆pmin, actually verified
by preliminary numerical simulations carried out with coeffi-
cients a′i arbitrarily chosen to match the aforesaid condition,
means in particular that the whole energy of the system ad-
mits not only a different ωan allowed to the oscillator but also
a larger range of corresponding momenta pmin allowed to m;
this does not exclude even the chance of chaotic motion re-
lated to a random sequence of values ωan during a weak per-
turbation transient due to the diffusing impurity.

The reason of such instability rests once again on the dif-
ferent way of regarding the oscillation amplitudes in classical
and quantum physics. The former admits the limit ∆x → 0
regardless of ∆p, the latter does not; so the quantum oscilla-
tion range of physical interest cannot be arbitrarily small or
change arbitrarily without violating the crucial condition of
minimum energy. Indeed the oscillation range sizes corre-
sponding to the vibrational levels are quantized themselves

∆xmin =

√
n~
ωanm

, ∆x0 =

√
~

ω(0)
an m
.

At this point it is worth remembering what has been previ-
ously emphasized, i.e. that the sizes of the ranges ∆x and ∆p
are unspecified and indefinable; ∆xmin and ∆pmin are merely
particular values showing the propensity of nature to fulfil
the condition of minimum energy, however without contra-
dicting the assumption that the uncertainty ranges are in prin-
ciple completely arbitrary. So oscillation ranges that do not
fulfil the former condition are certainly possible but unstable
because of mere quantum reasons, i.e. they do not correspond
to momentum range sizes that minimize the oscillation energy
levels.

This conclusion is important because its validity follows
uniquely from the assumption of convergence of the potential
series only, i.e. it concerns a realistic condition effectively
possible for the oscillator rather than an unusual and improb-
able limit case. Also, this result holds whatever the origin
of the anharmonicity might be and confirms the physical di-
versity of harmonic and anharmonic quantum systems. Note
however that the former is actually an ideal abstraction only;
what can be expected in practice is a strong or weak anhar-
monicity, unless some specific physical reason requires just a
potential energy with quadratic term only. So the results of
the present approach should be regarded as the realistic be-

haviour of any oscillating system, rather than a sophisticated
improvement of the naive harmonic behaviour; now this latter
appears thus in general reductive and incomplete, rather than
merely approximate. Yet eq. (3.15) shows that the zero point
energy is formally analogous in both cases, a numerical dif-
ference apart: the only difference between the harmonic and
anharmonic cases is that instead of considering the unique
~ωhar/2 one must select the smallest ω( j)

an to calculate ~ω(0)
an /2.

Note eventually that easy considerations allow to general-
ize the concept of perturbed oscillator in the conceptual frame
of the present model. So far the present approach aimed to in-
troduce the terms a3 and a4 to account for the anharmonicity,
so that eqs. (3.2) to (3.15) tacitly assume an isolated oscillat-
ing system. Simple considerations however allow to further
generalize the physical meaning of eq. (3.2) taking advan-
tage of the fact that the present model works with a number
of high order terms in principle arbitrary. In particular coef-
ficients and number of terms could be exploited to describe
even an oscillating system perturbed by an external force, for
instance due to the interaction with other oscillators; indeed
this force can be certainly described as a series development
having the form

∑
a′′i ∆xi if it is related, in the most general

case non-linearly, to the displacement extent of the oscillating
mass. Of course i can be even negative if the force vanishes at
infinite distance. So, whatever the nature of the perturbation
might be, this means that the potential energy of the system
changes by an additional amount −∑

a′′i (1 + i)−1∆xi+1 to be
summed up with the corresponding terms of eq. (3.1). In
any case, however, adding an arbitrary number of such en-
ergy terms to those intrinsically characterizing the oscillator
does not change in principle the approach so far exposed, ex-
cept of course the numerical value of the various ai of eq.
(3.9), which are now replaced by the sum a′′i +a′i for each i-th
power of oscillation elongation. So nothing hinders to regard
the energy range ∆Ean of this equation as ∆Ean+pert still nor-
malized to that of an isolated harmonic oscillator; it is enough
that the coefficients a′i up to the N-th order are still known,
i.e. defined by the particular kind of oscillating system and
external perturbation, yet without necessarily assuming any
constrain on their signs, now determined by the sum of both
effects. Even in the case where the force is described by terms
like α′/∆xi one would find an equation like (3.2) containing
however terms like a′k∆pk with k > 2. Also in this case, mini-
mizing with respect to ∆p would yield an appropriate number
of roots ∆pmin and thus prospective conclusions in principle
completely analogous to that previously carried out. In the
present case holds therefore the following position

ωan+pertTw2ωhar.

As expected, the previous scheme of vibrational levels is
modified the external perturbation that affects w. This last re-
sult confirms the very general character of the way to describe
any oscillating system simply with the help of the fundamen-
tal eq. (1.1).
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5 Conclusion

The computational scheme introduced in the present paper is
very simple: the most important achievements hitherto ex-
posed do not require numerical calculations, but are conse-
quence of general considerations on basic concepts of quan-
tum mechanics. The general character of the approach, e.g.
due to the arbitrary number N of anharmonic terms, and the
possibility of extension to the case of a perturbed oscillator,
propose the model as a useful tool in a broad variety of phys-
ical problems.

Submitted on June 13, 2011 / Accepted on June 16, 2011

References
1. Landau L. D., Lifshitz E. M., Mecanique, (1969), Editions MIR,

Moscou, p. 118 and ff.

2. Hoechli U. T. Acoustic hanarmonicity and the ∆E effect in tetragonal
S rT iO3. Solid State Communications, 1973, v. 13, no. 9, 1369–1373.

3. Piekara A. H., Ratajska B. Nonlinear interaction of a powerful light
beam with crystal lattice vibrations. Applied Optics, 1978, v. 17, no. 5,
689–690.

4. Petrovsky A. B. Foldover ferromagnetic resonance and damping in
permalloy microstrips. Physics Letters A, 1968, v. 27, 220–221.

5. Abdel-Rahman E. M., Nayfeh A. H. Superarmonic resonance of an
electrically actuated resonant microsensor. Proceedings of the Interna-
tional Conference on Nanotechnology, Nanotech, 2003, v. 2, 440–443.

6. Berrondo M., Recamier J. Resonances and anti-bound states in a Morse
potential. Journal of Chemical Physics Letters, 2011, v. 503, no. 1–3,
180–184.

7. Tosto S. An analysis of states in the phase space: the energy levels of
quantum systems. Il Nuovo Cimento B, 1996, v. 111, no. 2, 193–215.

8. Tosto S. An analysis of states in the phase space: the diatomic
molecules. Il Nuovo Cimento D, 1996, v. 18, no. 12, 1363–1394.

9. Kittel C. Introduction to Solid State Physics. Third Edition, J. Wiley
and Sons, New York, 1967, p. 184.

36 Sebastiano Tosto. An Analysis of States in the Phase Space: the Anharmonic Oscillator



October, 2011 PROGRESS IN PHYSICS Volume 4

Gravity and the Conservation of Energy
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Email: physics@dougweller.com

The Schwarzschild metric apportions the energy equivalence of a mass into a time com-
ponent, a space component and a gravitational component. This apportionment indi-
cates there is a source of gravitational energy as well as a limit to the magnitude of
gravitational energy.

1 Introduction

Albert Einstein asserted that his field equations are in essence
a restatement of the conservation of energy and momentum
[1, pp. 145–149]. Every solution of the field equations, there-
fore, must account for all energy in the system described by
the solution. How do solutions to the field equations account
for gravitational energy?

This paper explains how within Schwarzschild’s solution
[2] to Einstein’s field equations the effects of gravity can be
represented as a velocity and as an apportionment of mass-
energy equivalence. This allows an accounting for gravita-
tional energy as part of mass-energy equivalence.

The paper first considers a spacetime without gravity, as
described by the Minkowski metric. The Minkowski metric
can be rewritten as a summation of velocities and as an ap-
portionment of energy equivalence.

The paper then shows the Schwarzschild metric, which
adds a spherical non-rotating mass to the spacetime defined
by the Minkowski metric, can also be rewritten as a summa-
tion of velocities and as an apportionment of energy equiva-
lence. The apportionment of energy equivalence includes a
gravitational component. This indicates gravitational energy
has a source and a limit to its magnitude.

2 The Minkowski Metric

The Minkowski metric was originally derived based on Her-
mann Minkowski’s fundamental axiom for space-time set out
in an address [3] given in September 1908:

The substance at any world-point may always, with the
appropriate determination of space and time, be looked
upon as at rest.

Minkowski’s fundamental axiom for the space-time con-
tinuum indicates that for the substance at a world point (e.g.,
a particle) there exists a local reference frame, with its own
local space and time coordinates, in which the substance is at
rest with respect to the local space coordinates (but not with
respect to the local time coordinate).

For example, assume the local reference frame for a parti-
cle has the local space coordinates (ξ, η, ς) and the local time
coordinate τ. For the particle, with respect to the local refer-
ence frame,

dξ
dτ

=
dη
dτ

=
dς
dτ

= 0. (1)

The Minkowski metric is often expressed using Cartesian
reference coordinates (x, y, z, t) and the local time coordinate
τ, i.e.,

c2dτ2 = c2dt2 − dx2 − dy2 − dz2. (2)

The Minkowski metric can also be expressed using spherical
coordinates, i.e.,

c2dτ2 = c2dt2 − dr2 − r2dθ2 − (rsinθ)2dφ2. (3)

3 Selection of a reference frame from which to measure
velocity

In order to measure velocity in the Minkowski metric (and
the Schwarzschild metric) it is important to select and consis-
tently use a reference frame. In the Minkowski metric there
are two reference frames to choose from. The first is the lo-
cal reference frame defined by local coordinates (ξ, η, ς, τ).
The other is the reference frame (referred to herein as the
coordinate reference frame) defined by reference coordinates
(x, y, z, t).

There is a distinct disadvantage to use of the local refer-
ence frame to make measurements: in its own local reference
frame an object is always at rest, that is, as indicated by (1)
there is no spatial velocity, i.e., no change in the values of
the local space coordinates (ξ, η, ς) with respect to passage of
time as measured by the time coordinate τ.

In the coordinate reference frame, however, there can be
a detectable motion through the space coordinates. This is
referred to herein as spatial velocity (~vs), which is a vector
sum of the motion in three dimensions of space, i.e.,

~vs = ~vx +~vy +~vz, (4)

and which has a magnitude vs where

vs =
∣∣∣~vs

∣∣∣ =

√(
dx
dt

)2

+

(
dy
dt

)2

+

(
dz
dt

)2

, (5)

as measured by the coordinate reference frame.
Because of this distinct advantage of making measure-

ments from the coordinate reference frame, this is the ref-
erence frame that will be consistently used herein to make
measurements.
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4 Expressing the Minkowski Metric as a sum of veloci-
ties

The Minkowski metric, shown in (2), can be rearranged into
the form of a sum of velocities. Since the observer is mak-
ing measurements from the coordinate reference frame, mo-
mentum and energy will need to be measured with respect to
changes in the reference time coordinate t. The Minkowski
metric is therefore rearranged to show this. Specifically, (2)
can be rearranged as

c2dt2 = c2dτ2 + dx2 + dy2 + dz2, (6)

and therefore,

c2 = c2
(

dτ
dt

)2

+

(
dx
dt

)2

+

(
dy
dt

)2

+

(
dz
dt

)2

, (7)

which can be reduced to

c2 = c2
(

dτ
dt

)2

+ v2
s . (8)

Let a time velocity vτ be defined as

vτ = c
dτ
dt
, (9)

so that vτ is a measure of the rate of passage of time as mea-
sured by the local time coordinate τ with respect to the rate
of the passage of time as measured by the reference time co-
ordinate t. This allows (7) to be rewritten as

c2 = v2
τ + v2

s . (10)

Since the time dimension is regarded as being orthogonal
to the space dimensions, (10) can be written in the form of a
vector sum, i.e.,

c =
∣∣∣~vτ +~vs

∣∣∣ . (11)

Equation (11) is the Minkowski metric written as a sum
of velocities. That is, the vector sum of the velocity in the
dimensions of time and space is always equal to the speed of
light c.

5 Energy equivalence in the Minkowski metric

The Minkowski metric, like all solutions to Einstein’s field
equations, describes a matterless field [1, p. 143]. In order
to see how the Minkowski metric apportions energy equiv-
alence, it is only necessary to place a particle with mass m
anywhere in the field. From (11), a momentum of mass m
across four dimensions of time and space can be expressed as

mc =
∣∣∣m~vτ + m~vs

∣∣∣ . (12)

Equation (10) can also be rewritten as

mc2 = mv2
τ + mv2

s . (13)

Equation (13) indicates how the Minkowski metric appor-
tions the energy equivalence [4],

E = mc2, (14)

of mass m into an energy component Eτ in the time dimen-
sion, where

Eτ = mv2
τ, (15)

and an energy component in the space dimensions, where

Es = mv2
s , (16)

so that
E = mc2 = Eτ + Es. (17)

6 The Schwarzschild metric

The full Schwarzschild metric for a spherical non-rotating
mass M with a Schwarzschild radius R, is typically expressed
with the reference coordinates in the form of spherical coor-
dinates, i.e.,

c2dτ2=c2
(
1−R

r

)
dt2− dr2

(1−R/r)
−r2dθ2−(r sin θ)2dφ2. (18)

When M = 0 and thus R = 0, the Schwarzschild metric
reduces to the Minkowski metric.

7 Expressing the Schwarzschild Metric as a sum of ve-
locities

In order to express the Schwarzschild metric as a sum of ve-
locities, a gravitational velocity vg can be defined using the
Newtonian definition of gravitational escape velocity, that is

vg = c

√
R
r
. (19)

Likewise because in the Schwarzschild metric space is
curved a spatial velocity velocity vss through curved space
can be defined as

vss =

√
1

1 − R/r

(
dr
dt

)2

+ r2

(
dθ
dt

)2

+ (r sin θ)2

(
dφ
dt

)2

. (20)

The Schwarzschild metric in (18) can now be expressed
as a sum of the velocities vτ, vg and vss. That is, (19) can be
rearranged as

c2dt2 = c2dτ2 + c2 R
r

dt2 +
dr2

(1 − R/r)
+

+r2dθ2 + (r sin θ)2dφ2,

(21)

and thus

c2 = c2
(

dτ
dt

)2

+ c2 R
r

+
1

1 − R/r

(
dr
dt

)2

+

+r2
(

dθ
dt

)2

+ (r sin θ)2
(

dφ
dt

)2

.

(22)
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Using the definition of vss set out in (20), the definition of
vτ set out in (9) and the definition of vg set out in (19), allows
(22) to be simplified to

c2 = v2
τ + v2

g + v2
ss. (23)

If a gravitational dimension is regarded as being orthog-
onal to both the dimensions of curved space and the time di-
mension, (23) can be written in the form of a vector sum, i.e.,

c =
∣∣∣~vτ +~vg +~vss

∣∣∣ . (24)

Equation (24) is the Schwarzschild metric written as a
sum of velocities. That is, the vector sum of the velocity in
the dimensions of time, space and gravity is always equal to
the speed of light c.

8 Using the Schwarzschild metric to apportion energy
equivalence

In order to see how the Schwarzschild metric apportions en-
ergy equivalence, it is only necessary to place a particle with
mass m anywhere in the field. From (24), a momentum of
mass m across five dimensions of time, space and gravity can
be expressed as

mc =
∣∣∣m~vτ + m~vg + m~vss

∣∣∣ . (25)

Equation (10) can also be rewritten as

mc2 = mv2
τ + mv2

g + mv2
ss. (26)

Equation (26) indicates how the Schwarzschild metric ap-
portions the energy equivalence of mass m into an energy
component Eτ, an energy component Ess in the space dimen-
sions, and an energy Eg component where

Eg = mv2
g, (27)

so that
E = mc2 = Eτ + Eg + Ess. (28)

9 Reciprocity in the apportionment of energy equiva-
lence

In a system of two particles, one particle having a mass m1
and a Schwarzschild radius of R1 and the other particle having
a mass m2 and a Schwarzschild radius of R2, the Schwarzs-
child metric allows the energy equivalence of each mass to
be apportion into, time, space and gravity components. For
example, when spatial coordinates (r1, θ1, φ1) are measured
with respect to m1 and local time τ1 is measured at the loca-
tion of m2, the energy equivalence of m2 can be apportioned
using the Schwarzchild metric,

c2dτ2
1 = c2

(
1 − R1

r1

)
dt2

1 −
dr2

1

(1 − R1/r1)
− r2

1dθ2
1−

−(r1 sin θ1)2dφ2
1,

(29)

into the following apportionment of energy equivalence:

m2c2 = m2v
2
τ1

+ m2v
2
g1

+ m2v
2
ss1

= Eτ1 + Eg1 + Es1 . (30)

Likewise, when spatial coordinates (r2, θ2, φ2) are mea-
sured with respect to m2 and local time τ2 is measured at the
location of m1, the energy equivalence of m1 can be appor-
tioned using the Schwarzschild metric,

c2dτ2
2 = c2

(
1 − R2

r2

)
dt2

2 −
dr2

2

(1 − R2/r2)
− r2

2dθ2
2−

−(r2 sin θ2)2dφ2
2,

(31)

into the following apportionment of energy equivalence:

m1c2 = m1v
2
τ2

+ m1v
2
g2

+ m1v
2
ss2

= Eτ2 + Eg2 + Es2 . (32)

10 Implications

The Schwarzschild metric apportions the energy equivalence
of a mass into a time component, a spatial component and
a gravitational component. This suggests that the source of
gravitational energy is the energy equivalence of the mass af-
fected by gravity and therefore that the magnitude of gravi-
tational energy cannot exceed the energy equivalence of that
mass. As pointed out by Weller [5, 6], this presents a very
significant difficulty for those who view gravity as an unlim-
ited source of energy to perform such tasks as forming black
holes and creating universes. This also tends to confirm the
assertions of Schwarzschild [7] and Einstein [8] that there is
indeed a maximum density of matter.
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In my paper [3], I obtain a Cold Big Bang Cosmology, fitting the cosmological data,
with an absolute zero primordial temperature, a natural cutoff for the cosmological data
to a vanishingly small entropy at a singular microstate of a comoving domain of the cos-
mological fluid. This solution resides on a negative pressure solution from the general
relativity field equation and on a postulate regarding a Heisenberg indeterminacy mech-
anism related to the energy fluctuation obtained from the solution of the field equations
under the Robertson-Walker comoving elementar line element context in virtue of the
adoption of the Cosmological Principle. In this paper, we see the, positive, differential
energy fluctuation, purely obtained from the general relativity cosmological solution
in [3], leads to the quantum mechanical argument of the postulate in [3], provided this
energy fluctuation is quantized, strongly supporting the postulate in [3]. I discuss the
postulate in [3], showing the result for the energy fluctuation follows from a discreteness
hypothesis.

1 To the Heisenberg Indeterminacy Relation

Recalling the eqn. (53) in [3], purely derived from the general
relativity field equations under the cosmological context:

δEρ =
E+

0√
1 − Ṙ2/c2

Ṙ δṘ
c2 , (1)

the δEρ, given by the eqn. (1), seems to be exclusively valid
when δṘ is infinitesimal, since this expression is a first order
expansion term, where we do tacitly suppose the vanishing of
high order terms. But its form will remain valid in a case of
finite variation, as derived is this paper, under the same condi-
tions presented in [3]. The eqn. (1), in terms of indeterminacy,
says:

• There is an indeterminacy δEρ, at a given t, hence at
a given R(t) and Ṙ(t), related to a small intetermin-
acy δṘ(t).

A given spherical shell within a t-sliced hypersurface of
simultaneity must enclose the following indeterminacy, if the
least possible infinitesimal continuous variation given by the
field equations in [3], eqn.(1) here, presents discreteness, viz.,
if the δEρ cannot be an infinitesimal in its entire meaning, al-
beit mantaining its very small value, as a vanishingly small
quantity, but reaching a minimum, reaching a discrete quan-
tum of energy fluctuation,

k∑

l=1

(
δEρ

)
l
=

E+
0 Ṙ/c2

√
1 − Ṙ2/c2

∣∣∣∣∣∣∣
t

k∑

l=1

(
δṘ

)
l
. (2)

The eqn. (2) is obtained from eqn. (1) by the summation
over the simultaneous fluctuations within the spherical shell
(since the quantum minimal energy is a spatially localized
object, and the t-sliced spherical shell, a R(t)-spherical subset

of simultaneous cosmological points pertaining to a t-sliced
hypersurface of simultaneity, is full of cosmological substra-
tum), where k denotes a partition, k fundamental fluctuating
pieces of the simultaneous spacelike spherical shell within a
t-sliced hypersurface. This sum gives the entire fluctuation
within the shell. Since these pieces are within a hypersurface
of simulteneity, they have got the same cosmological instant
t. Hence, they have the same R(t) and the same Ṙ(t) (points
within the t-sliced spherical shell cannot have different R(t),
since R(t) is a one-to-one function R(t) : t 7→ R(t), and does
not depend on spacelike variables; the t-sliced spherical shell
is a set of instantaneous points pertaining to a t-sliced hy-
persurface of simultaneity such that these points are spatially
distributed over an t-instantaneous volume enclosed by a t-
instantaneous spherical surface with radius R(t)), the reason
why the summation index l does not take into account the
common factor at the right-hand side of the eqn. (2). From
eqn. (57) in [3], we rewrite the eqn. (2):

k∑

l=1

(
δEρ

)
l
=

E+
0 R2

0

R3
√

1 − Ṙ2/c2

∣∣∣∣∣∣∣
t

k∑

l=1

(δR)l . (3)

Now, we reach the total instantaneous fluctuations within
the spherical shell at the cosmological instant t, a sum of
spacelike localized instantaneous fundamental fluctuations
within the spherical shell, giving the total instantaneous fuc-
tuation within this shell. Being the instantaneous spherical
shell full of cosmological fluid at t, at each fundamental posi-
tion within the spherical shell we have got a fundamental en-
ergy fluctuation with its intrinsical and fundamental quantum
R0 =

√
2Gh/c3 of indeterminacy [3], an inherent spherically

symmetric indeterminacy at each position within the t-sliced
spacelike shell.
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Hence, the total fluctuation is now quantized:

NtδEρ =
E+

0 R2
0

R3
√

1 − Ṙ2/c2

∣∣∣∣∣∣∣
t

NtR0, (4)

where Nt is the number of instantaneous fundamental do-
mains, the number of fundamental fluctuations within the in-
stantaneous spherical shell contained within a t-sliced hyper-
surface of simultaneity. Since R0 is a fundamental quantum of
local indeterminacy, the same R0 is common to all the instan-
taneous spacelike points within the shell, the same (δR)l = R0
quantum of fluctuation at its respective point within the t-
instantaneous spherical shell contained in a t-sliced surface
of simultaneity for all the points in this shell, ∀ l.∗ But Nt is
given by:

Nt =
R3

R3
0

. (5)

Using the eqn. (5) in the eqn. (4), we obtain:

Nt δEρ =
E+

0√
1 − Ṙ2/c2

. (6)

The eqn. (6) gives the total positive fluctuation whitin the
t-instantaneous spherical shell, the result used in my postu-
late in [3]. Furthermore, comparing the eqns. (1) and (6), we
see the infinitesimal relation given by the eqn. (1) is valid in
the finite fluctuation process given by the eqn. (6), provided
ṘδṘ ≈ c2, a result used in the appendix of [3] to obtain its
eqn. (56).

The Heisenberg indeterminacy principle reads, for the en-
tire fluctuation at a given t:

(
Nt δEρ

)
δt =

E+
0 δt√

1 − Ṙ2/c2
≥ h

4π
. (7)

The increasing smearing out indeterminacy over the cos-
mological fluid, related to the primordial indeterminacy in
virtue of the Universe expansion as postulated in [3]:

• The actual energy content of the universe is a conse-
quence of the increasing indeterminacy of the primor-
dial era. Any origin of a comoving reference frame
within the cosmological substratum has an inherent in-
determinacy. Hence, the indeterminacy of the energy
content of the universe may create the impression that
the universe has not enough energy, raising illusions
as dark energy and dark matter speculations. In other
words, since the original source of energy emerges as
an indeterminacy, we postulate this indeterminacy con-
tinues being the energy content of the observational
universe: δE(t) = E+(t) = E+

0 /
√

1 − Ṙ2/c2,

follows from the increasing Nt, as one infers from the eqns.
(5) and (7).

∗See [3]. We are in a context of validity of the Cosmological Principle.
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In a previous preprint, [2], reproduced here within the appendix in its revised version,
we were confronted, to reach the validity of the second law of thermodynamics for an
unique collapse of an unique quantum object, to the necessity of an ensemble of mea-
sures to be accomplished within copies of identical isolated systems. The validity of
the second law of thermodynamics within the context of the wave function collapse was
sustained by the large number of microstates related to a given collapsed state. Now,
we will consider just one pure initial state containing just one initial state of the quan-
tum subsystem, not an ensemble of identically prepared initial quantum subsystems,
e.g., just one photon from a very low intensity beam prepared with an equiprobable
eigenset containing two elements, an unique observation raising two likelihood out-
comes. Again, we will show the statistical interpretation must prevail, albeit the quan-
tum subsystem being a singular, unique, pure state element within its unitary quantum
subsystem ensemble set. This feature leads to an inherent probabilistic character, even
for a pure one-element quantum subsystem object.

1 A toy: the fair coin eigenset

Let a two-state coin, fifty-fifty, with eigenset {φ1, φ2}, be our
quantum subsystem. The initial state of this unique subsys-
tem reads:

Ψ =

2∑
k=1

ak φk =

√
2

2
φ1 +

√
2

2
φ2 , (1)

with:

ak =

∫
V
φ∗kΨdV =

√
2

2
∀ k ∈ {1, 2} . (2)

The eigenstates φ1 and φ2 are different eigenstates.
The unique element [given by eqn. (1)] subsystem plus

an unique ideal apparatus subsystem Φ will define an isolated
system. The memory state of the subsystem apparatus is ini-
tially empty, and the initial state of the system is:

ΨΦ|t=0 =

 √2
2
φ1 +

√
2

2
φ2

Φ[void]. (3)

After a measure operator U acting on Ψ ⊗ Φ|t=0, the system
propagates forward in time to the (t = τ)-state, the collapsed
state for short:

ΨΦ|t=τ =
√

2
2
φ1 φ[φ1] +

√
2

2
φ2 φ[φ2] . (4)

The observer is represented by the Φ apparatus subsystem,
being in its own Hilbert state space HΦ. Since Φ[φ1] and Φ[φ2]
are different states belonging to HΦ, these apparatus states are
mutually exclusive in HΦ.

• How many final microstates of the isolated system are
there?

The answer depends on which space the apparatus Φ resides.
For Φ, the collapsed microstate is a member of HΦ. The state
given by the eqn. (4) cannot be observed in HΦ, hence can-
not be counted from HΦ by the apparatus subsystem. There
are two possible final states for the hypothetical one-element
measure that are members of HΦ, Φ[φ1] and Φ[φ2], but both
cannot be obtained at the same time. The collapse evolves
but just one member of HΦ subsists as an equilibrium appara-
tus subsystem state after the collapse. The entropy of a final
collapsed state Φ[φk] in HΦ(τ) is zero, since, under an one-
element measure with an unique initial quantum coin state
given by eqn. (1), there is just one manner to obtain the Φ[φk]
collapsed state, since the other equally like manner leads to
a different collapsed state and should not be considered as
being another microstate of the same Φ[φk]. But both the pos-
sible collapsed states leads to a same final null entropy. This
unique object measure leads to reversible collapse, since the
variation of entropy between states is null in any case. We
will see this unique object quantum subsystem must be re-
lated to a global statistical context.

Choosing an unique coin to accomplish an unique mea-
sure, one is establishing there exists just an unique way to
obtain the initial coin, to construct the initial coin. But, in
fact, there is not. You may make the same coin with another
bunch of metallic atoms. We do not take it into account, since
a set of identical elements is an unitary set, being irrelevant
which element we use to accomplish the measure. But two
distinct but identical coins do not necessarily lead to identical
outcomes. Hence, if one takes into account the identical man-
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ners, including the previous global context within the Uni-
verse, from which the system may evolve to the collapse, one
does not modify the initial null entropy of the system, since
identical coins are identical coins into the input (t = 0) but not
necessarily identical coins from the output (t = τ). Suppose
you may construct the unique coin only from two different
ways,W1 orW2. ViaW1, there is one possible microstate for
each collapsed result as observed by Φ[φ1] or Φ[φ2] in the ap-
paratus subsystem reality. In the apparatus reality, the initial
number of microstates of the system is also vanished, since
the initial number of microstates is 1 × 1 (in the apparatus
world, we do not describe the system via eqn. (3), since this
is an object that is not an element of HΦ. The initial state
of the quantum subsystem, our coin, given by the eqn. (1),
is unique for Φ[void]. Initially, there is just one possibility for
each subsystem state in the apparatus reality, hence w0 = 1×1
is the initial number of microstates of the [global] system as
observed within the apparatus reality. The apparatus dialec-
tics does not handle objects like the ones in the eqns. (3) and
(4).). Analogously, via W2, there is one possible microstate
for each collapsed state. But, when W1 and W2 are taken
into consideration, two possible microstates emerge for each
collapsed state, with the same initial null entropy.

When one accomplishes an one-element collapse experi-
ment with various identical initial quantum subsystems (e.g.,
taking W1 and W2 into consideration), the result is one be-
tween the possible ones from identical objects (indistinguish-
able coins). A particular collapse result turns out to be in-
serted in a global probabilistic context related to the various
identical manners by which the Universe may evolve from
the past to their states in which there exist identical isolated
experiments to be initiated at t = 0, in virtue of the entropic
evolution of the Universe. The Universe entropically evolves
under their various possibilities, and two different manners
to construct a same coin are different ways under which the
Universe may evolve to a same initial coin state, hence the
null entropy, but not necessarily to the same collapsed state.
Hence, even an isolated collapse from an unique coin has a
global statistical context related to the different manners the
Universe might have evolved, and an unique coin exhibits its
global statistical bias. Since the Universe is large, a given ini-
tial subsystem, our two-state coin initial quantum subsystem,
has a miriad of possible histories up to t = 0, say N1, but with
none of these manners giving a different object, all giving the
same Ψ at t = 0. Analogously, one has, as Φ[void] possible
initial states, a bag with N2 identical elements, all given by
Φ[void]. When you isolate the system, you obtain an isolated
bag with N1 × N2 identical elements given by the eqn. (3).
The number of microstates related to this bag is w0 = 1. The
number of microstates related to Φ[φk] is not w f = 1 anymore,
but [2]:

lim
N1N2→∞

N1N2∑
l=1

ξ
p
l = lim

N1N2→∞

[N1N2

2
+ f (N1N2)

]
> 1, (5)

being N1×N2 the number of final histories of collapse, where
the histories are, now, being instantaneously counted at τ,
within the Universe entropic evolution.

Taking into account the the different manners by which
an initial subsystem may be obtained does not change the
probability of a given collapsed state, conversely, defines it
via a natural frequentist interpretation within a global con-
text. The probability associated to a given collapsed state
when an unique experiment is accomplished with an unique
one-element initial state is the one associated to the frequen-
tist interpretation taking into account the various manners to
construct the initial state. Since the Universe may provide in-
finitely many manners to construct an isolated system, when
one takes an exemplar into account, the probabilistical char-
acter is inherent to individual processes, since a particular re-
sult resides within a global statistical context related to differ-
ent states of the Universe that leads to the same initial isolated
system. Even a single photon within a low intensity beam
may be constructed by different manners. A single photon
does not know this, obviously, but it behaves under a global
statistical context related to the different manners by which
the Universe may evolve to that in which a beam of a single
photon is within an isolated system with an apparatus.

There are not two final microstates, Φ[φ1] and Φ[φ2], for
the collapsed apparatus, and one should not say the entropy
variation is ∆S = k ln 2 − k ln 1, since different microstates
are physically distinguishable a posteriori, carrying different
measurable physical properties, encapsulated within the dif-
ference between the eigenvectors Φ[φ1] and Φ[φ2]. In fact, an
unique one-element collapse is a reversible process for quan-
tum initial subsystems with just an unique element. But it
is very difficult to observe, since the Universe entropically
evolves among a miriad of possibilities leading to identical
initial quantum subsystems, inserting an individual measure
within the Universe’s entropy evolution statistical context, be-
ing the number of final collapsed microstates of a given col-
lapsed state greater than 1, leading to an irreversible collapse
even with a single photon beam as initial quantum subsystem,
e.g., since this single photon within the beam turns out to be
in a context of a very large number of available microstates
for each possible collapsed state, a context in which the final
entropy of a given collapsed state is greater than the initial
null entropy.

2 Appendix: comments on the entropy of the wave
function collapse

2.1 The Boltzmann formula: a source of misconception
for a reckless vision

At a first glance [1], one may think the wave function collapse
violates the second law of thermodynamics, since a quantum
system prepared as a superposition of eigenstates of a given
operator suddenly undergoes to a more restrictive state. But
this is not the case, in virtue of the fact that a superposition
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and a eigenstate are states on equal footing. The use of the
Boltzmann formula:

S = k lnw, (6)

for the entropy S of a thermodynamically closed system
leads, at a first glance, to the impression that the entropy
should have a greater value before the collapse, under an erro-
neous assumption that the initial number, w0, of microstates,
w, should be greater than the final number of microstates,
w f , in virtue of the needed quantity of eigenstates, w0 > 1,
used to construct the wave function before the collapse, in
contrast to the apparent w f = 1 after the collapse, where
k = 1.38 × 10−23 JK−1 is the Boltzmann constant. We will
see that the converse occurs. Furthermore, one should, firstly,
define the thermodynamically closed system as consisting of
two subsystems: the quantum object subsystem plus the clas-
sical apparatus subsystem.

2.2 A simple solution for this apparent paradox

Consider a quantum subsystem Ψ [4]: prepared as a superpo-
sition of the n eigenstates {φk}, with 1 ≤ k ≤ n, of a given
operator Φ with finite non-degenerated spectrum:

Ψ = a1 φ1 + · · · + an φn =

n∑
k=1

ak φk, (7)

where:
ak =

∫
V
φ∗kΨdV, (8)

is the inner product the Hilbert state space is equipped with.
The * denotes the complex conjugation and dV the elementar
volume of the physical space V of a given representation.

Up to the measure, before the interaction between a clas-
sical apparatus subsystem, designed to obtain observable ein-
genvalues of the operator Φ, and a quantum subsystem Ψ
given by eqn. (7), there exists just one microstate of the global
system consisted by apparatus subsystem plus quantum sub-
system, since these two subsystems are not initially correlated
and the initial microstate of the quantum subsystem Ψ is just
the unique state Ψ as well the initial microstate of the classi-
cal apparatus subsystem is the unique one in which it has no
registered eigenvalue.

Hence, in virtue of the initial independence of the subsys-
tems, the initial microstate of the global thermodynamically
closed system has multiplicity w0 = 1 × 1 = 1, being the ini-
tial entropy of the global system given by:

S 0 = k ln 1 = 0, (9)

in virtue of the eqn. (6).
One may argue the initial state of the classical appara-

tus subsystem has got a multiplicity greater than 1, since this
subsystem seems to have internal modes compatible with an
empty memory. We emphasize this is not the case, since the

state of the memory defines the apparatus state, being this
state an empty one in spite of any apparatus internal modes
before an accomplished measure∗. The same comment is
valid for the quantum subsystem, since the state of this sub-
system is Ψ, previously defined by the superposition of a Φ
operator eigenstates, {φk}, being the object Ψ an unique one.
These objects, by definition, are initially constrained to these
defined states, and one does not need to take into account the
different manners by which these subsystems should equally
evolve to their respective initial states.

Once a measure is accomplished, there will exist n pos-
sible eigenvalues to be registered within the memory of the
classical apparatus subsystem, viz., since there are n different
final situations for the global system, where n is the number
of non-degenerated eigenvectors of theΦ operator. A reckless
short-term analysis would lead to the conclusion that the fi-
nal number of microstates of the global system, w f , should be
w f = n, since it seems to be the number of ways by which a fi-
nal collapsed state is reached. But such a conclusion is wrong,
since the final state is not simply a collapsed one with a la-
bel on it. Differently from a case in which a pair of unbiased
dice is thrown, where a particular result of a throw of dice is
not physically different from any other result, except for the
labels on them, a given collapsed state encapsulates physical
content. Each collapsed state is a different final state with
its characteristic multiplicity, and one should not enroll the
possible collapsed states within a same bag with w f = n pos-
sible collapsed elements. Comparing with the throw of dice
case, if you erased the dice numbers, their labels, you could
not infer the difference between the results, but the physical
content within the collapsed wave function result would lead
one to infer the difference between different results, between
different outcomes of collapse of Ψ.

• Different physical characteristics imply different out-
comes for the wave function collapse and define evolu-
tions from the initial global system to new states of the
global system, instead of different configurations for a
same final state.

In the throw of dice example, the different outcomes are dif-
ferent configurations of a same final state. If the collapsed

∗The irrelevance of the apparatus internal modes compatible with a
given apparatus memory state asserts the hypothesis of an unbiased ap-
paratus subsystem. Any result to be measured by the apparatus subsys-
tem must have the same number of equally like apparatus microstates. If
some result was related to a different number of apparatus compatible mi-
crostates, the results with the maximal number of apparatus compatible mi-
crostates would be biased. The collapse should not be caused by apparata
biases. In virtue of this hypothesis, one may neglect the apparatus inter-
nal modes compatible with a particular apparatus memory state, since the
same number of internal modes is common to all the memory states, and
the variation of entropy cancels out the same common number (say wa):
∆S = S f − S 0 = k ln

(
w f × wa

)
− k ln (1 × 1 × wa) = k lnw f − k ln (1 × 1),

where w f is the number of microstates of a given final state of the global iso-
lated system in which the apparatus has registered the respective collapsed
state, considering the apparatus memory state as its unique degree of free-
dom.
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wave function was a state with n different possible configu-
rations for this same collapsed state, the final number of mi-
crostates would be w f = n, but this is not the case.

For the collapsed states, the multiplicities of the possible
final results are not necessarily the same, since they depend
on the outcome probabilities of their respective eigenvalues.
Let p be the label of the eigenvalue with the least reliable
(, 0)∗ outcome probability. The outcome probability of a
given eigenvalue is given by Max Born’s rule, from which
the least probability, of the p-labeled eigenvalue, is simply
given by a∗pap, where [see eqn. (8)]:

a∗pap =

∣∣∣∣∣∫
V
φ∗pΨdV

∣∣∣∣∣2 , 0. (10)

Applying a frequentist interpretation for the probability,
the least multiplicity of microstates is† Na∗pap, where N is
the quantity of state-balls within an a posteriori interpreted
quantum-subsystem-urn (we are emphasizing that the inter-
action with the classical apparatus subsystem permits a clas-
sical‡, under the frequentist sense, a posteriori, interpretation
of probabilities, since any quantum effects of probabilistic su-
perposition of amplitudes cease after the collapse, permitting
a frequentist interpretation via Born’s rule). Such a frequen-
tist interpretation requires N → ∞, i.e., infinitely many mea-
sures to be accomplished on identical quantum subsystems
by the classical apparatus subsystem, but we will back to this
point later.

The least final entropy of the global system, related to the
outcome probability of the p-labeled eigenvalue, reads:

S f = k ln
(
Na∗pap

)
. (11)

From the eqns. (9) and (11), the least possible entropy varia-
tion turns out to be:

∆S = S f − S 0 = k ln
(
Na∗pap

)
. (12)

From the eqn. (12), we infer that the second law of thermo-
dynamics holds iff :

Na∗pap ≥ 1⇒ a∗pap ≥
1
N
, (13)

∗If ap = 0, the respective eigenstate φp, within the superposition repre-
senting Ψ [see eqn. (7)], turns out to be an impossible collapsed state. Such
consideration would be totally void, since the final microstate associated to
it would never occur, being ∆S = k ln 0 − k ln 1 = −∞ [see eqns. (6) and
(9)] a violation of the second law of thermodynamics, in accordance with the
impossibility of a final microstate with ap = 0.

†See the discussion leading to the eqns. (19) and (20), regarding the
meaning of N.

‡Here, the classical designation resides within the counting process after
the collapse. We are not saying the final collapsed state leads to a classical
interpretation of the quantum object, we are emphasizing that the dialec-
tics after the collapse to interpret frequency of a given collapsed state is the
classical one via Born’s rule. One does not count quantum waves, but the
discrete signals of a collapsed object. Surely, alluding, e.g., to the double-slit
canonical example, the diffraction pattern on the screen has not a discrete
counterpart, but the points on the screen, when the intensity of the source is
reduced, have and may be counted.

since N > 0. Now, we will prove the following theorem:

Theorem: The second law of thermodynamics holds for the
wave function collapse under a frequentist interpretation via
Max Born’s rule and, once accomplished the collapse, the
collapse is an irreversible phenomenon.

Proof: Suppose the converse, i.e., that the second law of ther-
modynamics does not hold for the wave function collapse un-
der a frequentist interpretation via Max Born’s rule. In virtue
of eqn. (12), one has:

∆S = S f − S 0 = k ln
(
Na∗pap

)
< 0⇒ Na∗pap < 1. (14)

Since§ ap , 0, N ≥ 1/(a∗pap) violates the condition stated by
the eqn. (14). But N → ∞, in virtue of the frequentist inter-
pretation, hence N > 1/(a∗pap), and the eqn. (14) is an absurd.
We conclude the second law of thermodynamics holds within
the terms of this theorem. The proof the collapse is an irre-
versible phenomenon follows as a corollary of this theorem.
In fact:

N > 1/(a∗pap)⇒ Na∗pap > 1 ∴

∆S = k ln
(
Na∗pap

)
> 0, (15)

and the collapse of the wave function is an irreversible phe-
nomenon, being ∆S > 0 the entropy variation of the thermo-
dynamically closed system: quantum subsystem plus classi-
cal apparatus subsystem. �

The law of large numbers states the probability of an event
p, Pp, is given by the limit:

lim
N→∞

∑N
l=1 ξ

p
l

N
= Pp , (16)

where ξp
l assumes the value 1 when the event p occurs, or

zero otherwise. If a∗pap ≡ Pp , 0, the limit must obey:

lim
N→∞

∑N
l=1 ξ

p
l

N
=

limN→∞
∑N

l=1 ξ
p
l

limN→∞ N
, 0. (17)

From eqn. (17), we conclude limN→∞
∑N

l=1 ξ
p
l cannot be finite,

since N grows without limit. Hence:

lim
N→∞

N∑
l=1

ξ
p
l > 1. (18)

Particularly, the eqn. (18) gives the number of microstates of
the p-labelled eigenstate, proving the above theorem. Rigor-
ously, one should substitute:

N → N +
f (N)
a∗pap

, (19)

§Remember the reliability defining the p-labeled eigenstate, see eqn.
(10) again and its inherent paragraph.
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within the above theorem proof, with:

lim
N→∞

f (N)
N
= 0. (20)

Such choice leads to:

N∑
l=1

ξ
p
l = Na∗pap =

(
N +

f (N)
a∗pap

)
a∗pap =

= N
(
a∗pap +

f (N)
N

)
∴

(21)

∑N
l=1 ξ

p
l

N
= a∗pap +

f (N)
N
. (22)

Taking the limit N → ∞ in eqn. (22), we recover the law of
large numbers. Taking the limit N → ∞ in eqn. (21), one
obtains in virtue of the eqn. (18):

lim
N→∞

N∑
l=1

ξ
p
l = lim

N→∞

(
N +

f (N)
a∗pap

)
a∗pap > 1 , (23)

therefore

lim
N→∞

(
N +

f (N)
a∗pap

)
>

1
a∗pap

. (24)

Eqn. (24) is the argument used to prove the theorem, as one
infers from the eqn. (19).

3 Conclusion

Finally, we conclude the reversible collapse of the wave func-
tion is an extremely rare statistical phenomenon. Once a col-
lapse is reached, it is irreversible since there are a miriad of
indistinguishable but distinct outcomes that may be equally
reached, leading to a large number of Universe microstates
with this same collapsed result. Hence, if one seeks to over-
come the collapse: there exist fundamental issues to bypass.
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Our Mathematical Universe: I. How the Monster Group Dictates All of Physics
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A 4th family b’ quark would confirm that our physical Universe is mathematical and
is discrete at the Planck scale. I explain how the Fischer-Greiss Monster Group dic-
tates the Standard Model of leptons and quarks in discrete 4-D internal symmetry space
and, combined with discrete 4-D spacetime, uniquely produces the finite group Weyl
E8 x Weyl E8 = “Weyl” SO(9,1). The Monster’s j-invariant function determines mass
ratios of the particles in finite binary rotational subgroups of the Standard Model gauge
group, dictates Möbius transformations that lead to the conservation laws, and connects
interactions to triality, the Leech lattice, and Golay-24 information coding.

1 Introduction

The ultimate idea that our physical Universe is mathematical
at the fundamental scale has been conjectured for many cen-
turies. In the past, our marginal understanding of the origin
of the physical rules of the Universe has been peppered with
huge gaps, but today our increased understanding of funda-
mental particles promises to eliminate most of those gaps to
enable us to determine with reasonable certainty whether this
conjecture is true or false.

My principal goal is to show that if a 4th quark fam-
ily exists, the physical rules of the Universe follow directly
from mathematical properties dictated by the Fischer-Greiss
Monster Group via the Monster’s j-invariant function and the
Möbius transformation in discrete spacetime, with everything
related to the Golay-24 information code for the Leech lattice.

In a series of articles and conference talks beginning in
1992 [1–3] I have been predicting that a 4th quark family with
a b’ quark at about 80 GeV and a t’ quark at about 2600 GeV
will be produced at the colliders. Its detection will support
these proposals:

1. The Standard Model (SM) of leptons and quarks pro-
vides an excellent approximation to the actual discrete
symmetry groups of these fundamental particles and
requires little modification for extension to the Planck
scale.

2. There are 3 lepton families and 4 quark families, each
family of two states defined by a different finite binary
rotational subgroup of the SU(2)L x U(1)Y part of the
SM gauge group.

3. The leptons are 3-D polyhedral entities, and the quarks
are 4-D polytope entities which combine into 3-D col-
orless hadrons, color being a 4-D property with exact
symmetry derived from 4-D rotations.

4. Lepton and quark approximate mass values are deter-
mined by the j-invariant function of elliptic modular
functions, being related to the above subgroups and
Möbius transformations in both discrete lattice spaces
and continuous spaces.

5. Both 4-D spacetime and 4-D internal symmetry space
are discrete at the Planck scale, and both spaces can
be telescoped upwards mathematically by icosians to
8-D spaces that uniquely combine into 10-D discrete
spacetime with discrete Weyl E8 x Weyl E8 symmetry
(not the E8 x E8 Lie group of superstrings/M-theory).

6. All the above is related to the Fischer-Greiss Monster
Group which herein I argue actually dictates all the
rules of physics, except perhaps the entropy law.

7. Consequently, our physical Universe is mathematical
with only one set of rules and physical constants, which
eliminates any multiverse with different values.

8. We live in the only possible Universe, the one with 4-D
discrete spacetime dictated by the Monster Group and
its relation to information coding and the Leech lattice.

My discrete geometrical approach briefly outlined above
fits within the realm of the SM, so its past successes should
still apply. One simply must “discretize” the SM lagrangian.
Even Noether’s theorem works in discrete spaces [4] to con-
nect conservation laws to symmetries, the conserved quantity
being continuous but periodic.

2 Brief orientation for discreteness

A few years ago a comprehensive review [5] summarized
many of the historical mathematical and physical arguments
for considering the Universe to be mathematical. Included
were the three hypotheses: (1) the External Reality Hypoth-
esis (ERH) — there exists an external physical reality com-
pletely independent of us humans; (2) the Mathematical Uni-
verse Hypothesis (MUH) — our external physical reality is
a mathematical structure; and (3) the Computable Universe
Hypothesis (CUH) — the mathematical structure that is our
external physical reality is defined by computable functions.
Recall that a computable function must be specifiable by a
finite number of bits. The mathematical details are in that
article.

The ERH is relatively easy to accept, for the universe cer-
tainly existed long before we humans came on the scene. The
MUH is the conjecture for which I hope the data from the
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colliders will help us decide. One assumption here is that
Gödel’s Incompleteness Theorem is not an impediment, i.e.,
there is no limit to being able to determine the ultimate source
of all the rules of Nature and what these rules actually are.

The most interesting statements [5] regarding challenges
to the CUH are “. . . virtually all historically successful theo-
ries of physics violate the CUH . . . ” and “The main source
of CUH violation comes from incorporating the continuum,
usually in the form of real or complex numbers, which can-
not even comprise the input to a finite computation since they
generically require infinitely many bits to specify.” To me,
therein lies the problem: continuous spaces.

In particle physics, we consider two spaces: (1) a con-
tinuous spacetime for particle movement such as translations,
rotations and Lorentz transformations, and (2) a continuous
internal symmetry space at each spacetime point for the local
gauge interactions of the Standard Model. In both spaces we
have successfully used continuous functions for our descrip-
tions of the behavior of Nature.

My proposed solution to this problem is to consider both
spaces to be discrete spaces “hidden” underneath the continu-
ous approximation, as if we do not yet have enough resolution
to detect this discreteness. All our successful physics theo-
ries are then excellent effective theories containing continu-
ous fields and continuous wave function amplitudes in this
approximate world.

We will not be entering a strange new world by consider-
ing a discrete approach, for we use difference equations, lat-
tice models, and discrete computations to approximate con-
tinuum physics all the time in numerical calculations, and the
results are quite reliable and amazingly accurate. Therefore,
I suggest that a fundamental discreteness at the Plank scale of
about 10−35 meters is not unreasonable [3].

The possibility that the Monster Group, whose influence
looms over all of mathematics, could dictate all of physics
was put forth in several of my previous papers and confer-
ence talks over the last two decades, but other physicists have
conjectured a similar proposal. What the others have not re-
alized is the direct connection in a discrete internal symme-
try space from the Monster to the lepton and quark states via
the j-invariant of elliptic modular functions. In this article, I
provide additional essential arguments to establish the hege-
mony of the Monster Group and I arrive at the conclusions
that spacetime is discrete and our Universe is mathematical.

3 The Monster and the j-invariant

The very large discrete symmetry group called the Monster
group M is a finite simple group because it has only two
normal subgroups, the trivial one-dimensional group and the
whole group itself. Finite simple groups can be used as build-
ing blocks in that any other type of finite group can be con-
structed from them. The list of all finite simple groups is:
(i) the cyclic groups Cp, with p prime, (ii) the alternating

groups An, n > 4, (iii) 16 infinite families of Lie groups, and
(iv) 26 sporadic groups. The smallest sporadic is the Math-
ieu Group M11 of order 7920 discovered in 1861, while the
largest sporadic is the Monster M constructed in 1980 with
order of about 8 x 1053. The Monster has 194 different irre-
ducible representations, with the smallest irreducible matrix
representations of M being in space dimensions 1, 196883,
21296876, and 842609326.

As I explain in the next section, the most direct connec-
tion of M with the SM of leptons and quarks is via the j-
invariant of elliptic modular functions

j(τ) = q−1 + 744 + 196884q + 21493760q2 + . . . (1)

where q = e2iπτ and τ is a ratio for a 2-D lattice that we will
define in a later section. I.e., this 2-D lattice approach in our
discrete spaces leads directly to the symmetry groups for the
lepton and quark families and for the Lorentz transformations
in spacetime.

As has been determined by mathematicians, the coeffi-
cients of the powers of q are simple linear combinations of
dimensions of irreducible representations of the identity oper-
ation of M, a correlation known as “Monstrous Moonshine”.
E.g., 196884 = 1 + 196883, and 21493760 = 21296876 +
196883 + 1, etc. More mathematical and historical informa-
tion about the Monster can be learned from the online papers
and books by T. Gannon [6].

4 Binary rotation groups and the j-invariant

Here I review the connection between the j-invariant and the
discrete symmetry groups for the leptons and quarks. I have
proposed [1–3] that the lepton and quark flavors, being elec-
troweak eigenstates, correspond to orthogonal states in spe-
cific discrete symmetry groups called finite binary rotational
groups. These seven subgroups of the SM local gauge group
act in the R3 and R4 real subspaces of the 2-D unitary space
C2 for SU(2)L x U(1)Y . In fact, I am using discrete R3 and R4.

The lepton families correspond to the 3-D finite binary
rotational groups called the binary tetrahedral group 2T, the
binary octahedral group 2O, and the binary icosahedral group
2I, also labelled as [3, 3, 2], [4, 3, 2], and [5, 3, 2], respec-
tively, in Table 1. These are groups of discrete symmetry rota-
tions and reflections. Binary here refers to the double cover of
the SO(3) rotation group by Spin(3) = SU(2), so these groups
are finite subgroups of SU(2) and SU(2)L x U(1)Y .

Having exhausted the group possibilities inR3, one moves
up one real spatial dimension to R4 in order to define the
quark families, which then correspond to the finite binary ro-
tation groups [3, 3, 3], [4, 3, 3], [3, 4, 3], and [5, 3, 3] of the
regular 4-D convex polytopes. One may not need the number
of quark families to match the number of lepton families for
anomaly cancellation because this geometrical approach de-
fines leptons and quarks as 3-D and 4-D entities, respectively.
I.e., the interactions are not among point particles.
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Leptons Quarks

Pred. Emp. Pred. Emp.
Mass Mass Mass Mass

group order family N (MeV) (MeV) group order family N (GeV) (GeV)

. .

. [3, 3, 3] 120 d−1/3 1/4 0.011 0.007

. u+2/3 0.38 0.004

[3, 3, 2] 24 e− 1 [1] 0.511 [4, 3, 3] 384 s−1/3 1 0.046 0.2
νe 0? 0.0? c+2/3 [1.5] 1.5

[4, 3, 2] 48 µ− 108 108 103.5 [3, 4, 3] 1152 b−1/3 108 [5] 5.0
νµ 0? 0.0? t+2/3 160 171.4

[5, 3, 2] 120 τ− 1728 1728 1771.0 [5, 3, 3] 14400 b’−1/3 1728 ∼ 80 ?.?
ντ 0? 0.0? t’+2/3 ∼ 2600 ?.?

Table 1: Lepton and quark families for the binary rotational groups [a, b, c], their j-invariant proportionality constant N, and the predicted
mass values for the quarks based upon group-to-group N ratios with the charm quark mass [1.5 GeV] and bottom quark mass [5 GeV] as
reference masses for ratios of the “up-like” and “down-like” quark states, respectively. These are the “bare” mass predictions. Drawings
with these symmetries are online [3].

Each lepton group represents the binary rotational sym-
metries of familiar 3-D regular polyhedrons, the tetrahedron,
the octahedron, and the icosahedron. In terms of two com-
plex variables z1 and z2, there are three algebraic equations
for each regular polyhedron that remain invariant under the
operations of its binary group, corresponding to the complex
equations for the vertices, the face centers, and the edge cen-
ters. Call these three equations W1, W2 and W3, respectively.
F. Klein, in a famous 1884 book [7], reported that these three
equations are not independent because they form a mathemat-
ical syzygy. He showed that two independent equations W1
and W2, say, have a ratio proportional to the j-invariant

j(τ) =
W1

NW2
(2)

where N is a specific integer, being 1, 108, and 1728, for the
three groups, 2T, 2O, and 2I, respectively. Certain integrals,
including a mass integral, for the particle states would involve
these N values as important factors.

The four binary rotational groups for the quarks are han-
dled [8] by projecting their physical 4-D polytopes onto the
2-D unitary plane C2 and realizing that their symmetries lead
to the same invariant algebraic equations as for the leptons,
with the addition of one other symmetry group syzygy for [3,
3, 3]. The corresponding N values are thus 1/4, 1, 108, 1728.

These N values suggest the pairings of the lepton families
to quark families as shown horizontally in Table 1. Notice
that these family pairings are different from the traditional ad
hoc pairings that are normally suggested for the SM because
here there exist fundamental geometrical connections.

5 Particle mass values

The influence of the j-invariant of the Monster continues. In
spaces where the j-invariant applies, all rational functions (ra-
tio of two polynomials) are proportional to the j-invariant
and invariant under all fractional linear transformations (also
called Möbius transformations). For physics purposes, mass
of a fundamental particle is proportional to the j-invariant
because mass is an invariant under Möbius transformations.
Conservation laws in physics can be related to Möbius trans-
formations in both discrete and continuous spaces.

At this stage there is no absolute mass scale, so I must use
mass ratios only, selecting a different reference mass value for
the “up” states and for the “down” states. For the lepton mass
values, we have the N ratios 1:108:1728. Table 1 shows the
predicted and the actual values. The patterns of ratios match
roughly and they were the clue to considering these binary
rotational groups.

Note that without using the reference empirical masses
for the ratios, the two predicted states in each family would
be degenerate with the same mass. One should form two
new orthogonal linear superposition states from these origi-
nal degenerate states. These states would have different “bare
mass” values and would be sensitive to the “vacuum” envi-
ronment.

For the electroweak interactions, a zero-order approxima-
tion to the quark CKM mixing matrix and the lepton PMNS
mixing matrix follows directly from the characteristic equa-
tions of the 3-D and 4-D symmetries projected to the unitary
plane C2, producing unitary eigenvectors and eigenvalues λ j

= exp[iε j]. The two angles (ε1, ε2) are (π, π) for [3,3,2], (2π/3,
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4π/3) for [4,3,2], (2π/5, 8π/5) for [5,3,2], (2π/5, 8π/5) for
[3,3,3], (π/3, π) for [4,3,3], (π/6, 7π/6) for [3,4,3], and (π/15,
19π/15) for [5,3,3].

One can define a 3 x 3 unitary matrix [9] and substitute
angle difference values for the lepton mixing matrix PMNS
and a 3 x 3 quark mixing matrix CKM3, producing

PMNS =

 0.5 0.866 ε
−0.579 0.335 0.743
0.643 −0.372 0.669

 (3)

CKM3 =

 0.978 0.208 ε
−0.180 0.847 0.5
0.104 −0.489 0.866

 (4)

with ε small. Several of the off-diagonal values in VCKM3
would require higher order corrections in order to better agree
with empirically determined values.

A 4 x 4 unitary mixing matrix for our four quark families
that brings in c34 and s34 in the 3rd and 4th rows leads to

VCKM4 =


0.978 0.208 ε1 ε2
−0.180 0.847 0.5 ε3
0.099 −0.465 0.842 0.309
−0.032 0.151 −0.268 0.951

 (5)

with all the ε values small. Adjustments can be made by con-
sidering higher order corrections.

One should not ignore the fact that a degrees-of-freedom
argument would make neutrinos that are zero mass exactly.
My two lepton states in each family have 4 d.o.f. total, which
can partition into the massive electron state with 3 d.o.f., leav-
ing just 1 d.o.f. for the neutrino state. Thus, the neutrino is
massless and can have one helicity state only. Alternately, if
both lepton states per family share the 4 d.o.f. equally with
2 d.o.f. each, then these would be two massless states, i.e.,
possibly two sterile neutrino states. Nature appears to have
chosen the unequal split, but sterile neutrinos are still a possi-
bility. As to the quarks, the two 4-D quark family states have
a total of 6 d.o.f. to split 3-3, guaranteeing the existence of
the two massive quark states per family we measure.

The discovery of the b’ quark, probably by the FCNC de-
cay b’→ b + γ, is the acid test of this geometrical approach
toward understanding the SM. There is already some hint in
the Fermilab data for this decay but the signal/noise ratio is
not good enough. The 4th quark family has recently been in
vogue because the baryonic particle-antiparticle asymmetry
in the Universe (BAU) can then be explained by CP violation
with a new value for the Jarlskog invariant that is about 1013

times larger [10] than for only 3 quark families. As far as I
know, the b’ quark remains a viable possibility.

6 Discrete internal symmetry space

In this geometrical approach, the internal symmetry space is
discrete C2 at the Planck scale. Therefore we must consider

the mathematical properties of a 2-D hexagonal lattice (or of
a 2-D rectangular lattice) of mathematical nodes either with
two real axes R2, or two complex axes C2, or two quaternion
axesH2, etc. All its nodes can be represented by integer linear
combinations of two complex numbers that we label ω1 and
ω2 forming a right-handed basis (ω1, ω2). We can change
these two numbers without changing the lattice by letting

ω′1 = aω1 + bω2
ω′2 = cω1 + dω2

(6)

where a, b, c, and d, are integer elements of a 2 x 2 matrix
with determinant 1. Such matrices form a symmetry group
called the “modular group” SL(2, Z) which is related to el-
liptic curves. Actually, all that matters is the ratio τ = ω1/ω2
which defines the τ for the j-invariant in Eq. 1. Since

f (τ) = f
(aτ + b

cτ + d

)
, (7)

all modular functions f (τ) on the lattice depend only upon its
shape. The j-invariant is such a function, and all other SL(2,
Z)-invariant functions are rational functions of j(τ).

Eq. 7 defines the fractional linear transformations, i.e.,
the Möbius transformations, which are based upon the trans-
formations τ→ 1 + τ and τ→ -1/τ for translations, rotations,
etc. In the limit when the node spacing approaches zero, the
continuous approximation appears and the Möbius transfor-
mations include the continuous symmetry transformations.

7 Geometry of the boson interactions

The 12 bosons of the SM, 8 gluons and 4 EW bosons, op-
erate on the fermion states in a continuous internal symmetry
space. For a continuous space one can map the complex plane
C = R2 and unitary plane C2 = R4 to the 2-D Riemann sphere.
Its 2-D surface has no demarcations, thus allowing any small
or large rotation. Consequently, the symmetry group for the
SM interactions is the continuous gauge group of operations.

In my geometrical approach this internal symmetry space
is discrete, so only specific finite rotation groups can produce
these boson operations. However, when the internal sym-
metry space is discrete and particle symmetries are defined
by the specific finite binary rotation groups for leptons and
quarks, the Riemann surface is tessellated, i.e., composed of
identical equilateral triangles, their number uniquely deter-
mined by the binary rotation group. Then the number of rota-
tional operations becomes severely restricted and each boson
operator must respect the integrity of the symmetry group for
the lepton or quark families participating in the interaction.

Geometry provides the important clue. We desire a small
group in our discrete space for defining these interactions
(i.e., producing the appropriate rotations by the bosons), and
we find the binary icosahedral group 2I or [5, 3, 2]. How-
ever, there will be some missed operations on the symmetry
for the binary octahedral group 2O. But if we take 2I twice,
i.e., including its “reciprocal” [5, 3, 2], then we get it all.
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In order to appreciate this geometry, quaternion algebra
simplifies the game. Recall that the SU(2) matrix representa-
tion and the unit quaternion q are related by

q = w1 + xi + yj + zk⇐⇒
(
w + iz x + iy
−x + iy w − iz

)
(8)

where the i, j, and k are unit imaginaries, the coefficients w,
x, y, and z are real, and w2+x2+y2+z2 = 1. We can represent
the two orthogonal lepton or quark states in each family by
two orthogonal unit quaternions in C2.

There is also a conjugate plane C′2 for the antiparticles
and its Riemann sphere. The conjugate quaternion is q’ =w1
- xi - yj - zk. What we discuss for the particle states works
for the antiparticle states, too. Having a conjugate space is
very special. Clifford algebra and Bott periodicity dictate that
only R4, R8, and other real spaces Rn with dimensions divis-
ible by four have two equivalent conjugate spaces. This spe-
cific mathematical property dictates a world with both particle
states and their antiparticle states for these dimensions only.

One more mathematical fact. The group U(1)Y for weak
hypercharge Y in SU(2)L x U(1)Y has the important role of
reducing the symmetry between the two spaces, normal and
conjugate, in R4 = C2 from being simply equivalent to their
being gauge equivalent. The physics consequence is that par-
ticles and antiparticles have the same positive mass but all
other properties can be opposite sign. Alternately, we can
use the 2-element inversion group Ci to accomplish the same
distinction as well as to determine the intrinsic parity of the
particle states, odd for particles and even for antiparticles.

Furthermore, the use of quaternions for the electroweak
operations tells us that the L in SU(2)L, which means left-
handed chirality only for the weak interaction, is really dic-
tated by quaternion properties, so that the left-handed physics
restriction for the weak interaction in C2 follows. That is,
in the normal unitary plane all unit quaternions have left-
handed screw transformations that mix the two orthogonal
states and right-handed screw transformations that do not.
Put another way, the quaternions transform the two orthogo-
nal flavor states as left-handed doublets and right-handed sin-
glets. For example, in the first lepton family, they are (νeL,
eL) and (νeR) and (eR). In the conjugate unitary plane for an-
tiparticles, the quaternion transformations have the opposite
handedness.

Now back to rotating the Riemann sphere. In the simplest
electroweak (EW) interactions of a boson with an incoming
fermion, the fermion state either remains the same (via γ or
Z0) or changes from the initial state to an orthogonal state (via
W±). As examples, the γ may be the identity and the Z0 may
produce a 4π rotation, while the W± operates between differ-
ent states. The 120 operations of the binary icosahedral group
2I are represented by 120 unit quaternions, and 2I contains
almost all the rotation operations needed for the 7 fermion
family groups. However, several symmetry operations of 2O

would be absent. One needs to add the “reciprocal” binary
icosahedral group to include all the operations of 2O, making
a grand total of 240 operations. (n.b. One could also consider
just the generators to realize the same result.)

Here comes an interesting and unexpected mathematical
consequence. The first set of 120 quaternions can be ex-
pressed as 120 special unit quaternions known as icosians
which telescope 4-D discrete-space quaternions up to being
8-D discrete-space octonions to locate points that form a spe-
cial lattice in R8 called D8. The second set of 120 quaternions
does the same, forming another D8 lattice in R8 by filling the
holes in the first D8 lattice.

The icosians are special unit quaternions qi which have
the mathematical form

qi = (e1 + e2
√

5) + (e3 + e4
√

5)i+
+(e5 + e6

√
5) j + (e7 + e8

√
5)k

(9)

where the eight e j are special rational numbers. The impor-
tant mathematical fact here is that in each pair, such as (e3
+ e4
√

5), exactly one of the e j is nonzero. Therefore, even
though the icosians are telescoping us up to an 8-D space,
their primary importance is that they represent 4-D operations
in R4 even though we can now define identical quaternion op-
erations via octonions in the much larger R8 space also.

Together, these two D8 lattices of 120 icosians each com-
bine to form the 240 octonions that define the famous E8 lat-
tice in R8. The symmetry group for this E8 lattice is not the
Lie group E8 but the discrete group Weyl E8.

Therefore, the operations of the SM occur in discrete 4-D
internal symmetry space, but they operate also in the discrete
8-D space because these icosians span both spaces simultane-
ously.

8 Quark color, gluons, and hadron states

Now I must back up to show that the gluon interactions can
occur in R4 for SU(3)C even though one normally expects the
larger space C3. Because 4-D rotations are simultaneous rota-
tions in two orthogonal planes, each of the three quark color
charges Red, Green, and Blue, can be assigned to the three
possible rotation plane pairs [wx, yz], [xy, zw], and [yw, xz],
respectively. Actually, because these three 4-D rotation pairs
are equivalent and we could have made the color assignments
in any order, we learn the mathematical reason for color being
an exact physical symmetry.

Contained within the above specific icosians are the gluon
operations on the color states, but one can use a specific 4
x 4 rotation block matrix R to define the transition from one
color state in the 4-D space to another. There are 8 orthogonal
gluon matrices in agreement with the 8 gluons of the SU(3)C

gauge group of the SM.
Hadrons are colorless quark combinations, so they occur

when the combined resultant 4 x 4 matrices produce no net 4-
D rotation, i.e., are the identity matrix. One can show that this
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colorless state exists for three combinations of quark states
only: (1) the quark-antiquark pair with color and anticolor,
(2) three quarks, or (3) three antiquarks, with the appropriate
linear combinations of colors or anticolors.

The mathematics itself distinguishes quarks (and baryon
number) from leptons: the quarks are 4-D entities and the
leptons are 3-D entities, with only the 4-D entities capable of
the color interaction because color is an exact symmetry in
R4. Quark confinement results because isolated quarks are 4-
D entities which cannot exist in a 3-D space, so one can never
have an isolated single quark in our 3-D spatial world.

The colorless hadron states, being those special mathe-
matical combinations of quark 4-D entities, are now actually
3-D entities like the lepton states are. That is, the color-
less combinations of quarks are 3-D composite particle states
because their geometrical intersections define 3-D geometric
entities.

Therefore, in my geometrical version of the SM, we have
3-D lepton states, 3-D hadron states, 3-D electroweak boson
states, but 4-D quark states and 4-D gluon states. The 4-D
quark and gluon states are confined, i.e., they cannot exist as
separate entities in our 3-D spatial world, but the 3-D lep-
ton, 3-D hadron, and 3-D electroweak boson states can move
through 4-D discrete spacetime with its 3 spatial dimensions.

9 Geometry of discrete 4-D spacetime

Our 3-D particles move in discrete 4-D spacetime. We know
that continuous 4-D spacetime has symmetries related to its
continuous Lorentz group SO(3,1). For a discrete 4-D space-
time and its Lorentz transformations we need to determine a
finite subgroup of SO(3,1) for its discrete symmetry.

A clever mathematical approach to 4-D spacetime was in-
troduced by R. Penrose [11] long ago, who showed how to
utilize his “heavenly sphere” to account for Lorentz transfor-
mations, etc. This “heavenly sphere” is actually 4-D space-
time (t, x, y, z) mapped onto the Riemann sphere. Consider
being in the center of the “heavenly sphere” so that light rays
from stars overhead pass through unique points on the unit
celestial sphere surrounding you. A Lorentz boost is a con-
formal transformation of the star locations: the constellations
will look distorted because the apparent lengths of the lines
connecting the stars will change but the angles between these
connecting lines will remain the same.

In our discrete 4-D spacetime we need to tesselate this
Riemann surface into identical equilateral triangles and then
perform the symmetry transformations of the sphere. But
we have already achieved this tesselation earlier with the bi-
nary rotation groups when we considered the discrete internal
symmetry space mapped to the Riemann sphere, so we know
the result. Using the isomorphism SO(3,1) = PSL(2,C), we
see [2] that the group mathematics connects the conformal
transformations just described to the Möbius group via

SO(3, 1) = Möbius group = PSL(2,C), (10)

with the discrete Lorentz transformations of the tessellated
Riemann sphere already contained in SO(3,1). Thus, we have
a unit quaternion group PSL(2,C) (equivalently, an SU(2) ma-
trix or spinor) representation of the Lorentz transformation.

Therefore, we are back to our discrete symmetries of the
binary polyhedral groups because they are finite modular sub-
groups of the Möbius group PSL(2,C). Therefore, the 240
special quaternions called icosians are now required for dis-
crete Lorentz boosts and discrete rotations in the discrete 4-D
spacetime. We obtain a second E8 lattice in R8 with symme-
try group Weyl E8.

10 Unification of spacetime and the Standard Model

We can now unite the discrete internal symmetry space oper-
ations with the discrete spacetime operations [2]. The direct
product of our two Weyl E8 groups results in a subgroup of
the continuous group PSL(2,O), where O represents all the
unit octonions. For the continuous case, PSL(2,C) has be-
come PSL(2,O) = SO(9,1), the Lorentz group in 10-D space-
time. That is, the final combined spacetime is bigger than I
expected, being isomorphic to a 10-D spacetime instead of an
8-D spacetime.

Applying this result to our discrete case, the combined
finite subgroup

finite PSL(2,O) = finite SO(9, 1), (11)

the finite Lorentz group in discrete 10-D spacetime. The same
result, expressed in terms of the direct product of the Weyl E8
groups is

Weyl E8 x Weyl E8 = “Weyl′′ SO(9, 1), (12)

a finite subgroup of SO(9,1).
Therefore, the big surprise is that the combination of a

4-D discrete spacetime with a 4-D discrete internal symmetry
space creates a unique connection to 10-D discrete spacetime,
not to an 8-D discrete spacetime. Unlike the situation with
continuous spaces, we do not have a 6-D “curled up” internal
symmetry space with about 10500 possibilities.

The mathematics has dictated a beautiful result: there
seems to be only one way for our Universe to exist when
spacetime is discrete.

11 A physical particle model

Even though the mathematics telescopes us up from R4 to R8,
we still need a physical model of particles in the discrete 4-D
spacetime defining our Universe. The leptons, hadrons, and
the electroweak bosons are non-point-like 3-D entities that
appear to be point-like particles at our normal size resolution
of about 1011 times larger than the Planck scale.

Peering in at the Planck scale, however, I expect the dis-
crete 4-D internal symmetry space at each spacetime point
to conjoin into the discrete 4-D spacetime. In order to do
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so, each particle must emerge by “gathering in” nodes of the
lattice to make its 3-D or 4-D entity with its correct symme-
try. For example, if the particle is an electron, we expect the
symmetry of the node collection will be tetrahedral to agree
with its [3, 3, 2] symmetry. If the lattice of nodes was orig-
inally uniformly spaced in this region of discrete space, then
the existence of the electron has distorted this lattice with a
decreasing distortion amount for increasing distance from the
electron’s center.

Note that this geometrical approach assumes that the lat-
tice nodes themselves do not have any measurable physical
properties. Consequently, we have arrived finally at the end
of the hierarchy of physical particles within particles. At this
point in the geometrical approach we simply must accept this
gathering-of-nodes process because the mathematics dictates
this process via graph theory and Kuratowski’s theorem.

Kuratowski’s theorem is important here because it states
that a graph is planar if and only if it does not contain a Kura-
towski subgraph K5 or K3,3. For example, if an n-dimensional
graph (a lattice of nodes) in a spatial dimension higher that 2-
D does not contain a Kuratowski K5 subgraph, also known
as the complete graph of five vertices, then this n-D graph
reduces to 2-D.

But the first quark family’s binary rotational group [3, 3,
3] symmetry is the rotationally symmetric version of the Ku-
ratowski subgraph K5. Therefore, at least one quark state of
the first quark family is stable as it moves through the lattice,
while all other quark families have states that will decay down
to [3, 3, 3] quark states. Indeed, the physics agrees with this
mathematical prediction.

At the DISCRETE’08 conference in December, 2008
where I tried to present this geometrical approach in my allot-
ted 20 minutes (!), C. Jarlskog asked me an interesting ques-
tion: Why can’t the universe have only quarks and gluons?
I.e., a QCD world seems complete by itself. Why complicate
the material world with leptons and the electroweak interac-
tion? To which I immediately answered: Kuratowski’s The-
orem in mathematics does not allow such a world, but I was
not encouraged to elaborate with any of the details.

Here is the rest of my argument. If quarks are 4-D en-
tities, most quark states decay because they do not have the
structure of K5 (or K3,3), so the initial structure will re-form
into two or more new particles. In a universe with only quarks
and gluons, a problem arises because gluons change only the
color state for a particular quark but cannot change one quark
flavor into another. In order to obey Kuratowski’s theorem,
Nature had no choice but to bring in more particles, notably
the leptons and the electroweak interaction bosons. Voilà!

The immortality of the electron with group [3,3,2] seems
to depend upon its close geometrical relation to the regular
K5 symmetry group [3, 3, 3]. Of course, the electron could
annihilate with its antiparticle (and so can a quark).

At this point one might be concerned about the emergence
of fermion particles from the “vacuum” state. In order to ac-

count for all the particles in the known Universe, the equiv-
alent of about one new hydrogen atom per cubic meter per
10 million years is required. This process can occur because
fermions are represented by spinors, and spinors originate
from zero-length vectors. That is, according to E. Cartan, one
zero-length vector splits into a spinor and conjugate spinor
mathematically. The spinor is the fermion such as an elec-
tron and the conjugate spinor is the anti-fermion positron, for
example. If their total energy remains zero by adding up all
energy forms, then this creation process is viable.

As the electron or any 3-D particle moves through the lat-
tice, I would expect that the particle’s lattice distortion ef-
fect moves with it, with its previous distortions relaxing back
toward being a regular lattice while the oncoming positions
become more distorted. Mathematically, the Möbius trans-
formations guarantee the integrity of this movement. That
is, for our lattice, the transformation τ → 1+ τ ensures that
the movement process is identical everywhere in the lattice.
The second Möbius transformation τ→ - 1/τ when combined
with the one above allows rotations and other linear transfor-
mations to occur in the lattice.

This lattice distortion by a particle in 4-D discrete space-
time is the “warping of spacetime” associated with the grav-
itational interaction proposed by A. Einstein in the general
theory of relativity. In this way, gravitation appears to be dif-
ferent from the other fundamental interactions which appear
to be more localized.

More details of this particle model, such as the geometry
of the gravitational interaction, the origin of the rules of quan-
tum mechanics, the origin of time, and the information coding
of the fundamental particles, will be discussed thoroughly in
the second paper of this series.

12 Triality, the Leech lattice, and information coding

We know that particle EW interactions can be described in
lowest order by the Feynman diagram (Fig. 1) involving three
particles with three lines meeting at a point. There can be two
fermions interacting with one of the electroweak (W±, Z0,
or γ) or color (8 gluons) bosons. There can be three gluons
interacting. More complicated diagrams can be drawn but
they will all be made from combinations of this generic one.

This lowest order Feynman diagram with two fermions
and one boson is a mathematical triality diagram with the
fermions representing spinors and the boson representing a
vector Jordan algebra entity. Triality is a relationship between
three vector spaces over a field F that are all isomorphic to
each other. Thus, the common vector space is isomorphic to
R, C, H, or O, i.e., involving spinors in dimensions 1, 2, 4,
and 8, respectively [12].

In our 4-D discrete spacetime the fermion states can be
represented by quaternions. In fact, Clifford algebra tells us
that there will be two quaternion representations in R4 called
the right-handed spinor representation S+4 and the left-handed
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Fig. 1: The incoming fermion emits or absorbs a boson and a
fermion exits. E.g., an electron emits a photon and continues in a dif-
ferent direction. This diagram represents triality among two spinors
(electron in and electron out) and a vector boson.

spinor representation S−4 . In general, for even dimensional
spacetimes, i.e., even n values, the two spinor representations
have dimension 2n/2−1, but the vector representation has di-
mension n. For example, in n = 4 space, the boson vector
representation is a 4 x 4 real matrix and the fermion spinor
representation is a 2 x 2 complex matrix or, equivalently, also
a 4 x 4 real matrix. I.e., the fermions and bosons are the same
dimension.

We know that the icosians telescope us up to discrete 8-D.
With n = 8, the spinor representations are again the same size
as the vector representation, both represented by 8 x 8 real
matrices. Even so, they are not equivalent representations.
However, one can permute the vector, left-handed spinor, and
right-handed spinor representations into each other [12]. In
4-D, for example, there is a parity operator that can do this
change of a left-handed spinor into a right-handed spinor and
vice-versa.

For the generic Feynman diagram, one can think about
the two fermions and the one boson as being three E8 lat-
tices which come together momentarily to form a 24-D lat-
tice called the Leech lattice. The Monster Group again plays
its governing role through the j-invariant function. The nu-
merator of j(τ), being 1 + 720 q + 146512 q2 + . . ., is the
generating function for the lattice vectors in this product of
three copies of the E8 lattice. And for conformal field theo-
ries, the j-invariant is the partition function for the Monster
Group [13].

Another very important mathematical connection takes us
to information coding theory. One could say that each particle
in the triality diagram brings in its 8-bit Hamming code word
to temporarily form the 24-bit binary Golay code word or,
equivalently, the 12-bit ternary Golay code word, related to
the Leech lattice. The 8-bit Hamming code has 72 distinct
code words in 9 different but overlapping sets [14], the exact
number required for the fundamental particles of the SM: 6
leptons plus 8 x 3 = 24 quarks sums to 30 fermion states;
when doubled for anti-particles, makes 60 particle states; then
add the 12 bosons to get 72. The 24-bit Golay code word
encodes 12 data bits defining up to 212 = 4096 different items,
easily covering the possible interaction triples of the SM.

These code words support the hegemony of the Monster

Group because the allowed SM interactions of the leptons and
quarks can be related to information theory in 24 dimensions.
The second article includes details of the Turyn construction
for these Golay-Leech lattice code words and their relation-
ship to quantum information theory and the Monster Group.

13 Conclusion

In this brief article I have outlined specific connections be-
tween the mathematics of the Monster Group and fundamen-
tal physics particles and rules. These connections support the
three hypotheses ERH, MUH, and CUH, so I conclude that
the Universe is mathematical and that we live in the only pos-
sible one. I await the empirical confirmation by the discovery
of the 4th quark family, particularly the b’ quark at about 80
GeV. Hopefully, the wait will not be long.
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The structure of spin and isospin is analyzed. Although both spin and isospin are related
to the same SU(2) group, they represent different dynamical effects. The Wigner-Racah
algebra is used for providing a description of bound states of several Dirac particles in
general and of the proton state in particular. Isospin states of the four ∆(1232) baryons
are discussed. The work explains the small contribution of quarks spin to the overall
proton spin (the proton spin crisis). It is also proved that the addition of QCD’s color is
not required for a construction of an antisymmetric state for the ∆++(1232) baryon.

1 Introduction

The isospin notion has been conceived by W. Heisenberg in
1932 [1, see p. 106]. It aims to construct a mathematical ba-
sis that represents the proton-neutron similarity with respect
to the strong nuclear force. Both spin and isospin have the
same SU(2) group structure. Thus, like spin multiplets of a
quantum state, one combines corresponding states of nuclear
isobars in an isospin multiplet. For example, the ground state
of the 14C, 14O and the Jπ = 0+ excited state of 14N are mem-
bers of an isospin triplet. Obviously, one must remember that
isospin is a useful approximation that neglects proton-neutron
differences that are related to their mass and their electromag-
netic interactions.

Later developments have shown that the proton-neutron
similarity stems from the similarity between the u, d quarks.
It follows that the usefulness of isospin symmetry extends to
particle physics. For example, the three pions are members
of an isospin triplet. Due to historical development, isospin
notation takes different form in nuclear and particle physics.
Here T and I denote isospin in nuclear and particle physics,
respectively. In this work the symbol T is used, mainly be-
cause of the following reason. In the case of spin, the symbols
J and j denote total and single particle angular momentum
operators, respectively. Similarly, the symbols T and t de-
note the corresponding isospin operators. Thus, due to the
same underlying SU(2) group, isospin relations can be read-
ily borrowed from their corresponding spin counterparts. The
operators T and t are used in the discussion presented in this
work.

This work examines states of electrons and quarks. These
particles have spin-1/2 and experimental data are consistent
with their elementary pointlike property. Evidently, a theo-
retical analysis of an elementary pointlike particle is a much
simpler task than that of a composite particle. The discussion
begins with an examination of relevant properties of elec-
tronic states of atoms. The mathematical structure of the
SU(2) group is used later for a similar analysis of isospin
states.

Two important conclusions are derived from this analy-
sis. First, it is well known that quarks’ spin carry only a small
fraction of the entire proton’s spin [2]. This experimental ev-
idence, which is called the second EMC effect and also the
proton spin crisis, is shown here to be an obvious result of
the multi-configuration structure of states of more than one
Dirac particle. Another result is that the anti-symmetric state
of the ∆++(1232) baryon is well understood and there is no
need to introduce a new degree of freedom for its explana-
tion. It means that the historical starting point of the QCD
construction has no theoretical basis. (Below, the symbol ∆
refers to this isospin quartet of baryons.)

Generally, in order to simplify notation, the specific value
of normalization factor is omitted from the expressions. The
second and the third sections analyze spin and isospin, re-
spectively. The fourth section provides an explanation for the
proton spin crisis. The fifth section explains the antisymmet-
ric structure of the ∆++ baryon (without using color). The last
section contains concluding remarks.

2 Spin States

A comprehensive discussion of angular momentum can be
found in textbooks [3]. In this short work some elements of
this theory are mentioned together with a brief explanation.
This is done for the purpose of arriving rapidly at the main
conclusions. A relativistic notation is used and for this reason
the j j coupling [3] takes place.

Let us begin with a discussion of spin and spatial angu-
lar momentum. These quantities are dimensionless and this
property indicates that they may be coupled. Now, the mag-
netic field depends on space and time. Moreover, the theory
must be consistent with the experimental fact where both spa-
tial angular momentum and spin of an electron have the same
kind of magnetic field. Thus, it is required to construct a rela-
tivistically consistent coupling of these quantities. This is the
theoretical basis for the well known usage of spin and spa-
tial angular momentum coupling in the analysis of electronic
states of atoms.
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A motionless free electron is the simplest case and the
spin-up electron state is [4, see p. 10]

ψ(xµ) = Ce−imt


1
0
0
0

 , (1)

where m denotes the electron’s mass.
A second example is the state of an electron bound to a

hypothetical pointlike very massive positive charge. Here the
electron is bound to a spherically symmetric charge Ze. The
general form of a jπ hydrogen atom wave function is [5, see
pp. 926–927]

ψ(rθϕ) =
(

FY jlm

GY jl′m

)
, (2)

where Y jlm denotes the ordinary Ylm coupled with a spin-1/2
to j, j = l ± 1/2, l ′ = l ± 1, F,G are radial functions and the
parity is (−1)l.

By the general laws of electrodynamics, the state must be
an eigenfunction of angular momentum and parity. Further-
more, here we have a problem of one electron (the source at
the origin is treated as an inert object) and indeed, its wave
function (2) is an eigenfunction of both angular momentum
and parity [5, see p. 927].

The next problem is a set of n-electrons bound to an at-
tractive positive charge at the origin. (This is a kind of an
ideal atom where the source’s volume and spin are ignored.)
Obviously, the general laws of electrodynamics hold and the
system is represented by an eigenfunction of the total angular
momentum and parity Jπ. Here a single electron is affected by
a spherically symmetric attractive field and by the repulsive
fields of the other electrons. Hence, a single electron does not
move in a spherically symmetric field and it cannot be rep-
resented by a well defined single particle angular momentum
and parity.

The general procedure used for solving this problem is to
expand the overall state as a sum of configurations. In every
configuration, the electrons’ single particle angular momen-
tum and parity are well defined. These angular momenta are
coupled to the overall angular momentum J and the product
of the single particle parity is the parity of the entire system.
The role of configurations has already been recognized in the
early decades of quantum physics [6]. An application of the
first generation of electronic computers has provided a nu-
merical proof of the vital role of finding the correct configu-
ration interaction required for a description of even the sim-
plest case of the ground state of the two electron He atom [7].
The result has proved that several configurations are required
for a good description of this state and no configuration dom-
inates the others. This issue plays a very important role in the
interpretation of the state of the proton and of the ∆++.

For example, let us write down the 0+ ground state Heg of

the Helium atom as a sum of configurations:

ψ(Heg) = f0(r1) f0(r2) 1
2
+ 1

2
+ + f1(r1) f1(r2) 1

2
− 1

2
−+

f2(r1) f2(r2) 3
2
− 3

2
− + f3(r1) f3(r2) 3

2
+ 3

2
++

f4(r1) f4(r2) 5
2
+ 5

2
+ + . . .

(3)

Here and below, the radial functions fi(r), gi(r) and hi(r)
denote the two-component Dirac radial wave function (mul-
tiplied be the corresponding coefficients). In order to cou-
ple to J = 0 the two single particle j states must be equal
and in order to make an even total parity both must have the
same parity. These requirements make a severe restriction on
acceptable configurations needed for a description of the 0+

ground state of the He atom.
Higher two-electron total angular momentum allows the

usage of a larger number of acceptable configurations. For
example, the Jπ = 1− state of the He atom can be written as
follows:

ψ(He1−) = g0(r1)h0(r2) 1
2
+ 1

2
− + g1(r1)h1(r2) 1

2
+ 3

2
−+

g2(r1)h2(r2) 1
2
− 3

2
+ + g3(r1)h3(r2) 3

2
− 3

2
++

g4(r1)h4(r2) 3
2
− 5

2
+ + g5(r1)h5(r2) 3

2
+ 5

2
−+

g6(r1)h6(r2) 5
2
+ 5

2
− . . .

(4)

Using the same rules one can apply simple combinatorial
calculations and find a larger number of acceptable configura-
tions for a three or more electron atom. The main conclusion
of this section is that, unlike a quite common belief, there are
only three restrictions on configurations required for a good
description of a Jπ state of more than one Dirac particles:

1. Each configuration must have the total angular momen-
tum J.

2. Each configuration must have the total parity π.

3. Following the Pauli exclusion principle, each configu-
ration should not contain two or more identical single
particle quantum states of the same Dirac particle.

These restrictions indicate that a state can be written as a sum
of many configurations, each of which has a well defined sin-
gle particles angular momentum and parity of its Dirac parti-
cles.

The mathematical basis of this procedure is as follows.
Take the Hilbert sub-space made of configurations that sat-
isfy the three requirements mentioned above and calculate
the Hamiltonian matrix. A diagonalization of this Hamilto-
nian yields eigenvalues and eigenstates. These eigenvalues
and eigenstates are related to a set of physical states that have
the given Jπ. As pointed out above, calculations show that
for a quite good approximation to a quantum state one needs
a not very small number of configurations and that no con-
figuration has a dominant weight. These conclusions will be
used later in this work.
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3 Isopin States

Spin and isospin are based on the same mathematical group
called SU(2). Its three generators are denoted jx, jy, jz. An
equivalent basis is [1, see pp. 357–363]

j+ = jx + i jy, j− = jx − i jy, jz. (5)

All the j operators mentioned above commute with the
total j 2 operator. For this reason, if one of them operates
on a member of a (2J + 1) multiplet of an SU(2) irreducible
representation then the result belongs to this multiplet. The
two j± operators are of a particular importance. Thus, let
ψJ,M denote a member of such a multiplet and one finds

JzJ−ψJ,M = (M − 1)J−ψJ,M . (6)

This relation means that J− casts ψJ,M into ψJ,M−1

J−ψJ,M =
√

J(J + 1) − M(M − 1)ψJ,M−1, (7)

where the appropriate coefficient is written explicitly. Analo-
gous relations hold for the J+ operator.

Let us turn to isospin. The required operators are simply
obtained by taking the mathematical structure of spin and re-
placing the total spin operator J and the single particle spin
operator j by the corresponding isospin operators T, t. (Here,
like in the spin case, M, m denote the eigenvalue of Tz, tz, re-
spectively.) The issue to be examined is the structure of the
isospin multiplet of the four baryons:

∆−, ∆0, ∆+, ∆++. (8)

These ∆(1232) baryons have the lowest energy of the fam-
ily of the ∆ baryons [8]. The ∆++ baryon has three u quarks
and ψ∆(uuu) denotes its state. Therefore, its isospin state is
T = 3/2, M = 3/2 and the isospin component of the wave
function is symmetric with respect to an exchange of any pair
of quark.

Let us examine the operation of T− on ∆++.

T−ψ∆(uuu) = (t1− + t2− + t3−)ψ∆(uuu)
= ψ∆(duu) + ψ∆(udu) + ψ∆(uud), (9)

where ti− operates on the ith quark. This is the way how one
obtains a yet unnormalized expression for the ∆+ baryon from
that of ∆++. A successive application of T− yields expressions
for every member of the isospin quartet (8).

Now, the ∆++ state is symmetric with respect to its quark
constituents and the same symmetry holds for the isospin op-
erator T− = t1− + t2− + t3−. Hence, also the ∆+ is symmetric
with respect to its uud quark states. This argument proves that
isospin space of every member of the baryonic quartet (8) is
symmetric. The same result can be obtained from a differ-
ent argument. The u, d quarks are fermions and their overall
state must be antisymmetric with respect to an interchange of

any pair of quarks. Now, the isospin operators used above do
not affect other coordinates of quarks. It means that for ev-
ery members of the isospin quartet (8), the entire symmetry
of the other coordinates remain antisymmetric and the isospin
coordinate is symmetric.

The data confirms the similarity between members of an
isospin multiplet. Thus, for example, the mass difference be-
tween the ∆0 and ∆++ baryons is less than 3 MeV [8], whereas
the mass difference between the ∆ multiplet and the nucleons
is about 300 MeV. This evidence shows the goodness of the
isospin notion, where strong interactions dominate the state
of members of an isospin multiplet and the effect of all other
interactions can be regarded as a small perturbation.

4 The Proton Spin Crisis

The proton’s Jπ = 1/2+ state is determined by three valence
uud quarks. The non-negligible probability of the existence
of an additional quark-antiquark pair [1, see p. 282] indicates
that it is a highly relativistic system. The discussion of section
2 holds for the spin-1/2 point-like quarks and the expansion
in configurations is a useful approach. Here the three single
particle jπ represent the uud quarks, in that order. Evidently,
each configuration must satisfy the three requirement written
few lines below (4). However, the Pauli exclusion principle of
restriction 3 does not hold for the d quark. Thus, in analogy to
(3) and (4) one expands the proton’s wave function as a sum
of terms of specific configurations. A truncated expression
for this expansion is shown below:

ψ(uud) = f0(r1) f0(r2)h0(r3) 1
2
+ 1

2
+(0) 1

2
++

f1(r1) f1(r2)h1(r3) 1
2
− 1

2
−(0) 1

2
++

f2(r1)g2(r2)h2(r3) 1
2
+ 1

2
+(1) 1

2
++

f3(r1)g3(r2)h3(r3) 1
2
− 1

2
−(1) 1

2
++

f4(r1)g4(r2)h4(r3) 1
2
+ 1

2
−(0) 1

2
−+

f5(r1)g5(r2)h5(r3) 1
2
+ 1

2
−(1) 1

2
−+

f6(r1)g6(r2)h6(r3) 1
2
+ 3

2
+(1) 1

2
++

f7(r1)g7(r2)h7(r3) 1
2
− 3

2
+(1) 1

2
−+

f8(r1)g8(r2)h8(r3) 1
2
+ 1

2
+(1) 3

2
++

f9(r1)g9(r2)h9(r3) 1
2
− 1

2
−(1) 3

2
++

fa(r1)ga(r2)ha(r3) 1
2
− 3

2
−(1) 1

2
++

fb(r1)gb(r2)hb(r3) 1
2
+ 3

2
−(1) 1

2
−+

fc(r1)gc(r2)hc(r3) 1
2
+ 1

2
−(1) 3

2
− + . . .

(10)

The symbols 0...9,a,b,c are used for enumerating the terms of
(10). Here, like in (3) and (4), fi(r), gi(r) and hi(r) denote the
Dirac two-component radial wave function of the uud quarks,
respectively (multiplied be the corresponding coefficients). In
each term, the number in parentheses indicates how the two
angular momenta of the uu quarks are coupled. Below, Juu

denotes the value of this quantity.
The following remarks explain the form of these terms.

An important issue is the coupling of the two uu quark that
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abide by the Pauli exclusion principle. For this reason, Juu

is given explicitly in each term. Another restriction stems
from the rule of angular momentum addition. Thus, for every
term, the following relation must hold in order to yield a total
spin-1/2 for the proton: Juu = jd ± 1/2. These rules explain
the specific structure of each term of (10) which is described
below.

In terms 0,1 the two spin-1/2 are coupled antisymmetri-
cally to Juu = 0 and the two radial function are the same. In
terms 2,3 these spins are coupled symmetrically to Juu = 1
and antisymmetry is obtained from the two orthogonal radial
functions. In terms 4,5 the different orbitals of the uu quarks
enable antisymmetrization. Thus, the two spin-1/2 functions
are coupled to Juu = 0 and Juu = 1, respectively. The radial
functions are not the same because of the different orbitals.
In terms 6,7 the spins are coupled to Juu = 1. In terms 8,9 we
have a symmetric angular momentum coupling Juu = 1 and
the antisymmetry is obtained from the orthogonality of the
radial function fi(r), gi(r). Terms a,b are analogous to terms
6,7, respectively. In term c the different uu orbitals enable an-
tisymmetrization and they are coupled to Juu = 1.

A comparison of the expansion of the He atom ground
state (3) and that of the proton (10) shows the following
points:

1. If the expansion is truncated after the same value of a
single particle angular momentum then the number of
terms in the proton’s expansion is significantly larger.

2. This conclusion is strengthened by the fact that the pro-
ton has a non-negligible probability of an additional
quark-antiquark pair. Evidently, an inclusion of this
pair increases the number of acceptable configurations.

3. Calculations show that the number of configurations re-
quired for the ground state spin-0 of the two electron
He atom is not very small and that there is no single
configuration that dominates the state [7]. Now the
proton is a spin-1/2 relativistic particle made of three
valence quarks. Therefore, it is very reasonable to as-
sume that its wave function takes a multiconfiguration
form.

Using angular momentum algebra, one realizes that in
most cases an individual quark does not take the proton’s
spin direction. This is seen on two levels. First, the upper
and the lower parts of the quark single particle function have
l = j± 1/2. Furthermore, the relativistic quark state indicates
that the coefficients of the upper and the lower part of the
Dirac four component function take a similar size. Hence,
for the case where j = l − 1/2, the Clebsch-Gordan coef-
ficients [3] used for coupling the spatial angular momentum
and the spin indicate that the spin of either the upper or the
lower Dirac spinor has no definite direction and that the co-
efficient of the spin down is not smaller than that of the spin
up [3, see p. 519].

Let us turn to the coupling of the quark spins. The 3-quark

n p 938

∆− ∆0 ∆+ ∆++
1232

Fig. 1: Energy levels of the nucleon and the ∆ isospin multiplets
(MeV).

terms can be divided into two sets having juu = 0 and juu > 0,
respectively. For juu = 0 one finds that the single particle jd =
1/2 and this spin is partially parallel to the proton’s spin. For
cases where juu > 0, the proton’s quark spins are coupled in a
form where they take both up and down direction so that they
practically cancel each other. The additional quark-antiquark
pair increases spin direction mixture. It can be concluded that
the quark spin contribute a not very large portion of the proton
spin and the rest comes from the quark spatial motion. This
conclusion is supported by experiment [9].

5 The State of the ∆++ Baryon

In textbooks it is argued that without QCD, the state of the
∆++ baryon demonstrates a fiasco of the Fermi-Dirac statis-
tics [10, see p. 5]. The argument is based on the claim that the
∆++ takes the lowest energy state of the ∆ baryons [11] and
therefore, its spatial wave function consists of three single
particle symmetric s-waves of each of its three uuu quarks.
Now the Jπ = 3/2+ state of the ∆ baryons shows that also
their spin is symmetric. It means that the ∆++ is regarded
to have space, spin and isospin symmetric components of its
wave function. As stated above, textbooks claim that this out-
come contradicts the Fermi-Dirac statistics. However, using
the physical issues discussed in this work and the energy level
diagram (see Fig. 1) of the nucleon and the ∆ baryons, it is
proved that this textbook argument is incorrect.

• As explained in section 3, all members of an isospin
multiplet have the same symmetry. Hence, if there is a
problem with the Fermi-Dirac statistics of the ∆++ then
the same problem exists with ∆+ and ∆0. It follows that
if the above mentioned textbook argument is correct
then it is certainly incomplete.

• The data described in fig. 1 shows that ∆+ is an excited
state of the proton. Hence, its larger mass is completely
understood. Thus, there is no problem with the Fermi-
Dirac statistics of the ∆+ baryon. Analogous relations
hold for the neutron and the ∆0 baryons. Using the
identical statistical state of the four ∆ baryons (8), one
realizes that there is no problem with the Fermi-Dirac
statistics of the ∆++ and the ∆− baryons.

• The multi-configuration structure of a bound system of
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Dirac particles is known for about 50 years [7]. In par-
ticular, the multi-configurations structure of all baryons
(like in (10)) proves that, contrary to the above men-
tioned textbook argument [10, see p. 5], the single par-
ticle spatial wave functions of the three u quarks of the
∆++ baryon are not a pure s-wave.

6 Conclusions

This work uses the Wigner-Racah mathematical structure and
proves two very important points. It explains the small con-
tribution of quark’s spin to the overall proton spin. Therefore,
it eliminates the basis for the proton spin crisis. It also proves
that everything is OK with the Fermi-Dirac statistics of the
∆++ baryon. It follows that there is no need to introduce the
QCD’s color degree of freedom in order to build an antisym-
metric wave function for this baryon.
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Einstein’s planetary equation can be solved by the method of successive approxima-
tions.This yields two linearly independent solutions. An analytical solution is presented
for this equation. This solution produces eight linearly independent mathematical solu-
tions, two of which are given approximately by the well-known method of successive
approximations.

1 Introduction

Einstein’s planetary equation is given [1] by

d2u
dφ2 + u − k

l2
=

3k
c2 u2 (1)

where φ and u are the instantaneous angular and reciprocal ra-
dial displacements of the planet in the fixed plane of motion,
with the Sun as origin, l is the constant angular momentum
per unit mass [2] and

k = GM (2)

where M is the rest mass of the Sun, G is the universal grav-
itational constant and c is the speed of light in vacuum. The
method of successive approximations yields the solution of
equation (1) [1] as:

r(φ) =
1

u(φ)
=

(
1 − ε2

0

)
a0

1 + ε0 cos
[(

1 − 3k2

c2l2

)
φ + α

] (3)

where ε0 is the eccentricity, a0 the semi-major axis and α
is the epoch. The second solution of equation (1) obtained
from the method of successive approximations is the solution
(3) with sine instead of cosine. The effect revealed by these
two approximate solutions is an anomalous precession of the
planetary orbit in which the perihelion advances by an angle
per revolution ∆ given [1] by

∆ =
6πk2

c2l2
. (4)

In this article, Einstein’s planetary equation (1) is solved
analytically.

2 Analytical Solution

Suppose the analytical solution of equation (1) is in the form
of a Taylor or Laurent series given as

u(φ) =

∞∑

n=0

An exp {ni (ωφ + φ0)} (5)

where An, ω and φ0 are constants. Then, substituting (5) into
(1), applying the linear independence of the exponential func-
tions and equating corresponding coefficients on both sides

yields the following system of equations:

3k
c2 A2

0 − A0 +
k
l2

= 0 (6)

ω2 = 1 − 6k
c2 A0 (7)

A1 = arbitrary constant (8)

A2 =
3k
c2

(
1 − 22ω2 − 6k

c2 A0

)−1

A2
1 (9)

A3 =
18k2

c4


(
1 − 22ω2 − 6k

c2 A0

)

(
1 − 32ω2 − 6k

c2 A0

)
−1

A3
1

(10)

and so on. Equation (6) is a binomial in A0 and has two pos-
sible roots given by

A0− =
c2

6k

1 −
(
1 − 12k2

c2l2

)1/2 (11)

and

A0+ =
c2

6k

1 +

(
1 − 12k2

c2l2

)1/2 (12)

It follows from substituting (11) into (7) that they are two
possible values of the parameter ω given as:

ω1 =

1 −
1 −

(
1 − 12k2

c2l2

)1/2


1/2

(13)

and

ω2 = −
1 −

1 −
(
1 − 12k2

c2l2

)1/2


1/2

(14)

Similarly, by substituting (12) into (7) other two possible
values of the parameter are obtained as:

ω3 =

1 −
1 +

(
1 − 12k2

c2l2

)1/2


1/2

(15)
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and

ω4 = −
1 −

1 +

(
1 − 12k2

c2l2

)1/2


1/2

. (16)

It follows from equation (9) that A2 has eight possible val-
ues given by

A21 =
3k
c2

(
1 − 22ω2

1 −
6k
c2 A0+

)−1

A2
1 (17)

A22 =
3k
c2

(
1 − 22ω2

1 −
6k
c2 A0−

)−1

A2
1 (18)

A23 =
3k
c2

(
1 − 22ω2

2 −
6k
c2 A0+

)−1

A2
1 (19)

A24 =
3k
c2

(
1 − 22ω2

2 −
6k
c2 A0−

)−1

A2
1 (20)

A25 =
3k
c2

(
1 − 22ω2

3 −
6k
c2 A0+

)−1

A2
1 (21)

A26 =
3k
c2

(
1 − 22ω2

3 −
6k
c2 A0−

)−1

A2
1 (22)

A27 =
3k
c2

(
1 − 22ω2

4 −
6k
c2 A0+

)−1

A2
1 (23)

A28 =
3k
c2

(
1 − 22ω2

4 −
6k
c2 A0−

)−1

A2
1 (24)

Similarly, it follows from (10) that A3 has eight possi-
ble values. The above sequence may be continued to derive
the eight possible corresponding values for each of the con-
stants A4, A5, . . . in terms of the arbitrary constant A1 . This
sequence implies eight mathematically possible analytical so-
lutions of Einstein’s planetary equation of the form:

u(φ) = A0 + A1exp
[
i (ωφ + φ0)

]
+

f2(A1)exp
[
2i (ωφ + φ0)

]
+ ...

fnexp
[
ni (ωφ + φ0)

]
+ ...

(25)

where φ0 and A1 are arbitrary.
Now, consider the first exact analytical solution corre-

sponding to equations (12) and (14). In this case, it follows
from (9) that

A2 = f2(A1) = − k
c2

(
1 − 6k

c2 A0−

)−1

A2
1 (26)

and
A3 = f3(A1) (27)

and in general

An = fn(A1), n = 4, 5, ... (28)

In this case, the exact analytical solution of Einstein’s
planetary equation is a complex function of φ which may be
written in Cartesian form as

u(φ) = x(φ) + iy(φ) (29)

where

x(φ) = A0− + A1 cos (ω1φ + φ0) +

f2(A1) cos 2
[
(ω1φ + φ0)

]
+ . . .

(30)

and
y(φ) = A0− + A1 sin (ω1φ + φ0) +

f2(A1) sin 2
[
(ω1φ + φ0)

]
+ . . .

(31)

Therefore it may be expressed in Euler form as

u(φ) = R(φ)eiΦ(φ) (32)

where R is the magnitude given by

R(φ) =
{
x2 (φ) + y2 (φ)

} 1
2 (33)

and Φ is the argument given by

Φ(φ) = tan−1
{
y(φ)
x(φ)

}
. (34)

Hence by definition the instantaneous radial coordinate of
the planet from the Sun, r , is given by

r (φ) = R−1 (φ) `−iΦ(φ). (35)

3 Physical Interpretation of First Analytical Solution

The instantaneous complex radial displacement r of the
planet from the Sun is given in terms of the angular displace-
ment Φ as

r (φ) = R−1 (φ) `−iΦ(φ). (36)

Therefore the magnitude of the instantaneous complex ra-
dial displacement of the planet from the Sun can be consid-
ered to be the real physically measurable instantaneous radial
displacement, rp. Thus,

rp (φ) = R−1 (φ) =

{
x2 (φ) + y2 (φ)

}− 1
2

. (37)

It may be noted from (9) and (10) that for n > 1 fn(A1) is
of order at most c−2n. Therefore as a first approximation let
us neglect all terms in fn(A1) for n > 1. Then it follows from
(37) and (31)–(32) that

rp (φ) =
A

1 + ε1 cos (ω1φ + φ0)
(38)

where

A =
1

A0−

(
1 +

A2
1

A2
0−

)− 1
2

(39)
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and

ε1 =
A1

A0−

(
1 +

A2
1

A2
0−

)−1

. (40)

Consequently, the orbit is a precesing conic section with
eccentricity and hence semi-major axis given by

a =
A

1 − ε2
1

(41)

and perihelion displacement angle ∆ given by

∆ = 2π
(
ω−1

1 − 1
)
. (42)

It follows from (42) and (14) that the perihelion displace-
ment angle from this analytical method is given explicitly as

∆ =
6πk2

c2l2
+

54πk4

c4l4
. (43)

This is an advance precisely as obtained from the method
of successive approximations. The leading term in (43) is
identically the same as the leading term of the corresponding
advance from the method of successive approximations [1].
Moreso, this analytical method reveals the exact corrections
of all orders of c−2 to the leading term in (44).

It also follows from (40) and (12) that the orbital eccen-
tricity ε1 from this analytical method is given explicitly as

ε1 =
l2A1

k

(
1 +

3k2

c2l2
+ . . .

)−1

[
1 +

l4A2
1

k2

(
1 +

3k2

c2l2
+ . . .

)−2]−1

.

(44)

Thus, an experimental measurement of the orbital eccen-
tricity ε1 in equation (45) is sufficient to determine the pa-
rameter A1 that occurs in the exact analytical solution. It also
follows from this result that the analytical method in this ar-
ticle reveals post-Newtonian corrections of all order of c−2 to
the planetary orbital eccentricity which have not been derived
from the method of successive approximations.

It also follows from equations (41) and (14) that the or-
bital semi-major axis from this analytical method is given ex-
plicitly as

a =
l2(

1 − ε2
1

)
k

(
1 +

3k2

c2l2
+ . . .

)−1

[
1 +

l4A2
1

k2

(
1 +

3k2

c2l2
+ . . .

)−2]−1

.

(45)

Thus, this analytical method reveals post-Newtonian cor-
rections of all orders of c−2 to planetary semi-major axis,
which have not been derived from the method of successive
approximations.

4 Conclusion

This article uncovers an analytical solution to Einstein’s plan-
etary equation. The first analytical solution to the order of
c−2, reveals post-Newtonian corrections to the orbital eccen-
tricity and semi-major axis of a planet. Moreover, up to the
second iterate there is no such correction from the method
of successive approximations. Consequently, these unknown
corrections to orbital eccentricity revealed by the analytical
approach in this article are opened up for experimental inves-
tigation.
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The principal objective of this study is to provide a method to build galactic density
profiles. The models developed in this study were tested against the zCosmos deep
field galactic survey. The herein study suggests that light travel distances need to be
converted into Euclidean distances in order to derive the galactic density profile of the
survey which is the evolution of galactic density over time. In addition, the present
study indicates an 
m of 0.19.

1 Introduction

The main purpose of the herein study is to provide a method
to build galactic density profiles which requires the conver-
sion of light travel distances (LTD) to Euclidean distances.
The LTD is the distance traversed by a photon between the
time it is emitted and the time it reaches the observer. In astro-
nomical units, the Euclidean distance is defined as the equiv-
alent distance that would be traversed by a photon between
the time it is emitted and the time it reaches the observer if
there were no expansion of the Universe.

The zCosmos deep field was used to derive the galatic
density profile based on a sampling method, and to compute
an estimate of the mean mass density of the Universe.

2 Mathematical development and methods

Galactic density profiles have been derived from the normal-
ization of the galactic counts between redshift buckets by di-
viding by the corresponding sample volume. For the scenario
with additive LTD, the LTDs were directly fed into the sam-
pling volume formula eq. (2). For the scenario with a model
of the motion of the photon in an expanding space, the Eu-
clidean distances were fed into the sampling volume formula.

2.1 Method to build galactic density profiles

2.1.1 Normalisation of galactic counts

Let us consider an observer positioned at the center of a
sphere of radius r and looking at a cone of sky in the z di-
rection. The observer is counting galaxies within this cone,
and measures the redshift for each object. A histogram of
the galactic counts versus redshifts is obtained by counting
the set of objects contained within each redshift bucket. This
histogram is required to be normalised in order to obtain the
density profile. Below is derived the expression of the sam-
pling volume of the buckets, function of r0 the lower radius of
the sampling bucket, and �r the radius width of the bucket.
The sampling volume in spherical coordinates is described by
the following integral:

Vr0o;�r =
Z 2�

'=0

Z �0

�=0
sin � d� d'

Z ro+�r

r0
r2dr: (1)

By solving integral (1), the sampling volume for a spher-
ical sampling (�0 = �) is expressed as following:

Vr0;�r =
4�
3
�
(r0 + �r)3 � r3

0
�
; (2)

where Vr0;�r is the sampling volume for a given bucket, r0
the lower radius of the bucket, and �r the radius width of the
bucket.

In order to use eq. (2), the galactic counts need to be
converted into spherical values, by multiplying the counts by
the sphere to survey solid angle ratio (�). Given the zCosmos
survey spectroscopic area of 0.075 square degrees which is
the solid angle, this ratio is the following:

� =
4� (180=�)2

0:075
= 5500038: (3)

The reported survey coverage area of the zCosmos-deep
field is 1 deg2, [8]. However, what is required is the solid
angle which is measured by the area of the survey projected
in the plan described by the right ascension in degrees and
180=� � sin(declination). Note that the sine of declination
term is due to the Jacobian for spherical coordinates. The
spectroscopic area obtained with this procedure is 0.075 deg2
(surface coverage in figure 1).

2.1.2 Conversion of redshifts to LTDs

Two approaches are available for converting the redshifts
from observed galaxies into LTDs, one based on cosmologi-
cal redshifts and the other one on dopplerian redshifts. First,
let us introduce the method based on cosmological redshifts
from the calculator of Wright [16] which uses a Lambda-
CDM cosmology. The followings are generally assumed for
this model: a flat Universe, with parameters: 
M = 0.27,

vac = 0.73 and Ho = 71 [km s�1 Mpc�1].
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Fig. 1: Procedure to compute the spectroscopic area for the zCosmos
survey as defined by the solid angle.

In the dopplerian redshift method, the relationship be-
tween redshifts and recession velocities is the following:

1 + z =

s
1 + v

c
1� v

c
: (4)

From this equation, one may compute the recession ve-
locity for a given redshift. Then the distance is computed as
following:

distance =
v
Ho

: (5)

From subsequent calculations an 
M of 0.19 was
obtained which was used to derive the galactic density profile.
Both methods give comparable distances with differences less
than 5 % for redshifts up to 5.2 using 
M = 0.19. The dif-
ference between dopplerian and cosmological redshifts is dis-
cussed by Bedran [2]. Historically, the first solution to com-
pute distances from cosmological redshifts was obtained by
Mattig [9] which is based on Friedmann equations of general
relativity. Mattig equation with qo = 0.5 also provides dis-
tances close to what is obtained using dopplerian redshifts;
however, Mattig had to assume that conservation of mass is
applicable to the Universe in his derivations which is a big
bang cosmology. On the other hand, dopplerian redshifts do
not require any assumption on the cosmology, and present the
advantage that they also explain blueshifts that are being ob-
served such as for Andromeda.

2.1.3 Sources of data

The zCosmos galactic survey Data Release DR1 was used [8].

2.2 Propagation of light in an expanding space

The main hypothesis for the development of a model for the
propagation of light in an expanding space, is that the speed of
light is frame-independent. Considering redshifts, this means
that the relative movement of a light source does not change
the speed of light emitted; however, it does add or subtract
energy to the photon. In a dopplerian world, this change in
energy level changes the frequency of the source of light, and
not the speed. However, as space between the photon and the
observer expands, this expansion is added to the overall dis-
tance the photon has to travel in order to reach the observer
- in over words the speed of light is frame-independent with
respect to the local space. This implies that there exists a
distance for which the recession speed between the observer
and the photon equals the speed of light, which is the Hubble
sphere, and that recession speed can exceed than the speed of
light for large distances. The frame-independent hypothesis
for the speed of light has been established in the past with
the experiment of Michelson-Morley [10]. Based on obser-
vations of double stars [14, 4] it was shown that the velocity
of propagation of light does not depend on the velocity of
motion of the body emitting the light.

As a consequence of the above, LTDs are not anymore ad-
ditive, meaning that if we have three points aligned in space,
the distance between the two extremes is not anymore equal
to the sum of the two sub-segments as measured in LTDs.

Based on the above hypothesis, the Euclidean distance be-
tween the photon and the observer is described by the follow-
ing differential equation:

dy
dt

= �c+Ho � c � T; (6)

where y is the Euclidean distance between the photon and the
observer, T the LTD between the observer and the photon, c
the celerity of light, and Ho the Hubble constant.

2.3 Conversion of light travel distances to Euclidean dis-
tances

Let us consider a photon initially situated at a Euclidean dis-
tance yo from the observer and moving at celerity c in the
direction of the observer. Let us say T is the initial LTD
between the photon and the observer, and define the Hubble
constant function of LTDs.

The differential equation describing the motion of the
photon in the LTD framework is described by eq. (6). By
taking a reference point in time in the past, and Tb be today
time from this reference point, we get T = Tb � t. Hence,
dt = �dT . Therefore, eq. (6) becomes:

dy
dT

= c�Ho � c � T; (7)

with boundary conditions y(T ) = yo and y(0) = 0.
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By integration from 0 to T, the following relationship re-
lating Euclidean distances y to light travel distances T is ob-
tained:

y = c � T � c �Ho � T 2

2
: (8)

The corresponding horizon computed by setting dy
dT = 0

is Th = 1
Ho which is the Hubble sphere.

2.4 The Hubble constant was determined with respect to
LTDs

In general the literature refers to the Hubble constant mea-
sured with respect to LTDs. A common way to obtain the
Hubble constant is based on standard candles with super-
novae and cepheids [13, 1] and the Tully-Fisher relation [5].
Both the standard candle and Tully-Fisher method rely on
the distance modulus. As shown below the distance modu-
lus gives a measure of LTDs and not Euclidean distances.

Let us recall the derivation of the distance modulus. The
magnitude as defined by [12] is:

m = �2:5 logF +K; (9)

where m is the magnitude, F the brightness or flux and K a
constant. The absolute magnitude is defined as the apparent
magnitude measured at 10 parsecs from the source.

Planck’s law for the energy of the photon leads to a red-
shift correction to the distance modulus

E =
h � c
�
; (10)

where E is the energy of the photon, h the Planck’s constant,
and � the light wavelength.

The ratio of observed to emitted energy flux is derived
from eq. (10), leading to

Eobs
Eemit

=
�emit
�obs

=
1

1 + z
: (11)

From geometrical considerations, the projected surface of
the source of light on the receptor diminishes with a relation-
ship proportional to the inverse of square distance from the
source of light; hence, the following relationship is obtained
for the brightness or flux:

Fobs / Lemit
d2 � Eobs

Eemit
; (12)

where Lemit is the emitted luminosity and d the distance to
the source of light.

Combining eq. (9), (11) and (12), we obtain:

m = �2:5 log
�

Lemit
d2 � (1 + z)

�
+K: (13)

And, because z is close to zero at 10 Parsec:

M = �2:5 log
�
Lemit
100

�
+K; (14)

where M is the absolute magnitude.
Hence, the distance modulus, eq. (13) minus (14) is:

m�M = �5 + 5 log d+ 2:5 log(1 + z); (15)

with d in parsec and log means the logarithm to base 10.
The expansion of the Universe adds up to the Euclidean

distance, and therefore the apparent magnitude of the source
of light is fainter than if no expansion was present.

2.5 Evolution of the galactic density assuming no new
galaxy formation

Assuming cosmological redshifts we have:

1 + z =
ao
a1
; (16)

where ao and a1 are respectively the present scale factor and
the scale factor at z.

From the conservation of mass the density is proportional
to the inverse of the cubic scale factor:

� / 1
a3 : (17)

Therefore, the model for the evolution of the density with
respect to the present density is the following:

�t = �o � (1 + z)3; (18)

where �t is the density in the past at redshift z and �o is the
present density.

3 Results

3.1 A flat density profile using Euclidean distances

Galactic density profiles have been derived for the two antag-
onistic scenarios respectively assuming that LTDs are addi-
tive, and with the propagation of light in an expanding space
(figure 2). Note that the galactic density profiles obtained
with cosmological redshifts and dopplerian redshifts are very
similar. The highest redshift galaxies observed for the survey
(z = 5.2) are very close to the Hubble sphere (which are at
13.65 Glyr) as calculated from cosmological redshifts with

m=0.19.

The theoretical evolution of the galactic density with re-
spect to the present density assuming no new formation of
galaxies (figure 3) was computed assuming cosmological red-
shifts with eq. (18). Note that the first point in the galactic
density profile is not representative of the average density as
the sample volume is very small; hence, the measure repre-
sents the density in the neighbouring galactic cluster of the
Milky Way (figure 2 and 3).
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Fig. 2: Galactic density profile derived from the equivalent spheri-
cal sampling, where Glyr are billion light years from today. LTDs
are obtained from redshift conversion with dopplerian redshifts. The
blank dots indicate densities based on LTDs. The solid dots indicate
densities obtained with Euclidean distances on the basis of dopple-
rian redshifts.

3.2 Estimation of 
 matter from galactic counts

The average galactic mass estimated from light deflection
[15] is 1:7 � 1011 M�. The Universe mean density is ob-
tained by multiplying this figure with the average galactic
count per cubic Glyr. Using dopplerian redshits the galac-
tic count density is 4:6 � 106 counts per cubic Glyr, leading
to a mean Universe density of 1:84 � 10�30 g=cm3. Using
a Hubble constant of 71 km=s=Mpc and recent estimates of
the gravitational constant of 6:67 � 10�8 cm3=g=sec2 [11],
the critical density is estimated at 9:47� 10�30 g=cm3 (from
�c = 3H2

8�G ). Therefore, the corresponding 
m equals to 0.19.
Note that smaller values of the Hubble constant would lead to
a higher 
m.

3.3 Estimation of the number of galaxies in the visible
Universe

Another challenge is to estimate the number of galaxies in
the visible Universe. Using the galactic density in the nearby
Universe from figure 2 expressed per cubic Glyr LTD, and
the volume of the sphere of radius 14 Gly LTD, the num-
ber of galaxies in the visible Universe is estimated at 175
billion. Gott et al. [6] estimated a number of galaxies in
the visible Universe at about 170 billion based on the Sloan
Digital Sky Survey luminosity function data using the Press-
Schechter theory. Both figures are consistent with each other;
however, the author believes that these figures need to be re-
viewed to account only for the Euclidean radius when com-
puting the volume of the visible Universe. As the galactic
density profile is flat, it is expected that the estimated number

Fig. 3: Galactic density profile derived from the equivalent spherical
sampling, where Gly are billion light years from today. LTDs are ob-
tained from redshift conversion with cosmological redshifts (omega
matter of 0.19).The solid dots indicate densities obtained with Eu-
clidean distances on the basis of cosmological redshifts. The blank
dots indicate the theoretical evolution of galaxies assuming that the
survey is incomplete (with no new galaxy formation).

of galaxies in the visible Universe is internally consistant with
the bulk amount of galaxies observed in the survey converted
to spherical values, i.e. multiplying the number of galaxies
in the survey (10046 galaxies) by the sphere to survey solid
angle ratio, which leads to 5.5 billion galaxies (see Table 1).

4 Discussion

A new approach is proposed in the present study to derive the
galactic density profile which is based on the conversion of
light travel distances to Euclidean distances. The method has
been tested by computing the galactic density profiles based
on the data from the zCosmos deep field survey.

In the scenario using LTDs with the sampling method, the
galactic count per cubic Glyr grows according to a steep slope
(figure 2), without accounting for the effect of the expansion
which should add up to this growth. There is no explanation
for such result - this scenario appears to be unrealistic. The
scenario using Euclidean distances, shows a flat profile for
the galactic counts per cubic Gyr (figure 3). However, there
is still a gap between the computed galactic density profile
and the theoretical evolution of galactic densities assuming
no new galaxy formation. Leaving aside model bias, this gap
may be interpreted as if galaxies grow in number over time.
Another hypothesis is that the galactic survey is incomplete
meaning that faint galaxies are left asside from the zCosmos
survey at large distances, which would account for the miss-
ing galaxies causing the gap in figure 3. The theoretical den-
sity obtained by conservation of mass is too large by a factor
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Table 1: Estimation of the number of galaxies in the visible Universe (radius 14 Glyr) using LTD distances and Euclidean distances.

Radius of the visible
Universe

Galactic density Estimated number of
galaxies

Using LTDs 14 Glyr 1:52�107 counts per
cubic Glyr

175 billion

Using Euclidean distances
with dopplerian redshifts

6.90 Glyr 4:60�106 counts per
cubic Glyr

6.3 billion

Galaxy count of the survey
converted to spherical values

5.5 billion

of order 200 at redshift 5.2. This discrepancy is unrealisti-
cally to large. Clearly more detailed work needs to be carried
out to investigate this gap.

By applying conservation of mass, as we approach the
singularity of the big bang, the Universe would have been so
dense that it is difficult to explain how gravity did not pre-
vent the early Universe from collapsing. A possibility is that
the Hubble constant was much higher in the past leading to a
higher critical density - cosmic inflation would still be neces-
sary to overcome this issue. From the present study, the galac-
tic density appears to be constant over time, which would
corroborate the steady state cosmology of [3, 7]. The other
condition being that the Hubble constant remains unchanged
over time.
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An Analysis of States in the Phase Space: Uncertainty, Entropy and Diffusion
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The paper aims to show the physical link between Fick’s laws and entropy increase in
an isolated diffusion system, initially inhomogeneous and out of the thermodynamic
equilibrium, within which transport of matter is allowed to occur. Both the concentra-
tion gradient law and the entropic terms characterizing the diffusion process are inferred
from the uncertainty equations of statistical quantum mechanics. The approach is very
general and holds for diffusion systems in solid, liquid and gas phases.

1 Introduction

Diffusion concerns the transport of matter activated by ther-
mal motion of atoms and molecules. Theoretical and ex-
perimental reviews on the mechanisms of mass transfer in
solid, liquid and gas phases are widely reported in litera-
ture, e.g. [1, 2]. The importance of diffusion is well recog-
nized in the kinetics of microstructural changes, nucleation
of new phases, phase transformations, homogeneization and
recrystallization of alloys and so on [3]; for instance electric
conduction includes phenomena closely related to the trans-
port mechanisms of ions and electrons.The theoretical back-
ground of the diffusion is based on an intuitive hypothesis:
the driving energy that governs the mass transfer is related
to the concentration gradient of molecules or atoms or ions
in a diffusion medium, which can be simply the vacuum or
a gas/liquid/solid phase. Such an assumption is so simple
and reasonable to skip a more profound consideration just
about the physical meaning of its general character. It is
sensible to expect that this generality, and that of the related
concentration gradient driving force itself, should be in fact
consequence of some general principle of nature. This con-
sideration recalls in effect the second law of thermodynam-
ics, as concerns in particular the probabilistic character of the
entropy. Consider an arbitrary number of particles “a” dif-
fusing within a medium “b”; whatever the former might be,
e.g. ions, atoms, molecules and so on, in the following they
will be shortly referred to as particles, whereas the system
formed by “a” and “b” will be referred to as diffusion sys-
tem. One expects that after a proper time range, the system
attains the most probable configuration, i.e. a uniform distri-
bution of “a” into “b” regardless of the particular initial con-
figuration assumed in general in a non-equilibrium state. So a
net mass flow was necessarily occurring before reaching this
limit situation, after which it is no longer allowed to occur.
The entropy seems to be the thermodynamic concept most
closely related to describe the transient and final configura-
tions. This means that: (i) the dimensionless entropy formula
−∑iwi log(wi), where the index i numbers the thermodynamic
states allowed to the diffusing particles, should be involved
since the beginning into the concentration gradient formula-
tion of any diffusion problem; (ii) this formula should reduce
to the simpler Boltzmann form − log(weq) when the equilib-

rium configuration is effectively attained; (iii) the mass flow
J is by consequence different from zero only during the time
step (i), whereas it reduces to zero at the asymptotic time step
(ii). Our knowledge on the diffusion process is thus based
on a phenomenological hypothesis, the concentration gradi-
ent law, and on a general principle of nature, the entropy.
It would be significant to regard both concepts as a natural
consequence of a unique and more general principle of na-
ture, without the need of phenomenological assumptions. Of
course a general approach to this problem cannot leave out
the quantum aspect of any problem inherent the dynamics of
particles on microscopic scale. Justifying from the quantum
point of view the concentration gradient driven diffusion law
would provide a sound physical basis to the general problem
of mass transport, whereas the continuity equation, if appli-
cable, would also appear itself as a corollary identified by
well-defined physical requirements about the diffusion sys-
tem. On the one side it is certainly significant to demonstrate
by means of a unique general principle the quantum origin of
the macroscopic equations describing how the configuration
of the diffusion system evolves as a function of time because
of the mass transfer. On the other side this task seems further
noteworthy if carried out within the same theoretical frame
that allows describing the quantum properties of matter. The
purpose of the present paper is to investigate the quantum ba-
sis hidden into the gradient law, i.e. to demonstrate that the
uncertainty is the basic quantum principle leading to the first
Fick law as a corollary. Moreover the theoretical model pro-
posed here also confirms through a simple and straightfor-
ward approach that the entropy of the diffusion system is the
other key concept underlying the mechanisms of mass trans-
port.

2 Classical background

For simplicity, let us regard the diffusion system as an isolated
thermodynamic system formed by an isotropic body of matter
and introduce the mass flow as follows:

J = cv, (2,1)

where c is the concentration or more in general the activity
of the diffusing particle and v its displacement velocity. Eq.
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2,1 is simply a definition. A further equation appears nec-
essary to introduce a physical hypothesis about the thermo-
dynamic force F that triggers the flow. Expressing this hy-
pothesis through the following equation, known as first Fick
law

J = −D∇c, c = c(x, t) (2,2)

and combining these equations, one finds indeed

v = − D
kBT
∇[kBT log(c/c0)], c0 = c0(t), (2,3)

where c0 is an arbitrary reference concentration not depen-
dent upon x but possibly dependent on time. The definition
of mobility β of the diffusing particle

v = βF (2,4)

entails therefore as a consequence at constant T

D = βkBT, F = −∇[kBT log(c/c0)]. (2,5)

One finds therefore through the definition of mobility both
the sought force, which reasonably results equal to the gradi-
ent of the potential energy µ = kBT log(c/c0), and the well
known Einstein equation linking β to D. The form of F pro-
vides a partial answer to the aforesaid point (iii): if c is equal
everywhere in the diffusion system, then it does not longer
depend upon x; so, defining c0 equal or proportional to this
uniform limit value of c, one finds F = 0 and thus v = 0 ev-
erywhere. This shows that F accounts for the net mass flow
in the diffusion system until c → c0. These preliminary con-
siderations highlight that the diffusion law can be effectively
related to a thermodynamic function, the chemical potential,
that describes the driving force allowing the transport of mat-
ter. Exploit now again the basic definition eq. 2,1 to evidence
how arbitrary changes of both c and v affect J. Consider then

δJ = vδc + δJ′, δJ′ = cδv (2,6)

in the time range δt during which δJ is allowed to occur. Note
that δc can be due: (i) to the change δm of m within the ref-
erence volume V defining c or (ii) to the change δV of V for
fixed m or (iii) to both reasons. In any case, defining the space
range δx = vxδt where the particles are allowed to diffuse
along the x-direction during δt, the x-component of eq. 2,6
reads δJx/δx = δc/δt + cδvx/δx. So, for infinitesimal changes
dc and dv of the process parameters and of the dynamical
variables dt and dx, the last equation reads∇·J = ∂c/∂t+c∇·v,
i.e. in general

∇ · J =
∂ (c + C)

∂t
, C =

t

∫
to

c′∇ · v′dt′, C = C(x, t) (2,7)

with the integral calculated between the fixed time to, e.g. the
beginning of the diffusion process, and the current time t. If
holds the condition ∇ · v = 0, then ∇ · J = ∂c/∂t describes

a particular diffusion process where the rate of concentration
change is equal to the gradient of related mass flow, which
necessarily means lack of sinks or sources of matter within
the volume element where is defined c. Since c∇ · v results
because of the term δJ′ additional to δJ, it appears that the
well known second Fick equation is a particular case of eq.
2,6 for δJ′ = 0. Actually δJ′ , 0 is due not only to a possi-
ble chemical reaction that involves the diffusing particle and
modifies the local concentration of the diffusion system but,
more in general, also to any local force field that attracts or
repels the diffusing particles and perturbs their motion. Note
indeed that δJ′ = caδt = F′Vδt yields

δJ′

δt
=

F′

V
= F′V ,

being in general F , F′. The force per unit volume F′V that
controls the perturbation term δJ′, appearing in eq. 2,6 as a
perturbation of J is particularly interesting for charged parti-
cles diffusing in an ionic medium where polarized impurities
are active. Note indeed that v · J has physical dimensions of
energy per unit volume; then v · δJ′ = (mδv2/2)V−1, i.e. the
effect of F′V is that of perturbing the kinetic energy of the
particle in the interaction volume V . It is usually acknowl-
edged that the time enters into the diffusion equation thanks
to the continuity condition that leads to the second Fick law.
Yet the mere definition of eq. 2,1 entails an interesting con-
clusion: regardless of the aforesaid effects related to δm that
possibly alter the plain diffusion process, the time evolution
of the system is actually consequence of the concentration
gradient law; although the Fick hypothesis does not contain
explicit reference to the time, this latter enters indeed into the
problem through v. The present considerations show there-
fore that the ancillary condition of continuity is not neces-
sary to infer the second Fick law; rather, simply taking into
account the finite range δt required to justify δJ, as nothing
changes instantaneously in nature, the continuity condition
appears to be itself a corollary of the definition of mass flow
and not an additional boundary condition. Otherwise stated,
even from a merely classical point of view the time coordi-
nate appears a necessary ingredient together with the space
displacement to account for the mass transfer in any diffu-
sion problem; consequently the position ∇ · v = 0 does not
represent a supplementary hypothesis “ad hoc” but simply
a possible chance allowed for δJ. This conceptual basis, to
be further implemented by quantum considerations reasons
in the next section, is characterized by three physical features
summarized as follows: (i) the definition of mass flow, eq.
2,1; (ii) the gradient concentration law; (iii) the necessity of
introducing diffusion driven displacement δr and time range
δt linked by δr = vδt, which also introduces the energy range
δε = (v · δJ)V corresponding to F · δr within the reference
volume V defining c.
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3 Preliminary quantum considerations

This section introduces the basic ideas to describe the diffu-
sion system according to the uncertainty relationships

∆x∆px = n~ = ∆t∆ε, (3,1)

where n is an arbitrary number of quantum states allowed to
any particle moving in the space range ∆x with conjugate mo-
mentum falling in the momentum range ∆px; the ranges are
taken positive by definition. As already shown in [4], the
second equality is obtained from the first one defining for-
mally ∆t = ∆x/vx and ∆ε = ∆pxvx linked by the same n; vx

is the velocity with which the particle travels within ∆x. No
hypothesis is required about the ranges that quantify the con-
cepts of space and time uncertainty. Their sizes, in principle
arbitrary, can vary from zero to infinity; moreover nothing
is known about their analytical form, e.g. any local func-
tional relationship like px = px(x) within ∆x is physically
meaningless because both px and x are assumed random, un-
known and unpredictable. Yet, despite such an agnostic point
of view, relevant features of the ranges are apparent. First,
vx must be upper bounded. Consider a free particle in finite
sized ∆x and ∆px with n finite as well: if vx → ∞ then ∆t → 0
would require ∆ε → ∞ , which in turn would allow in prin-
ciple an infinite energy ε; but this is impossible once having
merged both uncertainties via a unique n, as ε → ∞ is in-
consistent with any px falling within the finite range ∆px and
thus necessarily finite itself. Hence the simple fact of having
regarded together space and time uncertainties, i.e. admitting
that both dynamical variable concur to describe any physical
system, requires vx ≤ vmax

x ; eqs. 3,1 entail as a corollary the
well acknowledged existence of an upper limit for the prop-
agation rate of any signal. Moreover put ∆x = x − xo and
consider that the coordinate xo, whatever it might be, is de-
fined in an appropriate reference system that defines position
and size of ∆x and vx as well; yet, being xo indeterminate
and indeterminable, the present approach based on ∆x only
does not specify in fact any particular reference system. The
same holds for course also for the other ranges of eqs. 3,1,
in particular for the time frame. Also, in lack of constrains or
hypotheses the reference system could be in principle Carte-
sian or curvilinear or inertial or non-inertial or anything else.
This means that any physical problem discarding “a priori”
the local dynamical variables and exploiting eqs. 3,1 only,
i.e. replacing

x→ ∆x, px → ∆px, t → ∆t (3,2)

holds by definition in any space-time reference system R.
Hence eqs. 3,1 entail that all reference systems are indistin-
guishable and thus equivalent in describing the properties of
quantum particles. If so, it eventually follows that the upper
value allowed to vx, whatever it might be, must be invariant in
any R. Indeed vx is defined by its own reference system; being

the former arbitrary, the latter is arbitrary as well. Consider
instead a well specified value of vx, e.g. just its maximum
value vmax

x ; this latter must be uniquely defined in R and in
any other R′ otherwise R and R′ could be identified depending
on their own vmax

x , e.g. because of a greater velocity allowed
in either of them, thus contradicting their indistinguishability.
It appears therefore that equivalence of all reference systems
and invariance of vmax

x are strictly linked. The time coordi-
nate, previously introduced to account for the finite rate with
which occurs the mass flow change δJ, still appears here as
a consequence of the finite velocity vx with which any parti-
cle moves within ∆x and entails a finite time range to change
the configuration of the diffusion system. Yet now ∆t takes a
more general physical meaning, as it appears from the pre-
vious considerations and it will be shown in the next sec-
tions. The uncertainty inherent eqs. 3,1 requires innately a
time range for particles delocalized in ∆x, i.e.: any physical
process characterized by an energy spread ∆ε requires a time
range ∆t during which is to be expected a momentum change
falling within ∆px too. Previous papers [5, 6] have shown
that this way of regarding eqs. 3,1 is enough to calculate the
energy levels of hydrogenlike and many electron atoms/ions
and diatomic molecules without solving any wave equation;
then is attracting the idea that even the diffusion model can be
formulated in terms of particles randomly spreading within
their own delocalization space ranges conceptually arbitrary,
unknown and unknowable themselves. As in the quoted pa-
pers, the statistical formulation of the quantum uncertainty
is the only assumption necessary also in the context of the
present problem. Suppose of having N particles in NV ele-
mentary volumes ∆x3 of diffusion medium at a fixed time of
the diffusion process. Regardless of the equilibrium or non-
equilibrium situation at the given time, let

Wcl =

(
N
NV

)
, N = N(t), NV = NV (t), V = ∆x3 (3,3)

be the number of ways to distribute N classical particles in
NV available sites of the diffusion medium. From a quantum
point of view the combinatorial calculus still holds in princi-
ple also in the case of identical particles, as it is done in the
Fermi-Dirac and Bose-Einstein statistics; one must simply re-
place Wcl with the pertinent expressions of numbers of states
taking into account the indistinguishability of identical parti-
cles. Note in this respect the characteristic way of working of
eqs. 3,1: once accepting the replacements 3,2, the physical
interest about the system moves from the constituent parti-
cles to their phase space. On the one side just this feature
of eqs. 3,1 entails the corollary of quantum indistinguisha-
bility of identical particles when considering uniquely ranges
of dynamical variables where any particle could be found,
rather than the actual dynamical variables of the particle it-
self; indeed this latter is never specified “a priori”. On the
other side this explains the general worth of the eqs. 3,1 re-
gardless of the specific system concerned: the present model
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holds in principle for diffusion processes in solid or liquid or
gas phase, since no hypothesis is formulated about N and NV

of WFD or WBE . Further information on the process, e.g. the
role of lattice defects on the effectiveness of mass transport,
are to be introduced “a posteriori” through specific values
of the coefficient D only, see eq. 2,2, whose quantum root
will be indeed highlighted in the next section. It is impor-
tant however that regardless of the kind of diffusion system,
the computation of the number of allowed states accessible
to the particles requires calculating the ways of distributing
N objects into NV volume elements of sizes ∆x3

1≤i≤NV
; this is

possible even in the present approach because the combinato-
rial computation of allowed states does not require knowing
where exactly are located these volumes in the diffusion sys-
tem, which indeed would be prevented by eqs. 3,1. Just this
computation yields the corresponding entropy of the diffu-
sion system. At the very beginning of the diffusion process
one can imagine an isolated ordered system S 0 where all par-
ticles are confined in some arbitrary volume of the system; as
the particles are allowed to walkover randomly to occupy a
greater volume, the number of allowed thermodynamic states
progressively increases as a function of time. For t → ∞
the system reaches an asymptotic state S∞ to which corre-
sponds a net mass flow J = 0. The driving force of the dif-
fusion process is thus certainly correlated to the tendency of
the system towards its state of thermodynamic equilibrium
and maximum entropy. Thus eqs. 3,3 simply tell that in non-
equilibrium conditions the system S (t) at the time t is such
that S 0 ≤ S (t) < S∞, until the distribution of particles cor-
responds to the maximum number of quantum states inherent
S∞ , 0; correspondingly J , 0 describes net mass flow in
the system tending the maximum entropy, until when J → 0.
The next section aims to show that this intuitive picture of
diffusion process will be inferred together with the concen-
tration gradient law through eqs. 3,1 only, without need of
any phenomenological hint.

4 Diffusion quantum model

By definition the uncertainty ranges of eqs. 3,1 include any
position and momentum of the particles during the diffusion
process, despite both dynamical variables are expected to cha-
nge as a function of time by effect of an appropriate driv-
ing force F. In principle one could think ∆x and ∆px large
enough to include any possible change of x and px from the
initial stage of the diffusion process to the final state of ther-
modynamic equilibrium; indeed the eqs. 3,1 admit possible
interactions of these particles with the surrounding medium
along the diffusion path δ∆x = vxδt from δt = 0 to δt → ∞,
e.g. by elastic and anelastic collisions, through an appropriate
size of the energy range ∆ε. Owing to the complete arbitrari-
ness of the ranges, however, this approach although sensible
does not appear far reaching to get relevant information about
the process. Yet it is also possible, and more heuristic, to re-

quire that ∆x and ∆px are allowed to change themselves as a
function of time without contradicting their arbitrariness and
without requiring any information on the local values x and
px; in effect eqs. 3,1 can be differentiated with respect to
t and x whatever the current time and space coordinates of
particles might be. Consider thus δ∆x and δ∆px, rather than
δx and δpx, regardless of whether the displacement of mat-
ter from two different points of the diffusing medium occurs
with or without net mass flow; δ∆x describes the change of
delocalization range to which is related the assumed change
of momentum δ∆px by effect of F. The force is here easily
justified by eqs. 3,1 themselves, regardless of other specific
motivations: ∆ẋ defining δ∆x = ∆ẋδt requires ∆ṗx, which
therefore affects the range of values allowed to any px; in
turn the change of px, allowed to occur and thus in fact oc-
curring, entails Fx = m∂vx/∂t. Since it is possible to write
δ∆px = (∂∆px/∂t)δt, then

∂∆px

∂t
= −n~∆x−2vx = Fx = m

∂vx

∂t
, vx =

∂∆x
∂t

. (4,1)

Note that here vx is not the diffusion velocity of the parti-
cle but the rate with which changes ∆x, so Fx is defined in the
phase space of the particle. Yet this information is enough as
concerns the diffusion problem: by effect of Fx the particle is
allowed to move faster, being however still delocalized within
the larger range ∆x′ = ∆x + δ∆x. This is why the momentum
of the particle is allowed to change along with δ∆x. The no-
tation of velocity is unique to emphasize that vx of eq. 4,1
and vx of the particle defining eqs. 3,1 are both arbitrary and
thus assumed coincident. On the one side this representation
is consistent with well known ideas of the diffusion process,
e.g. particle jumps through different sites in a crystal lattice
or particle collisions randomly occurring in gas phase; on the
other side it suggests that the local concentration change is
described by a constant amount of mass m allowed to move
slower or faster in a decreasing or increasing phase space de-
localization range depending on the sign of the velocity com-
ponent vx. In this way the force component Fx introduced via
the deformation of the momentum range is conceptually con-
sistent with that of eq. 2,5: to the momentum change rate that
defines the classical force corresponds now, from the point of
view of eqs. 3,1, the existence of a force field ∆ṗx necessary
to account for any possible ṗx during the diffusion process.
Let us differentiate now eqs. 3,1 with respect to x to link the
change of size of the delocalization range δ∆x and that of the
momentum range δ∆px when the particle displaces by δx; this
yields

∂∆px

∂x
= −n~∆x−2 ∂∆x

∂x
. (4,2)

Eqs. 4,1 and 4,2 describe the dynamics of the diffusing
particle as a function of time in agreement with eqs. 3,1.
The classical eqs. 2,6 and 2,7 have introduced v as macro-
scopic average velocity describing the net mass flow due to
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the displacement rate of the particle; now the quantum ap-
proach shows how the uncertainty compels regarding a ran-
dom mass flow in the phase space of the particle: the deter-
ministic force of eq. 2,5, exactly defined at any point of the
diffusion system, is now replaced by the random force of eq.
4,1 controlled by arbitrary values of n and ∆x. Let us show
now that this agnostic point of view, far from being elusive of
the problem, is actually source of relevant physical informa-
tion. The fact that the diffusion is allowed in a given volume
V = (n~)3∆p−3

x suggests exploiting an approach conceptu-
ally identical but formally different from that introduced in
section 2. If the motion of the particle is random, the ori-
entation of its momentum p is defined in general within a
sphere of radius |∆p| whose volume is thus ∝ ∆p3

x once tak-
ing ∆px ≡ |∆p|; since the medium is isotropic and the uncer-
tainty ranges are arbitrary and unknown, there is no necessity
to introduce explicitly separate ranges ∆px, ∆py and ∆pz. So,
instead of starting from ∂∆px/∂x, it is more convenient con-
sidering a′′′∆p2

x∂∆px/∂x, where a′′′ is a proper proportion-
ality factor; indeed ~−3∆p2

xd∆px is proportional to the num-
ber of particles whose momentum was initially included in a
sphere of radius ∆px and takes after the time range δt values
falling in the section of sphere between ∆px and ∆px + d∆px.
So introducing the quantity a′′∂∆p3

x/∂x means considering a
volume element in the momentum space of the particle, which
yields in turn with the help of the eq. 3,1 a′∂∆x−3/∂x; here a′′

and a′ are trivial numerical factors. In conclusion, although
starting from a 1D equation, we have introduced a volume el-
ement V = ∆x3 that represents an elementary volume of the
diffusion medium where is located a given amount of diffus-
ing mass m corresponding to the concentration c. This defines
the equation

− a′

V2

∂V
∂x

=
a′

V
∂ log(Vo/V)

∂x
, (4,3)

V = V(x, t), Vo = Vo(t),

where the arbitrary constant Vo is a reference volume by def-
inition not dependent on x but possibly dependent on t. Con-
sider first the left hand side of this identity, which reads

− a′

V2

∂V
∂x

= −a′m
V2

∂c−1

∂x
=

a′m
c2V2

∂c
∂x

=
a′

m
∂c
∂x
,

c =
m
V
, c = c(x, t),

where c has here the same physical meaning introduced in
the early eq. 2,1, although the equation concerns now the
phase space rather than a selected volume of matter. This re-
sult regards m as a constant with respect to x, i.e. c depends
on x through the volume ∆x3 around m only. This point of
view, extended to various volumes ∆x3

i in which the diffusion
medium can be ideally divided, entails that the deformation
extents (∆xi + δ∆xi)3 change as a function of x in order that
the respective δci represent by consequence these changes;

this holds when a total amount of matter
∑

imi is simply re-
distributed along x, thus changing the reference volumes that
physically define the respective ci only, or when

∑
imi is sub-

jected to change itself because of sinks or sources of matter
in the diffusion medium; this is why the time has been ex-
plicitly introduced in eqs. 3,3. The right hand side of the
first eq. 4,3 depends certainly upon time through Vo; the
same holds therefore for the left hand side, i.e. a′ = a′(t).
Moreover a′ depends in general on x as well; indeed it ac-
counts for how ∂∆x−3/∂x changes in general as a function of
x, so a′ = a′(x, t) . Eventually a′ must be consistent with
the idea of a mass m crossing the momentum space surface
proportional to ∆p2

x during the time range δt, i.e. the physical
dimensions of a′ must be mp2t = ml2t−1 like that of ~; this
point will be better emphasized in section 5. Specifying thus
purposely the proportionality factor a′ in order that also the
right hand side of eq. 4,3 depends on c, one finds

Jx = −D
∂c
∂x
, a′ = −Dm, D = D(x, t). (4,4)

The physical dimensions of D are therefore l2t−1. This
result represents the first task of the present paper: to infer the
concentration gradient law governing any diffusion process
as a consequence of the fundamental eq. 3,1, thus showing
the quantum origin of the first Fick law. To proceed further,
consider now the right hand side of eq. 4,3 rewritten with the
help of the second eq. 4,4 as

Jx = −Dco f
∂ log( f )
∂x

, f =
c
co
, co =

m
Vo
, co = co(t).

The first expression calculated in an arbitrary point x = xa

defines f = fa through the local concentration ca and reads,
with obvious meaning of symbols,

Ja = −Daco fa
∂ log( f )
∂x

∣∣∣∣∣
fa

= −Da
∂c
∂x

∣∣∣∣∣
x=xa

, (4,5)

fa =
ca

co
, Da = D(xa, t).

Let us expand in series the function log( f ) around xa

log( f ) = log( fa)+

+
∂ log( f )
∂x

∣∣∣∣∣
fa

(x − xa) +
1
2
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

(x − xa)2 + . . .

and calculate this expression in another point xb, arbitrary as
well; this yields

∂ log( f )
∂x

∣∣∣∣∣
fa

=
log( fb) − log( fa)

xb − xa
− 1

2
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

(xb−xa)− . . . ,

fb =
cb

co
.
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Replacing in eq. 4,5 and putting Jo = −Daco/(xb − xa)
one finds

Ja

Jo
= − fa log( fa)+

+

 fa log( fb) − fa(xb − xa)2

2
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

+ · · ·
 .

(4,7)

Rewrite now co not yet defined as co = (cb − ca)/γ, being
γ a dimensionless proportionality factor; this position entails

Jo = −Da

γ

cb − ca

xb − xa
, (4,8)

fa = γ
ca

cb − ca
, fb = γ

cb

cb − ca
, γ = γ(t).

The last position agrees with the dependence of co upon
time through Vo. In this way Jo agrees conceptually with Ja

and thus with the definition of concentration gradient driven
mass flow yet with a different diffusion coefficient Do =

γ−1Da; it reduces indeed to the usual differential form Jo =

−Do∂c/∂x in the limit xb → xa that necessarily entails cb →
ca. One would expect that in this limit Jo → Ja, which should
require γ → 1; however the fact that in general γ , 1, as
it is shown below, suggests that Jo is physically consistent
with but numerically different from Ja. Before concerning
this point, note that the second and third eqs. 4,8 require
fb = γ + fa; so eq. 4,7 reads

Ja

Jo
= − fa log( fa) +

 fa log ( fa + γ) − d2
ab
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

 ,

d2
ab = fa

(xb − xa)2

2
, (4,9)

having neglected for simplicity the higher order terms of se-
ries development of log( f ). The time function γ is therefore a
parameter controlling the evolution of the ratio Ja/Jo, which
results to be also a function of xa − xb and ca − cb via fa. To
explain this result, let xb be the coordinate of a particle at the
beginning of the diffusion process and xa that of the particle
at a later time, while cb and ca are the respective concentra-
tions. In general fa , fb for xa , xb since ca , cb. Consider
however in this respect the particular limit condition cb → ca

to be expected in two relevant cases: (i) at the very beginning
of the diffusion process, when the particle has traveled an in-
finitesimal path so that xa is very close to its initial position
xb; (ii) at the end of the diffusion process, when the particle
has traveled a finite path with xa arbitrarily far from xb but the
concentration is uniform throughout the diffusion system. In
both cases it is convenient to define γ → 0 in order that the
undetermined form γ/(cb − ca) → 0/0 does not necessarily
cause divergent values of fa and fb. If cb → ca simply be-
cause xb → xa, case (i), elementary manipulations of eq. 4,9

show that both sides tend to γ provided that γ/ fa → 0; in ef-
fect this is verified because by definition γ/ fa = (cb − ca)/ca,
see eq. 4,8. The result is thus

lim
cb→ca
xb→xa

Ja

Jo
= γ, t → 0, γ → 0. (4,10)

This simply means that at t = 0 there is no net flow of
matter as Ja = 0. This is reasonable, because after a very
short path the particle has high probability to return to its ini-
tial position. The second chance for cb → ca even though
xa , xb yields, putting again γ → 0,

lim
cb→ca
xb,xa

Ja

Jeq
o

=
Da

Jeq
o

∂c
∂x

∣∣∣∣∣
x=xa

= γ − d2
ab
∂2 log( f )
∂x2

∣∣∣∣∣∣
f eq

, (4,11)

t → ∞, γ → 0.

Note that γ can fulfill both conditions if its form is, for
instance, like t/(t2 + to). Also note that in fact the behavior
of γ can be consistent with any cb − ca, i.e. whatever this
limit might be depending on the kind of diffusion system;
being γ defined here by its limit condition only, one could
hypothesize any stronger/weaker time dependence, e.g. like
tk/(tk+1 + to), with k ensuring a finite value of γ(cb − ca)−1 no
matter how rapidly ca → cb case by case. Put therefore by
definition

lim
ca→cb

γ/(cb − ca) = γab, γab , 0. (4,12)

The left hand side of eq. 4,11 has now the form

(xb − xa)γ(cb − ca)−1(∂c/∂x)x=xa .

The right hand side vanishes for γ → 0 if ca = cb =

const everywhere in the diffusion system because f is now
a constant defined by the limit fa → f eq, whence the no-
tation Jeq

o . Hence xa , xb and γ such that γab remains fi-
nite require ∂c/∂x vanishing at xa. As expected, the situa-
tion of uniform concentration entails on microscopic scale the
asymptotic condition of thermodynamic equilibrium without
net mass transfer. Hence the maximum chance of displace-
ment is expected at times intermediate between 0 and infinity.
If ca is the same everywhere because xa is arbitrary, then actu-
ally neither side of eq. 4,11 depends on x; so must hold also
on a macroscopic statistical scale the conclusion that a uni-
form distribution of particles in the diffusion system makes
the ratio Ja/Jeq

o of eq. 4,9 inconsistent with a net flow of par-
ticles. In fact this requires verifying that also the sum of all
terms of eq. 4,9 over the indexes a and b fulfills the condition

∑

b,a

lim
cb→ca
xb,xa

Ja

Jeq
o

= 0, t = ∞, (4,13)

whereas in general, since fa never diverges,
∑

b,a

Ja

Jo
, 0, t > 0. (4,14)
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Actually the sums are extended to all paths of particles
from the respective starting points xb to their end points xa,
which also means summing over all elementary volumes Va =

∆x3
a and Vb = ∆x3

b of the diffusing medium in which the par-
ticles are found with corresponding concentrations ca and cb;
since both coordinates are arbitrary, this picture represents in
fact any path between any points in the diffusion system. Be-
fore demonstrating eq. 4,13, note that the sum has conceptual
meaning because in fact it does not require computing any-
thing; it is introduced in principle because neither xa nor xb

are known but are merely referred to their own Va and Vb

only, wherever their position in the diffusion system might
be. Also note that the ratio Ja/Jo entails two harmonized but
different definitions of mass flow: at numerator appears a lo-
cal term, characterized by a concentration difference between
two coordinates infinitely close each other, at denominator
a macroscopic term characterized by coordinates arbitrarily
apart. The flow described by Ja is thus a net flow of matter
only controlled by Da, since by definition an effective con-
centration gradient corresponds to it. The fact that the sum of
ratios is finite in eq. 4,14 and equal to 0 in eq. 4,13 suggests
that Jo must concern a macroscopic diffusion term controlled
by Do = Daγ

−1, describing total displacement of matter that
consists in principle of both vanishing and non-vanishing net
mass flows because Jo , 0 even though Ja = 0; both flows
are in fact allowed to occur in a macroscopic volume of diffu-
sion system, so that neither of them can be excluded. Hence
the ratio Ja/Jo in eq. 2,3 represents a sort of “displacement
efficiency” corresponding to the thermodynamic force Fx of
eq. 4,1, i.e. the chance that the random motion of particles
produces an effective flow of matter between two arbitrary
volumes within the diffusion system. Eq. 4,13 is then eas-
ily justified noting that Jeq

o changes sign by exchanging xa

and xb if ca = cb, whereas Ja does not for the simple rea-
son that its definition has nothing to do with xb. In effect just
the presence of a concentration gradient makes the environ-
ment around the coordinates xa and xb physically different;
if the coordinates belong to different volumes Va and Vb that
define the respective non-equilibrium concentrations, the dis-
placement of a particle between two points out of the equi-
librium is distinguishable from that obtained keeping fixed ca

and cb with reversed path. Instead the sums
∑
a,b

and
∑
b,a

at the

equilibrium must be in principle identical, because a uniform
distribution of particles within the diffusion system makes in-
distinguishable starting points and end points; if the diffusion
system is perfectly homogeneous, then all volumes Vi = ∆x3

i
where c , 0 are identical. This is consequence of having de-
fined c as due to a unique value of m into different volumes
of phase space that define Va and Vb of the diffusing medium.
Thus the only chance for a sum to coincide with its own value
of opposite sign is that the sum is null. Eq. 4,13 is in fact pos-
sible from a mathematical point of view because

∂2 log( f )/∂x2 = − f −2(∂ f /∂x)2 + f −1∂2 f /∂x2, (4,15)

i.e. the former addend is certainly negative whereas the sec-
ond can take in principle both signs; hence in principle the
sum of terms at right hand side of eq. 4,11 can vanish for
an appropriate value of fa = fb = f eq. Let us return now to
eq. 4,9 and note with the help of eq. 4,8 that for fa = 0, i.e.
ca = 0, the ratio Ja/Jo is identically null in agreement with
its probabilistic meaning. Then, since each coordinate xa be-
longs to its own volume Va that defines ca, summing over all
the possible indexes a means summing over states really ac-
cessible to the particles; empty volumes Va with ca = 0 do not
contribute to the sum. It is clear therefore that each fa repre-
sents a possible state allowed for the diffusion system: the
values fa, fa′ , fa′′ , ... in various points labeled by a, a′, a′′, ...
quantify the ways of distributing the total mass M into various
elementary volumes reached by the diffusing species during
the diffusion process. Summing both sides of eq. 4,9 over
the indexes a and b as done before, means therefore estimat-
ing the total probability of mass transport within the diffusion
system; then let us introduce, even without carrying out any
explicit calculation,

∑

a,b

Ja

Jo
= −

∑

a,b

fa log( fa)+

+
∑

a,b

 fa log( fa + γ) − d2
ab
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

.
(4,16)

Summing over all probabilities of diffusion paths, one
finds the resulting configuration change of the diffusion sys-
tem at any time. A few remarks are enough to guess what to
expect from this equation. At t → 0 one finds a sum of terms
fa log(1 + γ/ fa), which for γ → 0 tend to γ, plus terms that
contain the factor dab; since in this limit xa − xb → 0, neither
of them contributes to the sum. At t > 0 both addends con-
tribute to the sum. At the equilibrium asymptotic time where
again γ = 0 the sum vanishes according to eq. 4,15 because
fa → f eq everywhere; this result agrees with the statistical
limit

∑
a,b

Ja/Jo = 0 previously inferred, which actually is the

macroscopic result revealed by the experience. The first ad-
dend at right hand side is clearly an entropic term, whereas
fa defined in eq. 4,5 must have the probabilistic significance
of thermodynamic state related to the current configuration
of the diffusion system. In effect it is possible to define the
limit value f eq such that

∑
a,b

( f eq) = 1 whatever the number of

terms of the sum might be; indeed according to eq. 4,12 the
finite limit γab for cb → ca and γ → 0 has been defined finite
but not specified; the value of γab can be therefore taken as
that fulfilling the required property of f eq. If so the first sum
of eq. 4,16 is such that when the system evolves towards the
equilibrium then

−
∑

a,b

fa log( fa)→ −
∑

a,b

log( f eq).

The possibility of relating fa to the thermodynamic prob-
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ability of states allowed to the diffusing particles defines the
physical meaning of the time parameter γ: depending on the
value of this latter the totality of possible values of xa and xb,
whatever they might be, corresponds to a possible arrange-
ment of diffusing particles at the current time starting from
an arbitrary initial configuration in the diffusing medium. Ac-
cording to eq. 4,10 it appears that γ = 0 at t = 0 defines the
initial configuration. So, through the totality of possible paths
from any xb to any xa, the parameter γ > 0 provides an in-
dication of the order→disorder evolution of the configuration
of the diffusion system as a function of time. Rewrite now eq.
4,16 as follows

∑

a,b

Ja

Jo
=

S t

kB
− S o

kB
, (4,17)

where
S t

kB
= −

∑

a,b

fa log( fa), (4,18)

S o

kB
= −

∑

a,b

 fa log( fa + γ) − d2
ab
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

.

The ratio Ja/Jo has been previously identified as the lo-
cal chance of net mass flow between two arbitrary points of
the diffusion system; the sum at left hand side is therefore
the flow efficiency throughout the whole diffusion system, i.e.
Πnet f low =

∑
a,b

Ja/Jo. It is possible therefore to introduce the

total chance of mass transfer, Πtr, with and without net mass
flow such that of course Πtr = Πnet f low + Πnonet f low with ob-
vious notation. This kind of definition is suggested by the
possibility of normalizing Πtr to 1. Hence comparing with
eqs. 4,17 and 4,18 one infers

Πtr =
S t

kB
, Πnonet f low =

S o

kB
.

Of course S t, the most general statistical definition of en-
tropy, is also the most general way to describe the configu-
ration of N diffusing particles in the NV volumes available in
the diffusion system, regardless of whether or not the con-
figuration entails a net displacement of matter; instead S o,
which does not refer to net transfer of atoms, counts simply
the number of ways to arrange any prefixed distribution of
particles and thus the thermodynamic probability of any con-
figuration. Hence the entropic terms concern two different
kinds of diffusion mechanisms allowed to occur as a function
of time. In effect the possibility that xb → xa is not excluded
in the present model even at times t1, t2,..; it would be enough
to define γ for instance as t(t−t1)(t−t2)/(t + to)4 in agreement
with the previous considerations at t → 0 and t → ∞ and at
any time where xb → xa entails cb → ca too. Further consid-
erations are possible about the results hitherto obtained.

5 Discussion

The eqs. 3,1 only have been exploited to highlight the link
between concentration gradient law and entropy of diffusion
system through elementary considerations. Both concepts
have been extracted through elementary algebraic manipula-
tions of the left and right hand sides of the unique eq. 4,3. No
hypotheses “ad hoc” have been introduced about the physical
features of the diffusion system and its driving mechanisms,
leading for instance to Markovian jumps or not, interstitial
or defect activated jumps, collisions in gas phase and so on.
This is due to the general worth of eqs. 3,1 regardless of
the specific system concerned: the present conclusions hold
in principle for diffusion processes in solid or liquid or gas
phase.

Regarding the statistical formulation of the uncertainty as
fundamental principle of nature, the diffusion particles re-
sult randomly delocalized within elementary volumes V =

∆x3 into which can be ideally subdivided the whole system,
whose size is however inessential to infer the entropic terms
− f log f ; these volumes control the concentrations c, which
in turn define the thermodynamic states allowed to the diffus-
ing particles in relation to their occupation probability. No as-
sumption was made about the coordinates of the points xa and
xb falling within the respective elementary volumes, whose
number, size and position indeed have been never specified in
section 4. In fact such a kind of local information is irrelevant
to calculate the entropy; it is enough to compute how N parti-
cles can be distributed in NV volume elements, regardless of
how many and where these latter might actually be in the dif-
fusion medium. For this reason the model describes the time
evolution of the whole system even without knowing in detail
how is progressively modified the configuration of particles
and volumes as a function of time. Actually eqs. 4,17 ad-
mit also empty elementary volumes that however do not con-
tribute to the total entropy of the system, in fact determined
by the distribution of particles only. So S o in eq. 4,17 cor-
responds in general to the ways of distributing particles into
available microstates described by ∆x3, possibly taking into
account the indistinguishability of identical particles, through
a dynamical pattern of particles exchanging their occupation
volumes even without net mass flow. In effect, also this kind
of information does not require a detailed knowledge on the
local motion of particles. Nothing is known about this motion
within their own ∆x3, because it would require some sort of
local information about x and px. Being impossible to estab-
lish if within this arbitrary volume the motion is for instance
Markovian or not, one must admit that both chances are in
fact allowed; this also justifies why the diffusing species is
involved in mass transfer process with and without net dis-
placement of particles.

This conclusion does not conflict with the fact that Jx en-
tails explicitly an effective concentration gradient; eq. 4,4 is
simply the differential formulation of a physical law related
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to the driving force that triggers the displacement, see eqs.
4,1 and 2,3 and 2,5 as well. The quantum approach behind
this step accounts for the physical basis of eq. 2,2, whereas
the definition 2,1 has now the rank of a corollary of eq. 4,4
rather than a mere definition: now the physical dimensions of
eq. 2,1 are required by quantum motivations, rather than be-
ing suggested by a reasonable assumption. Indeed the avail-
able information about the diffusion system is inferred in the
typical way of quantum mechanics, i.e. without requiring an
exact local knowledge about position and momentum of the
particles, as follows:

(i) from a macroscopic point of view, through Jo of eq.
4,8 and the entropic terms of eq. 4,17;

(ii) through the probabilistic meaning of the ratio Ja/Jo,
which indeed represents the probability of effective mass
transport as concerns the chances of Marcovian or non-
Marcovian displacements.

Non-trivial consequence of these constrains about our de-
gree of information is the heuristic achievement resulting
from the quantum approach with respect to that provided by
the classical physics where, from the point of view of the con-
tinuity equation, the general character of both Fick’s laws is
merely due to the lack of sinks/sources perturbing the dif-
fusion process. This fact appeared already in the classical
section 2 when it was found that in general F , F′, i.e. the
driving force controlling the mass transport is in principle dif-
ferent from that due to local perturbations; the former was
uniquely inferred from general hypotheses, eqs. 2,1 and 2,2,
the latter remained instead unspecified and does so still now.
This is not incompleteness of the present model, but rather
the statement that the local perturbations must be purposely
specified case by case depending on the physical features of
the diffusion system. The worth of any theoretical approach
depends on its ability to be generalized beyond the specific
problem for which it was formerly conceived. In the case
of diffusion the generalization is evident: several important
physical laws are expressed through the gradient of a well
defined function.

One example is the Fourier equation, JQ = K∇T , where
K is the heat conductivity and JQ the heat flow; also the
Ohm law, I = R−1∇V , exhibits a similar form involving the
electrical resistance R and the electric potential V to describe
the displacement of charges per unit time. Although a com-
mon gradient law describes in the former case the transport of
heat and in the latter that of electrons, both equations involve
forms of kinetic energy, respectively due to the oscillation
frequency of atoms/ions/molecules within the heat diffusion
thermodynamic system and to the velocity of electrons prop-
agating within a conductor. The entropic aspects in these sys-
tems are clear. In the former case they were already evidenced
by the crucial Boltzmann intuition, although in lack of any
quantum reference; it is not surprising that indeed the statis-
tical definition of entropy inferred here goes back to the early
times when the thermodynamics was essentially the science

of heat exchanges. The entropy difference in the absence and
presence of an electric field is also evident in the latter case:
without electric field the motion of the electrons is random, in
the k space it is represented by a sphere; the presence of the
field instead orients the motion of the electrons along a prefer-
ential direction. The applied field triggers thus a more ordered
motion of electrons, which suggests in turn a loss of total en-
tropy. The analogy with the case discussed in section 4 is
clear, although the respective entropy changes have opposite
sign. This is not surprising: in an isolated system the entropy
always increases, in a system interacting with an external field
this is not necessarily true. In all cases however the gradient-
like laws, mass diffusion, heat diffusion and Ohm law, are
similarly consistent with entropic terms describing the actual
numbers of accessible states during the displacement of mat-
ter or energy. Another consequence of the generality of the
present model concerns the driving force of the diffusion pro-
cess. In section 2, eq. 2,5 was inferred from eqs. 2,1 and 2,2,
the only equations available. Of course the same can be done
identically here, though on a more profound quantum basis.
Yet the approach carried out in section 4 allowed inferring eq.
4,1, which introduces the concept of force directly as a conse-
quence of eqs. 3,1 and deserves thus further considerations.

First of all, the quantum nature of the mass flow can be
evidenced replacing vx of eq. 4,1 into the x-component of eq
2,1, which yields thanks to eq. 2,5

Jx =
kBT
n~

∆x2c
∂ log(c/co)

∂x
. (5,1)

So, simply identifying Fx of eq. 2,5 with that of eq. 4,1
appear again terms of Jx having the form c∂ log(c)/∂x, which
can be handled in a completely analogous way as in section 4
to infer entropic terms like c log(c/co) of eq. 4,5. Moreover
Jx → 0 for n → ∞ agrees with eq. 4,16; an increase of en-
tropy due to the increase of states accessible to the diffusion
system corresponds to the reaching of asymptotic equilibrium
where the net mass flow vanishes. As expected, the result
obtained via the time coordinate defining vx agrees with that
previously obtained through the space coordinate only. Yet
it is worth remarking that the combined information of the
first eq. 4,18 plus eq. 5,1 regards this time behavior of any
isolated diffusion system as a spontaneous evolution process:
indeed t → ∞ requires Jx → 0 that in turn requires a max-
imum number of allowed states n → ∞. Two fundamental
statements of thermodynamics appear here as corollaries of
eqs. 3,1: the statistical formula of entropy and the entropy
increase in an isolated system.

Let us exploit eq. 5,1 noting that kBT/n~ has physical
dimensions of time. So compute this equation at the time τ
where the total diffusion spread lies within an average value
of ∆x2 computed starting from ∆x2 → 0 at t = 0 up to the
value ∆x2 = ∆x2

τ at the time τ; this means assigning to ∆x2

the particular mean value ∆x2 = ∆x2
τ/2 averaged between
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zero and ∆x2
τ. Comparing with eq. 4,4, one finds immediately

the known Einstein’s one-dimensional result

D =
1
2

∆x2
τ

τ
.

6 Heuristic aspects of the quantum uncertainty

The present section, based on wide-ranging considerations
about vx, extends somewhat the preliminary remarks intro-
duced in section 3 and has prospective worth. The aim is to
emphasize that Fx of eq. 4,1 has actually a physical mean-
ing much more general and contains much more information
than the mere eq. 2,5. The byproduct of eqs. 3,1 proposed
here is so short, straightforward and relevant to deserve being
sketched although, strictly speaking, beyond the mere pur-
poses of the present model; accordingly, however, the results
hitherto inferred appear as a particular kind of selected phys-
ical information extracted from a broader context able to link
topics apparently dissimilar.

Key tools of the following considerations are the replace-
ments 3,2 that compel changing the way to formulate any
physical property P from the usual form P(x, px, t) to
P(∆x,∆px,∆t) and thus to P(∆x, n,∆ε). In effect the paper [4]
has shown that the number n of states coincides with the quan-
tum number appearing in the eigenvalues of the harmonic os-
cillator, while the papers [5, 6] show that this is true in gen-
eral; e.g. the number l of states calculated for the angular
momentum coincides with the orbital quantum number. The
first remark concerns the two ways of expressing Fx in eqs.
4,1:

(i) Fx follows from the definition of momentum itself,
∆ ṗx = mv̇x, and involves directly the mass m, previously in-
troduced with mere reference to the concentration of diffusion
particles and now regarded in general as the mass of any par-
ticle accelerated in ∆x;

(ii) Fx = −n~∆x−2vx does not involve directly any mass
but the deformation rate, ∆ẋ = vx, of ∆x only.

Why in (ii) the mere time deformation of ∆x in the phase
space surrogates the presence of an accelerated mass? The
answer rests on the same considerations already introduced
in section 4: if a growing/shrinking range is accessible to a
particle, then this latter can move faster/slower while being
still therein delocalized; the fact that the particle can accel-
erate/decelerate simply reaffirms once more that nothing in
known about how any dynamical variables change within the
respective delocalization ranges.

However, in lack of constraining hypotheses, there is no
reason to exclude that this idea holds regardless of whether
the range sizes are stationary or not. Otherwise stated: slow
motion in a short range or faster motion in a larger range are
two indistinguishable chances, both allowed to occur for a
particle by the lack of local information inherent the eqs. 3,1
and in fact both occurring. This rationalizes why just the un-
certainty of x, px, ε and t links the deformation rate of time

dependent range sizes of the phase space to the acceleration
of any particle, possible and thus actual. The size and posi-
tion of any range require a reference system to be defined in
principle, although never quantifiable.

Consider for instance ∆x = xt − xo and ∆px = pt − po: the
coordinate xo, whatever it might be, is defined with respect
to the origin O of an arbitrary reference system R, while the
same also holds for the momentum po of the range ∆px con-
jugate to ∆x. So a free particle is described in R by its own
∆x and ∆px; indeed eqs. 4,1 have been inferred in R keeping
constant xo and regarding xt as a time function. Yet, if nei-
ther of these boundaries is specifiable, one could also think
xt fixed and xo time function. The difference is apparent: the
displacement of xo means that now ∆x deforms while contex-
tually moving in R, as O displaces at rate −∂xo/∂t with re-
spect to xt. Thus it is possible to introduce another reference
system Ro solidal with xo such that a particle accelerated in R
is at rest in Ro, which moves with the same acceleration in R.
Clearly still acts on the particle a force that justifies the accel-
eration of Ro in R, although however the particle is in fact at
rest in Ro.

The conclusion of this reasoning is well known: a parti-
cle at rest in an accelerated reference frame is subjected to
a force Fx indistinguishable from that due to the presence of
mass. Of course with large sized ∆x one can speak about
average force Fx, whereas in a small sized range Fx takes a
value better and better defined. This statement is nothing else
but the equivalence principle, here inferred as a corollary of
eqs. 3,1. After having introduced in eqs. 4,1 Fx = mv̇x, can
be inferred also the link between Fx and Newton’s law after
these preliminary remarks? Of course let us start again from
eqs. 4,1 with vx and v̇x defined in any R.

First of all, the fact that the mass in eq. 4,1 is unique and
that the equivalence principle has been obtained elaborating
independently both sides of mv̇x = Fx = −n~∆x−2vx shows
the identity of inertial and gravitational mass. Moreover just
the fact the unique mass m must somehow appear also in the
second equality compels putting vx = ζ′m via an appropriate
dimensional factor ζ′; hence Fx = −n~ζ′m∆x−2 with the ac-
celeration no longer appearing explicitly in this expression,
which rather has the form of an interaction force Fm,ζ′

x be-
tween m and another entity that can be nothing else but ζ′.

This result suggests a more interesting form of Fx putting
ζ′ = n

∑
kζkm′k, being ζk coefficients of the power series de-

velopment of ζ′ and m′ a further arbitrary mass that interacts
with m. The series truncated at the first order only yields ap-
proximately ζ′ ' nζm′, with ζ unique proportionality factor;
here n is inessential and does not play any role because, being
m′ arbitrary, m′n is another value arbitrary as well. In this way
one finds Fm,m′

x ≈ −~ζ(m/∆x)(m′/∆x) at the first order of ap-
proximation, i.e. an attractive force is originated between the
linear densities m/∆x and m′/∆x of masses by definition delo-
calized within ∆x. This sensible result appears better under-

Sebastiano Tosto. An Analysis of States in the Phase Space: Uncertainty, Entropy and Diffusion 77



Volume 4 PROGRESS IN PHYSICS October, 2011

standable thinking to particle waves that propagate through
∆x rather than to point particles moving randomly within ∆x.

Moreover the proportionality factor ζ can be regarded as
a constant since the arbitrary masses m and m′ account for the
arbitrariness of vx. With the notation ζ = G/~ one recognizes
the approximate Newton law; the classical distance xm,m′ be-
tween local coordinates exactly known of particles is replaced
by any random distance falling within the uncertainty range
including them.

Obviously ∆x−2 shows that the functional dependence of
Fm,m′

x on all possible distances between the masses is like
x−2

m′m. This confirms that effectively the diffusion particles are
acted by the force Fx, whose physical meaning can be ex-
tended even to the gravitational interaction. Note however
that actually both signs are allowed for the velocity compo-
nent vx along x, which correspond to the signs of ∂∆x/∂t de-
pending on whether ∆x shrinks or expands as a function of
time.

In agreement with the idea of phase space-time deforma-
tion in the presence of mass, one would expect thus vx =

±ζ′m, i.e. even a negative value of m. This conclusion em-
phasizes nothing else but the existence of antimatter. After
this instance about how eqs. 3,1 can be purposely exploited,
let us proceed with another example short enough to be men-
tioned here, i.e. the Coulomb law. It is not a chance that
even this latter has a form similar to that of the Newton law,
with the charges playing the role of the masses. To empha-
size the reason of this similarity, let us introduce in eq. 4,1
the fine structure constant α = e2/~c. Eliminating ~ eq. 4,1
reads Fx = e′e/∆x2 = meax, where now me is the electron
mass and e′ = nvx(cα)−1e. This latter reads more expressively
e′ = ±n |vx| (cα)−1e. Again, the charges interact through their
linear densities e/∆x and e′/∆x for the reasons previously ex-
plained. Also the electron charges appear therefore because
of the phase space-time deformation in the presence of the
mass me. Once more is crucial the characteristic value of vx

of charged particles; for instance vx = 0 would describe a
neutral particle, whereas it also appears that a massless par-
ticle would be chargeless as well. A boundary condition of
the problem is that for an appropriate value n∗ of the integer
n one must find e′ = e, as nothing hinders indeed just such a
possibility. So e′ = ±(n/n∗)e; e.g. for a couple of electrons
one must take n = n∗ i.e. |vx| = cα, whose value seems there-
fore to be a combined constant of nature. It is reasonable
to assume n∗ = 3 since actually one should consider vx, vy
and vz for the respective components replacing the early Fx,
for simplicity the only one hitherto considered, whereas the
number n of states should be counted as n = nx +ny+nz. Take
the ground values nx = ny = nz = 1 and consider the three
chances vx , 0, vy , 0, vz , 0 and vx , 0, vy , 0 and vx , 0
only. This means considering the charges of particles result-
ing from n = 1, 2, 3 with n∗ = 3. As inferred before, n = n∗

holds for protons and electrons. Yet, in addition to e′ = ±e,
possible values of e′ result respectively to be e′ = ±e/3 or

e′ = ±(2/3)e as well, i.e. particles with fractional charges
should also exist in nature. But, being n arbitrary, what about
hypothetical charges described by n > n∗?

A full discussion on this question is clearly far beyond
the purpose of the present paper; further work is in progress
on this specific topic. As concerns the results hitherto intro-
duced, it is enough to conclude that the formal analogy be-
tween the Fourier law and the mass/charge transport laws is
due to their common quantum basis, discussed here with ref-
erence to the entropic aspects too, that goes back to the inti-
mate quantum nature of the entropy and Newton and
Coulomb forces themselves.

7 Conclusion

The quantum origin of the diffusion law has been described
with the help of eqs. 3,1 only. The assumption of uncertainty
that allowed to calculate the energy levels of many-electron
atoms and diatomic molecules, enables even the basic law
controlling the transport of matter to be inferred in a very sim-
ple way. It is also remarkable that elementary considerations
on eqs. 3,1 open the way to further results much more general
than the specific task to which they were initially addressed
in the present diffusion model. This emphasizes the heuris-
tic character of eqs. 3,1: the uncertainty, regarded itself as a
fundamental principle of nature rather than as mere corollary
of commutation rules of operators, appears a key tool to infer
a conceptual background unifying seemingly different physi-
cal phenomena. As concerns the present model, the level of
comprehension provided by the approach based on the phase
space-time uncertainty opens the way to more specific con-
siderations on the possible mechanisms of transport in solid,
liquid and gas phases.
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The unfolding revolution in observational astrophysics and cosmology has lead to nu-
merous puzzles: “supermassive” galactic central black holes, galactic “dark matter” ha-
los, relationships between these black hole “effective” masses and star dispersion speeds
in galactic bulges, flat spiral galaxy rotation curves, cosmic filaments, and the need for
“dark matter” and “dark energy” in fitting the Friedmann universe expansion equation
to the supernovae and CMB data. Herein is reported the discovery of a dynamical the-
ory for space which explains all these puzzles in terms of 3 constants; G, α - which
experimental data reveals to be the fine structure constant α ≈ 1/137, and δ which is
a small scale distance, perhaps a Planck length. It is suggested that the dynamics for
space arises as a derivative expansion of a deeper quantum foam phenomenon. This
discovery amounts to the emergence of a unification of space, gravity and the quantum.

1 Dynamical Space

The many mysteries of cosmology, such as supermassive
galactic black holes, cosmic filaments, “dark matter” galac-
tic haloes, flat spiral-galaxy rotation curves, “dark energy”
effects in expansion of the universe, and various unexplained
correlations between galactic black hole masses and star ve-
locities, all suggest that we have an incomplete account of
space and gravity. We report herein the discovery of such a
theory and its successful testing against the above phenom-
ena, and as well against laboratory and geophysical gravity
experiments. If space is, at a deep level, a quantum system,
with dynamics and structure, then we expect a derivative ex-
pansion would give a classical/long-wavelength account. In
the absence of that quantum theory we construct, phenomeno-
logically, such an account in terms of a velocity field [1]. In
the case of zero vorticity we obtain

∇·
(
∂v
∂t

+ (v·∇)v
)

+
α

8

(
(trD)2 − tr(D2)

)
+

+
δ2

8
∇2

(
(trD)2 − tr(D2)

)
+ ... = −4πGρ

∇ × v = 0, Di j =
∂vi

∂x j
(1)

where the major development reported herein is the discov-
ery of the significance of the new δ−term, with δ having the
dimensions of a length, and presumably is the length scale of
quantum foam processes. This term is shown to be critical in
explaining the galactic black hole and cosmic filament phe-
nomena. This δ is probably a Planck-like length, and points
to the existence of fundamental quantum processes. If δ = 0
(1) cannot explain these phenomena: δ must be non-zero, no
matter how small, and its value cannot be determined from
any data, so far. G is Newton’s constant, which now ap-
pears to describe the dissipative flow of quantum foam into

matter, and α is a dimensionless self-coupling constant, that
experiment reveals to be the fine structure constant, demon-
strating again that space is fundamentally a quantum process.
We briefly outline the derivation of (1). Relative to the non-
physical classical embedding space, with coordinates r, and
which an observer also uses to define the velocity field, the
Euler constituent acceleration of the quantum foam is

a =
∂v
∂t

+ (v · ∇)v (2)

and so, when α = 0 and δ = 0, (1) relates this acceleration
to the density of matter ρ, and which will lead to Newton’s
account of gravity. The matter acceleration is found by deter-
mining the trajectory of a quantum matter wavepacket. This
is most easily done using Fermat’s maximum proper-travel
time τ:

τ =

∫
dt

√
1 − v2

R(r0(t), t)
c2 (3)

where vR(ro(t), t) = vo(t) − v(ro(t), t), is the velocity of the
wave packet, at position r0(t), wrt the local space. This en-
sures that quantum waves propagating along neighbouring
paths are in phase, and so interfere constructively. This max-
imisation gives the quantum matter geodesic equation for
r0(t)

g =
∂v
∂t

+ (v · ∇)v + (∇ × v) × vR

− vR

1 − v2
R

c2

1
2

d
dt


v2

R

c2

 + ... (4)

with g ≡ dvo/dt. The 1st term in g is the Euler space accelera-
tion a, the 2nd term explains the Lense-Thirring effect, when
the vorticity is non-zero, and the last term explains the pre-
cession of orbits. In the limit of zero vorticity and neglecting
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relativistic effects (1) and (4) give

∇ · g = −4πGρ − 4πGρDM , ∇ × g = 0 (5)

where

ρDM ≡ α

32πG

(
(trD)2 − tr(D2)

)

+
δ2

32πG
∇2

(
(trD)2 − tr(D2)

)
+ .... (6)

This is Newtonian gravity, but with the extra dynamical
terms which has been used to define an effective “dark mat-
ter” density. This ρDM is not a real matter density, of any
form, but is the matter density needed within Newtonian grav-
ity to explain dynamical effects caused by the α and δ-terms
in (1). It is purely a space/quantum-foam self-interaction ef-
fect. Eqn.(3) for the elapsed proper time maybe written in
differential form as

dτ2=dt2− 1
c2 (dr(t)−v(r(t), t)dt)2=gµν(x)dxµdxν (7)

which introduces a curved spacetime metric gµν for which
the geodesics are the quantum matter trajectories when freely
propagating through the quantum foam. When α = 0 and δ =

0, and when ρ describes a sphere of matter of mass M, (1) has,
external to the sphere, a static solution v(r) = −√2GM/rr̂,
which results in Newton’s matter gravitational acceleration
g(r) = −GM/r2r̂. Substituting this v(r) expression in (7), and
making the change of time coordinate

t → t′ = t − 2
c

√
2GMr

c2 +
4GM

c3 tanh−1

√
2GM
c2r

, (8)

(7) becomes the standard Schwarzschild metric, and which is
the usual explanation for the galactic black hole phenomenon,
see [3–5], namely a very small radius but very massive con-
centration of matter. To the contrary we show here that the
observed galactic black holes are solutions of (1), even when
there is no matter present, ρ = 0. These solutions are quantum
foam solitons.

The above v(r) = −√2GM/rr̂ solution also explains why
the α− and δ−terms in (1) have gone unnoticed, namely that
for these solutions (trD)2 − tr(D2) = 0. It is for this rea-
son that the α− and δ−terms are now included, namely that
Newton’s inverse square law for gravity is preserved for so-
lar system situations, and from which Newton determined his
theory from Kepler’s analysis of Brahe’s planetary data. The
key point is that the solar system is too special to have re-
vealed the full complexity of the phenomenon of gravity.

However just inside a planet the α−term becomes
detectable, and it results in the earth’s matter acceleration g
being slightly larger than that predicted by Newtonian gravity,
and we obtain from (1)

∆g = gNG(d)−g(d) = −2παGρ(R)d + O(α2), d > 0 (9)

Fig. 1: The M(r) data for the Milky Way SgrA∗ black hole, show-
ing the flat regime, that mimics a point-like mass, and the rising
form beyond rs = 1.33pc, as predicted by (12), but where M0 and rs

parametrise a quantum foam soliton, and involves no actual matter.
The left-most data point is from the orbit of star S2 - using the Ghez
et al. [3] value M0 = 4.5 ± 0.4 × 106 solar masses. The other data is
from Camenzind [5], but which requires these remaining data points
to be scaled up by a factor of 2, presumably arising from a scaling
down used to bring this data into agreement with a smaller initial
value for M0.

down a bore hole at depth d. This involves only α as the
δ-term is insignificant near the surface. The Greenland Ice
Shelf bore hole data [6] and Nevada bore hole data [7], both
give α ≈ 1/137 to within observational errors, even though
the ice and rock densities ρ(R) differ by more than a factor of
2 [2]. So this result for α is robust, and shows that α is the fine
structure constant α = e2~/c, with α probably the more fun-
damental constant, and now showing up in the quantum foam
account for gravity. As well laboratory measurements of G,
modified Cavendish experiments, have always shown anoma-
lous and inconsistent results [10, 11], revealing a systematic
effect not in Newtonian gravity. Indeed the Long 1976 labo-
ratory experiment to measure G, reported the anomaly to have
magnitude δL = 0.0037 ± 0.0007 [8] (this δL is not related to
δ in (1)), which equals 0.5/(136 ± 26), showing that α can
be measured in laboratory gravity experiments, of the type
pioneered by Long.
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1.1 Black Holes and Filaments as Quantum Foam Soli-
tons

For the special case of a spherically symmetric flow, and in
the absence of matter ρ = 0, we set v(r, t) = r̂v(r). Then (1)
has exact static two-parameter, v0 and κ ≥ 1, solutions

v(r)2=v2
0(κ−1)

δ

r

(
1 − 1F1

[
−1

2
+
α

4
,−1

2
,− r2

δ2

])
+

+v2
0κ

(
4 − 2α

3

)
r2

δ2

Γ( 2−α
4 )

Γ(−α4 ) 1F1

[
1 +

α

4
,

5
2
,− r2

δ2

]
,

(10)

where 1F1 [a, b, w] is the confluent hypergeometric function.
Here v0 is a speed that sets the overall scale, and κ is a struc-
tural parameter for the black hole, and sets the relative sig-
nificance of the two terms in (11) and (12), and which is de-
termined by the history of the black hole: in-falling matter
increases κ, and values of both v0 and κ are affected by sur-
rounding matter if ρ , 0. In the limit r � δ

v(r)2 ≈ A
δ

r
+ B

(
δ

r

)α/2
. (11)

However v(r) → 0 as r → 0 when δ , 0, and so the
δ-term dynamics self-regulates the interior structure of the
black hole, which has a characteristic radius of O(δ). Inside
this radius the in-flow speed goes to zero, and so there is no
singularity. Hence there is a naturally occurring UV cutoff

mechanism. Eqn. (??) gives an asymptotic form for g(r),
which is parametrised by an “effective mass” M(r) within ra-
dius r: g(r) = GM(r)/r2. In terms of observable M(r) (11)
gives a two-parameter description

M(r) = M0 + M0

(
r
rs

)1−α/2
(12)

rs is the distance where M(rs) = 2M0. M(r) from the Milky
Way SgrA∗ black hole [3–5] is shown in Fig.1, and the best fit
gives rs = 1.33pc. This remarkable data comes from observa-
tions of orbits of stars close to SgrA∗, and in particular the star
S2, which has an elliptical orbit with a period of 15.2±0.11
years, and is the left-most data point in Fig.1. This dynamical
space solution exhibits an effective point-like mass accelera-
tion for r < rs, where M(r) is essentially constant, and for
r > rs an increasing M(r). At the outer-most data point the
presence of stars within the galactic core begin to become ap-
parent, with M(r) becoming larger than the form predicted in
(12). Note that if δ = 0, then the flat feature in M(r) is absent,
while if α = 0 the rise in M(r) is absent, and the flat feature
continues outwards. Intriguingly then the role of the δ−term
dynamics is critical to the effective point-like mass descrip-
tion of the inner region of the black hole, even though there is
no actual matter present. It is this region of M(r) that explains
the inner star elliptical orbits - with δ = 0 the α−term pro-
duces a “weak” black hole, but with g(r) ∼ 1/r1+α/2, which

does not produce the observed star orbits. Eqn. (12) is in
terms of observables. If we best-fit the data using an M(r)
directly from (10), by varying v0, κ and δ, we find that there
is no unique value of δ - v0 and κ rescale to compensate for
a deceasing δ, in the regime outside of the inner core to the
black hole, but δ cannot be set to zero. This is evidence of
the existence of a finite, but very small, structure to space,
suggestive of a Planck-like fundamental length.

This black hole also explains the so-called “dark matter”
halo. Asymptotically ρDM(r) is related to the matter-less M(r)
via

M(r) =

∫ r

0
4πr2ρDM(r)dr (13)

giving

ρDM(r) =
(1 − α/2)M0

4πr1−α/2
s r2+α/2

(14)

which decreases like r−γ with γ = 2 + α/2. The value of
the exponent γ has been determined by gravitational lensing
for numerous elliptical galaxies in the Sloan Lens ACS Sur-
vey [12], and all give the generic result that γ = 2. Higher
precision data may even permit the value of α to be deter-
mined. So the space dynamics completely determines ρDM in
terms of observables M0 and rs.

Unlike the point-mass parametrisation of black holes, the
above shows that the quantum foam black hole is an extended
entity, dominating the galaxy from the inner regions, to be-
yond the central bulge, and even beyond the spiral arms. In-
deed the ρDM(r) in (14) predicts flat rotation curves, with or-
bital speed given by

v2
orb(r) = GM0

( rs

r

)α/2 1
rs

(15)

but to which must be added the contribution form the matter
density. For the Milky Way, we get the black hole contri-
bution is vorb = 117km/s at the location of the solar system,
r = 8kpc, and determined by M0 and rs. That the black hole is
an extended structure explains various observed correlations,
such as that in [9] which reported a correlation between M0
and the stellar speed dispersion in the bulge.

Eqn. (1), but only when δ , 0, also has exact filament
solutions

v(r)2 = v2
0

r2

δ2 1F1

[
1 +

α

8
, 2,− r2

2δ2

]
(16)

where r is the distance perpendicular to the axis of the fil-
ament, and v(r) is the in-flow in that direction. In the limit
r � δ

v(r)2 ∼ 1/rα/4 giving g(r) ∼ 1/r1+α/4 (17)

producing a long range gravitational attraction. Such cosmic
filaments have been detected using weak gravitational lens-
ing combined with statistical tomographic techniques. Again
v(r) → 0 as r → 0 when δ , 0, and so the δ-term dynamics
self-regulates the interior structure of the filament, which has
a characteristic radius of O(δ).
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1.2 Expanding Universe

The dynamical 3-space theory (1) has a time dependent ex-
panding universe solution, in the absence of matter, of the
Hubble form v(r, t) = H(t)r with H(t) = 1/(1 + α/2)t, giv-
ing a scale factor a(t) = (t/t0)4/(4+α), predicting essentially
a uniform expansion rate. This results in a parameter-free
fit to the supernova redshift-magnitude data. In contrast the
Friedmann model for the universe has a static solution - no
expansion, unless there is matter/energy present. However to
best fit the supernova data fictitious “dark matter” and “dark
energy” must be introduced, resulting in the ΛCDM model.
The amounts ΩΛ = 0.73 and ΩDM + ΩM = 0.27 are eas-
ily determined by best fitting the ΛCDM model to the above
uniformly expanding result, without reference to the obser-
vational supernova data. But then the ΛCDM has a spurious
exponential expansion which becomes more pronounced in
the future.

2 Conclusions

The notion that space is a quantum foam system suggests
a long-wavelength classical derivative-expansion description,
and inspired by observed properties of space and gravity, such
an effective field theory has been determined. This goes be-
yond the Newtonian modeling in terms of an acceleration
field description - essentially the quantum foam is accelerat-
ing, but at a deeper level the acceleration is the Euler consti-
tutive acceleration in terms of a velocity field. This velocity
field has been detected experimentally, with the latest being
from spacecraft earth-flyby Doppler shift data [13]. The dy-
namics of space now accounts for data from laboratory exper-
iments through galactic black holes and filaments, to the ex-
pansion of the universe. We note that there is now no known
phenomenon requiring “dark energy” or “dark matter”. The
black hole and cosmic filament phenomena require the exis-
tence of both α - the fine structure constant, and δ which is
presumably a quantum foam characteristic Planck-like length
scale. Gravity is now explainable as a emergent phenomenon
of quantum foam dynamics, but only if we use as well a quan-
tum wave description of matter - gravitational attraction is a
quantum matter wave refraction effect, and also causes EM
wave refraction. Hence the evidence is that we are seeing the
unification of space, gravity and the quantum, pointing to a
revolution in physics, and in our understanding of reality.
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By solving a special coupling boundary value problem for vector Helmholtz equations
it is shown how the displacement boundary value problem in elasticity can be solved. It
is shown that the generalized displacement problem possesses at most one solution.

1 Statement of the Problem

By Di we denote a bounded domain in IR3 with boundary S
belonging to the class C2, and by De the unbounded domain
De := IR3 \ Di. We assume that the normal vector n on S is di-
rected into the exterior domain De. The physical meaning is
that Di is a fixed elastic solid with no volume forces present
and De represents a homogeneous isotropic linear solid which
is characterized by the density ρ= 1 (this is no loss of gener-
ality) and the Lamé parameters λ and µ. We consider time-
harmonic elastic waves with circular frequency ω and it will
be assumed that all Lamé constants and the frequency are pos-
itive. We assume that the elastic medium De is in welded con-
tact to the rigid inclusion Di, which means that we consider
displacement boundary conditions.

To formulate the elasticity problems we introduce the fol-
lowing function spaces. By C0,α(S ) and C0,α

T (S ) we denote
the spaces of Hölder continuous functions and Hölder contin-
uous tangential fields (0 < α < 1), respectively. The space
C0,α

D (S ) denotes the subspace of Hölder continuous tangen-
tial fields possessing Hölder continuous surface divergence
in the sense of the limit integral definition given by Müller
[1]. Defining the differential operator ∆∗ := ∆ +

λ+µ
µ

grad div ,
where ∆ is the Laplace operator and λ and µ are the Lamé
elastic constants with µ > 0 and λ + 2µ > 0. For a posi-
tive frequency ω the wavenumbers κp and κs are defined by
κp :=ω/

√
λ + 2µ and κs :=ω/

√
µ. Now, the time-harmonic

exterior displacement problem in elasticity can be formulated
as
Problem D: Find a vector field u ∈ C2(De)∩C(De) satisfying
the time-harmonic elasticity equation

∆∗u + κ2
s u = 0, in De, (1)

the welded contact boundary conditions

u = f , on S , (2)

and the Sommerfeld radiation condition

(x, grad u j(x))−iκ ju j(x) = o(
1
|x| ), for |x| → ∞, j = s, p, (3)

uniformly for all directions x := x/|x|, where

up :=
−1
κ2

p
grad div u and us :=

1
κ2

p
grad div u + u. (4)

Here f ∈ C0,α(S ) is a given vector field.
By (a, b) and [a, b] we denote the scalar product and vec-

tor product of the vectors a and b, respectively. The vector
fields us and up are known as the rotational and irrotational
parts of u, respectively. The rotational part corresponds to a
dilatational or compressional wave and the irrotational part
corresponds to a shearing wave. The wave numbers κs and κp

are known as the slownesses of the rotational and irrotational
waves, respectively.

That Problem D possesses at most one solution has al-
ready been discussed by Kupradze [2] and Ahner [3]. The ex-
istence of a solution has been shown by Hähner and Hsiao [4].

For any domain D ⊂ IR3 with boundary ∂D we introduce
the linear space of vector fields u : D→ IR3 by

F(D) := {u | u ∈ C2(D) ∩C(D), curl u, div u ∈ C(D) }.

From the integral representation theorem for solutions of the
time-harmonic elasticity equation, known as the Betti formu-
las [2], we see that the displacement field is analytic. There-
fore, by using (4) u can be split into u = up + us. Differenti-
ating both, up and us, we see that up is curl-free and that us

is divergence-free. Furthermore, u j is a solution of the vector
Helmholtz equation ∆u j + κ ju j = 0, in De, for j = s, p.

This motivates us to study the following slightly more
general coupling
Problem HD: Find two vector fields us, up ∈ F(De) satisfying
the vector Helmholtz equations

∆us + κ2
sus = 0, in De, κs , 0, =(κs) ≥ 0,

∆up + κ2
pup = 0, in De, κp , 0, =(κp) ≥ 0,

}
(5)

the coupling boundary conditions

[n, us] + [n, up] = c,
div us = γ,

[[curl up, n], n] = d,
(n, us) + (n, up) = δ, on S ,


(6)

and the radiation conditions

[curl u j, x̂] + x̂ div u j − iκ ju j = o(1/|x|), for |x| → ∞, (7)

and j = s, p, uniformly for all directions x̂ := x/|x|. Here c ∈
C0,α

D (S ) and d ∈ C0,α
T (S ) are given tangential fields and γ, δ ∈

C0,α(S ) are given functions.

Peter Wilde. A Generalized Displacement Problem in Elasticity 83



Volume 4 PROGRESS IN PHYSICS October, 2011

2 Uniqueness

By Problem HDS we denote the special case of Problem HD,
with

κ2
p =

ω2

λ + 2µ
and κ2

s =
ω2

µ
, (8)

and the right-hand sides

γ = 0 and d = 0.

Now we have the following equivalence
Theorem 3.1: 1) Let u be a solution of Problem D corre-
sponding to the boundary data f := nδ − [n, c]. Then

up :=
−1
κ2

p
grad div u and us :=

1
κ2

p
grad div u + u,

is a solution of Problem HDS.
2) Let up, us be a solution of Problem HDS corresponding to
the boundary data c := [n, f ], γ= 0, d = 0 and δ := (n, f ). Then
u := up + us is a solution of Problem D.
Proof: We will show only part 2). Let up, us be a solution of
Problem HDS corresponding to the boundary data c := [n, f ],
γ= 0, d = 0 and δ := (n, f ). Representing us via the represen-
tation theorem for solutions of the vector Helmholtz equa-
tion [6] it can be seen that div us is a solution of the scalar
Helmholtz equation ∆div us + κ2

sdiv us = 0 in De satisfying
the homogeneous Dirichlet boundary condition div u = 0 and
the Sommerfeld radiation condition. From the uniqueness
theorem for the exterior Dirichlet problem [5, 6] we obtain
div us = 0 in De.

Using the integral representation theorem for solutions of
the vector Helmholtz equation [6] it can be seen that curl up

solves the vector Helmholtz equation ∆curl up + κ2
pcurl up = 0

in De, fulfills the homogeneous electric boundary condition
[[curl up, n], n] = 0 and div curl up = 0, on S , and the radiation
condition (7). From the uniqueness theorem for the exterior
electric boundary value problem [6] we obtain curl up = 0 in
De.

That u := up + us is a solution of ∆∗u + κ2
s u = 0 in De,

follows by straightforward calculations. Since the cartesian
components of every solution of the vector Helmholtz equa-
tion satisfying the radiation condition (7) also satisfy the ra-
diation condition of Sommerfeld [6, see Corollary 4.14], we
obtain that u fulfills the radiation condition (3).

That u fulfills the boundary conditions (2) is easily seen
by

u = us + up = n(n, us + up) − [n, [n, us + up]]
= n(n, f ) − [n, [n, f ]] = f , on S .

From the uniqueness theorem for Problem D we obtain
the following uniqueness
Theorem 3.2: Problem HD possesses at most one solution if
for κp and κs the condition (8) holds.

Proof: Let up, us be a solution of the homogeneous Problem

HD. As in the proof of Theorem 3.1 we can see that u := us +

up is a solution of Problem D but now to the homogeneous
boundary condition. Therefore, by the uniqueness theorem
for the exterior displacement problem we derive u = 0 in De.

Now we have us = − up in De and there holds div up = 0
and curl us = 0 in De. From this we conclude

−κ2
j u j = ∆u j = grad div u j − curl curl u j = 0,

and therefore u j = 0 in De, for j = s, p. This means that Prob-
lem HD possesses at most one solution.
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In this brief paper, we solve the relativistic kinematics related to the intersection be-
tween a relativistic beam of particles (neutrinos, e.g.) and consecutive detectors. The
gravitational effects are neglected, but the effect of the Earth rotation is taken into con-
sideration under a simple approach in which we consider two instantaneous inertial
reference frames in relation to the fixed stars: an instantaneous inertial frame of refer-
ence having got the instantaneous velocity of rotation (about the Earth axis of rotation)
of the Cern at one side, the lab system of reference in which the beam propagates, and
another instantaneous inertial system of reference having got the instantaneous velocity
of rotation of the detectors at Gran Sasso at the other side, this latter being the system of
reference of the detectors. Einstein’s relativity theory provides a velocity of intersection
between the beam and the detectors greater than the velocity of light in the empty space
as derived in this paper, in virtue of the Earth rotation. We provide a simple calculation
for the discrepancy between a correct measure for the experiment and a measure arising
due to the effect derived in this paper.

1 Definitions and Assumptions

Consider a position vector for CERN in relation to the cen-
ter of the Earth, vector ~C, and a position vector for the Gran
Sasso receptors in relation to the center of the earth, vector
~G. Consider the angular velocity vector of the Earth along its
axis of rotation, vector ~ω. The velocity of rotation of ~C in
relation to Earth’s axis is given by ~vC = ~ω × ~C. Analogously,
the velocity of rotation of ~G in relation to Earth’s axis is given
by ~vG = ~ω× ~G. Consider a baseline LCG connecting ~C and ~G
along the vector ~G − ~C; CERN’s and Gran Sasso’s latitudes
(lN

S ), λC and λG, respectively, and CERN’s and Gran Sasso’s
longitudes (← WE →), αC and αG, respectively.

Since the effect related to the velocity of the neutrinos de-
pends on its own velocity at the completion of the calculation
and on the rotation of the Earth, viz., such effect does not
depend on the specific values of the lateral velocity (to be de-
fined below) of the receptors, as we will see, we may consider
some geometric assumptions to simplify the geometry related
to the baseline path ~G − ~C along LCG through the Earth.

Firstly, we will consider ~C and ~G having got the same
latitude λ∗:

λC = λG = λ. (1)

These latitudes would be important if the effect to be de-
rived here was related to specific values of latitude, its fluc-
tuations, systematic and/or statistical errors related to it etc.,
related to the six standard deviations that characterizes the
claim related to the experiment. But that is not the case.
Now, consider the plane Π, orthogonal to ~ω, that cross the
Earth through the hypothetically common latitude contain-
ing the points ~C and ~G. Trace two lines pertaining to Π:

∗The latitudes of CERN and Gran Sasso are, respectively:
46deg14min3sec(N) and 42deg28min12sec(N). The longitudes of CERN
and Gran Sasso are, respectively: 6deg3min19sec(E) and 13deg33min0sec(E).

the line LCA, from the point ~C to Earth’s rotation axis, and
the line LGA, from the point ~G to Earth’s rotation axis. LCA

and LGA cross the rotation axis at the point ~A. Also, trace
the mediatriz line LMA, from the point ~A to the point ~M =

(1/2)
(
~G + ~C

)
, equally dividingLCG. The angle betweenLCA

and LMA equals the angle between LMA and LGA, being this
angle given by:

α =
1
2

(αG − αC) . (2)

Upon the previous remarks regarding the geometric sim-
plifications, the same remarks hold for the radius of the Earth,
i.e., we will consider the Earth as a sphere. Thus, the follow-
ing relation holds:

∣∣∣∣ ~C
∣∣∣∣ =

∣∣∣∣ ~G
∣∣∣∣ = RE =

R
cos λ

, (3)

where RE is the radius of the Earth, its averaged value RE =

6.37 × 106m, and R =
∣∣∣∣ ~C − ~A

∣∣∣∣ =
∣∣∣∣ ~G − ~A

∣∣∣∣.

2 Defining two Instantaneous Inertial Reference Frames

The relativistic kinematics will run in the plane Π previously
defined. The line LCG will define an axis: Ox, with the origin
O at the point ~C, being the unitary vector of the axis Ox, êx,
given by:

êx =
~G − ~C∣∣∣∣ ~G − ~C

∣∣∣∣
. (4)

Now, define the Oz axis contained in the Π plane such that
its unitary vector, êz, is given by:

êz = −êx × ~ω∣∣∣~ω
∣∣∣ . (5)
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The axis Oy is trivially obtained with its unitary vector
being given by:

êy = êz × êx. (6)

Now, we define the system at the Gran Sasso’s detectors,
Õx̃ỹz̃, such that its origin Õ is at the point ~G, being the unitary
vector of the axis Õx̃, the same êx ≡ êx̃. The axis Õz̃ is parallel
to Oz, with the same unitary vector êz ≡ êz̃, with analogous
reasoning to obtain the axis Õỹ and its unitary vector êỹ ≡ êy.
In other words, Õx̃ỹz̃ is the parallel pure translation of Oxyz
from ~C (CERN) to ~G (Gran Sasso).

To define the two instantaneous inertial reference frames
to accomplish, simply, the effect of the Earth rotation, we,
firstly, write down the rotation velocities of the points ~C and
~G about Earth’s rotation axis, i.e., we write down the rotation
velocities of (CERN) and (Gran Sasso) about Earth’s axis.
For CERN, the rotation velocity ~vC reads:

~vC = ~ω × ~C = ωRêφ = ωR (cosα êx − sinα êz) , (7)

where the auxiliar unitary vector has been the azimutal φ-
versor of the spherical coordinates, the spherical coordinates
with origin at the center of the Earth with its equatorial dex-
trogyre plane Ξ such that ~ω · ~ξ = ~0 ∀ ~ξ ∈ Ξ. For Gran Sasso,
the rotation velocity ~vG reads:

~vG = ~ω × ~G = ωRêφ̃ = ωR (cosαêx̃ + sinα êz̃) , (8)

where êφ̃ is the azimutal φ-versor previously defined, but now
at Gran Sasso.

We see via the eqs. (7) and (8) that both the frames of
reference, Oxyz and Õx̃ỹz̃, are instantaneously under a null
relative translation through the common axis Ox ≡ Õx̃, and
under a reverse translation through their respective parallel
axes Oz ‖ Õz̃. We will inertially consider this quite instan-
taneous∗ effect of the reverse translation (Newton’s first law
will hold, we will instantaneously neglect the gravitational
field through the neutrino travel to Gran Sasso, as well as the
weak characteristic for neutrino interactions with matter) via
the following approach:
• We will consider a system of reference OC xCyCzC that

exactly coincides with Oxyz at the instant tC = 0, but
with the following constant velocity of translation in re-
lation to the fixed stars: ~vε = ωR cosα êxC−ωR sinα êzC

= ωR cosα êx − ωR sinα êz = ~vC , such that the neu-
trino travel will be in this inertial referential. The sub-
script ε is to asseverate this referential is being con-
sidered for the neutrino travel during the entire pro-
cess (emission→detection), but with ε ≈ 0 in the sense
given in the previous footnote [ε ≡ δtν/T << 1]. Con-
sidered this, we will drop the subscript C in OC xCyCzC ,
for the sake of economy of notation, and rename it sim-
ply as Oxyz, although this latter is not the original one;

∗The time spent by a neutrino beam to accomplish the race from ~C to
~G, δtν, obey δtν/T << 1, where T is the period of Earths’s rotation about its
axis, thus quite instantaneous in relation to the Earth daily kinematics.

• We will consider a system of reference OG xGyGzG that
exactly coincides with Õx̃ỹz̃ at the instant tG = tC = 0†,
but with the following velocity of translation in relation
to the fixed stars: ~uε = ωR cosα êxG + ωR sinα êzG =

ωR cosα êx̃ + ωR sinα êz̃ = ~vG. Considered this, we
will drop the subscript G in OG xGyGzG, for the sake of
economy of notation, and rename it simply as Õx̃ỹz̃,
although this latter is not the original one;

• We will consider a system of reference travelling with
the beam of neutrinos, but this will be explained in the
next section.

3 From CERN to the Flux through the Gran Sasso De-
tectors

From now on, we model the lattice (strips, emulsion, cinti-
lators etc) distribution through the Grand Sassos’ detectors
from the perspective of an Oxyz‡ observer with the following
characteristics:

• The average proper (no Lorentz contraction in Õx̃ỹz̃)
displacement of detectors along Õx̃ is dÕx̃;

• The average proper (no Lorentz contraction in Õx̃ỹz̃)
displacement of detectors along −Õỹ is dÕỹ;

• The average proper (no Lorentz contraction in Õx̃ỹz̃)
displacement of detectors along −Õz̃ is dÕz̃;

• The detectors in Oxyz will be abstracted to a tridimen-
sional d0x × d0y × d0z othogonally spaced lattice falling
upward [see the eqs. (7) and (8)] at the velocity ~vG −
~vC = 2ωR sinα êz, being the basis vectors of these sites
given by {~d0x = d0xêx, ~d0y = −d0yêy, ~d0z = −d0zêz},
where {êx, êy, êz} is the canonical spacelike 3D euclid-
ian orthonormal basis of Oxyz.

• We will neglect relativistic (Einstein’s) effects related
to the movement of the lattice of detectors, the move-
ment of Õx̃ỹz̃ in Oxyz, as previously stated, but such
effects will become important in the referential of the
neutrino beam (to be defined below).

Now, we define the neutrino frame of reference O′x′y′z′

in the canonical configuration with the frame of reference
Oxyz, i.e., coincident origins at t = t′ = 0 keeping the space-
like parallelism of the axes x ≡ x′, y ≡ y′ and z ≡ z′ and

†The relativistic effects between the systems of reference at CERN and
at Gran Sasso related to time synchronization is being neglected due to the
order of magnitude related to the velocities due to the Earth rotation and due
to the magnitude of the gravitational field as previously stated. Furthermore,
we are undressing these effects between these systems at ~C and ~G to assever-
ate the relevant relativistic effects that will lead to the neutrino velocity will
raise in virtue of relativistic motion in relation to the detectors in Gran Sasso,
as we will see.

‡From now on, we are working with the inertial frames (in relation to the
fixed stars) defined above, viz., from now on: Oxyzt means OC xCyCzC tC (see
the two final paragraphs of the previous section); Õx̃ỹz̃t̃ means OG xGyGzG
(see the two final paragraphs of the previous section).
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boosted with velocity vνêx in relation to the Oxyz frame. Con-
sider a neutrino beam entering the block of detectors in Gran
Sasso in the Oxyz frame of reference. The beam passes a
lattice of detectors stated above, being these detectors rain-
ing upward with velocity ~vG − ~vC = 2ωR sinαêz through the
beam in the Oxyz frame of reference. A horizontal neutrino
beam, along Ox, may contact a horizontal [vertical means
along Oz, upward means in the êz direction, and horizontal
means parallel to the xy plane] lattice of detectors parallelly
raining upward in virtue of the Earth rotation as discussed
before (raining upward with velocity ~vG −~vC = 2ωR sinαêz).
Once an interaction occurs between the horizontal beam and
consecutively located detectors in this horizontal lattice, this
interaction is simultaneous in the Oxyz (rigorously Oxyzt, but
the context is clear here) world, implying non-simultaneity
for these raindrops of detectors in the O′x′y′z′ world. The
distribution of these raindrops of detectors must have, instan-
taneously at t′ in 0′x′y′z′ world, the following characteristics:

• The displacement between two consecutive raindrops
of detectors correlated to the respective simultaneous
ones in Oxyz, these latter displaced by the proper dis-
tance xi+1 − xi = d0x along Ox and belonging to the
falling upward xy plane of detectors in Oxyz, is given
by:

x′i+1(t′) − x′i (t
′) = γ−1 (xi+1 − xi)

= γ−1d0x, (9)

being γ = 1/
√

1 − v2
ν/c2, c the speed of light in the

empty space, vν the speed of the neutrino, whose ve-
locity is along the êx direction in the Oxyz world (the
beam of neutrinos is at rest in its referential O′x′y′z′, as
previously seem).

• The displacement between two consecutive raindrops
of detectors correlated to the respective simultaneous
ones in Oxyz, these latter displaced by the proper dis-
tance zi− zi+1 = 0 along Oz and belonging to the falling
upward xy plane of raining detectors in Oxyz, is given
by:

z′i+i(t
′) − z′i(t

′) = 2
vνd0x

c2 ωR sinα. (10)

• The vertical distance between consecutive (consecutive
but inclined in the O′z′y′z′ world; the parallel to xy
planes of detectors parallelly raining upward in Oxyz
become inclined in O′x′y′z′) raining planes of detectors
Π′i and Π′i+1, ∀ i, remains the same d0z distance, the dis-
tance between consecutive parallelly raining planes of
detectors. The raining upward planes turn out to be in-
clined in relation to the x′y′ plane of the neutrino world
O′x′y′z′ by the angle:

θ = π − arctan
(
2
γvν

c2 ωR sinα
)
. (11)

Indeed, let’s derive these facts. Firstly, instantaneously
at t in Oxyz, two consecutive raindrops∗ Ox along, are time
delayed in O′x′y′z′ × {t′} world by the amount:

t′i+1 − t′i = γ
(
t − vν

c2 xi+1

)
− γ

(
t − vν

c2 xi

)

= −γ vν
c2 (xi+1 − xi) = −γ vν

c2 d0x, (12)

in virtue of the Lorentz transformations (x, t)→ (x′, t′). Here,
we see a detection that occurs at the position xi+1 pertain-
ing to the horizontal lattice of detectors in Gran Sasso, at the
plane x̃ỹ within the block of detectors in Gran Sasso, hence
more internal, (remember x̃ỹ ‖ xy), must occur earlier than
the detection at the position xi in the frame of reference of
the beam of neutrinos, and the i-raindrop is late in relation to
the (i + 1)-raindrop. Hence, backwarding the t′i clocks down
to the the t′i+1 instant (backwarding the movie, maybe bet-
ter: backwarding the neutrino’s opera), i.e., comparing the
non-simultaneous events in the beam of neutrinos frame, the
event i + 1 ocurring when the i + 1-raindrop crosses the beam
of neutrinos and the event i when the i-raindrop crosses the
beam of neutrinos (remember these events are simultaneous
in Oxyz) previously to infer the instantaneous (at t′i+1) position
of the i-raindrop when the i + 1 raindrop crosses the beam of
neutrinos at the instant t′i+1 < t′i in the O′x′y′z′t′ frame, the
i-raindrop must move the amounts (backwarding the movie
from the instant t′i at which the i-raindrop crosses the beam
of neutrinos in the O′x′y′z′t′ world to the non-simultaneous
instant t′i+1 < t′i at which the i + 1-raindrop crosses the beam
of neutrinos in the O′x′y′z′t′ world): δz′ downward and δx′

to the right, being these amounts given by:

δz′ =

(
2ωR sinα

γ

)
×

(
−γ vν

c2 d0x

)
= −2ωd0xvνR sinα

c2 ;

δx′ = (−vν) ×
(
−γ vν

c2 d0x

)
=
v2
νγd0x

c2 , (13)

since (−vνêx′ + (2ωR sinα/γ)êz′ ) is the velocity of raindrops
in 0′x′y′z′, obtained from the Lorentz transformations L

(
~u
)

for the 3-velocities of the Gran Sasso lattice block of sensors,
the raining raindrops lattice of sensors, from the Oxyz to the
beam of neutrinos frame O′x′y′z′ :

(0, 0, 2ωR sinα)|Oxyz
L(~u)−→ (−vν, 0, 2ωR sinα/γ)|O′x′y′z′ . (14)

But, at t, the i-raindrop and the (i + 1)-raindrop have got
the same z coordinate, since they are in a xy plane, and, since
the z→ z′ Lorentz map is identity, these raindrops must have
the same z′ coordinate at their respective transformed instants

∗From now on, we will call raindrops the detectors in the lattice of detec-
tors within the block of detectors at Gran Sasso. Thus, raindrops ≡ detectors
within the lattice of detectors defined at the beginning of this section; 1 rain-
drop ≡ 1 detector within the lattice of detectors within the block of detectors
at Gran Sasso.
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(of course, since at each of these transformed instants, dif-
ferent instants in O′x′y′z′ in virtue of the non-simultaneity in
this frame, the z′ coordinate will read the same, since these
reaindrops will cross the beam and the beam has the same
coordinate z′ in its own frame of reference, viz., the beam is
parallel to O′x′). Hence, backwarding t′i clocks down to the
the t′i+1 instant, one concludes that the δz′ in the eq. (13) is
the instantaneous, at same t′, height shift between consecutive
raindrops that simultaneously cross the beam of neutrinos in
Oxyz. The x → x′ Lorentz map is not identity, implying one
must calculate the x′i+1 − x′i shift at the Oxyz instantaneous t:

x′i+1(t) − x′i (t) = γ (xi+1 − vνt) − γ (xi − vνt) = γ (xi+1 − xi)

= γd0x. (15)

This shift is related to different instants, t′i , t′i+1, in the beam of
neutrinos frame. Thus, backwarding t′i clocks down to the the
t′i+1 instant (backwarding the movie to observe the earlier t′i+1
instantaneous), this amount given by the eq. (15) is reduced
by the amount δx′ given by eq. (13):

x′i+1(t′) − x′i (t
′) = γd0x − γd0x

v2
ν

c2 = γd0x

(
1 − v

2
ν

c2

)

= γ−1d0x. (16)

The first eq. (13) gives the eq. (10), since eq. (13) gives the
z′ position of the i-raindrop at the previous instant t′i+1 before
the i-raindrop crosses the beam of neutrinos in the O′x′y′z′,
therefore:

z′i
(
t′i+1

)
= z′ν −

2ωd0xvνR sinα
c2 , (17)

where z′ν is a constant z′ coordinate of the beam of neutrinos
in its own frame; and, since the z′ position of the (i + 1)-
raindrop at the t′i+1 instant is z′ν (due to the very fact the (i+1)-
raindrop crosses the beam at the instant t′i+1 in the O′x′y′z′

world), one has z′i+1

(
t′i+1

)
= z′ν, from which, with the eq. (17),

one has got:

z′i+1

(
t′i+1

)
− z′i

(
t′i+1

)
= 2

vνd0x

c2 ωR sinα, (18)

reaching the eq. (10). The non-instantaneous displacement
(non-instantaneous in O′x′y′z′) given by eq. (15) is the dis-
tance between two sucessive non-instantaneous interactions
with the beam, raindrops marks assigned upon the beam in
O′x′y′z′. This fact is easy to understand, as these instanta-
neously assigned marks (instantaneous in Oxyz) would be-
come splayed in O′x′y′z′, since the beam turns out to be con-
tracted in Oxyz due to Lorentz contraction. Also, one shall
infer that eq. (16) gives the t′ instantaneous displacement
of falling upward raindrops along O′x′. The reason why the
distance between consecutive raindrops marks γd0x are big-
ger than the contracted distance γ−1d0x of the two consecu-
tive falling raindrops is explained by the non-simultaneity be-
tween these raindrops when touching the proper beam in the

0′x′y′z′ world, straightforwardly seem by the inclination (the
horizontal planes of raindrops in Oxyz inclines in O′x′y′z′)
between the raindrop plane containing these two consecu-
tives raindrops in O′x′y′z′ and the proper plane Π

′
ν ‖ x′y′

containing the neutrinos beam in O′x′y′z′; i.e., when the first
sensor raindrop crosses the beam, assigning the first interac-
tion, the second travels an amount δx′ to the left given by the
second eq. (13) before crossing the beam, assigning the sec-
ond interaction. A xy instantaneous falling upward plane of
sensors within the block of sensors at Gran Sasso containing
raindrops in Oxyz world becomes an inclined instantaneous
falling upward plane in O′x′y′z′ world, being the inclination,
eq. (11), easily derived from eqs. (16) and (18):

tan (π − θ) =
δz′(t′)

x′i+1(t′) − x′i (t
′)

= 2
γvν

c2 ωR sinα, (19)

giving the eq. (11).

4 Faster than Light Effects in Gran Sasso

To understand the effect, first, consider two sensors, say i-
raindrop and (i + 1)-raindrop. If these sensors are constructed
to tag the instants, ti+1 and ti, at which two events are regis-
tered at their exact locations and a team of physicists obtains
the time variation interval by ti+1 − ti, being xi+1 − xi the dis-
tance between these sensors, one would have:

δx
δt

=
xi+1 − xi

ti+1 − ti
= ∞, (20)

for simultaneous events (ti = ti+1), if one expects a signal is
travelling between the sensors. Furthermore, if one expects
a privileged direction along which the signal should travel
from the i-raindrop (first) to the (i + 1) raindrop (later), if the
(i + 1)-raindrop registered a signal before the i-raindrop, vi-
olating the expected sequential direction of detections, one
would say the signal would have been registered from the
future to the past direction. In the previous section the in-
stantaneous events in the Oxyz became non-instantaneous in
the beam frame of reference, and the internal register within
the Gran Sasso block along the direction Ox ≡ Õx̃, at the
position xi+1 registered the interaction with the beam at the
same instant the internal register at the position xi registered,
since these events were hypothetically simultaneous in Oxyz,
in virtue of the Earth rotation. From the point of view of the
neutrino beam, these registers occurred in the order: x′i+i be-
fore, xi later, due to the inclination of the raindrops planes in
virtue of the Earth rotation. We are forced to conclude the
rotation of the Earth may provide a kinematics of intersec-
tion between beams and sequential sensors that may led to the
conclusion the sensors are registering time intervals related to
quasi-simultaneous events that are cintilated by different par-
ticles at different positions almost at the same time, leading
to an errouneous conclusion that the signal would have trav-
elled between the sensors generating the time tag data. E.g.,
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suppose two ideal clocks, perfect ones, gedanken ones, that
register the instants: ti at which a beam of neutrinos enters
the block of raindrop sensors in Gran Sasso and to at which
this beam of neutrinos emerges from the block. Let dB be the
lenght travelled through the block. One team of physicists
will measure the velocity of the beam by dB/ (to − ti) with no
use of data from the sensors within the block. Another team
will perform the calculation from the data obtained from a
sequence of sensors (raindrops) located Ox along. This sec-
ond team may obtain registers at diferent positions xi+1 and
xi related to the lateral intersection between these sensors and
the beam entirely into the block of sensors but with the beam
travel not entirely accomplished through the block. The data
of this second team would be mistaken, since the registers at
the different locations xi+1 and xi would not have been made
by the same neutrino, implying the clocks at xi+1 and xi would
be registering two quasi-simultaneous events not related to a
same neutrino, concluding erroneously that the time variation
between these events was so small that the particle that gener-
ated these events would be travessing with a velocity greater
than c.

Einstein’s theory of relativity does not avoid velocities
greater than the light in the empty space, but avoids an unique
particle propagating with velocity greater than the velocity
of light in the empty space. To infer that a velocity greater
than c may arise from the discussion through this brief arti-
cle, consider the velocity two different raindrops interact with
the beam of neutrinos in the beam O′x′y′z′ frame of refer-
ence. These events are non-simultaneous in the beam frame
as previously discussed, but the beam crosses two sucessive
interactions with a propagation that is faster than c, since the
distance between two sucessive interactions along the beam
in the beam frame of reference is given by the eq. (15), γd0x,
being the time spent given by the eq. (12), (γvνd0x) /c2. Thus,
the 2-propagationV′

(i+1)→(i) (the number 2 to denote two bod-
ies are related to a single propagation velocity):

V′
(i+1)→(i) =

c
vν

c⇒V′
(i+1)→(i) > c. (21)

As asseverated this is not a propagation of a single parti-
cle, but a ratio between the covered distance along the beam
in the beam frame and the time interval spent to interact, non-
simultaneously, with two sequential but distinct sensors (rain-
drops xi+1 and xi). Of course, if vν → 0, these distinct interac-
tions will tend to become simultaneous, leading to the result
discussed at the beginning of this section (eq. 20). It follows
that is not difficult to conclude that the time elapsed between
two distinct sensors must be related to just an unique particle
if one is intended to use their time tags for velocity computa-
tions.

5 The Consequence of the Effect

A simple calculation provides the discrepancy obtained by the
set of CNGS detections intended to obtain the correct veloc-

ity of the neutrino particle announced few days ago. Let vc

be the correct value for the neutrino’s velocity, δS 1, the dis-
tance between the CERN and the point at which the neutrino
enters the block of detectors at Gran Sasso, δS 2 the lenght
of the block of detectors to be internally covered by the neu-
trino at Gran Sasso, δt1 the elapsed time spent by the neutrino
to cover δS 1, δt2 the elapsed time spent by the neutrino to
cover δS 2, δt f a fake elapsed time due to the effect previously
discussed, and v f a fake velocity that would arise from an
erroneous measure for the elapsed time through δS 2. Hence:

vc =
δS 1 + δS 2

δt1 + δt2
, (22)

v f =
δS 1 + δS 2

δt1 + δt f
. (23)

A simple calculation gives:

v f

vc
= 1 +

δt2 − δt f

δt1 + δt f
⇒ v f − vc

vc
=
δt2 − δt f

δt1 + δt f
. (24)

One should not write v f = δS 2/δt f , since, as previously
discussed, δt f is not related to a propagation of a particle,
but to the time elapsed between two detectors in the same xy
plane in the Oxyz frame of reference. If a sequence of cin-
tilations within the block of detectors are generated by dif-
ferent neutrinos due to the effect previously discussed, and
this sequence is interpreted as a path traced by a single neu-
trino, the measure of the distance covered within the block of
detectors at Gran Sasso would encapsulate an error for each
estimated path having got the effect encrusted within it. This
distance, an erroneous one, is δS 2, although this distance may
be defined as a correct one for purposes of comparison with
a case in which (hypothetically) a neutrino travelled this dis-
tance with the correct velocity vc. Obviously, the δt f would
not be related to the time spent to cover this distance, since,
in a case in which the effect, as previously explained, was
generated due to simultaneous time tagging at two different
sensors (raindrops) due to two different neutrinos in the Oxyz
reference frame, one would have δt f = 0 for a continuous lat-
erally traced path in virtue of the Earth rotation, from which
δS 2 , 0. δS 2 would arise, under the effect discussed in this
paper, from a path misinterpretation. But, once one defines
δS 2 as the distance to be covered in a comparison case with a
neutrino used to cover it with the correct velocity vc:

δt2 =
δS 2

vc
, (25)

turns out to be the correct elapsed time. From the eq. (24),
one reaches:

v f

(
δt1 + δt f

)
− vcδt1 = vcδt2. (26)

If the computation is done taken into consideration the
erroneous elapsed time δt f , being this δt f = 0 in a case of
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simultaneity due to the effect previously discussed, the eq.
(26) reads:

v f δt1 − vcδt1 = vcδt2, (27)

and the effect turns out to increase the fake velocity in relation
to the correct velocity in a manner in which the neutrino with
the fake velocity would be winning the race by an amount of
distance given by δS 2 = vcδt2, accomplished the path δS 1,
from the eq. (27). Hence, eq. (24) turns out to read:

v f − vc

vc
=
δt2
δt1

=
δS 2

vc

vc

δS 1
=
δS 2

δS 1
. (28)

With the values [1]:

v f − vc

vc
=

[
2.48 ± 0.28 (stat.) ± 0.30 (sys.)

] × 10−5, (29)

and:
δS 1 = 733 × 103m, (30)

we reach for the discrepancy between the covered distances:

δS 2 =
[
18.2 ± 2.05 (stat.) ± 2.20 (sys.)

]
m. (31)

6 Conclusion

We conclude the relativistic effect discussed here in virtue
of the Earth rotation may lead to a misinterpretation of the
elapsed time within the block of detectors at Gran Sasso.
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Open Letter by the Editor-in-Chief: Declaration of Academic Freedom (Scientific Human Rights)
The Portuguese Translation∗

Declaração de Liberdade Acadêmica
(Direitos Humanos Cientı́ficos)

Artigo 1: Preâmbulo

O inı́cio do século XXI reflete, mais do que em qualquer ou-
tra época na história da Humanidade, a profundidade e a sig-
nificância do papel da Ciência e da tecnologia nas relações
humanas.

A natureza poderosamente pervasiva da Ciência e da tec-
nologia modernas tem levado a uma percepção corriqueira de
que descobertas-chave somente podem ser feitas, ou princi-
palmente, por intermédio de grandes grupos de pesquisa sob
tutela corporativa ou governamental com acesso à instrumen-
tação de alto custo e a vasto suporte pessoal.

Todavia, a percepção corriqueira é mı́tica, esconde a ver-
dadeira natureza de como as descobertas cientı́ficas são real-
mente feitas. Enormes e caros projetos tecnológicos, comple-
xos ou não, não são senão o resultado da aplicação das pro-
fundas percepções de pequenos grupos de pesquisadores de-
dicados ou cientistas solitários, frequentemente trabalhando
isolados. Um cientista trabalhando sozinho está e estará, tanto
agora quanto no futuro, assim como ocorrera no passado, apto
a fazer uma descoberta que pode influenciar substancialmente
o destino da humanidade e mudar a face de todo o planeta so-
bre o qual nós tão insignificantemente residimos.

Descobertas revolucionárias são geralmente feitas por in-
divı́duos trabalhando em posições subordinadas dentro de
agências governamentais, em instituições de ensino e pes-
quisa, ou em empresas comerciais. Consequentemente, o
pesquisador, com frequencia, está vinculado ou limitado por
diretores de instituições e corporações que, trabalhando em
uma prioridade diferente, visam controlar e aplicar perquisa e
descoberta cientı́ficas para benefı́cio pessoal, organizacional,
ou engrandecimento pessoal.

O registro histórico de descobertas cientı́ficas está repleto
de instâncias de supressão e ridicularização por parte do po-
der estabelecido, já há muito se tendo revelado e reivindicado
pela inexorável marcha de necessidade prática e iluminação
intelectual. Também assim se tem corrompido e sujado o re-
gistro histórico por plágio e deliberada perversão de fatos,
perpetrados pelos inescrupulosos, motivados por inveja e ava-
reza. Assim também o é hoje em dia.

O objetivo desta declaração é manter e incentivar a dou-
trina fundamental de que a pesquisa cientı́fica deve estar livre

∗Original text published in English: Progress in Physics, 2006, v. 1, 57–
60. Online — http://www.ptep-online.com/

Versão original em Lı́ngua Inglesa por Dmitri Rabounski, editor-chefe
do periódico Progress in Physics. E-mail: rabounski@ptep-online.com.

Traduzido para a Lı́ngua Portuguesa por Armando V. D. B. Assis.
E-mail: armando.assis@pgfsc.ufsc.br.

de latentes e abertas influências repressivas advindas de dire-
tivas burocráticas, polı́ticas, religiosas e pecuniárias, e de que
a criação cientı́fica é um direito humano, não menos do que
outros de tais direitos e árduas esperanças que se propuserem
em tratados e leis internacionais.

Todos os cientistas que a apoiam devem ser fiéis a esta
Declaração, como uma indicação de solidariedade para com
a comunidade cientı́fica internacional interessada, e para con-
ceder o Direito dos cidadãos do mundo à livre criação ci-
entı́fica de acordo com suas habilidades e disposição indivi-
duais, para o avanço cientı́fico, por sua extrema habilidade
como cidadãos decentes em um mundo indecente, [para] o
benefı́cio da Humanidade.

Artigo 2: Quem é um cientista
Um cientista é qualquer pessoa que faz Ciência. Qualquer
pessoa que colabora com um cientista no desenvolvimento
e proposição de idéias e dados em pesquisa ou aplicação é
também um cientista. A posse de uma qualificação formal
não é um pré-requisito para que uma pessoa seja um cientista.

Artigo 3: Onde a Ciência é produzida
A pesquisa cientı́fica pode ser desenvolvida em qualquer lu-
gar, por exemplo, em um lugar de trabalho, durante um curso
formal de educação, durante um programa acadêmico patro-
cinado, em grupos, ou, de modo independente, por indivı́duos
em suas casas.

Artigo 4: Liberdade de escolha do tema de pesquisa
Muitos cientistas que trabalham por graus de pesquisa mais
avançados ou em outros programas de pesquisa em institui-
ções acadêmicas tais como universidades e centros de estu-
dos avançados são privados de trabalhar em um tema de pes-
quisa de sua própria escolha por acadêmicos seniores e/ou
funcionários administrativos, não por falta de instrumentos de
apoio, mas, em vez disso, por causa de hierarquia acadêmica
e/ou pelo que outros funcionários não aprovam a linha de pen-
samento em virtude de seu potencial conflito com dogma es-
tabelecido, teorias favorecidas, ou financiamento de projetos
outros que possam ser desacreditados pela pesquisa proposta.
A autoridade da maioria ortodoxa é muito frequentemente in-
vocada para percalçar um projeto de pesquisa tal que a au-
toridade e seus pressupostos não sejam incomodados. Essa
prática comum é uma obstrução deliberada ao livre pensa-
mento cientı́fico, não sendo cientı́fica ao extremo, e crimi-
nosa. Ela não pode ser tolerada.
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Um cientista trabalhando para qualquer instituição acadê-
mica, autoridade ou agência, deve ser completamente livre
para escolher um tema de pesquisa, limitado apenas pela dis-
ponibilidade de recursos materiais e aptidões intelectuais ap-
tas a serem oferecidas pela instituição educacional, agência
ou autoridade. Se um cientista procede com a pesquisa sendo
membro de um grupo colaborativo, os diretores de pesquisa
e os lı́deres de equipe devem estar limitados ao contexto de
colsultores e conselheiros em relação ao que fora escolhido
por um cientista do grupo como sendo um tema de pesquisa
relevante.

Artigo 5: Liberdade de escolha de métodos de pesquisa

Frequentemente, tem-se o caso de se exercer pressão sobre
um cientista por parte de funcionários administrativos ou aca-
dêmicos seniores em relação a um programa de pesquisa con-
duzido dentro de um ambiente acadêmico, de se forçar um
cientista a adotar métodos de pesquisa alheios aos que o ci-
entista escolheu, por nenhuma razão outra senão preferência
pessoal, viés, polı́tica institucional, mando editorial, ou au-
toridade coletiva. Essa prática, a qual está muito espalhada,
é uma negação deliberada de liberdade de pensamento e não
pode ser permitida.

Um cientista não comercial ou acadêmico tem o direito
de desenvolver um tema de pesquisa em qualquer caminho
razoável e por quaisquer meios que considere ser os mais efe-
tivos. A decisão final sobre como a pesquisa será conduzida
deve ser feita pelo próprio cientista.

Caso um cientista não comercial ou acadêmico trabalhe
como membro de uma equipe colaborativa não comercial ou
acadêmica de cientistas, os lı́deres de projeto e diretores de
pesquisa deverão ter apenas direitos de conselheiros e con-
sultores, não devendo, todavia, influenciar, mitigar ou limitar
os métodos de pesquisa ou tema de pesquisa de um cientista
dentro do grupo.

Artigo 6: Liberdade de participação e colaboração em
pesquisa

Há um elemento significativo de rivalidade institucional na
prática de Ciência moderna, concomitante com elementos de
inveja pessoal e preservação de reputação a todo custo, inde-
pendente das realidades cientı́ficas. Isso tem, com frequen-
cia, levado os cientistas a não convidar colegas competentes
de instituições rivais ou outros sem afiliação acadêmica. Essa
prática também é uma obstrução deliberada ao progresso da
Ciência.

Caso um cientista não comercial ou acadêmico requeira a
colaboração de outrem e este estiver de acordo em oferecê-la,
aquele cientista terá a liberdade de convidar este outro para
que lhe preste essa ou qualquer outra ajuda, supondo-se que
a assistência requerida esteja sob um contexto pressuposto de
pesquisa associada. Se tal colaboração estiver fora desse es-
copo pressuposto, o cientista ainda terá a liberdade de esco-

lher o outro para sua discrição, livre de qualquer interferência
de quem quer que seja.

Artigo 7: Liberdade de discordar em discussão cientı́fica
Em consequencia de ciúmes furtivos e interesse adquirido,
a Ciência moderna repudia discussões abertas e premedita-
damente bane aqueles cientistas que questionam as visões
ortodoxas. Muito frequentemente, cientistas de habilidade
extraordinária, que apontam deficiências em teorias vigen-
tes ou em interpretação de dados, são rotulados de crack-
pots (excêntricos tolos), de modo às suas interpretações se-
rem convenientemente ignoradas. Eles são particular e pri-
vadamente ridicularizados e são barrados dos congressos ci-
entı́ficos, seminários e colóquios de modo às suas idéias não
encontrarem audiência. Falsificação deliberada de dados e
má representação de teoria são ferramentas frequentes e atu-
ais dos inescrupulosos na supressão de fatos, tanto técnicos
quanto históricos. Comitês internacionais de meliantes ci-
entı́ficos têm sido formados e esses conselhos abrigam e di-
rigem convenções internacionais nas quais apenas os seus
acólitos são permitidos a apresentar artigos, independente da
qualidade de conteúdo. Esses conselhos angariam grades so-
mas de dinheiro público para financiar seus projetos patroci-
nados, por intermédio de engano e mentira. Qualquer objeção
às suas propostas, ainda que objetadas sobre bases cientı́ficas,
é silenciada por quaisquer meios disponı́veis, de modo que o
dinheiro continue fluindo para dentro de suas contas de pro-
jeto, e que os garanta empregos bem pagos. Cientistas que se
opõem a essa praxe têm sido exonerados a pedido daqueles;
outros têm sido impedidos de ocupar posições acadêmicas
por uma rede de cúmplices corruptos. Em outras situações,
alguns têm sido expulsos de suas candidaturas a programas
de educação superior tal como doutoramento, por expressar
idéias que minam uma teoria da moda, a despeito do arraigo
temporal que uma teoria ortodoxa todavia possa ter. O fato
fundamental de que nenhuma teoria cientı́fica é definitiva e
inviolável, estando portanto aberta à discussão e à reexami-
nação, é completamente ignorado. O fato de que um fenôme-
no pode ter um número de explicações plausı́veis é também
ignorado, e maliciosamente põem em descrédito qualquer
explicação que não esteja de acordo com a opinião ortodoxa,
recorrendo, sem arguir exceções, ao uso de argumentos não
cientı́ficos para justificar suas opiniões tendenciosas.

Todos os cientistas devem ser livres para discutir sua pes-
quisa e a pesquisa de outrem sem medo de que sejam pública
ou privadamente ridicularizados sem fundamento, de que se-
jam acusados, depreciados, impugnados ou postos em descré-
dito de qualquer outra forma por alegações não consubstanci-
adas. Nenhum cientista deve ser posto em uma posição pela
qual seu sustento ou reputação estejam sob risco em conse-
quencia de expressão de uma opinião cientı́fica. A liberdade
de expressão cientı́fica deve ser suprema. O uso de autoridade
na refutação de um argumento cientı́fico não é cientı́fico e não
deve ser usada para amordaçar, suprimir, intimidar, ostraci-
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zar, ou, por qualquer forma coercitiva, barrar um cientista.
A supressão deliberada de fatos cientı́ficos ou argumentos,
seja por ato ou omissão, e a manipulação deliberada de da-
dos para sustentar um argumento ou para por em descrédito
uma visão oposta é fraude cientı́fica, perfazendo um crime ci-
entı́fico. Princı́pios de evidência devem guiar toda discussão
cientı́fica, seja tal evidência fı́sica, teórica ou também uma
combinação.

Artigo 8: Liberdade para publicar resultados cientı́ficos
Uma censura deplorável de artigos cientı́ficos tem agora se
tornado a prática padrão dos conselhos editoriais dos maiores
jornais e arquivos eletrônicos, e de seus bandos de alegados
árbitros especialistas. Os árbitros são em sua maior parte pro-
tegidos pelo anonimato de modo que um autor não tem como
verificar suas alegadas especialidades. Artigos são atual e
rotineiramente rejeitados caso o autor não concorde com ou
contradiga uma teoria preferida ou a corrente ortodoxa prin-
cipal. Muitos artigos são agora automaticamente rejeitados
em virtude do aparecimento na lista de artigos de autor de um
cientista em particular que não tenha encontrado favor entre
os editores, entre os árbitros, ou entre outros censores especi-
alistas, sem qualquer consideração que seja feita ao conteúdo
do artigo. Existe uma listagem negra de cientistas dissidentes
e esta lista é comunicada aos e entre os participantes de con-
selhos editoriais. Tudo isso contribui para o aumento da não
isenção, da tendenciosidade, e para a punı́vel supressão de
livre pensamento, devendo ser condenado pela comunidade
cientı́fica internacional.

Todos os cientistas devem ter o direito de apresentar seus
resultados de pesquisa cientı́fica, no todo ou em parte, em
conferências cientı́ficas relevantes, de publicar os mesmos em
jornais cientı́ficos impressos, em arquivos eletrônicos, e em
qualquer outro meio. Nenhum cientista deve ter seus arti-
gos ou relatórios rejeitados quando submetidos à publicação
em jornais cientı́ficos, em arquivos eletrônicos, ou em outro
meio, simplesmente por que seu trabalho questiona a opinião
majoritária corrente, por que conflita com as visões de um
conselho editorial, pelo que mine as bases de outra corrente
ou projetos de pesquisa planejados por outros cientistas, por
estar em conflito com qualquer dogma polı́tico, credo religi-
oso, ou opinião pessoal de outrem; e nenhum cientista deve
ser inserto em listagem negra ou por outra forma censurado,
impedido, por quem quer que seja, de publicar. Nenhum ci-
entista deve bloquear, modificar, ou de outra forma interferir
na publicação de um trabalho de cientista sob promessa de
presentes ou qualquer forma de suborno.

Artigo 9: Coautoria de artigos cientı́ficos
É um segredo alardeado em cı́rculos cientı́ficos, que mui-
tos coautores de artigos de pesquisa têm, de fato, pouca ou
nenhuma relação com as pesquisas ali relatadas. Muitos su-
pervisores de estudantes graduados, por exemplo, não são
contrários à colocação de seus nomes em artigos escritos por

aquelas pessoas que apenas nominalmente trabalham sob suas
supervisões. Em muitos de tais casos, a pessoa que de fato es-
creve o artigo tem um intelecto superior ao do supervisor no-
minal. Em outras situações, novamente pelos propósitos de
notoriedade, reputação, dinheiro, prestı́gio, e os similares, as
pessoas não participantes são incluı́das no artigo como coau-
toras. Os autores de fato de tais artigos podem apenas objetar
sob risco de serem subsequentemente penalizados de alguma
forma, ou mesmo de serem expulsos de suas candidaturas a
graduações de pesquisa mais elevadas ou de suas equipes de
pesquisa, conforme o caso. Muitas têm de fato sido expulsas
sob tais circunstâncias. Essa prática horrorosa não pode ser
tolerada. Apenas aquelas pessoas responsáveis pela pesquisa
deveriam ter autoria oficialmente reconhecida.

Nenhum cientista deve convidar outra pessoa para ser in-
cluı́da e nenhum cientista deve permitir que seu nome seja
incluso como coautor de um artigo cientı́fico caso não tenha
contribuı́do significativamente para a pesquisa que se relata
no artigo. Nenhum cientista deve permitir que ele mesmo ou
ela mesma seja coagido por qualquer representante de uma
instituição acadêmica, corporação, agência governamental,
ou qualquer outra pessoa, a incluir seu nome como coautor
em relação à pesquisa para qual não tenha significativamente
contribuı́do, e nenhum cientista deve permitir que seu nome
seja usado como coautor à guisa de presentes ou quaisquer
subornos. Nenhuma pessoa deve induzir ou tentar induzir um
cientista, por qualquer forma, a um caminho que permita que
o nome do cientista seja incluı́do como coautor de um artigo
cientı́fico relacionado a assuntos para os quais não tenha sig-
nificativamente contribuı́do.

Artigo 10: Independência de afiliação

Muitos cientistas estão agora empregados sob contratos de
curto perı́odo. Com o término do contrato de emprego, tam-
bém termina a afiliação acadêmica. É frequente a polı́tica
de conselhos editoriais em que pessoas sem uma afiliação
acadêmica ou comercial não publiquem. Na ausência de afi-
liação, muitos recursos não estão disponı́veis ao cientista, e
as oportunidades de apresentar palestras e artigos em con-
ferências são reduzidas. Essa é uma prática viciosa que deve
ser parada. Ciência não reconhece filiação.

Nenhum cientista deve ser impedido de apresentar arti-
gos em conferências, colóquios ou seminários, de publicar em
qualquer meio, de acessar bibliotecas acadêmicas ou publica-
ções cientı́ficas, de participar de encontros cientı́ficos, ou de
dar conferências, por necessitar de afiliação a uma instituição
acadêmica, instituto cientı́fico, laboratório governamental ou
comercial, ou de qualquer outra organização.

Artigo 11: Acesso aberto à informação cientı́fica

Muitos livros especializados sobre assuntos cientı́ficos e mui-
tos jornais cientı́ficos rendem pouco ou nenhum lucro, de
modo que editores comerciais não estão dispostos a publicá-
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los sem uma contribuição em dinheiro de instituições acadê-
micas, agências governamentais, fundações filantrópicas, e
correlatos. Sob tais circunstâncias, editores comerciais deve-
riam permitir acesso livre a versões eletrônicas das publica-
ções, e esforçar-se por manter o custo dos materiais impressos
num mı́nimo.

Todos os cientistas deverão se esforçar para assegurar que
seus artigos de pesquisa estejam disponı́veis à comunidade ci-
entı́fica internacional de modo gratuito, ou alternativemante,
se tal não puder ser evitado, a um mı́nimo custo. Todos os
cientistas deverão tomar medidas ativas para fazer com que
seus livros técnicos estejam disponı́veis ao custo mais baixo
possı́vel de modo a poder estar a informação disponı́vel à
mais ampla comunidade cientı́fica internacional.

Artigo 12: Responsabilidade ética de cientistas

A História testifica que descobertas cientı́ficas são usadas
tanto para fins bénéficos quanto malévolos, para o benefı́cio
de alguns e para a destruição de outros. Dado que o pro-
gresso da Ciência e da tecnologia não pode parar, meios para
que se contivesse a aplicação malévola deveriam ser estabe-
lecidos. Apenas um governo democraticamente eleito, laico,
com liberdade racial e não tendencioso, pode salvaguardar a
civilização. Apenas governos, tribunais e comitês democrati-
camente eleitos podem salvaguardar o direito de livre criação
cientı́fica. Hoje em dia, vários estados não democráticos e re-
gimes totalitários conduzem pesquisa ativa em fı́sica nuclear,
quı́mica, virologia, engenharia genética etc, com propósito
de produzir armas nucleares, quı́micas e biológicas. Nenhum
cientista deveria ter interesse em colaborar com estados não
democráticos ou regimes totalitários. Qualquer cientista coa-
gido a trabalhar no desenvolvimento de armas para tais es-
tados deveria encontrar meios de diminuir o progresso de
programas de pesquisa e de reduzir a produção cientı́fica de
forma que a civilização e a democracia possam finalmente
prevalecer.

Todos os cientistas adquirem uma responsabilidade moral
por suas criações cientı́ficas e descobertas. Nenhum cientista
deve voluntariamente se engajar no desenho ou construção de
armas de qualquer tipo, para o que quer que seja, para esta-
dos não democráticos ou regimes totalitários ou permitir que
suas habilidades cientı́ficas e conhecimentos sejam aplicados
no desenvolvimento do que quer que seja prejudicial à Hu-
manidade. Um cientista deve viver pelo dito de que todo go-
verno não democrático e toda violação de direitos humanos
são crime.

22 de novembro de 2005 / Traduzido em 17 de maio de 2011
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LETTERS TO PROGRESS IN PHYSICS

Scientists Deduced the Existence of Particles with Faster-than-Light Speeds
Recently Discovered by CERN

Ion P̆atraşcu
“Fraţii Buzeşti” National College, Craiova, Romania

E-mail: patrascuion@yahoo.com

In this paper we present a short survey on Smarandache Hypothesis that there is no
speed barrier in the universe and one can construct arbitrary speeds, hypothesis which
has been partially confirmed by the recent CERN results of OPERA team led by Antonio
Ereditato that experimentally found that neutrino particles travel faster thanc.

Physicists at CERN have recently experimentally discove-
red particles traveling faster than light: the neutrinos! The
OPERA experiment, which sent sprays of neutrinos from
CERN, Geneva, Switzerland, to INFN Gran Sasso Labora-
tory, Italy, found that neutrinos traveled underground 730 km
faster than light could do. Dr. Antonio Ereditato of Univer-
sity of Bern, leader of the OPERA scientist team, made the
results public and invited scientists all over the world to dis-
cuss these astonishing results.

There are mediums where the light travels slower than
some particles, for example in water and oil, but not in the
vacuum. There also exist superluminal phenomena like wave
phase velocity and wave group velocity, but in these cases no
information or energy travels faster than the light. Similarly
are the X-waves whose superluminal velocity of the peak is
a transitory phenomenon, but their wavefronts move with the
speedc [1].

In the breaking News on September 22, 2011, in the Live
Science.com, it is said that proven true, the laws of physics
have to be re-written [2].

Professor Florentin Smarandache from the University of
New Mexico, United States, has deduced the existence of
particles moving faster-than-light in a published paper cal-
led “There Is No Speed Barrier in the Universe” in 1998 [3],
as an extension of a 1972 manuscript [4] that he also presen-
ted in 1993 at the conferenceParadoxism in Literature and
Scienceheld in the Universidad de Blumenau, Brazil. His pa-
per is based on the Einstein-Podolsky-Rosen Paradox [5], a
Bohm’s paper [6], and Bell’s Inequalities [7]. For this goal
known asSmarandache Hypothesis, and for his neutrosophic
logic, set, and probability (which are the most general and
powerful logic, and, respectively, set and probability theories
today), Prof. Smarandache awarded the Telesio-Galilei Aca-
demy Gold Medal in 2010. Smarandache Hypothesis is also
included in the Weinstein’sEncyclopedia of Physics[8]. It is
is enounced as follows:

• Suppose a certain physical process produces a pair of
entangled particles A and B (having opposite or com-
plementary characteristics), which fly off into space in
the opposite direction and, when they are billions of

miles apart, one measures particle A; because B is the
opposite, the act of measuring A instantaneously tells
B what to be; therefore those instructions would so-
mehow have to traveled between A and B faster than
the speed of light; hence, one can extend the Einstein-
Podolsky-Rosen paradox and Bell’s inequalities and as-
sert that the light speed is not a speed barrier in the uni-
verse;

• Even more, one can construct any speed, even greater
than the speed of light,c, by measuring particle A at
various time intervals;

• Also, the information from particles A and B is trans-
mitted instantaneously (thus, there is no speed barrier
in the universe).

Although superluminal phenomena are in contradiction
with Einstein’s theory of Special Relativity (1905) that pre-
vents energy, information and (real) mass from traveling fas-
ter than light, Smarandache (1972) considered that superlu-
minal phenomena do not violate Causality Principle, neither
produce time traveling, nor necessitating infinite energy for
particles traveling at speeds greater than the speed of light.
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