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Causal Version of Newtonian Theory by Time–Retardation of the Gravitational
Field Explains the Flyby Anomalies

Joseph C. Hafele
Retired Physicist; Home Office: 618 S. 24th St., Laramie, WY, USA

E-mail: cahafele@bresnan.net

Classical Newtonian gravitational theory does not satisfythe causality principle because
it is based on instantaneous action-at-a-distance. A causal version of Newtonian theory
for a large rotating sphere is derived herein by time-retarding the distance between
interior circulating point-mass sources and an exterior field-point. The resulting causal
theory explains exactly the six flyby anomalies reported by Anderson et al. in 2008.
It also explains exactly an anomalous decrease in the Moon’sorbital speed. No other
known theory has been shown to explain both the flyby anomalies and the lunar orbit
anomaly.

1 Introduction

In 2008 Andersonet al. reported that anomalous orbital-
energy changes have been observed during six spacecraft fly-
bys of the Earth [1]. The reported speed-changes range from a
maximum of+13.28 mm/s for the NEAR flyby to a minimum
of −4.6 mm/s for the Galileo-II flyby. Andersonet al. also
found an empirical prediction formula that gives calculated
speed-changes that are close to the observed speed-changes.
If the speed-change for the empirical prediction formula is
designated byδvemp, it can be expressed as follows

δvemp=
2veq

c
vin (cosλin − cosλout) =

= −
2veq

c
vin

∫ tout

tin

sin
(

λ(t)
) dλ

dt
dt , (1)

whereveq is the Earth’s equatorial rotational surface speed,
c is the vacuum speed of light,vin is the initial asymptotic
inbound speed,λin is the asymptotic inbound geocentric lati-
tude, andλout is the asymptotic outbound geocentric latitude.
If t is the observed coordinate time for the spacecraft in its
trajectory, thenλin =λ(tin) andλout= λ(tout). If dλ/dt= 0, then
δvemp= 0. An order of magnitude estimate for the maximum
possible value forδvemp is 2(5×102/3×108)vin ∼30 mm/s.

The following is a direct quote from the conclusions of
an article published in 2009 by M. M. Nieto and J. D. Ander-
son [2]:

“Several physicists have proposed explanations of the
Earth flyby anomalies. The least revolutionary invokes
dark matter bound to Earth. Others include modifica-
tions of special relativity, of general relativity, or of the
notion of inertia; a light speed anomaly; or anisotropy
in the gravitational field —- all of those, of course,
deny concepts that have been well tested. And none
of them have made comprehensive, precise predictions
of Earth flyby effects. For now the anomalous energy
changes observed in Earth flybys remain a puzzle. Are
they the result of imperfect understandings of conven-

tional physics and experimental systems, or are they the
harbingers of exciting new physics?”

It appears that a new and possibly unconventional theory is
needed.

The empirical prediction formula found by Anderson
et al. is not based on any mainstream theory (it was sim-
ply “picked out of the air”), but it is remarkably simple and
does produce calculated speed-changes that are surprisingly
close to the observed speed-changes. The formula forδvemp

(1) gives three clues for properties that need to be satisfied
by any theory that is developed to explain the flyby anomaly:
1) the theory must produce a speed-change that is propor-
tional to the ratioveq/c, 2) the anomalous force acting on the
spacecraft must change theλ component of the spacecraft’s
speed, and 3) the speed-change must be proportional tovin.

The objective of this article is threefold: 1) derive a new
causal version of classical acausal Newtonian theory, 2) show
that this new version is able to produce exact agreement with
all six of the anomalous speed-changes reported by Ander-
sonet al., and 3) show that it is also able to explain exactly a
“lunar orbit anomaly” that will be described below. The pro-
posed new version for Newtonian theory requires only main-
stream physics: 1) classical Newtonian theory and 2) the cau-
sality principle which requires time-retardation of the gravi-
tational field. It also satisfies the three requirements of the
empirical prediction formula.

The proposed theory is based on a simple correction that
converts Newton’s acausal theory into a causal theory. The re-
sulting causal theory has a new, previously overlooked, time-
retarded transverse component, designatedgtrt, which de-
pends on 1/cg, wherecg is the speed of gravity, which approx-
imately equals the speed of light. The new total gravitational
field for a large spinning sphere,g, has two components, the
standard well-known classical acausal radial component,gr,
and a new relatively small time-retarded transverse vortex
component,gtrt. The total vector fieldg= gr + gtrt. The zero-
divergence vortex transverse vector fieldgtrt is orthogonal to
the irrotational radial vector fieldgr.

Joseph C. Hafele. Causal Version of Newtonian Theory Explains the Flyby Anomalies 3
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The new total vector field is consistent with Helmholtz’s
theorem, which states that any physical vector field can be
expressed as the sum of the gradient of a zero-rotational scalar
potential and the curl of a zero-divergence vector potential
[3]. This means thatgr can be derived in the standard way
from the gradient of a scalar potential, andgtrt can be derived
from the curl of a vector potential, butgtrt cannot be derived
from the gradient of a scalar potential.

The proposed causal version can be derived by using the
slow-speed weak-field approximation for general relativity
theory.

2 Summary of the derivation of the formulas for the
time-retarded transverse gravitational field and the
predicted flyby speed-changes

In the section entitledThe Linear Approximation to GR in
W. Rindler’s popular textbookEssential Relativity [4], Rind-
ler derives the formulas for the time-retarded scalar potential
ϕ, the time-retarded “gravitoelectric” acceleration fielde, the
time-retarded vector potentiala, and the time-retarded “grav-
itomagnetic” induction fieldh. His formulas forϕ, e, a, andh
are derived from general relativity theory by using the slow-
speed weak-field approximation. They are as follows

ϕ = G
$

[

ρ

r′′

]

dV, a =
G
c

$
[

ρu
r′′

]

dV

e = −∇ϕ , h = ∇ × 4a























, (2)

whereρ is the mass-density of the central object,u is the
inertial velocity (the velocity in an inertial frame) of a source-
point-mass in the central object,r′′ is the vector distance from
an inner source-point-mass to an outer field-point, and the
square brackets [ ] mean that the enclosed function is to be
evaluated at the retarded time, i.e., the time retarded by the
light travel time from the source-point to the field-point.

Let the origin for an inertial (nonaccelerating and nonro-
tating) frame-of-reference coincide with the center-of-mass
of a contiguous central object. Letr′ be the radial vector from
the origin to a source-point-mass in the central object, andlet
r be the radial vector from the origin to an external field-point,
so thatr′′ = r− r′. The square brackets in the triple integrals
in (2) indicate that the integrands [ρ/r′′] and [ρu/r′′] are to
be integrated over the volume of the central object at the re-
tarded time.

Let m be the mass of a test-mass that occupies the field-
point at r, and letu be the inertial velocity of the test mass.
The analogous Lorentz force law, i.e., the formula for the
time-retarded gravitational forceF acting onm at r, is [4]

F = −m

(

e +
1
c

(u × h)

)

= −m∇

(

G
$

[

ρ

r′′

]

dV

)

−

–m

(

u ×

(

∇ ×

(

4G
c2

$
[

ρu
r′′

]

dV

)))

. (3)

Rindler’s time-retarded version for the slow-speed weak-
field approximation gives a complete stand-alone time-
retarded solution. The time-retarded fields were derived from
general relativity theory, but there is no need for further refer-
ence to the concepts and techniques of general relativity the-
ory. Needed concepts and techniques are those of classical
Newtonian theory.

Furthermore, Rindler’s formulas satisfy the causality
principle because the fields are time-retarded. Rindler’s ver-
sion gives a good first approximation only if

v2 ≪ c2, u2
≪ c2,

GM
r
= |ϕ| ≪ c2, (4)

whereM is the total mass of the central object.
Notice in (3) that the acceleration caused by the grav-

itoelectric field e is independent ofc, but the acceleration
caused by the gravitomagnetic induction fieldh is reduced
by the factor 1/c2. The numerical value forc is on the or-
der of 3×108 m/s. If the magnitude fore is on the order of
10 m/s2 (the Earth’s field at the surface), and the magnitudes
for u andu are on the order of 104 m/s, the relative magni-
tude for the acceleration caused byh would be on the order
of 10×4(104/3×108)2m/s2

∼ 10−8m/s2. This estimate shows
that, for slow-speed weak-field practical applications in the
real world, the acceleration caused byh is totally negligible
compared to the acceleration caused bye.

The empirical formula indicates that the flyby speed-
change is reduced by 1/c, not by 1/c2, which rules out the
gravitomagnetic field as a possible cause for the flyby anoma-
lies. The acceleration ofh is simply too small to explain the
flyby anomalies.

Consequently, the practicable version for Rindler’s Lo-
rentz force law becomes the same as a time-retarded version
for Newton’s well-known inverse-square law

F = −Gm∇
$

[

ρ

r′′

]

dV, (5)

whereF is the time-retarded gravitational force acting onm.
Let d3F be the time-retarded elemental force of an ele-

mental point-mass sourcedm′. The time-retarded version for
Newton’s inverse-square law becomes

d3F = −Gm
dm′

r′′2
r′′

r′′
, (6)

wherer′′/r′′ is a unit vector directed towards increasingr′′.
By definition, the gravitational field of a source atr′ is

the gravitational force of the sourcedm′ that acts on a test-
massm at r per unit mass of the test-mass. The traditional
symbol for the Newtonian gravitational field isg. Therefore,
the formula for the time-retarded elemental gravitationalfield
d3
g of an elemental point-mass-source atr′ for a field-point

at r becomes

d3
g =

d3F
m
= −G

dm′

r′′2
r′′

r′′
. (7)
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The negative sign indicates that the gravitational force isat-
tractive.

Let t be the observed coordinate time atr, let t′ be the
retarded time atr′, and letcg be the speed of propagation of
the gravitational field. The connection betweent andt′ is

t = t′ +
r′′

cg
, t′ = t −

r′′

cg
. (8)

Obviously, t(t′) is a function oft′, andvice versa, t′(t) is a
function oft. The Jacobian for the transformation fromt to t′

is given by

Jacobian=
dt
dt′
= 1+

1
cg

dr′′

dt′
. (9)

This Jacobian is needed to solve the triple integral over the
volume of the central object. It leads to the necessary fac-
tor 1/cg, wherecg is the speed of propagation of the Earth’s
gravitational field [5].

Let ρ(r′) be the mass-density of the central object atr′.
Then

dm′ = ρ(r′) dV. (10)

The resulting formula for the elemental total gravitational
field d3

g, which consists of the radial componentd3
gr and

the transverse componentd3
gtrt, becomesd3

g= d3
gr + d3

gtrt.
The differential formulas for each component become

d3
gr = −G

dm′

r′′2

(

r′′

r′′

)

r

, d3
gtrt = −G

dm′

r′′2

(

r′′

r′′

)

trt

, (11)

where (r′′/r′′)r is the radial component of the unit vector and
(r′′/r′′)trt is the transverse component of the unit vector. The
total field is obtained by a triple integration over the volume
of the central object at the retarded time.

Let (X, Y, Z) be the rectangular coordinates for the iner-
tial frame-of-reference, and let theZ-axis coincide with the
spin axis of the central object. LetRC be the relative radial
component, and letTCZ be the magnitude for theZ-axis com-
ponent of the relative transverse component. As can be seen
in Fig. 1, the formulas forRC andTCZ are related tor, r′,
andr′′ by

RC =
r · r′′

r′′r
=

r · r − r · r′

r′′r

TCZ =
(r × r′′)Z

r′′r
=

(r′ × r)Z

r′′r
=

r′XrY − r′YrX

r′′r































, (12)

whererX , rY are theX, Y components ofr, andr′X , r
′
Y are the

X, Y components ofr′.
The formula for the magnitude ofgtrt becomes [5]

gtrt =

$ (

−G
dm′

r′′2

)

(TCZ) (Jacobian) . (13)

The triple integral is rather easy to solve by using numer-
ical integration if the central object can be approximated by a
large spinning isotropic sphere. To get a good first approx-

Fig. 1: Depiction of the vector distancesr, r′, andr′′ and the com-
ponents of the vector fieldd3

g, d3
gr, andd3

gtrt.

imation, the Earth was simulated in [5] by a large spinning
isotropic sphere.

The formulas for the geocentric radial distance to the
field-point and its derivative are

r (θ) =
rp (1+ ε)

1+ ε cosθ
dr
dθ
=

r (θ)2

rp

ε

1+ ε
sinθ































, (14)

whereθ is the parametric polar coordinate angle for the space-
craft in the plane of the trajectory,rp is the geocentric radial
distance at perigee, andε is the eccentricity of the trajectory.

It is shown in [5] that the formula for the Jacobian is

Jacobian= 1+
1
cg

dr′′

dt
=

= 1−
r
cg

r′

r′′
(

Ωφ −ΩE

)

cosλ′ sinφ′. (15)

It is also shown in [5] that the only term ford3
gtrt that will

survive the triple integration is

d3gtrt = −Gρ̄ rE

Ωφ − ΩE

ΩE
cos2(λ) IG

dr′

rE

dλ′dφ′, (16)

whereρ̄ is the mean value forρ(r′) and the formula for the
integrand is

IG =
r3
E

r3

ρ(r′)
ρ̄

r′4

r4
E

cos3(λ′)
sin2 φ′

(1+ x)2
(17)

where the variablex is defined by

x ≡
r′2

r2
− 2

r′

r
cosλ′ cosφ′. (18)

It has been shown in [5] that the resulting formula for the
magnitude of the transverse component is

gtrt(θ) = −G
IE

r4
E

veq

cg

Ωφ(θ) −ΩE

ΩE
cos2

(

λ(θ)
)

PS
(

r(θ)
)

, (19)
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whereG is the gravity constant,IE is the Earth’s spherical
moment of inertia,rE is the Earth’s spherical radius,ΩE is the
Earth’s spin angular speed,veq is the Earth’s equatorial sur-
face speed,cg is the speed of propagation of the Earth’s gravi-
tational field,θ is the spacecraft’s parametric polar coordinate
angle in the plane of the orbit or trajectory,Ωθ = dθ/dt is the
spacecraft’s angular speed,Ωφ is the azimuthalφ-component
of Ωθ, λ is the spacecraft’s geocentric latitude,r is the space-
craft’s geocentric radial distance, andPS (r) is an inverse-
cube power series representation for the triple integral over
the Earth’s volume. The formula forPS (r) is [5]

PS (r) ≡













rE

r













3 















C0 +C2













rE

r













2

+C4













rE

r













4

+C6













rE

r













6














,

where the values for the coefficients are

C0 = 0.50889, C2 = 0.13931,

C4 = 0.01013, C6 = 0.14671.

If the magnitude is negative, i.e., ifΩφ >ΩE (prograde),
the vector field componentgtrt is directed towards the east. If
Ωφ <0 (retrograde), it is directed towards the west.

The formula for the time-retarded transverse gravitational
field, gtrt, satisfies the first requirement of the empirical pre-
diction formula. It is proportional toveq/cg� veq/c. But the
empirical prediction formula also requires that the speed-
change must be in theλ-component of the spacecraft’s ve-
locity, uλ. The magnitude for theλ-component is defined by

vλ = rλ
dλ
dt
= rλ

dλ
dθ

dθ
dt
= rλΩθ

dλ
dθ
, (20)

whererλ is theλ-component ofr.
The velocity component,uλ, is orthogonal togtrt. Con-

sequently,gtrt cannot directly change the magnitude ofuλ
(it changes the direction).

However, a hypothesized induction-like field, designated
Fλ, can be directed perpendicularly togtrt in theuλ-direction.
Assume that theφ-component of the curl ofFλ equals
−kdgtrt/dt, wherek is a constant. This induction-like field
can cause a small change in the spacecraft’s speed. The recip-
rocal of the constantk, vk = 1/k, called the “induction speed”,
becomes an adjustable parameter for each case. The average
for all cases gives an overall constant for the causal theory.

The formula for the magnitude ofFλ has been shown in
[5] to be

Fλ =
veq

vk

rE

r (θ)

∫ θ

0

r (θ)

rE

Ωθ(θ)

ΩE

1

rE

dr
dθ

dgtrt

dθ
dθ . (21)

The acceleration caused byFλ satisfies the second require-
ment of the empirical prediction formula, the one that re-
quires the anomalous force to change theλ-component of the
spacecraft’s velocity.

The anomalous time rate of change in the spacecraft’s or-
bital energy is given by the dot product,u · Fλ. It has been
shown in [5] that the calculated asymptotic speed-change,
δvtrt, is given by

δvtrt = δvin + δvout , (22)
where

δvin = δv (θmin) , δvout = δv (θmax) , (23)

and

δv (θ) =
vin

2

∫ θ

0

rλ(θ) Fλ(θ)

v2in

dλ
dθ

dθ . (24)

The anglesθmin andθmax are the minimum and maximum val-
ues forθ. The initial speedvin = v (θmin). The speed-change
δv(θ) is proportional tovin, which satisfies the third require-
ment of the empirical prediction formula.

3 Summary of the change in the Moon’s orbital speed
caused by the Earth’s time-retarded transverse gravi-
tational field

In 1995, F. R. Stephenson and L. V. Morrison published
a remarkable study of records of eclipses from 700 BC to
1990 AD [6]. They conclude∗: 1) the LOD has been in-
creasing on average during the past 2700 years at the rate of
+1.70±0.05 ms cy−1 (i.e. (+17.0±0.5) × 10−6 s per year),
2) tidal braking causes an increase in the LOD of+2.3±0.1
ms cy−1 (i.e. (+23±1)×10−6 s per year), and 3) there is a non-
tidal decrease in the LOD, numerically−0.6±0.1 ms cy−1

(i.e. (−6±1)× 10−6 s per year).
Stephenson and Morrison state that the non-tidal decrease

in the LOD probably is caused by post-glacial rebound. Post-
glacial rebound decreases the Earth’s moment of inertia,
which increases the Earth’s spin angular speed, and thereby
decreases the LOD. But post-glacial rebound cannot change
the Moon’s orbital angular momentum.

According to Stephenson and Morrison, tidal braking
causes an increase in the LOD of (23±1)× 10−6 seconds per
year, which causes a decrease in the Earth’s spin angular mo-
mentum, and by conservation of angular momentum causes
an increase in the Moon’s orbital angular momentum. It has
been shown in [5] that tidal braking alone would cause an in-
crease in the Moon’s orbital speed of (19±1)× 10−9 m/s per
year, which corresponds to an increase in the radius of the
Moon’s orbit of (14±1) mm per year.

But lunar-laser-ranging experiments have shown that the
radius of the Moon’s orbit is actually increasing at the rateof
(38±1) mm per year [7]. This rate for increase in the radius
corresponds to an increase in the orbital speed of (52±2) ×
10−9 m/s per year. Clearly there is an unexplained or anoma-
lous difference in the change in the radius of the orbit of
(−24±2) mm per year (38−14=24), and a corresponding
anomalous difference in the change in the orbital speed of

∗LOD means length-of-solar-day and ms cy−1 means milliseconds per
century.
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Fig. 2: Required induction speed ratio (designated by•), vk/veq± an
estimate for the uncertainty, versus eccentricityε. The mean value
for all seven ratios is shown by the horizontal line.

(−33±3)× 10−9 m/s per year (52−19=33). This “lunar or-
bit anomaly” cannot be caused by post-glacial rebound, but
it can be caused by the proposed causal version of Newton’s
theory.

It has been shown in [5] that the causal version of New-
ton’s theory produces a change in the Moon’s orbital speed of
(−33±3) × 10−9 m/s per year if the value for the induction
speedvk = (8±1)veq. Therefore, the causal theory explains
exactly the lunar orbit anomaly. It gives a new closed orbit
case for anomalous speed-changes.

4 Calculated speed-changes caused by the time-retarded
version of Newton’s theory

It has been shown in [5] that the causal version of Newton’s
theory explains exactly the six flyby anomalies reported by
Andersonet al. [1]. The required values forvk cluster be-
tween 6veq and 17veq.

A graph of the required induction speed ratios,vk/veq, ver-
sus eccentricityε, Fig. 2, shows that the required value forvk
for the lunar orbit anomaly is consistent with the required val-
ues forvk for the six Earth flyby anomalies. The average±
standard deviation is

v̄k = (10± 4)veq = 5± 2 km/s. (25)

It will be interesting to compare this average, 5±2 km/s, with
parameter values for other flyby theories.

5 Predicted speed-changes for future high-precision
Doppler-shift experiments

The speed-change caused by the causal version of Newton’s
theory depends on the speed of gravitycg, the properties of
the central sphere; massME, radiusrE, angular speedΩE,
moment of inertiaIE, and equatorial surface speedveq, on the

rp/rE P δvyr δvryr
(hours) (mm/s per year) (mm/s per year)

2 11.2 +315 −517

3 20.7 +29.5 −76.8

4 31.8 +3.93 −21.0

5 44.4 +0.173 −7.97

6 58.4 −0.422 −3.69

7 73.6 −0.442 −1.95

8 89.9 −0.362 −1.14

Table 1: Calculated periodP (in hours) and predicted speed-change
for prograde orbitsδvyr (in mm/s per year), and the predicted speed-
change for retrograde orbitsδvryr (in mm/s per year), for a spacecraft
in a near-Earth orbit withε= 0.5,αeq=45◦, λp = 45◦, vk = 14veq, and
for rp ranging from 2rE to 8rE [5].

orbital properties of the spacecraft; radius at perigeerp, ec-
centricityε, inclination to the equatorial planeαeq, and lati-
tude at perigeeλp, and the induction speedvk. If ε= 0 or if
αeq=0, the speed-changeδvtrt = 0. Even ifε,0 andαeq,0,
δvtrt is still equal to zero if perigee is over the equator (λp=0◦)
or one of the poles (λp=±90◦). The maximum speed-change
occurs for spacecrafts in highly eccentric and inclined near-
Earth orbits.

Assumecg= c and the induction speed is its largest prob-
able value,vk =14veq. Suppose the orbital properties for a
spacecraft areε=0.5, αeq= 45◦, andλp= 45◦. Let rp range
from 2rE to 8rE. The periodP is given by Kepler’s 3rd law,
and the annual speed change for progradeδvyr =Nrevδvtrt, and
for retrogradeδvryr =Nrevδvtrt, whereNrev is the number of
revolutions per year. Calculated speed-changes are listedin
Table 1 [5].

6 Other theories which explain the Earth flyby anoma-
lies

There are at least two other published theories that explainthe
Earth flyby anomalies: 1) the 3-space flow theory of R. T. Ca-
hill [8], and 2) the exponential radial field theory of H. J. Bu-
sack [9].

In [8] Cahill reviews numerous Michelson interferome-
ter and one-way light-speed experiments which clearly show
an anisotropy in the velocity of light. His calculated flyby
speed-changes depend on the direction and magnitude for 3-
space inflow at the spacecraft on the date and time of the
flyby. Cahill found that the average speed for 3-space inflow
is 12±5 km/s. Cahill’s average, 12±5 km/s, essentially equals
the average value forvk (25), 5±2 km/s.

In [9] Busack applies a small exponential correction for
the Earth’s radial gravitational field. Iff (r, u) is Busack’s
correction, the inverse-square law becomes

gr(r, u) = −
GME

r2

r
r
(

1+ f (r, u)
)

,
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where f (r, u) is expressed as

f (r, u) = A exp

(

−
r − rE

B −C(r · u)/(r · uSun)

)

.

The velocityu is the velocity of the field-point in the “gravita-
tional rest frame in the cosmic microwave background”, and
uSun is the Sun’s velocity in the gravitational rest frame. Nu-
merical values for the adjustable constants are approximately
A=2.2×10−4, B=2.9×105 m, andC = 2.3×105 m. Busack
found that these values produce rather good agreement with
the observed values for the flyby speed-changes.

Both of these alternative theories require a preferred
frame-of-reference. Neither has been tested for the lunar orbit
anomaly, and neither satisfies the causality principle because
neither depends on the speed of gravity.

7 Conclusions and recommendations

This article shows conclusively that the proposed causal ver-
sion of Newton’s theory agrees with the now-known facts-
of-observation. It applies only for slow-speeds and weak-
fields. Effects of time retardation appear at the relatively large
first-orderv/cg level, but they have not been seen in the past
because they decrease inversely with the cube of the closest
distance. If perigee is very close, however, time retardation
effects can be relatively large. It is recommended that vari-
ous available methods be used to detect new observations of
effects of the causality principle.
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Dynamical 3-Space Gravitational Waves: Reverberation Effects
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Gravity theory missed a key dynamical process that became apparent only when ex-
pressed in terms of a velocity field, instead of the Newtoniangravitational acceleration
field. This dynamical process involves an additional self-interaction of the dynam-
ical 3-space, and experimental data reveals that its strength is set by the fine struc-
ture constant, implying a fundamental link between gravityand quantum theory. The
dynamical 3-space has been directly detected in numerous light-speed anisotropy ex-
periments. Quantum matter has been shown to exhibit an acceleration caused by the
time-dependence and inhomogeneity of the 3-space flow, giving the first derivation of
gravity from a deeper theory, as a quantum wave refraction effect. EM radiation is
also refracted in a similar manner. The anisotropy experiments have all shown 3-space
wave/turbulence effects, with the latest revealing the fractal structure of 3-space. Here
we report the prediction of a new effect, namely a reverberation effect, when the gravi-
tational waves propagate in the 3-space inflow of a large mass. This effect arises from
the non-linear dynamics of 3-space. These reverberations could offer an explanation for
the Shnoll effect, in which cosmological factors influence stochastic processes, such as
radioactive decay rates.

1 Introduction

Newton’s inverse square law of gravity, when expressed in
terms of an acceleration fieldg(r , t), has the differential form:

∇ · g = −4πGρ, ∇ × g = 0 (1)

where G is the gravitational constant andρ is the real mat-
ter density. Theg field was believed to exist within an actual
Euclidean space. It has become increasingly evident through
the observation of spiral galaxies, the expanding universeand
gravitational anomalies, that Newton’s inverse square lawis
an incomplete theory of gravity. However a unique gener-
alisation of (1) has lead to a resolution of these anomalies,
by writing the acceleration fieldg(r , t) in terms of the Euler
acceleration of a velocity fieldv(r , t) [1,2]:

g =
∂v
∂t
+ (v · ∇)v, (2)

∇ ·
(

∂v
∂t
+ (v · ∇)v

)

= −4πGρ, ∇ × v = 0. (3)

This approach utilises the the well known Galilean covariant
Euler acceleration for a fluidic flow of the substratum with
velocity v(r , t). The velocity field is defined relative to an
observer. The time dependent nature of the flow means that
Newtonian gravity, within this flow formalism, can support
wave phenomena. But a unique term can be added to (3) that
generalises the flow equation, but also preserves the Keple-
rian nature of the planetary motions that underlie Newton’s
gravity formalisation:

∇ ·
(

∂v
∂t
+ (v · ∇)v

)

+
α

8

(

(trD)2 − tr(D2)
)

= −4πGρ,

∇ × v = 0, Di j =
1
2

(

∂vi

∂x j
+
∂v j

∂xi

)

.

(4)

Analysis of Bore Holeg anomaly data revealed thatα is the
fine structure constant [1]. The additional dynamics explains
the “dark matter” effects, and so may be referred to as the
dark matter term:

ρDM(r ) =
α

32πG

(

(trD)2 − tr(D2)
)

(5)

whereby

∇ · g = ∇ ·
(

∂v
∂t
+ ∇

(

v2

2

))

= −4πG (ρM + ρDM) (6)

Dynamical 3-Space is unlike the dualistic space and aeth-
er theories of the past, as herein only space exists, and there
is no aether. This dynamical and structured space provides an
observable and observed local frame of reference. The flow of
the dynamical 3-space has been detected many times dating
back to the Michelson and Morley 1887 experiment, which
has always, until 2002, been mistakenly reported as a null ex-
periment. Wave effects, essentially gravitational waves, are
apparent in the data from various anisotropy experiments∗. A
large part of understanding gravitational waves lies in how
they originate, and also in understanding how they propagate.
This work herein investigated the propagation of these gravi-
tational waves within the background in-flow of a large mass,
such as the earth or the sun. In doing so it was discovered that
the dynamics of the propagation resulted in a reverberation
effect, caused by the non-linear nature of the flow dynamics,
apparent in (3) and (4).

∗Vacuum mode Michelson interferometers have zero sensitivity to these
waves. So such devices have a fundamental design flaw when intended to
detect such waves.
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2 3-Space flow dynamics

First we establish the in-flow of space into a spherical mass,
assuming for simplicity that the mass is asymptotically at rest,
which means that the in-flow has spherical symmetry. In the
case of the earth we know that the earth has a large velocity
with respect to to the local 3-space frame of reference, some
486 km/s in the direction RA= 4.3h, Dec= -75◦ [3]. Here
we restrict the analysis to the case of a spherically symmetric
inflow into a spherical mass, with densityρ(r) and total mass
M. Then (4) becomes (v′ ≡ ∂v(r, t)/∂r)

∂v′

∂t
+ vv′′ +

2vv′

r
+ (v′)2 +

α

2

(

v2

2r2
+
vv′

r

)

= −4πGρ (7)

which for a static flow has the exact solution

v(r)2 =
2β

r
α
2
+

2G
(1− α2 )r

∫ r

0
4πs2ρ(s)ds+

+
2G

(1− α2 )r
α
2

∫ ∞

r
4πs1+ α2 ρ(s)ds,

(8)

HereM is the total matter mass, andβ is a free parameter.
The term 2β/rα/2 describes an inflow singularity or “black
hole” with arbitrary strength. This is unrelated to the puta-
tive black holes of General Relativity. This corresponds toa
primordial black hole. As well the last term in (8) also has
a 1/rα/2 inflow-singularity, but whose strength is mandated
by the matter density, and is absent whenρ(r) = 0 every-
where. This is a minimal “black hole”, and is present in all
matter systems. The 2β/rα/2 term will produce a novel long
range gravitational accelerationg = αβ/2r1+α/2, as observed
in spiral galaxies. For the region outside the sun Keplerian
orbits are known to well describe the motion of the planets
within the solar system, apart from some small corrections,
such as the Precession of the Perihelion of Mercury, which
follow from relativistic effects in the more general form of
(2) [1]. The caseβ = 0 applies to the sun and earth, having
only induced “Minimal Attractor” black holes. These min-
imal black holes contribute to the externalg(r) = GM∗/r2

gravitational acceleration, through an effective mass

M∗ ≈ M +
α

2
M (9)

Outside of a spherical mass, with only an induced black
hole, (8) has a solutionv ∝ 1/

√
r , and thenρDM = 0 outside

of the sphere, which explains why theα−term in (4) went
undiscovered until 2005.

3 Gravitational wave reverberations

We now demonstrate that gravitational waves incoming on,
say, a star or planet develop reverberations, in which the wave
generates following copies of itself. For numerical accuracy
in solving for time dependent effects in (4), we assume a

Fig. 1: Inflowing 3-space perturbationw(r, t) (red) and un-perturbed
inflow v(r) (blue) velocity profiles outside a mass, with the waveform
w(r, t) also shown magnified (yellow).

spherically symmetric incoming wave, which is clearly un-
realistic, and so find numerical solutions to (7), by using the
ansatzv(r, t) = v(r) + w(r, t), wherev(r) ∼ −1/

√
r is the static

in-flow from (8), applicable outside of the star/planet, and so
ignoring the galactic background flow, and wherew(r, t) is the
wave effect, with the initial wavew(r, 0) having the form of
a pulse, as shown in fig.1, where the time evolution ofw(r, t)
is also shown. We see that the initial pulse develops follow-
ing copies of itself. This is a direct consequence of the non-
linearity of (4), or even (3).

These reverberations are expected to be detectable in EM
speed anisotropy experiments. However because the 3-space

10 R.T. Cahill and S.T. Deane. Dynamical 3-Space Gravitational Waves: Reverberation Effects
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Fig. 2: Representation of the wave data revealing the fractal textured
structure of the 3-space, with cells of space having slightly different
velocities, and continually changing, and moving with respect to the
earth with a speed of∼500km/s, from [4].

is fractal, as illustrated in fig.2 [4], the reverberations are ex-
pected to be complex. As well all systems would generate
reverberations, from planets, moons, sun and the galaxy. The
timescale for such reverberations would vary considerably.
As well as being directly observable in EM anisotropy and
gravitational wave detectors, these reverberations wouldaf-
fect, for example, nuclear decay rates, as the magnitude of
the 3-space fractal structure is modulated by the reverber-
ations, and this fractal structure will stimulate nuclear pro-
cesses. Patterns in the decay rates of nuclei have been ob-
served by Shnollet al., with periodicities over many time
scales [5].

The 3-space is detectable because the speed of EM waves,
in vacuum isc ≈ 300, 000km/s with respect to that space it-
self, whereas an observer, in general, will observe anisotropy
when the observer is in motion with respect to the space. This
effect has been repeatedly observed for over 120 years. The
anisotropy detections have always revealed wave/turbulence
effects, including the original Michelson-Morley experiment.
These wave effects are known as ”gravitational waves”, al-
though a more appropriate description would be ”space wa-
ves”. In the limitα→ 0, (4) and also (7) still have space wave
effects, but these generate gravitational wave effects, namely
fluctuations in the matter acceleration fieldg(r, t), only when
α , 0. So theα-dynamical term is not only responsible for
the earth bore holeg anomaly, and for the so-called ”dark
matter” effects in spiral galaxies, but can also result in forces
acting on matter resulting from the space wave phenomena,
and will be large when significant wave effects occur, with
large wave effects being essentially a galactic effect.
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We derive Electromagnetism from the Elastodynamics of the Spacetime Continuum
based on the identification of the theory’s antisymmetric rotation tensor with the elec-
tromagnetic field-strength tensor. The theory provides a physical explanation of the
electromagnetic potential, which arises from transverse (shearing) displacements of the
spacetime continuum, in contrast to mass which arises from longitudinal (dilatational)
displacements. In addition, the theory provides a physicalexplanation of the current
density four-vector, as the 4-gradient of the volume dilatation of the spacetime con-
tinuum. The Lorentz condition is obtained directly from thetheory. In addition, we
obtain a generalization of Electromagnetism for the situation where a volume force is
present, in the general non-macroscopic case. Maxwell’s equations are found to remain
unchanged, but the current density has an additional term proportional to the volume
force.

1 Introduction

Since Einstein first published his Theory of General Relativ-
ity in 1915, the problem of the unification of Gravitation and
Electromagnetism has been and remains the subject of contin-
uing investigation (see for example [1–9] for recent attempts).
The Elastodynamics of the Spacetime Continuum [10, 11]
is based on the application of a continuum mechanical ap-
proach to the spacetime continuum(STC). Electromagnetism
is found to come out naturally from the theory in a straight-
forward manner.

In this paper, we derive Electromagnetism from the Elas-
todynamics of the Spacetime Continuum (STCED). This the-
ory thus provides a unified description of the spacetime de-
formation processes underlying general relativistic Gravita-
tion [11] and Electromagnetism, in terms of spacetime con-
tinuum displacements resulting from the strains generatedby
the energy-momentum stress tensor.

1.1 A note on units and constants

In General Relativity and in Quantum Electrodynamics, it is
customary to use “geometrized units” and “natural units” re-
spectively, where the principal constants are set equal to 1.
The use of these units facilitates calculations since cumber-
some constants do not need to be carried throughout deriva-
tions. In this paper, all constants are retained in the deriva-
tions, to provide insight into the nature of the equations being
developed.

In addition, we use rationalized MKSA units for Electro-
magnetism, as the traditionally used Gaussian units are grad-
ually being replaced by rationalized MKSA units in more re-
cent textbooks (see for example [12]). Note that the electro-
magnetic permittivity of free spaceǫem, and the electromag-
netic permeability of free spaceµem are written with “em”
subscripts as the “0” subscripts are used inSTCED constants.

This allows us to differentiate between for exampleµem, the
electromagnetic permeability of free space, andµ0, the Lamé
elastic constant for the shear modulus of the spacetime con-
tinuum.

2 Theory of Electromagnetism fromSTCED

2.1 Electromagnetic field strength

In the Elastodynamics of the Spacetime Continuum, the anti-
symmetric rotation tensorωµν is given by [11]

ωµν =
1
2

(uµ;ν − uν;µ) (1)

whereuµ is the displacement of an infinitesimal element of
the spacetime continuum from its unstrained positionxµ. This
tensor has the same structure as the electromagnetic field-
strength tensorFµν defined as [13, see p. 550]:

Fµν = ∂µAν − ∂νAµ (2)

whereAµ is the electromagnetic potential four-vector (φ, ~A),
φ is the scalar potential and~A the vector potential.

Identifying the rotation tensorωµν with the electromag-
netic field-strength tensor according to

Fµν = ϕ0ω
µν (3)

leads to the relation

Aµ = −1
2
ϕ0uµ⊥ (4)

where the symbolic subscript⊥ of the displacementuµ in-
dicates that the relation holds for a transverse displacement
(perpendicular to the direction of motion) [11].

Due to the difference in the definition ofωµν andFµν with
respect to their indices, a negative sign is introduced, andis
attributed to (4). This relation provides a physical explanation
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for the electromagnetic potential: it arises from transverse
(shearing) displacements of the spacetime continuum, in con-
trast to mass which arises from longitudinal (dilatational) dis-
placements of the spacetime continuum [11]. Sheared space-
time is manifested as electromagnetic potentials and fields.

2.2 Maxwell’s equations and the current density four-
vector

Taking the divergence of the rotation tensor of (1), gives

ωµν ;µ =
1
2

(uµ;νµ − uν;µµ). (5)

Recalling (28) from Millette [11], viz.

µ0uν;µµ + (µ0 + λ0)uµ;µ
ν = −Xν (6)

whereXν is the volume force andλ0 andµ0 are the Lamé
elastic constants of the spacetime continuum, substituting for
uν;µµ from (6) into (5), interchanging the order of partial dif-
ferentiation inuµ;νµ in (5), and using the relationuµ;µ = ε

µ
µ =

ε from (19) of [11], we obtain

ωµν ;µ =
2µ0 + λ0

2µ0
ε;ν +

1
2µ0

Xν. (7)

As seen in [11], in the macroscopic local case, the volume
forceXν is set equal to zero to obtain the macroscopic relation

ωµν;µ =
2µ0 + λ0

2µ0
ε;ν (8)

Using (3) and comparing with the covariant form of Max-
well’s equations [14, see pp. 42–43]

Fµν;µ = µem jν (9)

where jν is the current density four-vector (c̺, ~j), ̺ is the
charge density scalar, and~j is the current density vector, we
obtain the relation

jν =
ϕ0

µem

2µ0 + λ0

2µ0
ε;ν. (10)

This relation provides a physical explanation of the cur-
rent density four-vector: it arises from the 4-gradient of the
volume dilatation of the spacetime continuum. A corollary of
this relation is that massless (transverse) waves cannot carry
an electric charge or produce a current.

Substituting forjν from (10) in the relation [15, see p. 94]

jν jν = ̺
2c2, (11)

we obtain the expression for the charge density

̺ =
1
2
ϕ0

µemc
2µ0 + λ0

2µ0

√

ε;νε;ν (12)

or, using the relationc = 1/
√
ǫemµem,

̺ =
1
2
ϕ0ǫemc

2µ0 + λ0

2µ0

√

ε;νε;ν. (13)

Up to now, our identification of the rotation tensorωµν of the
Elastodynamics of the Spacetime Continuum with the elec-
tromagnetic field-strength tensorFµν has generated consistent
results, with no contradictions.

2.3 The Lorentz condition

The Lorentz condition can be derived directly from the the-
ory. Taking the divergence of (4), we obtain

Aµ;µ = −
1
2
ϕ0u⊥

µ
;µ. (14)

From (23) of [11], viz.

ωµµ = u⊥
µ

;µ = 0, (15)

(14) simplifies to
Aµ;µ = 0. (16)

The Lorentz condition is thus obtained directly from the
theory. The reason for the value of zero is that transverse
displacements are massless because such displacements arise
from a change of shape (distortion) of the spacetime contin-
uum, not a change of volume (dilatation).

2.4 Four-vector potential

Substituting (4) into (5) and rearranging terms, we obtain the
equation

∇2Aν − Aµ;νµ = ϕ0ω
µν

;µ (17)

and, using (3) and (9), this equation becomes

∇2Aν − Aµ;νµ = µem jν. (18)

Interchanging the order of partial differentiation in the term
Aµ;νµ and using the Lorentz condition of (16), we obtain the
well-known wave equation for the four-vector potential [14,
see pp. 42–43]

∇2Aν = µem jν. (19)

The results we obtain are thus consistent with the macro-
scopic theory of Electromagnetism, with no contradictions.

3 Electromagnetism and the volume forceXν

We now investigate the impact of the volume forceXν on
the equations of Electromagnetism. Recalling (7), Maxwell’s
equation in terms of the rotation tensor is given by

ωµν;µ =
2µ0 + λ0

2µ0
ε;ν +

1
2µ0

Xν. (20)

Substituting forωµν from (3), this equation becomes

Fµν;µ = ϕ0
2µ0 + λ0

2µ0
ε;ν +

ϕ0

2µ0
Xν. (21)

The additionalXν term can be allocated in one of two ways:
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1. either jν remains unchanged as given by (10) and the
expression forFµν;µ has an additional term as devel-
oped in Section 3.1 below,

2. orFµν;µ remains unchanged as given by (9) and the ex-
pression forjν has an additional term as developed in
Section 3.2 below.

Option 2 is shown in the following derivation to be the logi-
cally consistent approach.

3.1 jν unchanged (contradiction)

Using (10) (jν unchanged) into (21), Maxwell’s equation be-
comes

Fµν;µ = µem jν +
ϕ0

2µ0
Xν. (22)

Using (20) into (17) and making use of the Lorentz condition,
the wave equation for the four-vector potential becomes

∇2Aν − ϕ0

2µ0
Xν = µem jν. (23)

In this case, the equations forFµν;µ andAν both contain an
additional term proportional toXν.

We show that this option is not logically consistent as fol-
lows. Using (10) into the continuity condition for the current
density [14]

∂ν jν = 0 (24)

yields the expression
∇2ε = 0. (25)

This equation is valid in the macroscopic case whereXν = 0,
but disagrees with the general case (non-zeroXν) given by
(35) of [11], viz.

(2µ0 + λ0)∇2ε = −Xν;ν. (26)

This analysis leads to a contradiction and consequently is not
valid.

3.2 Fµν;µ unchanged (logically consistent)

Proper treatment of the general case requires that the current
density four-vector be proportional to the RHS of (21) as fol-
lows (Fµν;µ unchanged):

µem jν = ϕ0
2µ0 + λ0

2µ0
ε;ν +

ϕ0

2µ0
Xν. (27)

This yields the following general form of the current density
four-vector:

jν =
1
2
ϕ0

µem µ0
[(2µ0 + λ0)ε;ν + Xν]. (28)

Using this expression in the continuity condition for the cur-
rent density given by (24) yields (26) as required.

Using (28) into (21) yields the same covariant form of the
Maxwell equations as in the macroscopic case:

Fµν;µ = µem jν (29)

and the same four-vector potential equation

∇2Aν = µem jν (30)

in the Lorentz gauge.

3.3 Homogeneous Maxwell equation

The validity of this analysis can be further demonstrated from
the homogeneous Maxwell equation [14]

∂αFβγ + ∂βFγα + ∂γFαβ = 0. (31)

Taking the divergence of this equation overα,

∂α∂
αFβγ + ∂α∂

βFγα + ∂α∂
γFαβ = 0. (32)

Interchanging the order of differentiation in the last two terms
and making use of (29) and the antisymmetry ofFµν, we ob-
tain

∇2Fβγ + µem( jβ;γ − jγ;β) = 0. (33)

Substituting forjν from (28),

∇2Fβγ = − ϕ0

2µ0
[(2µ0+ λ0)(ε;βγ − ε;γβ) + (Xβ;γ − Xγ;β)]. (34)

(42) of [11], viz.

µ0∇2εµν + (µ0 + λ0)ε;µν = −X(µ;ν) (35)

shows thatε;µν is a symmetrical tensor. Consequently the dif-
ference term (ε;βγ − ε;γβ) disappears and (34) becomes

∇2Fβγ = −
ϕ0

2µ0
(Xβ;γ − Xγ;β). (36)

ExpressingFµν in terms ofωµν using (3), the resulting equa-
tion is identical to (39) of [11], viz.

µ0∇2ωµν = −X[µ;ν] (37)

confirming the validity of this analysis of Electromagnetism
including the volume force.

(28) to (30) are the self-consistent electromagnetic equa-
tions derived from the Elastodynamics of the Spacetime Con-
tinuum with the volume force. In conclusion, Maxwell’s equ-
ations remain unchanged. The current density four-vector is
the only quantity affected by the volume force, with the addi-
tion of a second term proportional to the volume force. It is
interesting to note that the current density obtained from the
quantum mechanical Klein-Gordon equation with an electro-
magnetic field also consists of the sum of two terms [16, see
p. 35].
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4 Discussion and conclusion

In this paper, we have derived Electromagnetism from the
Elastodynamics of the Spacetime Continuum based on the
identification of the theory’s antisymmetric rotation tensor
ωµν with the electromagnetic field-strength tensorFµν.

The theory provides a physical explanation of the electro-
magnetic potential: it arises from transverse (shearing) dis-
placements of the spacetime continuum, in contrast to mass
which arises from longitudinal (dilatational) displacements of
the spacetime continuum. Hence sheared spacetime is mani-
fested as electromagnetic potentials and fields.

In addition, the theory provides a physical explanation of
the current density four-vector: it arises from the 4-gradient
of the volume dilatation of the spacetime continuum. A corol-
lary of this relation is that massless (transverse) waves cannot
carry an electric charge or produce a current.

The transverse mode of propagation involves no volume
dilatation and is thus massless. Transverse wave propagation
is associated with the distortion of the spacetime continuum.
Electromagnetic waves are transverse waves propagating in
theSTC itself, at the speed of light.

The Lorentz condition is obtained directly from the the-
ory. The reason for the value of zero is that transverse dis-
placements are massless because such displacements arise
from a change of shape (distortion) of the spacetime contin-
uum, not a change of volume (dilatation).

In addition, we have obtained a generalization of Electro-
magnetism for the situation where a volume force is present,
in the general non-macroscopic case. Maxwell’s equations
are found to remain unchanged, but the current density has an
additional term proportional to the volume forceXν.

The Elastodynamics of the Spacetime Continuum thus
provides a unified description of the spacetime deformation
processes underlying general relativistic Gravitation and Ele-
ctromagnetism, in terms of spacetime continuum displace-
ments resulting from the strains generated by the energy-mo-
mentum stress tensor.
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Within the expanding cosmic Hubble volume, the Hubble length can be considered as
the gravitational or electromagnetic interaction range. The product of ‘Hubble volume’
and ‘cosmic critical density’ can be called the ‘Hubble mass’. Based on this cosmic
mass unit, the authors noticed three peculiar semi empirical applications. With these
applications it is possible to say that in atomic and nuclearphysics, there exists a cos-
mological physical variable. By observing its rate of change, the future cosmic accel-
eration can be verified, time to time Hubble’s constant can beestimated and finally a
unified model of the four cosmological interactions can be developed.

1 Introduction

If we write R0 � (c/H0) as a characteristic cosmic Hub-
ble radius then the characteristic cosmic Hubble volume is
V0 �

4π
3 R3

0.With reference to the critical densityρc �
3H2

0

8πG and
the characteristic cosmic Hubble volume, the characteristic
cosmic Hubble mass can be expressed asM0 � ρc ·V0 �

c3

2GH0
.

If we do not yet know whether the universe is spatially closed
or open, then the idea of Hubble volume [1–3] or Hubble
mass can be used as a tool in cosmology and unification. This
idea is very close to Mach’s idea of distance cosmic back-
ground. It seems to be a quantitative description to Mach’s
principle. In understanding the basic concepts of unifica-
tion of the four cosmological interactions, the cosmic radius
(c/H0) can be considered as the infinite range of the gravita-
tional or electromagnetic interaction. Within the Hubble vol-
ume it is noticed that: 1) Each and every point in free space
is influenced by the Hubble mass. 2) Hubble mass plays a
vital role in understanding the properties of electromagnetic
and nuclear interactions and 3) Hubble mass plays a key role
in understanding the geometry of the universe.

2 Application 1

Note that large dimensionless constants and compound phys-
ical constants reflect an intrinsic property of nature [4,5]. If
ρcc2 is the present cosmic critical energy density andaT 4

0
is the present cosmic thermal energy density, with thisM0

it is noticed that ln
√

aT 4
0

ρcc2 ·
4πǫ0GM2

0

e2 �
1
α

and at present if
T0 � 2.725 ◦K, obtainedH0 � 71.415 km/sec/Mpc [6,7].

It is also noticed that ln

[

ρm

ρc

√

4πǫ0GM2
0

e2

]

�
1
α

whereρm is the

present cosmic matter density. Obtainedρm � 6.70× 10−29

kg/m3 is matching with the matter density of spiral and el-
liptical galaxies. Please note that almost (60 to 70)% of the
galaxies are in the form of elliptical and spiral galaxies.

3 Application 2

With this M0 it is noticed that, ~c
Gmp

√
M0me

� 1 wheremp and

me are the rest masses of proton and electron respectively.
This is a very peculiar result. With this relation, obtained

value of the present Hubble’s constant is 70.75 km/sec/Mpc.
From this relation it is clear that, in the presently believed
atomic and nuclear “physical constants”, there exists one cos-
mological variable! By observing its cosmological rate of
change, the “future” cosmic acceleration can be verified.

4 Application 3

With reference to the Planck massMp �
√
~c/G and the ele-

mentary chargee, a new mass unitMC �
√

e2/4πǫ0G can be
constructed. WithM0 andMC it can be assumed that cosmic
thermal energy density, matter energy density and the critical
energy density are in geometric series and the geometric ratio

is 1+ ln
(

M0
MC

)

. Thus,
(

ρcc2

ρmc2

)

0
�

[

1+ ln
(

M0
MC

)]

and
(

ρcc2

aT 4

)

0
�

[

1+ ln
(

M0
MC

)]2
. It is another peculiar observation and the cor-

responding present CMBR temperature isT0 � 2.718 ◦K.
Independent of the cosmic redshift and CMBR observations,
with these coincidences it is possible to understand and de-
cide the cosmic geometry. The mystery can be resolved only
with further research, analysis, discussions and encourage-
ment.
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The problem of cosmological distances is approached using amethod based on the
propagation of light in an expanding Universe. From the change of measure between
Light Travel Time and Euclidean Distances, a formula is derived to compute distances
as a function of redshift. This formula is identical to Mattig’s formula (withq0 = 1/2)
which is based on Friedmann’s equations of general relativity.

1 Introduction

Euclidean Distances were introduced in [1], and it was sug-
gested that Euclidean Distances need to be used in order to
derive the galactic density profile which is the evolution of
galactic density over time. The LTD (Light Travel Distance)
is the distance traversed by a photon between the time it is
emitted and the time it reaches the observer, which may be
also referred to as the Light Travel Time. We define the Eu-
clidean distance as the equivalent distance that would be tra-
versed by a photon between the time it is emitted and the time
it reaches the observer if there were no expansion of the Uni-
verse.

In the present study, a time-varying Hubble coefficient
in the Euclidean framework is introduced assuming that the
Hubble law observed in the LTD framework is still applica-
ble in the Euclidean framework. The model provides a “kine-
matic age of the Universe” which is purely mathematical as
it is a result of the change of measure between LTDs and Eu-
clidean Distances. A proof is made that a flat Hubble constant
in the LTD framework (i.e that does not vary with LTD) is
equivalent to a second order forward time-varying Euclidean
Hubble coefficient in the Euclidean framework.

2 Foundations of the theory

The observed Hubble constant that is commonly referred to
in the literature is a measure of space expansion with respect
to LTDs. The Euclidean Hubble coefficient is being defined
as the space expansion with respect to Euclidean Distances.
This is a change of measure considering that the Euclidean
Hubble coefficient varies with time such that the Hubble law
is still applicable in the Euclidean framework. This leads to
the following equation

Hi(t) =
ȧ
a
, (1)

whereHi is the instantaneous Euclidean Hubble coefficient,ȧ
is the Universe expansion velocity anda the scale factor

The main postulate of the present study is that the Eu-
clidean Hubble coefficient needs to be used in order to com-
pute the scale factor in metric distances and not on the basis

of LTDs, see (1). If we did not compute the scale factor on
the basis of metric distances, the equation would fail to work
with cosmological redshifts, which are a homothetic transfor-
mation for describing the evolution of light wavelength.

The instantaneous Euclidean Hubble coefficient is defined
as the rate of expansion in Euclidean metrics at any given
point in time along the trajectory of a light ray reaching the
observer.

As space between the photon and the observer expands,
this expansion is added to the overall distance the photon has
to travel in order to reach the observer; therefore, the Eu-
clidean Distance between the photon and the observer is de-
fined by the following differential equations, respectively in
the temporal and metric form:

1) In the LTD framework (the temporal form)

dy
dt
= −c + H0 c T, (2)

where:y is the Euclidean Distance between the photon
and the observer,T the LTD between the observer and
the photon,c the celerity of light, andH0 the Hubble
constant as of today;

2) In the Euclidean framework (the metric form)

dy
dt
= −c + Hi(t) y , (3)

wherey is the Euclidean Distance between the photon
and the observer,c the celerity of light, andHi(t) the
Euclidean time-varying Hubble coefficient.

For the purpose of convenience let us consider the follow-
ing form for the Euclidean time-varying Hubble coefficient

Hi(t) =
n
t
, (4)

whereHi(t) is the Euclidean time-varying Hubble coefficient,
n the order of the time-varying Euclidean Hubble, andt the
time from the hypothetical big bang for which time was set to
zero.

Note that in the present study both the Hubble constant
and the Euclidean Hubble coefficient are expressed in units
of [time−1] by converting all distances into Light Travel Time,
and with the celerityc = 1.
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3 Proof that a flat Hubble constant in the LTD frame-
work is time varying of order two in the Euclidean
framework

First, let us solve the differential equation for the propagation
of light in the LTD framework assuming a flat Hubble con-
stant (i.e. that does not vary with LTD). Let us consider a
photon initially situated at a Euclidean Distancey0 from the
observer and moving at celerityc in the direction of the ob-
server. Let us sayT is the initial LTD between the photon
and the observer, and define the Hubble constant function of
LTDs.

The differential equation describing the propagation of
light in the LTD framework is described by (2). By setting
time zero at a referenceTb in the past, we havet = Tb − T ;
therefore,dt = −dT . Hence, (2) becomes

dy
dT
= c − H0 c T , (5)

with boundary conditionsy(T ) = y0, andy(0) = 0.
By integration from 0 toT , the following relationship re-

lating Euclidean Distancesy to Light Travel DistancesT is
obtained

y = c T −
c H0 T 2

2
. (6)

Now let us derive the differential equation for the propa-
gation of light in the Euclidean framework assuming the time-
varying Hubble coefficient from (4) (see Figure 1). From the
differential equation describing the propagation of light in the
Euclidean framework (3), we get

dy
dt
= −c +

n
t
y . (7)

By integrating this first order non-homogeneous differential
equation betweenTb − T and Tb, the following solution is
obtained which describes the relationship between Euclidean
Distances and LTDs

y =
c

n − 1

(

Tb − T − Tb1−n (Tb − T )n
)

. (8)

By settingn equal to 2 in (8) for a second order time-varying
Hubble coefficient, we get

y = c

(

T −
T 2

Tb

)

. (9)

Based on the recession speed, the relationship between the
Hubble constant defined function of LTDs, and the Euclidean
Hubble, forT small is as follows

H0 c T =
n

(Tb − T )
y . (10)

Hence, n
Tb

is obtained by computing the following limit

n
Tb
= lim

T→0

(

H0 c T
y

)

. (11)

Fig. 1: Schema to represent the propagation of light in an expand-
ing space in the Euclidean framework. WhereT is the Light Travel
Distance between the observer and the source of light,Tb is the kine-
matic age of the Universe, andn the order of the time-varying Hub-
ble coefficient (time zero set at timeTb from today).

By substitution ofy from (8), we get

n
Tb
= lim

T→0













(n − 1)T · H0

Tb − T − T 1−n
b (Tb − T )n













= H0 . (12)

Therefore, the “kinematic age of the Universe” is

Tb =
n

H0
, (13)

with H0 the Hubble constant as of today.
By substitution ofTb =

2
H0

into (9), we get

y = c T −
c H0 T 2

2
. (14)

This solution is identical to (6) relating LTDs to Euclidean
Distances for the flat Hubble constant in the LTD framework.
This is the proof that a flat Hubble constant in the LTD frame-
work is equivalent to a time-varying Hubble coefficient of or-
der two in the Euclidean framework. The equationHi(t) = 2/t
is the connection between (2) and (3).

We can easily show that the recession speed with the sec-
ond order time-varying Hubble coefficient in the Euclidean
framework is the same as the recession speed in the LTD
framework. The calculations are as follow

Hi(t) y =
2
t
y =

2c
Tb − T

(

T −
H0 T 2

2

)

. (15)

By substitution ofTb from (13) (with a second order time-
varying Hubble coefficient) into (15), we obtain

Hi(t) y = H0 c T , (16)

whereT is the LTD between the observer and the source of
light, andy the Euclidean Distance.

4 Evolutionary model of the scale factor

The differential equation describing the evolution of the scale
factora is as follows, identical to (1),

da
dt
= Hi(t) a . (17)
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As Hi(t) = 2
t , we get

∫ a0

a1

1
a

da =
∫ Tb

Tb−T

2
t

dt . (18)

By integrating (18) , we obtain

ln

(

a0

a1

)

= 2 ln

(

Tb

Tb − T

)

, (19)

which is equivalent to

a0

a1
=

(

Tb

Tb − T

)2

. (20)

5 Expression of distances versus redshifts

From cosmological redshifts, we have

1+ z =
a0

a1
, (21)

wherea0 is the present scale factor,a1 the scale factor at red-
shift z.

Combining (20) and (21), we get

T = Tb

(

1−
1
√

1+ z

)

. (22)

By substitution ofTb from (13) for a second order time-
varying Hubble coefficient, we get the following equation re-
lating LTD to redshifts

T =
2

H0

(

1−
1
√

1+ z

)

. (23)

6 Comparison with the equation of Mattig

The equation of Mattig [2] is as follows

rR0 =
1

H0q2
0(1+ z)

×

×
(

q0z + (q0 − 1)(
√

1+ 2q0z − 1)
)

, (24)

wherer is the distance,q0 is the deceleration parameter,R0

the present scale factor,z the redshift,H0 the present scale
factor.

For comparison purpose with the equation of the present
study, we should setq0 equal to 1/2 (flat matter dominated
Universe), andR0 to 1. Therefore, we obtain

r =
2

H0

(

1−
1
√

1+ z

)

. (25)

This formula is identical to (23). We have just shown that
the solution to our problem is identical to Mattig formula for
q0 equal to 1/2.

7 Discussion

Based on the change of measure between LTD and Euclidean
Distances, a formula that expresses distances versus redshifts
is obtained. From the change of framework between LTD
and Euclidean distances, it has been proved that a flat Hub-
ble constant (that does not vary with LTD) is equivalent to a
time-varying Euclidean Hubble coefficient of order two. Fi-
nally, the evolutionary model of the scale factor is derived
and matched to the cosmological redshift equation in order
to obtain the LTD versus redshift equation. This equation is
identical to Mattig’s formula (withq0 = 1/2) which is based
on Friedmann’s equations of general relativity. The Euclidean
Hubble coefficient was used in order to derive the evolution
of the scale factor in metric distances; otherwise, the cos-
mological redshift equation would not be applicable to light
wavelengths. This study proposes a new approach to compute
cosmological distances which is based on the introduction of
Euclidean Distances in addition to Light Travel Distances in
an expanding Universe, and a change of measure. The cal-
culations involved are quite simple and our definition of Eu-
clidean Distances may be used as a source of inspiration to
develop future cosmological models.
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The positive and negative parity states of100Ru isotope are studied within the frame
work of the interacting boson approximation model (IBA − 1). The calculated levels
energy, potential energy surfaces,V(β, γ), and the electromagnetic transition probabili-
ties,B(E1) andB(E2), show that100Ru isotope hasE(5) Characters. Staggering effect,
ΔI = 1, has been observed between the positive and negative parity states. The electric
monopole strength,X(E0/E2), has been calculated. All calculated values are com-
pared to the available experimental, theoretical data and reasonable agreement has been
obtained.

1 Introduction

The mass regionA= 100 has been of considerable interst for
nuclear structure studies as it shows many interesting fea-
tures. These nuclei show back bending at high spin and shape
transitions from vibrational toγ-soft and rotational charac-
ters. Many attempts have made to explore these structural
changes which is due mainly to the n-p interactions.

Experimentally, the nuclear reaction100Mo (α,xn) [1] has
been used in studying levels energy of100Ru. Angular dis-
tribution,γ-γ coincidences were measured, half-life time has
calculated and changes to the level scheme were proposed.
Also, double beta decay rate of100Mo to the first excited 0+

state of100Ru has been measured experimentally [2] using
γ-γ coincidence technique.

Doppler-shift attenuation measurements following the
100Ru (n, n‘γ) reaction [3] has used to measure the life times
of the excited states in100Ru. Absolute transition rates were
extracted and compared with the interacting boson model de-
scription. The 2+(2240.8 keV) state which decays dominantly
to the 2+ via 1701 keV transition which is almost pureM1 in
nature considered as a mixed-symmetry state. Again100Ru
has been studied [4] experimently and several levels were
seen where some new ones are detected below 3.2 MeV.

Theoretically many models have been applied to ruthe-
nium isotopes. Yukawa folded mean field [5] has applied to
100Ru nucleus while the microscopic vibrational model has
applied to104Ru and some other nuclei with their daughters
[6]. The latter model was successful in describing the yrast
0+ and 2+ states of most of these nuclei and also some of their
half-lives.

The very high-spin states of nuclei near A≈100 are inves-
tigated by the Cranked Strutinsky method [7] and many very
extended shape minima are found in this region. Interact-
ing boson model has been used in studyingRu isotopes using
a U(5)–O(6) transitional Hamiltonian with fixed parameters
[8-10] except for the boson numberN. Hartree-Fock Bo-
goliubov [11] wave functions have been tested by comparing
the theoretically calculated results for100Mo and 100Ru nu-
clei with the available experimental data. The yrast spectra,

reducedB(E2,0+→ 2+) transition probabilities, quadrupole
momentsQ(2+) and g factors, g(2+) are computed. A reason-
able agreement between the calculated and observed values
has been obtained.

The microscopic anharmonic vibrator approach (MAVA)
[12] has been used in investigating the low-lying collective
states in98-108Ru. Analysis for the level energies and elec-
tric quadrupole decays of the two-phonon type of states in-
dicated that100Ru can interpreted as being a transitional nu-
cleus between the spherical anharmonic vibrator98Ru and the
quasirotational102-106Ru isotopes.

A new emprical approach has been proposed [13] which
is based on the connection between transition energies and
spin. It allows one to distinguish vibrational from rotational
characters in atomic nuclei. The cranked interacting boson
model [14] has been used in estimating critical frequencies
for the rotation-induced spherical-to-deformed shape transi-
tion in A= 100 nuclei. The predictions show an agreement
with the back bending frequencies deduced from experimen-
tal yrast sequences in these nuclei.

The aim of the present work is to use theIBA−1 [15, 16]
for the following tasks:

1. Calculating the potential energy surfaces,V(β, γ), to
know the type of deformation existing for100Ru;

2. Calculating levels energy, electromagnetic transition
ratesB(E1) andB(E2);

3. Studying the relation between the angular momentum
I and the rotational angular frequency~ω for bending
in 100Ru;

4. Calculating staggering effect to see beat patterns and
detect any interactions between the (+ve) and (−ve)
parity states, and

5. Calculating the electric monopole strengthX(E0/E2).

2 (IBA-1) model

2.1 Level energies

IBA-1 model was applied to the positive and negative parity
states of100Ru isotope. The Hamiltonian employed in the
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nucleus EPS PAIR ELL QQ OCT HEX E2S D(eb) E2DD(eb)
100Ru 0.5950 0.000 0.0085 −0.0200 0.0000 0.0000 0.1160 −0.3431

Table 1: Parameters used in IBA-1 Hamiltonian (all in MeV).

present calculation is:

H = EPS ∙ nd + PAIR∙ (P ∙ P)

+ 1
2 ELL ∙ (L ∙ L) + 1

2 QQ ∙ (Q ∙ Q)

+5OCT ∙ (T3 ∙ T3) + 5HEX ∙ (T4 ∙ T4)

(1)

where

P ∙ p =
1
2




{
(s†s†)(0)

0 −
√

5(d†d†)(0)
0

}
x

{
(ss)(0)

0 −
√

5(d̃d̃)(0)
0

}




(0)

0

, (2)

L ∙ L = −10
√

3
[
(d†d̃)(1)x (d†d̃)(1)

](0)

0
, (3)

Q ∙ Q =
√

5




{

(S†d̃ + d†s)(2) −

√
7

2
(d†d̃)(2)

}

x

{

(s†d̃ + +d̃s)(2) −

√
7

2
(d†d̃)(2)

}




(0)

0

, (4)

T3 ∙ T3 = −
√

7
[
(d†d̃)(2)x (d†d̃)(2)

](0)

0
, (5)

T4 ∙ T4 = 3
[
(d†d̃)(4)x (d†d̃)(4)

](0)

0
. (6)

In the previous formulas,nd is the number of boson;P∙P,
L ∙ L, Q ∙Q, T3 ∙ T3 andT4 ∙ T4 represent pairing, angular mo-
mentum, quadrupole, octupole and hexadecupole interactions
between the bosons;EPS is the boson energy; andPAIR,
ELL, QQ, OCT, HEX is the strengths of the pairing, angular
momentum, quadrupole, octupole and hexadecupole interac-
tions.

2.2 Transition rates

The electric quadrupole transition operator employed in this
study is:

T(E2) = E2S D∙ (s†d̃ + d†s)(2)+

+ 1√
5

E2DD ∙ (d†d̃)(2) .
(7)

E2S DandE2DD are adjustable parameters.
The reduced electric quadrupole transition rates between

Ii → I f states are given by:

B(E2, Ii − I f ) =
[< I f ‖ T(E2) ‖ Ii >]2

2Ii + 1
. (8)

Fig. 1: A: Potential energy surfaces for100Ru. B: Comparison be-
tween exp. [19] and theoretical IBA-1 energy levels.

3 Results and discussion

3.1 The potential energy surfaces

The potential energy surfaces [17],V(β, γ), as a function of
the deformation parametersβ andγ are calculated using:

ENΠNν (β, γ) = <NπNν; βγ |Hπν|NπNν; βγ> =

= ζd(NνNπ)β
2(1+ β2) + β2(1+ β2)−2×

×
{
kNνNπ[4 − (X̄πX̄ν)β cos 3γ]

}
+

+

{

[X̄πX̄νβ
2] + Nν(Nν − 1)

(
1
10

c0 +
1
7

c2

)

β2

}

,

(9)

where

X̄ρ =

(
2
7

)0.5

Xρ ρ = π or υ. (10)

The calculated potential energy surfaces,V(β, γ), are
presented in Fig. 1A. The flat potential in the critical sym-
metry point has supported quite well theE(5) characters to
100Ru nucleus. Also, the energy ratios presented in Table 4
as well as the existance of100Ru isotope between the spher-
ical anharmonic vibrator98Ru andγ - soft 102Ru nuclei [9]
supported theE(5) characters.

3.2 Energy spectra

The energy of the positive and negative parity states of100Ru
isotope are calculated using computer code PHINT [18]. A
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I+i I+f B(E2) I+i I+f B(E1)

01 Exp*. 21 0.490(5) 11 01 0.0030

01 Theor. 21 0.4853 11 02 0.1280

21 01 0.0970 31 21 0.1211

22 01 0.0006 31 22 0.0415

22 02 0.0405 31 23 0.0002

23 01 0.0000 32 21 0.0024

23 02 0.0759 32 22 0.0197

23 03 0.0087 32 23 0.2126

24 03 0.0066 51 41 0.2533

24 04 0.0588 51 42 0.0480

41 21 0.1683 51 43 0.0006

41 22 0.0142 71 61 0.3950

41 23 0.0319 71 62 0.0446

61 41 0.2039 91 81 0.5439

61 42 0.0179 91 82 0.0342

61 43 0.0242 111 101 0.6983

81 61 0.2032

81 62 0.0183

81 63 0.0157

101 81 0.1678

101 82 0.0175

Table 2: CalculatedB(E2) andB(E1) in 100Ru.

I+i I+f I+′ f Xi f ′ f (E0/E2)100Ru

02 01 21 0.027

03 01 21 0.347

03 01 22 0.009

03 01 23 0.042

03 02 21 0.086

03 02 22 0.002

03 02 23 0.010

04 01 22 0.010

04 01 23 0.010

04 01 24 0.113

04 02 22 0.030

04 02 23 0.034

04 02 24 0.340

04 03 21 0.454

04 03 22 0.010

04 03 23 0.011

04 03 24 0.113

Table 3: CalculatedXi f ′ f (E0/E2).

Energy Ratios E4+1
/E2+1

E2+2
/E2+1

E(5) 2.19 2.20

Exp. [19] 2.27 2.52

IBA− 1 2.12 2.11

Table 4: Energy ratios ofE(5) characters to100Ru.

Fig. 2: A: Angular momentumI as a function of (~ω). B: (ΔI = 1),
staggering pattern for100Ru isotope.

comparison between the experimental spectra [19] and our
calculations, using values of the model parameters given in
Table 1 for the ground state band are illustrated in Fig. 1B.
The agreement between the calculated levels energy and their
correspondence experimental values are slightly higher espe-
cially for the higher excited states. We believe this is due to
the change of the projection of the angular momentum which
is due mainly to band crossing.

Unfortunately there is no enough measurements of elec-
tromagnetic transition ratesB(E1) or B(E2) for 100Ru nu-
cleus. The only measuredB(E2,0+1→ 2+1) is presented, in
Table 2 for comparison with the calculated values[20]. The
parametersE2S D andE2DD displayed in Table 1 are used
in the computer code NPBEM [18] for calculating the elec-
tromagnetic transition rates after normalized to the available
experimental values. No new parameters are introduced for
calculating electromagnetic transition ratesB(E1) andB(E2)
of intraband and interband.

The moment of inertiaI and angular frequency~ω are
calculated using equations (11, 12):

2I
~2

=
4I − 2

ΔE(I → I − 2)
, (11)

(~ω)2 = (I2 − I + 1)

[
ΔE(I → I − 2)

(2I − 1)

]2

. (12)

The plot in Fig. 2A show back bending at angular mo-
mentumI+ = 10. It means, there is a crossing between the
(+ve) and (−ve) parity states in the ground state band which
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was confirmed by calculating the staggering effect where a
beat pattern has been observed, Fig. 2B.

3.3 Electric monopole transitions

The electric monopole transitions,E0, are normally occurring
between two states of the same spin and parity by transferring
energy and zero unit of angular momentum. The strength of
the electric monopole transition,Xi f ′ f (E0/E2), [21] can be
calculated using equations (13, 14); results are presented in
Table 3

Xi f ′ f (E0/E2) =
B(E0, Ii − I f )

B(E2, Ii − I ′ f )
, (13)

Xi f ′ f (E0/E2) = (2.54× 109) A3/4×

×
E5
γ(MeV)

ΩKL
α(E2)

Te(E0, Ii − I f )

Te(E2, Ii − I ′ f )
.

(14)

Here: A is mass number; Ii is spin of the initial state where
E0 and E2 transitions are depopulating it; If is spin of the
final state of E0 transition; I′ f is spin of the final state of E2
transition;Eγ is gamma ray energy;ΩKL is electronic factor
for K,L shells [22];α(E2) is conversion coefficient of the E2
transition;Te(E0, Ii − I f ) is absolute transition probability of
theE0 transition betweenIi andI f states, andTe(E2, Ii − I ′ f )
is absolute transition probability of theE2 transition between
Ii andI ′ f states.

3.4 The staggering

The presence of (+ve) and (−ve) parity states has encouraged
us to study staggering effect [23–25] for100Ru isotope using
staggering function equations (15, 16) with the help of the
available experimental data [19].

S t(I ) = 6ΔE(I )− 4ΔE(I − 1)− 4ΔE(I + 1)+

+ΔE(I + 2)+ ΔE(I − 2) ,
(15)

with
ΔE(I ) = E(I + 1)− E(I ) . (16)

The calculated staggering patterns are illustrated in
Fig. 2B and show an interaction between the (+ve) and (−ve)
parity states for the ground state band of100Ru.

3.5 Conclusions

IBA-1 model has been applied successfully to100Ru isotope
and:

1. The levels energy are successfully reproduced;

2. The potential energy surfaces are calculated and show
E(5) Characters to100Ru;

3. Electromagnetic transition ratesB(E1) and B(E2)
are calculated;

4. Bending for100Ru has been observed at angular mo-
mentumI+ = 10;

5. Strength of the electric monopole transitions
Xi f ′ f (E0/E2) are calculated; and

6. Staggering effect has been calculated and beat pattern
has been obtained, showing an interaction between the
(−ve) and (+ve) parity states.
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A New Large Number Numerical Coincidences
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In this article, the author gives a set of new hypothesis wherein he presents new, ex-
act and simple relations between physical constants and numbers. The author briefly
analyses the discovered coincidences in terms of their accuracy and confidence, while
leaving himself aside any physical explanation of the presented formulas. Important:
all the found relations have a common nature of the “power of two”. The exact nature
of this remains unknown for yet, so it requires further research. The presented material
may also be viewed as a logical continuation and developmentof Dirac’s and Edding-
ton’s Large Numbers Hypothesis (LNH). However, in contrastto Dirac’s LNH, two of
the presented ratios are not approximate but manifest exactequality. This allows a the-
oretical prediction of the Universe’s radius as well as a calculation of the exact value of
Newtonian gravitational constantG, which all fall within the range of the current mea-
surement data and precision. The author formulates these Large Number Numerical
(LNN) coincidences by realizing that further discovery of their meaning may lead to a
significant change in our understanding of Nature. In this work, SI units are used.

Introduction

Many attempts of bringing together physics and numerology
had been done before but a very important step was done in
1938 by Arthur Eddington. According to Eddington’s pro-
posal the number of protons in the entire Universe should be
exactly equal to:NEdd = 136× 2256 ≈ 1079 [1, 2, 17]. So, it
was hypothesised that square root ofNEdd should be close to
Dirac’s Big numberN ≈

√
136× 2256 =

√
136× 2128. Later

on, Eddington changed 136 to 137 and insisted that the fine
structure constant has to be precisely 1/137, and then his the-
ory seemed to fail at this cornerstone. However, Eddington’s
statement also had the number (2128)2 which has been left
without proper attention. Actually, few years earlier, in 1929,
it was German physicist R. Fürth who proposed to use 1632

(which is also 2128) in order to connect gravitation to atomic
constants [10]. However, all these coincidences have been
left unexplained until present time. As G. Gamov said [16]:
“Since the works of Sir Arthur Eddington, it has become cus-
tomary to discuss from time to time the numerical relations
between various fundamental constants of nature”. For exam-
ple, another interesting attempt to use “a log-base-2 relation”
between electromagnetic and gravitational coupling constant
was made by Saul-Paul Sirag, the researcher from San Fran-
cisco in 1979 [12]. Particularly, as noted, power of 2 should
have significant role in numerical relations for physics con-
stants according to the author’s idea.

Suggested four Large Number Numerical (LNN) relations
or coincidences are presented below. These coincidences are
not dependent and related to each other, so prove or disprove
of one of them does not mean the same for the others. They
all have common number of 2128. First two relations seem
to be exact equations, and second two are valid with defined
uncertainty. Because of that their nature is more hypothetical,
so second two relations are also called “weak”.

1 Cosmological coincidence

The relation is analogous to famous Dirac’s ratioRU/re ∼ 1040

which relates the Universe radius with classical
electron radius. However, Dirac’s ratio is actually valid only
approximately (with precision of “the same order of mag-
nitude”), in opposite, the suggested replacement is an exact
equation given as follows:

RU

λe
= 2128, (1)

whereRU is value for the radius of the observable Universe
andλe = ~/mec ≈ 3.86 × 10−13 (m) is electron’s reduced
Compton wavelength (De Broglie wave). The relation (1)
provides us with precise size and age of the observable Uni-
verse. So it leads to exact value for the Universe radius of
RU = 1.314031× 1026 meters corresponding to the Universe
age of 13.8896 billion years.

Recently F.M.Sanchez, V.Kotov, C.Bizouard discovered
that the use of the reduced electron Compton wavelength is
decisive for the compatibility of the Hubble-Lemaitre length
with 2128 [13–15]. They use this length unit because of pro-
posed holographic relation involving it. Here, the author in-
dependently developes this idea suggesting that (1) is an exact
relation.

The age of the Universe, according to the Wilkinson Mi-
crowave Anisotropy Probe (WMAP) 7-year results, is 13.75±
0.13 billion years [9]. Latest NASA observation by Hubble
gives the age of the Universe as 13.7 billion years [3]. It is
very close to the obtained value and lies in the existing er-
ror range. So, the coincidence (1) seems to define the exact
Universe elapsed life time as:

TU =
λe

c
2128. (1.1)
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Important to note, that having (1.1), initial Dirac’s relation
may be expressed in the following form:

N1 =
RU

re
= α−1 2128, (1.2)

whereα−1 = 137.036 is inverted fine structure constant and
re = ke2/(mec2) — classical electron radius with eliminated
numerical factor (i.e. equal to unity) andN1 is exact value for
the large number introduced by Dirac (4.66× 1040). As we
know for sure that the Universe is expanding andRU(t) is de-
pendent on time, so the equation (1) suggest that one or few of
the fundamental constants (h, c, me) should also vary in time.
However, current uncertainty inRU measurement still leaves
a room for other alternative ideas and possible coincidences.
For example, noting thatmp/me ∼ 40/3 × α−1, relation (1)
can have another form:

RU =
mp

me

1
4

(

3
10

ke2

mec2

)

2128 (1.3)

which would correspond to 13.95809 Gyr. As this value is
currently out of the present WMAP data frame, therefore it is
not supported by the author here.

2 Electron-proton radius coincidence

Another interesting idea connects the classical proton radius
and gravitational radius of the electron by an exact equation
as follows:

rp

rge
= 2128, (2)

where rp =
1
2

3
5 ke2/(mpc2) — classical proton radius and

rgp = 2Gme/c2 — gravitational electron radius (i.e. the
Schwarzschild radius for the electron mass). Of course some
comments are required regarding coefficients 1

2 and 3
5. Usu-

ally numerical factors are ignored or assumed to be close
to unity when defining classical (electron) radius. However,
suggested new definition has exact numerical factor3

10 =
3
5 ×

1
2, so it is obvious to have the following explanations for

that one by one:

• Ratio 3
5 is classical proton radius definition. The only

important difference with modern representation of the
classical radius is the coefficient 3

5. It is well known
from electrostatics that the energy required to assem-
ble a sphere of constant charge density of radius r and
charge r isE = 3

5 ke2/r. Usually these factors like35 or
1
2 are ignored while defining the classical electron ra-
dius. Surprisingly, the coincidence advices the use of
3
5 which means that charge is equally spread within the
sphere of the electron (or proton) radius.

• Ratio 1
2 in classical proton radius definition. Usual def-

inition of the classical radius does not require having
1
2 because initially one relates total electrostatic energy
(Ee) of the electron (or proton) to rest mass energy as

following: Ee = mc2. The factor1
2 appears if one pos-

tulates that electromagnetic energy (Eem) of the elec-
tron or proton is just a half of particle’s rest mass en-
ergy as:Eem =

1
2 mc2. There are two possible alterna-

tive explanations for this:

1. The Virial Theorem that tells us that the potential
energy inside a given volume is balanced by the
kinetic energy of matter and equals to half of it.
So if one considers electromagnetic energy as ki-
netic and rest mass as potential energy we would
have:Eem =

1
2 mc2;

2. Simply assuming that half of total energy may be
magnetic energy or of another nature. One may
also propose that there could be no1

2 in classical
proton radius definition, but there is 2129 instead
of 2129 in formula (2). From the author’s point
of view this does not correspond to reality, and
particularly the number 2128 should have strong
presence in all numerical expressions of Nature.

It can be easily seen thatrp = (me/mp)re, so another way
to rewrite (2) is:

re

rge
=

mp

me
2128. (2.1)

And this leads to another possible representation of the initial
formula as: re

rgp
= 2128, (2.2)

where re is classical electron radius,rgp is gravitational
(Schwarzschild) radius of the proton. The expression (2.2)
is very similar to (2). So, we may actually combine them into
another interesting equation:

rp rgp = re rge. (2.2a)

The precision of the Electron-protoncoincidence given by
(2) is smaller than 0.02%. From the author’s point of view this
deviation originates from current uncertainty in gravitational
constant (G) measurement. If we consider that the relative
G uncertainty nowadays is around and not less than 0.02%
then we must accept this amazing and unexplained coinci-
dence that allows us to predict the exact value for the grav-
itational constant (G). So, this finding suggests that the fol-
lowing possible consequences are valid. Firstly, because of
3
5 ratio proton or electron still may be considered as classical
particle with uniform charge density inside its radius. And
secondly, directly from (2) one can express the value of the
Newtonian constant of gravitation (G) exactly as follows:

G =
3
20

ke2

mpme
2−128. (2.3)

It leads to exact value forG = 6.674632× 10−11. This
value is within the frame of 2010 CODATA-recommended
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value with standard uncertainty given by: 6.67384±0.00080×
10−11 [6] (See also figure). One may compare this expression
with the similar one obtained in 1929 by R. Fürth [10]:

G =
hc

π(mp + me)2
= 1632

that is read in SI units forG as:

G =
2~c

(mp + me)2
16−32.

It is interesting to compare it to (2.3) to note obvious sim-
ilarity. However, one may see that the expression is not satis-
factory because it leads to the value of (G = 6.63466×10−11)
which has significant deviation (0.59%) and is far out of 2010
CODATA range. So, the expression 2.3 (which fits well to
modern data) is quite challenging because it may be con-
firmed or disproved by future experimental data forG.

Fig. 1: The figure with recent experimental data for the Newtonian
constant of gravitationG. The vertical line corresponds to the value
obtained from (2.3).

Though the obtained value fits quite well into current ex-
perimental data, the author does not exclude some possible
small deviations caused by vacuum polarisation and conse-
quent slight deviation from the uniformity of the charge dis-
tribution (like Uehling Potential). So we will look at this in
future works.

It is also important to stress that the use of classical pro-
ton radius here is very provisional and in principle could be
avoided: so the same result forG may be obtained using only
the electron’s classical radius.

It is easy to note also that Dirac’s Large NumberN pre-
cisely equals to:

N =
ke2

mpme
=

20
3

2128. (2.4)

This means that variation of Dirac’s Large Number (N)
in time is hardly possible, because 2128 represents simply the

constant number. So the ratio of the electromagnetic force
to the gravitational one remains always constant during the
current epoch.

3 Weak cosmological coincidence

2c3

G
≈

mp

tp
2128, (3)

where c is speed of light,G is the gravitational constant,
tp = ~/(mpc2)-period of reduced Compton wave of the pro-
ton. This equation may be interpreted as relation of rate of
mass growth or the expansion rate of the Universe [4, 5] to
harmonic properties of the proton as wave. However the rel-
ative precision of (3) is 0.48% (or even 0.49% if we accept
definition of G as in 2.3) which is unsatisfactory for mod-
ern measurements and it makes the expression valid only ap-
proximately. In order to become more precise the expression
should have the following representation:

2c3

G
≈

mp + 9me

tp
2128. (3.1)

Or alternatively (to become exactly precise):

2c3

G
=

mp

tp

20
3
α−1 2128. (3.2)

But further discussion of this topic will be explored in
future works.

4 Weak electron-proton mass ratio

The attempts to explain large numbers by placing inverted
fine structure constant in exponential function have been done
many times before [11, 12]. Another interesting hypothesis
could relate proton to electron mass ratio with fine structure
constant and the number 2128 in the following manner:

mp

me
≃

7
2

2(α−1−128). (4)

However the relative precision is comparably high (0.06%)
and is out of the error frame of the current experimental data.
However, using this relation as approximation, one can find
similar connections of derived formulas to the similar onesin
work [12].

Conclusion

The basic meaning of all these relations may be viewed in
the form of exact equality for large Dirac’s numberN (see
2.4). However, all these proposals disprove one of the Dirac’s
hypothesis regarding the equality of the big numbers [2, see
p. 200]. So, the author has shown that the numberN, which is
the ratio of the electromagnetic force to its gravitationalforce
given by (2.4), is actually not equal to numberN1 which is
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the ratio of Universe radius to classical electron radius (1.2).
However these two differ only by the numerical factor of
20.55= α−1 × (3/20). So, the main conclusions of this study
are as follows:

• Current Universe age and radius can be calculated ex-
actly (13.8896 Gyr);

• The value of Newtonian constant of gravitation (G) can
be derived exactly (6.674632× 10−11);

• The number 2128 should have a real significance in the
constants of Nature.

Generally the concept of “power of two” could be re-
garded as having two properties in science. Firstly, it is digital
(logical) math where power of two has common use. So this
may support an idea of holographic concept of the Universe
or some of the fractal theories. Secondly, it is used in wave
mechanics, and it could be viewed in accordance with wave
properties of the elementary particles in quantum physics.In
terms of wave concept, the number of 2128 corresponds to
the tone of 128-th octave or to some higher harmonic (“over-
tone”) of the main tone. It is interesting to mention that a
very close idea has been brought few years ago. The idea re-
lates particles mass levels within two sequences that descend
in geometric progression from the Plank Mass. Sub-levels
are arranged in subsequence of common ratio which uses a
power of 2 [7, 8]. The author is also very supportive to the
point of view given in [13–15], however it is important to
stress that physics should be free from approximate relations
and should have only precise equalities and formulas. Some
of the exact formulas which may help to support such general
ideas have been presented in this work. If new suggested re-
lations for Large Numbers are correct then it should probably
lead to new search for its hidden meaning. As always, we
must accept the fact that in often cases new findings lead to
new questions instead of the answers and that might become
a new challenge for new investigations and theories. Assum-
ing that at least one of the discovered relations is correct in
the future we may become a bit closer to the true view on
physical reality.

Submitted on December 17, 2012/Accepted on December 20, 2012
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Proper Space Kinematics

Sean Wade
P.O. Box 246, Highmount, NY, 12441. E-mail: seanwadePSK@verizon.net

It is desirable to understand the movement of both matter andenergy in the universe
based upon fundamental principles of space and time. Time dilation and length contrac-
tion are features of Special Relativity derived from the observed constancy of the speed
of light. Quantum Mechanics asserts that motion in the universe is probabilistic and
not deterministic. While the practicality of these dissimilar theories is well established
through widespread application inconsistencies in their marriage persist, marring their
utility, and preventing their full expression. After identifying an error in perspective the
current theories are tested by modifying logical assumptions to eliminate paradoxical
contradictions. Analysis of simultaneous frames of reference leads to a new formula-
tion of space and time that predicts the motion of both kinds of particles.Proper Space
is a real, three-dimensional space clocked by proper time that is undergoing a densi-
fication at the rate ofc. Coordinate transformations to a familiarobject spaceand a
mathematicalstationary spaceclarify the counterintuitive aspects of Special Relativity.
These symmetries demonstrate that within the local universe stationary observers are
a forbidden frame of reference; all is in motion. In lieu of Quantum Mechanics and
Uncertainty the use of the imaginary numberi is restricted for application to the label-
ing of mass as either material or immaterial. This material phase difference accounts
for both the perceived constant velocity of light and its apparent statistical nature. The
application of Proper Space Kinematics will advance more accurate representations of
microscopic, macroscopic, and cosmological processes andserve as a foundation for
further study and reflection thereafter leading to greater insight.

1 Introduction

The planets dancing in the heavens, an apple falling to earth
each kindle curiosity about the dynamical universe. The mys-
teries of the unseen world and its apparent influences on daily
life inspire wonder and imagination. Such observations drive
the search for hidden constraints that govern the actions of
atomic particles and molecules, ballistic objects, and celes-
tial bodies. Guided by tools of logic, intuition, and creativity
philosophers, scientists, and mathematicians strive to model
laws that describe movement in each realm. Many years of
disparate effort and the resulting accumulation of knowledge
demonstrate that there are underlying commonalities that ap-
ply across all physical scales. This connectedness prompts
the realization that searching for unifying first principles
based upon fundamental aspects of space and time is an at-
tainable goal. Understanding the foundation that the universe
is built upon enables the continuing pursuit of deeper and
more profound truths and further illuminates the miracle of
human existence.

In 1905 Albert Einstein published his landmark work
Zur Elektrodynamik bewegter Körper[1] (translated as
On the Electrodynamics of Moving Bodies[2]). He stated
that it was well known that under transformation to a moving
reference frame Max-well’s equations acquired asymmetries
that were not present in nature. Einstein resolved these incon-
sistencies by introducing two fundamental principles [2]:

1. The laws by which the states of physical systems un-
dergo change are not affected, whether these changes

of state be referred to the one or the other of two sys-
tems of co-ordinates in uniform translatory motion.

2. Any ray of light moves in the “stationary” system of
co-ordinates with the determined velocity c, whether
the ray be emitted by a stationary or by a moving body.

The first postulate identified inertial frames of reference.The
second postulate emphasized the constancy of the speed of
light. From these followed the development of Special Rela-
tivity as a basis for motion.

Although the efficacy of Special Relativity cannot be de-
nied it is a mathematical physics derived from the observa-
tions of light approaching any observer at the same speed re-
gardless of the specific frame of reference. Any element of
a theory that behaves identically under all applications must
itself lie outside this theory and for this reason the actionof
discrete quanta requires a separate and distinctly different ex-
planation.

This leads to the hard-fought and hard-won triumph of
the Copenhagen interpretation of Quantum Mechanics culmi-
nating in its emergence as the preeminent theory of modern
physics [3]. Owing to their experimental origins the compo-
sition of each theory contains mathematical elements that are
not immediately obvious and consequently can act as obsta-
cles to understanding and usage. If the basic realities of space
and time are known then it is possible to properly explain the
curious details of motion of all objects in the native environ-
ment and show that they proceed in a logical and intuitive
way from this physical foundation.
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This research is motivated by a personal failure of under-
standing attributable to the lack of a fundamental mechanics
capable of explaining all rudimentary motion in the universe
as derived from the basic condition of spacetime. Guided by
instinct and curiosity the contemporary scientific theories and
the corresponding philosophies are explored through a care-
ful analysis of perspective; long-held premises are testedand
discarded by virtue of the necessity to eliminate contradic-
tion. The result of the methodology described in this paper
addresses a kinematics which describes free motion without
forces and interactions and with no regard for collisions and
the associated quantities of energy, momentum and mass. A
first principles theory is significant in that it can immeasur-
ably improve physics on every level by serving as a foun-
dation for the advancement of larger fields of research. The
sluggish pace of grand unification, the overwrought complex-
ity of string theory, the extremes of quantum gravity, the per-
plexity of dark matter, and the simplistic seeming three body
problem are currently unresolved issues in physics [4]. These
problems along with technological improvements to solar cell
efficiency and medical scanning devices are among those that
can potentially benefit from the application of Proper Space
Kinematics.

2 Methodology

As a part of natural skepticism and scientific inquiry it is of-
ten useful to be able to replicate the research process both as
a test of results and as a guide to understanding. In theoretical
work much of the effort is introspective and it is impossible to
retrace the labyrinthine mental pathways that lead to thesere-
sults. In light of this difficulty it is practical to detail the initial
impetus that motivated the author and to provide an overview
of the techniques employed in the striving for enlightenment.

It is always more difficult to understand the fundamental
principles that govern a system when the only perspectives
available lie within the system itself. For this reason it isde-
sirable to find a vantage point or frame of reference that lies
outside the system so as not to be influenced by or subject to
whatever constraints are imposed upon its occupants. In re-
viewing the basic elements of Special Relativity it is troubling
that there are inconsistencies in the currently used theorybe-
tween the common explanations and the mathematical model.
While the equations purport to explain motion from an exte-
rior viewpoint it is a theory ofrelativemotion that performs
as if a massive object occupies the choice of origin. This
fallacy compounds the suspicion that an accurate picture of
reality may not be known and necessitates the need for fur-
ther exploration of this phenomena the source of which must
thereafter be inferred from these confused aspects. In a sim-
ilar mien the self-circular reasoning involved in using light
itself as a mediator to measure lightspeed is also an obsta-
cle to understanding and conceals basic mechanisms that are
vital to accurately model the system mathematically.

Other concerns arise from a thoughtful analysis of the
present philosophy. If the lightspeed barrier is a limitingcon-
dition then this implies that the velocity of an object is a more
important kinematical consideration than position or acceler-
ation. A cursory examination of the invariant interval sug-
gests that its spatial and temporal components act in opposi-
tion to each other across varied reference frames although the
use of hyperbolic functions would conversely imply a con-
junction of underlying influences. The question of balance
imparts an impression of rotation along a spectrum instead of
a deviation from zero which is compounded by the inability to
rotate a vector of zero length and might lead to the conclusion
that nothing is static. The Quantum Mechanical proposition
that the universe is unknowable at its most basic level and the
ensuing enigma of wave-particle duality raise further reserva-
tions. Intuitively the structure of the universe should be based
on the least number and simplest of principles although wis-
dom dictates that allowances be made for the possibility of
deliberate design.

Logic is a weak tool for dissecting a system that is known
to have defects in its application and for this reason a trial-
by-solution is likely to be ineffective. Therefore the course
of action must include an exploration using physical intuition
and not only a mathematical manipulation of equations. This
is accomplished through repeated testing of both implicit and
explicit assumptions to find the origins of paradoxical situ-
ations and then to remove these faults. The movements of
both energy and matter in spacetime are studied with care-
ful consideration of perspective in an attempt to unravel the
knot of relativity and to imagine an extrauniversal viewpoint.
Producing an accurate answer to the dilemmas detailed here
requires substantial time for trial calculations, for searching
through potentially applicable literature, and for reevaluating
conventional concepts through quiet reflection.

3 Results

The natural universe is undergoing a process ofdensification
and is described here as being composed of three real spatial
coordinates and one real monodirectional temporal counter.
Densification is defined for this demesne as an increase in the
density of space that occurs in the measure of distance be-
tween any two disparate points clocked by proper time and
progressing at the rate ofc. Previously referred to as light-
speed the particular value of thecharacteristic velocityas it
has been measured serves as a label for the universe as well as
all residents. It is further assumed that the inhabited universe
is infinite though possibly bounded, is fixed relative to any
preternatural background, if one exists, and is not undergoing
additional physical alteration. The kinematics of finitesimal
objects is derived for the movement of noninteracting rigid
bodies traveling at constant speed. The premise of constant
speed translates across allspaces. Initially this derivation is
done without the qualification of particles as either matteror
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energy. For the purposes of this paper it is practical and suf-
ficient for understanding to consider equations of motion of
only one dimension since any path traversed at constant speed
can be parameterized as such and densifies at the same rate;
extrapolation to all three dimensions is a straightforwardtask.

Length and time are measured with a ruler and a clock [5].
Proper Spaceis denoted by the variablez and experiences
densification dependent on proper time which is denoted by
the independent variable tauτ. In this case the clock is also
embedded within the ruler and is not considered an addi-
tional physical dimension. Inobject spacespace and time are
treated on equal footing as independent dimensions and are
denoted byx andt, respectively. These variables have local
values that manifest densification as contraction and dilation
in mimicry of many of the details of Special Relativity and
continue to suffer from dependence on frame-specific relative
velocity.

Measurements of physical observables are made in object
space and converted to values in proper space where the ac-
tion originates. The coordinate transformation for lengthor
displacement involves the scale change

dz = f dx. (1)

The unitless scale factorf is defined for densification as a
density of pointswhich is represented by a ratio of infinities
increasing from unity as

f =

(

dx+ cdt
dx

)

= 1+

(

cdt
dx

)

. (2)

Simple substitution of(2) into (1) yields the coordinate trans-
formation between spaces

dz = dx+ cdt. (3)

This is the conversion for points in space with an explicit de-
pendence on elapsed time. Contrary to expectation with den-
sification a scale transformation from object space to proper
space takes a form that is reminiscent of a Galilean boost [6].

The burgeoning density of proper space requires the use
of additional notation for the properwaxing velocity, denoted
byw, while in object space the concept of velocity is retained
as it is traditionally used and remains denoted byv. The rela-
tionship between the two quantities is

w ,
dz
dτ
= α (v + c) . (4)

Values for the velocity in object space persist within the range
of (−c, c) while values for the waxing velocity are always pos-
itive within the range of [c, 0). Open endpoints of each in-
terval are forbidden for the same reason; denizens of the uni-
verse must always experience the advancement of proper time
in some nonzero fraction. Accordingly values for thetempo-
ral dilation coefficient, marked by alphaα, vary as [1, 0). In-
finite dilation is taboo and is expressed by the avoidance of
an asymptotic value of zero forα.

In a break from prior theories of motion it is important
that velocities in all spaces are measured from a special class
of perspectives hereinafter referred to asproper frames. The
choice of axes may be made without particular regard for po-
sition but must be boosted to the specific velocity wherebyt
reaches the maximum expression ofτ and experiences densi-
fication at its fullest flowering. Proper frames can be thought
of as critical points and specific values associated with these
perspectives arew= c, v=0 andα=1.

For the sake of completeness it is worthwhile to also de-
fine astationary space, denoted byy, which advances with
the preceding variable of proper timeτ. This nonphysical
construct may be mathematically advantageous as it allows
for the use of global variables that forgo dependence on rel-
ative perspective but carries the caveat that the space is not
demonstrative of physical reality. The scale-densification —
to — boost technique above is repeated to provide the trans-
formation to proper space as

dz = dy + cdτ. (5)

Measurements of length or distance are converted from object
space to corresponding values in stationary space through the
transitive property with application of(3) and (5) to yield

dy + cdτ = dx+ cdt. (6)

For stationary space apseudovelocityis defined asu and takes
on the values(−c, c). Values ofu are somewhat analogous to
velocitiesv in object space e.g., adopting the value of zero
in a proper frame wheredt = dτ. The relation for the two
quantities is

u ,
dy
dτ
= α (v + c) − c. (7)

As proper space and stationary space both share the variable
τ as proper time the relationship between velocities is more
simple as

w = u+ c. (8)

The choice of alphabetically proximate variables is a mne-
monic convenience that is intended to be familiar and resem-
ble current definitions but not to imply any other mathemat-
ical relationship including equivalence with commonly used
spatial unit vectors. The invariant variables is reserved for
possible future use.

4 Discussion

Change is the true nature of the universe and the densifica-
tion of proper space depicts the most authentic representation
of space and time. A static ruler of fixed length is a forbid-
den item; an absolutely stationary observer is a nonsensical
frame of reference that does not exist. Although this picture
of reality is not mathematically convenient it is the correct
philosophy to accurately model basic kinematics. Object(-
ive) space is the milieu where action is perceived and mea-
surements are made. The coordinate transformation to proper
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space takes the form of a boost centered oncwhich arises, not
surprisingly, from the defining feature of the universe. This
conversion yields the advantage to the waxing velocity which
can always be rotated since it is never zero as objects must
experience some positive slice of proper time. Objects mov-
ing at the same rate as densification do not experience the
passage of proper time and therefore cannot inhabit this uni-
verse. It should not be overlooked that the transformation is
originally a scale change whereby the size of massive objects
is growing relative to the coordinate system with the densifi-
cation. It is the growth of the span between the center of mass
of an object and any other contained point within that same
object that is seemingly retarded in entities not occupyinga
proper frame of motion. Consideration of the action of only
infinitesimal points does not reveal this detail. It is helpful
if the time-dependent metric tensor is visualized as the ruler
growing shorter and shorter thus creating an illusion of infla-
tion. The author supposes that the idea of densification within
fixed boundaries is an option that Einstein either discardedor
failed to consider and is the source of his self-critical vacilla-
tion regarding the Cosmological Constant [7].

In a brief departure from kinematics an examination of
multiple perspectives clarifies the necessity for a preferred
frame of interaction. Collisions cannot have different out-
comes in different frames otherwise every incident can be
transformed into a destructive event. Synchronization to a
proper frame is a sufficient condition to preserve the integrity
of any physical interaction; the regimentation also reempha-
sizes the significance of velocity. This interpretation of simul-
taneity provides the means to intellectually resolve the well-
known gedanken paradox [8]: what are the ages of the travel-
ing twins? There currently exists an abundance of experimen-
tal and observational data which can be used to determine the
validity of proper frames. The incongruity of superluminal
travel can be rectified by application of the results discussed
here and the presence of tachyons is discarded.

Terminology relating to motion must be used cautiously
since the concepts involved vary among the different spaces
despite a similarity in formulation. Calculations done in sta-
tionary space remove some of the difficulties of perspective
that are inherent to the other spaces but readers are warned to
remember that this is not a physical reality. In object space
it is time that slows and space that contracts as a function
of speed to the detriment of the occupying objects. A se-
quence of snapshots in proper space shows that movement in
any direction produces an apparent spatialand temporal di-
lation based upon the movement of a mass impinging on the
budding densification. Part of the virtue of proper space is
that the object itself is not actually altered and the percep-
tion of dilation occurs only in the direction of motion while
densification continues unabated along all other axes. Along
with the increase in movement this retardation of proper space
and proper time is demonstrated as a decrease in the wax-
ing velocity although the moving particle still perceives den-

sification continuing atc. A reasonable choice for a func-
tional definition ofw is the hyperbolic secant as a function
of the angle of dilation, represented by phiϕ, and demon-
strated inw= csech(ϕ) making it more akin to a speed than
a velocity. The positive-definite, even function is a rotation
of phi through the real interval(−∞,∞) as measured from a
proper frame and this run equates with the previously detailed
bounds forw of [c, 0). The choice of hyperbolic functions is
preferred over the circular transcendental equations as the hy-
perbolics are independent of the imaginary numberi.

Consideration of the relative velocity between bulk ob-
jects with determinate length requires the use of a proper
frame. A measurement of relative velocity is inadequate to
completely determine the true states of objects in the system;
two measurements are required to establish the correct scal-
ings for space and time. Take the example in object space of
two massesat restto a specific proper frame as well as to each
other; the waxing velocity of each frame in proper space isc.
While the relative velocity in object space between the centers
of mass remains at zero in proper space the relative velocity
is characteristic and not zero as might be anticipated. This
discrepancy can be partly reconciled by acknowledging the
supplemental velocity acquired in proper space which is im-
parted by the densification of the gap between the two masses.
Accordingly the correct velocities between the center of mass
frames are emphasized by primed coordinates and subscripts
enumerate the frames of reference for separate and distinct
objects as

u′ , u2 − u1, (9.1)

w
′
, u′ + c, (9.2)

and v′ ,

(

w
′

α′

)

− c. (9.3)

The sense of relative motion is preserved by these transfor-
mations; the distinction of analias versus analibi transfor-
mation is highlighted [9]. To determine the relative velocity
in object space measurements are made there first, converted
to pseudovelocities and the relative velocity calculated then
reverted to object space. All direct measurements are relative
with v′ equal tov from a proper frame. Although this compu-
tation avoids direct expression of quantities in proper space
the kernel of the action lies there.

The primed alpha coefficientα′ serves as both the relative
temporal dilation between objects as well as the transforma-
tion between frames in proper space. It is defined as a ratio
in the range of real positive numbers(0,∞) and is most eas-
ily understand as an exponential with argument given as the
difference between two angles and shown here

α
′
,

(

α2

α1

)

= e−(ϕ2−ϕ1)
. (10)

These definitions in combination with some computation re-
store the hyperbolic tangent in a composition of velocitiesin
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object space and yield a result that is in correspondence with
rapidity [10]. The assertion that values ofα′ can exceed 1
is a specific deficiency in the conventional measurement of
relative velocity. Attend to these calculations with care as
variables of the traditional theory are ill-defined by the mud-
dled use of mixed perspective due to a misconception in the
choice of laboratory frame.

The derivation is accomplished to this point without the
need fori; further descriptions of the manifest complexity of
nature require the use of imaginary numbers. The kinematics
is extended to distinguish between the movements of the two
types of mass by applying a label ofmaterialor immaterial
(i-material) to all particles whether they are matter or energy;
the two types are interchangeable provided the exchange is
done en masse. Real and imaginary objects occupy overlap-
ping worlds within the same universe because the phase di-
chotomy causes a perception of near invisibility between the
two categories of mass in which the contrary object collapses
to a dimensionless point. As seen before with dilation the
flattening is perceptual and not actual. The alternately phased
object appears to ignore densification and to therefore exist
in a forbidden state. In that the object doesn’t seem to expe-
rience scaling it performs as with a waxing velocity of zero
and erroneously claims relative velocities asw′ = c ± c and
v
′ =0 ± c. The relative motion of the oppositely phased ob-

jects either approaches or recedes depending on the relative
angle of dilation. The tipping point occurs whenϕ1= ϕ2 and
α
′ = 1 and can serve as a test provided it is possible to produce

a series of identical immaterial objects. The author defersthe
specific method for this production to the expertise of exper-
imentalists.

The expressionE=mc2 acquires a new complexion after
revisiting the outmoded concepts of the rest mass of matter
and the mass equivalence of energy. The characteristic ve-
locity measured between real and imaginary particles is su-
perficial and acts as a screening value whereby information
is hidden from the casual observer but still preserved. Rely-
ing only on light as a mediator to comprehend motion intro-
duces inaccuracies that must be corrected. A single physical
measurement of an immaterial object is underdetermined and
wrongly constrains the associated parameters of velocity and
imaginary mass. Consequently the sources of wave nature
are found to originate from the complex quality of mass and
not directly from the tableau of spacetime. The seeming lack
of determinate states which is the hallmark of Quantum Me-
chanics illustrates its subservience to statistical models and
elucidates its failure of completeness and its misappropria-
tion of fundamental reality.

5 Conclusions

Maintaining an open-minded attitude of skepticism lies at the
heart of the scientific method; challenging established ideas is
not necessarily an effort towards rebellion and anarchy. Per-

sistent testing is an important undertaking in the quest to fur-
ther humanity’s understanding of life, the universe and ev-
erything. The author is awakened to the fact that the peculiar
consequences of Albert Einstein’s Special Relativity and sub-
sequent geometric interpretation of space and time originate
from observation and the theory does not proceed directly
from a foundational source. Relying on relative viewpointsto
predict motion has an inherent handicap and in combination
with the confused measurement of lightspeed initially serve
as motivation for study. The approach to creating a kinemat-
ics involves keeping a critical eye on perspective and attempt-
ing to dispel paradoxes in order to see through to the meta-
physical center. It is a mistake to rely totally on mathematical
models of nature as they are ultimately flawed and physicists
must constantly endeavor to look beyond constructed images
of reality. If the basic realities of space and time are known
then it is possible to properly explain the curious details of
motion of all objects in the native environment and show that
they proceed in a logical and intuitive way from this physi-
cal foundation. The success of such a hypothesis would be
the pedestal on which the future of physics could be built and
would have a far-reaching influence on science and greatly
impact its application to technology in addition to answering
important philosophical questions.

The elegance of Proper Space Kinematics is that it pro-
ceeds directly from the fundamental concept that the fabric
of the universe densifies at the unique quantity and quality
of the characteristic velocityc maturing with an inescapable
duration of proper time. This insight into the inner workings
of space and time solidifies realizations regarding the arrow
of time and the spectre of irreversible entropy. It is not sur-
prising that in a study of motion appearances are deceiving
and this deception necessitates a transformation to positions
in other spaces which are difficult to visualize since the use of
a time-dependent metric is not a well-developed field of study
with much pertinent literature. Spatial densification is under-
stood by a study of the steadily mounting density of points
(Mind the infinities!) whereby a scale change converts the
growing size of objects to the form of a boost. Care at the
beginning: reconceptions of velocity and movement lead to
new definitions such as proper space’s waxing velocity and
the interrelated temporal dilation coefficient. Additionally
boosting perspective to any proper frame provides the link-
age that shows these points of view can be logically related
and provides for surety over the use of four-vectors and four-
velocities. Scrutiny of these results discerns that stationary
space is a fictitious point of view that proves to be a useful
tool.

Densification clarifies the observed nuances of motion
more clearly than Special Relativity by eschewing stationary
states and shedding new light on the evolution of the aging
universe. Scale expansion of objects is found to be a new
source of motion where movement hinders the passage of
time and limits experience. Thought problems are revisited
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and explained by the introduction of new concepts such as
proper frames providing ample opportunity for testing the va-
lidity of these new ideas; experimental and mathematical ver-
ification have many available avenues to explore. This kine-
matics shows that the movement of objects does not cause
a physical change but merely alters appearances. As parti-
cles always experience their own perspective as characteristic
the presented composition of velocities accurately details the
difference between spectators and participants. The duality
of mass shows that the landscape of space is a perpendicular
reality for matter and energy which can be tested by manu-
facturing an experimental watershed. The screening between
imaginary material phase shifts creates a Quantum confusion
due to underdetermined measurements that the author feels
does finally vindicate Einstein’s intuition. (No Dice!)

As a first principles theory which meets the onus of the
stated hypothesis Proper Space Kinematics claims jurisdic-
tion over all motion in the universe. Proper motion supplants
the golden relics of relative and absolute motion; the dubi-
ous lessons of Quantum nature must be extracted and dis-
tilled for their essential truths. As seen with Isaac Newtonin
his 1687Philosophiae Naturalis Principia Mathematica[11]
in the continuing quest for deeper insight new ideas are a
harbinger for chaos as fundamental changes in understand-
ing prompt the reevaluation of physics on every level and in
every niche. The potential impact on science and its appli-
cation expands from the theoretical to the technological to
hopefully improve the quality of human life and reinvigorate
the search for profundity. The author proposes that the next
step in this study is to complete a mechanics in full gener-
ality with metric-tensor formalism to include a derivationof
canonical coordinates with energy and momentum and an ex-
amination of accelerating objects with interactions via both
collisions and forces-at-a-distance. Delving further raises a
rich multitude of questions: Is densification in the universe
constant? What does this mean for cosmology and the birth
and death of the universe? Are there other characteristic par-
allel universes that are unseen? Is there a greater realm? How
do these results apply to the standard model? Was the cre-
ation of life and homo sapiens sapiens an accident? Why are
we here? Physicists have always searched the universe for
bedrock on which to stand but to live in harmony with our
world we must instead navigate the rising tide of space and
time and learn to walk on water.
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Before a solar model becomes viable in astrophysics, one must consider how the ele-
mental constitution of the Sun was ascertained, especiallyrelative to its principle com-
ponents: hydrogen and helium. Liquid metallic hydrogen hasbeen proposed as a solar
structural material for models based on condensed matter (e.g. Robitaille P.-M. Liq-
uid Metallic Hydrogen: A Building Block for the Liquid Sun.Progr. Phys., 2011,
v. 3, 60–74). There can be little doubt that hydrogen plays a dominant role in the uni-
verse and in the stars; the massive abundance of hydrogen in the Sun was established
long ago. Today, it can be demonstrated that the near isointense nature of the Sun’s
Balmer lines provides strong confirmatory evidence for a distinct solar surface. The
situation relative to helium remains less conclusive. Still, helium occupies a prominent
role in astronomy, both as an element associated with cosmology and as a byproduct
of nuclear energy generation, though its abundances withinthe Sun cannot be reliably
estimated using theoretical approaches. With respect to the determination of helium lev-
els, the element remains spectroscopically silent at the level of the photosphere. While
helium can be monitored with ease in the chromosphere and theprominences of the
corona using spectroscopic methods, these measures are highly variable and responsive
to elevated solar activity and nuclear fragmentation. Direct assays of the solar winds
are currently viewed as incapable of providing definitive information regarding solar
helium abundances. As a result, insight relative to helium remains strictly based on the-
oretical estimates which couple helioseismological approaches to metrics derived from
solar models. Despite their “state of the art” nature, helium estimates based on solar
models and helioseismology are suspect on several fronts, including their reliance on
solar opacities. The best knowledge can only come from the solar winds which, though
highly variable, provide a wealth of data. Evaluations of primordial helium levels based
on 1) the spectroscopic study of H-II regions and 2) microwave anisotropy data, re-
main highly questionable. Current helium levels, both within the stars (Robitaille J. C.
and Robitaille P.-M. Liquid Metallic Hydrogen III. Intercalation and Lattice Exclusion
versus Gravitational Settling, and Their Consequences Relative to Internal Structure,
Surface Activity, and Solar Winds in the Sun.Progr. Phys., 2013, v. 2, in press) and
the universe at large, appear to be overstated. A careful consideration of available ob-
servational data suggests that helium abundances are considerably lower than currently
believed.

At the age of five Cecilia [Payne] saw a meteor, and
thereupon decided to become an Astronomer. She
remarked that she must begin quickly, in case there
should be no research left when she grew up.

Betty Grierson Leaf, 1923 [1, p. 72–73]

1 Introduction

Knowledge that helium [2,3] was first observed in the Sun by
Pierre Jules César Janssen [4] and Joseph Norman Lockyer
[5], before being discovered on Earth by William Ramsay [6],
might prompt the belief that the element was abundant on the
solar surface. In fact, helium has never been identified in the
absorption spectra of the quiet Sun. Janssen and Lockyer’s
fortunate discovery was restricted to helium lines appearing
within the prominences of the corona and within the disturbed
chromosphere [4,5]. While the element was easily detectable

in these regions [7], helium has remained relatively spectro-
scopically silent on the Sun. Conversely, the stars and the
Sun display signs of extreme hydrogen abundance, as first ob-
served by Cecilia Payne [8], Albrecht Unsöld [9], and Henry
Norris Russell [10]. Few would take issue with the conclu-
sion that the visible universe is primarily comprised of hydro-
gen. Helium abundances present a more arduous question.

Despite all the difficulties, several lines of reasoning sus-
tain the tremendous attention that solar helium levels have
received in astronomy. First, helium is the end product of
the nuclear reactions currently believed to fuel many of the
stars, either in the pp process or the CNO cycle [11–15]. Sec-
ond, solar helium levels are inherently linked to the gaseous
models of the Sun [16–18] and the application of theoretical
findings to the interpretation of helioseismic results [19–23].
Finally, helium is thought to be a key primordial element in

P.-M. Robitaille. A Critical Assessment of Current and Primordial Helium Levels in the Sun 35



Volume 2 PROGRESS IN PHYSICS April, 2013

Big Bang cosmology [3, 24–30]. As a result, the evaluation
of helium levels in the Sun brings a unified vision of astro-
physics, wherein accepted solar values lend credence to our
current concept of the formation of the universe. Still, ques-
tions remain relative to the accuracy of modern helium deter-
minations.

A flurry of initial studies had suggested that helium abun-
dances in the stars approached 27% by mass (see [3] for a
review). The findings provided support for those who pro-
posed primordial formation of helium prior to the existenceof
the objects which populate the main sequence [3, 24]. How-
ever, these ideas were challenged when it was discovered that
certain B-type stars, which should have been rich in helium
lines, were almost devoid of such features [3]. As a result,
in certain stars, helium was said to be gravitationally settling
towards the interior [3,31]. The desire to link helium levels in
the Sun with those anticipated from the primordial synthesis
continues to dominate modern solar theory [18]. Nonethe-
less, it can be demonstrated that the methods used to estimate
primordial helium levels in the universe [24] are either highly
suspect or implausible. Given these complexities, it is appro-
priate to compose a critical review of how helium abundances
have been historically obtained and how they are currently de-
termined, both in the Sun and in the universe at large.

2 Assessing elemental abundances in stellar spectra

2.1 The Saha Equations

Reasoning, like Lindemann [32] and Eggert [33] before him,
that the fragmentation of an atom into an ion and an electron
was analogous to the dissociation of a molecule, Megh Nad
Saha [34, 35] formulated the ionization equations [36, 37] in
the early 1920s. In so doing, he called upon the Nernst equa-
tion [38] and suggested that the free electron could be viewed
as an ideal gas. He also relied on thermal equilibrium and
the ionization potentials of the elements. Since Saha’s equa-
tion was inherently related to parameters associated with the
ideal gas (i.e. [39, p. 29–36] and [40, p. 107–117]) he demon-
strated that the level of ionization could be increased either
with elevated temperature or decreased pressure. Saha hy-
pothesized that the pressure of the reversing layer approached
0.1–1 atm [36, p. 481] and was the first to utilize this assump-
tion to account for the appearance of spectral lines across
stellar classes as simple functions of temperature [36, 37].
He was concerned with the marginal appearance of spectral
lines [36,37], that point at which these features first appeared
on a photographic plate. Cecilia Payne [1, 41] would soon
estimate the abundance of the elements in the universe using
the same criterion [8].

In his initial work, Saha would comment on the impos-
sibility of solar temperatures increasing as one moves from
the photosphere to the upper chromosphere: “Lockyer’s the-
ory. . . [that elements become more ionized as higher eleva-
tions are reached within the chromosphere] . . . would lead us

to the hypothesis that the outer chromosphere is at a sub-
stantially higher temperature than the photosphere, and the
lower chromosphere; and that the temperature of the sun in-
creases as we pass radially outwards. This hypothesis is,
however, quite untenable and is in flagrant contradiction to
all accepted theories of physics” [36, p. 473]. Saha had not
suspected that 20th century solar theorists would maintain
such a position. Lockyer’s analysis was correct: ionization
increased with elevation in the chromosphere. This was an
important lesson relative to thermal equilibrium. In any case,
Saha did observe that hydrogen was not fully ionized in the
chromosphere, since the lines from Hα and Hβ were evident at
this level. He also recognized that hydrogen should be essen-
tially ionized in O class stars and that the lines coincidentwith
the Balmer series in these stars had originated from ionized
helium. At the same time, he outlined that the same spec-
tral lines for classes later than B2A were completely due to
hydrogen [37, p. 151].

Subrahmanyan Chandrasekhar’s (Nobel Prize, 1983 [42])
thesis advisor, Sir Ralph H. Fowler [43], had provided signifi-
cant insight and criticisms into Saha’s second manuscript [37,
p. 153] and the resulting text was masterful. In 1927, Megh
Nad Saha was elected a Fellow of the Royal Society [34].

In the meantime, Fowler [43] and Edward Arthur Milne
[44] would collaborate and construct a wonderful extension
[45,46] of Saha’s seminal papers [36,37]. They improved the
treatment of ionization to consider not only principle lines
arising from atoms in their lowest energy states, but also the
subordinate lines produced by excited atoms and ions [45,46].
For his part, Saha had concentrated on the excitation and ion-
ization of the neutral atom [36, 37]. Fowler and Milne un-
derstood that the marginal appearance of a spectral line could
be used in determining relative concentrations and provided
some indication of the minimum number of atoms necessary
for appearance [45, 46]. They emphasized the idea that: “the
intensity of a given absorption line in a stellar spectrum is
proportional to the concentration of atoms in the stellar at-
mosphere capable of absorbing the line” [45, p. 404]. Their
first paper also highlighted the value of the maximum of a
spectral line in assessing the temperature and pressure of the
reversing layer and outlined that this problem was not affected
by the relative abundance of the element studied [45]. Using
stellar data from the lines of Ca, Mg, Sr, and Ba they deter-
mined that the electron pressure of the reversing layer was
on the order of 10−4 atm [45]. Fowler and Milne understood
that electron pressure,Pe, of the reversing layer was not de-
termined by a single ionization process, but by the ionization
of many elements: “In thus regarding Pe as fundamental we
are in effect assuming that, due to the presence of more eas-
ily ionised atoms, there are so many electrons present that
the partial electron pressure is practically independent of the
degree of ionization of the element under discussion” [45,
p. 409]. They expressed concern that their results led to the
assumption that absorbing species had very large absorption
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coefficients [45]. Milne had already determined that the ab-
sorption coefficients should be very large [47] and would later
devote another theoretical paper to their determination [48].
In their work together, Fowler and Milne explicitly assumed
that the reversing layer could be treated as existing under
conditions of thermal equilibrium, as Saha’s treatment re-
quired [36]. The validity of such assumptions is not simple to
ascertain.

At Cambridge, Milne met Cecilia Payne [1, p. 121], a stu-
dent at Newnham College [1, p. 112] and learned of her im-
pending access to the vast collection of photographic plates
used to generate the Henry Draper Catalogue at the Harvard
Observatory [1, p. 144–153]. Prior to the advent of the mod-
ern MKK classification [49], the Henry Draper Catalogue was
the largest stellar library collection, with over 200,000 classi-
fied stars [1, p. 144–153]. Milne suggested that “if he had. . .
[Payne’s] . . . opportunity, he would go after the observations
that would test and verify the Saha theory” [1, p. 155]. Cecila
Payne soon left Cambridge and sailed to America.

2.2 Cecilia Payne: What is the universe made of?
“I remember when, as a student at Cambridge, I de-
cided I wanted to be an astronomer and asked the
advice of Colonel Stratton, he replied, “You can’t
expect to be anything but an amateur”. I should have
been discouraged, but I wasn’t, so I asked Edding-
ton the same question. He (as was his way) thought
it over a very long time and finally said: “I can see
no insuperable obstacle” [50, xv].

Nineteenth century scientists had little on which to base their
understanding of the composition of the universe. Their clues
could only come from the Earth itself and from the meteorites
which occasionally tumbled onto its surface. Consequently, it
was not unreasonable to expect that the universe’s composi-
tion matched the terrestrial setting. However, stellar spectra,
already stored on photographic plates throughout Europe and
especially in the vast Henry Draper Collection, were hiding
a drastically altered viewpoint. With the arrival of yet an-
other woman at the Harvard Observatory [51–60], the stars
could not much longer conceal their story. Surrounded by
Pickering’s Harem [51–60], Cecilia Payne [1, 41] completed
her classic report on the abundance of the elements [8] and
became the first to underscore the importance of hydrogen as
the constitutive atom of universe. Her thesis had been care-
fully prepared and presented supportive laboratory evidence,
not only of ionization potentials, but of the validity of Saha’s
treatment [8, p. 105–115].

Stellar spectra signaled hydrogen [61] was so abundant
that several scientists, including Henry Norris Russell, could
not fully accept the conclusion. Payne had written an early
manuscript detailing the tremendous presence of hydrogen [1,
p. 19]. Her thesis advisor, Harlow Shapley, forwarded the
work to Russell who commented: “It is clearly impossible
that hydrogen should be a million times more abundant than

the metals” [1, p. 19]. That early manuscript was never pub-
lished and has since been lost [1, p. 20]. Tempered by Rus-
sell and Shapley, Cecilia Payne finally produced her famous
PhD dissertation:Stellar Atmospheres: A Contribution to the
Observational Study of High Temperature in the Reversing
Layers of Stars[8]. She would comment on hydrogen in this
manner: “Although hydrogen and helium are manifestly very
abundant in stellar atmospheres, the actual values derived
from the estimates of marginal appearance are regarded as
spurious” [8, p. 186]. A little later she would add: “The out-
standing discrepancies between the astrophysical and terres-
trial abundances are displayed for hydrogen and helium. The
enormous abundance derived for these elements in the stel-
lar atmospheres is almost certainly not real” [8, p. 188] and
“The lines of both atoms appear to be far more persistent,
at high and low temperatures, than those of any other ele-
ment” [8, p. 189].

For her part, Payne privately maintained that hydrogen
was tremendously abundant in the stars: “When I returned to
visit Cambridge after I finished this first essay in astrophysics,
I went to see Eddington. In a burst of youthful enthusiasm, I
told him that I believed that there was far more hydrogen in
the stars than any other atom. ‘You don’t mean in the stars,
you mean on the stars’, was his comment. In this case, indeed,
I was in the right, and in later years he was to recognize it
too” [1, p. 165].

Payne’s work also highlighted the importance of helium
in the O and B class stars [8]. For the first time, hydrogen
and helium became the focus of scrutiny for their role as po-
tential building blocks of the stars and the cosmos [8]. She
emphasized that: “there is no reason to assume a sensible de-
parture from uniform composition for members of the normal
sequence” [8, p. 179] and “The uniformity of composition of
stellar atmospheres is an established fact” [8, p. 189]. She
also held, as Eddington and Zeipel had advanced, that given
their gaseous nature: “an effect of rotation of a star will be
to keep the constituents well mixed, so that the outer portions
of the sun or of a star are probably fairly representative of
the interior” [8, p. 185]. Still, Payne was cautious relative to
extending her results as reflecting the internal composition of
the stars: “The observations on abundances refer merely to
the stellar atmosphere, and it is not possible to arrive in this
way at conclusions as to internal composition. But marked
differences of internal composition from star to star might be
expected to affect the atmosphere to a noticeable extent, and
it is therefore somewhat unlikely that such differences do oc-
cur” [8, p. 189].

Payne would conclude her thesis with a wonderful expo-
sition of the Henry Draper Classification system [8, p. 190–
198]. Otto Struve would come to regard the study as “the most
brilliant Ph.D. thesis ever written in astronomy” [41]. Edwin
Hubble would comment relative to Payne: “She’s the best
man at Harvard” [1, p. 184]. As Milne suggested, the first
dissertation of the Harvard College Observatory was founded
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upon the application of the ionization equations [36,37,45,46]
to the detailed analysis of spectral lines across stellar classes.
It did not specifically address elemental abundances in the
Sun. Nonetheless, Payne’s 1925 dissertation heralded the ap-
plication of quantitative spectral analysis in astronomy [8].

2.3 Albrecht Unsöld, hydrogen abundance, and evi-
dence for a solar surface

Albrecht Unsöld extended Payne’s studies with a focus on
the solar spectra [9]. Following in her footsteps [8], in 1928
[9], he applied the ionization formula [36, 37] to the chro-
mosphere and estimated the levels of sodium, aluminum, cal-
cium, strontium, and barium. In addition, Unsöld determined
that the electron gas pressure in the chromosphere stood at
∼ 10−6 atm [9]. He also concluded that hydrogen must be
about one million times more abundant than any other ele-
ment in the Sun [9, 62]. William McCrea was soon to echo
Unsöld, finding that hydrogen was a million times more abun-
dant than Ca+ within the chromosphere [62,63].

Importantly, Unsöld also documented that the absorbance
of the hydrogenβ, γ, and δ lines did not decrease across
the Balmer series (Hα =1; Hβ = 0.73; Hγ = 0.91; Hδ = 1.0) as
expected from quantum mechanical considerations (Hα =1;
Hβ = 0.19; Hγ =0.07; Hδ =0.03) [9]. This was an important
finding relative to the nature of the Sun. Recently, the be-
havior of hydrogen emission lines has been analyzed with
non-LTE methods [64]. It has been concluded that the “n=3
and higher levels are in detailed balance deep in the photo-
sphere, but they develop a non-LTE underpopulation further
out. However, the levels with higher n-values stay in detailed
balance relative to each other at these atmospheric depths,
and they also collisionally couple tightly to the continuum”
[64]. Yet, in the gaseous models of the Sun, the continuum is
not composed of condensed matter [65]. It represents an area
of profoundly increased solar opacity [65]. Nevertheless,the
behavior of the Balmer series in the solar atmosphere strongly
supports the idea that the Sun is comprised of condensed mat-
ter. Only a physical entity of sufficient density, such as a
surface, can permit tight collisional coupling to the contin-
uum, as it is impossible to couple to the opacity changes
which characterize the continuum in gaseous models [65].
These findings comprise the sixteenth and seventeenth lines
of evidence that the Sun is comprised of condensed matter.
The others are outlined by the author in recent publications
(e.g. [66]).

2.4 Henry Norris Russell: Inability to estimate Helium
from spectral lines

Soon Henry Norris Russell [67] surpassed Unsöld in his anal-
ysis of solar spectral lines and provided a detailed composi-
tional analysis of the Sun. Relative to the occupied energy
levels within atoms on the Sun, Russell affirmed that: “It must
further be born in mind that even at solar temperatures the

great majority of the atoms of any given kind, whether ionized
or neutral, will be in the state of lowest energy” [10, p. 21]. At
the same time, Russell realized that this rule was not observed
by hydrogen, leading him to the conclusion that the element
was extremely abundant in the Sun: “One non-metal, how-
ever, presents a real and glaring exception to the general rule.
The hydrogen lines of the Balmer series, and, as Babcock
has recently shown, of the Paschen series as well, are very
strong in the Sun, though the energy required to put an atom
into condition to absorb these series is, respectively, 10.16
and 12.04 volts - higher than for any other solar absorption
lines. The obvious explanation — that hydrogen is far more
abundant than the other elements — appears to be the only
one” [10, p. 22]. In fact, even the hydrogen Brackett lines
can be visualized in the infrared spectrum of the Sun [68].
Russell also highlighted Unsöld’s observation [9] that the hy-
drogenβ, γ, andδ lines did not decrease as expected. That
the hydrogen lines were extremely broad in the Sun had al-
ready been well established. Russell echoed some of his con-
temporaries and suggested that this might result from a Stark
effect [10, p. 50].

Finally, Russell accepted Payne’s findings relative to hy-
drogen and reported her numbers for the elements without
comment in his table XVI [10, p. 65]. He stated that: “The
most important previous determination of the abundance of
the elements by astrophysical means is that by Miss Payne. . .”
[10, p. 64]. Russell found the correlation between their works
to display “a very gratifying agreement” [10, p. 65]

Like Payne, Russell had relied on the work of Fowler and
Milne [45, 46] to set the composition of the Sun. He imple-
mented their suggestion that electron pressures,Pe, could be
gathered by considering the spectra and the ionization poten-
tial for elements like Ca, Sc, Ti, Sr and Yt. From these, he de-
duced aPe of 3.1×10−6 atm, in close agreement with Milne
(2.5×10−5 atm), and Payne and Hogg (2.54×10−6 atm) in
class G0 stars [10, p. 54–55]. Along with John Quincy Stew-
art, Russell had previously considered various means of deter-
mining the pressures at the Sun’s surface and had determined
that the pressure of the reversion layer could not be more than
10−4 atm [69]. But Russell reported a factor of at least 10 in
discordance in calculating electron pressures based on either
the ionization formula or the numbers of metallic atoms and
ions [10, p. 70–71]. He would resolve the difficulty at the end
of his treatise when setting the final elemental composition
for the Sun [10, p. 72].

At the same time, while Payne had understood the impor-
tance of local thermal equilibrium (LTE) for the proper appli-
cation of Saha’s equation [8, p. 92–101], she did not attempt
to make an explicit correction for the lack of equilibrium.
Conversely, Russell placed a correction factor in his work for
departure from LTE: “We have finally to take into consider-
ation the fact that the atmosphere may not be in thermody-
namic equilibrium. The comparison of solar and stellar spec-
tra affords evidence that this is the case” [10, p. 52]. Relative
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to his final abundances he commented: “The main source of
uncertainty which affects them is the magnitude of the cor-
rection for departure from thermodynamic equilibrium” [10,
p. 58] and “If the correction for departure from thermody-
namic equilibrium should be wholly disregarded, the calcu-
lated abundance of hydrogen — already very great — would
be increased thirty fold” [10, p. 62]. In the 1920s, of course,
there was hesitancy concerning the tremendous levels of hy-
drogen observed in the solar atmosphere.

For Russell, oxygen appeared as abundant as all other
metals combined. He also argued against, although did not
fully dismiss, gravitational settling in the Sun for the heaviest
metals: “It does not appear necessary, therefore, to assume
that downward diffusion depletes the sun’s atmosphere of the
heavier elements, though the possibility of such an influence
remains” [10, p. 59]. Importantly, he noted: “The statement
that enhanced lines are found in the sun for those elements
which have lines of low excitation potential in the accessible
region has therefore few exceptions” [10, p. 35]. At the same
time, he advanced that for those elements “which fail to show
enhancement lines in the sun, the excitation potentials forthe
accessible lines are high in every case for which they have
been determined” [10, p. 35]. Furthermore Russell hypoth-
esized that: “It appears, therefore, that the principle factor
which is unfavourable to the appearance of a spectral line in
the sun is a high excitation potential” [10, p. 35]. This was
precisely the case relative to helium.

With respect to the second element, Russell wrote: “There
is but one element known to exist in the sun for which no esti-
mate of abundance has now been made - and this is He. The
intensity of its lines in the chromosphere shows that it mustbe
present in considerable amount, but no quantitative estimate
seems possible” [10, p. 62]. Here was an explicit admission
that solar helium abundances could not be ascertained using
spectral data.

Helium was abundantly visible in early type stars, as Ce-
cilia Payne had already discovered [8] and Paul Rudnick [70]
and Anne Underhill continued to confirm [71–73]. Estimates
of the number of hydrogen to helium atoms in O and B type
stars varied from values as low as 3.2 to more than 27 [73,
p. 156]. A factor of nearly 10 in relative abundances from
spectral lines in such stars was hardly reassuring. Nonethe-
less, Underhill still surmised that the number of helium atoms
was at the 4–5% level [73]. Yet for the Sun, data about helium
abundance remained wanting.

2.5 Local Thermal Equilibrium

Milne was perhaps the greatest authority relative to local ther-
mal equilibrium (LTE) in astronomy [74–77] and many of
the most salient aspects of his arguments have been reviewed
[78]. Milne advocated that LTE existed in the center of a
star and that his treatment permitted “us to see in a gen-
eral way why the state of local thermodynamic equilibrium

in the interior of a star breaks down as we approach the sur-
face” [77, p. 81–83]. In 1928, Milne would express concern
relative to the appropriateness of the inferred thermal equi-
librium in the reversing layer, as required by the Saha equa-
tions [36, 37], although he believed that studies based on the
validity of the ionization equations should be pursued: “The
recent work of Adams and Russell brings forward evidence
that the reversing layers of stars are not in thermodynamic
equilibrium. This suggests a degree of caution in applying the
fundamental method and formulae of Saha to stellar spectra.
Nevertheless, departure from thermodynamic equilibrium can
only be found by pushing to as great a refinement as possible
the theory which assumes thermodynamic equilibrium” [48].
Gerasimovic had already advanced corrections for small de-
viations from thermal equilibrium [79] and Russell applied
corrections directly in his work [10]. By 1925, the Saha equa-
tions had been generally confirmed under experimental con-
ditions (e.g. [8, p. 111–112] and [80]), but only in the broad-
est sense. Over time, the ionization equations continued tobe
widely studied and the problems considered were extended
to include two-temperature plasmas (e.g. [81]), high pres-
sures (e.g. [82]), varying opacities (e.g. [83]), and non-LTE
(e.g. [84–88]). The Saha equations eventually became a use-
ful staple in the treatment of plasma physics [89, p. 164] and
stellar atmospheres [90–92].

As Auer highlighted relative to solar models [88], under
non-LTE, a set of rate equations enters into the problem of
determining the abundance of any given electronic state. Fur-
thermore, the radiation field is introduced directly into the
equations [88] utilized to calculate both opacities and pop-
ulations. The problem therefore becomes dependent on “si-
multaneous knowledge of the radiation field at all frequencies
and all depths” [88, p. 576].

While ionization appeared tractable given modern com-
puting, the solution became linked to the knowledge of stel-
lar opacities, an area of theory whose weaknesses have al-
ready been outlined [78]. Nonetheless, non-LTE approaches
have been successful in addressing the spectra of early type
stars [93–95]. Today, such methods also account for elec-
tronic, atomic, and ionic collision processes [64]. Non-LTE
approaches have provided considerable insight into the Bal-
mer and Paschen series associated with the hydrogen spec-
trum of the Sun [64].

Finally, it appears that the treatment adopted by Cecilia
Payne might not have been too far afield [8]. For many of
the cooler stars, simple LTE seems sufficient to address ion-
ization problems [94]. Non-LTE methods become most im-
portant for the O and A class stars [93–95]. In any case,
helium cannot be assessed on the Sun using the ionization
equations due to the lack of appropriate spectral lines. As a
result, while the LTE and non-LTE settings may be funda-
mental to the proper treatment of spectral lines, the methods
have little bearing on the proper evaluation of helium levels
in the Sun.
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3 Helium from solar theory

3.1 Henry Norris Russell

Since Russell was not able to extract helium abundances di-
rectly from spectral lines, he did so, without further scientific
justification, by assuming that the Sun had an mean molecu-
lar weight of∼2 [10, p. 72–73]. Such a value had also been
suggested by Saha [36, p. 476], who had in turn adopted it
from Eddington [96, p. 596]. As for Eddington, he had pre-
viously examined the radiation equilibrium of the stars using
a mean molecular weight of 54 [97]. In 1916, this value had
been selected based on the belief that the stars were princi-
pally composed of elements such as oxygen, silicon, and iron
prior to full ionization [1, viii]. Eddington lowered the mean
molecular weight to a value of 2 in 1917 [96, p. 596], based
on the idea that the elements would be fully ionized in the
stars. In the fully ionized state, hydrogen has a mean molec-
ular weight of 0.5, helium of∼1.3, and iron of∼ 2 (see [40,
p. 102–104] for a full discussion of mean molecular weights
in astrophysics). It was this value which Russell was to adopt
in his calculations.

Using a mean molecular weight corresponding to a metal
rich star, Russell concluded that helium was 13% as abun-
dant as hydrogen by weight [10, p. 73]. He then computed
that the Sun had equal percentages of oxygen and other met-
als (∼24% each) and that hydrogen comprised just under half
of the constitution (∼ 45%) by weight (see table XX in [10,
p. 73]. If Russell had selected a mean atomic weight of∼0.5,
there would be dramatic changes in the calculated helium
levels.

3.2 Early abundance calculations

In arbitrarily selecting mean molecular weights [96, 97], Ed-
dington determined the mean central stellar temperatures and
pressures along with the acceleration due to gravity at the sur-
face (e.g. [97, p. 22]). In turn, these parameters altered the
calculated absorption coefficient, and hence opacity, of stel-
lar interiors [97, p. 22]. Consequently, the setting of mean
atomic weight had a profound implication on nearly every
aspect of stellar modeling, but opacity would always remain
paramount. In 1922, Eddington had derived a relationship
between opacity and temperature [98] which would become
known as Kramer’s law [99].

Soon, Strömgren introduced an interesting twist to Ed-
dington’s approach [100, 101]. Rather than assuming a mean
atomic weight, Strömgren began his calculations by comput-
ing opacity values, and from there, estimating the fractional
composition of hydrogen within several stars [100], relying
in part on Russell’s elemental composition [10]. He con-
cluded that the fractional abundance of hydrogen was∼ 0.3
and maintained that the presence of helium would have little
effect on these calculations since “hydrogen and helium do
not contribute to the opacity directly” [100, p. 139]. Ström-
gren would write: “we have neglected the influence of helium.

The helium proportion is rather uncertain and the error in-
troduced by neglecting helium altogether small[100, p. 142].
Modern stellar theory would come to rely greatly on the opac-
ity contributions of the negative hydrogen ion (H−) [102].
Strömgren’s assumptions were premature. Still, he champi-
oned the idea of initially computing opacity, and from these
values obtaining both solar parameters and elemental abun-
dances [100,101].

Following the publication of a key modeling paper by
Cowling [103], Martin Schwarzschild was to take the next
theoretical step [104]. First, he made use of the mass-
luminosity relation while expressing mean molecular weight
and opacity as a function of elemental composition (X = hy-
drogen,Y = helium) [104]. Then, reasoning that the energy
output in the Sun from the CNO cycle [13] was directly re-
lated to elemental composition, he derived a fractional el-
emental composition for hydrogen, helium, and the metals
equal to 0.47, 0.41, and 0.12, respectively [104]. The results
were once again critically dependent on estimated opacities,
which Schwartzchild, like Strömgren before him [100, 101],
assumed to display Eddington’s [98]−3.5 power dependence
on temperature (see Eq. 9 in [104]). In fact, Schwarzschild
utilized an even greater dependence on temperature for en-
ergy production, allowing a 17th power in the exponential
(see Eq. 11 in [104]). Yugo Iinuma then advanced a broader
approach to the stellar composition problem [105]. He was
concerned with ranges of reasonable starting points, both for
hydrogen concentration and average molecular weight. His
treatment remained dependent on opacity computations,
though less rigid in its conclusions [105]. Schwarzschild et
al. [106] then introduced the effects of inhomogeneity in the
solar interior and convective envelopes along with solar age
into the abundance problem. They reached the conclusion
that the temperatures at the core of the Sun were such that
the carbon cycle should start to contribute to the problem.
Hydrogen abundances were assumed in order to arrive both
at a convection parameter and at helium values [106]. The
critical link to opacity remained [106]. Weymann, who like
Schwarzschild, was also at the Institute for Advanced Study,
built on his findings [107]. Taking account of the carbon cy-
cle, Weymann found that the core of the Sun was not con-
vective [107]. Powers of 4 and 20 for temperature were as-
sumed in the energy generation laws associated with the pp
and CNO cycles [107]. The hydrogen fractional composition
of the Sun was assumed and ranged from 0.60 to 0.80 (see
Table 3 in [107]). This resulted in helium and metallic frac-
tional compositions of 0.19–0.32 and 0.01–0.08, respectively
(see Table 3 in [107]).

In 1961, Osterbrock and Rogerson would elegantly sum-
marize the situation relative to estimating helium abundances
in the Sun: “Though helium is observed in the upper chromo-
sphere and in prominences, the physical conditions in these
regions are too complicated and imperfectly understood for
the abundance ratio to be determined from measurements of

40 P.-M. Robitaille. A Critical Assessment of Current and Primordial Helium Levels in the Sun



April, 2013 PROGRESS IN PHYSICS Volume 2

these emission lines. Hence the only reliable way to find the
helium abundance in the Sun is by analysis of its internal
structure” [108]. Yet, given the progress to date, the deter-
mination of elemental compositions within the Sun had been
a complex adventure involving either assumed values of av-
erage molecular weights, hydrogen abundances, energy gen-
eration reactions, and opacity. The latter would eventually
present the greatest difficulties [78]. Osterbrock and Roger-
son would utilize Weymann’s calculation, along with making
an assumption by setting theZ/X ratio at 6.4×10−2 [108],
to estimate interior solar fractional abundances atX = 0.67,
Y = 0.29, andZ = 0.04. They were guided in this estimation
by the belief that: “the solar, planetary nebula, and interstel-
lar abundances are all essentially the same” [108, p. 132].
For the planetary nebula NGC 7027 they set the fractional
abundances atX = 0.64,Y = 0.32, andZ = 0.04 [108]. Solar
elemental composition became decidedly linked to estimates
from remote objects. The stage was set for conclusively link-
ing solar elemental composition to stellar evolution and pri-
mordial nucleosynthesis.

3.3 Modern abundance calculation

Eventually, the solar neutrino problem entered theoretical
modeling [16, 109]. In his simulations, John Bahcall would
utilize fractional abundances of relatively narrow range (X =
0.715− 0.80, Y = 0.19− 0.258 andZ = 0.01− 0.027), set-
ting the central densities and temperatures near 150 g/cm3

and 15 million Kelvin, respectively [16]. The results, as be-
fore, were reliant on the use of solar opacity estimates [78].
By the beginning of the 1970s, fractional abundances for he-
lium and the metals were settling on values near 0.28 and
0.02 [25]. Solar models became increasingly complex, re-
lying on stellar opacity tables [110–118], energy generation
equations, neutrino flux, and solar age to arrive at internally
consistent results [17, 18]. Complexity was also introduced
by considering helium and heavy element diffusion through-
out the solar body [17, 18, 119, 120]. It became important to
establish not only modern helium content, but also the initial
helium abundance in the Sun [17,21,121]. Gough had already
suggested that helioseismology could be used to help estab-
lish fractional abundances: “Thus one might anticipate infer-
ring the hydrogen-helium abundance ratio by comparing the
measured values with a sequence of model solar envelopes”
[19, p. 21]. Helioseismological results became strongly incor-
porated into solar modeling [20–23] and “helioseismic tech-
niques . . . [became] . . . the most accurate way to determine
the solar helium abundance” [20, p. 235]. The techniques re-
mained linked to the equations of state which contained six
unknowns including: elemental composition, density, tem-
perature, and pressure [20, p. 224]. Moreover, the problems
required an explicit knowledge of opacity [20, p. 224] from
its associated tables [110–118].

Relative to solar models, the central problem remains

linked to the determination of internal solar opacity. The
questions are complex and have been addressed in detail al-
ready by the author [78]. In the end, opacity tables [110–118]
have no place in the treatment of stellar problems, precisely
because they are incapable of reproducing the thermal emis-
sion spectrum required [78]. They simply mask ignorance
of a fundamental problem in astronomy: the mechanism for
the production of a thermal spectrum. Their inability to ac-
count for the production of a single photon by graphite on
Earth [78], establishes that stellar opacity derived from iso-
lated atoms and ions can play no role in the proper under-
standing of thermal emissivity in the stars. As a result, he-
lium levels can never be established using theoretical model-
ing based on the gaseous equations of state and their inherent
association with stellar opacity tables [78].

4 Primordial helium abundances

The quest to understand helium levels in the stars has been
further complicated by the inferred association of this ele-
ment with primordial nucleosynthesis in Big Bang cosmol-
ogy [24–30]. Early on, Alpher, Bethe, and Gamow postulated
that the elements had been synthesized in a primordial fire-
ball [122]. This nucleosynthesis was proposed to include the
entire periodic table and even unstable elements, with short
lifetimes, of greater atomic number [122]. Soon, the idea that
the composition of the stars was largely related to primordial
conditions was born, especially relative to hydrogen and he-
lium [24, 123]. No other scheme appeared likely to explain
the tremendous He levels in stellar atmospheres, which ap-
proached 27% by weight [3,24]: “It is the purpose of this ar-
ticle to suggest that mild ‘cooking’ [such as found in stars]
is not enough and that most, if not all, of the material of
our everyday world, of the Sun, of the stars in our Galaxy
and probably of the whole local group of galaxies, if not the
whole Universe, has been ’cooked’ to a temperature in excess
of 1010K” [123, p. 1108]. By then, the astrophysical commu-
nity had already accepted that the heavy elements, which con-
stituted trivial amounts of matter compared to hydrogen and
helium, had largely been synthesized in the stars [14]. Only
1H, 2H, 3He, 4He, and7Li became candidates for synthesis
through a primordial process [124,125].

The postulate that “helium abundance is universal and
was generated in a Big Bang” [125] eventually came to wide
acceptance. The entire theory was hinged on elevated helium
abundances: “We can now say that if the Universe originated
in a singular way the He/H ratio cannot be less than about
0.14. This value is of the same order of magnitude as the
observed ratios although it is somewhat larger than most of
them. However, if it can be established empirically that the
ratio is appreciably less than this in any astronomical object
in which diffussive seperation is out of the question, we can
assert that the Universe did not have a singular origin” [123,
p. 1109]. Elevated helium levels, along with the discovery
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of the microwave background [126] and the red-shifts of dis-
tant galaxies [127, 128] became one of the three great pillars
of Big Bang cosmology [24, 129, 130]. This explained why
gravitational settling had become critical in discountinglow
helium abundances of certain B type stars [3, 30, 31]. If em-
pirical helium levels fell into question and a mechanism ex-
isted to accept the tremendously decreased helium levels in
these special B type stars [3, 31] by preventing gravitational
settling [131], Big Bang cosmology could not survive. Stel-
lar and solar helium abundances cannot be allowed to drop in
modern cosmology.

Today, the quest to link helium abundances and primor-
dial nucleosynthesis has continued [26–30] using two lines
of reasoning: 1) the analysis of anisotropy in the microwave
background [132, 133] and 2) the observation of helium and
hydrogen lines from low-metallicity extragalactic HII regions
[26,134–137].

Unfortunately, the use of anisotropy data [132,133] to an-
alyze primordial helium abundances are highly suspect. First,
insurmountable problems exist with the WMAP data sets, as
already highlighted by the author [138]. WMAP suffers from
significant galactic foreground contamination which cannot
be properly removed [138]. In addition, the WMAP team
cannot distinguish between signal arising from a hypotheti-
cally primordial origin from those produced throughout the
universe as a result of normal stellar activity [138]. While
evident ’point sources’ are taken into account, it remains im-
possible to determine, on a pixel by pixel basis, whether the
signal has a primordial origin, or originates from an uniden-
tified non-cosmological object [138]. Furthermore, WMAP
raw data has proven to be unstable from year to year in a
manner inconsistent with the hypothesized cosmological ori-
gins of these signals [138]. The data suffers from poor signal
to noise and the ILC coefficients used for generating the final
anisotropy maps do not remain constant between data releases
[138]. Most troubling, the data sets cannot be combined us-
ing a unique combination of spectral channels [138]. As a
result, since no unique anisotropy data set can be extracted
[138], the data has no scientific value in analyzing helium
abundances. Similar problems will occur when data from the
Planck satellite finally becomes available [139]. As a result,
all helium abundances derived from microwave anisotropy
data sets must be viewed with a high degree of suspicion.

On the surface, the extraction of primordial helium abun-
dances from H II regions appears more feasible [26, 134–
137]. H II regions are rich in both hydrogen and helium but
have low heavy element abundances (∼1/40 solar) [140]. Un-
like H I regions (∼60K), H II regions exist at temperatures
between 7,500 and 13,000 K [141]. In H II regions “the4He
abundance is derived from the recombination lines of singly
and doubly ionized4He; neutral 4He is unobserved” [140,
p. 50]. Unfortunately, experiments which utilized H II re-
gions to assess primordial helium cannot easily ascertain that
the sample has a uniform elemental composition. Further-

more, the use of H II regions for this purpose discounts the
idea that helium has been synthesized locally. Such a sug-
gestion should not be easily dismissed, as the temperatures
of observation [141] are well above those in equilibrium with
the hypothesized residual temperature of the Big Bang (∼3K)
[130]. Only low metallicity supports the idea that these he-
lium concentrations are primordial. Nothing should prevent
stellar systems from creating regions of low metallicity out-
side of a cosmological context. In this regard, the elevated
temperatures of H II regions suggest that a process well be-
yond primordial considerations is now influencing elemental
abundances in these regions. As such, it is imprudent to de-
rive primordial helium abundances from H II regions.

We do not know, and will probably never be able to ascer-
tain, primordial helium abundances. In order to observe he-
lium in astronomy, elevated temperatures are required. These
immediately imply that the processes observed are no longer
in thermal equilibrium with those of interest in cosmology
[130].

5 Solar winds: The key to understanding helium

Helium abundances can also be monitored in the solar wind
[143–152]. Presumably, the results are so dynamic that they
cannot be utilized to establish helium levels in the Sun itself.
However, solar winds [143–152] have presented astronomy
with a wealth of scientific information, which could be used
to profoundly alter our understanding of the Sun [131].

Already in 1971, it was recognized that solar wind helium
abundance measurements gave values which were lower than
those ascertained from theoretical experiments [143, p. 369].
The study of solar winds became linked to models of the
corona. Although the relative abundance and velocities of hy-
drogen to helium were advanced as profoundly dependent on
location [143], it remained evident that solar winds harbored a
great deal of reliable information. Early on, it was known that
helium to hydrogen density ratios in the solar wind could ex-
perience dramatic fluctuations [144], especially in slow winds
[147], though values appeared more stable at high solar wind
speeds [145]. Extremely low ratios of 0.01, rising to 0.08,
with an average of 0.037, were reported [144]. Clearly, such
values were in direct conflict with the elevated helium lev-
els expected in the Sun from primordial arguments [123]. As
such, solar wind measurements became viewed as unreliable
relative to estimating helium abundances in the Sun [148].

Nonetheless, something truly fascinating was present in
solar wind data. The Sun appeared to be expelling helium
(J. C. Robitaille, personal communication [131]) with in-
creased activity. The helium to hydrogen ratio was observed
to increase in association with the onset of geomagnetic
storms [144] and was highly responsive to the solar cycle
[146, 149, 151]. The helium abundance could rise from av-
erage values of less than 2% at the solar minimum to around
4.5% at maximum [149]. After the early 1970s, the vari-
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ation in solar wind helium abundance became increasingly
pronounced. By 1982, helium abundances in the solar wind
came to vary from values as low as 0.001 to as elevated as
0.35 [147]. A single value as high as 0.40 was reported [147].
At least half of all elevated helium abundance events were
related to a transient interplanetary shock wave disturbance
[147], though a significant portion were not associated with
such events. Each of these extremes highlighted something
phenomenal relative to solar winds. To explain the variabil-
ity, theoretical models turned to the large scale structureof
plasma. It was assumed that elevated helium abundance orig-
inated in regions of high magnetic field activity in the corona
[131]. It was found that helium abundance “enhancements of-
ten have unusually high ionization temperatures, indicative of
an origin in active solar processes. . . Collectively, theseob-
servations suggest that. . . [helium abundance] . . . enhance-
ments in the solar wind signal the arrival of plasma ejected
from low in the corona during a disturbance such as a large
solar flare or an eruptive prominence” [147]. While solar
winds had a close link to the “composition of the source ma-
terial” it could then “be modified by the processes which op-
erate in the transition zone and in the inner corona” [148].
Primordial helium abundances within the Sun could be saved
by discounting that solar wind helium abundances had any
meaning whatsoever relative to the composition of the Sun
itself. The idea that solar activity reflected the expulsionof
helium from the Sun (J. C. Robitaille, personal communica-
tion [131]) was never advanced. While the scientific com-
munity maintained that helium abundances were not reliable,
they claimed that it was possible to ascertain the fractional
isotopic composition of the elements in the solar wind and re-
late them directly to the solar convective zone: “The variabil-
ity of the elemental abundances in the solar wind on all time
scales and the FIP. . . [first ionization potential] . . . effect,
and its variability, will make it difficult to derive accurate
solar abundances from solar wind measurements, with the
exception of isotopic determinations” [150]. Of course, iso-
tope analysis could never constitute a challenge to the exis-
tence of large amounts of primordial helium in the Sun [123].
Solar wind helium abundances had to be simply correlated
to the coronal magnetic field, although the correlation coeffi-
cient was not powerful (σ∼0.3) [152]. Nonetheless, helium
abundance depressions could not be explained under such a
scenario [152]. At the same time, it is currently believed that
“solar wind abundances are not a genuine, unbiased sam-
ple of solar abundances, but they are fractionated. One such
fractionation depends on the first ionization potential (FIP):
When comparing solar wind to solar abundances, elements
with low FIP (<10 eV) are enriched by a significant factor, the
FIP bias, over those with a high FIP . . . Another fractionation
process affects mainly helium, causing its abundance in the
SW to be only about half of the solar abundance. . . It is most
likely due to insufficient Coulomb drag between protons and
alpha particles in the accelerating solar wind” [154, p. 16].

Herein was an explicit admission that the cause of extremely
low helium levels in the solar wind could not be adequately
understood. Conversely, fractionation models continued to
insist that elevated helium abundances were linked to the frac-
tionation of large atoms by collisions with protons [152,153].
Nothing could be gathered about solar helium abundances
from solar winds precisely because theoretical constructsfor-
bade such conclusions.

6 Conclusions

Modern day reports of elemental abundances in the Sun [154–
156] maintain that the Sun has a relatively large proportionof
helium withY values typically near 0.248 and primordial val-
ues of 0.275. These values come from theoretical modeling,
as helium remains spectroscopically silent in the photosphere
and solar winds are viewed as unreliable [155, p. 166]. There-
fore, claims that helium has “very high abundance” [155,
p. 166] in the Sun are not supported by observational fact.
In the end, mankind understands much less about this cen-
tral element than a cursory review of the literature might sug-
gest. Careful consideration of solar modeling establishesthat
all theoretical estimates of helium levels in the Sun cannot
be relied upon, given their dependence of solar opacity ta-
bles [78]. This also applies to theoretical results which at-
tempt to extract helium levels from helioseismology [156].
For this reason, it is simply not possible to establish elevated
helium levels in the Sun from theory. As helium levels can-
not be established spectroscopically, we are left with the solar
winds for guidance.

Currently, solar winds are viewed as too complex to yield
information relative to solar abundances. In large measure,
this is because scientists are trying to understand this data in
the context of an object whose helium abundance has been
largely set in primordial times [24, 123, 155]. The idea that
the Sun and the stars are actively working to control their he-
lium levels has never been previously considered [131]. Nev-
ertheless, the association of solar activity and elevated helium
levels [146, 149, 151] strongly suggests that the active Sunis
expelling helium and excluding it from its hydrogen based lat-
tice (J. C. Robitaille, personal communication [131]). Herein
can be found the cause of extremely low helium abundance
often obtained in the slow solar wind: the Sun works to keep
its helium levels low and solar activity represent a direct man-
isfestation of this fact. In the quiet Sun the slow solar winds
can report fractional abundances of less than 2% and these
should be viewed as steady state helium removal from the
convective zone of the Sun. Such an idea strongly supports
the contention that the Sun and the stars are primarily com-
prised of hydrogen in the liquid metallic state [131,157].

In advancing that the universe is largely composed of hy-
drogen and that helium is being excluded from the stars
(J. C. Robitaille, personal communication [131]), perhapsit is
appropriate to turn once again to Cecilia Payne, as the first as-
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tronomer to highlight the tremendous abundance of hydrogen
in the universe [8]. As a child, she had been eager to become
an astronomer “in case there should be no research left when
she grew up” [1, p. 72–73]. Yet, her position changed dra-
matically with age: “Looking back on my years of research,
I don’t like to dwell only on my mistakes; I am inclined to
count my blessings, and two seem to me to be very especially
valuable. The first blessing is that the process of discovery
is gradual — if we were confronted with all the facts at once
we should be so bewildered that we should not know how to
interpret them. The second blessing is that we are not immor-
tal. I say this because, after all, the human mind is not pliable
enough to adapt to the continual changes in scientific ideas
and techniques. I suspect there are still many astronomers
who are working on problems, and with equipment, that are
many years out of date. Now that I am old, I see that it is dan-
gerous to be in too much of a hurry, to be too anxious to see
the final result oneself. Our research does not belong to us, to
our institution, or to our country. It belongs to mankind. And
so I say to you, the young generation of astronomers: more
power to you. May you continue to expand the picture of the
universe, and may you never lose the thrill it gave you when it
first broke on you in all its glory” [Cecilia Payne-Gaposchkin,
April 10, 1968 [50, p. xv]].

Dedication

This work is dedicated to my oldest son, Jacob.
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Hierarchical relationships between physical theories are discussed. It is explained how
a lower rank theory imposes constraints on an acceptable structure of its higher rank
theory. This principle is applied to the case of quantum mechanics and quantum field
theory of massive particles. It is proved that the Dirac equation is consistent with these
constraints whereas the Klein-Gordon equation, as well as all other second order quan-
tum equations are inconsistent with the Schrödinger equation. This series of arguments
undermines the theoretical structure of the Standard Model.

1 Introduction

The equations of motion are regarded as the basis of a physi-
cal theory. A mathematical analysis of these equations yields
the complete form of a given theory and of its details. The
validity of a mathematically correct physical theory should
be consistent with two kinds of tests. Thus, it must agree
with relevant experimental data and it must also be consis-
tent with well established physical principles. (Evidently, the
latter represent many experimental data in a concise form.)
The following simple example illustrates the latter point. A
new theory is unacceptable if its final results are inconsistent
with the law of energy conservation. This point shows the
significance of physical constraints that restrict the number
of acceptable physical theories and guide theoretical and ex-
perimental efforts to take promising directions.

The definition of a domain of validity is an important ele-
ment of a theory. For example, mechanics is the science used
for predicting the motion of bodies. It is very successful in
the case of the motion of planets moving around the sun. On
the other hand, it cannot predict the motion of an eagle flying
in the sky. This example does not mean that mechanics is in-
correct. It means that mechanics is a very satisfactory science
for a set of experiments. For example, Newtonian mechanics
is acceptable for cases where the following conditions hold:
the velocity is much smaller than the speed of light, the clas-
sical limit of quantum mechanics holds, and the force can be
calculated in terms of position, time and velocity. The set of
experiments where a given theory is successful is called the
theory’s domain of validity. This issue is used in the rest of
this work.

The definition of the domain of validity illustrates an im-
portant aspect of the correctness of a physical theory. Indeed,
this notion should be regarded in a relative sense. Thus, many
measurements are given together with experimental error. For
this reason, even if we know that a given theory is not perfect,
it still can be regarded as a correct theory for cases where the
theory’s errors are smaller than the experimental errors.

In this work units where ℏ = c = 1 are used. In this system
of units one kind of dimension applies and here it is the length
[L]. Thus, the dimension of every physical quantity takes

an appropriate power of [L]. For example, mass, energy and
momentum take the dimension [L−1]. The metric is diagonal
and its entries are (1,−1,−1,−1). Greek indices run from 0 to
3. The subscript symbol ,µ denotes the partial differentiation
with respect to xµ.

2 The dimensions of quantum fields

Consider the two sets of experiments S A and S B defining the
domains of validity of the physical theories A and B, respec-
tively.

Fig. 1 illustrates the hierarchical relationships between
theories A and B. Here the sets S A and S B consist of all ex-
periments that are described correctly by theory A and B, re-
spectively. The set S A is a subset of S B. This relationship
means that all experiments that are described successfully by
theory A are also described successfully by theory B, but not
vice versa. For this reason it can be stated that theory B has
a more profound meaning because it is also valid for cases
where theory A is useless. However, this fact does not mean
that theory A is wrong, simply because this theory can be
used successfully for all cases that belong to its domain of
validity S A.

This kind of relationships between theories has been rec-
ognized a long time ago. For example, A. Einstein men-
tions special relativity and general relativity and explains why
special relativity should not be regarded as a wrong theory.
The reason is that special relativity holds in cases where a
flat space-time can be regarded as a good description of the

Fig. 1: Domains of validity of two theories (see text).
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physical conditions. Similarly, considering electrostatics and
Maxwellian electrodynamics, he explains why electrostatics
is a good theory for cases where the charge carriers can be
regarded as motionless objects (see [1], pp. 85, 86).

The issue of hierarchical relationships between theories is
also discussed in Rohrlich’s book (see [2], pp. 1–6). Here one
can find explanation showing the hierarchical relationships
between several pairs of theories. This discussion provides
the reader with a broader overview of the structure of existing
physical theories and of their hierarchical relationships.

As pointed out above, a physical theory that takes a higher
hierarchical position has a more profound meaning. The rest
of this work relies on another result obtained from these re-
lationships. Thus, a well established physical theory imposes
constraints on appropriate limits of a higher rank theory. For
example, this requirement is satisfied by relativistic mechan-
ics, whose low velocity limit agrees with Newtonian mechan-
ics (see [3], pp. 26–30). Similarly, the classical limit of
quantum mechanics agrees with classical physics (see [4], pp.
19–21 and [5], pp. 133–141). Below, this principle is called
constraints imposed by a lower rank theory. It is shown in
this work that this principle provides powerful constraints on
the acceptability of physical theories.

3 Hierarchical Relationships Between Quantum Theo-
ries

Let us discuss the hierarchical relationships between three
quantum theories of massive particles: non-relativistic quan-
tum mechanics (QM), relativistic quantum mechanics (RQM)
and quantum field theory (QFT) (see fig. 2). Thus, QM takes
the lowest hierarchical rank because it is valid for cases where
the absolute value of the momentum’s expectation value is
much smaller than the particle’s self-mass. RQM is valid for
cases where the number of particles can be regarded as a con-
stant of the motion. QFT is a more general theory and RQM
is its appropriate limit. The inherent relationships between
these theories are well documented in the literature. Thus,
S. Weinberg makes the following statement. “First, some
good news: quantum field theory is based on the same quan-
tum mechanics that was invented by Schrödinger, Heisen-
berg, Pauli, Born, and others in 1925-1926, and has been used
ever since in atomic, molecular, nuclear and condense matter
physics” (see [6], p. 49).

The Schrödinger equation takes the following form

i
∂ψ

∂t
= − 1

2m
∆ψ + Uψ. (1)

An analysis of this equation yields an expression for a
conserved current whose density is (see e.g. [4], pp. 53–55)

ρ = ψ∗ψ. (2)

Relation (2) proves that the dimension of the Schrödinger
function is

[ψ] = [L−3/2]. (3)

Fig. 2: Hierarchical relationships between three quantum theories
(see text).

Here the expression for density depends only on the wave
function and contains no derivatives. The form of the density
(2) is an important element of the theory because it enables a
construction of a Hilbert space of the time-independent func-
tions which belong to the Heisenberg picture.

Let us examine the structure of QFT. The vital role of
the Lagrangian density in QFT can be briefly described as
follows. The phase is an indispensable element of quantum
theories. Being an argument of an exponent which can be ex-
panded in a power series, the phase must be a dimensionless
Lorentz scalar. Thus, the phase is defined as a Lorentz scalar
action (divided by ℏ). The following expression shows how
the action is obtained from a given Lagrangian density L

S =
∫
L d4x. (4)

This expression proves that a dimensionless Lorentz
scalar action is obtained from a Lagrangian density that is
a Lorentz scalar whose dimension is [L−4].

This property of the Lagrangian density is used in an ex-
amination of two kinds of QFT theories. Let us begin with the
first order Lagrangian density of a free Dirac field ψD (see [7],
p. 54)

LD = ψ̄D[γµi∂µ − m]ψD. (5)

Now, the dimension [L−4] of the Lagrangian density and
the dimension [L−1] of the operators ∂µ and m prove that the
dimension of the Dirac field ψD is [L−3/2]. This value agrees
with that of the Schrödinger function (3). It means that the
Dirac field theory satisfies the dimension constraints imposed
by the lower rank theory of QM.

A different result is obtained from the second order com-
plex Klein-Gordon (KG) equation. The Lagrangian density
of this equation is (see [7], p. 38)

LKG = g
µνϕ∗,µϕ,ν − m2ϕ∗ϕ. (6)

Here the dimension of the operators is [L−2]. Using the
dimension [L−4] of the Lagrangian density, one infers that the
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dimension of the KG function ϕ is [L−1]. On the other hand,
it is shown in (3) that the dimension of the Schrödinger wave
function is [L−3/2]. This outcome means that the complex
KG function ϕ violates a constraint imposed by a lower rank
theory.

It turns out that this inconsistency holds for other quantum
equations where the dimension of their field function is [L−1].
Thus, a dimension [L−1] is a property of the following field:
the Yukawa particle (see [8], p. 211), the electroweak W±,Z
bosons (see [9], p. 307) and the Higgs boson (see [10], p.
715). For this reason, quantum theories of all these particles
are inconsistent with the dimensional constraint imposed by
the Schrödinger equation.

One can also see immediately that the Yukawa and the Z
fields introduce to the Lagrangian density an interaction term
with a fermion ψ which takes the form

LInt = gψ̄ϕψ. (7)

This kind of interaction means that the field ϕ of each
of these particles is a real field (in a mathematical sense).
This conclusion stems from the facts that the action and the
integration factor d4x are real. These properties mean that all
terms of a Lagrangian density must be real. Now, since g and
the product ψ̄ψ are real, one finds that ϕ is real. Evidently, a
theory of a real field is inconsistent with another constraint of
QM. Indeed, QM uses a complex wave function and for this
reason the non-relativistic limits of the real field of Yukawa
and of Z particles also violate a second kind of constraint.

4 Concluding Remarks

It is explained in this work how hierarchical relationships
between physical theories can be used for deriving neces-
sary conditions that an acceptable higher rank theory must
satisfy. This issue is applied to QFT theories and the non-
relativistic limit of their field function is compared with prop-
erties of non-relativistic quantum mechanics. It is explained
how such a comparison provides a powerful criterion for the
acceptability of physical theories. The discussion examines
the dimension of quantum functions of several specific theo-
ries and compares the dimension of QFT theories with that of
the lower rank non-relativistic Schrödinger theory. It turns
out that the Dirac field satisfies this criterion whereas the
Klein-Gordon and the Yukawa theories as well as those of
the W±, Z and the Higgs boson fail to satisfy this criterion.

An important evaluation of a theoretical idea is a compar-
ison of its outcome with experimental results. Referring to
this issue, one should note that a field function ψ(xµ) which is
used in QM, RQM and QFT depends on a single set of four
space-time coordinates xµ. For this reason, ψ(xµ) describes
an elementary point-like particle. The following example il-
lustrates this matter. A pion consists of a quark-antiquark
pair of the u, d flavor and each quark is described by a func-
tion that depends on its own 4-coordinates xµ. Hence, a pion

cannot be described by a function ψ(xµ), simply because this
function has a smaller number of independent coordinates.
It turns out that experimental data of all spin-1/2 Dirac par-
ticles, namely, leptons and quarks, are consistent with their
pointlike attribute. On the other hand the pion, which was
the original KG candidate is not pointlike and the π± mesons
have a charge radius which is not much smaller than that of
the proton [11]. There is still no experimental data concern-
ing pointlike properties of the W±,Z and the Higgs boson.

As is well known, the W±,Z and the Higgs bosons are cor-
nerstones of the Standard Model. It means that the series of
arguments presented in this work undermines the theoretical
structure of the Standard Model. Evidently, a physical the-
ory that has an inconsistent structure is unacceptable. Hence,
people who still adhere to the Standard Model must show why
the arguments presented above are incorrect. It is also inter-
esting to note that the results of this work are consistent with
Dirac’s lifelong objection to the second order KG equation of
a spin-0 boson (see [12], pp. 3, 4).
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In the framework of the Geometric Collective Model (GCM), quantum phase transition
between spherical and deformed shapes of doubly even nuclei are investigated. The
validity of the model is examined for the case of lanthanide chains Nd/Sm and actinide
chains Th/U. The parameters of the model were obtained by performing a computer
simulated search program in order to obtain minimum root mean square deviations be-
tween the calculated and the experimental excitation energies. Calculated potential en-
ergy surfaces (PES’s) describing all deformation effects of each nucleus are extracted.
Our systematic studies on lanthanide and actinide chains have revealed a shape transi-
tion from spherical vibrator to axially deformed rotor when moving from the lighter to
the heavier isotopes.

1 Introduction
The nuclear shape transitions were studied within the nu-
clear interacting boson model (IBM) [1–3]. The IBM-1 de-
scribes a system of a fixed number N of spin zero and two
bosons (s and d bosons) subject to one- and two-body inter-
actions. The IBM-1 reveals a transparent algebraic structure
with U(6) as the dynamical group. Varying six free param-
eters of the model, one can reach three standard dynamical
symmetries U(5), SU(3) and O(6) and two additional ones
SU(3)∗ and O(6)∗ [2]. It turns out that these dynamical sym-
metries provide an appropriate framework for the description
of low-energy collective motions of real nuclei with certain
shape symmetries: The U(5) limit corresponds to spherical
nuclei, the SU(3) and SU(3)∗ limits to axially symmetric nu-
clei with quadruple deformation (prolate and oblate shapes)
and the O(6) and O(6)∗ limits to quadruply deformed nuclei
that are unstable against the axial symmetry breaking. This is
represented in the so called Casten triangle [2,4] with vertices
corresponding to the standard dynamical symmetries and the
other points to various transitional cases. Phase transitions
between these shapes were studied, and it is known that the
phase transition from U(5) to O(6) is second order, while any
other transition within the Casten triangle from a spherical to
a deformed shape is first order [5–15].

Alternative descriptions of nuclei at the critical point of
phase transitions from spherical vibrator to deformedγ soft
E(5) [16], and from spherical vibrator to deformed axially
symmetric rotor X(5) [17], were proposed. These analytic
solutions are obtained by introducing a square well potential
in the Bohr Hamiltonian and yield parameter free predictions
for both energies and electromagnetic transition probabilities.
Empirical examples were suggested for both the proposed
symmetries [18]. It was found [19, 20] that the X(5) predic-
tions cannot be exactly reproduced by any point in the two pa-
rameter space of the IBM, whereas best agreement is obtained

for parameters corresponding to a point close to, but outside,
the shape phase transition region of the IBM. Since the IBM
was formulated from the beginning in terms of creation and
annihilation boson operators, its geometric interpretation in
terms of shape variables is usually done by introducing a bo-
son condensate with two shape parametersβ andγ through
the intrinsic state formalism (coherent state) [21]. The pa-
rameterβ is related to the axial deformation of the system,
while γ measures the deviation from axial symmetry. The
equilibrium shape of the system is obtained by minimizing
the intrinsic state. It is well know that the dynamical sym-
metry associated with U(5) corresponds to a spherical shape
β = 0, the dynamical symmetry SU(3) is associated with an
axially deformed shapeβ , 0 andγ = 0, π/3 and the dynam-
ical symmetry O(6) is related to aγ-unstable deformed shape
β , 0 andγ-independent.

A very flexible and powerful approach to describe nu-
clear collective excitations which is an extension of the Bohr-
Mottelson vibrational Hamiltonian [22] is the GCM essen-
tially based on the quadruple degrees of freedom [23,24]. The
problem of nuclear collective motion is formulated by Bohr
and Mottelson from the beginning in terms of the intrinsic pa-
rametersβ, γ and the three Euler angelsωi that characterize
the orientation of a deformed nucleus.

The GCM is a macroscopic nuclear structure model in the
sense that it considers the nucleus as a charged liquid drop
with a definite surface, rather than a many-body system of
constituent particles.

Neodymium isotopes are the members of the chain of nu-
clei which represent an ideal case for studying the influence
of the shape transition from spherical to deformed nuclei.
Therefore, in the chart of nuclei there is a very important lan-
thanide Nd/Sm transition region which exhibit a rapid struc-
tural change from spherical to well deformed when moving
from the lighter to the heavier isotopes. Although this tran-
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sitional region has been studied extensively in the framework
of the IBM, the discussion of phase transitions has not always
been treated in a proper way.

In the present paper, we have analyzed systematically the
transitional region and phase transition in lanthanide and ac-
tinide chains of isotopes in the framework of GCM. For each
isotope chain a fitting procedure is performed to get the model
parameters. We have generated the PES to classify phase
transitions and to decide if a nucleus is close to criticality.
In these chains, nuclei evolve from spherical to deformed
shapes.

2 The GCM Hamiltonian and the PES’s

The Hamiltonian of the GCM [23] represents a concrete re-
alization of the general Bohr Hamiltonian [22] describing the
quadruple oscillations of the nuclear surface. The collective
Hamiltonian restricted to quadruple deformations can be writ-
ten in the notation of Rajah for tensor products of irreducible
tensor operators. Theα′s are the well known collective co-
ordinates, which are defined by the usual expansion of the
nuclear radius in terms of spherical harmonics. The ˆπ is the
covariant tensor of the canonically conjugate momenta. We
start by writing the GCM Hamiltonian as:

Ĥ = T̂ + V̂. (1)

The kinetic energŷT up to second order is given by [2].

T̂ =
1
B2

[π × π]0 +
P3

3

[
[π × α](2) × π̂

](0)
(2)

whereB2 is the common mass parameter andP3 is an enhar-
monic kinetic term which for simplicity, we set to zero here.
A transformation to the intrinsic body fixed system leads to
a formal separation of the rotational and vibrational variables
expressed by the Euler angles and the shape parametersβ and
γ respectively. The potential energyV is given by

V = C2[α × α](2) + C3

[
[α × α](2) × α

](0)
+

+C4[α × α](0)[α × α](0)+

+C5[α × α](0)
[
[α × α](2) × α

](0)
+

+C6

[
[α × α](2) × α

](0) [
[α × α](2) × α

](0)
+

+D6[α × α](0)[α × α](0)[α × α](0).

(3)

The six stiffness parametersC2,C3,C4,C5,C6 andD6 occur-
ring in the collective potential energy are constants for each
nucleus. They are treated as adjustable parameters which
have to be determined from the best fit to the experimental
data, level energies, B(E2) transition strengths and
quadruple moments. They depend however on the proton and
neutron numbers due to shell structure. The potential energy,

expressed in terms of the intrinsic variablesβ andγ, is

V(β, γ) = C2
1√
5
β2 −C3rub

√
2
35 β

3 cos(3γ)+

+C4
1
5 β

4 −C5

√
2

175 β
3 cos(3γ)+

+C6
2
35 β

6 cos2(3γ) + D6
1

5
√

5
β6

= Vs(β) + VPo(β, γ) + Vna(β, γ).

(4)

Roughly speaking theC2, C4 and D6 terms describe theγ-
independent features of the PES. They form the contribution
Vs(β). TheC3 andC5 terms are responsible for the prolate-
oblate energy differences in the PES and are represented by
Vpo(β, γ). The C6 term is symmetric about theγ = π/6
axis and therefore can be used for the generation of non ax-
ial shapeVna(β, γ). The selection of the eight parameters of
the GCM Hamiltonian is impractical and difficult, because
the available observation data are usually not sufficient to
establish the qualitative nature of the GCM potential. It is
therefore, often desirable to use a more tractable form of the
model. In practice simplification for the GCM is to use a
maximum of three parameters to describe all limits of nuclear
structure: vibrator, rotor andγ-soft nuclei and transition re-
gions in between. Then the potential energy up to the fourth
power ofβ is simplified to be:

V(β, γ) = C2
1
√

5
β2 −C3

√
2
35
β3 cos(3γ) + C4

1
5
β4 (5)

whereβ ∈ [0,∞] andγ ∈ [0,2π/3].

3 Critical Point Symmetries

The equilibrium shape associated with the GCM Hamiltonian
can be obtained by determining the minimum of the energy
surface with respect to the geometric variablesβ andγ, i.e.
where the first derivative vanish.

Since the parameterC3 controls the steepness of the po-
tential, and therefore, the dynamical fluctuations inγ, it stron-
gly affects the energies of excited intrinsic states. The param-
eter C3 = 0 gives aγ-flat potential and an increase ofC3

introduces aγ-dependence in the potential with a minimum
atγ = 0. ChangingC3 will indeed induce aγ-unstable to the
symmetric rotor transition; it is best to simultaneously vary
C2 andC4 as well.

The shape transition from vibrator to rotors is achieved
by starting from the vibrator limit, loweringC2 from positive
to negative value, increasingC4 to large positive value, with
gradually increasingC3 (loweringC2 from positive to nega-
tive value, introducing a large positiveC4 and a positiveC3).

4 Numerical Results Applied to Lanthanide and Actin-
ide chains

The first nucleus to be identified as exhibiting transition from
spherical to axially deformed shapes was152Sm [18], fol-
lowed by150Nd [24]. Further work on152Sm [25] and150Nd
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[25,26] reinforced this conclusion. In our calculation we will
examine and systematically study the lanthanide144−154Nd
and 146−156Sm, isotopes and actinide224−234Th and230−238U
isotopes because of the richness of available experimental
data indicating a transition of nuclear shapes from spherical
to deformed form. The optimized model parameters for each

Table 1: The GCM parameters by (MeV) as derived in fitting proce-
dure used in the calculation.

Nucleus C2 C3 C4
144Nd 12.46084 1.06407 −26.29034
146Nd 7.98904 8.46249 −5.34827
148Nd −19.84450 41.41216 105.62500
150Nd −56.19267 83.37305 248.96600
152Nd −73.70551 104.57310 319.48270
154Nd −84.13947 118.02790 362.71460

146Sm 14.49576 1.27688 −30.52593
148Sm 8.89235 9.87290 −5.28215
150Sm −23.19850 47.32818 121.87500
152Sm −63.80397 93.79468 281.39990
154Sm −82.44842 116.19230 356.21830
156Sm −93.05583 129.83070 400.10950

224Th 0.55766 4.96951 6.10300
226Th −0.11521 6.38937 9.70762
228Th −0.83906 7.98671 13.68875
230Th −1.63871 9.76153 18.10188
232Th −2.59264 11.71384 23.12250

230U −1.67560 9.76153 18.18437
232U −2.63289 11.71384 23.21250
234U −3.77666 13.84363 28.92012
236U −4.90299 16.15090 34.85125
238U −6.23928 18.63565 41.51437

nucleus was adjusted by fitting procedure using a computer
simulated search program in order to describe the gradual
change in the structure as neutron number varied and to re-
produce the properties of the selected reliable state of positive
parity excitation (2+1 ,4

+
1 ,6

+
1 ,8

+
1 ,0

+
2 ,2

+
3 ,4

+
3 ,2

+
2 ,3

+
1 , and 4+2) and

the two neutron separation energies of all isotopes in each iso-
topic chain. The resulting parameters are listed explicitly in
Table 1. For the isotopic chains investigated here, the collec-
tive properties are illustrated by representing the calculated
PES describing all deformation effects of the nucleus. We in-
vestigated the change of nuclear structure within these chains
as illustrated in Figures 1-4. The PES’s versus the deforma-
tion parameterβ for lanthanide and actinide isotopic chains of
nuclei evolving from spherical to axially symmetric well de-
formed nuclei. We remark that for all mentioned nuclei, the
PES is not flat, exhibiting a deeper minimum in the prolate
(β > 0) region and a shallower minimum in the oblate (β < 0)

region. Relatively flat PES occur for the N= 86 nuclei146Nd
and148Sm. A first order shape phase transition with change in
number of neutrons when moving from the lighter to heavier
isotopes,i.eU(5) - SU(3) transitional region are observed.

Fig. 1: PES calculated with GCM as a function of the shape param-
eterβ for shape phase transition from spherical to prolate deformed
for Neodymium isotope chain144−154Nd.

The present results for146−156Sm is in good agreement
with Nilsson-Strutinsky (BCS)-calculations [26]. However,
the existence of a bump in the PES is related to the success of
the confinedβ-soft (BCS) rotor model, employing an infinite
square well potential displaced from zero, as well as to the
relevance of Davidson potentials [27, 28]. It also is related
to the significant five-dimensional centrifugal effect [28, 29].
The actinide228−234Th and234−238U are all well-deformed ro-
tors with energy ratioE(4+1)/E(2+1) close to (3.3).

5 Conclusion

A simple approach of the GCM is discussed which repro-
duces the basic features of the three limits of the nuclear
structure: spherical vibrator, axially symmetric rotor andγ-
soft rotor, as well as the three phase shape transition regions
linking them. The Hamiltonian is expressed as a series ex-
pansion in terms of surface deformation coordinates and a
conjugate momentum. We considered only the lowest kinetic
energy terms, so that the eigen problem for our Hamiltonian
reduces to Schrodinger equation in five dimensional spaces.
All calculations are performed for reference value of the com-
mon mass parameter, only a maximum of three parameters of
the truncated form of GCM potential instead of the six are
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Fig. 2: PES calculated with GCM as a function of the shape param-
eterβ for shape phase transition from spherical to prolate deformed
for Samarium isotope chain146−156Sm.

Fig. 3: PES calculated with GCM as a function of the shape param-
eterβ for shape phase transition from spherical to prolate deformed
for Thorium isotope chain224−234Th.

Fig. 4: PES calculated with GCM as a function of the shape param-
eterβ for shape phase transition from spherical to prolate deformed
for Uranium isotope chain230−238U.

used. The parameter values for the description of a particu-
lar nucleus have been found through automated fitting of the
nuclear energy levels.

The systematics of shape transitions versus neutron num-
ber is studied by the GCM. The capabilities of the model and
the illustrative way of representing the collective properties
by potential energy surfaces are demonstrated. For neutron
number N= 90, the nucleus has a substantial static deforma-
tion, but for N= 80 the nucleus is soft or transitional and
cannot be described as deformed.
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The paper proposes a simplified theoretical approach to infer some essential concepts
on the fundamental interactions between charged particles and their relative strengths
at comparable energies by exploiting the quantum uncertainty only. The worth of the
present approach relies on the way of obtaining the results, rather than on the results
themselves: concepts today acknowledged as fingerprints of the electroweak and strong
interactions appear indeed rooted in the same theoretical frame including also the basic
principles of special and general relativity along with the gravity force.

1 Introduction

The state of a classical particle is specified by its coordinates
and momentum; the dynamical variablesx, px, y, py, z, pz, as-
sumed known at any time, define the 6-dimensional space
usually called “phase space”. Knowing the state of a parti-
cle means determining these six quantities that describe its
motion and energy. Since the state of a classical system is
identified by the distribution of corresponding points in the
phase space, any finite volumeVps = (δxδyδz)(δpxδpyδpz)
should seemingly contain an infinite number of states. Be-
cause of the uncertainty principle, however, these six quanti-
ties are not simultaneously known; the impossibility of defin-
ing the corresponding points in the phase space compels in-
stead introducing a lower limit to the volume of phase space
physically significant. Since such an elementary volume has
sizeVo

ps = (dxdydz)(dpxdpydpz) = ~3, any finite volumeVps

enclosing measurable combinations of coordinates and con-
jugate momenta consists of a finite numberVps/Vo

ps of el-
ementary volumes. The quantum uncertainty was inferred
by W. Heisenberg as a consequence of the operator formal-
ism of wave mechanics, on which relies the quantum theory:
the wave functionψ = ψ(x, t) replaces the lack of definable
quantum values ofx concurrently associable to the conju-
gate px. However most physicists believe unsatisfactory a
theory based on the wave functionψ without direct physical
meaning [1]; indeedψψ∗ only has the statistical meaning of
probability density and contains the maximum information
obtainable about a physical system. The wave function char-
acterizes a pure state, represented by a single ”ket” vector
to which corresponds a well defined eigenvalue, whereas in
general a particle is found in a mixture of states; so the re-
sult of a measurement on a quantum state represents a prob-
ability distribution of finding the particle in a given volume
of phase space. The density matrix is the mathematical tool
to describe mixed quantum states by means of a distribution
function of coordinates and momenta. Owing to the statis-
tical character of the knowledge we can afford in the quan-
tum world, the Wigner functionW(x, p) [2] aims to repre-
sent a quantum state in terms of a joint probability distri-
bution involving both coordinates and momenta, in formal
analogy with the classical statistics; the former is therefore

a correction to the latter. The quantumx and p distributions
are appropriately described by the respective marginal dis-
tributions ∫

+∞
−∞ W(x, p)dp and ∫

+∞
−∞ W(x, p)dx under the nor-

malization condition∫
+∞
−∞ ∫

+∞
−∞ W(x, p)dpdx= 1, whereas the

expectation value for any operator function is weighed by
W(x, p) as ∫

+∞
−∞ ∫

+∞
−∞ W(x, p) f (x, p)dpdx. Other relevant fea-

tures ofW(x, p), well known [3], are omitted here for brevity.
Also the Wigner function, however, although providing sig-
nificant information about the quantum states, presents con-
ceptual difficulties: it is not a real probability distribution in
the classical sense, it is a quasi-probability that can even take
negative values; moreover it can represent the average value
of an observable but not, in general, also its higher power
moments.

To bypass both these difficulties inevitably inherent the
wave formalism, the present theoretical model implements an
approach conceptually different: it exploits directly the sta-
tistical formulation of quantum uncertainty, which therefore
becomes itself a fundamental assumption of the model and
reads in one space dimension

ΔxΔpx = n~ = ΔtΔε. (1,1)

This set of 2n equation disregards since the beginning the
local dynamical variables of the particles forming the quan-
tum system and simply counts its numbern of allowed states.
Are therefore required the following positions

xi → Δxi , t → Δt, i = 1..3. (1,2)

No hypotheses are made about the uncertainty ranges,
which are by definition unknown, unknowable and arbitrary.
In quantum mechanics the square complex wave function of
space and time variables contains the maximum information
about a quantum system, which has therefore probabilistic
character. The present model intends instead starting from a
minimal information about any quantum system, still based
on the failure of the physical concept of points definable in
the quantum phase space but trusting on the idea that a min-
imum information is consistent with the maximum general-
ity: despite the knowledge of one dynamical variable only is
in principle allowed even in the quantum world, the present
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model disregards “a priori” the local values of both conjugate
dynamical variables. This means renouncing even to the con-
cept of probability density provided by the wave function of a
particle, while also disregarding the related concept of wave
packet to describe its propagation; in the present model it is
only possible to say that if the particle moves during a time
rangeΔt throughout its uncertainty rangeΔx, then its average
velocity component isvx = Δx/Δt regardless of any local fea-
ture of its actual delocalization motion. So eqs (1,1) require
by definitionΔε = vxΔpx. In fact the positions (1,2) ignore
both local dynamical variables, not as a sort of approximation
to simplify some calculation but conceptually and since the
early formulation of any quantum problem; accordingly, the
delocalization of a quantum particle in its uncertainty range
is conceived in its most agnostic form, i.e. waiving any kind
of information about its position and motion. Thus, regarded
in this way, eqs (1,1) exclude the concept itself of probability
density and contextually also the definition of Wigner func-
tion linking the Schrodinger equation to the marginal distri-
butions in the phase space; both equations are bypassed along
with the concept of wave equation itself. Eqs (1,1) merely list
the eigenvalues of pure states, indeed they are a set of equa-
tions corresponding to the respective values ofn; so they also
skip the probability with which in a mixed state each eigen-
value could be measured. Despite waiving themselves the
concept of probability density through the positions (1,2), eqs
(1,1) enable however also this kind of probabilistic informa-
tion; it is essential indeed to mention that the wave formalism
is obtainable as a corollary of eqs (1,1) [4], which means that
all considerations previously introduced are in fact comprised
also in the present theoretical model: one infers first from eqs
(1,1) the operator formalism and then proceeds as usual. In
this way the wave formalism, with its conceptual weakness,
loses its rank of fundamental root of our knowledge about
the quantum world, becoming indeed a mere by-product of
eqs (1,1); yet, even so it still represents an added value to the
physical information by introducing the concept of probabil-
ity density that partially overcomes the total agnosticism of
eqs (1,1).

What however about the chance of formulating any phys-
ical problem exploiting directly the eqs (1,1) only? Is legiti-
mate the belief that the equations enclosing conceptually the
wave formalism as a corollary also enclose the inherent phys-
ical information. The question that arises at this point con-
cerns just the real chance of obtaining physical information
once abandoning the typical ideas and mathematical tools of
wave mechanics: is really redundant the concept of proba-
bility density? Several papers have demonstrated the effec-
tiveness of this alternative approach, e.g. [5,6]; moreover,
without the need of hypotheses onn and on the uncertainty
ranges defined by eqs (1,1), the paper [7] has shown the pos-
sibility of extending the mere quantum horizon of these equa-
tions, initially concerned, also to the special and general rel-
ativity. The positions (1,2) compel focusing the attention on

the uncertainty ranges and related numbers of states, i.e. on
the phase space, rather than on the specific coordinates of
the particles concerned by the particular physical problem.
In fact, the local dynamical variables are conceptually dis-
regarded since the beginning in the present model. Put for
instanceΔx = x − xo: if either boundary coordinate, sayxo,
is defined by the origin of the coordinate systemR, then it
determines the position ofΔx in R; the other boundary coor-
dinatex determines its size. The crucial point is that bothxo

andx are arbitrary, unknown and unknowable by fundamen-
tal assumption; the reference systemR is therefore ”a priori”
arbitrary, unspecified and unspecifiable as well, whence the
equivalence of all reference systems whenever implementing
the positions (1,2) to describe the quantum world. Otherwise
stated, eqs (1,1) do not specify any particular reference sys-
tem because analogous considerations hold for all uncertainty
ranges they introduce. Moreovern is itself arbitrary as well; it
merely symbolizes a sequence of numbers of allowed states,
not some specific value in particular. Let therefore eqs (1,1)
be defined in anyRand rewrite them asΔx′Δp′x = n′ = Δε′Δt′

in any R′: it is self-evident that actually these equations are
indistinguishable becausen andn′ do so as well. Whatever
a specific value ofn might be inR, any change ton′ e.g.
because of the Lorentz transformations of the ranges is phys-
ically irrelevant: it means replacing an arbitrary integer in
the former set with another integer of the latter set. In ef-
fect, two examples of calculation reported below highlight
that modifying the range sizes from primed to unprimed val-
ues does not affect any result, in agreement with their pos-
tulated arbitrariness: no range size is expected to appear in
the quantum eigenvalues. Hence the eqs (1,1) have general
character, regardless of any particular reference system to be
appropriately specified; this holds also ifRandR′ are inertial
and non-inertial, since no hypothesis has been assumed about
them [7]. On the one hand this entails obtaining the indis-
tinguishability of identical particles as a corollary, regardless
of which particle in a set could be that actually delocalized
in a given uncertainty range; indeed no particle is specifically
concerned “a priori”. On the other hand it also entails that
the properties of motion of the particle, and thus the marginal
distributions of its dynamical variables, are disregarded by as-
sumption and skipped by consequence when formulating any
physical problem. To better understand the following of the
paper, these remarks are now exemplified examining shortly
the non-relativistic quantum angular momentumM , on the
one side to highlight how to exploit the positions (1,2) and on
the other side to show why the minimal information accessi-
ble through eqs (1,1) is in fact just that available through the
usual operator formalism of wave mechanics.

Consider the classical componentMw = r × p ∙ w of M
along an arbitrary direction defined by the unit vectorw, be-
ing r the radial distance of any particle from the origin of
an arbitrary reference system and its momentum. The po-
sitions (1,2) compelr → Δr and p → Δp and enable the
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numberl of states to be calculated only considering the total
rangesΔr andΔp of distances and momenta physically al-
lowed to the particle, about which no hypothesis is necessary;
let us show that the random local valuesr andp themselves
have instead no physical interest. SoMw = (Δr × Δp) ∙ w =

(w × Δr ) ∙ Δp, i.e. Mw = ΔW ∙ Δp, whereΔW = w × Δr .
If and ΔW are orthogonal, thenMw = 0; else, rewriting
ΔW ∙ Δp as(Δp ∙ ΔW/ΔW)ΔW with ΔW = |ΔW|, the com-
ponent±ΔpW = Δp ∙ ΔW/ΔW of Δp alongΔW yields Mw =

±ΔWΔpW.

Thus, according to eqs (1,1),Mw = ±l~, beingl the usual
notation for the number of states of the angular momentum.
As expected,Mw is a multi-valued function because of the
uncertainties initially postulated forr and p. One compo-
nent ofM only, e.g. along thez-axis, is knowable; repeating
the same approach for they and x components would triv-
ially mean changingw. Just this conclusion suggests that
the average values< M2

x >, < M2
y > and< M2

z > should
be equal; so the quantity of physical interest to describe the
properties of quantum angular momentum isl, as a function
of which M2 is indeed inferred as well. The components av-
eraged over the possible states summing (l~)2 from−L to+L,
whereL is an arbitrary maximum value ofl, yield < M2

i >=∑li=L
li=−L (~l)2/(2L+1) and thusM2 =

∑3
i=1 < M2

i >= L(L+1)~2.

The physical definition of angular momentum is enough
to find quantum results completely analogous to that of the
wave mechanics even disregarding any local detail about the
angular motion. This result has been reminded here as it in-
troduces several significant considerations useful in the fol-
lowing: (i) eqs (1,1) and the positions (1,2) plug the classical
physics into the quantum world; (ii) no hypothesis is neces-
sary about the motion of the particle nor about its wave/matter
nature to infer the quantum result; (iii) trivial algebraic ma-
nipulations replace the solution of the pertinent wave equa-
tion; (iv) the result inferred through eqs (1,1) only is consis-
tent with that of the wave mechanics; (v) the local distance
between the particles concerned in the angular motion does
not play any role in determiningl; (vi) the number of allowed
states plays actually the role of angular quantum number of
the operator formalism of wave mechanics; (vii) the amount
of information accessible for the angular momentum is not
complete like that of the classical physics, but identical to
that of the wave formalism; (viii) eqs (1,1) rule out “a priori”
any chance of hidden variables hypothetically encodable in
the wave function, i.e. local values of any kind that could in
principle enhance our knowledge aboutMw andM2 to obtain
a more complete description of the angular quantum system;
(ix) the eigenvalues, i.e. the physical observables, are actu-
ally properties of the phase space rather than properties of
specific particles, whence the indistinguishability of identical
particles here inferred as a corollary of eqs (1,1); (x) the num-
bers of states are here simply counted; (xi) the positions (1,2)
are consistent with the concept of classical coordinate in the

limit caseΔx → 0, which means that the random local vari-
ablexo ≤ x ≤ x1 tends to a classical local value uniquely and
exactly defined; (xii) the total arbitrariness of the boundary
values of the ranges is necessary to ensure that any local value
is allowed for the corresponding classical variables; (xiii) the
range sizes do not play any role in determining the eigenval-
ues of angular momentum, their conceptual reality, i.e. the
total uncertainty about both conjugate dynamical variables of
a quantum particle, is the unique hypothesis of the present
model. The same holds of course for any other uncertainty
range.

These ideas have been extended and checked in the papers
[5,6] also for more complex quantum systems like hydrogen-
like and many electron atoms/ions and diatomic molecules;
also these papers allowed concluding that eqs (1,1) efficiently
replace the standard approach of wave mechanics, without
requiring the concept of probability density and thus without
need of calculating marginal distributions in the phase space
through the Wigner functions. In these papers the interac-
tion is described via the Coulomb potential energy between
charged particles; in other words, one assumes already known
the Coulomb law to calculate for instance the energy levels of
hydrogenlike atoms. This point is easily highlighted consid-
ering for simplicity the non-relativistic hydrogenlike energy
levels; also this topic, already introduced in [5], is reported
here for completeness.

Assuming the originO of an arbitrary reference system
R on the nucleus, the classical energy isε = p2/2m− Ze2/r
beingm the electron mass. Sincep2 = p2

r + M2/r2, the po-
sitions (1,2)pr → Δpr and r → Δr yield ε = Δp2

r /2m +

M2/2mΔr2 − Ze2/Δr. Two numbers of states, i.e. two quan-
tum numbers, are expected because of the radial and angu-
lar uncertainties. Eqs (1,1) and the previous result yieldε =

n2~2/2mΔr2 + l(l + 1)~2/2mΔr2 − Ze2/Δr that readsε = εo +

l(l + 1)~2/2mΔr2 − Eo/n2 with Eo = Z2e4m/2~2 andεo =

(n~/Δr − Ze2m/n~)2/2m. Minimize ε puttingεo = 0, which
yields Δr = n2~2/Ze2m and ε = [l(l + 1)/n2 − 1]Eo/n2;
so l ≤ n − 1 in order to getε < 0, i.e. a bound state.
Putting thusn = no + l + 1 one finds the electron energy
levelsεel = −Eo/(no + l + 1)2 and the rotational energyεrot =

l(l+1)Eo/n4 of the atom as a whole aroundO. Hold also here
all considerations introduced for the angular momentum, in
particular it appears that the range sizes do not play any role
in determining the energy levels. The physical meaning of
Δr, related to the early Bohr radius, appears noting that

εel = −
Eo

n2
= −

Ze2

2Δr
, Δr =

n2~2

Ze2m
, Eo =

Z2e4m
2~2

, (1,3)

i.e. εel is due to charges of opposite sign delocalized within
a diametric distance 2Δr apart. As previously stated, nucleus
and electron share a unique uncertainty radial range: in gen-
eral, the greaterm, the closer its delocalization extent around
the nucleus. Also note thatn and l are still properties of the
phase space, but now they describe the whole quantum sys-
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tem ”nucleus+ electron” rather than the nucleus and the elec-
tron separately. Since the first eq (1,3) does not depend ex-
plicitly on the kind of particles forming the concerned hydro-
genlike atom,m or the reduced mass are actually hidden into
Δr; it is possible to linkεel to the known conditionnλ = 2πΔr,
according which an integer number of steady electron wave-
lengths is defined along a circumference of radiusΔr. For
such electron waves one finds

εel = −
πZe2

nλ
= −

α

n
Zpλc

2
, pλ =

h
λ
, α =

e2

~c
. (1,4)

Note that introducingα to express the quantum energy
levels compels defining the De Broglie momentum. Even in
this form εel is still related to the reduced mass of the sys-
tem, which can be introduced via the momentumpλ; thus eq
(1,4) holds in general for any system of charges. Moreover,
the factorZ/2 apart, appears interesting that the energy levels
of the systemεel are linked to the kinetic energypλc of the
running electron wave circulating along the circumference of
radiusΔr via the coefficientα/n. On the one hand, this result
emphasizes the electromagnetic character of the interaction
between electron and nucleus; on the other hand, the key role
of the quantum uncertainty in determining the allowed energy
levels of eqs (1,3) also evidences the kind of interaction itself.
The more general question that arises at this point is therefore:
do eqs (1,1) provide themselves any hint also about the phys-
ical essence of the fundamental interactions? The standard
model [8-11] provides a satisfactory description of the funda-
mental forces of nature. So the present paper does not aim
to replicate the electro-weak model or the chromodynamics,
which indeed would be useless and unexciting; nevertheless
seems useful to propose a simplified approach aimed to show
(i) that the fundamental interactions are inferable from eqs
(1,1) only and (ii) that exists a unique conceptual root com-
mon to all fundamental interactions. This task is in effect
particularly valuable because the present model has already
accounted for the gravity force [7] and for the basic princi-
ples of special and general relativity.

The purpose of the paper is to examine the ability of eqs
(1,1) to describe also other kinds of possible interactions and
their relative strengths at comparable energies; it will be also
shown that further information is obtained about the vector
bosons associated with the respective kinds of interactions.
Therefore the worth of the present paper rests mostly on the
chance of finding concepts today known as fingerprints of the
electroweak and strong interactions in the frame of a unique
logical scheme based on the quantum uncertainty and includ-
ing the relativity. The paper [7] has somewhat concerned
the electromagnetic interactions, while also showing that all
concepts of quantum wave formalism are indeed obtained
through the present approach. Here we concern in particular
the weak and strong interactions between nuclear and sub-
nuclear particles. The next sections will describe the possible
features of these interactions.

2 Physical background of the interactions

Let us show that the concept of interaction relies in the frame
of the present model entirely on eqs (1,1). Consider first an
isolated particle of massm and momentum componentp∞x
free to move in an ideal infinite range. When confined in a
time-space uncertainty rangeΔx, however, its energy changes
by an amountΔε given by

Δp2
x/2m= (n~)2/2mΔx2, Δpx = pcon f

x − p∞x ;

i.e. Δpx is by definition the range including any change of
local momentum componentpx occurring when the free par-
ticle turns from a non-confined to a confined state withinΔx.

Since no process occurs instantaneously in nature, letΔt
be the confinement time range corresponding toΔpx: to the
confinement process corresponds thus the arising of a force
field whose componentΔFx = Δpx/Δt = Fcon f

x − F∞x is re-
lated toΔε, being clearlyΔFx = Δε/Δx = Δp2

x/2mΔx3. By
definitionΔFx includes any randomF∞x ≤ Fx ≤ Fcon f

x : in
the present model the local dynamical variables are replaced
by corresponding ranges of values, so the classical forceFx

at the local coordinatex is replaced by a range of possible
forces active withinΔx. Actually the resultΔpx/Δt = Δε/Δx
could have been inferred directly from eqs (1,1) without need
of any remark; yet these considerations highlight that a force
field in a space time uncertainty range is the only information
available on the particle once accepting the eqs (1,1) as the
unique assumption of the model.

Clearly, once concerning one particle only, energy and
force component cannot be related to any form of interaction;
rather both have mere quantum origin. Also,Δε andΔFx

tend obviously to zero forΔx → ∞; hence if p∞x changes
to pcon f

x concurrently with the arising of a force component
acting on the particle, thenp∞x must be constant by defini-
tion as it represents the momentum of the particle before its
confinement driven perturbation. This again appears from the
standpoint of eqs (1,1):Δx → ∞ requiresΔpx → 0 for any
finite number of states regardless ofΔt. Since an uncertainty
range infinitely small tends to a unique classical value of its
corresponding quantum random variable and since this holds
regardless ofΔt, then the limit value must be a constant: so
p∞x = constcorresponds by necessity toF∞x = 0.

Despite the present model allows reasoning onΔFx only,
a first corollary is the inertia principle that holds for a lonely
particle in an infinite space time delocalization range. Other
interesting consequences follow for any finiteΔx = x2 − x1:
the notation emphasizes that instead of considering the parti-
cle initially in an infinite unconfined range, we are now inter-
ested to describe its behavior in a confined state, e.g. in the
presence of two infinite potential wallsΔx apart. Clearly this
means introducing the correspondingΔpx = pcon f

2 − pcon f
1 :

again the eqs (1,1) compel writingΔε/Δx = Δp2
x/2mΔx3

when p∞x has turned into a localpcon f
1 ≤ px ≤ pcon f

2 , which
entails once moreΔFx = Δpx/Δt within Δx. These ideas are
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now extended to the interaction forces. Rewrite first the force
field componentΔε/Δx = Δp2

x/2mΔx3 of a particle confined
within Δx as follows

ΔFx =
~2

2
n
m

n
V
, V = Δx3. (2,1)

Even the one-dimensional case defines the delocalization
volumeV because, beingΔx, Δy andΔz arbitrary, any value
allowed toΔxΔyΔz is also allowed toΔx3. Is crucial the fact
that the range of each force component is proportional ton/m,
number of allowed states per unit mass, timesn/V, num-
ber of allowed states per unit delocalization volume. Con-
sider now two free particlesa andb in their own uncertainty
rangesΔxa andΔxb; hold separately for them the relation-
shipsΔεa = (na~)2/2maΔx2

xa andΔεb = (nb~)2/2mbΔx2
xb.

These particles are non-interacting, as theirna andnb are as-
sumed independent each other likeΔxa andΔxb themselves;
nothing in these equations accounts for the most typical and
obvious consequence of any kind of interaction, i.e. some
relationship between their allowed states or between their de-
localization ranges. Two free particles do not share by defi-
nition any kind of link, any possible coincidence of allowed
states would be accidental and transient only. Consider now
their possible interaction; a reasonable chance of linking their
allowed states is to assume, for instance, that the particles
share the same uncertainty range. IfΔx is unique for both par-
ticles, then their allowed states must be somehow linked be-
cause of eqs (1,1); in other words, even being stillna , nb, the
random values of local momentum componentspxa and pxb

are subjected to the constrainna/Δpxa = nb/Δpxb = Δx/~.
Note for instance thatΔr of eq (1,3) includes by definition all
possible distances between electron and nucleus, which im-
plicitly means that both particles share the same uncertainty
range where the interaction occurs; son andl characterizing
the electron energy levels of the hydrogenlike system result
from the change of the early quantum numbers, e.g.nf ree and
l f ree = 0, owned by each particle independently of the other
before interaction. In this respect two relevant points are: (i)
the interaction driven changeδn of the numbern of states and
(ii) the physical meaning of the relatedδ[(n/m)(n/V)].

As concerns the point (i), considerΔεΔt = n~ in an arbi-
trary reference systemR and letn be allowed to change from
any initial valuen1 to any successive valuen2 during a fixed
time rangeΔt; whatevern1 andn2 might be, this is admissi-
ble becauseΔt is arbitrary. The notation emphasizes that a
given value ofδn = n2 − n1 is obtainable regardless of the
initial value n1 becausen2 is arbitrary; soδn = 1,2, .. any-
way, regardless of the specific value ofn1. Calculate next the
changeδΔε of Δε as a function ofδn duringΔt, which reads
now (Δεn2 − Δεn1)/Δεn1 = δn/n1 with obvious meaning of
symbols. Note that in general the series expansion of log(Δε)
around log(Δεn1) reads

log
(
Δεn2

)
= log

(
Δεn1

)
+
Δεn2 − Δεn1

Δεn1

−
1
2

(
Δεn2 − Δεn1

Δεn1

)2

+ ∙∙

so that

log

(
Δεn1+δn

Δεn1

)

=
δn
n1
−

1
2

(
δn
n1

)2

+
1
3

(
δn
n1

)3

− ∙∙

Δεn1 =
n1~

Δt
, δn = 1,2, . . . (2,2)

This equation describes the size change of the energy
rangeΔεn1 as long as the number of allowed states increases
with respect to the initial valuen1: soΔεn1+δn with δn = 1
describes the first increment of energy range size with respect
to Δεn1, thenδn = 2 the next size increment and so on; in
short, eq (2,2) describes how are modified the random local
valuesεn1+δn included inΔεn1+δn at δn progressively increas-
ing. InsteadΔεn1 plays here the role of a fixed reference range
with respect to which is calculatedΔεn1+δn. For reasons that
will be clear in the next section 5, it is mostly interesting to
examine the particular case ofn1 such that

Δεn2 − Δεn1 << Δεn1, δn/n1 << 1. (2,3)

Let us truncate thus the series expansion (2,2) at the first
order of approximation under the assumption (2,3) and sim-
plify the notation puttingi = δn; one finds (i=1,2,...)

n1 log

(
Λi

Λ

)

= i, Λi = Δεn1+δn, Λ = Δεn1. (2,4)

Despite the generality of eqs (2,2), is particularly signifi-
cant for the purposes of the present paper the case of a quan-
tum system consisting of an arbitrary number of particles,
each one delocalized in its own uncertainty range: if these
latter are non-interacting, then let the energy of the system
be included within the rangeΔεn1 and ben1 its total number
of states; if instead all particles are delocalized in the same
space-time range, then their interaction changes the energy
range of the system toΔεn1+δn characterized of course by a
new number of statesn2 = n1 + δn.

As concerns the point (ii), we expect according to eq (2,1)
that fromΔεa andΔεb of the two free particles follow because
of the interaction the changesδΔεa = (~2/2)δ(n2

a/maΔx2
a)

andδΔεb = (~2/2)δ(n2
b/mbΔx2

b). The expressions of the cor-
responding changes of the initial confinement force compo-
nentsΔFxa = Δεa/Δxa andΔFxb = Δεb/Δxb from the non-
interacting to the interacting state read thus

δΔFxa = (~2/2)δ [(na/ma)(na/Va)]

δΔFxb = (~2/2)δ [(nb/mb)(nb/Vb)] .

These equations agree with the previous idea, i.e. the
forces are related to changes of the allowed numbers of states
per unit mass and delocalization volumes of the particlesa
andb: in effect the interaction between two particles consists
of forces acting on both of them and requires that the respec-
tive numbers of states are affected as well. More precisely
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δ [(n/m)(n/V)] means that are modified during the interac-
tion not only the states allowed to the particles themselves,
but also that of the delocalization space surrounding them.
Clearly the former are consequences of the latter. In other
words, the fact thatδ(n/m) requires explicitly also the con-
currentδ(n/V) compels thinking: (i) that a particle interacts
with another particle because it generates a field that propa-
gates outwards through the space volumeV and (ii) that just
in doing so this field changes the number of states allowed to
the other particle; i.e. the changes of number of states of each
particle are somehow correlated, as previously stated. Since
no event occurs instantaneously in nature,δ(n/V) requires an
appropriate time range to be realized, i.e. the propagation
rate is finite in agreement with the existence of an upper limit
obliged by eqs (1,1) [7]; in this way the interaction exchanges
information about physical features and strength of the re-
lated force between particles. The most natural way to ac-
knowledge this way of regarding two interacting particles is
to admit that they exchange intermediate virtual particles that
propagate, whenceδ(n/V), and carry the necessary informa-
tion that affects in turn the real particles themselves, whence
δ(n/m); indeedn defining n/V is the same as that defining
n/m, i.e. the changeδ(n/m) of states allowed to the particle is
actually just thatδ(n/V) of the space around it. Strictly speak-
ing, however, one should say more appropriately space-time,
and not simply space: indeedΔx definingV in eq (2,1) is ac-
tually Δx = Δx(Δt) because of eqs (1,1) themselves. So the
finite time range required forδ(n/m) to occur is nothing else
but the finite time range required to propagateδ(n/V) and to
come back, i.e. to allow exchanging the interaction carriers.
Interaction force and propagation of force carriers through
V are therefore according to eq (2,1) two basic aspects of
the interaction. In principle these carriers could be massive
or massless, in which case one expects (~2c2)δ [(n/ε)(n/V)],
but they must have anyway boson character in order that the
aforesaid forces affect the allowed states of the interaction
partners while minimizing their exchange energy. It has been
already demonstrated in [7] that as a consequence of eqs (1,1)
integer or half-integer spin particles have a different link to
the respective numbers of allowed states: an arbitrary number
of the former can be found in a given quantum state, instead
one particle only of the latter kind can be found in a given
quantum state. Consider a multi-body interaction, where an
arbitrary number of force carriers is to be expected: fermion
carriers would require a corresponding number of quantum
states with energy progressively increasing, whereas a unique
ground state allows any number of boson carriers; as it will
be shown below, the former case would be incompatible with
a unique amount of energy to be transferred between all in-
teracting particles and thus with at a minimum transfer en-
ergy. The corpuscles that mediate the fundamental forces of
nature are indeed well known in literature as vector bosons,
which also suggests the existence of a pertinent boson energy
field. An interesting consequence of eq (2,1) comes from the

chance of rewriting it as (m/n~)ΔFx = (~/2)(n/V). Note that
at left hand side appears the ratio~/mhaving physical dimen-
sions of diffusion coefficient; write thereforeΔFx = D∗n~/2V
with D∗ = n~/m. Moreover the fact that the physical dimen-
sions ofF/D∗ aremass/(length× time) suggests the position

ΔFx

D∗
=
~

2
n
V

=
duω
dω

, D∗ =
n~
m
, (2,5)

having at the moment mere formal meaning: ifω represents
a frequency anduω an energy density, the physical dimen-
sions of both sides areenergy × time/volume. So ΔFx =

D∗duω/dω agrees with the idea that the force field is due
to a diffusion-like flux of particles. This appears properly
handlingduω/dω: indeed it is possible to writeduω/dω =

ωVdC/dxonce more via dimensional requirement, being C=

m/V or C = ε/c2V the concentration of massive or massless
carriers. HenceΔFx = ωVD∗dC/dx i.e. ΔFx = −ωVJx; the
minus sign means of course an incoming flux of messenger
particles if Jx > 0, yet both signs possible fordC reveal a
complex fluctuation driven space distribution of interaction
carriers randomly moving forwards and backwards between
the real particles. This result is easily understood: in a volume
V where are delocalized interacting particles, boson carriers
with density C are exchanged at frequencyω according to a
Fick-like law that generates the force fieldΔFx; the flowJx of
vector bosons crosses an ideal plane perpendicular to the flow
moving at rateωΔx consistently with an energyΔFxΔx/V
per unit volume. The diffusion coefficient of the bosons is
quantized. In [12] has been demonstrated the quantum na-
ture of the diffusion process and also the link between particle
flow and concentration gradient driven Fick’s law, as a conse-
quence of which the statistical nature of the entropy also fol-
lows; this latter result is further inferred in the next section 7
in an independent way, see eqs (7,7). Eq (2,5) is immediately
verifiable considering the cubic volumeV = Δx3 of space
of eq (2,1) filled with photons. LetΔx = λ be the longest
wavelength allowed inV to a steady electromagnetic wave
with nodes at the opposite surfaces of the cube, whose side
is thereforeλ/2; thusV = (λ/2)3, whereasuω = (~ω/2)/V
is the corresponding zero point energy density of the oscil-
lating electromagnetic field. So, withλ = c/ν one finds
duω = 4n(ν/c)3~dω; since by definition~dω = hdν, and thus
duω = (2π)−1duν, this result readsduν = (8π(ν/c)3hdν)n.
In section 7 it will be shown that the number of statesn
allowed to the photons trapped within the cube is given by
(exp(hν/kT) − 1)−1, whence the well known result

duν
dν

=
8πhν3

c3
n, n =

1
exp(hν/kT) − 1

. (2,6)

It is interesting the fact that the black body law comes
immediately from the same idea that shows the existence of
messenger bosons mediating the interaction between parti-
cles. ClearlyΔx3 represents the black body volume.
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Recall now that, in agreement with the arbitrariness of
n, the ranges of eqs (1,1) can be regarded as arbitrary func-
tions of time throughΔt; read for instanceΔx = x − xo with
x = x(Δt) andxo = xo(Δt), being in generalx(Δt) andxo(Δt)
different time functions. Of course no hypothesis is neces-
sary about these functions, which are undefined and undefin-
able. Hence the size ofΔx is in general an arbitrary function
of time itself, whereas the concept of derivative relies in the
frame of eqs (1,1) only as mere ratio of uncertainty ranges.
This idea generalizes the previous definition of force field
ΔFx = Fcon f

x − F∞x . For instanceΔpx/Δt takes the physical
meaning of force field componentΔε/Δx generated within
Δx by the change rate of allpx compatible withΔpx during
Δt, whatever the physical reason affectingpx might be. More-
over, being the range sizes arbitrary, these ratios can even take
the local physical meaning elucidated by the familiar nota-
tionsΔε→ dε, Δt → dt andΔpx → dpx. In other words, the
local concept of derivative is here a particular case of that of
ratio of arbitrarily sized uncertainty ranges. There is no con-
tradiction betweenΔε/Δt anddε/dt, which have both mere
conceptual meaning and in fact are both indeterminable: the
former because of the arbitrariness of the range boundaries,
the latter because the local variablespx and t around which
shrink the respective ranges are arbitrary as well. The consis-
tency of this position with the concept of covariancy has been
concerned in [7]; in this paper and in [4] has been also shown
that just the evanescent concept of distance required by the
agnostic positions (1,2) in fact determines the non-locality
of the quantum world. Exploit now eqs (1,1) to calculate
in any reference systemR an arbitrary size changedΔpx of
Δpx = px − pox as a function of that,dΔt, of the time un-
certainty rangeΔt, assuming thatn remains constant during
dΔt; hence duringdΔt the size ofΔx necessarily changes by
an amountdΔx as well. Of course this reasoning can be re-
versed: a force field arises within the space-time rangeΔx
because of its deformationdΔx that in turn, because of eqs
(1,1), requires the momentum rangeΔpx deformation as well
[7]. Is evident the link of these ideas with the foundations
of relativity. Differentiating eqs (1,1) and dividing bydΔt,
one findsdΔpx/dΔt = −(nx~/Δx2)(dΔx/dΔt). Of course, in
R′ one would obtaindΔp′x/dΔt′ = −(n′x~/Δx′2)(dΔx′/dΔt′);
yet any consideration carried out about the unprimed equation
can be identically carried out on the primed equation. In the
present model there is no local value defined inR that changes
into a new value inR′, while any uncertainty range undefined
in R remains undefined inR′ too; so considering primed and
unprimed range sizes means actually renaming a unique un-
defined range. The same holds of course for the ratios of any
two ranges. If in particularΔt = t− to is defined with constant
to, since actually even this latter could be itself a function of
t without changing anything so far introduced, then one finds
in anyR

dΔpx

dt
= −

nx~

Δx2
v′x = Fx − Fox, (2,7)

Fx = ṗx, Fox = ṗox, v′x =
dΔx
dΔt

.

Having replaced any local distancex with the uncertainty
rangeΔx including it, the local forceFx is replaced by a cor-
responding rangeΔFx including local values of force. The
notationnx emphasizes that the arbitrary numbern of states
refers here to thex components ofΔp, v′, F andFo; of course
are likewise definableny andnz too. Moreover note thatv′x is
conceptually different fromvx introduced in section 1: despite
both have formally physical dimensions of velocity, the latter
only is the actual average velocity of any real particle travel-
ing through its delocalization rangeΔx duringΔt, the former
is the deformation extentdΔx of Δx during the time increment
dΔt. Sovx is self-defined without need of further considera-
tions, the physical meaning ofv′x is instead strictly related to
that of Fx concurrently inferred. This distinction is inherent
the character of the present theoretical model that, as previ-
ously remarked, concerns the uncertainty ranges of the phase
space where any particle could be found rather than the par-
ticle itself; however the examples of the angular momentum
and hydrogenlike energy levels have shown that working on
the uncertainty ranges that define a physical property allows
to gain information on the related behavior of the particle and
on the given law itself. Eqs (2,7), reported here for clarity,
have been early introduced in [7] and therein exploited to in-
fer as a corollary in the particular case of constantpox (i) the
equivalence principle of general relativity, (ii) the coincidence
of gravitational and inertial mass and then (iii) the Newton
gravity law as a particular case; actually this law results to
be the first order approximation of a more general equation
allowing to calculate some interesting results of general rela-
tivity, for instance the perihelion precession of planets.

Also in the present model, therefore, the deformation of
the space time quantum delocalization range entails the aris-
ing of a force as a corollary of eqs (1,1). In this paper we
propose a further way of handling eq (2,7): in agreement with
the purpose of this paper, i.e. to infer various forms of interac-
tion between particles from a common principle, it is enough
to rewrite eqs (2,7) in different ways and examine the respec-
tive consequences. The fine structure constantα enables~ to
be eliminated from eqs (2,7), which read in c.g.s. units for
simplicity

Fx − Fox = ±
e′e
Δx2

, e′ = ±
nxv
′
x

αc
e. (2,8)

Here ΔFx = Fx − Fox is the force field between two
chargese ande′ interacting through their linear charge den-
sitiese/Δx ande′/Δx: i.e. even the electric interaction force
relies on a physical basis similar to that of the gravity force.
The double sign accounts for both chances thatΔx expands
or shrinks at deformation rate±v′x, which is a decisive param-
eter to express the respective states of charge. Ifv′x = 0 then
e′ = 0, i.e. it corresponds to a chargeless particle; of course
the related electric force is null, i.e.Fx = Fox accounts for
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other forces possibly acting on the particle, for instance the
gravity; this case, concerned in [7] to emphasize the link be-
tween quantum theory and relativity, is skipped here. More-
over holds an obvious boundary condition onnx, i.e. a value
of nx must necessarily exist such thate′ = ±e. Ben′ this value
such that by definitionn′v′x = αc; beingn′x arbitrary integer
and v′x arbitrary as well, this position is certainly possible.
Then

e′ = ±(nx/n
′)e. (2,9)

Here the double sign agrees with the chances allowed for
e depending on the expansion or contraction ofΔx. It is rea-
sonable to assume thatn′ = 3; considering also the deforma-
tion rates±v′y and±v′z of Δy andΔz defined likewise tov′x,
the number of states is actually counted asn′ = nx + ny + nz

with ground valuesnx = ny = nz = 1, while being 1≤ nxi ≤
n′ depending on the number of respective force components
Fxi − Foxi actively contributing ton′. Consider first thex-
component, eq (2,7), only. Ifnx = n′ = 3, thene′(3) = ±e cor-
responds to electron and proton charges;Fx−Fox of eq (2,8) is
the related Coulomb force component. The casenx = 2 yields
e′(2) = ±(2/3)e, whereasnx = 1 yieldse′(1) = ±(1/3)e; accord-
ingly Fx − Fox must have a characteristic physical meaning
that will be concerned in section 5. The same result would
be obtained considering they or zcomponents corresponding
to eq (2,7). Hence fractional charges are in principle to be
expected in nature. It is easy guess how many particles with
fractional charges, the well known quarks, are to be expected.
Consider the four chances corresponding to the double signs
of e′(1) ande′(2) and the three deformation ratesv′x, v

′
y andv′z; the

previous discussion has exemplified the link ofe′ with v′x only,
yet an analogous reasoning holds of course also forv′y and
v′z. Instead three different situations are in general compatible
with e′(1) ande′(2) when (i)v′x , 0 only, (ii) v′x , 0 andv′y , 0
only, (iii) v′x , 0 andv′y , 0 along withv′z , 0 too. Since
nx, ny, nz are independent and arbitrary, one could replace the
second eq (2,8) for instance with±nxv

′
x/αc±nyv′y/αc, obtain-

ing thus±(nx±ny)/n′ as done to infer eq (2,9); then one could
combinenx andny in order to obtain again ratios having the
same values±1/3 and±2/3 previously found, but involving
now bothv′x and v′y instead ofv′x only. Analogous consid-
erations hold for the case (iii) that involves alsov′z. In (i) the
vectorF−Fo is oriented along one of the axes, here thex-axis,
in (ii) it lies on one coordinate plane, here thex−y plane; the
components ofF − Fo arbitrarily oriented correspond in gen-
eral to (iii), whereas a null vector is instead related tov′ = 0
i.e. e′ = 0. Anyway, whatever the linear combination ofv′x,
v′y andv′z might be, it is reasonable to think that these ways of
inferringe′(1) ande′(2) are physically different from that involv-
ing v′x only; otherwise stated, to the various ways of finding a
given kind of charge correspond different particles. With the
aforesaid 3 chances for each sign ofe′(1) ande′(2) we expect
therefore a variety of 12 particles in total. Since this number
is reasonably expected to include particles and antiparticles,

a sensible conclusion is that we should have 6 quarks and 6
antiquarks: for instance, to the (nx − ny)e/n′ quark charge
corresponds the (ny − nx)e/n′ antiquark charge. Now the first
problem is how to sort the charge signs between particles and
antiparticles; in principle one could think the former as the
ones havinge′(1) = +e/3 ande′(2) = +2e/3, the latter as the
ones with both negative signs. In this way, however, consid-
ering all values of charges compatible withn from 1 ton′, one
should conclude that in nature the mere charge signs discrim-
inate particles and antiparticles. Since this is not the case, it is
more sensible to expect thate′(1) = −e/3 ande′(2) = +2e/3, for
instance, identify quarks whereas the inverted signs identify
the corresponding antiquarks: likewise exist as a particular
case particles with either integer charge whose antiparticles
have either opposite charge.

Moreover if two charge states−e/3 and+2e/3 are con-
sistent with six particles physically distinguishable, then each
quark requires three chances of a new property, which is in-
deed well known and usually called color charge: each quark
can exist in three quantum states, i.e. it can take three dif-
ferent color states. Being the quarks characterized by sev-
eral quantum numbers, this way of justifying their number
does not mean a specific color uniquely assigned to each one
of them; rather it means introducing a number of internal
freedom degrees of color that make two fractional charges
consistent with six distinguishable particles. Anyway, since
also anti-quarks exist for which hold the same considerations,
three anti-colors must exist too.

Eventually, let us calculate how many kinds of bosons are
necessary to describe the interactions between quarks via bo-
son exchanges able to modify their initial color states. Con-
sider for instance a charmed meson identically symbolized as
{cc̄} or {c̄c} and assume that each boson mediating the quark
interaction is specifically entrusted with changing one couple
color-anticolor only: let for instance the exchange of one bo-
son turnr into r̄ and vice-versa. The mesons{cc̄} and{c̄c}, for-
mally obtained by quark-antiquark and antiquark-quark ex-
changes, are clearly identical and indistinguishable. Imagine
therefore of turning all colors ofc, whatever they might be,
into the corresponding anticolors of ˉc, whose anticolors are at
once turned into the respective colors. How many exchanges
of color states into the respective anticolor states are consis-
tent with the identity ofcc̄ andc̄c? Given two objects,c and
c̄, each one of which can be found in three quantum states, the
three colors, the trivial answer is 23; eight exchanges are not
only enough to turn all color states ofc into the respective an-
ticolor states, which means by definition obtaining ˉc from c,
but also purposely necessary, as each single exchange gener-
ates a new quantum configuration of states physically distin-
guishable from that previously existing. Since a total of eight
color-anticolor exchanges are required to account for as many
different configurations, eight is also the number of differ-
ent bosons required to make the aforesaid couple of identical
mesons effectively indistinguishable. These different chances
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of interaction, each one characterized by its own specific en-
ergy, should be someway correlated to and described by the
existence of as many such particles representing the possible
exchanges, i.e. just eight vector bosons. Also these particles
are well known and usually called gluons. Is this reasoning
extensible also to three-quark particles like neutron or pro-
ton? The quark-gluon plasma of these latter is necessarily
more complex than that of the mesons, so the question arises
whether the 8 gluons previously introduced are enough to de-
scribe also such three quark systems. Consider the protonuud
and the antiproton ˉuūd̄. The conversionuu→ ūū has been al-
ready described. As concernsd→ d̄, still holds an analogous
reasoning: a specific kind of gluon undertakes to change one
color into the anticolor, another kind of gluon does the same
with another color and so on. However the kind of gluon ex-
changes that turns red into antired of the quarku cannot differ
from that acting similarly on the quarkd: it would mean that
each gluon ”recognizes” its own quark on which to act, i.e.
we should admit that differentδ(n/m) require differentδ(n/V)
depending on the respectivem. But nothing in the previous
eq (2,1) allows this conclusion, rather it seems true exactly
the contrary becauseΔx definingV has nothing to do with
m therein delocalized: indeed, as above stated, the indistin-
guishability of identical particles is just due to the possibility
that any particle could be found in a given range. So it is more
reasonable to think that each kind of gluon exchange affects a
specific color, not the color of specific quark only; otherwise
stated, the total number of gluons in a nucleon is greater than
that in a meson without necessarily compelling a new kind
of gluons, i.e. any gluon in the tree-quark system turns one
specific color regardless of whether that color is of a quarkd
or u. This way of thinking allows that the gluons transmit the
interaction between different quarks modifying theirδ(n/m),
i.e. their color quantum states, regardless ofm. So, when
counting the number of different gluons that allow the three-
quark particle/ antiparticle exchanges the result is the same as
that previously computed.

These short remarks are enough for the purposes of the
present paper; further considerations on other properties like
strangeness, isospin and so on, whose conservation rules are
necessary for instance to describe the decay of complex par-
ticles consisting of two or three quarks, are well known and
thus omitted here for brevity. The remainder of the paper aims
to describe the fundamental interactions by implementing the
ideas hitherto exposed.

3 The quantum interactions

Divide all sides of eqs (1,1) bye2Δx and recall that in general
Δpx = (vx/c2)Δε. An intuitive hint to this equation, already
concerned in [7] and important also for the present purposes,
is quickly reported here for completeness. Let in an arbi-
trary reference systemR a photon travel at speedc through
an arbitrary delocalization rangeΔx(c), so that eqs (1,1) read

Δx(c)Δp(c)
x = n(c)~ = Δt(c)Δε(c); the superscripts emphasize

that the ranges are sized in order to fulfill this delocaliza-
tion condition during an appropriate time rangeΔt(c). Then
cΔp(c)

x = Δε(c). To find how scale the sizes of the momentum
and energy ranges with respect toΔp(c)

x andΔε(c) in the case
of a massive particle traveling at slower ratevx < c through
Δx(c), write Δx(c)Δp(v)

x = n(v)~ = Δt(c)Δε(v). Since neither
vx nor c appear explicitly in this equation, it is also possible
to write n(v)~ = Δt(c)Δε(c) = Δt(v)Δε(v); this is indeed true if
Δt(c) andΔε(c) scale likeΔt(v) = (c/vx)Δt(c), as it is reason-
able, andΔε(v) = (vx/c)Δε(c). Replacing these positions in the
former equation yieldsΔx(c)Δp(v)

x = Δt(c)(vx/c)Δε(c) whence
cΔp(v)

x = (vx/c)Δε(c). Actually the superscripts can be omit-
ted because they do not identify particular range sizes; both
Δp(v)

x andΔε(c) are indeed arbitrary likevx itself. The su-
perscripts are also irrelevant as concerns the functional rela-
tionship between the local values of the respective variables,
which readspx = (vx/c2)ε regardless of how the respective
uncertainty ranges are defined. Note thatpx andε, exactly de-
termined in classical physics and in relativity, are instead here
random values within the respective uncertainty ranges. Also
note that an identical reasoning inR′ solidal with the parti-
cle would yieldp′x = (v′x/c

2)ε′: this is therefore a quantum
expression relativistically invariant. This kind of reasoning
has been carried out in [7] to show the connection between
quantum mechanics and relativity. Now instead consider for
the next discussion the following equations directly inferred
from eqs (1,1)

n~vx

Δx
= Δε, vx =

Δx
Δt
, vx ≤ c. (3,1)

The last position does not merely emphasize a feature in
principle expected for any velocity, it takes a special rele-
vance in the present context. BeingΔε andΔx arbitrary, one
could writeΔpx = Δεovox/c

2 too, with vox andΔεo still fulfill-
ing the givenΔpx. The total arbitrariness of the range sizes
plays a key role in the following reasoning based onvxΔε =

voxΔε
o: if vx = c, then necessarilyvox < c andΔεo > Δε. Ex-

amine step by step this point writing identically eq (3,1) as
follows

e2

Δx
=
α

n

vox
c
Δεo,

vxv
o
x

c2
=

Δε

Δεo
, Δε ≤ Δεo. (3,2)

The last position emphasizes that both chancesΔεo = Δε
andΔεo , Δε are equally possible. IfΔε = Δεo, thenvx = vox
compels concludingvx = vox = c only; so eqs (2,7) and (3,2)
yield e2/Δx = χΔε, beingχ = α/n a proportionality fac-
tor. This means correlating the potential energye2/Δx of two
electric charges toΔε, introduced throughΔpx and thus hav-
ing the meaning of kinetic energy range. On the one hand
Δεo , Δε requires differentvox andvx, thus both velocities or
at least either of them smaller thanc, whence the inequality;
on the other hand, relating the physical meaning of the ve-
locities hitherto introduced to that of the boson carriers that
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mediate the interaction force between particles:vox = c re-
quires massless bosons,vox < c massive bosons. Therefore the
arbitrariness ofΔε andΔεo justifies the conclusion that either
chance of range sizes prospects different results for eqs (3,2)
and (3,1), despite their common origin from eqs (1,1). Two
questions arise at this point: (i) whether these equations de-
scribe two different interactions or two different appearances
of a unique interaction, (ii) whether or not it is possible to
infer from both equations a relationship likee2/Δx = χΔε
despite their formal difference. The answers rely on the fact
that in eq (3,2) appears explicitly the Coulomb chargee inher-
ent the definition ofα, in eq (3,1) it does not necessarily hold;
nothing compels assuming that even the energyn~vx/Δx is by
necessity referable to a Coulomb energy.

If n~vx/Δx does, then the common origin of these equa-
tions from eqs (1,1) is a good reason to expect that the chances
of massive or massless vector bosons are merely two different
ways of manifesting a unique kind of interaction; rewriting
the inequality asΔεo = Δε + δε, with δε ≥ 0 of course arbi-
trary likeΔε andΔεo, both chances are in principle acceptable
depending on the amount of energy at which the interaction
occurs. In other wordsδε > 0 is an additional energy range
motivated by the arbitrariness ofΔε, which indeed admits in-
troducing alsoΔεo too, and justifying the presence of mas-
sive vector bosons. By consequence the chance of finding a
unique link likee2/Δx = χΔε between potential and kinetic
energies is to be reasonably expected; so, fixing an arbitrary
Δε allows assessing viaχ the relative strengths of both inter-
actions at comparable values ofΔε and respective character-
istic lengthsΔx. The physical consequences of this reasoning
are exposed in section 4.

If insteadn~vx/Δx is an energy not referable to that be-
tween integer charges, in fact nothing hinders thinking that it
is directly related to the aforesaid fractional charges; accord-
ing to eq (2,8),vx = Δx/Δt is physically different fromv′x =

dΔx/dΔt. Then eq (3,1) describes an interaction prospec-
tively different from that of eq (3,2); so the former equation
must be considered regardless of the latter to check what kind
of physical information follows from the considerations of
section 2. Also the consequences inferred from these equa-
tions are expectedly different; in particular the linkχ between
potential and kinetic energies should be reasonably different
in either case just mentioned. In other words,χ can be com-
pared for similare2/Δx andΔε to characterize the relative
strengths of the various kinds of interactions. The physical
consequences of this reasoning are exposed in section 5.

These are the key ideas to be further highlighted below.
The dual way of elaborating a unique principle, the statistical
formulation of quantum uncertainty, has an intrinsic physi-
cal meaning coherent with the purposes of the present paper,
i.e. to demonstrate that kinds of interaction apparently differ-
ent are in fact consequences of a unique principle. In other
words, eqs (3,2) and (3,1) are the starting point to distinguish
two cases, which will be discussed separately under the only

conceptual constraint of being mutually self-consistent. The
following sections 4 and 5 aim to outline the respective ways
to link the potential and kinetic energies.

4 The interaction according to eqs (3,1) and (3,2)

The following discussion concerns the ways to reduce the eqs
(3,1) and (3,2), regarded together, to the forme2/Δx = χΔε
in both casesδε = 0 andδε > 0. Consider firstδε = 0, which
requiresvox = vx = c and thus massless boson carriers. So the
unique result possible is

e2

Δx
= χemΔε, χem=

α

n
. (4,1)

Hereα/n emphasizes the electromagnetic interaction in anal-
ogy with eq (1,4).

The further chanceδε > 0 requiring the conditionvox < c
prospects instead the presence of massive boson carriers; thus
δε > 0, related to the formation of massive carriers, repre-
sents reasonably the energy gap with respect to the former
case of eq (4,1) involving massless carriers only. While heavy
vector bosons are the physical consequence of the concurring
inequalitiesvox < c andδε > 0, the arbitrariness ofvox prevents
the possibility of deciding a priori either chance forδε and
compels the conclusion that a unique kind of interaction is
actually compatible with both chances. It will be shown that
the interaction energy related to the possible size ofΔx dis-
criminates either chance. Despite both chances are incorpo-
rated into a unique conceptual frame, further considerations
are necessary in this case. Write the first eq (3,2) as follows

e2

Δx
=
α2

n2

Δεo

qo
, qo =

e2

n~vox
, vx < c. (4,2)

Since eqs (3,2) requireΔεo/qo = (c/vx)(n/α)Δε, the ob-
vious inequality

(n/α)2 > vx/c (4,3)

yieldsΔεo/qo > (α/n)Δε. Hence a valueqw > qo certainly
exists such that

Δεo/qw = (α/n)Δε. (4,4)

Replacing this result into the first eq (4,2), one finds

e2

Δxw
= χwΔε, χw =

(
α

n

)3
, Δxw =

qw
qo

Δx. (4,5)

The first equation is formally analogous to eq (4,1) a scale
factorqw/qo for Δx apart, whileα/n is replaced by the much
smaller quantity (α/n)3; hold however forχw considerations
analogous to that previously carried out forχem, i.e. it links
kinetics and potential energies. The explicit form of the in-
equality (4,3) reads (n~c)2 > e4(vx/c), so that (n~c/Δx)2 >
(e2/Δx)2(vx/c) and thus (cΔpx)2 > (e2/Δx)2(cΔε/voxΔε

o); as
cΔpx = Δεovox/c, i.e. cΔpx = (qwvoxα/nc)Δε according to eq
(4,4), the inequality (4,3) reads

(ζΔε)3 > (e2/Δx)2Δε, ζ =
qwvoxα

nc
= w

( n
α

)2
. (4,6)
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Hence an energyε0 > 0 certainly exists such that

ζ3Δε3 − (e2/Δx)2Δε − ε3
0 = 0. (4,7)

Regardingζ as a constant through an appropriate choice
of qw, not yet specified and here accordingly defined, let us
solve the eq (4,7) in order to introduce three real sizesΔε j ,
j = 1,2,3. Note that this does not mean assigning definite
values to the size ofΔε, which remains indeed arbitrary and
unknown like any uncertainty range because ofΔx; solving
eq (4,7) means examining the physical information consis-
tent with some particular range sizes that fulfil the inequality
(4,6). One finds

ε0 =



2
√

3
9




1/3

ζ−1/2 e2

Δx
, Δε1 =

2

ζ3/2
√

3

e2

Δx
, (4,8)

Δε2,3 = Δε2 = Δε3 = −
1

ζ3/2
√

3

e2

Δx
.

The former equation is the condition to make null the
imaginary parts of the rootsΔε2 andΔε3 that, as emphasized
by the last equation, result by consequence coincident. As ex-
pected, all quantities expressed here as a function ofΔx are in
fact arbitrary like this latter. The constantζ can be eliminated
from the equations; so

Δε1

ε0
=

2

ζ
√

3

(
9

2
√

3

)1/3

,
Δε1

ε3
0

=
3

(e2/Δx)2
, (4,9)

e2

Δx
= ε0

√

3
ε0

Δε1
.

It is interesting to rewrite eq (4,7) as (ζ3Δε2−(e2/Δx)2)Δε
= ε3

0, which yields

Δt = n~ζ3 (e2/Δx)
2

ε3
0




(
Δε

e2/Δx

)2

− ζ−3


 .

In this wayΔε3 splits into a multiplicative factorΔε, re-
lated toΔt through eqs (1,1), times a factor merging together
Δε2 and (e2/Δx)2. Let us specify in particularΔx asΔxw of
eq (4,5); owing to the last eq (4,9), one finds then

Δtw =
3n~ζ3

Δε1w




(
n3

α3

)2

− ζ−3


 , Δε1w =

2

ζ3/2
√

3

e2

Δxw
. (4,10)

DespiteΔx is unknown and arbitrary by definition, when
it is specified as the rangeΔxw purposely pertinent to eq (4,5)
the former equation takes the formΔt ∝ (n/α)6 plus a term
τ = 3n~/Δε1w. If Δε1w andn are large enough so thatτ <<
(n/α)6, thenΔtw and the factorχw linking e2/Δxw andΔε of
eq (4,5) fulfill the well known condition

Δtw ∝ χ
−2
w .

Note now that

Δε1 + Δε2 + Δε3 = 0 (4,11)

and that eq (4,7) is directly related tovox/c < 1 because it
comes from the inequalities (4,2) and (4,3). Moreover each
energy range by definition introduces its own random value
of energy; this suggests that are related to eq (4,5) three char-
acteristic energies, i.e. three corresponding massive particles,
whose energies are by definition included within the uncer-
tainty ranges of eqs (4,11).

Consider in general three energy rangesΔε j = ε′j − ε
′′
j ,

being j = 1..3, of course with bothε′j andε′′j arbitrary and
unknown; define then the energiesη j included within them
asη j = (ε′j + ε′′j )/2, i.e. as average values of the respective
boundary values. It is immediate to realize that the condi-
tion

∑
Δε j = 0 is compatible with

∑
η j , 0; indeed

∑
(ε′j −

ε′′j )/2 = 0 reads identically
∑

(ε′j + ε
′′
j )/2−

∑
ε′′j = 0, whence

in general
∑
η j =

∑
ε′′j , 0. Repeat this reasoning regarding

η j as the average values of the specific energy ranges of eq
(4,11). The fact thatηtot = η1 + η2 + η3 , 0 agrees with the
idea of interaction energy; indeed no constrain could be de-
finable for three independent free particles. On the one hand
the chance of replacing any quantum range with its average,
as done here forΔε j andη j , has a general valence because the
range sizes are arbitrary, undefined and undefinable like the
average value inferred from their boundaries. Since any value
allowed to the former is also allowed to the latter, consider-
ing η j instead ofΔε j does not exclude the point of view of
eqs (1,1): replacing an arbitrary value with another arbitrary
value corresponds to replacen with n′, which is however im-
material because both symbolize sets of integer values and not
specific values. On the other hand the ranges (4,11), regarded
all together, fulfill globally the energy conservation regard-
less of whetherΔε j , 0 orΔε j = 0; as just shown, however,
the same does not necessarily hold forηtot. To make also this
latter compliant with the eq (4,11), let us assume therefore
that ηtot has a finite lifetime of the order of~/ηtot. Let Δtw
be this lifetime. In agreement with eq (4,10), duringΔtw the
sum

∑
Δε j is still globally null likewise as before and after

their actual transient appearance; in this way the massive par-
ticles concerned by the respective energy ranges are jointly
involved as concurrent physical properties inherent eq (4,5)
and thus the present kind of interaction. The physics of the
weak interactions is well known. Here, as a significant check
of these ideas, we propose a simple energy balance to infer
the energiesη j and thusηtot exploiting just the requirement
that theη j must be regarded all together.

A possible interpretation of the equal sizes and negative
signs ofΔε2 andΔε3, despite in the present model the ranges
are always introduced positive by definition, is that their sum
with Δε1 equal to zero requires interacting particles; as ex-
plained in section 2, no relationship would be possible by
definition for free particles. Let two of them, sayη2 andη3,
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interact in order to release the energy necessary to form also
η1. The fact thatη2 = η3 because ofΔε2 = Δε3 means that
their interaction occurs regarding identically either of them in
the field of the other one; together, therefore, these particles
provide the energy necessary to allow the kind of interaction
here concerned. The simplest hypothesis is that the particles
η2 andη3 have charges of opposite signs whereasη1 is neu-
tral, thus fulfilling the global charge conservation before, dur-
ing and after their lifetime; if so, the energy gain of Coulomb
energy at an appropriate interaction distance justifies also the
neutral particleη1. In this way the model allows the existence
of three range sizes whose finite lifetimes agree with the finite
values of the respective heavy bosonsη j . This conclusion is
summarized as follows

ηtot = η1 + (η2 + η3), η2 = η3.

The second equation emphasizes that actuallyη2 andη3

form a Coulomb system of charges, whose energy transient
uniquely defined likewiseεel of eq (1,4) characterizes the
present kind of interaction. This idea suggests to estimateηtot

just computing the energy levels of the system of chargesη2

andη3 by analogy with that of a hydrogenlike atom. Exploit
for simplicity the previous non-relativistic equations (1,3) and
(1,4); owing to the generality of these equations, there is no
reason to exclude that analogous considerations hold at least
approximately also here putting of course the chargeZ = 1
and describing the system of charged bosonsη2 andη3 as due
to −εel = πe2/nλ. It is necessary to take into account how-
ever that now also the neutral particleη1 contributes toηtot,
in agreement with the idea of regarding the particles all to-
gether. Guess first according to eqs (4,8) that the mass ofη1

should have the same order of magnitude ofη2 andη3, so that
ηtot ≈ 3η2; the chance of identifyingηtot with −εel is consis-
tent with this idea simply putting

ηtot = πη2, η2 = η3 = e2/nλ, η1 = (π − 2)e2/nλ. (4,12)

In other words, eq (1,4) suggests that the expected co-
efficient ≈ 3 must be actually regarded asπ. Despite the
non-relativistic reasoning, these conclusions are correct be-
cause confirmed by the experience. The experimental masses
of the W± andZ0 vector bosons aremW± = 80.39 GeV and
mZ0 = 91.19 GeV respectively, for a total mass ofmtot =

251.97 GeV; in effect

mtot = 3.134mW± mZ0 = 1.134mW±

are compatible with the values expected forπ andπ−2. Triv-
ial considerations show that the reduced Compton lengths ˉλ
of the vector bosons consistent withe2/nλ areλ̄η1 = nλ/((π −
2)α) andλ̄η2 = λ̄η3 = nλ/α, having introduced explicitly the
massesmj = η j/c2. These results are confirmed consid-
ering the zero point energyΔp2

j /2mj of the vector bosons
η j , whereΔpj = p2 − p1 is the gap between its momen-
tum p2 after confinement within a given delocalization range

Δxw and its initial momentump1 in an ideal unconfined state;
hence the corresponding energy gap after confinement within
Δxw resulting from thex, y andz components isΔp2

j /2mj =

3(n2~2/2mjΔx2
w). Assume now that the confinement energy

Δp2
j /2mj is just the energyη j = mjc2 itself that determines

the space-time scale of this kind of interaction, i.e.

η j =
3
2

c2Δp2
j

η j
; (4,13)

thenΔxw = (3/2)1/2n~c/η j , i.e. forη2 andη3

Δxw = (3/2)1/2n2λ(~c/e2). (4,14)

For n = 1 thereforeΔxw coincides with ˉλη2 = λ̄η3 a trivial
numerical factor

√
3/2 apart; an identical conclusion holds

of course forη1 too, the numerical factor (π − 2)
√

3/2 apart.
This confirms the assumed link between delocalization ex-
tent and energy of the force carriers, which allows identifying
ηtot = −εel in agreement with eq (1,3).

Put firstn = 1 in eqs (4,12). The value ofλ corresponding
to the energies of the particlesη2 andη3 isλ = 1.79×10−20 m,
so that ˉλη2 = λ̄η3 = 2.45× 10−18 m and ˉλη1 = 2.15× 10−18 m;
the characteristic rangeΔxw of interaction is thus of the order
of 10−18 m. Since the classical proton radiusr p = e2/mpc2 is
about 0.8768 fm according to recent measurements [13], the
above energies concern a sub-nuclear scale interaction; vice-
versa, one could estimate the correct scale of energy of the
vector bosons requiring an interaction that occurs at the sub-
nuclear extent at which one calculatesχw = α3 = 3.9× 10−7.

So far we have consideredn = 1. What however about
n > 1? First of all,Δxw becomesn times larger than the afore-
said Compton lengths ofη j ; this deviation means a longer
range allowed to the interaction. Moreover, according to eqs
(4,12)ηtot → 0 for n → ∞; at this limit the aforesaid space
scale of interaction is inconsistent with the corresponding en-
ergies of massive boson carriers, which therefore should ex-
pectedly require an appropriate threshold energy to be acti-
vated. Forn → ∞ is thus allowed the less energy expen-
sive and longer range interaction withδε = 0 only, in agree-
ment with the initial idea thatδε , 0 is related to the boson
masses. This conclusion is intuitively clear, but what about
the energy threshold? According to the eqs (4,12) the ener-
giesη1, η2 andη3 downscale withn, whereas according to
eq (4,14)Δxw upscales withn2; so the lower threshold for
the existence of massive bosons, i.e. for the validity of these
equations themselves, concernsn of η(n)

tot = −εel(Z = 1,n) =

(π/n)e2/λ: it is required that the interaction distance of the
hydrogenlike system of charges enable the energy to create
vector bosons. The inequalityη(n)

tot > e2/λ, which holds for
n ≤ 3, ensures that, whatever the massesη(n)

2 andη(n)
3 might

be, the energy gain due to their Coulomb interaction accounts
not only for the energye2/λ of the system of charged parti-
cles themselves but also for the surplus required by the neu-
tral particleη(n)

1 . Clearly the threshold corresponds to the
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valueη(3)
tot = (π/3)e2/λ, i.e. about 81 GeV; the correspond-

ing Compton lengths of the bosons are ˉλ(3)
η2

= λ̄(3)
η3

= 3λ/α and
λ̄(3)
η1

= 3λ/((π − 2)α). In fact even forn = 3 these lengths
are of the order of 10−17 m, i.e. still consistent with a sub-
nuclear range. At energy below this threshold, i.e.n ≥ 4,
eq (4,1) only describes the interaction. Of course the most
favorable condition for this interaction to occur is that with
n = 1, which ensures the maximum binding energy given by
eq (4,12) and corresponds to the shortest interaction distance
and maximum values of the three boson masses in fact ex-
perimentally detected. The model admits however even the
possible existence of lighter bosons. In conclusion, the dif-
ferent energy scales characterize the features of eqs (4,1) or
(4,5) because of different values ofn; both equations describe
however the same kind of interaction.

5 The interaction according to eq (3,1)

The starting point of this section is the eq (3,1) that reads

n~vx

Δx
= χsΔε, χs = 1. (5,1)

The lack of coefficient at right hand side of eq (3,1) is ten-
tatively interpreted here as the presence of coefficientχs = 1.
Beingvx andn arbitrary, it is certainly possible to introduce a
proportionality constantξ defined asn~vx = ξe2; so eq (3,1)
reads (ξe2/Δx)/Δε = 1. Usually a proportionality constant
linking two quantities that fulfill a given condition or a given
physical law is of the order of the unity, unless some specific
reason compels an appropriate hypothesis about its actual or-
der of magnitude. Since here evenΔx andΔε are arbitrary,
however, it is difficult to guess a valid reason to compelξ very
different from the unity. So, in terms of order of magnitude,
the positionξ ≈ 1 seems reasonable although not thoroughly
demonstrated, whence the tentative conclusion quoted in eq
(5,1). On the other hand, once having reduced this equation
to the form (e2/Δx)/Δε = χs, one can compareχs = ξ−1 ≈ 1
with χem≈ α andχw ≈ α3 defined by the equations (4,1) and
(4,5) formally similar, of course under the assumption that the
ranges at left hand sides defining these values are comparable
as well. Even without a specific reason to exclude the plain
ideaχs ≈ 1, a better assessment of this conclusion appears
however necessary: the lack ofe2 at left hand side, replaced
by n~vx, allows handling eq (5,1) in order to introduce the in-
teraction between the fractional charges concerned in section
2; but this chance, suggested by eqs (2,8) and (2,9) that any-
way do no exclude themselvesξ ≈ 1, is justified only revising
the terme2/Δx.

Consider again the eq (2,7)Fx = −a′/Δx2 + Fox with
a′ = n~v′x in the simplest case where botha′ andṗox = Fox are
constants. Actually these constants could likely be first order
approximations only of series developments whose higher or-
der terms are neglected; yet, even this approximate meaning
of the eq (2,7) is enough for the present discussion. Assum-
ing Fox < 0 likewise as the first addend in order to describe

an attractive force,Fx is compatible with a potential energy
Ui of the i-th quark having the form

Ui = −
a
Δx

+ bΔx+ U0 (5,2)

beingU0, a andb appropriate integration constants; the lat-
ter is clearly related toFox. ConsideringΔUi = Ui − U0

one recognizes a well know formula, the so called “asymp-
totic freedom”, describing the interaction between quarks; of
course in the present model where any local distancex ran-
domly included by its quantum uncertainty range is replaced
by a range of distancesΔx, the local value of potential energy
Ui turns into a rangeΔUi of allowed values. Let us examine
the eq (5,2) in two particular cases where (i)a/Δx ≈ bΔx and
(ii) a/Δx ≈ U0; the arbitrary size ofΔx justifies in principle
both chances. The former case holds whenΔx(i) ≈

√
a/b and

yields U(i)
i ≈ U0; according to the chance (ii)Δx(ii) ≈ a/U0

yields insteadU(ii)
i ≈ bΔx(ii) = ba/U0. This means that a

delocalization extent of the system quark+ gluons around
Δx(i) the potential energy is approximately of the order ofU0,
around a rangeΔx(ii) the potential energy increases linearly
with Δx. Definea andb in agreement with eqs (2,8) and (2,9)
in order that eq (5,2) takes a reasonable form. Puta propor-
tional to the electric chargec2

i = (±(ni/n′)e)2, i.e. a = aoc2
i

via the proportionality constantao; also, let analogously beb
proportional to the color quantum numberCj , i.e. b = boC2

j
with j = 1 ∙ ∙3. The subscripts symbolize thei-th quark in
the j-th color quantum state; in this wayb = 0 for a color-
less Coulomb particle withni = n′, in which case the eq (5,2)
turns, according to eq (2,9), into the classical potential en-
ergy−e2/Δx′ + U0 of two Coulomb charges attracting each
other. This reasoning suggests that the color quantum number
should have the formCj = f j1(n′ − ni)2 + f j2(n′ − ni)4 + ∙∙,
where f j1 and f j2 are appropriate coefficients of series expan-
sion fulfilling the actual value ofCj whatever it might be; it is
interesting the fact that the electric charge depends onni/n′,
the color charge onn′ − ni . As concernsΔx′ = Δx/ao, note
that multiplying the size ofΔx by any factor yields a new
range still arbitrary and thus still compliant with eqs (1,1);
for the same reasons introduced in the previous section, i.e.
because any size possible forΔx is allowed toΔx′ as well,
the notationΔx′ means in fact nothing else but renamingΔx.
In summary, the Coulomb potential appears to be a particu-
lar case of eq (5,2), whose local features are described by the
aforesaid chances; the expressions ofU(i)

i andU(ii)
i are

Δx(i) =

√
a
b
, U(i)

i = U0,

a = laεa

(ci

e

)2
, b =

εb

lb
C2

j ,

Δx(ii) =
a

U0
,

U(ii)
i =

ab
U0

=
εaεb

U0

la
lb

(
ciCj

e

)2

= bΔx(ii) .

(5,3)
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The constant energiesεa andεb together with the constant
lengthsla andlb describe the physical dimensions ofa andb
without need of proportionality factors. Note thatlb → ∞,
compelsΔx(i) → ∞ andb→ 0; as the color is introduced by
b, this agrees with a constant Coulomb potentialU(i)

i = U0

of a colorless particle. By definition thereforelaεa = e2 for
ni/n′ = 1, whereas it is expected to take a different value for
ni/n′ < 1: the new value oflaεa/e2 whene2 is replaced by
(ni/n′)e2 is known in the literature asαs ≈ 1. In summary,
eqs (5,3) yield

U(i)
i = U0, U(ii)

i = U′0

(ci

e

)2
, U′0 =

αsεbe2C2
j

lbU0
. (5,4)

Appears here once more the importance of the delocal-
ization rangeΔx: in eq (4,14)Δxw controlled either appear-
ance of the electroweak interaction, in eqs (5,3) two different
range sizesΔx ≈ Δx(i) or Δx ≈ Δx(ii) emphasize either fea-
ture ofUi : in (ii) it depends upon the fractional charge, in (i)
it does not because−a/Δx is balanced bybΔx despite both
terms describe attractive force.

Let us concern now eq (5,2) in a more general way. The
features ofUi as a function ofΔx are related toδ[(n/m)(n/V)]
becauseΔx definesV, eq (2,1), and also because the eq (5,2)
comes directly fromΔFx of eq (2,7). What is distinctive here
with respect to the gravitational or Coulomb interaction is the
mere fact of having putFox , 0; so the consequent form of
Ui with b , 0 describes a peculiar kind of attractive force that
increases withΔx. Another remarkable point is thatΔFx is
not necessarily that between different quarks only, because
eq (2,7) concerns a mere effect of confinement that holds
even for an isolated quark; rather it seems more appropriate
to think that the interaction between different quarks strictly
replicates an intrinsic feature of the potential energy due to
the confinement effect even of a single particle, which also
involves its messenger bosons. In fact, in the present model
Δx is by definition the delocalization range of one particle;
the arising of any form of interaction is due to the presence
of a further particle that possibly shares the same delocaliza-
tion range. In general the number of states within a system of
interacting particles is related to their energy, to their masses
and to the whole space volume in which they are delocalized:
eq (2,2) shows indeed that ifn1 is the number of states of the
system with its particles supposed non-interacting, thenδn is
the change consequent to their interaction, whileΔεn1+δn is
the concurrent energy change from the initialΔεn1. Accord-
ing to the considerations of section 2, in the present caseV
is the time space delocalization volume of one quark and its
interaction messengers, the gluons. If a further quark could
share thisV, then the quarks interact. If the delocalization
volumeV is filled with gluons of both quarks mediating their
interaction, then the changeδ(n/V) stimulates a question: are
the particles that mediate the interaction interacting them-
selves? Clearly, from the standpoint of eqs (2,7) and (5,2)

this question holds even for one quark only withinV. A pos-
itive answer would explain whyΔFx increases when pulling
apart the interacting quarks, e.g. of a nucleon or meson, or
even a lonely quark and its gluon system; in the latter case
a greater delocalization range describes indeed the chance of
mowing away the gluons from their own quark, which how-
ever increases the energy of the system. To emphasize how
the positionFox , 0 answers the question, suppose that the
quark-gluon and gluon-gluon interactions does not allow dis-
tinguishing the interaction between a quark and ”its own”
gluons from that of these latter with another identical quark;
this would mean distinguishing identical particles, which is
however forbidden by eqs (1,1) [7]. If the gluons are not
mere interaction messengers but rather self-interacting mes-
sengers, then eq (5,2) describes the asymptotic freedom sim-
ply as a feature of one quark and its own system of gluons, i.e.
even without necessarily requiring a further quark; otherwise
stated, a net splitting of gluons from a quark interferes even
with their propensity to follow another quark. The concept of
asymptotic freedom is linked to the energy constrain that ex-
plains why do not exist bare quarks without gluons and bare
gluons without quarks. Calculate the change ofUi as a func-
tion of Δx asΔUi = (∂Ui/∂Δx)Δx at the first order; the force
field ΔFx = −∂Ui/∂Δx acting on quark and its gluon system
delocalized inΔx can be calculated in particular at the delo-
calization extentsΔx(i) or Δx(ii) . Replacing here the previous
results, one findsΔF(i)

x = −2b andΔF(ii)
x = −b(1+ U0/U(ii) ).

It will be shown in the next section thatU′0 ≈ 2U0 ≈
1 MeV; so, beingUi a monotonic function ofΔx, results
Δx(ii) <∼Δx(i) becauseU(ii)

i
<∼U(i)

i according to eq (5,4). IfΔx(ii)

is of the order of the proton radius, i.e. 10−15 m, then accord-
ing to eq (5,3)b results of the order of 1 GeV/fm, as it is well
known. Then, inside a proton the force field at (i) is about
twice than that at (ii); of coursebΔx further increases for
Δx > Δx(i) , i.e. outside the actual radius of the proton. This
means that extending delocalization range of the quark/gluon
system fromΔx(ii) to Δx(i) and then to anyΔx > Δx(i) , i.e.
allowing quark and gluons to have more space to move apart
each other, corresponds to a greater energy; this is not sur-
prising once having found thatU(ii)

i is already in the region
of linear increase ofUi as a function ofΔx. The dependence
of Ui onΔx is trivially self-evident; the reasoning aboutΔx(ii)

andΔx(i) allows to quantify this evidence with specific refer-
ence to the sub-nuclear length scale.

The behavior ofUi and the concept of asymptotic free-
dom equation are straightforward consequences of eq (2,7)
and thus of eqs (1,1); this feature of the strong interaction is
indeed characterized by the concept of uncertainty, which in
particular prevents specifying the actual size ofΔx. From the
present standpoint only, therefore, no kind of correlation ap-
pears in principle between quark generations and chances (i)
and (ii) inherent the eq (5,2). Yet, it seems intuitive that either
chance forΔx and thus either behavior of potential energy
should be selectively related to the energies characteristic of
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the three generations of quarks. This supposition will be con-
firmed in the next section, at the moment one must only admit
that both chances are allowed to occur.

Now let us revert to the opening question of this section,
i.e. how to regard the energy termn~vx/Δx andχs of eq (5,1).
The conceptual analogy ofχs with χemandχw of eqs (4,1) and
(4,5) was in principle legitimated by the arbitrariness ofvx in
defining (e2/Δx)/Δε = χs with χs expectedly of the order of
the unity. Exploit now eq (2,2), for simplicity regarded again
at the first order only

n1 =
δn

δ log(Δη′)
, δ log(Δη′) = log(Δεn1+δn) − log(Δεn1),

introducing two further energy uncertainty rangesΔεo and
Δε whose sizes are by definition intermediate between that of
Δεn1 and that ofΔεn1+δn, i.e. Δεn1 ≤ Δεo < Δε ≤ Δεn1+δn.
Hence eq (2,2) rewritten as a function of these new ranges
takes the form

γn1 =
ζδn

δ log(Δη)
, γ = γ(Δη), ζ = ζ(Δη),

δ log(Δη) = log(Δε) − log(Δεo).
(5,5)

Now Δεo plays the role of fixed reference energy range,
likewise as the earlyΔεn1 did. The correction coefficientsγ
andζ account for the fact thatn1 andδn = n2 − n1 were early
defined forΔεo ≡ Δεn1 andΔε ≡ Δεn1+δn, being therefore
γ = 1 andζ = 1; having changed the ranges at right hand
sides, clearlyγ andζ must be replaced here byγn1 andζδn
with γ , 1 andζ , 1, whence their definitions of functions of
Δε once having fixedΔεo. So the previous eq (2,2) becomes
a particular case of the present result (5,5), which reads now

β(Δη) =
δg

δ log(Δη)
, β(Δη) = γn1,

δg = ζn2 − ζn1 = δ(ζn). (5,6)

The third equation is interesting as it defines the new
rangeδg. Let the functionζ be someway proportional toΔη,
i.e. letζ decrease withΔη; also, consider the particular case
whereΔη is so small that the notationδg can replaced by the
familiar differential symboldg whatever the actualδn might
be. Being the range sizes arbitrary, this position aboutδg
is not a hypothesis; it focuses the attention on a particular
chance ofΔη that must be taken into account simply because
it is allowed and thus to be actually expected. Since a smaller
and smaller uncertainty range identifies better and better a lo-
cal value of the random variable included by its boundaries,
δ log(Δη) tends tod log(η); hence the former equation (5,6)
tends to the known beta functionβ(η) = dg/d log(η) defin-
ing the coupling constantg at the energy scale defined byη.
This particular limit case helps thus to understand the phys-
ical meaning of the ratio in the first eq (5,6), merely written
as a function of ranges instead of local values. It is clear the

interest to take nowΔη comparable withΔε of eq (4,1) and
(4,5) in order to infer fromβ(Δη) the functiong(Δη) ≡ χs to
be compared with the respectiveχem andχw. The next task
is to calculate the first eq (5,6) in order to confirm thatχs is
of the order of the unity. To this purpose let us expandβ in
series of powers ofδg, i.e. β = βo+β1δg+β2δg

2+ ∙∙: the coef-
ficientβo must be equal to zero because of eqs (5,6), whereas
β1 = 0 as well to fulfill the reasonable condition∂β/∂(δg) = 0
of minimumβ for δg = 0. Henceβ = β2δg

2, neglecting the
higher order terms, requiresδg = (β2δ log(Δη))−1; this ap-
pears replacing 1/(δ log(Δη)) in eq (5,6), which indeed turns
into β(Δη) = β2(δg)2. According to the fourth eq (5,5),δg =

β2/(log(Δε/Δεo)) is reducible to the well known form

δg =
ξ

ζ log(Δη2/Δε2
o)
,

2ζ
ξ

= β2, Δεo ≈ 0.2 GeV. (5,7)

The order of magnitude ofΔεo is easily justified recall-
ing the eq (2,5) of section 2 and the conclusions thereafter
inferred:Δεo implies that toΔt ≈ ~/Δεo corresponds the path
δx ≈ ~c/Δεo of gluons moving at the light speed to carry the
interaction between quarks. The given value ofΔεo is there-
fore consistent with the order of magnitudeδx ≈ 10−15 m
previously quoted for the strong interaction. The result (5,7)
and the value ofΔεo are well known outcomes of quantum
chromodynamics; further considerations, in particular about
the constantsξ andζ, are omitted for brevity. This paper aims
indeed to show the consistency of the present model based
uniquely on eqs (1,1) with the standard features of the strong
interactions, not to repeat known concepts.

6 The quark and lepton masses

This section consists of two parts, the first of which concerns
the ability of eq (2,4) to describe the ideal masses of iso-
lated quarks. Correlating these masses to the energy ranges
Λi ≡ Δεn1+δn is in principle sensible first of all regarding the
various quarks as a unique class of particles: there would be
no reason to expect that different kinds of particles of dissim-
ilar nature are all described by a unique law simply chang-
ing a unique distinctive index, here represented byi ≡ δn.
Moreover must hold for the energies of the various quarks
a common sort of functional dependence uponδn like that
of Δεn1+δn. Eventually, this dependence must still hold even
replacing these ranges with the respective average energies
< εn1+δn > calculated as described in section 4. This last re-
quirement suggests correlating the quark masses with these
averages in agreement with the eq (2,4), tanks to the fact that
both< εn1+δn > andΔεn1+δn are consistent with their ownδn.
Indeed an incremental indexδn representing the quark ener-
gies is defined replacing in eq (2,2) log(Δεn2) and log(Δεn1)
with log(< εn1 >) and log(< εn2 >); a procedure completely
analogous yields an equation of the average quantities fully
corresponding to eq (2,4). The second point has been ex-
plained: the self-interaction of quarks justifies in principleδn
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simply admitting that the various quarks are characterized by
different self-interaction strengths and thus by distinctively
different values ofδn. So the critical step is the first one,
i.e. whether or notΔFx of eq (2,5) really governs the self-
interactions of all quarks in order that all of them are related
to a unique law (2,4) ofδn. This means in practice: (i) re-
garding one quark delocalized in its own uncertainty range;
(ii) thinking that various quarks are characterized by different
δ(n/m) because of their own kind of self-interaction; (iii) as-
suming that in fact the eq (2,4) accounts for the different num-
bers of states that characterize uniquely the various quarks. If
the functional dependence described by the eq (2,4) is con-
sistent with the three points just mentioned, thenΛi describes
the ideal masses of the quarks as a function ofi; also, the
point (ii) shows that the energies of this class of particles are
really related to their number of allowed states through the
self-interaction between quark and gluons.

The estimated massesQi of the quarks quoted in literature
[14] are reported here:

Qu = 1.7↔ 3.3 MeV
Qd = 4.1↔ 5.8 MeV
Qs = 80↔ 130 MeV
Qc = 1.18↔ 1.34 GeV
Qb = 4.13↔ 4.85 GeV
Qt = 170.7↔ 173.3 GeV

(6,1)

The mass interval of the ”b” quark actually merges two in-
tervals, that reported for theMS ”mass-independent subtrac-
tion scheme” and that of the ”1S mass” scheme [14]; the re-
spective mass intervals are 4.19+0.18

−0.06 GeV and 4.67+0.18
−0.06 GeV

[15].
It is known that these literature data represent estimates

instead of experimental values, as actually isolate quarks do
not exist; because of their confinement, the masses are indi-
rectly inferred from scattering experiments. In fact the masses
depend on their different combinations in various hadrons
and mesons. So the values quoted above must be regarded
with carefulness when compared with the results of theoreti-
cal calculations. Nevertheless the intervals of values (6,1) do
not overlap, which suggests that their order of magnitude is
somehow related to and thus at least indicative of the ideal
masses of isolated quarks; by consequence it seems also sen-
sible to expect that the sought values of quark masses should
fall within these intervals. In lack of further information,
therefore, exploit the intervals (6,1) to calculate the average
valuesQi :

Qu
(2/3) = 2.50 MeV

Qd
(−1/3) = 4.95 MeV

Qs
(−1/3) = 105 MeV

Qc
(2/3) = 1.26 GeV

Qb
(−1/3) = 4.49 GeV

Qt
(2/3) = 172 GeV

(6,2)

The superscripts indicate the charges of the respective

quarks. These averages have neither specific physical mean-
ing nor come from some particular assumption, they merely
represent preliminary starting points defined within realistic
intervals; thus their worth is that of reasonable inputs to carry
out calculations. The validity of the results inferred in this
way relies mostly on their self-consistency; the only initial in-
formation is that any sensible output calculated starting from
the values (6,2) should expectedly fall within the intervals
(6,1). Regard therefore the available data as mere reference
values to clarify with the help of eq (2,4) what doQi vs i
might actually mean in the present context. According to the
reasoning carried out in the previous section let us try prelim-
inarily to correlateQi with Λi puttingΛi/Λ = ((Qi/Ui)/q)1/b,
whereq is a proportionality constant andb a coefficient to be
determined by successive calculations; this coefficient fulfills
the chance that if< Δεn2 >≈< Δεn1 >, i.e. < εn2 >≈< εn1 >,
then the corresponding ratio (Qi/Uiq)1/b with increasingb
anyway matches the limit behavior ofΛi/ΛwhateverqandUi

might be. InitiallyUi is justified as mere dimensional factor
to be determined; the next results will show that actually it re-
sults to be just the potential energy of eq (5,2). Let us sort now
the variousQi by increasing value to check if really the esti-
mated quark masses fulfill the logarithmic dependence of eq
(2,4) upon the incremental number of statesi, which therefore
takes from now on values from 1 to 6. In this way each mass is
progressively related to its own increasingi. This expectation
is indeed reasonable becausei ≡ δn definesΛi ≡< εn1+δn >
with respect to a ground reference state number, to which cor-
responds the reference energy rangeΛ ≡< εn1 >. Being by
definitionΛi ≡ Λ for δn = 0, one also expects that holds for
the eq (2,4) the boundary condition

Q0/U0 ≡ q i = 0 (6,3)

whateverb might be; this fact justifies the proposed notation.
When handling sets of data, regression calculations are in
general needed; the outcomes of these calculations are usu-
ally expressed as power series development of an appropriate
parameter. Implementing the linear eq (2,4) with the values
(6,2) as a function ofi, means therefore calculating the best fit
coefficientsa andb of the form log(Qi/Ui) = a+ ib; clearlyn1

has been included in the regression coefficients. This is easily
done regardingΛi andΛ of eq (2,4) as follows

log(Qi/Ui) = a+ bi, a = log(q), 1 ≤ i ≤ 6. (6,4)

The factorq linking Ui to the reference energyΛ is deter-
mined by the boundary condition (6,3); this holds of course
even in the presence of higher order terms. The plain first or-
der approximation decided fori agrees with the intent of the
present paper: to describe the quarks through an approach as
simple as possible and compatible with the minimum amount
of input data needed for an unambiguous assessment of re-
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sults. So, owing to eqs (5,3) and (5,4), one expects

a+ bi =





log(Qi/U0)

log
(
Qi/U′0(ci/e)2

)
U′0 =

αsεbe2C2
j

lbU0

(6,5)

Now theΔx-dependent behavior ofUi can be checked:
if these equations ofUi and the positionΛi/Λ ∝ (Qi/Ui)1/b

are correct, then both chances (5,3) should somehow appear
when exploiting the logarithmic law. A series of plots shows
this point step by step starting from the raw data (6,2).

The variousQi are preliminarily plotted vsi taking allUi

equal to a constant; this first result is reported in fig 1. The
boxes represent the input data, the letters between{} iden-
tify the quarks, the dot lines describe tentatively their possi-
ble connection; the best fit dashed line has a mere indicative
meaning of preliminary reference trend. The various points
are not completely random, rather they roughly follow an
identifiable increase withi. It appears that couples of the var-
ious Qi lie along three lines reasonably parallel each other;
so, according to eq (6,4), these lines should be characterized
by a unique best fit coefficientb and differ by the coefficient
a only. Yet, since each line must be handled in order to fulfill
the condition (6,3), the differenta are irrelevant: indeed the
three regression lines log(Qi) = ak + bi, with k = 1..3, must
be actually plotted as log(Qi/qk) = bi putting ak = log(qk).
In effect the fig 2 shows that once having forced the three
dotted connections to cross the origin, all quark masses are
perfectly aligned along a unique best fit line, whose regres-
sion coefficients are:ak = 4.7, 5.1, 5.4; the respective values
of b range between 0.967 and 0.985, i.e. it is reasonably un-
changed. Clearly are here concerned the masses of isolated
quarks, since the raw data (6,2) have been plotted one by one
independently each other. The relevant conclusion is that of
having confirmed the validity of eq (2,4) and (2,1):Δx has
physical meaning of delocalization range of a unique quark.
Considering that the masses spread over 5 orders of magni-
tude, the result is certainly interesting. If one would calculate
the masses of quarks through this plot, however, four con-
stants must be known: threeak andb: too many, to consider
physically meaningful this way of exploiting eq (2,4). The
worth of fig 2 is merely heuristic. It must be noted, however,
that significant information aboutb can be obtained through
very simple considerations. In the linear regression (6,4), the
best fit coefficientb weights the increase of log(Qi) as a func-
tion of the incremental number of statesi. Consider in partic-
ular the highest massQ6 of the top quark, corresponding to
i = 6: the greaterb, the greater the calculated value ofQ6.
Sob is expected to be proportional toQ6. Moreover for the
same reasonb controls also the masses of lighter quarks for
i < 6; the link ofQ6 with the masses of all quarks, inherent the
plot of fig 2, suggests that the proportionality constant should
reasonably have form and physical dimensions somehow re-
lated to all quark masses. Put thereforeb = (

∑6
i=1 Qi)−1Q6,

Fig. 1: Plot of log(Qi/q) vs i; q is a best fit constant. The boxes
represent the theoretical quark mass estimates (6,2), the dot lines
are tentative connections between couples of quarks, the dashed line
represents a preliminary best fit trend of all masses.

Fig. 2: Plot of log(Qi/qk) vs i; three values ofqk calculated via the
boundary condition (6,3) enable a unique trend line of the quark
masses with a unique constantU0.

in which caseQ6 is normalized with respect to the total en-
ergy of all possible states allowed betweenΔεn1 andΔεn1+δn.
Hence the estimates (6,2) yield

Q6
∑6

i=1 Qi

= 0.967.

In effect, the value ofb calculated in this way is very close
to that determined in (6,6) via best fit regression.

Yet even three input data to calculate the quarks masses
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Fig. 3: Plot of log(Qie2/c2
i q
′) vs i.

Fig. 4: Plot of log(Q∗i /q
′) vs i with Q∗i = Qi/x2

i : herexi = constfor
the quarks{c} and{s} andxi = ci/e for the other quarks.

are still too many; certainly there is something else not yet
evidenced by the plot of fig 2. Moreover this result, while
showing that the idea of concerning the masses of isolated
quarks is basically correct, does not highlight anything about
the potential energiesUi of eqs (6,5), at the most it could ac-
count for U0 only. Since the idea of consideringQi/qk is
theoretically too naive, let us regard the variousQi all to-
gether. If so however, despite the previous warnings, the plot
of fig 1 is unsatisfactory; owing to the logarithmic ordinate
scale, the deviations of the variousQi from the best fit line
are markedly large. Seems however decipherable an unam-
biguous configuration of these points; this plot prospects the
chance of better results. An improved connection between

Fig. 5: Plot of log(Q∗i /q
′
k) vs i; xi are defined in fig 4,q′k, with k =

1,2, are calculated in order to fulfil the condition (6,3).

quark masses andi must have exclusively physical valence:
here the problem does not concern a random dispersion of ex-
perimental measurement errors, but the relationship between
masses of isolated quarks and bound quarks on the basis of
data extrapolated from the experience; the challenge is to ex-
tract the former from the latter trusting to their initial order of
magnitude only. The fig 3 reports a new plot where the ratios
(Qi/U0)/q are replaced by the respectiveQie2/q′c2

i , beingci

the electric charges of the various quarks;e is clearly intro-
duced for dimensional reasons. The chanceQie/qci is not
mentioned because found of scarce interest after preliminary
checks. From a numerical point of view, therefore, the plain
Qi are now corrected by fractional charge factors (−1/3)2 and
(2/3)2. In this way the logarithmic terms are handled exactly
as before, which allows the comparison with the former plot:
the figure 3 reports again a new best fit line. Now the linear
trend of log(Qie2/q′c2

i ) as a function ofi is significantly better
than that of fig 1; the{s} and{c} quarks only, both second gen-
eration quarks, deviate appreciably from the best fit line; their
calculated values consistent with the linear best fit trend are
respectively 51 MeV and 1.9 GeV, well outside the literature
intervals (6,1). Considering that the orders of magnitude cal-
culated are however globally correct, two chances are in prin-
ciple admissible: either the literature estimates of the masses
of these quarks must be replaced by the values calculated here
or some further physical reason, not yet taken into account,
enables to modify just these values and align them with the
others. The former option is in principle acceptable accord-
ing to the previous warnings on the literature quark masses,
but would conflict with the plot of fig 1: both masses of these
quarks were correctly aligned on a similar best fit line before
introducing the correction due to their electric charges. So the
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latter option seems more stimulating.
Replace thereforeQie2/q′c2

i of the quarks{c} and{s} only
with Qi/const. This idea works well definingconstappro-
priately, i.e. in order to fitQi of these two quarks to the
main best fit line of the other quarks. The fig 4 reports the
same data of fig 3, yet replacinge2/c2

i of the quarks{s} and
{c} only with a unique value not dependent onci ; now Q∗i /q

′

with Q∗i = Qi/x2
i includes both chances throughxi . The ideal

line joining these quark masses is reasonably parallel to the
four quark best fit line, i.e. the plot of these two quarks dif-
fers trivially from that of the other quarks by the value of the
constanta only. As before, in fact this means admitting two
values ofa: one for the main best fit line, another one for the
second generation quark best fit line; of course both values
must make the best fit lines compliant with the condition (6,3)
via a uniqueb. The result is shown in fig 5: despite replac-
ing ci/ewith a unique constant is certainly an approximation,
nevertheless all quark masses are reasonably represented by
a unique eq (2,4). In conclusion, the path from fig 1 to fig 5
was aimed to verify that effectively the logarithmic law (2,4)
is expressed via the ratioQi/Ui vs the incremental numberi
of states. The plot of the quark massesQi is described by the
following equation

log

(
Q∗i
Q0

)

= bi Q∗i =
Qi

x2
i

b = 0.9723

xi = ci/e Q0 = 0.556 MeV 1st,3rd gen.
xi = 0.3644 Q0 = 1.118 MeV 2nd generation

(6,6)

So b is very similar to that of fig 2. The double value
of U0 corresponds to the two regression constantsa allowing
to merge the best fit lines of fig 4 according to the condition
(6,3);Q∗i plays the role of an ”effective mass” of quarks. The
reliability of the results inferred from the plots is assessed
recalculating via eqs (6,6) the quark masses and comparing
them to the starting values (6,2); one finds 2.32, 5.44, 1.22×
102, 1.14× 103, 4.50× 103, 1.69× 105 MeV that agree rea-
sonably with the literature intervals (6,1). As mentioned at
the beginning of this section, this is the basic requirement
to be fulfilled. To assess this result also note however that
the values (6,2) do not have the rank of experimental data,
to be necessarily matched as exactly as possible; as stated
before, they have a mere indicative meaning of reference val-
ues. Hence the conclusion is that the eqs (6,6) yield a sensible
result, while having also the merit of verifying the positions
(6,5) strictly related to eqs (5,3). But the most interesting re-
mark concernsUi , which depends explicitly on the chargesci

in the first and third generation of quarks only; in the second
generation it does not, which brings to mind the respective
limit cases introduced in eqs (5,3) and further emphasized in
eqs (6,5). The generations of quarks are indeed described by
log(Qi/Ui) = bi with Ui defined by the following equations

U(ii)
i = 0.556(ci/e)2 MeV 1st,3rd generation,

U(i)
i = 0.148 MeV 2nd generation.

The superscripts are assigned to the generations of quarks
by comparison with eqs (5,4) and (6,5); soU0 = 0.148 MeV
andU′0 = 0.556 MeV.

Some further remarks on this result are also useful. The
first concerns the plots of figs 2 and 5: despite the former has
been obtained from log(Qi/qk) and the latter from log(Qi/Ui)
that involves the potential energy, both plots look like and fit
surprisingly well the logarithmic law (2,4) despite the quark
masses spread over 5 orders of magnitude. These plots are
not trivial duplicates: it is interesting the fact thatQi/Ui takes
both formsQi(e/ci)2 andQi/const, while are determinedU0

and U′0. On the one hand is remarkable the fact of having
identified the mass range as the reason that discriminates the
chances (i) and (ii) of eqs (6,5): indeed the mass range of the
second generation of quarks is well defined with respect to
that of the first and third generations. On the other hand, the
fact that both chances are merged in the same plot is itself
a further fingerprint of the quantum uncertainty, early intro-
duced because of the mere arbitrariness ofΔx. The third re-
mark confirms the fact thatΔx is not necessarily the distance
between two quarks, it can also be the delocalization range of
one quark only; the fact that the plot of fig 5 overlaps very
well that of fig 2 shows that even isolated quarks must be
regarded as self-interacting and that the interaction potential
energy between quarks, the well known eq (5,2) is a replica
of the self-interaction potential energy. This conclusion, also
supported by the fact that the plot of fig 5 is better than that
of fig 1 by introducingQi/c2

i and notQi/ci , explains why
eq (5,2) describing the interaction between different quarks
holds also for isolated quarks. The fourth remark concerns
the values of the constantsU0 andU′0 reported in eqs (6,6),
which describe the asymptotic freedom introduced in the pre-
vious section.

Note eventually that the considerations hitherto carried
out have assumed already known the quark masses; also, in
eqs (6,6) appear several constants to be known ”a priori” to
carry out the calculations. Moreover, the literature estimates
(6,1) appear now as values well configured in the frame of
eq (2,4) but not directly supported by experimental measure-
ments. In this respect, a sound proof of their meaning would
be to calculate them contextually to other well known and
well determined particle mass. The merit of this first part of
the section is to have checked the eqs (5,2) and (5,3) via the
logarithmic law of eq (2,4). Yet it is also possible to extend
further this idea considering together both lepton and quark
masses. Indeed a simple question arises at this point: does
the eq (6,4) hold also for the leptons? The fact that quarks
and leptons are both fundamental bricks of matter suggests
the idea that the eq (6,4) could hold for both classes of parti-
cles. Moreover note an interesting coincidence: the number
of leptons is 6, like that of the quarks. Is this a mere accident
or is there some correlation between each quark and each lep-
ton? The next part of the section will show that considering
together both kinds of particles allows obtaining all of their
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masses as a consequence of a unique principle.
The literature data on the massesLi of the 6 leptons are

summarized here:

e→ 0.51 MeV, μ→ 105.66 MeV,
τ→ 1776.84 MeV, νe→ < 2.2 eV,
νμ → < 170 KeV, ντ → < 15.5 MeV.

(6,7)

The difficulty of comparing calculated and experimental
masses concerns now the neutrinos, because of their very
scarce interaction with matter and because the neutrino fla-
vor eigenstates are not the same as the mass eigenstates due
to the neutrino oscillations [17]. However, being the masses
of electron, muon and tau well known, the strategy to carry
out the next calculations is: (i) to assume preliminarily the
eq (6,4) for the masses of the leptons; (ii) to fit the masses
of the neutrinos to the profile required by the logarithmic law
via an appropriate correction factor downscaling their upper
limit values (6,7); (iii) to look for a unique best fit calculation
including both leptons and quarks; (iv) to infer some conclu-
sion about the physical meaning of such a result.

Since the most important task of this section is to find a
correlation between the lepton and quark masses previously
determined and to confirm the validity of the previous results,
the approach proposed here does not concern directly eq (2,4)
rewritten in the form (6,4) log(Li) = a′+b′i involving the lep-
ton masses only; rather we start looking since the beginning
for a connection betweenLi andQi . Let us show first of all
that such a link actually exists, i.e. that are physically sensi-
ble logarithmic laws having the forms log

(
Q∗i

)
± log(Li) with

Q∗i defined in eqs (6,6). From log(Q∗i ) = aQ + bi + ci2 + ∙∙
and log(Li) = aL + b′i + c′i2 + ∙∙, with aQ = log(Q0) and
aL = log(L0) regression constants, one finds first log(Q∗i ) ±
log(Li) = aQ ± aL+ (b± b′)i+ (c±c′)i2+ ∙∙; the higher powers
of i have been skipped for brevity, whereas the dimensional
factorsQ0 and L0 are included in the constantsaQ and aL

as in eq (6,4). The fig 6 evidences that the idea of plotting
log(Q∗i )+ log(Li) and log(Q∗i )− log(Li) vs i is sensible: in fact
both curves are reasonably definable through appropriate best
fit coefficients. To obtain these plots, the neutrino masses,
quoted in literature through the respective upper limits only,
have been downscaled to the following values

νe = 1.802 eV, νμ = 3481.6 eV, ντ = 1.549× 107 eV. (6,8)

Moreover the variousLi have been sorted by increasing
mass like the respectiveQ∗i . This sorting criterion establishes
a one-to one correspondence between leptons and quarks that
reads

leptons νe νμ e ντ μ τ
l l l l l l

quarks u d s c b t
(6,9)

Before commenting this correspondence and confirming
the validity of eq (2,4) also for the leptons, let us repeat here

Fig. 6: Plot of log(Q∗i /Q0) ± log(Li/L0) vs i; Q0 andL0 are dimen-
sional best fit constants.Q0 is defined in eqs (6,6).

preliminarily the reasoning previously carried out for the
quarks. Calculate (

∑6
i=1 Li)−1L6 exploiting the values (6,7)

and (6,8); one finds

L6
∑6

i=1 Li

= 0.935




Q6
∑6

i=1 Qi




2

= 0.936

which shows that the lepton equation is related to that of the
quarks. To explain this result assume that the normalized val-
ues ofL6 andQ6 are correlated, i.e.L6/

∑
j L j = b′Q6/

∑
jQj ,

beingb′ a constant; imposing thenb′ = b, in order that also
L6/

∑
j L j be proportional tob of eq (6,5) for the same afore-

said reasons, one finds the given result. These considerations
put a constrain on the best fit coefficients ofQi andLi vs i.
The fig 6 suggests the reasonable chance of introducing a fur-
ther arbitrary constantbo that defines the more general linear
combinations log

(
Q∗i

)
± bo log(Li) = a′′Q ± boa′′L + b′′± i + ∙∙.

Hence, multiplying side by side these equations and collect-
ing the constants at right hand side, it must be also true that

(
log(Q∗i )

)2 − b2
o
(
log(Li)

)2
= a′′Q

2 − b2
oa′′L

2
+ ∙∙

skipping even the first power ofi. In effect the advantage
of having introduced the arbitrary coefficientbo is that it can
be defined in order to make even the first order term negli-
gible with respect to the constant term, whence the notation
reported here; so, neglecting all powers ofi, the right hand
side reduces to a constant. The last equation reads thus

(
log(Q∗i )

)2
= a+

(
log(Li)

)2b, a = a′′Q
2 − b2

oa′′L
2, b = b2

o.

Now implement again the input data listed in (6,7), (6,8)
and (6,2) to check if this last equation correlates sensibly the
sets of leptons and quark masses via two constantsa andb
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only; these constants are clearly best fit coefficients that de-
scribe the correspondence (6,9). If the zero order approxi-
mation just introduced is correct, then trivial regression cal-
culations should yield a sensible statistical correlation of all
masses. The best fit coefficients consistent with the zero order
approximation of the last equation are

a = 45.49178521, b = 1.039628847. (6,10)

So the best fit equation is

log
(
Qb f

i /x
2
i

)
= ±

√
a+ b

(
log(Li)

)2;

the notation stresses thatQ∗i of eqs (6,6) are replaced by val-
uesQb f

i of Qi determined by the regression, while the various
xi are of course still that defined in eq (6,6). This result is
readily checked calculating

Qb f
i = x2

i × 10±
√

a+b(log(Li ))2

(6,11)

via the respective lepton massesLi listed in (6,7), (6,8) and
comparing withQi reported in (6,1). Note that, because of
the exponentials, the decimal places of the regression coeffi-
cients are important to reproduce the results of the following
calculations. All of the values calculated with the positive
sign in eq (6,11)

Qb f
u = 2.50× 106 eV Qb f

d = 4.97× 106 eV
Qb f

s = 1.08× 108 eV Qb f
c = 1.22× 108 eV

Qb f
b = 4.45× 109 eV Qb f

t = 1.75× 1011 eV
(6,12)

fit surprisingly well the values (6,2) and, mostly important,
fall within the estimated intervals (6,1); it is worth noticing
that the agreement is much better than that obtained through
eqs (6,6). A further remark in this respect is the following.
When carrying out the regression calculations with random
input data, have been traced the percent deviations of the re-
sulting values of quark and lepton masses with respect to the
respective input values; the best self-consistency was found
with the true data; the conclusion is that the regression is not
mere calculation procedure, but rather a real physical rep-
resentation of the masses. This also supports the idea that
the average values (6,2) of the estimated intervals (6,1) could
have an actual physical meaning. Yet are also allowed the
following results calculated with the minus sign

qb f
u = 7.91× 10−8 eV qb f

d = 2.48× 10−9 eV
qb f

s = 1.64× 10−10 eV qb f
c = 1.45× 10−11 eV

qb f
b = 2.77× 10−12 eV qb f

t = 1.13× 10−12 eV
(6,13)

The former set of energies has a literature check through
the estimates (6,1), the latter set does not; yet there is no rea-
son to exclude the values (6,13), whose physical meaning will
appear shortly. In the latter case the subscripts have a formal

physical meaning only, merely reminiscent of the respective
quark masses (6,12); nevertheless, it is possible to show the
key role of these further energies for the physics of quarks
and leptons.

Any statistical regression concerns by definition whole
sets of values; here eq (6,11) correlates all masses of leptons
and that of all quarks reported in (6,2) and (6,7), (6,8) ac-
cording to their representation (6,9). The best fit coefficients
(6,10) are therefore the fingerprint ofall masses. Various sim-
ulations have been indeed carried out (i) altering deliberately
some selected input values of either set of masses, (ii) alter-
ing either whole set of masses and (iii) altering both whole
sets of masses by means of arbitrary multiplicative factors
to find out how the corresponding results are affected; the
results, compared with that of eq (6,11) obtained from true
values, confirm of course that anyway the new regression co-
efficients differ from (6,10). The obvious conclusion is that,
for some specific reason, just the quoted coefficients (6,10)
identify uniquely the fundamental masses of our universe:a
is related to their measure units, as previously explained,b
controls instead the link between quarks and lepton masses at
increasing values ofi. Actually one coefficient only is enough
to identify all masses; the other is merely associated to it, be-
ing concurrently calculated. Otherwise stated, one could as-
sume as a fundamental assumption one of these coefficients
only, the other one results consequently determined by the
unique set of quark and lepton masses consistent with the for-
mer one. Is clear the importance of understanding the spe-
cific physical meaning of the particular couple of coefficients
(6,10) able to account for the fundamental masses of our uni-
verse as a function ofonepredetermined input. Besides the
numerical calculation of these masses, however, it seems rea-
sonable to expect that some physical idea is still hidden in eq
(6,11).

To investigate this point consider the following equation

qo
i = x2

i × 10±
√

a+(log(Li ))2

(6,14)

inferred from (6,11) leaving unchangeda while replacing in-
steadb with the unity. This equation results formally from
(
log(qo

i )
)2

=
(
log(Li)

)2
+ a, which is interesting becauseqo

i
andLi can be interchanged simply changing the sign ofa but
not its absolute value. Of course the variousqo

i so defined are
no longer quark masses; being still related to the respective
true lepton massesLi , however, alsoqo

i are somehow related
to Qi .

It is very significant to regard eqs (6,14) thinkingQi corre-
lated toLi , which in turn are correlated toqo

i via one additive
constanta only.

So far the experimental masses of quarks and leptons have
been introduced as a matter of fact, thus finding that a unique
equation, (6,11), accounts for all of them simply postulating
a well defined and unique couple of regression constants. Eq
(6,14) adds to this standpoint a new perspective: the existence
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of a field whose quanta are related to theqo
i , as a function of

which are first calculatedLi via eq (6,14) and thenQi via eq
(6,11). The number of input data confirms that highlighted
before, i.e. the quoted value ofa only; the masses of both
quarks and leptons appear then as consequences of a unique
kind of particles, just theqo

i , since the only possible regres-
sion of Li with Qi consistent with the givena is that with
the concurrent valueb. This explains whyqo

i have been de-
fined keepinga and changingb only; even without appearing
explicitly appearing in eq (6,14), we know that the latter is
required to be just that consistent with the former.

Note now that also eq (6,14) allows two sets of of values,
qo+

i andqo−
i , defined by either possible sign of the exponen-

tial; it is easy to realize that, likewise as the values (6,12) and
(6,13), also now from a numerical point of viewqo+

i >> qo−
i .

This appears regarding allqo
i together: the resulting total en-

ergies corresponding to the positive and negative signs are∑6
i=1 qo+

i = 1.29× 1011 eV and
∑6

i=1 qo−
i = 8.189× 10−8 eV.

Define therefore the linear combinationqo+
i − qo−

i and sum
together alli-th terms; one obtains again a total energy

εH = 129 GeV.

Regardless of the numerical values, however, the physical
meaning of each termqo+

i − qo−
i is profoundly different from

that of the termsqo+
i andqo−

i regarded separately: the masses
mi , chargesci , spinssi , colorsCi and so on of these virtual
particles, expectedly the same forqo+

i andqo−
i whatever they

might be as a consequence of eq (6,14), subtract each other
and thus do no longer appear inqo+

i −qo−
i . This point is easily

highlighted and explained. Actually the eq (6,14) establishes
the numerical values of the new energiesqo+

i andqo−
i , not their

specific forms about which nothing has been hypothesized or
is known. The most natural way to regard these quantities,
in full line with the basic ideas of the present model, is to re-
late the variousqo

i to appropriate energy uncertainty ranges as
done in eq (2,4); this means assuming for instance

qo+
i = ε+i (mi , ci , si ,Ci , ..) − ε+i (0,0,0,0, ..)

qo−
i = ε−i (mi , ci , si ,Ci , ..) − ε−i (0,0,0,0, ..)

with
ε−i (mi , ci , si ,Ci , ..) ≈ ε

−
i (0,0,0,0, ..)

as well. As repeatedly stressed, both boundaries of any uncer-
tainty ranges are arbitrary. Here we are interested to consider
in particular ranges fulfilling the following condition about
the upper boundaries:

ε+i (mi , ci , si ,Ci , ..) = ε−i (mi , ci , si ,Ci , ..).

These positions agree withqo+
i >> qo−

i and also yield

qo+
i − qo−

i = ε−i (0,0,0,0, ..) − ε+i (0,0,0,0, ..)

that definesqo+
i − qo−

i as the energy uncertainty range of a
massless, spinless, chargeless, colorless,.. virtual particle,

having in particular boson character. So, when summing up
all these terms one finds a total boson energy having the value
just quoted. This peculiar energy that accounts for the lepton
and quark masses corresponds to acompositeparticle con-
sisting of the sum of 6 termsqo+

i − qo−
i rather than to a truly

elementary particle. This conclusion is supported by the fact
that the lifetimeΔtH of such a particle should reasonably re-
sult from that of its longest life constituent term withi = 1,
i.e. ΔtH = ~/(qo+

1 − qo−
1 ); one calculates in this way via eq

(6,14)

qo+
1 − qo−

1 = 2.50 MeV, ΔtH = 2.63× 10−22 s.

These last results are reasonable and fully agree with the out-
comes of recent experimental measurements.

7 The quantum statistical distributions

This section investigates further consequences of eq (2,2).
This part of the paper is thus significant because just this
equation leads to eq (2,4), which has been heavily involved
to infer the asymptotic freedom equation (5,7) of quarks and
the masses of quarks and leptons; confirming once more eq
(2,2) means therefore to correlate these results to another fun-
damental topic of quantum physics concerned in the present
section, i.e. the statistical distributions of quantum particles.
Eqs (1,1) link the energy rangeΔε including the possible en-
ergies of a quantum system to its numbern of allowed states:
the change of energy range sizeδΔε = (~/Δt)δn during a
given time rageΔt has been concerned in section 2 to cal-
culate the related changeδn = n2 − n1 of n, thus obtaining
eq (2,4). In that casen1 was regarded as a fixed quantity,
i.e. as a reference number of states as a function of which
to defineδn. Now we generalize these ideas: bothn1 andn2

are allowed to change in a quantum system characterized by
an initial number of statesno. If so ~/Δt can be identically
rewritten as~/Δt = Δεn1/n1 or ~/Δt = Δεn2/n2, because both
right hand sides are equivalent reference states in definingδn.
So, being both chances alike as well, it is reasonable to expect
that~/Δt ∝ Kt/(n1n2) with Kt = Kt(Δt) proportionality fac-
tor having physical dimensions of an energy. This position is
possible in principle becauseΔt is arbitrary; so, whatevern1

andn2 might be, certainly exists a time lengthΔt = Δt(n1,n2)
that fulfills the proposed correlation. From a formal point
of view, assume thatΔε/n of the system is described dur-
ing Δt by the linear combinationa1Δεn1/n1 + a2Δεn2/n2, be-
ing a1 anda2 appropriate time dependent coefficients; if so,
thenKt = a1n2Δεn1 +a2n1Δεn2 is defined just by the equation
δΔε/δn = ~/Δt = Kt/(n1n2). Since all quantities at right hand
side are arbitrary, for simplicity let us approach the problem
in the particular case whereKt is regarded as a constant in the
following. This chance is obviously also obtainable defining
appropriatelya1 or a2 or both duringΔt. The following dis-
cussion will show that even this particular case is far reaching
and deserves attention.
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Write n2 = no ± j andn1 = ± j, beingno a reference fixed
number of states andj a variable integer accounting for the
change ofn1 andn2; of course bothno and j are arbitrary and
independent each other, which yields indeedn2 − n1 = no or
n2−n1 = no±2δ j depending on the signs ofj. In this way it is
possible to describe a steady system with itsno initial states or
an evolving system where is allowed a new numbern′ , no of
states; since now bothn1 andn2 are allowed to change,δn =

±2δ j. Simplifying the notations, the equation inferred from
δΔε/δn = Kt/(n1n2) of interest for the following discussion
reads

δΔε j

δ j
=

2K
j(no ± j)

, δ j = 1, 2, .. (7,1)

whereK must be intended as the constant replacingKt pre-
viously introduced; it is allowed to take both signs, which is
avoids writing explicitly±δ j. The notationΔε j emphasizes
the variable number of states appearing at right hand side. To
proceed on, consider the case where bothj andno are large
enough to regard approximately the former as a continuous
variable, so thatδ j << j; so the left hand side can be handled,
for mere computational purposes only, asdΔε j/d j; henceΔε j

calculated solving the differential equation, results to be

Δε j = (K′εo/no) log(no/ j ± 1)+ const, 2K = −K′εo, (7,2)

beingconstthe integration constant;K′ is an arbitrary dimen-
sionless constant andεo an arbitrary constant energy. Con-
sider now two boundary conditions of eq (7,2) concerning
the respective limit cases (i)no << j and (ii) no >> j. From
a mathematical point of view, note that eq (7,2) is obtained
by integration of eq (7,1) with respect toj regardless ofno;
hence one could think the cases (i) and (ii) as due to fixed in-
tegration limits ond j for two different values ofno consistent
with either inequality, of course without modifying the result
of the integration and the subsequent considerations.

In the case (i) holdsno/ j + 1 only; puttingconst= 0 and
expanding in series the logarithmic term, the right hand side
of eq (7,2) reads

Δε j =
w jK′εo

j
,

w j = 1−
no

2 j
+

n2
o

3 j2
− . . . , 0 < w j < 1.

(7,3)

Let j be defined between two arbitrary numbers of states
j1 and j2 > j1; moreover define nowK′ in order that the
sum of all termsK′w j introduced in the last equation over all
values ofj fulfills the following condition

j1 ≤ j ≤ j2, π j = K′w j , K′
j2∑

j1

w j =

j2∑

j1

π j = 1;

then the result is

π j =
jΔε j

j2∑

j= j1
jΔε j

, εo =

j2∑

j= j1

jΔε j ,
no

j1
<< 1. (7,4)

The inequality ensures that is fulfilled the initial condition
of the case (i) concerned here, whereas the first eq (7,4) shows
the probabilistic character ofπ j resulting from the previous
positions.

Consider now the limit case (ii). Despite the second eq
(7,3) requires in principle a very large number of series terms
to expressno/ j >> 1, even tending to infinity, there is no rea-
son to exclude that the second equation (7,4) definingjΔε j

still holds: beingK′ arbitrary, it can be still defined in order
to fulfill the inequalityK′Σ j(1−no/2 j+n2

o/3 j2+ ..) < 1 what-
ever the rationo/ j might be. On the one hand this inequality
can be accepted in principle even though the series consists
of an infinite number of terms; in fact the series does not
need to be explicitly computed, which makes plausible also
the positionπ j = K′w j . On the other hand, however, in this
way the resultjΔε j = K′εow j is not explicitly inferred: the
left hand side of the last inequality is indeed undefined. Oth-
erwise stated, without the straightforward hint coming from
the case (i) the eqs (7,4) could have been hypothesized only
and then still introduced in the case (ii) as plausible inputs
but without explanation. Actually, the assessment of the limit
case (i) and the subsequent considerations onw jK′ are the
points really significant of the present reasoning: while ex-
tending the physical meaning ofπ j and jΔε j also to the case
(ii), they ensure the compatibility of the limit cases (i) and
(ii). Once again, the arbitrariness of the numbers of states
plays a key role to carry out the reasoning.

Looking back to eq (7,2) and multiplying byj both sides,
let us write

jΔε j = K′εo( j/no) log(no/ j ± 1) + const j. (7,5)

According to eqs (7,4)jΔε j/K′εo = w j ; so, neglecting 1 with
respect tono/ j in agreement with the present limit case (ii)
and summing all termsw j , eq (7,5) yields

W = −
j2∑

j= j1

(
j

no

)

log

(
j

no

)

− σ
const
K′εo

, σ =

j2∑

j= j1

j. (7,6)

It is useful now to rewrite eq (7,6) as a function of a new
variableξ j

W = −q
j2∑

j= j1

ξ j log(ξ j), const= −
K′εo

no
log(q), ξ j =

j
noq

,

whereq is a proportionality factor not dependent onj; it has
been defined according to the second equation to eliminate
the second constant addend of eq (7,6). The next step is
to define j, so far simply introduced as an arbitrary integer
without any hypothesis on its actual values, in order thatW
has specific physical meaning with reference to a thermody-
namic system characterized by a numbers of freedom de-
grees. To this purpose assume thatj can take selected values
ns only, with n arbitrary integer. This is certainly possible:
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nothing hinders calculating the eq (7,2) as a function ofno/ns

instead of anyj progressively increasing; in this way also
the eq (7,6) accordingly calculated takes a specific physical
meaning consistent with that of the ratiosns/no. Clearly this
does not mean trivially renamingj: now ns readsΔxΔp/~s,
whereΔx = Δx1 ∙ ∙Δxs andΔp = Δp1 ∙ ∙Δps. Since there-
fore ΔxΔp symbolizes a volume in as-dimensional phase
space,ΔxΔp/~s represents the number of states allowed in
this volume. It is known that this ratio introduces the statis-
tical formulation of the entropy [16]; so puttingconst/K′εo

proportional to a new quantityS0, one finds

S = −q
n2∑

n=n1

ξn log(ξn), S0 = −q log(Ω),

const
K′εo

=
1
ζ

S0

q
, Ω = qζ/no.

(7,7)

The notation of the first sum emphasizes that nowj takes
values corresponding to the possiblens. The constant of eq
(7,6) has been therefore related in the last equation toS0. The
second equation can be regarded as a particular case of the
former when the thermodynamic probabilitiesξ j are all equal;
while in eq (7,2)j was an arbitrary number progressively in-
creasing froj1 to j2, in eq (7,7) its relationship tons does not
exclude the chance of coincident values for equal volumes of
phase space. It is well known that the results so far exposed
introduce the statistical definition of entropy a trivial propor-
tionality factor apart. Note that this result has been obtained
in a very different context [12], i.e. to show the quantum
character of the Fick diffusion laws as a consequence of eqs
(1,1) only; despite the different topic, the theoretical frame is
however exactly the same as that hitherto concerned.

Let us return now to the early eq (7,2). Define as usual
the energy range asΔε j = ε′′ − ε′, so that the eq (7,2) reads
no(const+ ε′ − ε′′)/K = log(no/ j ± 1). Exploit once again
the fact that in general the boundary values of the uncertainty
ranges are arbitrary; hence, whatever the sign and values of
K andconstmight be, the left hand side can be rewritten as
(ε j − εo)/K, being of course bothε j andεo still arbitrary. So
the number of statesj of the eq (7,2) reads

j =
no

exp((ε j − εo)/K) ∓ 1
, Δε = ε j−εo = no(const+ε′−ε′′).

The second equation reports again the starting point from
which is inferred the former equation to emphasize that, de-
spite the arbitrariness of the boundary values that define the
size of the energy uncertainty range, the specific problem de-
termines the values of physical interest. For instance in eq
(2,6) has been inferred the Planck law identifyingΔε j with
hΔν j ; clearly the number of states therein appearing is to be
identified here withj, whereasno can be taken equal to 1 be-
cause the photons are bosons. Here the upper sign requires
signs ofK and ε j − εo such that (ε j − εo)/K > 0 because
the number of statesj must be obviously positive; instead the

lower sign allows in principle bothεo < ε j and εo > ε j , as
in effect it is well known. To understand these conclusions,
let us exploit the reasonable idea that the numberj of states
allowed for a quantum system is related to the numberN of
particles of the system. Recall another result previously ob-
tained exploiting eqs (1,1) [7]: half-integer spin particles can
occupy one quantum state only, whereas one quantum state
can be occupied by an arbitrary number of integer spin parti-
cles. In the former case thereforej is directly related toN, i.e.
j = N andno = 1, in the latter case instead in generalN >> j
without a specific link betweenj andN. Yet the arbitrariness
of no makesj suitable to represent anyN also in this case as
N =

∑
j = no

∑
(exp(Δε j/K) − 1)−1. In the classical case

whereΔε j >> K, this equation is the well known partition
function.

8 Discussion

After the early papers concerning non-relativistic quantum
physics [5,6], the perspective of the eqs (1,1) was extended to
the special and general relativity; the gravitational interaction
was indeed inferred as a corollary just in the present theoret-
ical frame. The problem of examining more in general also
other possible forms of quantum interaction appeared next as
a natural extension of these results. This paper aimed indeed
to infer some basic concepts on the fundamental interactions
possible in nature. Even without ambition of completeness
and exhaustiveness, the chance of finding some outstanding
features unambiguously typical of the electromagnetic, weak
and strong interactions has the heuristic value of confirming
the fundamental character of eqs (1,1): seems indeed signif-
icant that the weird peculiarities of the quantum world are
directly related not only to the physical properties of the ele-
mentary particles but also to that of their fundamental inter-
actions, which are described in a unique conceptual frame in-
cluding also the gravity and the Maxwell equations [7]. Now
also the gravitational coupling constant, so far not explicitly
concerned, is inferred within the proposed conceptual frame.
The starting point is again the eq (2,7) rewritten as follows

v′x = −
ΔFxΔx2

n~
, v′x =

dΔx
dΔt

, ΔFx = Fx − Fox. (8,1)

By means of this equation the paper [7] has emphasized
the quantum nature of the gravity force, approximately found
equal toΔFx = Gmamb/Δx2 for two particles of massma and
mb; also, the time dependence ofpx or pox of Δpx = px − pox

was alternatively introduced to infer the equivalence princi-
ple of relativity as a corollary. In the present paper, instead,
both boundary values of the momentum component range
have been concurrently regarded as time dependent to infer
the expected potential energy (5,2) of the strong interactions:
the reasoning is in principle identical, although merely car-
ried out in a more general way; the form of eq (5,2) comes
putting in eq (2,7) both ˙px , 0 and ṗox , 0, which is the
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generalization of the relativistic reasoning carried out in [7].
In fact the eq (2,7), straightforward consequence of eqs (1,1)
and thus valid in general, has been reported also in the present
paper to better understand these results through its underlying
reasoning: what changes is the way it can be exploited to de-
scribe specific physical problems, as it has been also empha-
sized about the physical meaning ofv′x. Now we are interested
to implement a particular case of eq (2,7), i.e. the Coulomb
law quoted in eq (2,8). The procedure followed below does
not need any additional hypothesis with respect to these con-
siderations: it is enough to specify appropriatelyΔFx in eq
(8,1).

Consider first the eq (2,8): in the particular casee′ = e it
yields the Coulomb lawFx−Fox = ΔFx = ±e2/Δx2. Replace
this expression into eq (8,1), which reads then

v′x = ±e2/n~. (8,2)

The± sign is a trivial feature of the velocity component
v′x along the arbitraryx-axis, it is in fact of scarce interest for
the purposes of the present discussion. More interesting is
the fact that puttingv′x = (α/n)c, as done to infer eq (2,9),
one obtains the identityα/n = e2/n~c. This result supports
the idea thatv′x/c of eq (8,2) effectively represents a coupling
constant: it readsα/n, just the electromagnetic coupling con-
stant found in eq (1,4).

Consider now the gravity forceΔFx = Gmamb/Δx2 and
replace this expression into eq (8,1): sov′x = Gmamb/n~.
Comparing this result with the case of the electric force prop-
agating between charged masses, one finds

αG = v′x/c = Gmamb/n~c. (8,3)

Is obvious the reason why the gravitational coupling con-
stant, recognizable at the right hand side, has been formally
obtained through elementary considerations identical to that
of eq (8,2): the unique eq (8,1) turns into either result sim-
ply depending on whether one replacesΔFx with e2/Δx2 or
Gmamb/Δx2. Eqs (8,2) and (8,3) suggest that the gravitational
and electromagnetic field propagate at the same ratec: as em-
phasized when discussing the physical meaning ofvx andv′x
in section 2, the latter is the deformation rate of the space-
time rangeΔx that determinesΔFx, whereas is insteadvx the
real propagation rate of the respective messenger particles in
the interaction space-time rangeΔx; in both casesΔx/Δt = c.

These results are not end points, they have heuristic char-
acter. Let us start from eq (8,3) considering for simplicity
ma = mb = m, so thatm = mP

√
nαG; i.e. anym is pro-

portional to the Planck mass, the proportionality factor being
just
√

nαG. Owing to the small values ofαG, one expects that
large values ofn are required to fit even small masses. Al-
thoughαG depends in general on the specific values of the
masses, it is interesting to examine its minimum value cor-
responding to the particular case where bothma andmb rep-
resent the lightest elementary particle, the electron neutrino.

As concerns the ratiomνe/mP note thatmνe is a real particle,
mP is a mere definition; so for the former only holds the idea
that any particle confined in an arbitrary uncertainty rangeΔx
is characterized in principle by a momentum component gap
Δpx = pcon f

x − p∞x with respect to an ideal unconfined state,
see eq (2,1). For the reasoning is irrelevant how an electron
neutrino could be confined in practice, becauseΔx is arbi-
trary; it could even be the full diameter of the whole universe.
It is instead significant in principle that, as already shown in
section 4 about the weak interaction boson vectors, it is pos-
sible to write for the electron neutrino a delocalization energy
Δενe = Δp2

x/2mνe valid for any real object; this reasoning has
been in effect exploited in eq (4,13). These considerations
aim to conclude that, whateverΔpx might be, the equation

mνe = Δp2
x/2Δενe Δενe = mνec

2 (8,4)

suggestsmνe proportional to a reciprocal energy rangeΔενe
that in turn should be proportional toc2. If this reasoning
is physically sensible, thenmνe/mP ∝ c−2 suggests by con-
sequencemνe/mP ∝ α2; since the fine structure constant is
proportional itself toc−1, this position simply means includ-
ing e2/~ into the proportionality constant. Write therefore

mνe/mP = α2/N

having called 1/N the proportionality constant. The ratio at
left hand side is immediately calculated with the help of the
first value (6,8), it results equal to 1.5 × 10−28; the factor
α2 ≈ 5.3× 10−5 calculatesN equal to 3.5× 1023, a value sur-
prisingly similar to well knownN = 6.02×1023 for the ratio at
right hand side. The agreement between these values is really
unexpected: while the positionmνe/mP ∝ α2 could be accept-
able at least in principle, is really difficult to understand what
the Avogadro number has to do with the present problem. A
reasonable idea is to regardα2/N, perhaps a mere numerical
accident, as a whole factor between ordinary mass units and
Planck mass units. To support this statement replace in eq
(8,4)Δενe with mνec2, regarded as the average of the bound-
ary values ofΔενe; for the following order of magnitude esti-
mate this replacement is acceptable. So, recalling thatΔp2

x =

(n~/Δx)2 and that actually to calculateΔενe one should con-
siderΔp2

x + Δp2
y + Δp2

z, eq (8,4) readsΔx = n~c
√

3/2/mνec2;
putting n = 1, one findsΔx = 1.3 × 10−7m. Replace now
Δενe with (N/α2)Δενe: the factor previously found to con-
vertmνeinto Planck mass units should now convert the energy
ενe from the ordinary units into Plank energy units. Indeed
Δx = n~c

√
3/2α2/Nmνec2 calculated again withn = 1 re-

sults equal to 1.1× 10−35m, which is reasonably comparable
with the Planck lengthlP = 1.6×10−35m. Actually this result
could be expected, because it is based on regarding the energy
Δενe = Δp2

x/2mνe asΔενe = Δp2
xc

2/2Δενe, as already done in
section 4; accordingly, this means identifyingΔενe calculated
from the confinement uncertainty equation with the massmνe
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of the particle itself via the factorc2. This idea was found rea-
sonable to calculate the characteristic length of the weak in-
teraction, eq (4,14), and appears adequate also here because it
shows that the conversion factor ofmνe into mP also converts
ενe into EP.

The main reason for having proposed this result is to stim-
ulate (i) further considerations on the link betweenα andα(νe)

G
and (ii) a greater attention toN when searching fundamental
relationships between the constants of nature. Another nu-
merical accident, which is worth noticing here because per-
haps of possible interest, concerns the key coefficients (6,10);
indeedπa/b = 137.469, which differs from 137.036 by about
0.3% only. It has been remarked the obvious fact that even
small deviations of any lepton or quark mass from the input
values (6,2) and (6,7), (6,8) affect the regression coefficients
(6,10). So, at least from a numerical point of view, it is sen-
sible to suppose that a very fine-tuning of some among these
input values could match exactly the fine structure constant.
This optimization is certainly justified: indeed the electron,
muon and tau masses only are experimentally known with a
degree of accuracy such to exclude any minimum revision;
instead, for the reasons previously remarked, there are am-
ple margins of small adjustment for the neutrino and isolate
quark masses implemented in the present calculations. On the
one hand, such an effort is physically sensible only guessing a
good physical reason to expect that the regression coefficients
should be actually related toα; on the other hand is evident
the interest to provide such an explanation, wholly physical
and not merely numerical, of the coefficients that determine
the fundamental masses of our universe.

Some further points are still to be better clarified; they
pose several questions, some of which are still unanswered.
One of them concerns the correspondence (6,9) between lep-
tons and quarks: is it really mere consequence of the increas-
ing order of their masses, thus a mere definition to exploit
eq (2,4), or is it actually due to something else still hidden
in the correspondence (6,9) and not yet evidenced? But per-
haps the most amazing point is that also the leptons fulfill the
eq (2,4) just thanks to this correspondence. In the case of
quarks, the dependence of their masses oni ≡ δn was ten-
tatively explained through the self-interaction of bare quarks
with their own clouds of gluons and the self-interaction be-
tween these latter: with reference to eq (2,1), a different in-
teraction strength is related both to a dissimilarn/m and to
a dissimilarn/V, thus explaining not only the differentm of
the various quarks but also the equations (5,3) and (6,5). Yet
thereafter also the leptons have been handled through the eq
(2,4) simply guessing an analogy of behavior for both kinds
of fundamental particles of our universe. But, strictly speak-
ing from a physical point of view, why should the lepton
masses depend onδn? On the one side the extension of the
eq (2,4) certainly works well, because the well known masses
of electron, muon and tau particles fit the proposed scheme;
the fact of having included these masses among the results

calculated through eq (6,10) supports also the values of the
masses not experimentally available. On the other side, how-
ever, in lack of a self-interaction mechanism characteristic
of the quarks only, the question arises: is justified a simi-
lar mechanism for the vacuum polarization around the real
charges with formation of virtual particle-antiparticle pairs?
Does the interaction between these couples of virtual parti-
cles/antiparticles surrogate the self-interaction of the quark-
gluon plasma? Work is in advanced progress on these points.
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We investigate the strain energy density of the spacetime continuum in the Elasto-
dynamics of the Spacetime Continuum by applying continuum mechanical results to
strained spacetime. The strain energy density is a scalar. We find that it is separated
into two terms: the first one expresses the dilatation energydensity (the “mass” longitu-
dinal term) while the second one expresses the distortion energy density (the “massless”
transverse term). The quadratic structure of the energy relation of Special Relativity is
found to be present in the theory. In addition, we find that thekinetic energypc is car-
ried by the distortion part of the deformation, while the dilatation part carries only the
rest-mass energy. The strain energy density of the electromagnetic energy-momentum
stress tensor is calculated. The dilatation energy density(the rest-mass energy density
of the photon) is found to be 0 as expected. The transverse distortion energy density
is found to include a longitudinal electromagnetic energy flux term, from the Poynting
vector, that is massless as it is due to distortion, not dilatation, of the spacetime con-
tinuum. However, because this energy flux is along the direction of propagation (i.e.
longitudinal), it gives rise to the particle aspect of the electromagnetic field, the photon.

1 Introduction

The Elastodynamics of the Spacetime Continuum (STCED) is
based on the application of a continuum mechanical approach
to the analysis of the spacetime continuum [1–3]. The ap-
plied stresses from the energy-momentum stress tensor result
in strains in, and the deformation of, the spacetime continuum
(STC). In this paper, we explore the resulting strain energy per
unit volume, that is the strain energy density, resulting from
the Elastodynamics of the Spacetime Continuum. We then
calculate the strain energy density of the electromagneticfield
from the electromagnetic energy-momentum stress tensor.

2 Strain energy density of the spacetime continuum

The strain energy density of the spacetime continuum is a
scalar given by [4, see p. 51]

E =
1
2

Tαβεαβ (1)

whereεαβ is the strain tensor andTαβ is the energy-moment-
um stress tensor. Introducing the strain and stress deviators
from (12) and (15) respectively from Millette [2], this equa-
tion becomes

E =
1
2

(

tαβ + tgαβ
) (

eαβ + egαβ
)

. (2)

Multiplying and using relationseαα = 0 andtαα = 0 from the
definition of the strain and stress deviators, we obtain

E =
1
2

(

4te + tαβeαβ
)

. (3)

Using (11) from [2] to express the stresses in terms of the
strains, this expression becomes

E =
1
2
κ0ε

2 + µ0eαβeαβ (4)

where the Lamé elastic constant of the spacetime continuum
µ0 is the shear modulus (the resistance of the continuum to
distortions) andκ0 is the bulk modulus (the resistance of the
continuum todilatations). Alternatively, again using (11)
from [2] to express the strains in terms of the stresses, this
expression can be written as

E =
1

2κ0
t2 +

1
4µ0

tαβtαβ. (5)

3 Physical interpretation of the strain energy density

The strain energy density is separated into two terms: the first
one expresses the dilatation energy density (the “mass” lon-
gitudinal term) while the second one expresses the distortion
energy density (the “massless” transverse term):

E = E‖ + E⊥ (6)

where

E‖ =
1
2
κ0ε

2 ≡
1

2κ0
t2 (7)

and

E⊥ = µ0eαβeαβ ≡
1

4µ0
tαβtαβ. (8)

Using (10) from [2] into (7), we obtain

E‖ =
1

32κ0

[

ρc2
]2
. (9)
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The rest-mass energy density divided by the bulk modulusκ0,
and the transverse energy density divided by the shear modu-
lusµ0, have dimensions of energy density as expected.

Multiplying (5) by 32κ0 and using (9), we obtain

32κ0E = ρ2c4 + 8
κ0

µ0
tαβtαβ. (10)

Noting thattαβtαβ is quadratic in structure, we see that this
equation is similar to the energy relation of Special Relativity
[5, see p. 51] for energy density

Ê2 = ρ2c4 + p̂ 2c2 (11)

whereÊ is the total energy density and ˆp the momentum den-
sity.

The quadratic structure of the energy relation of Special
Relativity is thus found to be present in the Elastodynamics
of the Spacetime Continuum. Equations (10) and (11) also
imply that the kinetic energypc is carried by the distortion
part of the deformation, while the dilatation part carries only
the rest mass energy.

This observation is in agreement with photons which are
massless (E‖ = 0), as will be shown in the next section, but
still carry kinetic energy in the transverse electromagnetic
wave distortions (E⊥ = tαβtαβ/4µ0).

4 Electromagnetic strain energy density

The strain energy density of the electromagnetic energy-mo-
mentum stress tensor is calculated. Note that Rationalized
MKSA or SI (Système International) units are used in this
paper as noted previously in [3]. In addition, the electromag-
netic permittivity of free spaceǫem and the electromagnetic
permeability of free spaceµem are written with “em” sub-
scripts as the “0” subscripts are used in the spacetime con-
stants. This allows us to differentiate betweenµem andµ0.

Starting from the symmetric electromagnetic stress tensor
[6, see pp. 64–66]

Θµν =
1
µem

(

FµαFαν +
1
4
gµνFαβFαβ

)

≡ σµν, (12)

with gµν = ηµν of signature (+ - - -), and the field-strength
tensor components [6, see p. 43]

Fµν =





0 −Ex/c −Ey/c −Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0





(13)

and

Fµν =





0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0





, (14)

we obtain [6, see p. 66] [7, see p. 141],

σ00 = 1
2

(

ǫemE2 + 1
µem

B2
)

= 1
2ǫem

(

E2 + c2B2
)

σ0 j = σ j0 = 1
cµem

(E × B) j = ǫemc (E × B) j = 1
c S j

σ jk = −
(

ǫemE jEk + 1
µem

B jBk
)

+ 1
2δ

jk
(

ǫemE2 + 1
µem

B2
)

= −ǫem

[(

E jEk + c2B jBk
)

− 1
2δ

jk
(

E2 + c2B2
)]

(15)

whereS j is the Poynting vector, and where we use the nota-
tion σµν ≡ Θµν as a generalization of theσi j Maxwell stress
tensor notation. Hence the electromagnetic stress tensor is
given by [6, see p. 66]:

σµν =





1
2 ǫem (E2+c2B2) S x/c S y/c S z/c

S x/c −σxx −σxy −σxz

S y/c −σyx −σyy −σyz

S z/c −σzx −σzy −σzz





, (16)

whereσi j is the Maxwell stress tensor. Using the relation
σαβ = ηαµηβνσ

µν to lower the indices ofσµν, we obtain

σµν =





1
2 ǫem (E2+c2B2) −S x/c −S y/c −S z/c

−S x/c −σxx −σxy −σxz

−S y/c −σyx −σyy −σyz

−S z/c −σzx −σzy −σzz





. (17)

4.1 Calculation of the longitudinal (mass) term

The mass term is calculated from (7) and (17) of [2]:

E‖ =
1

2κ0
t2 =

1
32κ0

(σαα)
2. (18)

The termσαα is calculated from:

σαα = ηαβσ
αβ

= ηα0σ
α0 + ηα1σ

α1 + ηα2σ
α2 + ηα3σ

α3

= η00σ
00 + η11σ

11 + η22σ
22 + η33σ

33.

(19)

Substituting from (16) and the metricηµν of signature
(+ - - -), we obtain:

σαα =
1
2
ǫem

(

E2 + c2B2
)

+ σxx + σyy + σzz. (20)

Substituting from (15), this expands to:

σαα =
1
2 ǫem

(

E2 + c2B2
)

+ ǫem

(

Ex
2 + c2Bx

2
)

+

+ǫem

(

Ey2 + c2By2
)

+ ǫem

(

Ez
2 + c2Bz

2
)

−

− 3
2 ǫem

(

E2 + c2B2
)

(21)
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and further,

σαα =
1
2 ǫem

(

E2 + c2B2
)

+ ǫem

(

E2 + c2B2
)

−

− 3
2 ǫem

(

E2 + c2B2
)

.

(22)

Hence
σαα = 0 (23)

and, substituting into (18),

E‖ = 0 (24)

as expected [6, see pp. 64–66]. This derivation thus shows
that the rest-mass energy density of the photon is 0.

4.2 Calculation of the transverse (massless) term

The transverse term is calculated from (8), viz.

E⊥ =
1

4µ0
tαβtαβ. (25)

Given thatt = 1
4 σ
α
α = 0, thentαβ = σαβ and the terms

σαβσαβ are calculated from the components of the electro-
magnetic stress tensors of (16) and (17). Substituting for the
diagonal elements and making use of the symmetry of the
Poynting component terms and of the Maxwell stress tensor
terms from (16) and (17), this expands to:

σαβσαβ =
1
4 ǫ

2
em

(

E2 + c2B2
)2
+

+ǫ2em

[(

ExEx + c2BxBx

)

− 1
2

(

E2 + c2B2
)]2
+

+ǫ2em

[(

EyEy + c2ByBy
)

− 1
2

(

E2 + c2B2
)]2
+

+ǫ2em

[(

EzEz + c2BzBz

)

− 1
2

(

E2 + c2B2
)]2
−

−2
(

S x/c
)2
− 2

(

S y/c
)2
− 2

(

S z/c
)2
+

+2 (σxy)2 + 2 (σyz)2 + 2 (σzx)2.

(26)

The E-B terms expand to:

EBterms= ǫ2em

[

1
4

(

E2 + c2B2
)2
+

+
(

Ex
2 + c2Bx

2
)2
−

(

Ex
2 + c2Bx

2
) (

E2 + c2B2
)

+

+
(

Ey2 + c2By2
)2
−

(

Ey2 + c2By2
) (

E2 + c2B2
)

+

+
(

Ez
2 + c2Bz

2
)2
−

(

Ez
2 + c2Bz

2
) (

E2 + c2B2
)

+

+ 3
4

(

E2 + c2B2
)2

]

.

(27)

Simplifying,

EBterms= ǫ2em

[ (

E2 + c2B2
)2
−

(

Ex
2 + c2Bx

2+

+Ey2 + c2By2 + Ez
2 + c2Bz

2
) (

E2 + c2B2
)

+

+
(

Ex
2 + c2Bx

2
)2
+

(

Ey2 + c2By2
)2
+

+
(

Ez
2 + c2Bz

2
)2

]

(28)

which gives

EBterms= ǫ2em

[ (

E2 + c2B2
)2
−

(

E2 + c2B2
)2
+

+
(

Ex
2 + c2Bx

2
)2
+

(

Ey2 + c2By2
)2
+

+
(

Ez
2 + c2Bz

2
)2

]

(29)

and finally

EBterms= ǫ2em

[ (

Ex
4 + Ey4 + Ez

4
)

+

+c4
(

Bx
4 + By4 + Bz

4
)

+

+2c2
(

Ex
2Bx

2 + Ey2By2 + Ez
2Bz

2
) ]

.

(30)

Including the E-B terms in (26), substituting from (15), ex-
panding the Poynting vector and rearranging, we obtain

σαβσαβ = ǫ
2
em

[ (

Ex
4 + Ey4 + Ez

4
)

+ c4
(

Bx
4 + By4+

+Bz
4
)

+ 2c2
(

Ex
2Bx

2 + Ey2By2 + Ez
2Bz

2
) ]

−

−2ǫ2emc2
[ (

EyBz − EzBy
)2
+ (−ExBz + EzBx)2+

+
(

ExBy − EyBx

)2
]

+ 2ǫ2em

[ (

ExEy + c2BxBy
)2
+

+
(

EyEz + c2ByBz

)2
+

(

EzEx + c2BzBx

)2
]

.

(31)

Expanding the quadratic expressions,

σαβσαβ = ǫ
2
em

[ (

Ex
4 + Ey4 + Ez

4
)

+ c4
(

Bx
4 + By4+

+Bz
4
)

+ 2c2
(

Ex
2Bx

2 + Ey2By2 + Ez
2Bz

2
) ]

−

−2ǫ2emc2
[

Ex
2By2 + Ey2Bz

2 + Ez
2Bx

2 + Bx
2Ey2+

+By2Ez
2 + Bz

2Ex
2 − 2

(

ExEyBxBy + EyEzByBz+

+EzExBzBx

)]

+ 2ǫ2em

[(

Ex
2Ey2 + Ey2Ez

2+

(32)
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+Ez
2Ex

2
)

+ 2c2
(

ExEyBxBy + EyEzByBz+

+EzExBzBx

)

+ c4
(

Bx
2By2 + By2Bz

2 + Bz
2Bx

2
) ]

Grouping the terms in powers ofc together,

1
ǫ2em
σαβσαβ =

[ (

Ex
4 + Ey

4 + Ez
4
)

+ 2
(

Ex
2Ey

2+

+Ey2Ez
2 + Ez

2Ex
2
)]

+ 2c2
[(

Ex
2Bx

2 + Ey2By2+

+Ez
2Bz

2
)

−
(

Ex
2By2 + Ey2Bz

2 + Ez
2Bx

2 + Bx
2Ey2+

+By2Ez
2 + Bz

2Ex
2
)

+ 4
(

ExEyBxBy + EyEzByBz+

+EzExBzBx

)]

+ c4
[ (

Bx
4 + By4 + Bz

4
)

+

+2
(

Bx
2By2 + By2Bz

2 + Bz
2Bx

2
) ]

.

(33)

Simplifying,

1
ǫ2em
σαβσαβ =

(

Ex
2 + Ey

2 + Ez
2
)2
+

+2c2
(

Ex
2 + Ey2 + Ez

2
) (

Bx
2 + By2 + Bz

2
)

−

−2c2
[

2
(

Ex
2By2 + Ey2Bz

2 + Ez
2Bx

2+

+Bx
2Ey2 + By2Ez

2 + Bz
2Ex

2
)

− 4
(

ExEyBxBy+

+EyEzByBz + EzExBzBx

)]

+ c4
(

Bx
2 + By2 + Bz

2
)2

(34)

which is further simplified to

1
ǫ2em
σαβσαβ =

(

E4 + 2c2E2B2 + c4B4
)

−

−4c2
[ (

EyBz − ByEz

)2
+ (EzBx − BzEx)2+

+
(

ExBy − BxEy
)2

]

.

(35)

Making use of the definition of the Poynting vector from
(15), we obtain

σαβσαβ = ǫ
2
em

(

E2 + c2B2
)2
−

−4ǫ2emc2
[

(E × B)x
2 + (E × B)y

2 + (E × B)z
2
]

(36)

and finally

σαβσαβ = ǫ
2
em

(

E2 + c2B2
)2
−

4
c2

(

S x
2 + S y

2 + S z
2
)

. (37)

Substituting in (25), the transverse term becomes

E⊥ =
1

4µ0

[

ǫ2em

(

E2 + c2B2
)2
−

4
c2

S 2

]

(38)

or

E⊥ =
1
µ0

[

Uem
2 −

1
c2

S 2

]

(39)

whereUem =
1
2 ǫem (E2 + c2B2) is the electromagnetic field

energy density.

4.3 Electromagnetic field strain energy density and the
photon

S is the electromagnetic energy flux along the direction of
propagation [6, see p. 62]. As noted by Feynman [8, see
pp. 27-1–2], local conservation of the electromagnetic field
energy can be written as

−
∂Uem

∂t
= ∇ · S, (40)

where the termE · j representing the work done on the matter
inside the volume is 0 in the absence of charges (due to the
absence of mass [3]). By analogy with the current density
four-vectorjν = (c̺, j), where̺ is the charge density, andj is
the current density vector, which obeys a similar conservation
relation, we define the Poynting four-vector

S ν = (cUem, S), (41)

whereUem is the electromagnetic field energy density, andS
is the Poynting vector. Furthermore, as per (40),S ν satisfies

∂νS
ν = 0. (42)

Using definition (41) in (39), that equation becomes

E⊥ =
1
µ0c2

S νS
ν. (43)

The indefiniteness of the location of the field energy referred
to by Feynman [8, see p. 27-6] is thus resolved: the elec-
tromagnetic field energy resides in the distortions (transverse
displacements) of the spacetime continuum.

Hence the invariant electromagnetic strain energy density
is given by

E =
1
µ0c2

S νS
ν (44)

where we have usedρ = 0 as per (23). This confirms thatS ν

as defined in (41) is a four-vector.
It is surprising that a longitudinal energy flow term is part

of the transverse strain energy density i.e.S 2/µ0c2 in (39).
We note that this term arises from the time-space components
of (16) and (17) and can be seen to correspond to the trans-
verse displacements along thetime-space planes which are
folded along the direction of propagation in 3-space as the
Poynting vector. The electromagnetic field energy density
termUem

2/µ0 and the electromagnetic field energy flux term
S 2/µ0c2 are thus combined into the transverse strain energy
density. The negative sign arises from the signature (+ - - -)
of the metric tensorηµν.
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This longitudinal electromagnetic energy flux is massless
as it is due to distortion, not dilatation, of the spacetime con-
tinuum. However, because this energy flux is along the direc-
tion of propagation (i.e. longitudinal), it gives rise to the parti-
cle aspect of the electromagnetic field, the photon. As shown
in [9, see pp. 174-5] [10, see p. 58], in the quantum theory of
electromagnetic radiation, an intensity operator derivedfrom
the Poynting vector has, as expectation value, photons in the
direction of propagation.

This implies that the (pc)2 term of the energy relation of
Special Relativity needs to be separated into transverse and
longitudinal massless terms as follows:

Ê2 = ρ2c4

︸︷︷︸

E‖

+ p̂2
‖c

2 + p̂2
⊥c2

︸         ︷︷         ︸

massless E⊥

(45)

wherep̂‖ is the massless longitudinal momentum density. E-
quation (39) shows that the electromagnetic field energy den-
sity termUem

2/µ0 is reduced by the electromagnetic field en-
ergy flux termS 2/µ0c2 in the transverse strain energy den-
sity, due to photons propagating in the longitudinal direction.
Thus the kinetic energy is carried by the distortion part of the
deformation, while the dilatation part carries only the rest-
mass energy, which in this case is 0.

As shown in (9), (10) and (11), the constant of propor-
tionality to transform energy density squared (Ê2) into strain
energy density (E) is 1/(32κ0):

E‖ =
1

32κ0

[

ρc2
]2

(46)

E =
1

32κ0
Ê2 (47)

E⊥ =
1

32κ0

[

p̂2
‖c

2 + p̂2
⊥c2

]

=
1

4µ0
tαβtαβ. (48)

Substituting (39) into (48), we obtain

E⊥ =
1

32κ0

[

p̂2
‖c

2 + p̂2
⊥c2

]

=
1
µ0

[

Uem
2 −

1
c2

S 2

]

(49)

and

p̂2
‖c

2 + p̂2
⊥c2 =

32κ0
µ0

[

Uem
2 −

1
c2

S 2

]

(50)

This suggests that

µ0 = 32κ0, (51)

to obtain the relation

p̂2
‖c

2 + p̂2
⊥c2 = Uem

2 −
1
c2

S 2. (52)

5 Discussion and conclusion

In this paper, we have analyzed the strain energy density of
the spacetime continuum inSTCED and evaluated it for the
electromagnetic stress tensor. We have found that the strain
energy density is separated into two terms: the first one ex-
presses the dilatation energy density (the “mass” longitudinal
term) while the second one expresses the distortion energy
density (the “massless” transverse term). We have found that
the quadratic structure of the energy relation of Special Rel-
ativity is present in the strain energy density of the Elasto-
dynamics of the Spacetime Continuum. We have also found
that the kinetic energypc is carried by the distortion part of
the deformation, while the dilatation part carries only therest
mass energy.

We have calculated the strain energy density of the elec-
tromagnetic energy-momentum stress tensor. We have found
that the dilatation longitudinal (mass) term of the strain en-
ergy density and hence the rest-mass energy density of the
photon is 0. We have found that the distortion transverse
(massless) term of the strain energy density is a combina-
tion of the electromagnetic field energy density termUem

2/µ0

and the electromagnetic field energy flux termS 2/µ0c2, cal-
culated from the Poynting vector. This longitudinal electro-
magnetic energy flux is massless as it is due to distortion,
not dilatation, of the spacetime continuum. However, be-
cause this energy flux is along the direction of propagation
(i.e. longitudinal), it gives rise to the particle aspect ofthe
electromagnetic field, the photon.
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Liquid Metallic Hydrogen III. Intercalation and Lattice Exclusion Versus
Gravitational Settling and Their Consequences Relative to Internal Structure,

Surface Activity, and Solar Winds in the Sun
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Invocation of a liquid metallic hydrogen model (Robitaille P.M. Liquid Metallic Hydro-
gen: A Building Block for the Liquid Sun.Progr. Phys., 2011, v. 3, 60–74; Robitaille
P.M. Liquid Metallic Hydrogen II: A Critical Assessment of Current and Primordial He-
lium Levels in Sun.Progr. Phys., 2013, v. 2, 35–47) brings with it a set of advantages
for understanding solar physics which will always remain unavailable to the gaseous
models. Liquids characteristically act as solvents and incorporate solutes within their
often fleeting structural matrix. They possess widely varying solubility products and
often reject the solute altogether. In that case, the solute becomes immiscible. “Lattice
exclusion” can be invoked for atoms which attempt to incorporate themselves into liquid
metallic hydrogen. In order to conserve the integrity of its conduction bands, it is antic-
ipated that a graphite-like metallic hydrogen lattice should not permit incorporation of
other elements into its in-plane hexagonal hydrogen framework. Based on the physics
observed in the intercalation compounds of graphite, non-hydrogen atoms within liq-
uid metallic hydrogen could reside between adjacent hexagonal proton planes. Conse-
quently, the forces associated with solubility products and associated lattice exclusion
envisioned in liquid metallic hydrogen for solutes would restrict gravitational settling.
The hexagonal metallic hydrogen layered lattice could provide a powerful driving force
for excluding heavier elements from the solar body. Herein lies a new exfoliative force
to drive both surface activity (flares, coronal mass ejections, prominences) and solar
winds with serious consequences relative to the p–p reaction and CNO cycle in the Sun.
At the same time, the idea that non-hydrogen atomic nuclei can exist between layers of
metallic hydrogen leads to a fascinating array of possibilities with respect to nucleosyn-
thesis. Powerful parallels can be drawn to the intercalation compounds of graphite and
their exfoliative forces. In this context, solar winds and activity provide evidence that
the lattice of the Sun is not only excluding, but expelling helium and higher elements
from the solar body. Finally, exfoliative forces could provide new mechanisms to help
understand the creation of planets, satellites, red giants, and even supernova.

Science is a living thing, not a dead dogma. It fol-
lows that no idea should be suppressed. That I to-
tally disagree with what you say, but will defend to
the death your right to say it, must be our underlying
principle. And it applies to ideas that look like non-
sense. We must not forget that some of the best ideas
seemed like nonsense at first. The truth will prevail
in the end. Nonsense will fall of its own weight, by
a sort of intellectual law of gravitation. If we bat it
about, we shall only keep an error in the air a little
longer. And a new truth will go into orbit.

Cecilia Payne-Gaposchkin[1, p. 233]

1 Introduction

As humanity will always be unable to conduct experiments
on the stars, insight into stellar physics can only be gained in
four steps: 1) the phase of the solar body must be properly
ascertained from observational evidence, 2) the substance of

which it is comprised must be identified, 3) stellar data must
be acquired, and 4) the properties of earthly materials, whose
physics might provide at least some level of understanding
relative to astrophysical questions, must be taken into ac-
count. While such an approach cannot be assured of definitive
conclusions, it can nonetheless provide a framework through
which the stars can be “understood”. Within this context, so-
lar and stellar observations become paramount, as they alone
can offer the necessary clues to build realistic models of the
stars. Astrophysical data forms the proper foundation for any
mathematical treatment. Devoid of observation, theory lacks
guidance and leads to stellar models stripped of physical re-
ality.

The postulate that the solar body exists in a liquid state [2,
3] has substantial implications with respect to internal struc-
ture and photospheric activity. To understand how the pres-
ence of layered graphite-like liquid metallic hydrogen [2, 3]
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might alter our insight relative to the Sun, one must turn to-
wards condensed matter physics and the intriguing phenom-
ena associated with both graphite and liquid metallic hydro-
gen. The consequences are far reaching, touching upon vir-
tually every aspect of astrophysics and provide an elegant
setting through which one can begin to understand the most
complex observations. Condensed matter offers many advan-
tages not available to gaseous solar models and numerous
facts now support a liquid state [4–20].∗ For instance, evi-
dence suggests that the solar body and the photosphere are
behaving as condensed matter [2, 3, 10, 14, 15, 20]. It is not
simply that the photosphere gives the appearance of a surface
as a result of opacity changes: it is acting as one [14]. The
same can be said of every structural element on the Sun, in-
cluding sunspots, faculae, and granules [15, 20]. The solar
body is also behaving as a liquid in sustaining the oscillations
which currently occupy helioseismologists. Seismology is a
science of the condensed state [10]. Thus, there can be little
doubt that the body of the Sun is condensed matter.

Though Gustav Kirchhoff had promoted the idea that the
photosphere was liquid, the prevailing models of the period
already focused on the gaseous state [21]. By 1865, con-
densed matter merely floated on the gaseous solar body [21].
Fragmented liquid or solid surfaces continued to survive as a
strange addition to gaseous stars [21], but the idea that they
were fully liquid never truly materialized in modern astron-
omy [21]. Finally, liquid stars were definitively abandoned in
the days of Sir James Jeans, their last major advocate [22].
Jeans had been unable to identify a proper structural material
for his models [22].

Then, in 1935, Wigner and Huntington proposed that
pressurized hydrogen could assume a low energy configu-
ration with graphite-like lattice order (see Fig. 1) [23]. In
doing so, they unknowingly provided Jeans with a candidate
for the solar substance [2, 3], though it is likely that he re-
mained unaware of their solution’s value. A layered graphite-
like structure was critical to proper solar modeling, as this
lattice configuration was closely linked with the study of ther-
mal emission on Earth [24,25]. Carbon-based materials, such
as graphite and soot, are the closest naturally occurring ex-
amples of blackbodies [24,25]. Consequently, they have con-
tinued to be vital in the production of such cavities in the lab-
oratory [24, 25]. Thus, a hydrogen based lattice which could
adopt a graphite-like structure provides an interesting frame-
work for assembling the Sun. Wigner and Huntington [23]
had endowed astrophysics with the perfect candidate for so-
lar material.

In this work, we wish to briefly highlight some of the as-
trophysical benefits which accompany a liquid metallic hy-
drogen [23] model of the Sun [2, 3]. Through the liquid mo-
del, not only are features on the solar surface given a proper

∗The senior author has provided a complete list of his relevant papers to
help facilitate the study of this new model.

structural foundation, but the entire set of solar observations
becomes easily understood [2, 3, 10, 14, 15, 20]. Unlike the
gaseous models and their reliance on magnetic fields to ex-
plain all aspects of solar activity, the liquid model can se-
cure answers without recourse to such phenomena. Magnetic
fields become an effect, not an underlying cause. At the same
time, there are ramifications associated with condensed solar
matter, especially with respect to gravitational settling, so-
lar activity, and nucleosynthesis. These should be addressed
both in the context of existing gaseous models and of the new
liquid models of the stars [2,3].

Fig. 1: Schematic representation of the layered hexagonal lattice
structure found within graphite and proposed for the liquid metallic
hydrogen lattice of the Sun.

2 Solar collapse versus incompressibility

The prevention of solar collapse has always been a central
problem with the gaseous models. Theoretical arguments
were based on the existence of both gas and radiation pres-
sures in order to balance the masses of the stars against the
forces of gravity. In the days of Arthur Stanley Eddington, ra-
diation pressure was believed to play an important role in pre-
venting solar collapse [26]. Over time, this process became
generally restricted to supermassive stars [27, p. 180–186].
Solar collapse was prevented by gas pressure [27, p. 132] and
radiation thought to contribute only a tiny fraction of the re-
quired forces [27, p. 212].

The idea that gas pressure could exist within a star was
awkward. On Earth for instance, the atmosphere can be up-
held by gas pressure as the planet has a surface through which
gas atoms can build positive pressure. Furthermore, the pres-
sure-volume relationship developed using the ideal gas law
implied enclosures and rigid surfaces. It was their presence
that gave meaning to gas pressure precisely since a rigid com-
partment defined the volume of interest. But within gaseous
stellar models, there are no surfaces. As such, no mechanism
exists for speaking of gas pressure.

In his classic text, Donald Clayton would describe the
problem as follows: “The microscopic source of pressure in
a perfect gas is particle bombardment.1 The reflection (or
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absorption) of these particles from a real (or imagined) sur-
face in the gas results in a transfer of momentum to that sur-
face. By Newton’s second law(F = dp/dt), that momen-
tum transfer exerts a force on the surface. The average force
per unit area is called the pressure. It is the same mechan-
ical quantity appearing in the statement that the quantity of
work performed by the infinitesimal expansion of a contained
gas is dW= PdV. In thermal equilibrium in stellar interi-
ors, the angular distribution of particle momenta is isotropic;
i.e., particles are moving with equal probabilities in all direc-
tions. When reflected from a surface, those moving normal to
the surface will transfer larger amounts of momentum than
those that glance off at grazing angles” [28, p. 79]. Clayton’s
footnote stated: “In a nonperfect gas strong forces between
the particles will represent an additional source or sink of
energy for expansions and will therefore contribute to pres-
sure” [28, p. 79].

There are two problems with Clayton’s argument. First,
surfaces do not exist within a gaseous Sun. Secondly, by
modeling the stars using the ideal gas law, astronomy was
requiring elastic collisions between atoms. Yet, if the colli-
sions are elastic, an atom which is moving towards the in-
terior of the Sun could transfer all of its momentum to an-
other atom, without reversing its own direction towards the
exterior. In fact, it would simply propel a stationary atom in
the interior further inside the Sun. This principle has been
well established in the game of billiards. The cue ball can
remain completely stationary upon transferring essentially all
of its energy to another ball. It is only when a ball hits the
banks of the billiard table, or makes use of spin and frictional
forces associated with the table surface itself, that it can re-
verse its momentum. This explains, in the simplest terms,
why gas pressure cannot exist within a gaseous Sun devoid
of real surfaces and subject to elastic collisions. No net force
can be generated with “imaginary surfaces” as the particles
have equal probabilities of moving in all directions and trans-
fer their momentum perfectly with no change of direction. A
real surface is required to generate a net directional force and
such structures cannot exist within a gaseous Sun. Therefore,
modern solar models are unable to prevent internal collapse
by resorting to gas pressure. In the absence of sufficient ra-
diative forces, gaseous stars collapse.

At the same time, the use of gas models introduced many
complications in astronomy. The first was summarized in Ed-
dington’s concern regarding internal heating, as stars became
increasingly dense: “I can hardly see how a star which has
once got into this compressed condition is ever going to get
out of it. . . Imagine a body continually losing heat but with in-
sufficient energy to grow cold” [29, p. 172]. Ralph H. Fowler
would solve Eddington’s dilemma. In 1926 [30], he adapted
Fermi-Dirac statistics to stellar problems (e.g. [27, p. 118–
128]). Stars could now grow cold. Donald Clayton high-
lighted the salient aspects of Fowler’s solution: “The physi-
cal basis for the resolution of this problem is the thermody-

namic peculiarity of a degenerate gas: the temperature no
longer corresponds to kinetic energy. The electrons in a zero-
temperature degenerate gas must still have large kinetic en-
ergy if the density is great” [28, p. 104]. In fact, Fowler’s
treatment was so theoretically powerful and the arguments so
elegant [30], that gaseous stellar models now dominate as-
tronomy. Nonetheless, no mechanism existed for generating
gas pressure within Sun-like stars behaving as ideal gases [27,
p. 130–132]. Fowler’s solution addressed much later stages of
stellar evolution [30].

Conversely, liquids are, by their nature, essentially in-
compressible. Thus, the problem of solar collapse does not
occur within the condensed matter context [2, 3], because
the layered graphite-like structure of liquid metallic hydro-
gen (see Fig. 1) would act to uphold the solar mass. Still,
it is anticipated that the hexagonal lattice of metallic hydro-
gen can become slightly compressed with increasing internal
solar pressures. The essentially incompressible nature of liq-
uids implies that, while resisting compression, they remain
subject to pressure effects to a small extent. Therefore, it
is reasonable to anticipate that liquid metallic hydrogen be-
comes more metallic farther in the solar interior assuming a
Type II lattice [2, 3]. The lower pressures of the photosphere
would be conducive to supporting a less dense solar lattice
(Type-I) with associated decreased metallicity [2, 3]. Con-
versely, since the Wilson effect [31] implies that sunspots are
depressed relative to the photospheric level, it is reasonable to
infer the presence of a Type-II lattice with its increased metal-
licity in these structures [2,3]. In addition, as facular material
is tightly associated with sunspots and may well have been
ejected from such regions, it was not unreasonable to extrap-
olate that their increased metallicity occurs as a result of as-
suming a Type-II lattice, despite the fact that they appear to
float on the photospheric surface [20].

3 Gravitational Settling Versus Restricted Diffusion

Within the context of the gaseous models [32, 33] atoms and
ions can diffuse freely within stellar bodies. At the same time,
since certain elements are heavier than others, it could be ex-
pected that they would slowly move towards the interior of a
star through the action of gravitational settling. In fact, such
a concept was advanced to explain the lack of helium lines
in certain B type stars [34]. Long before, Henry Russell had
minimized the idea that heavy elements were gravitationally
settling in the Sun: “It does not appear necessary, therefore,
to assume that downward diffusion depletes the sun’s atmo-
sphere of the heavier elements, though the possibility of such
an influence remains” [35, p. 59]. Of course, gravitational set-
tling could potentially invalidate all elemental abundances in
stellar atmospheres obtained from spectroscopic lines.

Kippenhahn and Weigert discussed both temperature and
pressure diffusion (gravitational settling) in their text on
“Stellar Structure and Evolution” [27, p. 60–61]. They con-
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cluded that temperature diffusion was astrophysically irrele-
vant in the Sun and that diffusion effects were, in general,
important only in “special cases” not including the Sun [27,
p. 60–61]. Today, the effect of gravitational settling has been
included in the calculation of standard solar models [32, 33].
In part, this was because it improved the agreement with the
p-mode oscillations from helioseismology: “One of the prin-
cipal improvements that has been made in recent years is to
include in the calculations the effects of element diffusion. In
the absence of an external field, diffusion smooths out vari-
ations. However, in the case of the Sun, the stronger pull
of gravity on helium and the heavier elements causes them
to slowly diffuse downward (towards the solar interior) rela-
tive to hydrogen . . . Models that include at least helium dif-
fusion agree with helioseismological determinations of the
depth of the convective zone, while neglecting diffusion en-
tirely leads to disagreement with the helioseismological data”
[33]. Gravitational settling was embraced; for gaseous mod-
els had no other means of accounting for helioseismological
observations.

Within a liquid metallic hydrogen model of the Sun, the
free diffusion of the elements becomes highly restricted, as
the layered lattice structure of the solar body acts to inhibit
the flow of atoms. Rapid diffusion of elements should occur
primarily in the layers between the hexagonal liquid metal-
lic hydrogen planes. Such motion may be facilitated by lat-
tice distortions in the hexagonal hydrogen planes in a manner
similar to that observed in graphite intercalation compounds.

4 Intercalation and Graphite

Graphite [36–38] can be made to interact with various rea-
gents such that non-carbon atoms occupy lattice points be-
tween the hexagonal carbon planes forming intercalation
compounds [39–43]. Layered intercalation compounds (see
Fig. 2) are created when intraplanar binding forces are much
stronger than interplanar forces: “The most important struc-
tural characteristic of graphite intercalation compounds is
the occurrence of separate graphite and intercalate layers
due to the very strong intraplanar binding and the weak in-
terplanar binding. Thus, the graphite layers retain the basic
properties of pristine graphite, and the intercalate layers be-
have similarly to the parent intercalate material” [39, p. 36].

In the graphite case, the hexagonal plane excludes non-
carbon atoms, the intercalant. In doing so, intercalant atoms
can profoundly alter the electrical, thermal, magnetic prop-
erties of graphite by acting as electron donors (i.e. Li, K),
or acceptors (i.e. FeCl3, HF, BF3), to the hexagonal plane
[39–43]. As a result, graphite intercalation compounds can
range from superconductors to insulators [39] with their con-
ductivity often exceeding that of classic metals [43, p. 190].
They consequently occupy an important place in solid state
physics. Graphite intercalation compounds can also undergo
phase transitions including “changes in interlayer ordering

Fig. 2: Schematic representation of an intercalation compound.
Non-carbon elements are located between layers of pristine graphite.

and changes in intralayer or in-plane ordering, magnetic
transitions, and superconductive transition. Structural phase
transitions have been induced by variation of the tempera-
ture, pressure, and in some cases by variation of the vapour
pressure of the intercalant” [39, p. 55–56]. The presence of
intercalated atoms can weaken the interlayer attractive forces
within graphite. Since the concentrations of the intercalate
can be varied, it is possible to build intercalation compounds
wherein many adjacent graphite layers are interrupted by the
occasional intercalate layer (see Fig. 3). The stage index,n,
characterizes the number of graphite layers between interca-
lation layers (e.g. [39] and [43, p. 88]). In the laboratory,n
usually ranges from 1 to 10 [39].

Fig. 3: Schematic representation of the stage index, n, in an interca-
late compound, where n= 6.
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Graphite intercalation compounds are known to relieve
internal strains by undergoing exfoliation [39, p. 9] whereby
a great expansion along the c-axis (see Fig. 1) occurs usually
due to elevated temperatures [44]. The temperature required
for exfoliation is linearly dependent on applied load against
the sample [44]. Higher breakaway temperatures, or temper-
atures of exfoliation, are required under increased pressure.
Expansions of the c-axis lattice dimensions of up to a fac-
tor of 300 have been reported [44]. These can be violent,
even explosive, events wherein layers of material can be torn
away from the underlying structure (see e.g. [39, p. 9] and [43,
p. 403–413]). They occur as a result of gases being expelled
from the graphite intercalated compound. The resultant prod-
ucts are characterized as “spongy, foamy, low-density, high-
surface-area carbon materials” [43, p. 403].

Martin and Broklehurst [44] performed detailed studies
of exfoliation which involved the effect of “restraining loads
on suppressing the onset of exfoliation” [43, p. 406]. Enoki et
al. describe the situation as follows: “According to [Martin
and Broklehurst’s] model, the intercalate undergoes a phase
change to the vapor phase, forming disk-shaped bubbles of
radius r and height Ic in the interlayer region between gra-
phite planes, with gas pockets accumulating in certain re-
gions where diffusion is facilitated by the presence of defects.
Exfoliation then occurs when the gas pressure exceeds the in-
ternal stress parallel to the c-axis” [43, p. 406]. Expressions
for the forces involved can be derived, assuming the ideal gas
law [44].

Lattice exclusion remains the central lesson of these ex-
periments: the graphite hexagonal planes continue to exclude
the intercalate and struggle to remain “pristine” even at the
cost of exfoliation. Such behavior has strong ramifications
when considering the graphite-like liquid metallic hydrogen
lattice believed to exist within the Sun [2,3].

5 Intercalation and Stellar Matter

Graphite’s tendency to remain pristine and exclude other el-
ements from its hexagonal plane, even through the process
of exfoliation, has important consequences for solar physics.
Thermal emission arguments have led Robitaille [2] to pos-
tulate that liquid metallic hydrogen in the Sun must adopt
a graphite-like layered arrangement. Should this be correct,
then liquid metallic hydrogen should be excluding other el-
ements from its hexagonal plane and constantly working to
drive them out of the solar body. Such lattice exclusion and
the possibility that stars might undergo processes like exfolia-
tion could play a crucial role in at least five separate aspects of
solar and stellar dynamics: 1) supplying the driving forces for
solar winds, 2) generating the settings for flares, coronal mass
ejections, and prominences, 3) accounting for the eleven year
solar cycle, 4) providing an alternative explanation for planet
and satellite formation, and 5) explaining the existence of red
giants and supernovae. Each of these areas could consume

many years of study as the liquid metallic hydrogen model
of the Sun is adopted. Suffice it, for now, to address these
briefly.

5.1 Solar Winds

In modern gaseous models, magnetic fields are thought to be
produced by the flow of isolated charged particles within the
solar body. In order to prevent collapse, the Sun remains in
perfect hydrostatic equilibrium wherein the forces of gravity
are balanced by gas and radiation pressure [27, p. 6–7]. How-
ever, the preservation of hydrostatic equilibrium severely lim-
its all proposals advanced for the existence of solar winds. An
object in equilibrium cannot easily be driving material away
from itself.

Conversely, in a condensed model of the Sun, a layered
liquid metallic hydrogen lattice exists (see Fig. 1) which is
dominated by hexagonal hydrogen planes [2, 3]. Such a lat-
tice restricts the translation of protons within each hexagonal
hydrogen layer while permitting electrons to flow in the asso-
ciated conduction bands [2]. The ability to create conduction
bands provides the interatomic binding forces needed to sta-
bilize the hydrogen framework. Proton-proton distances are
restricted in order to establish optimal quantum mechanical
conditions for these conduction bands. This alone stabilizes
the lattice. Since hydrogen atoms possess a single electron
and these are restricted to the conduction bands, no conven-
tional bonding can occur. All elements other than hydrogen
would be excluded from the hexagonal layer in order to main-
tain its structural integrity and electronic structure. Protons
could be thought of as constantly working to expel elements
from the hexagonal planes. This would severely limit the flow
of non-hydrogen elements. Each hydrogen layer would act
as a barrier to diffusion along the c-axis (see Fig. 1), while
providing a channel for rapid elemental diffusion in the re-
gion between two hexagonal layers. Herein can be found the
driving force for the solar winds and the variable elemental
compositions they present due to solar activity [3].

5.2 Flares, Coronal Mass Ejections, and Prominences

In the gaseous models of the Sun, solar flares and coronal
mass ejections are considered to be magnetic phenomena
[45–48] and are produced by invoking magnetic reconnec-
tion [49, 50]. As a gaseous Sun is devoid of a real surface,
no other means of generating the required energy is avail-
able: “The magnetic energy stored in the corona is the only
plausible source for the energy released during large solar
flares. During the last 20 years most theoretical work has
concentrated on models which store magnetic energy in the
corona in the form of electrical currents, and a major goal of
present day research is to understand how these currents are
created, and then dissipated during a flare” [50]. In such a
scenario, the corona provides the driving force for expelling
atoms from the Sun.
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Solar flares are well known to produce helium abundance
enhancements (HEA) and have been suggested as the cause of
significant3He HEAs [45]. In an impulsive flare, the3He/4He
ratio can be assumed to approach 1 [51] and thousand-fold
enhancements of the ratio have been reported [52] . Solar en-
ergetic particle events can result in 100–10,000 fold enhance-
ments of heavy element to oxygen ratios relative to the quiet
corona [52]. Solar atmospheric ratios of Mg/O, Si/O, Fe/O
and Ne/O can all be substantially elevated with flare activ-
ity [51]. In active coronal regions, significant (3–4 fold) ele-
mental enhancements of elements with a first ionization po-
tential (FIP) less than 10 eV can be observed with respect to
the quiet photosphere [53,54]. Within bright active regions, a
further twofold elemental enhancement can be detected [55].
The absolute abundance of potassium and calcium are greater
in flare plasma than in the photosphere [54].

Magnetic reconnection [49, 50], the physical mechanism
invoked to drive solar flares in the gaseous models, cannot
easily account for the variable elemental abundances associ-
ated with flares and coronal mass ejections [56, 57]. As a
parallel, models of quiescent coronal loops result in a 10 fold
excess of helium to hydrogen when a 10% helium abundance
is assumed for the chromosphere [58]. Such tremendous ex-
cesses of helium call for much lower chromospheric helium
abundances, but these are incompatible with levels required
to account for helium in the solar winds [58]. In addition,
in order to explain O and Ne abundances in the fast solar
winds, a coronal He abundance of 20–40% is required [59].
The model assumes gravitational settling in the corona [59],
which is highly unlikely to take place. As such, the gaseous
models are struggling to coherently resolve elemental abun-
dances in the solar winds as a result of the interaction between
coronal loops, the chromosphere, and the corona. The situa-
tion relative to understanding elemental abundances in flares
and coronal mass ejections is equally tenuous.

Long ago, Friedrich Z̈ollner recognized that solar flares
required regions of increased pressure in the solar interior
[60]. He placed a liquid layer within his gaseous Sun: “we
must therefore conclude that the layer of division consists
of an incandescent liquid” [60]. The need to generate pres-
sure was justified, but could not easily survive within a fully
gaseous solar model.

In the liquid metallic hydrogen model of the Sun, solar
flares, coronal mass ejections, and prominences can be ex-
plained by the process of intercalation and exfoliation, as de-
scribed above by Martin and Broklehurst [44]. The pressure
anticipated by Z̈ollner [60] is produced when the intercalate
atoms increasingly populate the region between two adjacent
hydrogen layers. A rapid increase in temperature in this re-
gion, presumably due to localized nuclear reactions (see sec-
tion 5), generates a gaseous phase whose elevated pressures
manifest as solar activity. Therefore, solar flares, coronal
mass ejections, and prominences share a common mecha-
nism of formation. Their subtle differences result only from

the depth of formation. Magnetic fields are not required to
produce these phenomena. They are merely altered by their
presence.

5.3 The Eleven Year Solar Cycle

The existence of the eleven year solar cycle remains incom-
pletely understood [61–66]. Nonetheless, increased solar ac-
tivity is associated with changes in the solar dynamo which
characterize the 11 year cycle [61,64]. Cycle periods as great
as 2,400 years have been postulated [66]. Solar inertial mo-
tion (SIM), wherein the location of the center of the Sun’s
mass in the solar system drifts due to interaction with the gi-
ant planets [61–66], has been postulated as a possible cause
of increased activity. Still, as Cionco and Compgnucci high-
light: “at present there is no clear physical mechanism relat-
ing these phenomena” [64]. How can planetary rotations and
the associatedSIM trigger solar activity? Perhaps the Sun is
already predisposed to increased surface turbulence and re-
quires only a simple disturbance to initiate activity. In this
regard, insight can be gained from the condensed model of
the Sun [2,3].

In the context of a liquid metallic hydrogen model [2, 3],
non-hydrogen elements reside in the layers between hydro-
gen hexagonal planes forming an intercalate arrangement (see
Fig. 2). With solar nuclear activity (see section 5), these in-
terplanar regions become increasingly populated and possible
intercalate lattice points occupied. Eventually, localized sat-
uration of a given intercalate layer takes place. The maximal
concentration of intercalating atoms has been reached. When
this occurs, only slight disturbances, such as found through
solar inertial motion, could trigger solar activity and cause
the intercalate atoms to be ejected from interior layers. Solar
activity then becomes linked to the need to eject saturating
levels of non-hydrogen elements from the solar body. As the
rate of nuclear activity must remain rather constant over the
time frames involved, the Sun is constantly building elements
in its interior (see section 5), degassing, and repeating the en-
tire process. The driving force for degassing becomes lattice
exclusion, but the trigger to release the instability may, or may
not, remain linked to solar inertial motion.

5.4 Planet, Red Giant, and Supernova Formation

The formation of planets around a star presents unique chal-
lenges to astronomy. Many ideas have surfaced and are taught
in introductory astronomy courses [67, p. 285–290]. With
time, Laplace’s Nebular Hypothesis [68, 69], initially pro-
posed by Emanuel Swedenborg [70, p. 240–272], evolved in-
to the Solar Nebular Disk Model (SNDM) [71]. The latter
continues to be the most widely accepted theory for the for-
mation of the solar system [71]. Yet, the problem of planet
and satellite formation is far from resolved (e.g. [72–74]). In
part, this is because the planets cannot be currently conceived
as ejected from a young active gaseous solar mass. The prob-
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lem is removed when the Sun becomes condensed matter and
exfoliative forces can be harnessed to promote planet forma-
tion, especially for the solid planets of the inner solar system.
The central requirement appears to be that interlayer elemen-
tal abundance must be permitted to increase dramatically in
one region of the solar interior, followed by ejection from the
hydrogen lattice. Over time, the Sun could thus transfer some
of its angular momentum to the planets. A similar approach
could be utilized to help explain satellite formation around
the giant planets, as they are also rich in hydrogen [75–77].

On a tangential note, exfoliation might well account for
the very low density and great dimensions of the red giants,
as the experiments of Martin and Broklehurst suggest [44].
A red giant would remain condensed matter in that it was
formed through a process of exfoliation from a star which
had permitted a nearly uniform stage index to develop in its
interior. A trigger finally turned the intercalate rapidly into
the gaseous phase resulting in a red giant. In the final ex-
panded star the dimensions would be enormous and the den-
sity greatly reduced, despite the preservation of condensed
matter for the metallic hydrogen framework. Interlayer gas
pressure between the layers of the expanded star would help
to maintain its structural integrity. Supernova could be envi-
sioned as produced in a similar manner, but with non-uniform
staging in the interior. For instance, a band or core of interca-
late material in the precursor star rapidly enters the gas phase
and explodes its liquid metallic hydrogen envelope, while
compressing its hydrogen core. In the end, the advantages
of adopting a liquid metallic hydrogen model for the Sun are
numerous and its consequences extend much beyond the solar
system.

6 Evolution and Nuclear Reactions in Gaseous Stars

With the publication of theOrigin of Species[78] Charles
Darwin would send shock waves not only throughout the bi-
ological sciences, but also in areas seemingly as far removed
as astronomy. The great American father of solar astronomy,
George Ellery Hale, commented as follows in the first line
of his text devoted to stellar evolution and experimental as-
tronomy: “It is not too much to say that the attitude of sci-
entific investigators towards research has undergone a rad-
ical change since the publication of the Origin of Species”
[79]. Hale expanded on this concept throughout his first chap-
ter, as he elegantly intertwined biological evolution and as-
tronomy. Hale also highlighted the conflict which Herbert
Spencer [21], the prominent evolutionist, had with the as-
tronomers: “convinced that the principle of evolution must
operate universally, and that the stars must have their origin
in the still unformed masses of the nebulae, [Spencer] ven-
tured to question the conclusion that the resolution of nebulae
into stars was only a question of resolving power. He had not
long to wait . . .” [79, p. 47].

Given Hale’s fame as an observer for first reporting the

presence of magnetic fields on the Sun [80], his leadership
in constructing four record setting telescopes (at Yerkes (1),
Mount Wilson (2), and Palomar (1) [81]), and his role in es-
tablishing theAstrophysical Journal[82], it is not surpris-
ing thatThe Study of Stellar Evolution[79] has profoundly
affected the course of modern astrophysics. George Ellery
Hale’s interest in stellar evolution [28, 83–87] was certain to
ascend to a preeminent position in modern astronomy. At the
same time, since prolonged biological evolution was also as-
sociated with increased functional abilities, astronomers
quickly adopted the same concepts relative to the stellar evo-
lution. As stars aged their core temperatures increased and
gradually acquired the ability to make heavier elements. As-
tronomers began to see the stars not only as progressing
through a life cycle, but also, as endowed with different syn-
thetic abilities. Older stars possessed hotter cores, and hence,
could sustain nuclear processes thought to require higher tem-
peratures – the synthesis of heavier and heavier elements. On
the surface at least, the theory was elegant with the excep-
tion of one very serious consideration: the gaseous Sun was
deprived of the ability to directly synthesize the elements.

Early on, the fathers of stellar nucleosynthesis, such as
Gamow [88, 89], Bethe [90–92], von Weizsäcker [93], and
Hoyle [94, 95] would advance the idea that helium could be
built from hydrogen within the stars. From the onset, nucle-
osynthesis was linked to stellar evolution [88, 89]. Gamow
believed that “different rates of energy liberation must be due
to different physical conditions inside the stars and chiefly to
differences in their central temperature” [83, p. 116]. The p–p
reaction [90], which assembled helium directly from proton
combinations while relying on positron and neutrino emis-
sion, was believed to be active only in low weight main se-
quence stars [83, p. 118]. However, for stars larger than the
Sun much of the synthesis of4He came from the carbon-
nitrogen-oxygen (CNO) cycle which had been independently
proposed by Bethe and von Weizsäcker [91–93]. Interest-
ingly, while the cycle required three elements of intermediate
weight, Hans Bethe insisted that: “no element heavier than
4He can be built up in ordinary stars” [92]. He argued, “The
heavier elements found in stars must therefore have existed
already when the star was formed” [92]. With those words,
most of the stars were deprived of their ability to make any
element beyond helium, despite the fact that mankind would
eventually synthesize much heavier elements.

Bethe, of course, based his ideas on the probability of nu-
clear reactions in the gas phase [92, p. 435]. This was ap-
propriate for gaseous solar models. Reaction energies were
derived using accelerators and nucleosynthesis in the stars be-
came strictly dependent on our understanding of reactions in
gases. The idea that many particles could be combined simul-
taneously within a condensed lattice would have greatly low-
ered the energy required to synthesize the heavier elements.
Such a concept was never applied to the Sun. Soon a detailed
work by Burbidge et. al [96] organized the entire field into an
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elaborate theory of nucleosynthesis which covered all of the
elements. This work would continue to influence nucleosyn-
thesis in the stars until the present day [97]. Nonetheless, the
Sun itself had been crippled. All of the elements in the solar
system, other than helium, had been produced by early gen-
eration stars which no longer existed.

7 Nucleosynthesis and Condensed Matter

Perhaps the greatest advantage of the liquid metallic hydro-
gen model of the Sun rests in the fact that atomic positions be-
come restricted to lattice points and subject to the forces asso-
ciated both with solar pressures and lattice vibrations. Hydro-
gen is confined to its hexagonal planes and all other elements
to the intercalate positions between the hydrogen planes. The
synthesis of helium would be driven by the need to relieve the
strains of stellar pressures on the underlying lattice. Two pro-
tons combine to form a deuteron, with positron and neutrino
emission as in the p–p reaction [98]. Upon formation, the
deuteron could immediately combine with another in-plane
proton resulting in the formation of3He, which would be
ejected from the lattice plane into the intercalate layer. As
p–p reactions continue, the population of3He would expand,
and soon continue to react producing4He, as expected from
branch 1 of the p–p chain [98]. With time, the intercalate
region would become the birthplace of all the elements. Pres-
sure and lattice vibrations alone can be viewed as controlling
the reactions with protons readily available from the hexag-
onal plane. All stars gain the ability to synthesize every ele-
ment [19]. Multiple elements could react simultaneously in
the intercalate layer because of lattice vibrations. This greatly
lowers the energy requirements on a given species for nu-
clear reaction. Eventually, as elemental concentrations build,
the stresses against the hexagonal hydrogen planes would in-
crease. These could then break and the intercalate region ex-
pand beyond the confines of strict lattice points. Intercalation
now abandoned in this region, thick layers of non-hydrogen
elements could arise. These would continue to act as nuclear
furnaces. During periods of increased solar activity, localized
changes in temperature could vaporize these areas and release
newly synthesized elements to the stellar atmosphere beyond
the solar surface. During planet formation, such regions could
simply be expelled, with (or perhaps without) vaporization,
from the interior of the Sun.

8 Conclusions

Much speculation has been offered in this work and the end
result was deliberate. In order to consider the condensed
models of the Sun, scientists must ponder upon the ability
to explain the highest amount of observable phenomena in a
manner consistent with known physics. The great solar physi-
cist John Bahcall once commented: “Science progresses as a
result of the clash between theory and experiment, between
speculation and measurement” [99]. In earlier work, con-

siderable focus was placed on establishing what was known
about the Sun and the evidence it displayed with respect to
its phase and composition [2–20]. Ample proof supports the
idea that the Sun exists in the condensed state and Occam’s
razor would slice in its favor.

Given the elevated levels of hydrogen in the universe
[100], a liquid metallic hydrogen framework appears not only
reasonable but, in light of its thermal emission, necessary
[2,3]. The unique link between graphite and the layered form
of metallic hydrogen, as first proposed by Wigner and Hunt-
ington [23], presents enormous potential to refine our concept
of the stars. In this regard, graphite intercalation compounds
bring a wealth of behavioral and structural information cru-
cial to understanding the heavens [39–44]. The layered nature
of liquid metallic hydrogen [23] would not only support the
Sun from collapse, but would also severely limit any gravita-
tional settling. Furthermore, exfoliation in graphite interca-
late compounds [44] has profound consequences, regarding
stellar structure and behavior. Solar winds and solar activity
(flares, coronal mass ejections, prominences) become inher-
ently linked to preserving the hydrogen nature of the Sun [3].
The conversion of intercalated atoms from the liquid to the
gas phase, as proposed by Martin and Broklehurst [44], has
profound implications towards driving solar activity which
will forever remain unavailable to gaseous models. The hy-
pothesis that the solar cycle originates from the degassing
of non-hydrogen elements and their expulsion from the in-
terior is unique to the liquid metallic hydrogen model. For
the first time, a reasonable thesis is being advanced to ex-
plain both solar activity and cycles. A mechanism thereby
becomes available to those who believe that solar inertial mo-
tion might trigger solar activity [61–66]. In addition, the idea
that a layered metallic hydrogen lattice will choose to exclude
non-hydrogen elements and sequester them within the Sun
could add much needed insight relative to the formation of
the planets. Exfoliation of a metallic hydrogen lattice of uni-
form stage might well account for both the size and density
of the red giants. Most importantly, this model enables el-
emental synthesis in the stars. Hexagonal hydrogen planes
harbor the p–p reactions, while the interlayers between pro-
ton planes become furnaces of more advanced nuclear syn-
thesis.

There is a great deal to be gained by considering a liquid
metallic hydrogen model of the Sun. Yet, in this approach,
the solar lattice appears to possess long range order on par
with solids, despite its liquid state [18]. Given the dimen-
sions involved on the solar surface, even solids might appear
to act as liquids. But nonetheless, the model claims the liquid
state as more in keeping with observation. In this respect, the
authors emphasize that long range lattice order seems to be
preserved in the liquid metallic hydrogen framework of the
photosphere and solar body. The Sun is fully behaving as
condensed matter. As such, this thesis has been built on ob-
servation, in keeping with the philosophy of Cecilia Payne:
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“The future of a subject is the product of its past, and the
hopes of astrophysics should be implicit in what the science
has already achieved. Astrophysics is a young science, how-
ever, and is still, to some extent, in a position of choosing its
route; it is very much to be desired that present effort should
be so directed that the chosen path may lead in a permanently
productive direction. The direction in which progress lies will
depend on the material available, on the development of the-
ory, and on the trend of thought . . . The future progress of the-
ory is a harder subject for prediction, than the future progress
of observation. But one thing is certain: observation must
make the way for theory, and only if it does can the science
have its greatest productivity . . . There is hope that the high
promise of astrophysics may be brought to fruition.”

Cecilia Payne-Gaposchkin [1, p. 199–201]

Acknowledgment

Luc Robitaille is acknowledged for the preparation of figures.

Dedication

This work is dedicated to Lindsey Marie Robitaille.

Submitted on: January 6, 2013/ Accepted on: January 10, 2013
First published in online on: February 2, 2013

References
1. Haramundanis K. Cecilia Payne-Gaposchkin: An autobiography and

other recollections (2nd Edition), Cambridge University Press, Cam-
bridge, U.K., 1996.

2. Robitaille P.M. Liquid metallic hydrogen: A building block for the liq-
uid Sun.Progr. Phys., 2011, v. 3, 60–74.

3. Robitaille P.M. Liquid Metallic Hydrogen II: A critical assessment of
current and primordial helium levels in Sun.Progr. Phys., 2013, v. 2,
35–47.

4. Robitaille P.M. The collapse of the Big Bang and the gaseous
Sun. New York Times, March 17, 2002, p. A10 (available online:
http://thermalphysics.org/pdf/times.pdf).

5. Robitaille P.M. Evidence for a liquid plasma model of the Sun.Am.
Phys. Soc. Meeting — April, 2004, S280002.

6. Robitaille P.M. The Sun as a hot liquid plasma: additional evidence.
Am. Phys. Soc. Meeting — Ohio Spring, 2004, S50002.

7. Robitaille P.M. The photosphere as condensed matter.Am. Phys. Soc.
Meeting — Ohio Fall, 2004, S60005.

8. Robitaille P.M. The Sun as a hot liquid plasma: more evidence.Am.
Phys. Soc. Meeting — NE Fall, 2004, S10004.

9. Robitaille P.M. The Sun as a high energy/high density liquid metal-
lic hydrogen plasma.The 33rd IEEE International Conference on
Plasma Science, June 4-8, 2006, Traverse City, Michigan, p. 461,
DOI:10.1109/PLASMA.2006.1707334.

10. Robitaille P.M. The solar photosphere: Evidence for condensed matter.
Progr. Phys., 2006, v. 2, 17–21 (also found in slightly modified form
within Research Disclosure, 2006, v. 501, 31–34; title #501019).

11. Robitaille P.M. A high temperature liquid plasma model of the Sun.
Progr. Phys., 2007, v. 1, 70–81 (also in arXiv: astro-ph/0410075).

12. Robitaille P.M. A radically different point of view on the CMB. In:
Questions of Modern Cosmology — Galileo’s Legacy, ed. by M.
D’Onofrio and C. Burigana, Springer, New York, 2009.

13. Robitaille P.M. Liquid metallic hydrogen: Building block of a liquid
Sun.Am. Phys. Soc. Meeting — Ohio Spring, 2011, D4.00005.

14. Robitaille P.M. On the Presence of a Distinct Solar Surface: A Reply to
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To give the characteristics of the evolution of the collectivity in even-even nuclei, we
studied the behavior of the energy ratios R(4/2) and R(6/4). All chains of lanthanides
begins as vibrational with R(4/2) near 2.0 and move towards rotational (R(4/2) −→
3.33) as neutron number increases. A rabid jump in R(4/2) near N=90 was seen. The
plot of R(4/2) against Z shows not only the existence of a shape transitions but also the
change in curvature in the data for N=88 and 90, concave to convex. For intermedi-
ate structure the slopes in E-GOS (Eγ over spin) plots range between the vibrator and
rotor extremes. The abnormal behavior of the two-neutron separation energies of our
lanthanide nuclei as a function of neutron number around neutron number 90 is cal-
culated. Nonlinear behavior is observed which indicate that shape phase transition is
occurred in this region. The calculated reduced B(E2) transition probabilities of the low
states of the ground state band in the nuclei 150Nd/152Sm/154Gd/156Dy are analyzed and
compared to the prediction of vibrational U(5) and rotational SU(3) limits of interacting
boson model calculations.

1 Introduction

The interacting boson model (IBM) [1, 2] and the geomet-
ric collective model (GCM) [3–5] represent two major phe-
nomenological approaches that successfully describe nuclear
collectivity. While the IBM model is purely algebraic, based
on a bosonized form of the many-body problem with even
numbers of fermions, the GCM model follows from a geo-
metric description of nuclei using the Bohr-Mottelson (BM)
Hamiltonian [6].

Quantum phase transitions are of great interest in many
areas of physics, and their manifestations vary significantly
in different systems. For nuclear systems, the IBM reveals
rich features of their shape phase transitions [7–16]. Three
dynamical symmetries in the IBM were shown to correspond
to three typical shape phase of nuclei, known as the spher-
ical U(5) symmetry, axially deformed SU(3) symmetry and
γ-soft deformed O(6) symmetry shapes. It is also known that
phase transitions coincide with transitions between dynami-
cal symmetries, with a first order phase transition taking place
in the U(5)-SU(3) transition, and a second order phase transi-
tion happening in the U(5)-O(6).

A new class of symmetries that applies to systems local-
ized at the critical points was proposed. In particular the criti-
cal symmetry E(5) [17] has been suggested to describe critical
points in the phase transition from spherical vibrator U(5) to
γ-unstable rotor O(6) shapes, while X(5) [18] is designed to
describe systems lying at the critical point in the transition
from spherical to axially deformed systems. These are based
originally on particular solutions of the Bohr-Mottelson dif-
ferential equations, but are usually applied in the context of
the IBM [1], since the IBM provides a simple but detailed
framework in which first and second order phase transitions
can be studied. In the IBM language, the symmetry E(5) cor-

responds to the critical point between U(5) and O(6) sym-
metry limits, while X(5) symmetry should describe the phase
transition region between the U(5) and the SU(3) dynamical
symmetries.

The purpose of this paper is to disuse the main concepts
of the rapid changes in structure of lanthanide and actinide
nuclei by using some good indicators like energy ratios, two-
neutron separation energies and reduced electric quadruple
transition probabilities.

2 Energy Ratios and Nuclear Shape Transition

Nuclear shape phases are the manifestation of the collective
motion modes of nuclei. One of the best signatures of shape
transition is the behavior of the ratio between the energies of
the first 4+ and 2+ states

R(4/2) =
E(4+1 )
E(2+1 )

(1)

along the isotopic chain. The members of vibrational nuclei
have excitation energies

E(I) = C(I), (2)

where C is the vibrational constant. So that the energy ratios
are

R((I + 2)/I)vib =
I + 2

I
. (3)

The yrast energies of the harmonic vibrator can be written
as

E(I) = nE(2+1 ), (4)

where n is the phonon number. The γ-ray energies within the
yrast band are given by

Eγ(I) = E(I) − E(I − 2)
= E(2+1 ). (5)
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It is interesting to discuss the energy levels by plotting the
ratio of Eγ(I) to spin I (E-Gamma Over Spin) (E-GOS) [19]
against spin I. This is not helpful to identify the structure of
the nucleus, but also to discern changes as a function of spin.
Therefore, the E-GOS for vibrational nuclei can be written as

(Eγ/I)vib = E(2+1 )/I (6)

which decreases hyperbolically from E(2+1 )/2 to zero. In the
rigid rotor, the energies of the yrast states are:

E(I) = AI(I + 1), (7)

where A is the rotational parameter (A = ℏ2/2J, where J rep-
resents the moment of inertia), so that the energy ratios are

R((I + 2/I))rot =
(I + 2)(I + 3)

I(I + 1)
. (8)

Then The γ-ray energies within the yrast band are given
by

Eγ(I) = A(4I − 2) (9)

and so the E-GOS is

(Eγ/I)rot = A
(
4 − 2

I

)
=

E(2+1 )
3

(
2 − 1

I

)
.

(10)

In units of A, this evolves from 3 for I=2 up to 4 for high
I, and so gradually increasing and asymptotic function of I.
Also E-GOS for γ-unstable nuclei is given by

(Eγ/I)γ−so f t =
E(2+1 )

4

(
1 +

2
I

)
. (11)

The R(4/2) varies from the value which correspond to vi-
brations around a spherical shape of vibrational nuclide
R(4/2)=2 to the characteristic value for excitations of well-
deformed rotor R(4/2)=3.33. That is, the energy ratio R(4/2)
exhibits sharp change in rapid transitional region. Even-even
nuclei can be classified roughly according to ratios R(4/2) as:

1.0 < R(4/2) < 2.0 for magic nuclei,
2.0 < R(4/2) < 2.4 for vibrational nuclei,
2.4 < R(4/2) < 2.7 for γ-unstable nuclei,
2.7 < R(4/2) < 3.0 for transitional nuclei,

3.00 < R(4/2) < 3.33 for rotational nuclei.
To give the characteristics of the evolution of the col-

lectivity in even-even nuclei, we study the behavior of the
energy ratios R(4/2) and R(6/4). For the nuclei included in
our study, all chains of lanthanides begins as vibrational with
R(4/2) near 2.0 and move towards rotational (R(4/2)−→3.33)
as neutron number increases. For intermediate structure the
slopes in E-GOS plots range between the vibrator and rotor
extremes. One particular case of interest is R(4/2)=3.0 which

traditionally marks the boundary where axial rotation begins
to set in. A very general phenomenological model is that of
the an harmonic vibrator (AHV) [20]. In this model the yrast
energies are given by

E(I = 2n) = nE(2+1 )
n(n − 1)

2
ϵ4, (12)

where
ϵ4 = E(4+1 ) − 2E(2+1 ) (13)

is the an harmonically of the 4+ state, that is, its deviation in
energy from twice the 2+ energy, and n = I/2, n is the phonon
number in a vibrational nucleus. For ϵ4 = 0 equation (12)
gives the harmonic vibrator

E(I) =
1
2

E(2+1 )I (R(4/2) = 2). (14)

For ϵ4 = (4/3)E(2+1 ), it gives the rigid rotor expression

E(I) =
1
6

E(2+1 )I(I + 1) (R(4/2) = 10/3). (15)

For ϵ4 = E(2+1 ), it gives

E(I) =
1
8

E(2+1 )I(I + 2) (R(4/2) = 3.0). (16)

E(I)/I is constant and that the E-GOS plots is flat. So,
interestingly the phase transition point (R(4/2) 3.0) roughly
serves to section E-GOS plots into two classes of increasing
and decreasing with I, so that nuclei on the vibrator side of
the phase transition are down-sloping while these to the rotor
side are up-sloping.

The systematics of energy ratios of successive levels of
collective bands in medium and heavy mass even-even nu-
clei were studied [21]. A measure of their deviation from the
vibrational and rotational limiting value was found to have
different magnitude and spin dependence in vibrational, rota-
tional and γ-unstable nuclei. For a given band for each spin I,
the following ratios were constructed to define the symmetry
for the excited band of even-even nuclei

r((I + 2)/I) =
R((I + 2)/I)exp − R((I + 2)/I)vib
R((I + 2)/I)rot − R((I + 2)/I)vib

=
R((I + 2)/I)exp − (I + 2)/I

2(I + 2)
I(I + 1)

,
(17)

where R((I + 2)/I)exp is the experimental value of the ratio.
In equation (17), the value of energy ratios, r have changed
between 0.1 and 1 for yrast bands of even-even nuclei. The
ratio r should be close to one for a rotational nucleus and
close to zero for a vibrational nucleus, while it should have
intermediate values for γ-unstable nuclei:

0.10 ≤ r ≤ 0.35 for vibrational nuclei,
0.4 ≤ r ≤ 0.6 for transitional nuclei,
0.6 ≤ r ≤ 1.0 for rotational nuclei.
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3 Electromagnetic Transition Strengths

When the nucleus is deformed it acquires an electric-multiple
moment. Consequently as it oscillates, in λµ mode, it emits
electric λµ radiation. Now to calculate the radiative transition
rates between vibrational states, we need the nuclear electric
multiple operator M̂. This is given by

M̂(Eλ, µ) =
∫
τ

dτρc(r)rλYλµ(θ, ϕ), (18)

ρc(r) is the charge density of the nucleus. The electric multi-
pole moment is defined by Q̂λ

Q̂λ =
(

16π
2λ + 1

)1/2

M(Eλ, 0). (19)

We now discuss the electric quadruple moment (λ = 2) in
more detail because the electric quadruple moment Q2 of a
nucleus is a measure of the deviation of the charge distribu-
tion from spherical symmetry. We define the reduced transi-
tion probability as:

B(E2, Ii −→ I f ) =
∑

M f |⟨IiMi|Q2|I f M f ⟩|2

= 1
2Ii+1 |⟨Ii||Q2||I f ⟩|2,

(20)

where |⟨Ii||Q2||I f ⟩| is a reduced matrix element defined by the
Wigner-Eckart theorem

⟨IiMi|M(Eλ, µ)|I f M f ⟩| = ⟨IiMiλµ|I f M f ⟩
|⟨Ii||M(Eλ)||I f ⟩|

(2Ii + 1)1/2 .

The reduced transition probability B(E2, IiK −→ I f K)
for an electric quadruple transition between two members of
same rotational band with quantum number K is:

B(E2, IiK −→ I f K) =
5

16π
e2Q2

0⟨IiK20|I f K⟩2, (21)

where Q0 is the transition intrinsic quadruple moment and we
have used ∑

m1m2,m

|⟨I1m1I2m2|Im⟩|2 = 2I + 1. (22)

For even-even nuclei, K = 0 and when Ii = I and I f =

I −2, we get the familiar relations between B(E2, I −→ I −2)
and the intrinsic quadruple moment Q0 are:

B(E2, I −→ I − 2) =
5

16π
e2Q2

0
3
2

I(I − 1)
2(2I − 1)(2I + 1)

. (23)

As a special case for the transition 2+ −→ 0+, yields

B(E2, 2+ −→ 0+) =
5

16π
e2Q2

0. (24)

For the transition Ii = I and I f = I + 2, yields

B(E2, I −→ I + 2) =
5

16π
e2Q2

0
3
2

(I + 2)(I + 1)
2(2I + 1)(2I + 2)

(25)

and for special case for the transition 0+ −→ 2+, yields

B(E2, 0+ −→ 2+) =
5

16π
e2Q2

0. (26)

That is

B(E2, 2+ −→ 0+) = 0.2 B(E2, 0+ −→ 2+). (27)

From equation (21), the intrinsic quadruple moment Q0
for a K = 0 band of an axially symmetric rotor is extracted.
For the special transition 0+ −→ 2+, we get

eQ0 =

[
16π

5
B(E2, 0+ −→ 2+)

]1/2

(28)

in units of 10−24 cm2.
The electric reduced transition probability B(Eλ) can be

obtained from the transition probability per unit time for emis-
sion of photon of energy ℏω, angular momentum λ and of
electric type with the nucleus going from a state i to a state f
defined by

T (Eλ) =
8π(λ + 1)
λ[(2λ + 1)!!]2

1
ℏ

(
Eγ
ℏc

)(2λ+1)

. (29)

T (Eλ) for electric quadruple has the from

T (E2) =
4π
75

1
ℏ

(
Eγ
ℏc

)5

B(E2). (30)

For the quadruple transition T (E2) can be derived exper-
imentally from the relation

T (E2, 2+ −→ 0+) =
ln2

(1 + α)τ1/2
, (31)

where α is the total conversion coefficient taken from the tab-
ulated values given by Rose [22] and τ1/2 is the half life time.
From equations (30) and (31), one can find B(E2):

B(E2, 2+ −→ 0+) =
75ℏ
4π

(
ℏc
E2+

)5 ln2
(1 + α)τ1/2

= 0.565502
(

100
E2+

)5 1
(1 + α)τ1/2

,

(32)

where B(E2) is in units of e2b2 when E2+ is in units of MeV
and τ1/2 in units of nanosecond.

4 The two–neutron Separation Energies

The energy required to remove a neutron from a nucleus with
Z proton and N neutron is called separation energy and is
defined as:

S n(Z,N) = [M(Z,N − 1) + Mn − M(Z,N)]C2. (33)
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Fig. 1: Systematics of low-lying yrast level energies in even-even
lanthanides Nd/Sm/Gd/Dy isotopes. The 2+, 4+, . . . , 10+ level ener-
gies are plotted. The states are labeled by Iπ.

This expression can be rewritten in the form of binding
energy as:

S n(Z,N) = B(Z,N) − B(Z,N − 1). (34)

The definition of the two-neutron separation energies is the
following:

S 2n = B(N) − B(N − 1), (35)

where N denotes the number of valence nucleon pairs and it
is assumed that we are treating nuclei belonging to the first
half of the neutron shell (50 - 82) filling up with increasing
mass number.

5 Numerical Calculations and Discussions

The systematics of the excitation energies of the low-lying
states as a function of neutron number changing from 84 to
100 in the even-even lanthanides Nd/Sm/Gd/Dy isotopes in
the mass region 144–166 and the actinide Th/U isotopes in
the mass region 224–238 are presented in Figures (1,2). Only
the yrast state of positive parity and spin Iπ = 2+, 4+, 6+, 8+

and 10+ has been included.
The trend of increasing excitation energy of 2+ state with

decreasing neutron number, implying a corresponding fall in
deformation as the N = 82 shell closure is approached. The
energies of the 4+ and 6+ states also display the same trend.
For lanthanides isotopes we can see that the energy values
for each spin I states change almost linearly for N ≤ 88 and
become quite flat for N ≥ 90. This is consistent with the
onset of the Z = 64 sub-shell effect. Furthermore, the linear
falling of the energy value for each I state as N goes from
86 to 88 seems to justify the linear variation of the effective
proton-boson number in each isotope series.

As an example Figure (1) shows that the limits (spherical
shape and well deformed rotor) are fulfilled in the Neodymium
144Nd and 152−156Nd isotopes respectively, and also that there

Fig. 2: The same as Fig. (1) but for actinides Th/U isotopes.

is a smooth transition between them. The 148Nd isotopes
could be considered as a transitional nucleus in the calcula-
tions. A rapid rise in R(4/2) between N = 88 and 90 is shown,
where it increases from values of ≃2.3 typical of actual vibra-
tional nuclei to 3.0, the traditional borderline value separating
spherical from deformed nuclei to ≃3.3 the limiting value of
the axial rotor model. As a matter of fact, if we compare the
X(5) results (first order phase transition from a spherical vi-
brator to an axially deformed rotor is called X(5)) with the
energy levels in 148Nd, we find striking similarities, it sug-
gested that the nucleus 148Nd display the X(5) symmetry.

The nature of the low-lying states in our lanthanides and
actinides chains of isotopes can be illustrated in Figures (3,4)
by examining the ratios of the excitation energies R(4/2) and
R(6/4) as a function of neutron number. The limiting values
for R(4/2) and R(6/4) for harmonic vibrator are 2.0 and 1.5
and for rigid symmetric rotor are 0.33 and 2.1 respectively.

In lanthanides the calculated values increases gradually
from vibrational value to transitional value near N=90 to rotor

Fig. 3: Evolution of energy ratios R(4/2) and R(6/4) for lanthanides
Nd/Sm/Gd/Dy isotopes as function of increasing neutron number.
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Fig. 4: The same as Fig. (3) but for actinides Th/U isotopes.

Fig. 5: The plot of R(4/2) values in the Nd/Sm/Gd/Dy region against
Z. We see change in curvature in the data for N=88 and N=90 con-
cave to convex.

value in the heavier isotopes. The energy ratios R(4/2) and
R(6/4) for even A, N=88 isotopes are essentially constant for
Sm, Gd and Dy.

The same data for lanthanides is plotted between R(4/2)
against Z instead of N, see Figure (5). We see a rapid jump
in R(4/2) near N=90. Here, the plot of R(4/2) against Z
shows not only the existence of a shape transitions but also
the change in curvature in the data for N=88 and 90, concave
to convex. For Gd nuclei for N≤88 the behavior is typically
closed shell, while for N ≥ 90 the behavior appears to be near
mid shell.

The nuclei of lanthanides region would therefore be can-
didates for a shape transition from vibrator to axially rotator
and the N = 90 isotopes 150Nd, 152Sm, 154Gd and 156Dy are
ideal candidates for X(5). Historically, sensitive studies [23]
of the 152Sm level scheme led to a suggestion that this nucleus
gave evidence for a first order phase transition [24], its R(4/2)
value is intermediate between vibrator and rotor [25]. Addi-
tional X(5) candidate in the lanthanides region have subse-
quently been identified in 150Nd [26], 154Gd [27], 156Dy [28]

Fig. 6: Comparison of R(I/2) and E-GOS plots for three kinds of
collective modes vibrator, rotor and R(4/2)=3 modes.

Fig. 7: The r((I + 2)/I) energy ratios for the ground state bands
of even-even Lanthanides Nd/Sm/Gd/Dy isotopes as a function of
spin I.

and 162Yb [29]. Fig. (6) shows R(I/2) and E-GOS plots for a
vibrator, a rotor and R(4/2)=3 modes.

To investigate the dependence of energy ratios on the an-
gular momentum, the useful criterion r((I + 2)/I) are exam-
ined for distinguishing between different kinds of collective
behavior. In Figures (7,8) we show the results of our calcula-
tions for the ground state bands of the selected lanthanides
and actinides isotopes. The study supports the interpreta-
tion of 150Nd and 152Sm as a critical point nucleus. Hence,
the isotopes 150Nd and 152Sm are associated to X(5) sym-
metry. For the vibrational nuclei 152Gd and 154Dy, the ratios
r((I + 2)/I) start with a small value and then increases with I,
more rapidly in the beginning and slower at higher I’s. On the
other hand for rotational nucleus 162Dy the ratios r((I + 2)/I)
start with a value very close to one and then constantly de-
crease.

As an example, the abnormal behavior of the two-neutron
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Fig. 8: The same as Fig. (7) but for Actinides Th/U isotopes.

Fig. 9: Two-neutron separation energies S 2n for the chains
Nd/Sm/Gd/Dy isotopes as a function of the number of neutrons.

separation energies S 2n of nuclei Nd/Sm/Gd/Dy as a function
of neutron number around neutron number 90 is illustrated
in Fig. (9), the nonlinear behavior of S 2n indicates that shape
phase transition may occur in this region. It is commonly
assumed that the ratio of the B(E2) reduced transition proba-
bilities between the levels of the ground state band takes the
values between vibrational and rotational limits. In the inter-
acting boson model IBM [1] both these limits are corrected
because the number of the quadruple bosons cannot exceed
some maximum value N.

In the U(5) vibrational limit of IBM,

B(E2, I + 2→ I)
B(E2, 2+ → 0+)

=
1
2

(I + 2)
(
1 − 1

2N

)
and in the SU(3) rotational limit of IBM,

B(E2, I+2→ I)
B(E2, 2+ → 0+)

=
15
2

(
1− 1

2N

) (
1− 1

2N+3

)
(I+2)(I+1)

(2I+3)(2I+5)
.

Our GCM calculated values of these ratios are put be-
tween these limits, i.e., the IBM calculations can reproduce
the E2 transition probabilities.

Fig. 10: The ratio dB(E2,I+2−→I)
B(E2,2+−→0+ of reduced transition probabilities

between the levels of the ground state band of 150Nd, 152Sm, 154Gd
and 156Dy as compared to the U(5) and SU(3) of IBM calculations
(• for U(5), ◦ for SU(3) and x for present calculation).

Table 1: The GCM parameters as derived in fitting procedure used
in the calculation.

Nucleus I U(5) SU(3) Present
Vibrator Rotor calculations

150Nd (N=9) 0 0.94444 0.98941 0.75812
2 1.88888 1.41345 1.45375
4 2.63333 1.55677 1.71683
6 3.77777 1.62962 2.19186
8 4.72222 1.67381 2.46675

152Sm (N=10) 0 0.95 0.99130 0.68900
2 1.90 1.41614 1.45137
4 2.85 1.55973 1.71262
6 3.80 1.63272 1.98838
8 4.75 1.67700 2.23512

154Gd (N=11) 0 0.95454 0.99272 0.77300
2 1.90909 1.41818 1.52393
4 2.86363 1.56197 1.79560
6 3.81818 1.63507 1.97412
8 4.77272 1.67941 2.23803

156Dy (N=12) 0 0.95833 0.99382 0.87381
2 1.91666 1.41975 1.51345
4 2.87500 1.56370 1.92725
6 3.83333 1.63688 2.35673
8 4.79166 1.68127 2.53512

The calculated B(E2, I + 2 −→ I)/B(E2, 2+ −→ 0+) ra-
tios using GCM for the ground state bands of the low-lying
state are presented in Table (1) and Fig. (10) together with
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the results for the vibrator and rotor limits of IBM for 150Nd,
152Sm, 154Gd and 156Dy.
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Double Surface and Fine Structure
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Previously [1], one concluded that the atomic world should be elliptic and therefore
the present universe which on the macro level looks like Euclidean is obviously to be
heterogeneous. In this paper, one tries to solve the enigma proposing the double elliptic-
hyperbolic surface. As a result of the effort, a new candidate for the exact inverse fine
structure constant is given:α−1 = 137

(

2− 1/
√

1+ π2/1372
)

= 137.0360062543. . . .

1 Theoretical background

Let us consider our experience of the world is not what that
world in reality is but rather how it is observed and measured.
The distinction between to observe and to measure is made in
this paper. The former means to count the units in the image,
denoted as the averagex. The latter means to count the units
in the inverse image, denoted as the averagex−1. For the
different values ofxi we have to deal with the next inequality:

x × x−1 , 1. (1)

Then the surface we live on is not, for instance, the Euclidean
plane or the sphere very close to it [1], but could be, instead
of it, the double elliptic-hyperbolic surface which is observed
as the Euclidean plane. The average sphere is not proposed to
be the triple elliptic-Euclidean-hyperbolic surface unless the
Euclidean plane is not assigned to have its own identity. Let
us propose that this leaves a footprint in the inverse fine struc-
ture constantα−1 which is in some way observed. Actually
in the observation we count the number of the length unitsλ
which are correlated with the inverse fine structureα−1:

α−1
observed = α

−1
euclidean =

α−1
elliptic + α

−1
hyperbolic

2
. (2)

And the measured elliptic fine structure constant on the atom
level does not reflect exclusively the elliptic sphere, since it is
the mirror of the hyperbolic sphere, too. Let us propose that
this leaves a footprint in the fine structure constantα which
is in some way measured. Actually in the measurement we
count the number of the inverse length unitsλ−1 = mv/h
which are correlated with the fine structureα:

αmeasured =
αelliptic + αhyperbolic

2
. (3)

Consequently the different inverse fine structure constants are
explicitly expressed as

α−1
measured = α

−1
elliptic















2−
α−1

elliptic

α−1
euclidean















, (4a)

α−1
elliptic = α

−1
euclidean−

√

α−1
euclidean

(

α−1
euclidean − α

−1
measured

)

, (4b)

α−1
hyperbolic = α

−1
euclidean +

√

α−1
euclidean

(

α−1
euclidean − α

−1
measured

)

, (4c)

α−1
sphere = α

−1
euclidean ∓

√

α−1
euclidean

(

α−1
euclidean − α

−1
measured

)

. (4d)

It is easily seen that if the measured inverse fine structure con-
stant equals the observed Euclidean one, the elliptic and hy-
perbolic inverse fine structure constant are identical and no
average makes sense. Only in that case what is observed and
measured is also real.

Let us also recall the value of the hypothetical Euclidean
inverse fine structure constant [1]:

α−1
euclidean =

√

π2 + 1372. (5)

2 The fine structure constant and the Hydrogen atom

The elliptic sphere of the radius of about 3679 Compton wave-
lengths of the electron was proposed in the Hydrogen atom
previously [1], based on the assumption that only one type of
the sphere is possible. If the elliptic and hyperbolic sphere
coexists, the fine structure constant is a mirror of their aver-
age geometry, and what results is a different sphere picture.
Without going into the details of how it looks like, some cal-
culations can be made.

2.1 Calculation of the sphere paths

Taking into account the equation (5) and inserting in the equa-
tions (4b) and (4c), the CODATA 2012 recommendedα−1 =

137.035999074 for theαmeasured , the elliptic and hyperbolic
path s in the Hydrogen atom are given in units of Compton
wavelengths of the electron as:

selliptic(α
−1
elliptic) = 136.988254898· · · < n = 137

shyperbolic(α−1
hyperbolic) = 137.083776540· · ·

(6)

The path on the elliptic sphere being smaller than the
translation componentn is not plausible and leads one to the
conclusion that the recommended empirical value ofα−1 sho-
uld be of a little greater size.

2.2 Calculation of the inverse fine structure constants

The translation componentn = 137 Compton wavelengths of
the electron equals the elliptic circular paths and the latter
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expresses the elliptic inverse fine structure constant [1]

α−1
elliptic = 137, since:

n = s = 137 Compton wavelengths of the electron.
(7)

The theoretical inverse fine structure constant deduced from
the average path on the double elliptic-hyperbolic surfaceis
given with the equations (4a) and (5):

α−1
theoretical = 137

(

2− 1/
√

1+ π2/1372
)

= 137.0360062543· · · < α−1
euclidean

(8)

The calculated constant is a little greater than the recommended
CODATA 2012 α−1 but smaller than the hypothetical Eu-
clidean one given by (5). The hyperbolic inverse fine structure
is given by (4c):

α−1
hyperbolic = 137.0720314399· · · (9)

3 Conclusion

According to the proposed model, the electron in the Hy-
drogen atom moves on the elliptic-hyperbolic double surface,
since the measured inverse fine structure constant is smaller
than the hypothetical Euclidean one. And we live in the ap-
parent Euclidean macro-world, since the observed inverse fine
structure constant does not seem to differ from the hypothet-
ical Euclidean one. The difference between what is observed
on the macro level and what is measured in the atom world
implies that neither what is observed nor what is measured
is real. If the elliptic and hyperbolic sphere can coexist in
the present world, a new candidate for the exact inverse fine
structure constant is given by

α−1
theoretical = 137

(

2− 1/
√

1+ π2/1372

)

= 137.0360062543· · ·

Dedication

This fragment is dedicated to my granddaughters Urša and
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High energy gamma-ray flares are almost always observed near the limb of the Sun
and are seldom, if ever, visualized in the central region of the solar disc. As such, they
exhibit a powerful anisotropy best explained by invoking a true photospheric surface. In
this regard, the anisotropic nature of the gamma-ray emissions from high-energy flares
constitute the eighteenth line of evidence that the Sun is condensed matter.

Every body has a surface.

St. Thomas Aquinas [1]

In the middle ages, as St. Thomas Aquinas was reflecting
uponThe Infinity of God, he was confronted with this objec-
tion relative to objects and their surfaces [1]. Thomas would
answer that: “It is one thing to be infinite in essence, and an-
other to be infinite in magnitude” [1]. Though nearly a mil-
lennium has passed since the Dominican Friar contemplated
The Infinity of God, the fact remains that, in the physical
world, one is primarily considering magnitude, not essence:
on a macroscopic scale, every physical body does indeed have
a surface. Failure to meet this criterion results in an assembly
of many bodies.

These ideas have consequences for astronomy. Within the
context of accepted solar models, the Sun must be viewed as
an assembly of bodies, since it has long ago been deprived of
a real surface by gaseous constructs [2].

Conversely, the author has argued that the Sun does in-
deed possess a real surface [3] and he has recently assembled
a wide variety of proofs that highlight its condensed state of
matter (see e.g. [4] and references therein). In this brief work,
an 18th line of evidence is provided.

In 1989, Erich Rieger published a paper inSolar Physics
entitled “Solar Flares: High Energy Radiation and Parti-
cles” [5]. In this report, Rieger provided strong evidence that
flares with emissions>10 MeV are visible only near the so-
lar limb (see Fig. 1). Rieger’s findings would be highlighted
by R. Ramaty and G. M. Simnett in their review on acceler-
ated particles in solar flares: “Gamma-ray emitting flares are
observed from sites located predominantly near the limb of
the Sun (see, e.g. Rieger 1989). This effect was observed for
flares detected at energies>0.3 MeV, but it is at energies>10
MeV that the effect is particularly pronounced . . . Since in
both of these cases the bulk of the emission is bremsstrahlung
from primary electrons, these results imply that the radiating
electrons are anisotropic” [6, p. 237]. It was then postulated
that: “. . . the anisotropy could result from the mirroring of the
charged particles in the convergent chromospheric magnetic

fields” [6, p. 237] based on a theoretical analysis by Miller
and Ramaty [7]. These authors comment that the emissions
are “. . . strongly anisotropic, with more emission in the direc-
tions tangential to the photosphere than in directions away
from the Sun” [7]. In order to account for the anisotropy of
the gamma-ray emission from high energy solar flares, they
invoke electron transport in the coronal region and magnetic
mirroring of converging magnetic flux tubes beneath the tran-
sition region [7]. As the gaseous models of the Sun cannot
support the existence of a real surface, then another mecha-
nism must be created to “act as a surface”.

Fig. 1: Schematic representation of the relative position of flares
with >10 MeV of energy on the solar disk displaying their predom-
inance near the limb. This figure is meant only for illustrative pur-
poses and is an adaptation based on Fig. 9 in [5] which should be
examined for exact flare locations.

Within the gaseous models, the photosphere merely rep-
resents a region of increasing opacity, best regarded as an
“optical illusion” [3]. The gaseous Sun possesses no sud-
den change in density which could allow tangential emission
to its surface. In fact, modern solar models assume a density
of only 10−7 g/cm3 for the photosphere [8, p. 32], a density
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lower than some of our earthly vacuums. Hence the use of
magnetic mirroring and the convergence of field lines in or-
der to generate surface effects in the absence of condensed
matter.

In the end, the simplest way to account for the strongly
anisotropic nature of high energy solar flares is to recognize
the existence of a discrete surface on the Sun. This most ele-
gantly explains why the emissions aretangential to the pho-
tosphere. As flares rise from the solar interior [4] they even-
tually arrive at the photospheric layer. High energy gamma
rays are emitted tangentially to this boundary, as a real phys-
ical surface, not to an illusion [3], has been encountered.
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Helioseismological studies have the ability to yield tremendous insight with respect to
the internal structure and shape of the solar body. Such observations indicate that while
the convection zone displays differential rotation, the core rotates as a rigid body. The
latter is located below the tachocline layer, where powerful shear stresses are believed
to occur. Beyond simple oblateness, seismological studies indicate that the Sun displays
significant higher order shape terms (quadrupole, hexadecapole) which may, or may not,
vary with the solar cycle. In this work, such seismological findings are briefly discussed
with the intent of highlighting that 1) the differential rotation of the convection zone,
2) the rigid body rotation of the core, 3) the presence of the tachocline layer and 4)
the appearance of higher order shape terms, all lend support to the idea that the solar
body is composed of material in the condensed state. In this regard, the existence of the
tachocline layer in the solar interior and the solid body rotation of the core constitute
the nineteenth and twentieth lines of evidence that the Sun is condensed matter.

In brief, every rotating body conducts itself either
as if it is it were purely liquid, or as if it were
purely gaseous; there are no intermediate possibil-
ities. Observational astronomy leaves no room for
doubt that a great number of stars, perhaps even all
stars . . . behave like liquids rather than gases.

Sir James Hopwood Jeans, 1929 [1]

For much of his life, James Jeans believed that stars were
rotating liquids [1, 2]. On the basis of the tremendous abun-
dance of binary systems [2], he had claimed that there could
be no doubt of their condensed nature. Yet, in the paragraph
which followed that quoted above, Jeans also argued:“we
are totally unable to check our theoretical results by observa-
tion” [1, p. 219]. This apparent contradiction was previously
highlighted by Alan B. Whiting [3, p. 209]. Eventually, Jeans
lost sight of the observational evidence which had so con-
vinced him. By 1944, he had abandoned liquid stars [2,4] and
so did astrophysics; although in the 1960s, Subrahmanyan
Chandrashekar would devote nine years of his life to the study
of rotating liquid bodies [4,5]. With time however, astronomy
would add to the arsenal of evidence that the Sun was liquid
(see [6–8] and references therein).

Seismology, the study of low frequency waves within con-
densed matter, would also contribute to our understanding
[9, 10]. Indeed, the mere application of seismology to the
Sun has been heralded as a proof for condensed matter (see
proof 5 in [8]). It is not reasonable to claim that the solar
photosphere, with a density of only 10−7 g/cm3 [11], can act
as a mere optical illusion relative to the presence of a distinct
surface [12], while at the same time forming the confines of a
resonant cavity for seismological studies [13]. The author has

already argued that it is not possible to conduct seismological
observations on a surface whose density remains inferior to
some of the best vacuums on Earth [8], despite the apparent
agreement with the gaseous solar models [14, 15]. Seismol-
ogy has been, and always will remain, linked to the study of
condensed matter.

In this regard, seismology has brought some interesting
insight into the internal structure of the Sun. The fact that
the convection zone undergoes differential rotation appears
well established, as is the presence of a prolate tachocline
layer [9,10]. The tachocline region acts as a shear layer which
separates the differential rotation in the convection zone from
the solid body rotation observed in the solar core. Shear
forces imply area and surface. As such, the presence of the
tachocline layer in the solar interior is now advanced as the
nineteenth line of evidence that the Sun is condensed mat-
ter. Furthermore, the solar core is rotating as a solid body
(e.g. [10]) and this remains impossible for a gaseous object.
Solid body rotation involves strong internal cohesive forces
which gases cannot possess. Consequently, the solid body ro-
tation of the solar core is now invoked as the twentieth line of
evidence that the Sun is condensed matter.

Finally, it is well established that the Sun is not perfectly
spherical but oblate (see [15, 16] and references therein). In-
deed, the presence of solar oblateness could be related to
Jean’s arguments for liquid stars [2]. Since the creation of an
oblate object requires internal cohesive forces which can only
characterize a liquid or solid rotating sphere, solar oblate-
ness has already been invoked as the eighth line of evidence
that the Sun is condensed matter [8]. Yet, the solar shape is
even more complex, characterized by quadrupolar and hex-
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adecapolar terms [16], the latter of which appears dependent
on the solar cycle. These additional features on the solar
sphere served to complement the eighth line of evidence (so-
lar shape [8]) that the Sun is condensed matter.
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In modern solar theory, the photospheric surface merely acts as an optical illusion.
Gases cannot support the existence of such a boundary. Conversely, the liquid metallic
hydrogen model supports the idea that the Sun has a distinct surface. Observational as-
tronomy continues to report increasingly precise measuresof solar radius and diameter.
Even the smallest temporal variations in these parameters would have profound impli-
cations relative to modeling the Sun and understanding climate fluctuations on Earth. A
review of the literature convincingly demonstrates that the solar body does indeed pos-
sess a measurable radius which provides, along with previous discussions (Robitaille
P.M. On the Presence of a Distinct Solar Surface: A Reply to Hervé Faye. Progr.
Phys., 2011, v. 3, 75–78.), the twenty-first line of evidence that the Sun is comprised of
condensed-matter.

But however difficult it may be for present theories to
account for the tenuity of the solar atmosphere im-
mediately above the photosphere, and however read-
ily the same fact may be accounted for by the theory
of Schmidt, it is certain that the observer who has
studied the structure of the Sun’s surface, and par-
ticularly the aspect of the spots and other markings
as they approach the limb, must feel convinced that
these forms actually occur at practically the same
level, that is, that the photosphere is an actual and
not an optical surface. Hence it is, no doubt, that
the theory is apt to be more favorably regarded by
mathematicians than by observers.

James Edward Keeler, 1895 [1]

James Edward Keeler was a distinguished observational as-
tronomer [2]. Along with George Ellery Hale, he had es-
tablishedThe Astrophysical Journalin 1895 [2]. In the first
volume of this journal, Keeler objected to Schmidt’s model
of a fully gaseous Sun whose surface merely represented an
optical illusion (see [3] for a full discussion). Hale echoed
Keeler’s objections stating,“As a theoretical discussion the
theory is interesting and valuable, but few observers of the
Sun will consider it capable of accounting for the varying
phenomena encountered in their investigations”[4]. Thus,
two of the greatest observational astronomers of the nine-
teenth century expressed serious reservations relative tothe
idea that the solar surface was illusionary.

Today, much effort continues to be focused on establish-
ing a proper value for the solar radius ( [5–12] and references
therein). Such reports constitute a clear sign that observa-
tional astronomers recognize, at least in practice, the exis-
tence of a distinct solar surface. In fact, the measurement of
the solar radius not only occupies amateur astronomers, as

they map the transits of Mercury and Venus [11,12], but also
attracts the attention of our helioseismologists [5–10]. This
is not solely because of the obvious implications for climate
change [9]. For theoretical solar physicists, any variation in
the dimensions of the Sun would have severe consequences
with respect to the gaseous models [5–10]. The latter would
be hard-pressed to account for fluctuations in radius. This
helps to account for the reassurance experienced when the
solar radius is perceived as constant [5–7].

Nonetheless, the solar radius has not definitively been es-
tablished as fixed. Values obtained in the past thirty years
range from 958′′.54± 0′′.12 to 960′′.62±0′′.02 (see [10] for
a complete table). In 1980, Irwin Shapiro argued that the so-
lar radius had not decreased over time [13]. Currently, these
issues cause little debate, though cyclical variations continue
to be gently questioned (see [10–13] and references therein).

Perhaps the most interesting aspect of solar radius deter-
minations remains the increased precision of the measure-
ments over the years. Emilio et al. estimate the solar radius
at 960′′.12± 0′′.09 [10]. This corresponds to 65 km for a ra-
dius of more than half a million kilometers (696,342 km) – an
error of better than 1 part in 10,000. Others report errors on
the order of 0′′.02 [10], a relatively tiny distance of less than
15 km – an error of only 2 parts in 100,000. This precision
argues strongly for a distinct solar surface and the existence
of a condensed solar body. It is inconceivable that a gaseous
Sun would be able to create such a defined “optical illusion”.
The gaseous solar models argue for smoothly varying density
changes, even in the region of the photosphere. As a result,
the extreme precision of the solar radius determinations inthe
visible range, along with previous arguments for a distinctso-
lar surface [3], constitute the twenty-first line of evidence that
the Sun is condensed matter.
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Additional Note

Chapman et al. [14] have recently reported variability in the
Sun’s diameter in association with the solar cycle. As previ-
ously mentioned, this is a topic of interest to many, though it
is only quietly pursued [15]. Variations in the solar diameter
with the activity cycle could produce changes in total solar
irradiance, beyond the effects produced by sunspots and fac-
ulae [16, 17]. While the question of varying solar radius has
not been resolved, such phenomena could be accounted for
by invoking exfoliative forces within the liquid metallic hy-
drogen model of the Sun [18]. Exfoliation would be charac-
terized by the production of gases within the condensed solar
structure, potential resulting in an expansion of the solarra-
dius. In sharp contrast, changes in radius remain essentially
insurmountable within the context of the gaseous models.
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While mankind will always remain unable to sample the interior of the Sun, the presence
of sunspots and coronal holes can provide clues as to its subsurface structure. Insight
relative to the solar body can also be gained by recognizing that the Sun must exist in the
condensed state and support a discrete lattice structure, as required for the production
of its continuous spectrum. In this regard, the layered liquid metallic hydrogen lattice
advanced as a condensed model of the Sun (Robitaille P.M. Liquid Metallic Hydrogen:
A Building Block for the Liquid Sun.Progr. Phys., 2011, v. 3, 60–74; Robitaille P.M.
Liquid Metallic Hydrogen II: A Critical Assessment of Current and Primordial Helium
Levels in Sun. Progr. Phys., 2013, v. 2, 35–47; Robitaille J.C. and Robitaille P.M.
Liquid Metallic Hydrogen III. Intercalation and Lattice Exclusion Versus Gravitational
Settling and Their Consequences Relative to Internal Structure, Surface Activity, and
Solar Winds in the Sun.Progr. Phys., 2013, v. 2, in press) provides the ability to add
structure to the solar interior. This constitutes a significant advantage over the gaseous
solar models. In fact, a layered liquid metallic hydrogen lattice and the associated
intercalation of non-hydrogen elements can help to account for the position of sunspots
and coronal holes. At the same time, this model provides a greater understanding of the
mechanisms which drive solar winds and activity.

As the laws of a liquid are different from those of
a gas, a liquid star will behave differently from a
gaseous star, and before we can predict the be-
haviour of a star we must know the state of the mat-
ter composing it.

James Hopwood Jeans, 1928 [1]

Coronal holes are strange entities, in part due to their sparse
nature [2,3]. At first glance, they seem to offer little of value
with respect to our understanding of the Sun. What can be
gained from “looking into a hole”? Within the context of the
liquid hydrogen model of the Sun (see [4–10] and references
therein), there is a great deal to be learned.

In the broadest terms, coronal holes can be described as
follows: “Coronal holes are regions of low-density plasma
on the Sun that have magnetic fields that open freely into
interplanetary space. During times of low activity, coronal
holes cover the north and south polar caps of the Sun. Dur-
ing more active periods, coronal holes can exist at all solar
latitudes, but they may only persist for several solar rotations
before evolving into a different magnetic configuration. Ion-
ized atoms and electrons flow along the open magnetic fields
in coronal holes to form the high speed component of the so-
lar wind” [2]. When the Sun is quiet, coronal holes appear
to be“anchored” onto the polar regions of solar surface (see
Fig. 1): “coronal holes, in fact, appear to display rigid rota-
tion as if they are attached to the solar body”[11, p. 24].

The anchoring of coronal holes to the solar surface can
be viewed as the twenty-second line of evidence that the Sun

Fig. 1: Schematic representation of coronal holes over the polar caps
of a quiet Sun. This figure is an adaptation based on Fig. 2 in [2].

is comprised of condensed matter. The other lines of evi-
dence have already been published (see [4–10] and references
therein). Rigid rotation and anchoring cannot be easily ex-
plained using the gaseous solar models. As a result, the an-
choring of coronal holes is best understood in the context of
a condensed solar model.

In order to comprehend why the Sun possesses coronal
holes, it is best to turn to the lattice configuration of the solar
material. Robitaille and Robitaille [7] have recently advanced
the hypothesis that the Sun is comprised of liquid metallic
hydrogen, wherein protons are arranged in layered hexagonal
planes and all other atoms exist in intercalate layers located
between the hydrogen planes. Such a structure has been based
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on the need to properly explain the thermal emission of the
Sun [5], while at the same time, taking into account the struc-
tural tendencies of layered materials such as graphite [7].

Within the intercalation compounds of graphite, elemen-
tal diffusion orthogonal to the hexagonal carbon planes is hin-
dered, while rapid diffusion can occur in the intercalate re-
gions between the planes (see Fig. 2 in [7]). The same ten-
dencies have been inferred to exist within the liquid metallic
hydrogen lattice of the Sun: elemental diffusion is restricted
in the direction orthogonal to the hexagonal proton planes and
is greatly facilitated within each intercalate layer [7].

Hence, in order to explain the existence of coronal holes,
the hexagonal liquid metallic hydrogen lattice of the Sun must
be placed in a direction which is orthogonal to the solar sur-
face at the poles. This would explain why the expulsion of
ions and electrons from the Sun is facilitated. The subsurface
orthogonal placement of the liquid metallic hydrogen hexag-
onal planes thus accounts for the origin of fast solar winds
in these regions. During the quiet periods of the solar cycle,
the relative orientation of the hydrogen lattice at the poles
forms conduits to drive non-hydrogen elements out of the so-
lar body. As a result, the travel time from the solar core to
the surface may well be extremely brief. Given a solar ra-
dius of∼696,342 km (see [10] and references therein) and a
fast solar wind of 800 km/s [2], an atom could conceivably
leave the solid core of the Sun and escape at the level of the
photosphere on the poles in only fifteen minutes.

Nonetheless, during the quiet period of the solar cycle,
the equatorial regions of the Sun are unable to sustain fast
solar winds. This is likely to occur because the hexagonal
layers of liquid metallic hydrogen are parallel to the solar
surface in this region. Such an arrangement would restrict
the free diffusion of elements from the solar body near the
equator, resulting in the absence of fast solar winds. Only the
slow component of the solar wind would be observed, pre-
cisely because of restricted diffusion of the elements across
the hexagonal hydrogen planes [7]. As a result, the concen-
trations of non-hydrogen elements in the equatorial region of
the interior would increase. Eventually, the Sun would be-
come active in order to finally expel these elements from the
hydrogen lattice, as was previously stated [7].

Sunspots would be created as hexagonal hydrogen layers
are propelled through the solar surface by the force of un-
derlying non-hydrogen elements which have now entered the
gaseous phase [7]. This has been illustrated in Fig. 2. Note
how the “buckling” of metallic hydrogen could result in the
simultaneous formation of two sunspots of opposite polarity
(Fig 2, as is usually observed), or of a single sunspot (Fig.
3, as is sometimes observed). Such as scenario also explains
why the Sun has relatively “erratic” field lines. These con-
stitute simple extensions of a metallic hydrogen lattice whose
internal orientation can be highly variable.

The existence of coronal holes has implications relative
to the density of the solar atmosphere. Currently, the gaseous

Fig. 2: Schematic representation of the appearance of a pair of
sunspots on an active solar surface. The horizontal thick line il-
lustrates the location of the photosphere, the thin lines the layers
of metallic hydrogen, and the dashed lines the magnetic field. The
two shaded circles outline the position of sunspots. In the lower
portion of the figure, the layers of metallic hydrogen are below the
level of the photosphere, but are being pushed up by intercalate ele-
ments which have entered the gas phase [7]. In the upper portion of
the figure, the layers of metallic hydrogen have now broken through
the photospheric level. The two sunspots are being linked solely
by magnetic field lines, as the metallic hydrogen which once con-
tained them has vaporized into the solar atmosphere. This figure is
an adaptation based on Fig. 22 in [12].

solar models are used to assign photospheric and chromo-
spheric densities on the order of 10−7 g/cm3 and 10−12 g/cm3,
respectively [12]. In contrast, within the context of the liquid
metallic hydrogen model, a photospheric density of∼1 g/cm3

is invoked [4–10].
At the same time, the presence of coronal holes directly

suggests that chromospheric and coronal densities cannot be
spherically uniform. When the Sun is quiet, coronal and chro-
mospheric densities should be lower at the poles and possibly
much higher at the equator. Fast solar winds do not typi-
cally exist in the equatorial region of the quiet Sun. In fact,
it appears that the presence of magnetic field lines restrict the
outward movement of ions and electrons away from the solar
surface under such conditions. Such realities, when combined
with the enormous mass of the Sun, suggest that, contrary to
the gaseous solar models, the density of the chromosphere, in
the equatorial regions of the quiet Sun, may be many orders
of magnitude higher than currently believed. It would be rea-
sonable to suggest that atmospheric densities just above the
photospheric layer might far surpass those currently associ-
ated with the density of the Earth’s atmosphere at sea level.
This highlights the problems with extracting densities from
regions of the solar atmosphere which are clearly not in local
thermal equilibrium, as previously discussed [6].

The liquid metallic hydrogen model [5–7] provides an ex-
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Fig. 3: Schematic representation of a single sunspot on a quiet Sun
as in Fig. 2. In this figure, the layers of metallic hydrogen are below
the level of the photosphere, but are being pushed up by an adjacent
layer of metallic hydrogen which in turn has been displaced by inter-
calate elements which have entered the gas phase [7]. The sunspot
is characterized by strong open magnetic field lines, as the metallic
hydrogen which once contained them has vaporized into the solar
atmosphere.

cellent framework through which solar activity can be under-
stood. Over the course of the solar cycle, the Sun is alter-
natively degassing the poles and then the equator. It does so
through the orientation of its liquid metallic hydrogen lattice.
When the Sun is quiet, much of its interior is constantly be-
ing degassed through the action of the fast solar winds exit-
ing at the poles. During this time, degassing is restricted over
equatorial regions. Eventually, the Sun becomes active. This
change in state is directly associated with degassing the solar
interior in the regions of the equator. This helps to explain
why sunspots and high energy flares are always restricted to
the lower latitudes. They occur in order to degas the equa-
torial regions of the solar interior. Such a problem does not
occur at the poles, since, during the quiet solar period, those
internal regions are constantly being degassed by the fast so-
lar winds.

In the end, how the liquid metallic hydrogen layers are
oriented within the solar interior reveals a great deal with re-
spect to the formation of sunspots, coronal holes, and mea-
sures of solar activity. The magnetic field lines that are ob-
served above the photosphere are a direct consequence of this
orientation. Conversely, in the gaseous models of the Sun, the
origin of magnetic field lines, coronal holes, sunspots, flares,
coronal mass ejections, prominences, and fast or slow solar
winds remain areas of profound mystery. This is precisely
because these models can offer no structural support for the
existence of these phenomena. In order to begin to understand
the Sun, structure is required. The continuous solar spectrum
requires a lattice for formation. The ideal lattice would re-
semble the layered one adopted by graphite, as dictated by
the needs of thermal emission. Wigner and Huntington have
already proposed that metallic hydrogen could adopt a simi-

lar lattice [13], creating an ideal structural foundation for the
Sun. Furthermore, layered materials, which mimic graphite
in their structure, should be prone to forming intercalate re-
gions, as a consequence of lattice exclusion forces [7]. In this
regard, the author believes that lattice exclusion, as first pos-
tulated by Joseph Christophe Robitaille, along with the for-
mation of intercalate regions within layered metallic hydro-
gen [7], constitutes the central thesis for understanding solar
structure and activity.
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Coronal rain represents blobs of solar material with a widthof ∼300 km and a length of
∼700 km which are falling from the active region of the corona towards the solar surface
along loop-like paths. Conversely, coronal showers are comprised of much larger bulks
of matter, or clumps of solar rain. Beyond coronal rain and showers, the expulsion
of solar matter from the surface, whether through flares, prominences, or coronal mass
ejections, can result in massive disruptions which have been observed to rise far into the
corona, return towards the Sun, and splashdown onto the photosphere. The existence of
coronal rain and the splashdown of mass ejections onto the solar surface constitute the
twenty-third and twenty-fourth lines of evidence that the Sun is condensed matter.

As the laws of a liquid are different from those of
a gas, a liquid star will behave differently from a
gaseous star, and before we can predict the be-
haviour of a star we must know the state of the mat-
ter composing it.

James Hopwood Jeans, 1928 [1]

The presence of coronal rain within the active atmosphere
of the Sun has been recognized for less than a decade [2–5].
Coronal rain corresponds to“cool and dense matter and not
waves” [5]. It appears to be“ubiquitous” and“composed of
a myriad of small blobs, with sizes that are, on average 300
km in width and 700 km in length”[5]. When it aggregates,
coronal rain can lead to larger clumps called“showers” [5].
Their rate of descent towards the solar surface can approach
120 km s−1. However, such rates of descent are inferior to
those inferred from the Sun’s gravitational field, suggesting
that they are restricted in their downward motion by gas pres-
sure in the underlying solar atmosphere [5]. These findings
are incongruent with the idea that the density of the chromo-
sphere is in the 10−12 g/cm3 range, as currently advanced by
the gaseous solar models [6]. Such densities would be asso-
ciated with very good vacuums on Earth. As such, it does
not seem reasonable, based on these findings, that the chro-
mospheric densities associated with the gaseous models can
be correct [7]. At the same time, theoretical models relative
to coronal rain now rely on“heating and condensation cy-
cles” [4, 5], despite the fact that the gaseous models of the
Sun preclude all material condensation. In the end, it remains
more plausible to account for the behavior of coronal rain
by invoking true condensation, as seen in the liquid metallic
model of the Sun [7]. This constitutes the twenty-third line
of evidence that the Sun is comprised of condensed matter
(see [7] and references therein for the others).

In addition to coronal rain, the mass ejection event, wit-
nessed on June 7, 2011, was particularly instructive relative

to the nature of the Sun [8,9]. On that day, a tremendous dis-
ruption occurred on the solar surface which projected material
well into the corona, prior to its subsequent descent back onto
the Sun. Upon striking the solar body, the multiple points of
impact immediately brightened – revealing clear and distinct
surface behavior on the photosphere [9]. Such visualizations
highlight that the solar surface is not an optical illusion,but,
indeed, acts as a real surface. Such “splashdowns” constitute
the twenty-fourth line of evidence that the solar body is com-
prised of condensed matter. In addition, they provide comple-
mentary evidence that flares, prominences, and coronal mass
ejections are also characterized by the existence, at leastin
part, of condensed matter.

Impressive disruptions of the solar surface have also been
associated with comets, although intial analysis apparently
revealed that such events were not associated with the impact
of such objects onto the photosphere [10]. In the end, addi-
tional study may well reveal that comets have the ability to
disrupt the solar surface, either directly through impact or in-
directly by disrupting magnetic field lines above the surface.

Such visualizations highlight that the solar surface is not
an optical illusion. It appears and behaves as a true liquid
surface. In addition, coronal rains and mass ejection splash-
downs indicate that the outer atmosphere of the Sun can sup-
port localized regions of condensed matter.
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The apparent depletion of lithium represents one of the greatest challenges to modern
gaseous solar models. As a result, lithium has been hypothesized to undergo nuclear
burning deep within the Sun. Conversely, extremely low lithium abundances can be
easily accounted for within the liquid metallic hydrogen model, as lithium has been
hypothesized to greatly stabilize the formation of metallic hydrogen (E. Zurek et al.
A little bit of lithium does a lot for hydrogen.Proc. Nat. Acad. Sci. USA, 2009, v. 106,
no. 42, 17640–17643). Hence, the abundances of lithium on the solar surface can be
explained, not by requiring the nuclear burning of this element, but rather, by suggesting
that the Sun is retaining lithium within the solar body in order to help stabilize its
liquid metallic hydrogen lattice. Unlike lithium, many of the other elements synthesized
within the Sun should experience powerful lattice exclusionary forces as they are driven
out of the intercalate regions between the layered liquid metallic hydrogen hexagonal
planes (Robitaille J.C. and Robitaille P.M. Liquid Metallic Hydrogen III. Intercalation
and Lattice Exclusion Versus Gravitational Settling and Their Consequences Relative
to Internal Structure, Surface Activity, and Solar Winds inthe Sun.Progr. Phys., 2013,
v. 2, in press). As for lithium, its stabilizing role within the solar interior helps to account
for the lack of this element on the surface of the Sun.

As the laws of a liquid are different from those of
a gas, a liquid star will behave differently from a
gaseous star, and before we can predict the be-
haviour of a star we must know the state of the mat-
ter composing it.

James Hopwood Jeans, 1928 [1]

Solar lithium abundance [2], as determined at the photo-
spheric level, are reduced∼140 fold when compared to me-
teorites [3]. Such a paucity of lithium has presented a chal-
lenge for the gaseous models of the stars, as they attempt to
account for the relative absence of this element on the solar
surface [2,3]. Consequently, solar scientists hypothesized that
lithium is being burned deep within the convection zone [2,3].
Lithium is thought to be easily destroyed [7Li(p,α)4He] at
temperatures above 2.6 x 106 K [4]. Mild mixing of lithium
also helps to account for the surface depletion [4–6]. In this
regard, it has been postulated that“stars that host planets ex-
perience more mixing in their internal environment”[7]. As a
result, those who adhere to the gaseous models have proposed
that greater lithium depletion occurs in stars that have orbit-
ing planets [8], although such claims have been refuted [9].
Nonetheless, such works [7, 9] highlight the significance of
the solar lithium abundance problem in astrophysics. In this
regard, solar lithium abundances might be better understood
within the context of the liquid metallic hydrogen model of
the Sun [10–13].

Along with Neil Ashcroft, Eva Zurek and her cowork-
ers recently advanced [14] that lithium could greatly stabilize

the formation of metallic hydrogen [15,16]. This finding has
tremendous implication relative to understanding the fateof
lithium within the Sun, if indeed, the solar matrix is com-
prised of liquid metallic hydrogen [10–13].

When the Sun was hypothesized to be built from liquid
metallic hydrogen, it was important that the resulting lattice
adopt a layered structure similar to graphite in order to prop-
erly account for thermal emission [11]. Thus, it was fortunate
that Wigner and Huntington [15] had said that metallic hydro-
gen could exist in a layered lattice resembling graphite. Atthe
same time, since graphite was known to form intercalation
compounds, the extension of such chemistry to the layered
form of metallic hydrogen proved natural [13]. Therefore, it
was thought that the Sun would maintain the integrity of its
layered hexagonal hydrogen lattice and associated conduc-
tion bands, by permitting non-hydrogen elements to reside
within intercalation zones [13]. In addition, since the interca-
lation compounds of graphite are known to undergo exfolia-
tive processes wherein intercalate atoms are driven out of the
graphitic structure, the same mechanism was applied to the
Sun [13]. Solar activity became linked to lattice exclusionand
the associated expulsion of non-hydrogen atoms from the so-
lar interior [13]. Nonetheless, it was already recognized [11]
that lithium should stabilize the metallic hydrogen lattice. As
a result, unlike the case for most elements, the Sun should
not be working to expel lithium. Such a scenario elegantly
accounts for the significant reductions in lithium abundances
observed on the surface of the Sun while, at the same time,
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permitting elevated lithium levels in meteorites, or otherob-
jects, which have been first synthesized within the stars. Con-
versely, the idea that lithium is being burned preferentially
within the stars, as proposed by the gaseous models, makes
it difficult to account for elevated lithium levels elsewhere in
the astrophysical world. Herein lies the merit of sequestering
lithium within the solar body and permitting it to participate
in nuclear reactions, without preferential burning, in thecon-
text of the liquid metallic hydrogen model [10–13].
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